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Abstract

Recent years have witnessed increasing interest in adversarial attacks on images, while adversarial video attacks have
seldom been explored. In this paper, we propose a sparse adversarial attack strategy on videos (DeepSAVA). Our
model aims to add a small human-imperceptible perturbation to the key frame of the input video to fool the classifiers.
To carry out an effective attack that mirrors real-world scenarios, our algorithm integrates spatial transformation
perturbations into the frame. Instead of using the lp norm to gauge the disparity between the perturbed frame and the
original frame, we employ the structural similarity index (SSIM), which has been established as a more suitable metric
for quantifying image alterations resulting from spatial perturbations. We employ a unified optimisation framework
to combine spatial transformation with additive perturbation, thereby attaining a more potent attack. We design an
effective and novel optimisation scheme that alternatively utilises Bayesian Optimisation (BO) to identify the most
critical frame in a video and stochastic gradient descent (SGD) based optimisation to produce both additive and spatial-
transformed perturbations. Doing so enables DeepSAVA to perform a very sparse attack on videos for maintaining
human imperceptibility while still achieving state-of-the-art performance in terms of both attack success rate and
adversarial transferability. Furthermore, built upon the strong perturbations produced by DeepSAVA, we design a novel
adversarial training framework to improve the robustness of video classification models. Our intensive experiments on
various types of deep neural networks and video datasets confirm the superiority of DeepSAVA in terms of attacking
performance and efficiency. When compared to the baseline techniques, DeepSAVA exhibits the highest level of
performance in generating adversarial videos for three distinct video classifiers. Remarkably, it achieves an impressive
fooling rate ranging from 99.5% to 100% for the I3D model, with the perturbation of just a single frame. Additionally,
DeepSAVA demonstrates favorable transferability across various time series models. The proposed adversarial training
strategy is also empirically demonstrated with better performance on training robust video classifiers compared with
the state-of-the-art adversarial training with projected gradient descent (PGD) adversary.
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Highlights

• Perform sparse adversarial attacks on video models,
aiming to perturb only a small number of frames
while achieving a high attack success rate.

• Capture a wide range of adversarial examples by
combining additive and spatial transformation per-
turbations.
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• Use Structural Similarity Index (SSIM) instead of
lp-norm to maintain human perception during the
attack process.

• Apply Bayesian Optimisation to nominate the most
critical frame to perturb.

• Propose a new adversarial training method based
on a combination perturbation generator.

1. Introduction

Deep Neural Networks (DNNs) have shown impres-
sive performance in a variety of fields in recent years,
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(a) SSIM=1.00,
l1,2=0.00

(b) SSIM=0.93,
l1,2=3.23

(c) SSIM=0.92,
l1,2=3.39

(d) SSIM=0.93,
l1,2=3.29

(e) SSIM=0.92,
l1,2=3.40

Figure 1: Comparison of SSIM and l1,2 norm distance for: (a) Original image. [(b)-(e)] Perturbed images: (b) Noise. (c) Zooming out spatial scaling
+ noise. (d) Counterclockwise rotation 5 ◦ + noise. (e) Counter-clockwise rotation 5 ◦ + spatial scaling with zooming + noise. SSIM values for (b)
and (d) are identical, whereas l1,2 increases when an imperceptible rotation is introduced. This indicates that SSIM is less sensitive to rotation and
can potentially result in a stronger adversarial attack with spatial transformation perturbation.

including image classification (Shen et al., 2017), text
analysis (Mittal et al., 2020), speech recognition (Fohr
et al., 2017), and object detection (Fohr et al., 2017).
Despite their enormous success, extensive research has
shown that DNNs are vulnerable to adversarial attacks
(Szegedy et al., 2014; Carlini and Wagner, 2017b; Wang
et al., 2022), appearing as adding nonrandom small and
imperceptible perturbations on inputs that cause DNNs
to give incorrect predictions. The increasing adoption of
DNN models in various domains with security demands,
such as facial authentication (Mohammadi et al., 2017),
autonomous driving (Lu et al., 2017; Wu et al., 2023),
and robotics (Yim et al., 2007), has sparked a height-
ened interest in the investigation of adversarial examples.
Investigating adversarial examples can benefit the com-
munity in increasing awareness of safety risks in the
system and also providing support for the construction
of more robust DNNs (Xie et al., 2017; Huang et al.,
2012).

In real-world scenarios, video often serves as an intrin-
sic input modality for the vision systems operating, such
as those used in autonomous driving (Liao et al., 2020),
medical care (Romeo et al., 2020) and traffic monitor-
ing (Bas et al., 2007). Since video classifiers are built
upon DNNs, adversarial examples can have detrimental
effects on the model’s performance. To this end, investi-
gating adversarial samples on videos is urgently needed.
By now, the adversarial attack and defence strategies
primarily concentrate on image-related tasks, and the
adversarial robustness of deep learning models on videos
has not yet been comprehensively explored1.

Nevertheless, videos are different from static images
in that they contain a sequential data structure that
changes dynamically over time. As a result, attack strate-
gies designed for images cannot be applied directly to

1In Table 1, we list all current adversarial video attacks as exhaus-
tively as possible.

videos. Existing work on attacking video models can be
divided into two types: dense attack and sparse attack.
The dense attack is to perturb all frames of a video (Pony
et al., 2021) which may result in a high fooling rate,
but it is time-consuming and may also compromise hu-
man imperceptibility. Sparse attacks, on the other hand,
were proposed by Wei et al. (2019). They demonstrated
that the inherent characteristics of the video classifica-
tion model facilitate the propagation of adversarial per-
turbations across different frames. Consequently, they
leverage the temporal structure of videos to select only
a subset of frames for the attack, which is a more ef-
ficient and reasonable approach, reducing the overall
perturbation required.

To achieve such sparse adversarial attack, the pertur-
bation should be powerful and the perturbed example
should resemble a real-world instance as close as possi-
ble. According to the image attacks with spatial trans-
formation perturbation (Xiao et al., 2018b; Wang et al.,
2023b; Zhang et al., 2023), perturbing the positions of
pixels can improve perceptual realism and make it lo-
cally smooth. Hence, we introduce a new term in the loss
function for optimising both additive and spatial trans-
formation perturbation to generate adversarial examples
effectively. However, current video attack strategies all
adopt the lp-norm metric to measure the fidelity of the
perturbed examples. Although the lp norm is effective in
capturing noise contamination, it is sensitive to natural-
occurring transformations such as rotation, spatial shift,
and scaling (Zhou Wang and Bovik, 2009). Taking Fig-
ure 1 as an example, where the original video frame
is modified by different types of perturbation: additive
Gaussian noise, spatial scaling, and slight rotation, and
both l1,2 and structural similarity (SSIM) are given. In
Figure 1(b) and (d), one frame has only noise added,
while the other has a small rotation and noise added.
The results demonstrate that the SSIM values of the two
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frames are identical, whereas the l1,2 norm varies. This
indicates that when using l1,2-norm even a negligible spa-
tial transformation perturbation can significantly amplify
the adversarial distance, which constrain it to capture
certain spatial transformations that naturally occur in
real-world scenarios, such as camera shaking, vibration,
or rotation, thereby limiting the effectiveness of the at-
tack. On the other hand, SSIM exhibits lower sensitivity
towards these small modifications, thus better aligning
with human perception to constrain the amount of spatial
transformation. Furthermore, the Image Quality Assess-
ment community has demonstrated that SSIM is a supe-
rior alternative signal fidelity measure compared to the
lp-norm in applications where human perceptual criteria
matter (Zhou Wang and Bovik, 2009). Consequently, in
this paper, utilising an SSIM-based loss function is more
suitable for constraining the distance between adversar-
ial and clean videos, thereby improving the efficiency
and efficacy of spatial-transformed perturbation.

Additionally, addressing the challenge of choosing
the subset of frames for an extremely sparse attack is
a complex task. In previous work, Wei et al. (2020)
initially introduced a heuristic method to rank the im-
portance of video frames, identifying the keyframes for
potential attacks. Subsequently, Yan et al. (2022) utilised
reinforcement learning techniques to learn the impact
of various frame selection strategies and, in turn, deter-
mine the crucial frames to target. However, both these
works are under the black-box setting, which needs many
queries to access the model output and make decisions.
As for under white box setting, we propose to implement
the Bayesian Optimisation mechanism to select the most
critical frames under the combined perturbation. We
design an alternating optimisation strategy that can ef-
fectively identify the key frames via BO and then initiate
additive and spatial-transformed perturbations on the se-
lected key frames by stochastic gradient descent (SGD)
based optimiser. Such an alternating process happens in
each iteration of the optimisation until key frames are
found.

To improve the robustness of the model in the adver-
sary environment, various adversarial defensive methods
have been proposed recently. The adversarial defence
primarily aims to improve the neural network’s accu-
racy for data that is perturbed by adversarial attacks. To
mitigate this problem, existing approaches are mainly fo-
cused on adversarial training and certified defences. The
adversarial training attempts to increase the robustness
of the model by incorporating adversarial perturbation
during the training process. As far as we know, from the
empirical result, the most effective adversarial training
method is the adversarial training with projected gradient

descent (PGD) adversary (Wong et al., 2020). As for the
certified defences, it is supposed to give a certified bound
for the lowest accuracy under specific adversarial attacks.
However, compared with adversarial training, there are
still gaps in their performance (Ren et al., 2020). As a
result, studying adversarial defences can help us to de-
fend better against different adversarial threats (He et al.,
2017). In security-critical systems, such as autonomous
driving (Deng et al., 2020) and object detection (Zhang
and Wang, 2019), adversarial defences serve as the es-
sential blocks to ensure the trained models are reliable
enough.

