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Abstract 

Non-stationary methods of flood frequency analysis are widespread in research but rarely implemented by practitioners. One 

reason may be that research papers on non-stationary statistical models tend to focus on model fitting rather than extracting 

the sort of results needed by designers and decision makers. It can be difficult to extract useful results from non-stationary 15 

models that include stochastic covariates for which the value in any future year is unknown.  

We explore the motivation for including such covariates, whether on their own or in addition to a covariate based on time. We 

set out a method for expressing the results of non-stationary models as an integrated flow estimate, which removes the 

dependence on the covariates. This can be defined either for a particular year or over a longer period of time. The methods are 

illustrated by application to a set of 375 river gauges across England and Wales. We find annual rainfall to be a useful covariate 20 

at many gauges, sometimes in conjunction with a time-based covariate.  

For estimating flood frequency in future conditions, we advocate exploring hybrid approaches that combine the best attributes 

of non-stationary statistical models and simulation models that can represent changes in climate and river catchments. 
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Highlights: 30 

1. We explore why and how to include physical variables as covariates in statistical models of flood frequency. 

2. We develop and illustrate methods for extracting flow estimates from such models so that practitioners can obtain 

useful results.  

3. Practitioners now have tools and guidance to apply non-stationary methods for flood management in England. 
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Introduction 35 

As the impacts of environmental change become increasingly evident in time series, non-stationary methods of frequency 

analysis have become widespread in research. Examples include analysis of rainfall frequency, extreme sea levels and fluvial 

flood frequency, the primary focus of this paper. 

Application of non-stationary methods by practitioners involved in engineering and environmental management is much more 

limited. We surveyed practitioners and flood management authorities in seven countries, asking whether their currently 40 

recommended methods of flood and/or rainfall frequency estimation accounted for non-stationarity over the period of 

measurements (Luxford and Faulkner, 2020). Apart from methods that account for sea level rise, non-stationary methods of 

flood frequency estimation were not mandated by flood management authorities or generally used by practitioners in the USA, 

Canada, Australia, the Netherlands, Germany or (until 2020) the UK. The only example that we found of them being used by 

practitioners before 2020 was in Switzerland, where the Federal Office for the Environment has fitted a range of non-stationary 45 

models to peak flow data from many catchments (BAFU, 2017).  

There are many possible reasons why the large body of research on non-stationary methods is not much implemented in 

practice. François et al. (2019) suggest these include the proliferation of approaches and the challenges of diagnosing and 

modelling drivers and effects of change.  Here we focus on another barrier to implementation: the difficulty in extracting useful 

results from some non-stationary statistical models of flood frequency. Research papers tend to focus on fitting non-stationary 50 

statistical models rather than extracting the sort of results needed by designers and decision makers (Schlef et al., 2023). There 

is a particular difficulty in extracting results from models that use stochastic physical variables as covariates. This difficulty is 

well illustrated in a paper by Hesarkazzazi et al. (2021) who present results from non-stationary models of flood frequency in 

north-west England that show are conditional on the accumulated rainfall during the year. Results such as these cannot be 

directly used in flood risk management, because every year the rainfall will be different. The authors identified a need for 55 

further research into defining a frequency distribution for the covariates when introducing an extra stochastic component into 

a model. Similar comments apply to papers by Šraj et al. (2016) and Chen, Papadikis et al. (2021). 
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The motivation for including physical covariates is worth exploring further. The most common approach to non-stationary 60 

flood frequency estimation is to model the non-stationarity only as a function of time (Hesarkazzazi et al., 2021). However, 

many authors include physical quantities as covariates, such as annual rainfall (Sraj, 2016; Yan et al., 2017; Hesarkazzazi et 

al., 2021; Chen, Papadikis et al., 2021), extreme rainfall (Prosdocimi et al., 2014), temperature (Hesarkazzazi et al., 2021; 

Wasko, 2021), urban extent (Prosdocimi et al., 2015) or climatic indices such as the North Atlantic Oscillation (NAO) or East 

Atlantic pattern (EA) (Steirou et al., 2019). 65 

One of two reasons is typically given for using physically-based covariates: 

A. They help remove some of the year-to-year variability in maximum flows, enabling better identification of time-based 

trends and better fit of the distribution (Prosdocimi et al., 2014; Hesarkazzazi et al., 2021). 

B. They provide a more physically meaningful model of non-stationarity, since time of itself has no physical influence 

on flooding (Chen, Papadikis et al., 2021). As a covariate, time is merely a substitute for some physical quantity that 70 

is influencing floods. Some physical covariates may open up the prospect of predicting the future evolution of the 

flood frequency curve (Sraj et al., 2016). 

Reason A leads to models that include both time and physical quantities as covariates. One important consideration is the effect 

of collinearity and confounding variables on results. The greater the dependence between covariates then the harder it is to 

interpret the regression coefficients. When time is one of the covariates, collinearity can be avoided by detrending the physical 75 

covariates before inclusion in the statistical model. The time covariate will then represent the presence of any temporal trend 

in the flood peak series. 

Reason B tends to lead to an approach in which the physical variables replace time as a covariate. To model temporal trends 

in flood series it is then necessary to include at least one physical covariate in the model which exhibits a time trend. If this 

approach is to be used to understand future changes in flood risk, there is a need to model the trend in that covariate. The hope 80 

is that a covariate can be found for which the trend is easier to model than that in the flood series, perhaps because it has less 

variability and more predictability into the future. An example might be the extent of urbanisation in a catchment, which can 

be typically expected to show a monotonic increase over time and can be reasonably predicted into the future under a range of 

scenarios.  

