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Abstract—Online changepoint detection aims to detect anoma-
lies and changes in real-time in high-frequency data streams,
sometimes with limited available computational resources. This
is an important task that is rooted in many real-world applica-
tions, including and not limited to cybersecurity, medicine and
astrophysics. While fast and efficient online algorithms have been
recently introduced, these rely on parametric assumptions which
are often violated in practical applications. Motivated by data
streams from the telecommunications sector, we build a flexible
nonparametric approach to detect a change in the distribution
of a sequence. Our procedure, NP-FOCuS, builds a sequential
likelihood ratio test for a change in a set of points of the empirical
cumulative density function of our data. This is achieved by
keeping track of the number of observations above or below
those points. Thanks to functional pruning ideas, NP-FOCuS
has a computational cost that is log-linear in the number of
observations and is suitable for high-frequency data streams.
In terms of detection power, NP-FOCuS is seen to outperform
current nonparametric online changepoint techniques in a variety
of settings. We demonstrate the utility of the procedure on both
simulated and real data.

Index Terms—changepoint, online, non-parametric, real-time
analysis, anomaly detection, telecommunications

I. INTRODUCTION

One of the contemporary challenges in time-series analysis
is to detect changes in some measurable properties of a
process. This task finds its roots in a plethora of applications
spanning numerous fields including engineering (Alvarez-
Montoya et al., 2020; Henry et al., 2010), neuroscience (Jewell
et al., 2020), genomics Nicolas et al. (2009) and astrophysics
(Fridman, 2010; Fuschino et al., 2019). In the previous decade,
we saw many offline changepoint procedures appearing in
the statistical literature. A common approach for detecting
a single change is to scan over all possible locations for a
change, and apply a generalised likelihood ratio (GLR) test
for a change, with evidence for a change being the maximum
of the GLR test statistics (Fearnhead and Fryzlewicz, 2022).
The GLR procedure has been proven to be asymptotically
optimal (Basseville et al., 1993), as it searches over all possible
parameters of the unknown pre and post-change distributions.
This approach includes, as a special case, the popular CUSUM
method for detecting a change in mean, and can be extended
to detect multiple changepoints by using binary segmentation
methods (Scott and Knott, 1974; Fryzlewicz and Rao, 2014;
Kovács et al., 2020) or by maximising a penalised likelihood
(Fearnhead and Rigaill, 2020); see Cho and Kirch (2021) for
a recent review of this area.

In contrast to the offline setting, where the data is first
collected and later analyzed a posteriori, one of the modern

challenges is to detect a change within a data stream in real
time. We find many applications in need of an online proce-
dure. These include control of industrial processes (Pouliezos
and Stavrakakis, 2013), or monitoring of computer networks
(Tartakovsky et al., 2005), social networks (Chen, 2019) and
telecommunication devices (Austin et al., 2023).

Many challenges arise in analysing data online. An online
procedure should be able to process observations in real-time,
as quickly as they arrive, in order to avoid memory overflow
and result in a delayed evaluation. This can be particularly
valuable in settings where limited computational resources are
available, or in the high-frequency domain.

As noted by (Ross, 2015), one way of performing an
online analysis is to collect data in batches and analyse those
through an offline algorithm. However, such an approach can
be sensitive to the batch size. If this is too small, then we
may be unable to detect small changes, while if it is large it
can lead to delayed detection of bigger changes. Alternatively,
observations can be processed on the go in a sequential
fashion. At each new observation, a decision is made on
whether a change has occurred, or not, based on the new data
point and on past information.

The sequential CUSUM approach, and more generally,
sequential GLR approaches, demonstrate excellent statistical
properties (Wang and Xie, 2022; Yu et al., 2020). However,
they can be computationally inefficient. A naive computation
of the GLR test, in fact, involves, at time n, considering
O(n) possible locations for a change. I.e., the algorithm has a
computational cost per iteration that increases linearly, which
is impracticable for online applications.

Recently, Romano et al. (2023) presented the FOCuS pro-
cedure, a fast algorithm to perform the sequential CUSUM
test, that decreases the computational complexity from O(n)
to O(log n) per iteration. This is to our knowledge the fastest
way to solve the sequential CUSUM test exactly. For example,
the expected cost per iteration of FOCuS at a given time, say
at iteration one million, is roughly equal to the cost of iterating
approximately 20 objects stored in memory to find the global
maximum of our statistics – and thus it is suitable for high-
frequency online applications.

As previously mentioned, the CUSUM and GLR tests in
general rely on parametric assumptions that are often hard to
meet in real-world applications. For instance, with an indus-
trial collaborator, we found that certain data streams arising in
the telecommunications sector do not follow common distri-
butions, nor do they satisfy the usual parametric assumptions.
In monitoring operational metrics from network devices, for
example, we often deal with nonstandard distributions with
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multiple modes, outliers or heavy tails. In many cases, the
nature of the change is unknown a priori, see for example
the sequences from Figure 8. In Section IV-B we present one
example of a contemporary telecommunication application,
where the aim is to monitor the operational performance of
devices on an optical cable network. In those scenarios, a test
for Gaussian change-in-mean would, in fact, be prone to either
a missed detection, in the case of a change of a different
nature, or to false positives, in case of misspecification of the
underlying noise process.

To better outline the limitations of a parametric approach in
online changepoint detection, we show a simple introductory
example. Let us compare the Gaussian FOCuS from Romano
et al. (2023) with its non-parametric counterpart, NP-FOCuS,
the methodology that will be introduced in this paper. In Figure
1 we study both the statistics on 3 different simulated change-
point scenarios. Thresholds were tuned to achieve comparable
average run lengths of 2000 observations under the null (the
expected number of observations until we detect a change
if a change is not present). This way, after placing a true
change at 1000, we can have a fair comparison focusing on the
detection alone. In Figure 1a, the simple Gaussian change-in-
mean case, we notice how the Gaussian procedure achieves the
fastest detection. This is because the procedure’s assumptions
hold. However in Figure 1b, the second example, the sequence
now shows a change in variance. In this setting, the Gaussian
change-in-mean has no power to detect the change, which is
missed. Lastly, in Figure 1c, we find the same series as in
the first example, but some observations are shifted up by 3.
Under this scenario, to achieve the same run length of 2000
observations under the null, the threshold for the Gaussian
FOCuS procedure needs to be inflated. This results in a slower
detection than its non-parametric counterpart.