Overall, this paper introduces DeepSAVA, a Sparse
Adversarial Video Attack for Deep neural networks, and
proposes a novel adversarial training method to enhance
the robustness of video models against strong attacks.
DeepSAVA can capture a wide range of adversarial in-
stances, encompassing noise contamination and various
spatial transformations. It can achieve a sparse attack
by perturbing only a few frames of a video, while still
achieving a state-of-the-art attack success rate. Addition-
ally, it exhibits strong adversarial transferability across
various recurrent models compared to baseline meth-
ods. In summary, the contributions of this paper can be
summarised as follows:

• DeepSAVA is the first work to combine additive and
spatial-transformed perturbation for video attacks.
With a proper SSIM-based constraint, we can pro-
duce strong perturbations combined with additive
and spatial transformation. Such combined pertur-
bation enables DeepSAVA to achieve successful
attacks by just perturbing one frame and be effec-
tive across diverse types of DNNs.

• This paper is also the first work that uses Bayesian
optimisation (BO) to identify the most critical
frames of the video in attacks. We introduce an
innovative alternating optimisation strategy for pin-
pointing the crucial frame under the combined per-
turbation, resulting in an improved following rate
compared to the baselines.

• Based upon our novel perturbation generator, we
propose a new adversarial training method to im-
prove the robustness of the video classification mod-
els. We perform extensive experiments on differ-
ent models to evaluate the effectiveness of our al-
gorithm. The results confirm that the new design
adversarial training could improve the robustness
against various attacks.

The flow chart of our method is illustrated in Figure
2. We release the DeepSAVA code and adversarial train-
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Flickering RL Heuristic Append BlackBox GAN-based Sparse Gradient Ours
Similarity metric lp lp l1 l∞ l∞ lp l2,1 l2,1 SSIM

Spatial-transformed
perturbation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Additive Perturbation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Identify Key Frames ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Transferability Study ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓

Sparse Attack ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Adversarial Training ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Comparison with related works (Flickering (Pony et al., 2021), RL (Yan et al., 2022), Heuristic (Wei et al., 2020), Append (Chen et al.,
2021), BlackBox (Jiang et al., 2019), GAN-based (Li et al., 2019), and Sparse Attack (Wei et al., 2019)) and Gradient-based (Xu et al., 2022) in
different aspects.

ing23 and generated adversarial videos across multiple
models4.

The paper’s structure can be summarised as follows:
In Section 2, we provide an overview of previous re-
search on video action recognition models, adversarial
attacks in images and videos, and adversarial defense.
Section 3 is dedicated to presenting our framework and
methodology. Initially, we address the definition of the
attack problem and then describe the implementation of
the sparse adversarial attack using an alternating optimi-
sation strategy. We also detail the adversarial training
algorithm aimed at enhancing the robustness of our video
recognition model. In Section 4, we present the results
of our experiments, which include comparisons with a
baseline, an ablation study, transferability assessments,
and the results of adversarial training. Finally, in Section
5, we discuss the limitations of our proposed method and
offer suggestions for future work within the community.

2. Related Work

Video Action Recognition Models: The video classi-
fication task focusses mainly on action recognition (Kong
and Fu, 2018). Previous studies on video classification
using DNNs are developed in two ways: using 2D or 3D-
based convolution neural networks (CNN). Since CNNs
have obtained state-of-the-art performance in image clas-
sification, Karpathy et al. (2014) first proposed to use
2D CNN to classify each frame of the video. Szegedy
et al. (2015) then developed the Inception-v3, which is
commonly used as a baseline classification model. As
2D-CNNs use incomplete video information, some work

2https://github.com/TrustAI/DeepSAVA
3A preliminary version of this paper has been published at the 32nd

British Machine Vision Conference 2021 (Mu et al., 2021).
4https://www.youtube.com/channel/

UCBDswZC2QhBhTOMUFNLchCg

added layers containing temporal information, such as
LSTM, to integer CNN features extracted over time,
which is referred to as CNN+LSTM model (Nguyen
et al., 2015; Donahue et al., 2017). As for 3D CNNs
(Tran et al., 2015), it can learn temporal features from
videos by entering all frames in three dimensions directly.
Carreira and Zisserman (2017) proposed a two-stream
inflated 3D CNN (I3D) to build the 2D kernel first and
then merge the pooling layer and kernel into a 3D net-
work. By pre-training the I3D on Kinetics Dataset, it
could reach state-of-the-art performance on recognising
UCF101 and HMDB51 action video datasets.

Adversarial attack on images: The adversarial at-
tack on images has been explored extensively recently.
Szegedy et al. (2014) first proposed adding visually im-
perceptible noise on the images to mislead pre-trained
CNNs to give the wrong prediction label. Goodfel-
low et al. (2015) proposed to use of a gradient-based
approach, the fast gradient sign method (FGSM), to
generate adversarial examples. DeepFool (Moosavi-
Dezfooli et al., 2016) is then proposed to find the mini-
mal perturbation by iteratively linearising the loss func-
tion. Other gradient-based optimisation algorithms to
generate perturbation were also proposed (Carlini and
Wagner, 2017b; Liu et al., 2017; Tanay and Griffin, 2016;
Xiao et al., 2018a; Yin et al., 2022). These works men-
tioned above only apply additive perturbation to pix-
els. Some works (Xiao et al., 2018b; Wong et al., 2019;
Laidlaw and Feizi, 2019; Laidlaw et al., 2020; Jordan
et al., 2019) use a functional perturbation which is a
non-additive-only perturbation such as spatial transfor-
mation. These perturbations slightly modify the location
of pixels. Some work such as (Jordan et al., 2019; Zhao
et al., 2020; Gragnaniello et al., 2021) also uses other
types of metrics such as SSIM to quantify human per-
ception, but none of them explored SSIM-guided spatial
transformation. For more details on adversarial attacks,
please refer to our recent survey (Huang et al., 2020) and
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Figure 2: Overview of DeepSAVA: The key frame mask indicator M is alternately identified using Bayesian optimisation (BO), which takes M0 as
input and iteratively updates Mi by interacting with the adversarial generator to obtain the prediction loss (L). The adversarial generator incorporates
additive and spatial transformation perturbations to generate adversarial examples for the selected frame. Two adversarial training approaches
are demonstrated. Adversarial Training I utilises original videos as input and embeds combined perturbations during the training process, while
Adversarial Training II directly uses the generated adversarial examples as input to train the model.

tutorial (Ruan et al., 2021; Berthier et al., 2021).
Adversarial attack on videos: Wei et al. (2019)

claimed that they are the first to attack videos. Instead
of attacking each frame of a video, they apply additive
perturbations on randomly selected frames and use l2,1
norm to guide the gradient-based optimisation and eval-
uated the performance on the CNN+LSTM model. Li
et al. (2019) used a GAN network to generate offline uni-
versal perturbations for each frame. Chen et al. (2021)
proposed to append a noise frame to the end of videos,
which is obtained based on all videos. However, adding
an additional frame is not imperceptible to humans, and
in some scenarios, it may appear abnormal to observe
an extra noisy frame. Pony et al. (2021) applied flick-
ering temporal perturbations on each frame to generate
universal perturbations for the I3D model, but they did
not consider to apply sparse attack on videos. Jiang et al.
(2019) was the first to propose a black-box approach to
attack videos, which also performs attack on each frame.
In the field of black-box sparse attacks, several studies
have introduced diverse algorithms aimed at determin-
ing the appropriate frame for executing an attack. Wei
et al. (2020) proposed to use a heuristic method, which
measures the model’s outputs in the event that a certain
frame is eliminated in order determine its importance.

Therefore, to select the key frame, the connection be-
tween the input sample’s features and the model outputs
is taken into account. However, if the frame is elimi-
nated directly from the input video, the output may be
significantly altered, leading to low accuracy and time
consuming.

Then, Yan et al. (2022) used a reinforcement learning
algorithm to select the key frames to perform a black-
box attack. However it requires more queries to train the
agent to select the key-frame, which is not suitable for
the white-box attack. Therefore, we proposed a novel
white-box sparse attack framework, DeepSAVA Mu et al.
(2021), which is the first work to perform white-box
sparse attack on videos with keyframe selection tech-
nology. We employ an alternating optimisation strat-
egy to combine the Bayesian optimisation and Adam
optimiser to select the keyframes. Xu et al. (2022) pro-
posed to use a gradient-based map to identify crucial
features in all frames, selecting frames containing these
features as keyframes. In contrast, our approach employ-
ing Bayesian optimisation is more general and can be
applied to any models. Existing methods exclusively use
additive perturbation based on lp-norm distance, whereas
we employ spatial transformation based on the SSIM
metric for our approach, leading to a more powerful at-
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tack. Table 1 presents a comparison of our method with
existing works on video attacks across six aspects.

Adversarial defences: The adversarial defence is pro-
posed to improve the robustness of the model, which
aims to reduce the power of adversarial examples. Good-
fellow et al. (2015) first proposed to inject adversar-
ial examples into the training dataset to retrain the
model. However, this method is time-consuming, and
the achieved robustness of the retrained model relies on
the power of the injected adversarial examples. Then,
Madry et al. (2018) first build the structure of adversarial
training by adding multi-step projected gradient descent
(PGD) in the training stage, which is considered the most
effective way for adversarial defences (Athalye et al.,
2018). Zhang et al. (2019) then proposed the method
to establish a trade-off between model accuracy and ro-
bustness by adding an additional loss term of adversarial
examples in the training stage.

There is a rising number of works proposed to achieve
adversarial defences, in addition to adversarial training,
some works attempt to adopt other methods, such as de-
tection techniques (Metzen et al., 2017; Feinman et al.,
2017; Carlini and Wagner, 2017b,a), provable defences
(Katz et al., 2017; Sinha et al., 2018; Wong and Kolter,
2018; Raghunathan et al., 2018; Jin et al., 2022), and pre-
processing algorithms (Guo et al., 2018; Buckman et al.,
2018; Song et al., 2018). From the empirical perspec-
tive, adversarial training with PGD (Madry et al., 2018)
adversary still appears to engage the most robust perfor-
mance against a wide range of adversarial attacks (Madry
et al., 2018; Li et al., 2020; Wang et al., 2023a). As ex-
isting adversarial defences mainly focused on images,
and there is no work to improve the robustness of the
video classification model against spatial-transformed
perturbations, thus, in this paper, we adapt the existing
adversarial training methods on images to videos to im-
prove its robustness on both spatial transformation and
additive perturbation.

3. Methodology

3.1. Attack Problem Definition

The video classifier is defined as J(·; θ), with a set of
pretrained weights θ. We define the input to this classifier
as a clean video, represented by X = (x1, x2, ..., xT ) ∈
RT×W×H×C , where each dimension represents a different
aspect of the video frames: T is the total number of
frames (the video’s length), while W, H, and C denote
the width, height, and the number of channels (such as
color channels) in each frame, respectively.

The aim of our study is to create an ’adversarial video’,
denoted as X̂, from the original video X. This transfor-
mation involves two main steps: first, altering the spatial
properties of the video with a transformation function S
(called a spatial transformer), and second, introducing a
certain amount of noise (or disturbance) in the frame.

The objective function, which guides the creation of
this adversarial video, is formulated as follows:

arg min λℓsimilar(X̂,X) − ℓadv(1y, J(X̂; θ)),

In this equation:

• 1y represents the one-hot encoding of the true label
y of the input video X.

• ℓsimilar is a similarity loss function, measuring how
close the adversarial video X̂ is to the original X.

• ℓadv is a loss function evaluating the discrepancy
between the predicted and true labels.

• λ is a balancing parameter, controlling the trade-off
between ℓsimilar and ℓadv.

For calculating ℓadv, we use the cross-entropy method,
which has been demonstrated to be effective in adversar-
ial video generation, as shown in Wei et al. (2019).

3.2. Structural Similarity Index Measure (SSIM)
The SSIM was first proposed in Wang et al. (2002)

(Wang and Bovik, 2002), and is detailed in Wang et al.
(2004) (Wang et al., 2004). Given x and x̂ as the local
pixels taken from the same location of the same frame
in the clean video and adversarial video, respectively,
the local similarity between them can be computed on
three aspects: structures (s(x, x̂)), contrasts (c(x, x̂)), and
brightness values (b(x, x̂)). The local SSIM is formed by
these terms (Wang et al., 2004):

S (x, x̂) = s(x, x̂) · c(x, x̂) · b(x, x̂) =(
σxx̂ + D1

σxσx̂ + D1

)
·

 2σxσx̂ + D2

σ2
x + σ

2
x̂ + D2

 ·  2µxµx̂ + D3

µ2
x + µ

2
x̂ + D3

 , (1)

where µx and µx̂ denote means, σx and σx̂ are standard
deviations of x and x̂, respectively; σxx̂ represents the
cross-correlation of x and x̂ after deleting means; D1,
D2, and D3 are weight parameters. For the SSIM metric,
a value of 1 means that the two images compared are the
same.

As we mentioned before, the SSIM is less sensitive
to the combination of additive and spatial perturbations
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Figure 3: The process to perturb one frame of a video.

5 and more similar to human perception than lp-norms
(Zhou Wang and Bovik, 2009). Because the SSIM is dif-
ferentiable with respect to the input variable (the deriva-
tion process of SSIM is shown in Appendix A), in this
paper, we apply SSIM to calculate the similarity loss to
constrain the perturbation during the optimisation pro-
cess. The overall score of SSIM of the video is calculated
by summing up SSIM loss over all frames of the video.

3.3. Sparse Spatial Transform Adversarial Attack
We will now introduce our algorithm for performing

attacks with a combined perturbation. The main idea of
the algorithm is to apply the combined perturbation on
selected frames to achieve a high fooling rate.

Sparse Attack: Formally, the mask indicator M =
(m1,m2, ..,mT ) ∈ RT is used to choose the key frames in
the video, where mt ∈ {0, 1} indicates whether the t-th
frame is masked to be perturbed. The masked video Xm

is formed through the map functionM(M,X), and then
fed into the spatial transformer S.

Spatial Transformed Perturbation: Given the t-th
frame xt ∈ RW×H×C of the input video X, the n-th pixel
in this frame is denoted as xt

n. The location of this pixel
within the frame is represented by a two-dimensional
coordinate (ht

n, v
t
n). The spatial transformer (Jaderberg

et al., 2015), denoted as S, is a differentiable model
that functions using flow displacement vectors U =

((∆H1,∆V1), (∆H2,∆V2), ..., (∆HT ,∆VT )) ∈ RT×2×H×W .
Here, Ht = (ht

0, h
t
1, ..., h

t
n) and Vt = (vt

0, v
t
1, ..., v

t
n) ∈

RH×W are used to synthesize the 2D coordinates of ad-
versarial videos. Suppose x̂t

n with location (ĥt
n, v̂

t
n) is the

adversarial example transformed from xt
n, determined

by its corresponding spatial displacement flow vector

5For convenience, we use combined perturbation for short in this
paper.

Figure 4: The systematic optimisation process by using Bayesian
optimisation and Adam Optimiser. The mask indication is a binary
vector to determine which frame should be perturbed.

(∆ht
n,∆vt

n). The original location of the pixel xt
n can be

deduced from x̂t
n by setting (ht

n, v
t
n) = (ĥt

n+∆ht
n, v̂

t
n+∆vt

n).
Taking into account the sparse attack mask indicator

M, the transformed adversarial video is represented as

X̂S = S(U,X,M).

Additive Perturbation: The additive perturbation is
the most common way to generate adversarial examples
(Carlini and Wagner, 2017b; Goodfellow et al., 2015).
We define additive noise as N ∈ RT×W×H×C . We com-
bine spatial transformation and additive perturbation to
generate adversarial videos as (illustrated in Figure 3):

X̂ = N · M + X̂S (2)

3.4. Novel Alternating Optimisation Strategy
In this paper, we utilise Bayesian Optimisation (BO)

to select the most critical frames. As frame selection is
a discrete variable optimisation problem, we also tried
other discrete optimisation techniques such as simulated
annealing (SA) (Fortran et al., 1992) and genetic algo-
rithms (GA) (Whitley, 1994), but both spent about 200s
to find the final result, which is much longer than about
16s taken by BO.

The generated adversarial video is formed as X̂ =
N · M + S(U,X,M). In this paper, the similarity loss
ℓsimilar and the adversarial loss ℓadv in problem (1) can
be expressed as ℓsimilar(X̂,X) = 1 − S S IM(X̂,X) =
Ls(N,U,X,M) and ℓadv

(
1y, J(X̂; θ)

)
= La(N,U,X,M).

Therefore, problem (1) can be simplified as:

arg min
M,N,U

λLs(N,U,X,M) − La(N,U,X,M) (3)
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As M is a discrete binary vector, which makes prob-
lem (4) non-differentiable, the Bayesian optimisation
(BO) is then utilised to optimise the binary vector M by
identifying the critical frame that should be perturbed.
It can be solved systematically by a novel alternating
optimisation strategy. We initially provide M as input
to the Bayesian optimisation process. During the search
process, BO generates different configurations of M to
explore. Importantly, at each iteration, the BO finds a
configuration of M and then queries the model output
to obtain an evaluation score, which is used to guide
the BO search for the next optimal M. Hence, when
interacting with the model, the value of M remains fixed,
transforming the problem into a differentiable one that
can be solved using Stochastic Gradient Descent (SGD)-
based optimisation. In this paper, we choose the Adam
optimiser (Kingma and Ba, 2015) because of its robust
and fast convergence performance. This process repeats
for a fixed number of iterations, and the solution is con-
tinuously improved via both two techniques.

BO proposes sampling points from the search space
through acquisition functions to obtain the reward of
previous points. We apply expected improvement (EI)
as our acquisition function F, which is a widely used
function:

F = EI(M) = E[max
(
L(M) − L

(
M+

)
, 0

)
], (4)

where L(M) is the loss feedback from Adam optimiser
by fixing M; L (M+) is the best value obtained so far,
and M+ is its location.

During the BO process, we will find the best mask
indicator through several iterations. In the k-th iteration
of BO, we will first sample a candidate Mk according
to the acquisition function F. Then, the corresponding
loss Lk will be computed by the Adam, which will then
affect the next sampled point Mk+1 for the next iteration.
When the BO reaches the maximum exploration number,
the best M with minimum loss will be fed into the Adam
optimiser to generate the final adversarial video. The
process is illustrated in Figure 4.

Algorithm 1 and Algorithm 2 detail the BO selection
and adversarial video generation algorithms, respectively.
In Algorithm 1, the next sampling point M is obtained
by maximizing the acquisition function F based on the
previous sampling data set D (Line 3). After the Ad-
versarial Generator (G) is optimised, the loss L for M
is calculated. Then the M with its corresponding L are
appended to the sampling pool D to propose the next
sampling point. In Algorithm 2, according to the op-
timised mask indicator M, the final flow vector U and
additive noise N are optimised via Adam.