Whilst there are numerous offline non-parametric ap-
proaches in the current literature (including and not limited to
Pettitt, 1979; Zou et al., 2014; Haynes et al., 2017; Matteson
and James, 2014; Chen and Chu, 2023), it is only more
recently that there has been substantial interest on online
approaches. This includes Ross and Adams (2012), who
propose a control-chart approach that allows for the detection
of changes in scale or location, or both, when the underlying
distribution of the process is unknown, and Shin et al. (2022)
who propose a general framework for detecting changes in
measurable properties of a process. More generally there are
methods that choose a number of univariate summaries of data
and monitor for a change in any of these summaries (Kurt
et al., 2020; Keriven et al., 2020), kernel-based methods (Flynn
and Yoo, 2019; Huang et al., 2014) or related methods that
use information on distances between data points (Chen, 2019;
Chu and Chen, 2022; Chen et al., 2020). These approaches
can be applied in multivariate settings, but their statistical
efficiency depends on choosing appropriate choice of sum-
mary, kernel or distance that had power to detect the type of
change that occurs. These methods are often not invariant to
transformations of the data. By comparison, methods based
on ranking information (e.g. Hawkins and Deng, 2010), are
simple to apply for univariate data and are invariant to any
monotone transformation of the data. This is also the case for

methods that look for a change in the distribution function for
univariate data, which is the approach we take in this paper.

One example of such a method is the NUNC algorithm
(Austin et al., 2023), which tests for a change in the empir-
ical cumulative distribution function (eCDF) within a rolling
window. As with any other moving window method, however,
NUNC’s performance is extremely dependent on the size of
the window. For example, a window too small would end
up missing changes of a smaller size, whilst a window too
big might result in longer detection delays and an increased
computational cost.

Our procedure, NP-FOCuS, tries to mitigate such issues by
building a GLR test (extending ideas from Romano et al.,
2023) for the non-parametric procedure NUNC of Austin
et al. (2023). Our procedure maps the change-in-distribution
problem into a Bernoulli GLR test. This is achieved by
evaluating the eCDF at a fixed point and keeping track of
the number of observations above or below that point. We
then extend the FOCuS algorithm so that it can apply to the
Bernoulli GLR test, and show theoretically that it has the
same strong computational properties as the original FOCuS
algorithm. We perform this test for a grid of quantiles, and then
merge the test statistic values. In practice our final procedure
monitors both the sum of the test statistics across the quantiles,
which can detect small shifts in the distribution, and also
the maximum of the test statistics, which can detect a larger
change in just one part of the distribution. Our approach
only assumes that the observations are i.i.d.. However, we
also demonstrate empirically that even if such a hypothesis is
violated we still retain the strong performance over competitor
methods.

The paper is structured as follows. In Section II we intro-
duce the NP-FOCuS procedure, starting from related work, to
the introduction of a novel functional pruning recursion. In
Section III we provide some guarantees on the computational
complexity of NP-FOCuS. In Section IV-A we evaluate empir-
ically performances of NP-FOCuS, with a comparison to other
methods in a simulation study. In Section IV-B we evaluate
the method on some real-word data streams.

Open-source code, making the methods developed in this
paper accessible, will be made available via an appropriate
repository in due course.

II. A FUNCTIONAL REPRESENTATION FOR THE
NONPARAMETRIC COST FUNCTION

A. Overview of Problem and Approach

We aim to build an online non-parametric changepoint
detector by monitoring the empirical Cumulative Density
Function (eCDF) of a stream of observations. This approach
has been shown to work well in an offline setting by Zou et al.
(2014); Haynes et al. (2017).

Let p ∈ R and let F1:n(p) be the unknown CDF for a
series of independent real-valued observations y1, . . . , yn, and
let F̂1:n(p) be its eCDF:

F̂1:n(p) =
1

n

n∑
t=1

[I(yt ≤ p)] ,
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Fig. 1: Detection delays of Gaussian FOCuS (in red) and NP-FOCuS (in green) for 3 sequences of length 2000 with a change
at t = 1000. In a, a Gaussian change-in-mean example, with a jump size of 0.25. In b, a change-in-variance from variance
σ2 = 1 to σ2 = 0.25. Lastly, in c, we find the same scenario in a with some of the observations shifted by a value of 3 at
uniformly random sampled locations (blue dots).

where I is an indicator function. For an independent stream
of observations, for a fixed p, the eCDF follows a binomial
distribution:

nF̂1:n(p) ∼ Binom(n, θ),

with θ = F1:n(p). A simple approach to detect a change in
F̂1:n(p) would be to record which data points are above p and
build a likelihood-ratio test for the Bernoulli data. That is, for
a fixed p, we know that the likelihood for a segment is given
by

L(yτ1+1:τ2 ; θ, p) = (τ2 − τ1)×

×
[
F̂τ1+1:τ2(p) log θ + (1− F̂τ1+1:τ2(p)) log(1− θ)

]
.

(1)

The GLR test for a change in parameter from θ0 to θ1 is

max
0≤τ<n

[−L(yτ+1:n; θ0, p) + L(yτ+1:n; θ1, p)] . (2)

By writing xt = I(yt ≤ p), this can be rewritten as

L(yτ+1:n; θ1, p)− L(yτ+1:n; θ0, p)

=

n∑
t=τ+1

[xt log θ1 + (1− xt) log(1− θ1)]

−
n∑

t=τ+1

[xt log θ0 + (1− xt) log(1− θ0)]

If both θ0 and θ1 are known, then the sequential procedure
of Page (1954) can be used to calculate the GLR test (2). In
Section II-B we show how to extend the FOCuS algorithm of
Romano et al. (2023) to calculate the GLR test if either only
θ0 is known, or if neither θ0 nor θ1 is known. We will call
this procedure Ber-FOCuS.

In practice, we would want to check changes in the entire
eCDF rather than just at a single quantile value p. To achieve
this we follow Zou et al. (2014) and Haynes et al. (2017)
who suggest summing up the test statistic across a grid of
values p1, . . . , pM . Specifically, we approximate our eCDF

on a fixed grid of M quantile values p1, . . . , pM computed
over a probation period. To obtain NP-FOCuS we run the
Ber-FOCuS routine independently for each quantile of our
eCDF. To construct a global statistic we aggregate the quantile
statistics through the sum and the maximum. In Section II-E
we will formally describe the full procedure.

B. Detecting change-in-rate in a Bernoulli process

We focus on detecting a change in the rate parameter θ in
a univariate stream of a Bernoulli process. Let xn ∈ {0, 1} ∼
Ber(θ) be a realization of a Bernoulli random variable with
parameter θ, with θ subject to a change. Assume the pre-
change rate parameter, θ0, is known. For every observation
we can obtain evidence for a post-change rate parameter θ1
via the likelihood ratio test:

g(xn, θ1) = −2 log
(
θxn
0 (1− θ0)

1−xn

θxn
1 (1− θ1)1−xn

)
= (3)

= 2

[
xn log

(
θ1
θ0

)
+ (1− xn) log

(
1− θ1
1− θ0

)]
.