Algorithm 1 Bayesian Optimisation for video frame
selection
Input: input video XT×W×H×C ; label y; adversarial gen-

erator G; weight parameter λ; acquisition function
F; Number of steps to explore K;

Output: Frame selection mask indicator M

1: Initialise flow network parameter U0 and additive
noise N0 ;

2: Obtain initial sampling data set D = (M0,L0)
3: for k ← 1,K do
4: Mk ← argmaxM F (M | D)
5: Lk ← G(X, y,Mk, λ)
6: D← D ∪ (Mk,Lk)
7: M ← argminM∈DL.
8: return M∗

Algorithm 2 DeepSAVA adversarial generator (G)
Input: XT×W×H×C ; Mask indicator M; y; weight pa-

rameter λ

1: Initialise flow vector U0, and additive noise N0;
2: for step← 1,maxS tep do
3: X̂ = N · M + S(U,X,M)
4: L = λ(1 − S S IM(X̂,X)) − ℓadv

(
1y, J(X̂; θ)

)
5: U∗,N∗ ← argmaxU,NL

6: return U∗,N∗
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(a) Adversarial training via injecting adversarial examples

(b) Adversarial training with PGD attack

Figure 5: Adversarial Training Overview.

3.5. Adversarial Training
Adversarial training is designed as the most intuitive

defence mechanism against various adversarial attacks,
which incorporates adversarial examples during the train-
ing process to improve the robustness of the model. For-
mally, this goal can be constructed as a min-max opti-
misation problem. Given the video classifier J(·; θ) pa-
rameterised by θ and the adversarial video input (X̂i, yi)
with ground truth label yi, the objective function can be
formulated as follows:

min
θ

∑
i

max ℓadv(J(θ, X̂i), 1yi ) (5)

where ℓadv is the adversarial loss. The inner maximiza-
tion term aims to find the optimal adversarial examples
and it can be approximated by some well-developed ad-
versarial attack algorithms such as PGD (Madry et al.,
2018) and FGSM (Yuan et al., 2019). The following
outer minimisation term represents the traditional train-
ing process which aims to minimise the training loss by
applying a gradient descent algorithm to optimise the
model parameters θ. The generated retrained model is
expected to be more robust against the adversarial attack
that is used in the training process to generate adversarial
examples.

The most intuitive way is to inject adversarial exam-
ples generated by the adversarial attack to re-train the
model, as represented in Figure 5 (a). However, this
method is time-consuming, as we need to spend much
more time obtaining thousands of adversarial examples
from the training dataset. Goodfellow et al. (Goodfellow
et al., 2015) first proposed to use of the Fast Gradient
Sign Method (FGSM) to solve the inner maximisation
problem. The objective function to approximate the in-
ner maximisation for the FGSM adversarial training can

be formed as follows:

X̂i = Xi + α · sign
(
∇Xiℓadv

(
1yi , J(Xi; θ)

))
However, the model trained by the FGSM adversarial
training algorithm is still vulnerable to stronger adver-
sarial attacks, such as the PGD attack, which is based
on iterative adversarial attacks. The adversarial train-
ing based on PGD attack is considered as one of the
most effective approaches to improve the robustness of
models (Madry et al., 2018; Huang et al., 2022; Wang
et al., 2021). It is also the strongest first-order attack
founded by the community (Wang et al., 2021), (Kolter
and Madry, 2019) and is the state-of-the-art defence
(Athalye et al., 2018). Therefore, there are many works
that are based on PGD training to improve the robustness
of DNN (Bai et al., 2021; Wong et al., 2020; Shafahi
et al., 2019). Thereby, in this paper, we adapt the PGD
optimisation method to solve the inner maximisation
problem.

The overall adversarial training process with PGD
attack is shown in Figure 5 (b), and its algorithm is
sketched in Algorithm 3. As we can see from Algorithm
3, the key improvement of PGD adversarial training is
to perform multiple small steps α to estimate the inner
maximisation problem (lines 4-5).

As our DeepSAVA framework is a stronger and more
effective adversarial attack method on videos, we design
a novel adversarial training approach based on traditional
PGD adversarial training to defend our adversarial attack
with a combined perturbation, as shown in Algorithm 4.

Compared with the PGD adversarial training (Madry
et al., 2018), we identify the main difference between the
two methods is that our approach takes the spatial trans-
formation perturbation combined with additive noise into
account, which is achieved via the operation presented
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Models UCF101 HMDB51
CNN+LSTM 74% 43%
I3D 94.9% 80%
Inception-v3 71.2% 47%

Table 2: Training accuracy of the classifiers to be attacked.

Algorithm 3 PGD adversarial training (Madry et al.,
2018)
Input: XT×W×H×C; y; M; training epochs T ; dataset

batch size N; PGD steps K; step size α

1: for t ← 1,T do
2: for i← 1,N do
3: σ = 0
4: for k ← 1,K do

//Perform PGD Adversarial Attack
5: σ = σ + α·(

∇σℓadv

(
1yi , J(Xi + σ; θ)

))
//Update the model weights

6: θ = θ − ∇θℓ
(
J(θ; Xi + σ), 1yi

)

Algorithm 4 PGD adversarial training with a combined
perturbation
Input: XT×W×H×C; y; M; training epochs T ; dataset

batch size N; PGD steps K; step size α

1: Randomly initialize flow network parameter U and
additive noise N;

2: for t ← 1,T do
3: for i← 1,N do
4: for k ← 1,K do

//Perform Adversarial Attack
5: X̂i = N · M + S(U, X̂i,M)
6: X̂i = X̂i + α·

sign
(
∇X̂i

(
ℓadv

(
1yi , J(X̂i; θ)

)))
//Update the model weights

7: θ = θ − ∇θℓ
(
J(θ; X̂), 1yi

)

in Lines 5-6 of Algorithm 4. Despite the adversarial
training procedures of the two algorithms are similar,
our defence method is more empirically robust against
Sparse attack (Wei et al., 2019) and DeepSAVA attack.
We conjecture that the advantage mainly comes from the
added combined perturbation term that can perform a
more effective attack than additive perturbation only.

4. Experiments

4.1. Experimental Setup
Dataset: As action recognition video datasets are

widely used in adversarial video attack studies, we
choose two popular benchmark action recognition
datasets to evaluate the performance of our method:
UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne
et al., 2011). Both datasets are realistic action recog-
nition datasets. The UCF101 contains 13,320 videos
with 101 categories such as playing instruments, body
movements, and human-object interaction. Similarly,
HMDB51 has around 7,000 videos within 51 categories
related to body motion and facial actions.

Action Recognition Models: We evaluate DeepSAVA
on three classifiers: Inception-v3, a 2D-CNN based
model (Szegedy et al., 2016), which is widely used in the
image recognition task with high accuracy; I3D, a 3D-
CNN based model, pre-trained in Kinetics (Carreira and
Zisserman, 2017); CNN + LSTM, which is pre-trained
in ImageNet to extract features from videos and then
input these features to train the LSTM network. The
training accuracy of all classifiers is shown in Table 2.
The training ratio is 70% while the testing ratio is 30%.

Baseline methods: Two baseline methods are used
for comparison, the Sparse (Wei et al., 2019) and Sparse
Flickering. For the works shown in Table 1, only (Wei
et al., 2019) is the sparse white-box attack; (Wei et al.,
2020)(Yan et al., 2022) are black-box sparse attack meth-
ods. As our work is a white-box sparse attack, we choose
the most related one, Sparse (Wei et al., 2019), as the
main baseline. We perform the perturbation directly on
the frame, while (Chen et al., 2021) added an additional
frame at the end of the video, which is more visible to
humans. So we did not include it as a baseline due to its
compromise on the similarity of human perception. In
(Li et al., 2019), GANs are used to attack real-time video,
which is not comparable to our method. We modified
Flickering (Pony et al., 2021), which perturbs all frames,
into a sparse one as the Sparse Flickering baseline, but
we still show the performance of perturbing all frames.

Experiments Setting: The length of all input videos
is crafted to be the same (40 frames). We randomly se-
lected 200 videos from different categories in the test
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Models Attack Method UCF101 HMDB51
FR ANI FR ANI

CNN+LSTM

Sparse 52.77% ± 2.44% 16.45 95.2% ± 1.8% 16.4
Sparse Flickering 48.48% ± 1.67% 23.55 91.94% ± 2.93% 8.4

DeepSAVA(without BO) 56.22% ± 1.65% 8.32 99.27% ± 0.34% 8.42
DeepSAVA(BO) 57.22% ± 1.36% 8.77 100% 6.6

I3D

Sparse 10.12% ± 1.19% 44 5.74% ± 1.25% 25.1
Sparse Flickering 1.15% ± 0.68% 13 0% -

DeepSAVA(without BO) 47.57% ± 2.64% 12.15 46.39% ± 3.86% 12.2
DeepSAVA(BO) 99.89% ± 0.11% 6.47 99.92% ± 0.08% 5.35

Inception-v3

Sparse 42.25% ± 4.30% 33.70 45.82% ± 1.56% 22.06
Sparse Flickering 21.73% ± 1.39% 35.4 27.55% ± 0.98% 27.25

DeepSAVA(without BO) 68.86% ± 1.83% 13.29 68.98% ± 3.19% 11.84
DeepSAVA(BO) 70.39% ± 2.78% 10.52 74.74% ± 0.82% 9.07

Table 3: Comparison with baselines, DeepSAVA without BO and with BO on different models by only perturbing one frame. ’-’ means that there is
no successful attack. Gray cell shows the best results.

dataset. For those experiments without saying the spe-
cific constraint, the maximum allowed search iteration
(100 iterations) is applied; all experiments use Adam
optimiser with a 0.01 learning rate. The parameter λ is
set to 1.5 for the CNN+LSTM model, and 1.0 for the I3D
and Inception-v3 models. For λ, values that can balance
the fooling rate and the strength of the perturbation are
used. As for the step size of the adversarial attack used
in the adversarial training, we use the alpha as 1

255 , where
255 is the re-scale image size, which is a commonly used
method to determine the step size. It is a heuristic and
the optimal value that is a small fraction of the range of
pixel values in the image (The performance of different
step sizes is presented in Appendix B).)

Metrics: Fooling Rate (FR): the percentage of gener-
ated adversarial videos that are misclassified successfully.
Average Number of Iterations (ANI): the average num-
ber of iterations taken to generate adversarial examples
successfully based on the same original videos, which is
used to measure the efficiency when we set a constraint
on the maximum allowed iteration.

4.2. DeepSAVA adversarial attack

4.2.1. Comparison with baseline methods
In this section, we will show the comparison results

between DeepSAVA and baselines. Since running BO
will add extra time to choose the frame, to make the
comparison more complete, we also take the DeepSAVA
without BO selection into account.

Limited iterations: Since each method uses a dif-
ferent metric, in order to control the maximum allowed
perturbation, we limit the number of search iterations for

all methods. Each iteration only allows a small amount
of perturbation (controlled by the learning rate of Adam
optimiser), following the same setup used by the base-
lines. The results in Table 3 show that the ANIs are
much below the maximum allowed iteration (100). In
Table 4, we show the relationship between the iteration
and the strength of perturbation. It can be seen that even
when it reaches the maximum iteration, the lp-norm and
S S IM distances are still acceptable. Given that, setting
a constraint on the maximum search number to 100 will
not lead to large distortion.

We run the experiments 10 times and show the average
results with a 99% confidence interval. For the methods
without frame selection, the first frame is perturbed. As
shown in Table 3, BO selection is more efficient than
the one without BO. This happens because it is able
to select the most critical frame, which can improve
efficiency in most cases. For the CNN+LSTM model,
DeepSAVA increases the FR slightly compared with the
baselines; while for the I3D model, we can see that the
FR grows significantly. The BO selection process is also
essential for I3D. Without BO, only about half of the test
videos can be attacked successfully; after applying BO,
the FR increases to nearly 100%. As for the Inception-
v3 model, the FR increases when applying DeepSAVA.
It can be concluded that the CNN+LSTM is the most
robust classification model among the three classifiers.
Although the I3D has the highest classification accuracy,
it is more vulnerable to attacks, even when only one
frame is modified. That might happen because the I3D
model relies heavily on the integral structure of the video
itself and some frames may be more important.
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max iter FR max(lp) max(ssim) ave(lp) ave(ssim)
30 0.5 0.11 0.094 0.052 0.069
50 0.5 0.135 0.094 0.059 0.099
80 0.529 0.131 0.0959 0.0595 0.081
100 0.529 0.131 0.095 0.052 0.067

Table 4: The relationship between the iteration, l1,2, SSIM, and Fooling Rate for the I3D model with combined perturbation on UCF101.

l2,1-norm
Constraint l2,1 budget = 0.08 l2,1 budget = 0.09

Method Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA
FR 40.51% 48.1% 88.61% 41.77% 54.43% 93.67%

Time (s) 8018.9 2629 1535.8 14001 3729 1573.82
S S IM

Constraint S S IM budget = 0.98 S S IM budget = 0.96
Method Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 8.06% 16.56% 35.44% 10.1% 51.9% 96.20%
Time (s) 5842.32 1285.1 1424.4 13789.23 5633.28 1545.5

Table 5: Attack I3D model on UCF101 dataset under l2,1 and S S IM constraint separately.

(a) CNN+LSTM

(b) I3D

(c) Inception-v3

Figure 6: Fooling Rate of attacking a different number of frames across
three classifiers.

We find that the position of keyframes is related to
the classifiers evaluated: for CNN+LSTM, the frames
in the front are selected more often, and for other CNN
networks, the position is a variant. Thus, it is reasonable
that the BO cannot improve the FR for the CNN+LSTM
model as much as the I3D, as we attacked the first frame
when not selecting it. We also show the results in Figure
6 for attacking a different number of frames across I3D,
CNN+LSTM, and inception-v3 models. It can be seen
that the more frames attacked, the higher the fooling rate
obtained.

Fixed l2,1 norm and SSIM: For the purpose of a fair
comparison, we also present the results under fixed l2,1
and SSIM budgets for perturbing only one frame. The
maximum allowed iteration is set to 500 to limit the time.
As the baseline methods are based on the lp norm and our
method is based on SSIM, we take experiments under
the same constraint lp norm and the SSIM constraint,
respectively. Based on the results of fixed iterations, we
randomly select 200 videos from different categories to
attack the I3D model on the UCF101 dataset. During the
experiments, the Sparse Flickering spent days to achieve
the constraint, thus we will only compare it with the
Sparse (Wei et al., 2019) attack. In (Fezza et al., 2019),
the SSIM budget for attacking image is set to 0.95, thus
we choose the SSIM constraints above 0.95. In (Yang
et al., 2010), it states that the difference between the
images is imperceptible when the l2,1 score is 4, given
that we also set the l2,1-norm budget to below 0.1 (since
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Models Attack Method UCF101
FR ANI AAP(l1,2) AAP(SSIM)

CNN+LSTM
Sparse 54.31% 15.31 0.054 0.043

DeepSAVA(without BO) 56.94% 7.87 0.077 0.060
DeepSAVA(BO) 57.11% 8.01 0.071 0.058

I3D
Sparse 11.22% 49 0.092 0.079

DeepSAVA(without BO) 48.78% 11.34 0.0857 0.054
DeepSAVA(BO) 99.89% 5.74 0.055 0.0233

Inception-v3
Sparse 41.84% 38.21 0.062 0.0512

DeepSAVA(without BO) 65.14% 14.88 0.072 0.052
DeepSAVA(BO) 77.49% 11.43 0.071 0.0508

Table 6: Comparison with Sparse baseline, DeepSAVA without BO and with BO on different models by only perturbing one frame. Gray cell shows
the best results.

0.1 ∗ 40 = 4, as we have 40 frames). As we can see
in Table B.14, under small fixed budgets, DeepSAVA
outperforms Sparse (Wei et al., 2019) in both cases in
terms of FR and total time.

(a) CNN+LSTM

(b) I3D

(c) Inception-v3

Figure 7: Minimum loss selected by BO and brute force search along
videos

4.2.2. Average Absolute Perturbation
Average Absolute Perturbation (AAP) is introduced

to measure the perturbation level for each method. As
mentioned previously, the sparse Flickering adds a small
perturbation per frame, but cannot obtain comparable

results to ours. Thus, we choose the pure sparse attack
(Sparse) as the main baseline to show the average abso-
lute perturbation. As the baseline is guided by l1,2 norm
and ours is based on SSIM loss, we will record the aver-
age perturbation of l1,2 and SSIM separately. To achieve
a fair comparison, we set the maximum l1,2 norm ball
constraint as 0.1 and the maximum SSIM constraint as
0.92. Suppose the fooling rate is f , and distant matrix is
D, which can be set to (1-SSIM) or l1,2 norm, thus the
average absolute perturbation(AAP) can be represented
as:

AAP(D) =
∑

N D(Vadv − Voriginal)
N

∗ f + Dmax ∗ (1 − f ),

where Vadv denotes the generated adversarial video that
could successfully mislead the classifier and Dmax is the
maximum constraint; N is the number of adversarial
samples achieving a successful attack. We run experi-
ments on 200 randomly selected videos of the UCF101
dataset and record the results of FR, ANI, AAP(l1,2), and
AAP(SSIM) in Table 6. From the results, we can see that
for the model I3D and Inception-v3, our method could
achieve better performance in terms of efficiency, fool-
ing rate, and AAP(SSIM). For the CNN+LSTM model,
our method engages a higher fooling rate and spends
less time, and the AAP(l1,2) and AAP(SSIM) are also
acceptable compared with the baseline model.

4.2.3. Visualization of Results
The generated adversarial frames by DeepSAVA are

presented in Figure 8. Because of the spatial transforma-
tion, the frame looks a little bit shaky but not obvious to
human eyes. In fact, in the real world, it is normal to see
that there are a few frames with instabilities during video
shooting and transmitting. That’s why we apply spatial
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Approach CNN+LSTM Inception-v3 I3D
Mask1 Mask2 Mask4 Mask1 Mask1

Fixed the frame (first n-th)
D 52.77% ± 2.24% 71.51% ± 1.5% 91.28% ± 1.95% 42.45% ± 4.30% 10.12% ± 1.19%
S 55.27% ± 1.82% 74.33% ± 1.36% 91.89% ± 1.45% 63.91% ± 5.61% 29.99% ± 2.36%
D + S 56.22% ± 1.65% 77.36% ± 1.86% 92.99% ± 1.85% 68.86% ± 1.83% 47.57% ± 2.64%
Using BO to choose frame
D + S 57.22% ± 1.36% 78.95% ± 1.93% 93.51% ± 1.33% 70.39% ± 2.78% 99.89% ± 0.11%

Table 7: Attack Fooling Rate on CNN+LSTM, Inception-v3, and I3D models with combining noise (D) and spatial transformation (S) by modifying
a different number of frames on UCF101 dataset; Mask N means that N frames are modified.