(4)

At time n we have observed x1, . . . , xn, we can then employ
(4) and derive the test statistics:

Qn,θ1 = max
0≤τ<n

n∑
t=τ+1

g(xt, θ1),

where we maximise for all possible time-points of the change,
τ . Such a statistic is known as the sequential Page-CUSUM
statistic (Page, 1954), and can be solved efficiently in constant
time per iteration through the recursion:

Qn,θ1 = max {0, Qn−1,θ1 + g(xn, θ1)} . (5)

This statistic is straightforward to compute for a known
value of θ0 and a fixed value of θ1. As we do not know θ1,
one would compute the statistics over a fixed grid of values for
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Fig. 2: The functional cost Qn(θ) at iteration n. Dotted lines
illustrate (i) argmaxθ Qn(θ) and (ii) the maxθ Qn(θ), the
highest possible value of our test statistics.

θ1 and choose the maximum value of those to maximise the
power of a detection. However, this would introduce a trade-off
between power and computational complexity. Alternatively,
Xie et al. (2023) recently suggested a way of approximating
the Page-CUSUM cost by using a plug-in value for θ1 = θ̂
into the equation above, that is calculated recursively based
on only recent data point.

Our approach is to calculate the GLR test statistic exactly
for both the case where θ1 is unknown. The idea, based
on Romano et al. (2023), is to solve (5) simultaneously
for all values of θ through the functional representation of
the sequential test statistics Qn(θ) for a post-change rate
parameter θ. That is, we have Q0(θ) = 0 and:

Qn(θ) = max {0, Qn−1(θ) + g(xn, θ)} (6)

for n ≥ 1. The value of our test statistic will be Qn =
maxθ Qn(θ). In this optimization lies the major computational
contribution of NP-FOCuS. At each iteration of the algorithm
we explicitly compute and store the full functional representa-
tion of our cost Qn(θ), which will be a piecewise function
(see Figure 2). By maximizing over all possible values of
θ ∈ (0, 1), which is simple as we can maximise each
piecewise part of the function and take the maximum of these
maxima, we can find the highest possible value for the Page-
CUSUM statistics, and avoid altogether any choice of window
w or specify a post-change parameter. At a given iteration
Qn(θ) is obtained from a set of component functions of the
form:

q(n,τ)(θ) = a(n,τ) log

(
θ

θ0

)
+ b(n,τ) log

(
1− θ

1− θ0

)
, (7)

with a(n,τ) =
∑n

t=τ xt, b(n,τ) =
∑n

t=τ (1 − xt). This curve
represents the LR statistic for a change at τ .

Fig. 3: The components function of the functional cost Qn(θ)
at iteration n. The functions are plotted in different colours as
dotted lines. The values for which they are optimal, e.g. they
dominate all other lines and contribute to Qn(θ), are solid.
These curves are in line with those of the bottom right plot
of in Fig. 4, illustrating the last step of our algorithm for
θ > θ0 = 0.5.

Whilst there are n such possible curves, each one relative
to a different candidate changepoint τ , in practice Qn(θ) can
be defined in term of a much smaller number of curves. In
other words, for a large n, only a small proportion of these
curves will contribute to the functional cost, i.e. will be the
components of our piecewise function Qn(θ), such that for
some values of θ we have that q(n,τ)(θ) = Qn(θ). In our
example, we plot in Figure 3 the the curves contributing
to Figure 2. If there are no values of θ for which a curve
contributes to the optimal cost, we can drop it, a mechanism
that is known as pruning that leads to the speed-ups in the
algorithm. Therefore, Ber-FOCuS presents a way of iteratively
and efficiently updating Qn(θ), figuring out which are its
components’ functions and finding its global maximum to
solve 6 exactly.

If k is the number of functions that contribute to Qn(θ), we
can represent Qn(θ) on a computer efficiently as an ordered
set of k triples Qn = {qi = (a

(n,τi)
i , b

(n,τi)
i , l

(n,τi)
i ), i =

1, . . . , k}. Each triple represents a curve q(n,τi)(θ), and con-
tains the coefficients of log(θ/θ0) and of log((1−θ)/(1−θ0)),
and a value li which is the left-most value of θ for which
the associated function is contributing to the optimal cost, i.e.
θ ∈ [l

(τi,n)
i , l

(τi+1,n)
i+1 ), q(n,τi)i (θ) = Qn(θ). In this interval our

curve will be greater than all the other curves and the zero
line.

For brevity, for the rest of this section, we will fix the itera-
tion. We can simplify the notation by dropping the superscript
(n, τ), and hence we will denote our triples and functions
simply as q1, . . . , qk. This is possible as n is fixed and τ is
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redundant information: by construction τi = n−(ai+bi) as we
are dealing with binary data. We will assume that the triples
are ordered in such a way that θ0 = l1 < · · · < lk < lk+1 = 1,
so that for all θ ∈ [li, li+1), Qn(θ) = ai log(θ/θ0)+bi log((1−
θ)/(1− θ0).

A description of the full Bernoulli FOCuS (Ber-FOCuS)
procedure is given in Algorithm 1, with a graphical illustration
of the procedure in Figure 4. For each iteration, we have three
main steps. Step 1, the update step, updates the values of
the coefficients of stored functions according to (4). I.e., we
update the count of positive or negative observations since the
introduction of a curve. This is a simple increment of either
coefficient ai or bi. Step 2, which will be detailed in Section
II-C, is the functional pruning step and focuses on identifying
which pieces are no longer optimal (and will never be in the
future). Finally, the optimization step, where we maximise
the total cost Qn(θ) over θ, to get our test statistics. This
is equivalent to taking the maximum of all maximums of our
functions. As we will see in Section III to reconstruct the
optimal cost we need only to store a small subset of candidate
changepoints: at the nth iteration we expect to store on average
k ≈ log(n) functions.

Algorithm 1: Ber-FOCuS (one iteration)
Data: xn ∈ {0, 1} the data point at time n.
Input: Qn−1(θ) the cost function from the previous

iteration.
1 Q̃(θ)←− Qn−1(θ) + g(xn, θ)

2 Qn(θ)←− max
{
0, Q̃(θ)

}
; // see Algorithm 2

3 Qn ←− maxθ Qn(θ)
4 return Qn(θ) for the next iteration, Qn as the test

statistic.

C. Step 2: Efficient Pruning of the Bernoulli cost

Functional pruning consists of restricting the set of values
to consider as candidate changepoints on account of the
information they carry up to time n. That is, at each iteration
we can stop considering functions introduced at times if they
will never be optimal for our cost Qn(θ). To achieve this,
Romano et al. (2023) propose an efficient pruning rule, we can
adapt to our setting. As in Romano et al. (2023), we propose to
update Qn(θ) separately for θ > θ0 and θ < θ0. We will report
the update rule for θ > θ0 alone as, by symmetry, the update
for θ < θ0 can be found by applying the same algorithm with
the data inverted, i.e. replacing xt with (1− xt).

If we consider Ber-FOCuS algorithm of Algorithm 1, then
at the start of an iteration we will have a set of triples.
The first step, the update step, only affects the ai and bi
coefficients. The li components, which specify the intervals of
θ that each curve is optimal, are unchanged. This follows as the
differences between the curves are unaffected by the update, as
each curve is changed by adding the same function g(xn, θ),
and it is the difference between curves that determines where
one if greater than all others.

The pruning of curves only occurs in step 2, and is as a
result of taking the maximum of Q̃(θ) and the zero line. The

idea is that we need to find the values of θ for which the
zero line is optimal. Define root(qi) to be the largest value
of θ > θ0 such that qi(θ) = 0, if such a value exists. It
is straightforward to show that, for a given function qi that
contributes to Q̃(θ) for θ > θ0, if root(qi) < 1 exists, then
the zero-line is better on the interval:

[root(qi), 1) .

Considering all functions, this implies that if maxτ root(qi) <
1 then the zero line is globally optimal on [l∗, 1), where

l∗ = max
τ

root(qi).

Therefore, the triple defining the zero line will be given by
(0, 0, l∗). Given that the quadratics are ordered, it means that
any quadratic with li < l∗ can therefore be removed. Finally,
the ordering of the quadratics means that li < lj if and only
if i < j. For this reason, we can start checking from the last
quadratic qk and stop as soon as the pruning condition is not
met. The pruning procedure is summarised in Algorithm 2.
Following the update, for pruning, given that at any point in
time li = root(qi − qi−1) ≤ l∗ and that qi(θ0) = 0, we know
that whether qi(li) < 0 there will be no such value of θ for
which qi will be optimal. In fact, we know that qi will be
greater than qi−1 only starting from li, and if qi(li) < 0 falls
below the zero line, then qi−1(θ) < qi(θ) < 0 ∀ θ ∈ (li, 1) and
therefore qi will be never be optimal and can be safely pruned.
The bottom-left plot of Figure 4 can be of aid in understanding
the pruning and the following theorems.

Algorithm 2: Algorithm for max{0, Q̃(θ)} for θ > θ0

Input: Q̃, an ordered set of triples
{qi = (ai, bi, li) ∀ i = 1, . . . , k}

1 i←− k;
2 while qi(li) ≤ 0 and i ≥ 1 do
3 i←− i− 1;
4 end
5 if i ̸= k then
6 Q←− Q \ {qi+1, . . . , qk}; // drop pieces
7 k ←− i
8 end
9 if k = 0 then

10 qk+1 ←− (0, 0, θ0); // add first piece
11 else
12 qk+1 ←− (0, 0, root(qk)); // add new piece
13 end
14 Q←− {Q, qk+1}
15 return Q

We therefore learn that the algebraically ideal version of
the algorithm relies on computing the value root(qk) in step
9 at each iteration. However, given the shape of our cost
function, we do not have a closed form for computing this
root. A naive implementation would thus require obtaining
such a value numerically.

Fortunately, there is an alternative way of performing the
same pruning exactly that avoids computing the root value.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 00, NO. 0, FEBRUARY 2023 6

Fig. 4: One iteration of the NP-FOCuS procedure illustrated, for θ > θ0. In this example, we assume θ0 = 0.5. Top-left: the
cost function from the previous iteration Qn−1(θ). The total cost is given by the maximum of 4 functions: we can see how
each of those is optimal for some values of θ. Labels refer to the time τ at which each function was introduced. Top-right:
the update step. By adding the new observation xn, we update the coefficients ai,τ or bi,τ of each function. Although the
shape of our function has changed, the points where quadratics intersect are unchanged. Bottom-left, the pruning step. Here
we compare the functions with the zero line (dashed line). We find the lowest value of θ for which each function is optimal.
We notice how for the grey function (1000) there is no such value of θ for which the function is optimal, as the intersection
with its closest quadratic falls below the zero line. We can therefore safely prune the function. Bottom-right: Qn(θ), after we
add a new piece (in red).

As we will learn in the following Theorem and Lemma, this
will be achieved by studying the link between the value of the
roots of our pieces and their argmax.

Theorem 1: Assume qi and qj are two curves that contribute
to Qn(θ) for θ > θ0, with i > j. Then, root(qi) < root(qj) if
and only if ai/(ai + bi) < aj/(aj + bj).
Proof. We begin with some properties of the curves. A curve
qi has argmax qi(θ) = ai/(ai+ bi). By construction, if i > j
then ai ≤ aj and bi ≤ bj . Finally qi(θ0) = qj(θ0) = 0.

We now link the argmax of our functions to their roots.
First we can rescale each curve without changing the location
of its maximum of its root. For curve qi define ãi = ai/(ai+
bi), 1− ãi = bi/(ai + bi) and write

q̃i(θ) = ã log

(
θ

θ0

)
+ (1− ã) log

(
1− θ

1− θ0

)
. (8)

We then have that

root(q̃i) ≥ root(q̃j) ⇐⇒ ãi ≥ ãj , (9)

This follows by noting that q̃i(θ) is unimodal as ∂q̃i(θ)
∂θ has

one zero, and that ∀ θ ∈ [0, 1], ∂q̃i(θ)
∂θ ≥ ∂q̃j(θ)

∂θ ⇐⇒ ãi ≥ ãi.

As qi has the same root as q̃i, the result follows immediately.
□

We will use this result to simplify the pruning procedure in
the following Lemma.

Lemma 2: The condition for pruning qi(li) ≤ 0 at step 2 of
Algorithm 2 is implied by ai/(ai + bi) < ai−1/(ai−1 + bi−1)
for i > 1 and ai/(ai + bi) < θ0 for i = 1.
Proof. To link the pruning condition and the results from
Theorem 1 we need to show that for i > 1 whether qi(li) ≤ 0
we find root(qi) < root(qi−1). We start by noting that li is the
root of the function q∗(·) = qi(·)− qi−1(·), i.e. li = root(q∗),
and that q∗(θ) ≥ 0 on [θ0, li].