Approach CNN+LSTM Inception-v3 I3D time (s)FR average loss FR average loss FR average loss
BO Selection 55.81% 0.21 72.22% 3.39 100% 1.35 16.1

brute force search 55.81% 0.27 72.22% 3.39 100% 1.35 70.4

Table 8: Fooling Rate, average selected maximum loss and average time spent for one video of BO Selection and Brute Force Search.

transformation in video attacks to improve the efficiency
and fooling rate. In practice, a distortion in one frame of
a video is less noticeable than a static image since this
specific frame only appears for 0.047 seconds in human
eyes (Xiao et al., 2018a). We could also see that it does
not lead to a noticeable perturbation as shown by our
video demos.

When transmitting the videos in the real world, the
generated frames need to be compressed into videos first
and then decompressed into frames. We found that the
additive-only perturbed frames, may not remain adversar-
ial examples after such transmission. Our experiments
demonstrate that DeepSAVA can be immune to short
video compression due to the fact that perturbation based
on spatial transformation can be well preserved during
compression while additive perturbation may disappear.

4.2.4. Ablation study
We perform ablation experiments to study the effects

of combined perturbation for a different number of at-
tacked frames by comparing with additive noise-only
and spatial transformation-only perturbations, and the
effects of BO selection. Table 7 shows the FR for three
classifiers on the UCF101 dataset. Four approaches are
taken to attack the model: 1) only noise (D), 2) only
spatial transformation (S), 3) a combination of additive
perturbation and spatial transformation (D + S), and
4) combined perturbation with BO selection. To make
more comprehensive evaluations on the superiority of
combination, we attack a different number of frames for
the CNN+LSTM model as it has the lowest FR when
only perturbing one frame.

As shown in Table 7, using only spatial transformation
perturbations results in a higher fooling rate compared
to using only additive noise perturbations, highlighting
the effectiveness of spatial transformations. The experi-
mental results demonstrate a significant increase in the
fooling rate of both the Inception-v3 and I3D models.
Furthermore, combining spatial transformation and addi-
tive noise perturbations leads to an even higher fooling
rate, indicating a stronger attack strategy. Notably, when
attacking the I3D model, the combination perturbation
increases the fooling rate by approximately four times
compared to using only additive perturbation, revealing
the significant impact of combination perturbations on
I3D models. These findings collectively highlight the
ability of combined perturbations to increase the fool-
ing rate, with the additional effectiveness of using BO
selection, particularly for the I3D model.

4.2.5. The Accuracy of Bayesian Optimisation Selection
To justify whether the Bayesian Optimisation could

select the most critical frames, we take the brute force
search experiments to obtain the upper bound of the
performance: when the selection frame is 1, we select
the keyframe manually one by one of the video, and
then record the maximum loss found by the search. We
randomly select 100 videos from UCF101 in different
categories. The fooling rates, average maximum loss,
and average time spent for one video on three models
are shown in Table 8. We also compare the selected max-
imum loss by BO and brute force search along the video
samples in Figure 7. The results demonstrate that we
can obtain the same results as the brute force search, but
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(a) BandMarching (b) Mixing (DeepSAVA) (c) Mixing (Sparse)

(d) BasketballDunk (e) BreastStroke (DeepSAVA) (f) BreastStroke (Sparse)

(g) BasketballDunk (h) Haircut (DeepSAVA) (i) Haircut (Sparse)

Figure 8: Original, and adversarial examples generated by DeepSAVA and Sparse (Wei et al., 2019) when only one frame in the video is perturbed.
The red labels are the wrong predictions. The target model for (a)-(b) is CNN+LSTM; for (d)-(f) is Inception-v3; for (g)-(i) is I3D.

spend much less time, which confirms the effectiveness
of BO optimisation.

4.2.6. Effects of λ
To decide the value of λ, we applied the DeepSAVA

without BO selection on 200 randomly selected videos
of the UCF101 dataset to evaluate the effect of λ. The
average success perturbation (ASP) is the average of the
SSIM score of perturbation for the adversarial examples
that could mislead the model successfully:

AS P(S S IM)) = avg(S S IM(Vadv − Voriginal)),

where Vadv denotes the generated adversarial video that
could successfully mislead the classifier, and Voriginal

is the original video. The results of applying λ =
0.8, 1.0, 1.5 on three models are presented in Table 9.
We can see that the bigger the λ, the lower the FR while
the lower the perturbation. While, for the CNN+LSTM
model, the fooling rate remains the same across all tested
λ values, but the perturbation level is the lowest at λ =
1.5. Thus, we choose λ = 1.5 for the CNN+LSTM model
and λ = 1.0 for I3D and Inception-v3 models to trade
off performance in terms of the fooling rate and average
success perturbation.

Models λ value FR ASP(SSIM)

CNN+LSTM
0.8 56.94% 0.0429
1.0 56.94% 0.0412
1.5 56.94% 0.0401

I3D
0.8 51.22% 0.0316
1.0 48.78% 0.0268
1.5 48.17% 0.0198

Inception-v3
0.8 66.05% 0.0534
1.0 65.14% 0.0518
1.5 64.22% 0.0454

Table 9: The results of DeepSAVA(without BO) on UCF101 dataset
for different λ values.
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4.3. Adversarial Training
In this section, we show the results of two adversarial

training methods. The first method is the most intuitive
one, as demonstrated in Figure 5 (a), which first obtains
adversarial examples by performing DeepSAVA and then
feeds these adversarial examples into the training stage.
Another method is the algorithm demonstrated in Section
3, which modifies the training loop by injecting PGD
adversarial attacks. To evaluate the power of adversarial
defences, we randomly picked 200 video samples cover-
ing 101 classes from the test dataset of UCF101 and then
perform the DeepSAVA and Sparse (Wei et al., 2019)
attack on the first frame of the video to compare the
fooling rate. The model recognition accuracy on clean
data is also recorded.

For the first method, we present the adversarial train-
ing results for the CNN+LSTM model in Table 10. We
randomly choose 8000 videos from the training dataset.
To perform the adversarial training, we randomly gen-
erate 1000, 1500, and 3000 adversarial examples by ap-
plying the DeepSAVA attack, and feed these adversarial
videos with the 8000 unmodified videos as input to the
training stage. For the model without defence, we change
the adversarial examples to unmodified videos as input
to train the model. As we can see from the results, com-
paring the defended model with the undefended model,
we obtained comparable model recognition accuracy and
a lower fooling rate, which demonstrates that adversarial
training can improve the robustness of the model. Ad-
ditionally, as expected, the results also indicate that the
more adversarial examples injected, the lower the fooling
rate obtained by the defended model and the larger gap
of reduced fooling rate compared with the undefended
model. Thus, the more adversarial examples injected into
the training stage, the more robust the model is against
the DeepSAVA attack. However, generating loads of ad-
versarial examples to train on is extremely expensive in
terms of time and resources. Therefore, this encourages
us to use a more effective adversarial training algorithm,
as demonstrated earlier, to modify the training process
by incorporating adversarial attacks.

For the PGD adversarial training, the model recog-
nition accuracy and fooling rate results are presented
in Table 11. As the CNN+LSTM model implements a
pre-trained CNN model to extract features first and then
feeds these features to train the LSTM model, in order
to perform defence, we perform adversarial training to
train the CNN model first, and then implement the re-
trained CNN to extract features. As we can see from the
table, after applying the combined perturbation adversar-
ial training, we can obtain lower fooling rates on both
DeepSAVA and Sparse attacks. Looking at the results,

we find that the more powerful perturbation added in the
adversarial training process can lead to a more robust
model against both the additive perturbation-only attack
and combined perturbation attack, which confirms the
effectiveness for a broader range of perturbation when
performing adversarial training.

4.4. Transferability Across Recurrent Models
Assessing the transferability across models is crucial

to evaluate the performance of adversarial attacks, which
can be approached as a black-box problem that does not
require access to the target model’s parameters. Our re-
search investigates the transferability of attacks on I3D
and Inception-v3, which only use CNN, versus recurrent
neural networks (RNN) such as CNN+LSTM, which
incorporate time-related networks. As videos have a
unique time-related structure, we conducted extensive
experiments to evaluate the transferability across vari-
ous time-related networks. Our experiments were per-
formed on the UCF101 dataset for Inception-v3, I3D,
and different RNNs. For recurrent models, we first ex-
tracted the features of the original videos using the CNN
(Inception-v3) model and then fed them into the vanilla
RNN (Rumelhart et al., 1986), LSTM (Hochreiter and
Schmidhuber, 1997), and GRU (Cho et al., 2014) net-
works, respectively. The training precision of the vanilla
RNN and GRU networks was 65. 16% and 73. 05%,
respectively.