Then, if qi(li) ≤ 0 we have

qi−1(θ) = qi(θ) + q∗(θ) > qi(θ) for θ ∈ (θ0, li),

and as root(qi−1) ∈ (θ0, li), it follows that

qi(root(qi−1)) < qi−1(root(qi−1)) = 0.

By concavity of qi then root(qi) < root(qi−1). The argument
for i = 1 follows simply by noting that in this case l1 =
root(q1) < θ0 ⇐⇒ a1/(a1 + b1) < θ0. □
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Hence we can swap the pruning condition involving the
root-finding with the simpler condition: ai/(ai + bi) <
max{θ0, ai/(ai + bi)}. Given that this novel pruning only
involves the ai, bi values, it is no longer necessary to find and
store the li value at each iteration. This result relies, in part,
on the functions, qi(.), being unimodal. Similar results apply
for other functions, and these have been used to generalise the
FOCuS algorithm to other one-parameter exponential family
models (see Ward et al., 2023).

D. Extension to the θ0 Unknown Case

We next extend our recursion to the case where both θ0
and θ1 are unknown. Assume we are observing a stream
of Bernoulli random variables x1, . . . , xn distributed as a
Ber(θ0) under the null and as a Ber(θ1) under the alternative.
The likelihood ratio test statistic is

Qn = −max
θ∈R

n∑
t=1

h(xt, θ)+ (10)

+ max
τ∈{1,...,n−1}

θ0,θ1∈R

{
τ∑

t=1

h(xt, θ0) +

n∑
t=τ+1

h(xt, θ1)

}
, (11)

where

h(xt, θ) = xt log θ + (1− xt) log(1− θ).

Solving this directly for all possible values of τ , via directly
storing the partial sums, will result in a procedure that has
computational complexity of O(n) per iteration and O(n) in
memory. We employ a functional pruning approach and solve
(11) exactly through the following recursion.

Proposition 3: Let Q0(θ) = 0 and for n = 1, 2, . . . let Qn

be defined by the recursion:

Qn(θ) = max

{
max

θ

n∑
t=1

h(xt, θ), Qn−1(θ) + h(xn, θ)

}
.

Then, at time n, Qn = maxθ
∑n

t=1 h(xt, θ)−maxθ Qn(θ).
The proof to Proposition 3 is found in Appendix A.

This recursion can be solved using the same ideas as from
Romano et al. (2021). As before Qn(θ) will be the maximum
of a set of curves. Each curve will be of the form

a log(θ) + b log(1− θ) + c,

where the coefficients will depend on the changepoint location
associated with that curve. Importantly the set of changepoint
locations that we need to store curves correspond to locations
whose curves would be stored for the θ0 known case for
some θ0. The only difference that θ0 has on the changepoint
locations whose curves are kept is that when considering
positive changes we only need consider θ1 > θ0, and for
negative changes we need only consider θ1 < θ0. As we need
to keep curves that are optimal for some value of θ0 this means
that for positive changes we need to prune the same curves as
for the θ0 known case by for θ0 → 0. For negative changes
we prunes as for the θ0 known case but for θ0 → 1.

The algorithm to implement Ber-FOCuS in the θ0 unknown
for θ1 > θ0 is almost identical to Algorithm 2 except we

now store a 4-tuple (ai, bi, ci, li) for each curve, so in step
9 the new curve is described by the 4-tuple (0, 0, c, root(qk))
with c = maxθ

∑n
t=1 h(xt, θ). As before, in practice we can

implement the resulting algorithm without storing li.

E. Aggregating the Bernoulli Traces and NP-FOCuS

Having covered how to independently monitor the M
Bernoulli processes for all quantiles, we describe how to obtain
a global statistic for NP-FOCuS.

Our approach is to consider two aggregation functions. One
is to take the maximum of the statistics, and the other is to
take the sum, as in e.g., Mei (2010).

NP-FOCuS: Let Q1
n(θ), . . . , Q

M
n (θ) be the costs at time n

for the M Bernoulli sequences I(yn ≤ p) p ∈ {p1, . . . , pM},
and let the Ber-FOCuS statistics:

Qm
n = max

θ
Qm

n (θ)

Then, we will detect a changepoint at time n whether:
M∑

m=1

Qm
n ≥ ξsum or max

m∈{1,...,M}
Qm

n ≥ ξmax,

with ξsum, ξmax ∈ R. A formal description of the NP-FOCuS
algorithm is reported in Algorithm 3.

Algorithm 3: NP-FOCuS (one iteration)
Data: yn ∈ R the data point at time n.
Input: ξsum, ξmax, {p1, . . . , pM},

{Q1
n−1(θ), . . . , Q

M
n−1(θ)}.

1 for m = 1, . . . ,M do
2 Qm

n (θ),Qm
n ←− Ber-FOCuS(xn = I(yn <

pm); Qm
n−1(θ)); // Algorithm 1

3 end
4 Ssum ←−

∑M
m=1Qm

n ;
5 Smax ←− maxm∈{1,...,M};
6 if Ssumn ≥ ξsum or Smax

n ≥ ξmax then
7 return n as a stopping point.
8 end
9 return {Q1

n(θ), . . . , Q
M
n (θ)} for the next iteration.

One drawback of having to monitor two streams from
two different aggregators comes with the procedure requiring
two thresholds. However, there is an advantage in monitoring
both streams simultaneously, as there are change scenarios
where we expect one to perform better than the other. The
sum statistic should have greater power to detect small shifts
in the distribution that affect all or many quantiles. The
maximum statistic will have greater power to detect larger
shifts that affect e.g. just the tail of the distribution. By setting
either ξsum or ξmax to infinity, our method would result to
considering a test just based on the maximum or the sum.

F. Tuning Strategy and Choice of Quantiles

We now describe how to tune the initial parameters of the
NP-FOCuS procedure. Quantile values can be computed either
on training observations or on a probation period, in case of no
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Fig. 5: Average Detection Delay in function of the number
of quantiles M. Vertical bars represent the standard deviation
across the various replicates.

training data. Rather than taking evenly spaced quantiles, we
build geometrically spaced quantiles following the approach of
Haynes et al. (2017). That is, for fixed M , we take p1, . . . , pM
in such a way that pm is the empirical quantile with probability{

1 + (2n− 1) exp

[
− (2m− 1)

M
log(2n− 1)

]}−1

.

This is to give more importance to values in the tail of
the distribution of the data. In case of a change in the tails
of a distribution, for instance, this would allow for a quicker
detection as the traces of the more-extreme quantiles are more
likely to pass the threshold for the max statistic.

As we will find out from Section III, the choice of M
affects the computational complexity of the procedure. Even
if a higher number of quantiles should lead to better statistical
power, in practice there is not much of a gain in picking values
of M greater than 15. This can be checked from the elbow plot
in Figure 5, where we measure the average detection delay as
a function of M . Simulations were performed as described in
Section IV-A.

Finally, we tune the thresholds ξsum or ξmax via a Monte
Carlo approach. This is common practice in the literature when
using fixed thresholds. In particular, we follow the approach
of Chen et al. (2022, Section 4.1). We generate, say, T many
sequences as long as the desired average run length N under
the null. This can be achieved either by simulating the process
directly or bootstrapping from training data. We then compute
both the sum and the max statistics on all the T sequences
and pick the max on each. The idea is that the stopping
times Ssum, Smax, the times in which respectively the sum
or the max statistics go over the thresholds ξsum, ξmax,
are approximately exponentially distributed. This means that
we want to choose the thresholds so that the probability of
stopping after time N , if there is no change, is exp(−1).

Based on our simulations we pick the estimated thresholds
ξ̃sum, ξ̃max to be the smallest values such that the proportion
of times we do not detect a change by time N , based on the
sum and max statistics respectively, is less than exp(−1). This
approach would give thresholds with the approximate average

run length we require if we were using only the max or only
the sum statistic. As we are using both, we now fix the ratio of
ξ̃sum to ξ̃max but use the same procedure to scale their values
to get a composite test with the correct average run length.

III. COMPUTATIONAL COMPLEXITY OF THE NP-FOCUS
PROCEDURE

The computational and memory complexity per iteration of
Algorithm 3 is M times the cost of running Ber-FOCuS. The
computational cost of Ber-FOCuS consists of the pruning step
and the update and maximisation steps.

The pruning step has a computational cost that is, on average
O(1) per iteration. This is because at each iteration we will
consider some number, m say of curves – and this will result
in at least m− 1 curves being removed. As we only add one
curve per iteration, and a curve can only be removed once,
this limits the average number of curves to be considered per
iteration to be at most 2.

The other steps have a computational cost that is propor-
tional to the number of curves that are kept. Furthermore,
empirically, these step dominate the computational cost of the
algorithm. We can bound the expected cost of these steps with
the following result which bounds the number of curves that
are stored.

Theorem 4: Let x1, . . . , xn, . . . be a realization of an
independent Bernoulli process centred on θ0. Let the number
of functions stored by Ber-FOCuS for θ > θ0 at iteration n
be #I1:n. Then if there is no change prior to n

E(#I1:n) ≤ (log(n) + 1),

while if there is one change prior to n then

E(#I1:n) ≤ 2(log(n/2) + 1).

The proof of this theorem is found in Appendix A. By
symmetry, the theorem extends to values of θ < θ0. From the
theorem, we learn that, at each iteration, we expect to check
k = log(n)+ 1 curves in case a change has not occurred, and
k = 2 log(n/2) + 1 curves in the case where a change has
been occurred but is undetected.

IV. EMPIRICAL EVALUATION OF THE METHOD

A. Simulation study

We performed a simulation study to assess performances of
NP-FOCuS and other online changepoint procedures in a vari-
ety of scenarios, illustrated in Figure 6. Those scenarios were
chosen to benchmark procedures over a range of different chal-
lenges in online changepoint detection. Specifically, present
scenarios for Cauchy change-in-scale, Gaussian change-in-
mean, change-in-mode in a mixture of two Gaussian distri-
butions, change-in-mean in an Ornstein-Uhlenbeck process,
decay in a sinusoidal process with random noise, and a change-
in-tails scenario – we cover in details how to generate these
in the Supplementary Materials, Section B. All the scenarios
show i.i.d sequences with the exception of the OU process and
the Sinusoidal process. These two were added to account for
changes in scale and location in presence of strong temporal
dependency, a well-known challenge in changepoint detection
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Fig. 6: Example sequences from the six different scenarios
considered for the simulation study. Solid grey lines demarcate
a changepoint.

which is present in many real-world applications (see Romano
et al., 2023; Cho and Fryzlewicz, 2020; Hallgren et al., 2021).

We compare NP-FOCuS with the online non-parametric
procedure NUNC (Austin et al., 2023), the method from
Ross (2021), the NEWMA procedure with RFF (see Section
IV of Keriven et al., 2020) and the recent online kernel
CUSUM procedure from Wei and Xie (2022) with Gaussian
Kernel (that we call Wei-CUSUM). As with other methods,
Wei-CUSUM procedure assumes independent data. However,
whereas the other methods can be applied to non-independent
data by increasing the threshold for detecting a change, this
is impossible for such a procedure. In fact, in line with other
Kernel based online statistics, such as KCUSUM from Flynn
and Yoo (2019), if the data is serially dependent then the
contribution to the statistic for each new data point will on
average by positive even if there is no change – and thus
the method will be prone to false positives regardless of how
large the threshold for the test is chosen. Thus we exclude Wei-
CUSUM from the sinusoidal and OU scenarios. Lastly we add
to the comparison the FOCuS procedure for Gaussian change-
in-mean from Romano et al. (2023). A robust bi-weight loss
was employed in this case to account for the presence of
outliers in some scenarios.

Each experiment consisted of 100 replicates. Initial pa-
rameters were tuned according to Section II-F. Thresholds
were selected to achieve an average run length of 10, 000
observations. Other parameters – such as quantiles, the value
of the bi-weight loss parameter or the NEWMA bandwidth
– were obtained over a probation period consisting of the
first 100 observations (in Appendix C we study the effect
of the length of the probation on NP-FOCuS performances).
The NEWMA method involves monitoring the difference of
two exponentially weighted moving averages of features of
the data, and it can take a substantial number of observations
for this difference to stabilise. To account for this we only
start monitoring the NEWMA statistic after a burn-in period of
1000 observations to avoid false-positives whilst its statistics
stabilise. For Wei-CUSUM, we gave oracle knowledge of
the pre-change distribution, and tuned the scale parameter of
the Gaussian kernel based on the variance of the pre-change
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Fig. 7: Proportions of changes detected within t observations
following the change in six different change scenarios. The
change is denoted by the vertical dotted line at t = 1000.

distribution.
We measure performances in terms of detection delay on

sequences generated to have a change at τ = 1500. In Figure
7, we report the proportions of experiments where a change
was detected by time step t. Prior to the change, the lines show
the proportion of false positives, while following the change,
they show the number of true detections by a given time step:
the perfect online procedure would achieve a detection within
1 observation from the change in all sequences. Additionally,
we report results in terms of average detection delay and false
positive rate in Tables Ia and Ib.