Figure 6 indicates that Sparse (Wei et al., 2019) out-
performs Sparse Flickering in terms of FR. Therefore,
we use Sparse (Wei et al., 2019) as our baseline method.
Table 12 presents the fooling rates (FR) of the videos gen-
erated in various models. In the table, the rows indicate
the models used to generate adversarial videos, while
the columns represent the target attack classifiers. To
increase the success rate of the attack, we disturb seven
frames of each video. We use the adversarial examples
generated from the white-box attack for transferability
assessment, which results in a 100% FR on the diago-
nal. We then use these adversarial examples to attack
other models (like a black-box attack), as described in
Table 12. Our approach has a higher FR compared to the
baseline, indicating better transferability performance.
The difference between vanilla RNN and other models
is that vanilla RNN lacks a memory component, which
results in weak performance on video classification tasks.
It is observed that adversarial videos generated from
LSTM and GRU models can successfully fool vanilla
RNNs. Furthermore, the FR across the GRU and LSTM
models is around 85%, indicating good transferability
between recurrent models with memory. However, Ta-
ble 12 shows that transferability from RNNs to CNNs is
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Models 8000+1000 8000+1500 8000+3000
Acc. FR Acc. FR Acc. FR

CNN+LSTM With defence 59.77% 64.42% 62.06% 59.26% 63.42% 58.92%
CNN+LSTM without defence 59.19% 66.99% 63.79% 63.06% 64.36% 63.06%

defended vs. undefended +0.98% -3.8% -2.7% -6.0% -1.46% -6.6%

Table 10: Model Accuracy and fooling rate on different size of training datasets for the CNN +LSTM model.

defence Model Accuracy DeepSAVA Sparse
Combined defence inception-v3 63.96% 37.62% 25.29%

PGD defence (Madry et al., 2018) inception-v3 64.52% 38.53% 27.21%
Without defence inception-v3 65.12% 40.59% 29.6%

Combined defence CNN+LSTM 68.02% 47.86% 46.15%
PGD defence (Madry et al., 2018) CNN+LSTM 69.00% 52.89% 52.06%

Without defence CNN+LSTM 70.22% 55.93% 55.26%
Combined defence I3D 87.5% 77.3% 42.3%

PGD defence (Madry et al., 2018) I3D 88.2% 78.5% 46.2%
Without defence I3D 89.1% 80.2% 47.2%

Table 11: Model Accuracy and fooling rate on different models with defence and without defence.

not as good as that from CNNs to RNNs. The fooling
rates for attacking RNN models are higher than those
for attacking I3D and Inception-v3 models. This could
be because the I3D model has the highest training accu-
racy and therefore has the lowest fooling rate when sub-
jected to a black-box attack. Additionally, due to its low
training accuracy, the Vanilla RNN model achieves the
highest fooling rate when attacking the unseen Vanilla
RNN model. In conclusion, our method achieves better
transferability than the Sparse baseline.

5. Discussion and Conclusion

In this paper, we apply spatial transformation perturba-
tion and additive noise to attack as few frames as possible
to obtain sparse adversarial videos. The most influential
frames to be attacked are selected by a joint optimisa-
tion strategy with Bayesian optimisation (BO) and SGD-
based optimisation. We take sufficient experiments to

examine the power of BO and show the effectiveness of
BO selection in this task. Additionally, the quality of
generated adversarial examples is measured by SSIM
instead of lp-norm, which can capture both additive noise
and spatial transformation effectively. We propose the
novel and effective video attack mechanism, DeepSAVA,
and perform extensive experiments to evaluate its per-
formance on the UCF101 and HMDB51 action dataset
and three different classification models: Inception-3v,
CNN+LSTM, and I3D. We obtain better results than
state-of-the-art sparse baselines in terms of both fooling
rate and transferability, which confirms the success of
DeepSAVA. Our most significant results are for the I3D
model, by only attacking one frame of the video to obtain
a 99.5% to 100% attack success rate.

Additionally, in this paper, we add adversarial training
experiments to improve the robustness of video classi-
fication models. By now, adversarial training research

Models LSTM Vanilla RNN GRU Inception-v3 I3D
Sparse DeepSAVA Sparse DeepSAVA Sparse DeepSAVA Sparse DeepSAVA Sparse DeepSAVA

LSTM 100% 100% 34.42% 41.38% 64.35% 85.34% 50.0% 52.17% 53.48% 54.62%
Vanilla RNN 100% 100% 100% 100% 100% 100% 71.74% 82.40% 60.50% 64.02%

GRU 79.34 % 84.75% 40.70% 56.03% 100% 100% 50.0% 51.08% 42.68% 49.58%
Inception-v3 22.95 % 24.36% 22.80% 26.72% 22.90% 31.03% 100% 100% 33.61% 37.80%

I3D 6.56 % 10.08% 7.01% 9.48% 7.64% 8.62% 13.04% 14.13% 100% 100%

Table 12: Fooling Rate across recurrent models on UCF101.
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focused on image classification models, thus, in this
paper, we choose to adopt the most effective defence
method, PGD adversarial training, to retrain the video
classifiers. We modify the adversarial training algorithm
by adding a combination of spatial transformation and
additive perturbation in light of our DeepSAVA frame-
work. We also show the experimental results of the most
intuitive adversarial training approach, which takes the
clean training dataset and the generated adversarial ex-
amples as input to re-train the model. As a result, after
applying our adversarial training with combined pertur-
bation, we can obtain a more robust model compared to
the PGD adversarial training, and more effective than
injecting adversarial examples.

Limitation and future work
We acknowledge certain limitations in our proposed

approach. Firstly, Bayesian optimisation is a general tool
that can be readily employed to identify critical frames.
However, it is more time-consuming than the gradient-
map method, which leverages feature maps to pinpoint
critical frame features. Therefore, going forward, we can
explore to emplement a method that can combine opti-
misation and gradient-map approaches, such as Gumbel-
Softmax Jang et al. (2017), which represents a differen-
tiable variant of SemHash Kaiser and Bengio (2018).

Additionally, we have observed that the enhancement
in the robustness of the video classification model is
somewhat limited. The most significant reduction in the
fooling rate we achieved was 24.% for the CNN+LSTM
model, leaving ample room for further improvement.
Furthermore, with respect to the use of adversarial de-
fence through adversarial training to enhance the robust-
ness of video models, our combined perturbation adver-
sarial training demonstrates a significantly lower fooling
rate compared to traditional adversary training with PGD.
However, it is essential to acknowledge that our algo-
rithm introduces a subtle alteration in the accuracy of the
clean model, as shown in Table 11. In our experimental
endeavors, we also explored the TRADES approach pro-
posed by Zhang et al. (2019), which aims to balance the
model accuracy and robustness. Regrettably, it showed
worse performance when applied to video classification
models. As a result, we suggest that future research
should focus on the development of effective trade-off
algorithms tailored specifically for video classification
models.

Ethical Implications

Video attack technologies present significant ethical
and security challenges. These technologies are capa-

ble of generating misleading or false content, posing a
risk to individual rights, particularly regarding reputation
and privacy. A single perturbed frame in an input video
can cause the model to produce entirely incorrect predic-
tions. This vulnerability can be employed by malicious
actors to undermine security systems or generate harmful
content.

Conversely, defense models in video technology play a
pivotal role in maintaining cybersecurity and safeguard-
ing sensitive data. They are critical in preserving the
information, which is vital in an area where social me-
dia is a primary source of information. Defence models
are essential to protect public information and ensure
robustness against the manipulation of video content.
However, the implementation of such defensive tech-
nologies should carefully consider the balance between
enhancing robustness and maintaining model accuracy.
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Appendix A. Calculating the Gradient of SSIM

The SSIM was first proposed in (Wang and Bovik,
2002) and is detailed in (Wang et al., 2004). Given x
and x̂ as the local pixels taken from the same location of
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the same frame in the clean video and adversarial video,
respectively, the local similarity between them can be
computed on three aspects: structures (s(x, x̂)), contrasts
(c(x, x̂)), and brightness values (b(x, x̂)). The local SSIM
is formed by these terms (Wang et al., 2004):

S (x, x̂) = s(x, x̂) · c(x, x̂) · b(x, x̂) =(
σxx̂ + D1

σxσx̂ + D1

)
·

 2σxσx̂ + D2

σ2
x + σ

2
x̂ + D2

 ·  2µxµx̂ + D3

µ2
x + µ

2
x̂ + D3

 ,
(A.1)

The structural similarity index (SSIM) measure in
Equation (2) can be expressed as: (Wang et al., 2004)

SSIM(x, x̂) =
(2µxµx̂ +C1) (2σxx̂ +C2)(
µ2

x + µ
2
x̂ +C1

) (
σ2

x + σ
2
x̂ +C2

) (A.2)

The mean of x , the variance of x, and co-variance of x
and x̂ can be represented as µx, σ2

x and σxx̂. They can be
calculated respectively:

µx =
1

NP

(
1T · x

)
σ2

x =
1

NP − 1
(x − µx)T (x − µx)

σxx̂ =
1

NP − 1
(x − µx)T (x̂ − µx̂)

(A.3)

Given x and x̂ as the local pixels taken from the same lo-
cation of the same frame in the clean video and adversar-
ial video, respectively, the local similarity between them
can be computed on three aspects: structures (s(x, x̂)),
contrasts (c(x, x̂)), and brightness values (b(x, x̂)). The
local SSIM is formed as (Wang et al., 2004):

S (x, x̂) = s(x, x̂) · c(x, x̂) · b(x, x̂) =(
σxx̂ + D1

σxσx̂ + D1

)
·

 2σxσx̂ + D2

σ2
x + σ

2
x̂ + D2

 ·  2µxµx̂ + D3

µ2
x + µ

2
x̂ + D3

 ,
(A.4)

where µx and µx̂ denote means, σx and σx̂ are standard
deviations of x and x̂, respectively; σxx̂ represents the
cross-correlation of x and x̂ after deleting means; D1,
D2, and D3 are weight parameters. For SSIM metric, a
value of 1 means that the two images compared are the
same. As the SSIM is calculated based on the pixel level,
it uses a sliding window method, which moves pixel by
pixel the window across the whole image. As we use
uniform pooling to combine the total SSIM for the whole
videos, suppose we have N pixels in the total videos, the
SSIM can be represented as:

SSIM(X, X̂) =
∑N

i=1 ·SSIM (xi, x̂i)
N

(A.5)

where xi and x̂i are the i-th pixel of each frame in the
video. To apply the gradient decent optimisation method
described in Section 3, we have to compute the gradient
of SSIM with respect to the adversarial video example X̂.
As equation (9) shows, to compute ∇⃗X̂ SSIM(X, X̂), we
only need to calculate the gradient ∇⃗x̂i SSIM(xi, x̂i). The
process is represented as follows. (Wang and Simoncelli,
2004) We define four parameters to deduce the derivative
of local SSIM:

M1 = 2µxµx̂ +C1, M2 = 2σxx̂ +C2
P1 = µ

2
x + µ

2
x̂ +C1, P2 = σ

2
x + σ

2
x̂ +C2

(A.6)

Therefore, the gradient can be expressed as:

∇x̂S S IM(x, x̂) = 2
NPP2

1P2
2
[M1P1 (M2x − P2 x̂)

+P1P2 (M2 − M1) µx + M1M2 (P1 − P2) µx̂]
(A.7)

Appendix B. Step-size in adversarial attack during
adversarial training

In this section, we present the experimental results
of the adversarial training accuracy and fooling rate is
given different values of α. Here we perform the ad-
versarial training on the Inception-v3 model using the
UCF101 dataset. According to the experimental results
presented in Table B.13, altering the step size between
0.01 and 0.001 can have a minor effect on model accu-
racy and fooling rate. Furthermore, the results indicate
that the model trained using combined perturbation is
consistently more robust than the model trained using
PGD defence.