We learn that, overall NP-FOCuS shows good performances
in terms of statistical power. In the Gaussian case, unsurpris-
ingly, the simple FOCuS with Gaussian loss has best perfor-
mances overall, immediately followed by NP-FOCuS. Addi-
tionally, we found that NEWMA achieves faster detections
both in the multimodal scenario, and in the Cauchy scenario,
immediately followed by NP-FOCuS and Wei-CUSUM with
similar performances. However, upon further testing, we no-
ticed that the performance of NEWMA tends to degrade if the
change occurs earlier, even if we use a shorter burn-in period
(see Appendix C for further details). Lastly, Kernel based
procedures such as Wei-CUSUM, in addition to requiring the
ability to sample from the pre-change distribution, are sensitive
to the choice of the kernel.

We find NP-FOCuS to be more robust to strong dependence
in the signal than other procedures. The most challenging
scenario for NP-FOCuS is the sinusoidal scenario, where
we start to consistently estimate the change with a delay
of 200 observations. This, as it can be seen from Figure 6,
corresponds to the point where there is a clear difference
in scale. In this scenario, for comparison, other methods are
either prone to false positives, or missed detections.

B. Monitoring Power Attenuation on Optical Lines

We now evaluate NP-FOCuS on a real-world application,
that of monitoring power attenuation on an optical commu-
nication line, a metric that is associated with the operational
performance of the line. We present in Figure 8 four examples
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scenario FOCuS Wei-CUSUM NEWMA NPFOCuS NUNC Ross
OUmean >1000 225.92 87.99 995.35 >1000
cauchy >1000 35.03 24.52 33.98 242.72 >1000
gauss 22.08 27.2 35.71 22.26 680.64 238.87
multim >1000 65.44 42.54 44.86 943.52 >1000
sinusoidal >1000 988.15 165.8 423.91 >1000
tails >1000 745.03 >1000 46.97 >1000 >1000

(a) Average detection delay. In bold, the best result by row.

scenario FOCuS Wei-CUSUM NEWMA NPFOCuS NUNC Ross
OUmean 0.00 0.01 0.00 0.00 0.00
cauchy 0.01 0.01 0.00 0.01 0.01 0.00
gauss 0.00 0.01 0.00 0.01 0.01 0.03
multim 0.00 0.02 0.01 0.03 0.01 0.02
sinusoidal 0.12 0.00 0.03 0.13 0.00
tails 0.02 0.01 0.00 0.00 0.02 0.00

(b) False positive rate.

TABLE I: Average detection delay and false positive rate across the various algorithms for all scenarios of our simulation
study.

of such a metric. Under normal circumstances, the power
attenuation should show a stationary behaviour over time,
as seen in 8a. Any change in distribution might therefore
be of interest to the engineers and be an object of further
investigation. Efficient techniques are required as there is a
need of monitoring a large number of instances over time.

Each time-series has recordings over 80 days. The time-
series were first classified by a domain expert into stationary
series, and series with a change that would want to be flagged
to an engineer. Thresholds were tuned over 85 non-changing
sequences to achieve a false positive rate of 0.01, as described
in Section II-F, with quantiles being trained over a probation
period of 2 weeks in each sequence.

We draw a comparison of NP-FOCuS stopping times with
both Gaussian FOCuS and NUNC. Threshold and other tuning
parameters were adjusted on the same NP-FOCuS training
instances to achieve comparable false positive rates. All 3
algorithms do not report a detection on the example without a
change. In the sequences with a change, NP-FOCuS reported
faster detection times. Overall, Gaussian FOCuS showed the
slowest detection delay, even for the example where the change
appears to be a change-in-location. This is attributable to the
fact that the training data is heavy-tailed, and as mentioned in
the example in the introduction this leads to slower detections
caused by over-inflated thresholds. Comparing the nonpara-
metric online procedures, NP-FOCuS and NUNC, they show
similar detection times in the b and d sequences, with NP-
FOCuS resulting in slightly faster detections. However, in
line with the previous numerical study, NUNC struggles in
detecting changes in the tails of a distribution.

V. REMARKS AND CONCLUSIONS

We presented a nonparametric approach for online change-
point detection. The procedure keeps track of the eCDF of
a data stream over a set of fixed quantiles. Keeping track of
which observations are above or below each quantile maps the
problem into a Bernoulli change-in-rate problem. We derived

a functional pruning sequential LR test to perform such a task
efficiently in almost linear time.

While we have provided theoretical guarantees about the
computational aspects of our procedure, we have not given
any results on the average run length or the expected detection
delay. Obtaining tight results is challenging for our approach
due to additional complexity of allowing for any post change
(and potentially pre-change) parameter, and due to combining
of information across different quantiles. For theoretical re-
sults for the related off-line changepoint procedure, including
showing that in the limit where we increase the number of
quantiles, we are able to have power to detect any change in
distribution, see Zou et al. (2014).

The only assumption required by the NP-FOCuS, that of
i.i.d. observations, can lead to a drop in performances when
dealing with time-dependent sequences. In presence of strong
dependence, to achieve comparable run lengths to the i.i.d.
case, thresholds are to be inflated, resulting in a slower
detection delay. An approach that can account for the time
dependence, such as those of Romano et al. (2021); Cho and
Fryzlewicz (2020), could be an avenue for further research.
Relying on fixed quantiles also means that the procedure
needs some training observations to understand the range of
the data. This can be a problem in particular when restarting
the procedure. If the quantiles are not known, in fact, those
are needed to be re-estimated at every detected change. This
means that no detection will be made for the entire duration of
the probation period. One simple solution would be to store a
rolling window of observations of the length of the probation
period. Then, as soon as a detection is made, the procedure
could be restarted with quantiles computed over those stored
observations.
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detection times of FOCuS for Gaussian change-in-mean (red), the presented procedure NP-FOCuS (green) and finally NUNC
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with changes in the behaviours of the tails, and finally in d an abrupt change-in-location.
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APPENDIX

A. Proofs

Proof of Proposition 3

For n = 0 the recursion follows trivially. For n > 0, at each
iteration, we can either have

Qn = max
θ

n∑
t=1

h(xt, θ)−max
θ

Qn(θ) =

= max
θ

n∑
t=1

h(xt, θ)−max
θ

n∑
t=1

h(xt, θ),
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if there is no change up to time n, or for a change at time
τ ∈ 1, . . . , n− 1:

Qn = max
θ

n∑
t=1

h(xt, θ)−max
θ

Qn(θ) =

= max
θ

n∑
t=1

h(xt, θ)−max
θ

[Qn−1(θ) + h(xn, θ)] =

= max
θ

n∑
t=1

h(xt, θ)−

max
θ

[
max
θ0

τ∑
t=1

h(xt, θ0) +

n−1∑
t=τ+1

h(xt, θ) + h(xn, θ)

]
.