Alpha Defence Accuracy Fooling Rate
0.001 Combined defence 60.8% 34.3%
0.001 PGD defence 60.8% 37.1%
0.005 Combined defence 62.6% 35.5%
0.005 PGD defence 60.8% 37.1%
0.01 Combined defence 58.3% 32.1%
0.01 PGD defence 58.9% 36.8%

Table B.13: Model Accuracy and fooling rate for different step-sizes
of adversarial attack in the adversarial training.

Appendix C. Case Study I: Next-Frame Video Pre-
diction

In this section, we explore our framework in the ap-
plication of next-frame video prediction. Next-frame
video prediction aims to predict the next frame based
on a sequence of previous videos. Various models have
been applied for the video prediction tasks, i.e., CNN
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Constraint l2,1 budget = 0.1 SSIM budget = 0.94
Methods Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 60% 58.22% 91.25% 12.9% 66.2% 97.46%
Time (s) 24029.8 4109.78 1483.96 30803.2 8276.1 1586.3

Table B.14: Attack I3D model on UCF101

Constraint l2,1 budget = 0.08 l2,1 budget = 0.1
Methods Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 55.71% 48.57% 50% 58.57% 58.57% 57.14%
Time (s) 22800.5 13777.6 15010 23336.8 19774.4 20866.4

Table B.15: Attack CNN+LSTM model on UCF101 with l2,1 budget

Constraint S S IM budget = 0.96 S S IM budget = 0.94
Methods Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 50% 47.14% 47.14% 52.85% 52.85% 52.85%
Time (s) 15120.21 4039.24 5131.24 15952.52 6341.7 7433.3

Table B.16: Attack CNN+LSTM model on UCF101 with S S IM budget

and LSTM (Joshi, 2021), PredNet (Lotter et al., 2017),
and Transformer (Kumar, 2021). As a case study, we
will apply our DeepSAVA framework to the video pre-
diction model based on CNN and LSTM models to see
whether the sparse attack can also be effective on the
frame prediction task.

In the CNN and LSTM architecture, the CNN acts as
an encoder that extracts spatial features from the input
video sequences, while the LSTM decodes the temporal
connections between the frame and video sequence to
forecast the next frame. Next-frame video prediction
based on combining CNN and LSTM networks offers a
wide range of applications in computer vision, including
video reduction, editing, and creation, and also demon-
strated significant potential to predict the next-frame of
videos. In this paper, we examined this model using the
moving-MNIST dataset, which is a common benchmark
dataset for videos.

In next-frame prediction, the model inputs a sequence
of the previous frame, fn, to predict a new frame, f(n+1).
Therefore, it takes a sequence of input frames (xn) as
input, to output the prediction frame y(n+1). To be noticed,
in the video prediction task, the accuracy is measured by
the Mean Square Error or SSIM similarity metric.

Appendix C.1. Problem Definition:

The video prediction model is defined as J(·; θ) with
pre-trained weights θ. The input clean video is de-
fined as X = (x1, x2, ..., xT ) and the perturbed exam-
ple is denoted as X̂ = (x̂1, x̂2, ..., x̂T ). The video se-
quence containing the next frame of the input video is

y = (x2, x3, ..., xT+1) ∈ RT×W×H×C , which is used as the
ground truth label for the prediction output. Therefore,
the objective function for perturbing the task of frame
prediction can be defined as:

arg min
(
λℓsimilar(X̂,X) − ℓadv

(
y, J(X̂; θ)

))
, (C.1)

Here the loss function ladv we used is the mean square
error. As a result, the attack goal is to enlarge the distance
between prediction frames and the ground truth video,
while maintaining the perturbation human imperceptible.

Appendix C.2. Experiments

We perform the DeepSAVA on the next-frame video
prediction model. We randomly picked 100 samples of
the moving-MNIST dataset and plotted the MeanSqua-
reError(MSE) values against the steps under DeepSAVA
in Figure C.9. In Figure C.9 (a), we conducted attacks on
the first frame of the input video, measuring their respec-
tive MSEs. Subsequently, we apply the BO selection
to identify the most crucial frame, and the results are
illustrated in Figure Figure C.9 (b). Notably, the BO se-
lection consistently designated the last frame as the most
critical. Furthermore, the results indicate that attacking
the last frame chosen by BO resulted in significantly
higher MSE values. Consequently, it can be inferred that
the next-frame video prediction model relies heavily on
the information contained in the last frame of the input
video.
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Figure C.9: Per-step Mean Square Error (MSE) between the predicted
frame and ground truth frame, while introducing perturbations to the
input frames. The amount of perturbation added to the input frames is
constrained to a budget within the l2=0.03 norm ball.

Appendix D. Case Study II. Evaluate the robust
model using explainable AI method.

To evaluate the regular model and robust mode, we use
the salience map to show what features are learned by
each model. The salience map can effectively highlight
the pixels within each frame that have the greatest impact
on the model’s predictions. It serves as a valuable tool in
the field of explainable AI, commonly used to evaluate
input images or videos in a neural network, revealing
which region of the image or frame contributes the most
to the model’s decision-making process.

A gradient-based salience map is designed to visu-
alize the gradients of the predicted outcome from the
model with respect to the input pixel values (Simonyan
et al., 2014; Zeiler and Fergus, 2014; Springenberg et al.,
2014). The relative contribution of each pixel to the final
prediction of the model can be calculated by applying
tiny tweaks to pixel values across the image and catching
the change in the predicted class.

In this section, we perform experiments to evaluate the
performance of the Inception-V3 model with defence and
without defence. In Figure D.10, we display the salience
map superimposed on the input frame. The background
image represents the original video of a girl playing
the flute, and the yellow pixels indicate areas with high
gradients. We compare the salience maps learned by the
regular model and the robust model, which was trained
using the combination .

From the results, we observe that both models heav-
ily rely on the central portion of the frame, particularly
focusing on the flute, when making predictions. Addi-
tionally, numerous frames do not exhibit a salience map,
suggesting that they do not contribute significantly to
the model’s final decision. However, when conducting
an attack on a single frame of the video, it is observed
that perturbing a frame without a salience map is more
effective to result in a change in the model’s predicted
label compared to perturbing a frame highlighted by
the salience map (highlighted in yellow). This finding
raises important considerations, which we will discuss
later. Furthermore, based on the experimental results,
a notable difference between the regular model and the
robust model is that there are more frames highlighted
by the salience map. This observation suggests that the
model with the defence method may be more robust
due to its ability to learn more distinctive features at the
individual frame level.

Appendix D.1. Discussion and Limitations

The experiment was taken by a Python package ‘Kera-
vis’, which primarily focuses on generating salience
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maps for individual images (Kotikalapudi and contrib-
utors, 2017). While this approach may not capture the
full temporal dynamics and interactions between frames,
it can provide some useful information if we set the in-
put to each individual frame of video. Visualizing the
salience map for each frame allows us to analyze the
frame-level attention and identify the regions that the
model focuses on for making predictions.

However, this approach is still limited for video model
analysis. Since each frame is considered independently,
the salience maps cannot find the temporal relationships
present in the video. Some frames may not have promi-
nent salience maps if they are less informative or con-
tribute less to the model’s predictions. Additionally, the
salience maps might not provide a holistic view of the
salient regions in the entire video.

Hence, to gain a more comprehensive understanding
of the salience map and its temporal dependencies in the
video, considering video-specific salience map genera-
tion techniques (Fang et al., 2014; Fan et al., 2019; Yang
et al., 2013) would be more appropriate, which can be
considered a future work. These techniques are designed
to capture the dynamics and interactions across frames,
providing a more accurate representation of the salient
regions in the video.

Appendix E. Comparison Experiments with lp-
norm and SSIM Constraints

Appendix E.1. I3D model

In Table B.14, we show the results of comparing the
fooling rate with the Sparse baseline on the I3D model
using the UCF101 dataset when the l2,1 budget is 0.1 and
the SSIM budget is 0.94.

Appendix E.2. CNN+LSTM model

In Table B.15 and Table B.16, we show the compari-
son results for attacking the CNN+LSTM model using
the UCF101 dataset. For the CNN+LSTM model, we
can see that although the Sparse baseline could obtain
a higher fooling rate, it will spend much more time to
generate the adversarial examples. Our method using
combined perturbation will spend less time and obtain a
comparable fooling rate. Because here we select the first
frame to attack, the BO cannot improve the performance
of the I3D model.

(a) Regular Model

(b) Robust Model

Figure D.10: Saliency map overlaid on each frame. The regular model
is the model that is not trained with adversarial examples, and the
robust model is trained by combined perturbation.
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