□

Proof of Theorem 4

The proof follows almost exactly the one derived for
Theorem 3 in Romano et al. (2023). While they assume a
piecewise constant process plus i.i.d. noise from a continuous
distribution, we denote how this assumption can be relaxed
to include any exchangeable real-valued random process with
an additive cost function, such as our Bernoulli process. Their
proof relies on the following lemmas.

Lemma 5: For i ≤ j ≤ k

Ii:k ⊆ Ii:j ∪ Ij+1:k (12)

Lemma 6: The set of τ in Ii:j are the extreme points
of the largest convex minorant of the sequence Si:j =

{
∑i

t=i xt, . . . ,
∑j

t=i xt}.
We notice that if we write the cost of a segment with a

change at τ ∈ N as

qi:j,τ (θ0, θ1) =

τ∑
t=i

[xt log θ0 + (1− xt) log(1− θ0)] +

j∑
t=τ+1

[xt log θ1 + (1− xt) log(1− θ1)] ,

then for any τ, τ ′:

qi:j,τ (θ0, θ1)− qi:j,τ ′(θ0, θ1) =

=

τ ′∑
t=τ

[
xt log

(
θ1
θ0

)
+ (1− xt) log

(
1− θ1
1− θ0

)]
this does not depend on i and j. This allows us to extend
Lemmas 5 and 6 to the Bernoulli case.

And as both Andersen (1955) and Abramson (2012) assume
an exchangeable real-valued random variable, we can adapt
Lemma 7 of Romano et al. (2023) to the Bernoulli case:

Lemma 7: Assuming the xt follows an exchangeable real-
valued process ∀t ∈ i : j, then E(#Ii:j) =

∑j−i−1
1 1/(t+1).

Having shown that the three lemmas apply to the Bernoulli
case we can simply follow the proof from Romano et al.
(2023). □

B. Detailed Description of Simulation Scenarios

In this section we describe the simulation scenarios, detail-
ing the sampling for respectively the pre-change and post-
change distributions. The Cauchy change-in-scale was ob-
tained by sampling y1:τ from a Cauchy with location 0
and scale 1, i.e., y1:τ ∼ Cauchy(0, 1) and for post change
yτ+1:n ∼ Cauchy(0, 5). Following similar notation, the
Gaussian change-in-mean was obtained by y1:τ ∼ N(0, 1) and
yτ+1:n ∼ N(1, 1). The multimodal scenario was obtained by
sampling yt ∼ N(0, 1) with probability α and yt ∼ N(10, 1)
with probability (1 − α), for α = 2/3, t = 1, . . . , τ and for
α = 1/3, t = τ + 1, . . . , n after the change.

In the OU scenario, the data is generated by simulating
a discrete Ornstein-Uhlenbeck process (also known as mean-
reverting random walk) plus additional Gaussian noise. This
is yt = νt + ϵt, where ϵt ∼ N(0, σ2

ϵ ) is a white noise process
and νt is an autoregressive process defined by the recursion
νt = νt−1 − θft−1 − θνt−1 + σνwt−1, where θ = 0.1, wt ∼
N(0, σ2

η). The sequence ft is added to encode a shift in the
mean of the Ornstein-Uhlenbeck process: for t = 1, . . . , τ ,
ft = 0, and for t = τ + 1, . . . , n, ft = −10.

The sinusoidal scenario is generated by sampling yt ∼
N(µt, 1) for t = 1, . . . , n. The mean µt is given by the
function µt = sin(πft), where f = 0.2 is the frequency of
the sinusoidal function. From the changepoint τ , the mean
starts to decrease exponentially with rate λ = 0.005, i.e. for
t = τ + 1, . . . , n, µt = A sin(πft) exp(−λt).

Finally, the change in tails scenario is generated by sampling
yt ∼ tν for t = 1, . . . , n, where tν is a Student’s t-
distribution with ν degrees of freedom. After the changepoint,
for t = τ + 1, . . . , n, we randomly selected a 5th of the
observations and increase by a random amount drawn from
a Poisson distribution with mean 10.

C. Additional Simulation Results

In Section 5 we have commented on the choice of M ,
the number of quantiles. As for the quantile points, when
those cannot be provided directly by the practitioners, those
needs to be estimated through a probation period. We therefore
performed a simulation study to see the effect of the probation
period (amount of training observations) for the quantile
estimation on the performances of NP-FOCuS. As in the main
study, we present detection delay and false positive rate in
Tables IIa and IIb. We found that, in general, even as little
as 100 observations are enough for estimating the quantiles.
In many cases the length of the probation period has marginal
impact on the performances. The major differences are seen on
the sinusoidal scenario, where 25 and 50 observations are not
enough to capture the full domain of the distribution, resulting
in significantly more false positives or slower detections.

To see how the methods deal with an earlier change, we
replicate the study of Section IV-A, but we shift the change
at time τ = 800. Results are summarised in Figure 9. We
denote how there is a significant drop in performances in
NEWMA across all simulations scenarios. This is particularly
evident in the Cauchy and multimodal scenario. The reduction
in detection power is attributable to a smaller number of
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scenario 25 50 100 150 200
OUmean 102.97 94.29 87.99 78.46 80.71
cauchy 46.19 46.45 33.98 34.47 43.82
gauss 29.57 28.3 22.26 27.4 26.58
multim 71.6 61.24 44.86 55.9 60.88
sinusoidal 154.68 252.3 165.8 140.92 130.61
tails 36.55 55.85 46.97 49.33 44.4

(a) Detection delay

scenario 25 50 100 150 200
OUmean 0 0 0 0.01 0.01
cauchy 0 0 0.01 0.01 0
gauss 0 0 0.01 0 0
multim 0.01 0.01 0.03 0.02 0.01
sinusoidal 0.08 0.03 0.03 0.04 0.05
tails 0.02 0 0 0 0

(b) False positive rate

TABLE II: Average detection delay and false positive rate for all scenarios of our simulation study over a range of different
probation periods.
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Fig. 9: Proportions of changes detected within t observations
following the change in six different change scenarios. The
change is denoted by the vertical dotted line at t = 800.

random features, in order to stabilise the statistics faster and
achieve shorter burn-in periods. This result is in line with what
observed in Section VI-B of Keriven et al. (2020).
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