Moved down [1]: There is also a need to quantify the uncertainty 85 
associated with the results of non-stationary models, which can be 
expected to be larger than the uncertainty of stationary estimates of 
flood frequency (Serinaldi and Kilsby, 2015).¶
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A risk associated with the application of this second approach is the confusion of correlation for causation. As discussed in the 

next section, even apparently plausible physical covariates do not necessarily give a full explanation of trends. This can lead 

to a false sense of confidence about our ability to estimate the future evolution of the flood frequency curve: we might end up 

with a covariate for which we can confidently predict future values, but which is no more useful than the date as a way of 

explaining observed trends in flood magnitudes.  95 

This potential for misinterpretation has led some authors to criticise the move to non-stationary frequency modelling, or to 

express caution. The arguments are summarised in Faulkner et al. (2019).  

There is also a need to quantify the uncertainty associated with the results of non-stationary models, which can be expected to 

be larger than the uncertainty of stationary estimates of flood frequency (Serinaldi and Kilsby, 2015). 

Another challenge in implementing non-stationary models in practice is the difficulty of representing future conditions.  Schlef 100 

et al. (2020) provide a classification of approaches for projecting future flood hazards, including trend-informed, climate-

informed and hydrological simulation. Trend-informed refers to non-stationary statistical models with time as the only 

covariate. It is difficult to justify using such models to predict future trends. Both the climate-informed and hydrological 

simulation approaches make use of projections from physics-based climate models. The climate-informed approach uses these 

projections in non-stationary statistical models with climatic covariates. Hydrological simulation is the conventional approach 105 

using rainfall-runoff modelling with projected climate inputs, typically carrying out flood frequency analysis for quasi-

stationary subdivisions of the climate model output (Schlef et al., 2023).  

One argument in favour of the climate-informed approach is that it can use climatic variables related to large-scale oceanic-

atmospheric patterns, such as mean annual temperature or rainfall, that global and regional climate models can predict more 

accurately than local short-duration rainfall intensity (e.g. Sraj et al., 2016, Schlef et al., 2020). Wasko (2021) suggests 110 

estimating future flood frequency using non-stationary models with climatic covariates projected using global climate models 

and the covariates being attributed to observed changes. One such suggested covariate is the product of monthly temperature 

and monthly rainfall (Towler et al., 2010). 

On the other hand, even with physically plausible covariates, climate-informed statistical models cannot distinguish correlation 

from causation (Slater et al., 2021a). Such covariates may not necessarily be the sole or main driving mechanism for floods in 115 
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a particular catchment, but if the covariate is increasing along with the floods, there may be a correlation. For example, although 

climate change is expected to affect annual rainfall, a common covariate, it can also be expected to influence other factors that 

control flood magnitudes such as storm tracks, rainfall intensity and evapotranspiration (which influences soil moisture). These 120 

effects cannot all easily be represented by the relatively simple covariates used in the climate-informed approach. Hence, it is 

necessary to demonstrate a mechanistic link between the covariate(s) and flood magnitudes (Wasko et al., 2021).  

Some similar arguments can be made against the current generation of the hydrological simulation approach. For example, the 

effects of climate change on storm intensity are not represented in the hydrological simulations that were used to derive current 

guidance on the impacts of climate change on peak river flows in England. Kay et al. (2021) used changes in monthly rainfall 125 

and potential evaporation, running simulation models at a daily time step and assuming that daily rainfall scales with the 

change in monthly rainfall. Since most catchments in England have a critical storm duration of hours up to a few days, changes 

in monthly rainfall may not be well representative of the intensification of flood-producing rainfall on most rivers. 

The hydrological simulation approach can lead to derivation of change factors which practitioners can apply to estimates of 

flood frequency made for a baseline period. For example, in England, change factors vary with river basin, with epoch (2020s, 130 

2050s or 2080s) and are provided for a range of percentiles which express some of the uncertainty in the climate projections 

(Environment Agency, 2021). One difficulty with this approach is that it tends to assume a stationary baseline period, i.e. 

climate change is treated as a purely future phenomenon. This assumption is difficult to reconcile with the provision of change 

factors that show (mainly) increases in peak flows for the present epoch, the 2020s, in comparison with an earlier baseline 

period.  135 

In the discussion (section 6) we make some suggestions for reconciling the two approaches to estimating future flood 

frequency. 

In the Methods section we first outline the types of non-stationary models of flood frequency and how they were fitted. We 

then set out ways of applying such models that can provide the type of information needed by practitioners . We illustrate these 

new approaches with an application in England and Wales. The remaining sections present the results from this application, 140 

discuss our findings, draw conclusions and point to future steps.  

Deleted: Paper structure and background¶
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The research originated within a project funded by the Environment Agency in England that produced methods, tools and 

guidance to equip practitioners to carry out non-stationary analysis of fluvial flood frequency (Faulkner et al., 2020), although 

the analysis and results presented here include additional model types and findings. 145 

Methods 

Non-stationary flood frequency models including physical covariates 

The method described here is based on fitting frequency distributions to annual maximum river flows. All results shown here 

are for the Generalised Extreme Value (GEV) distribution. It is fitted using maximum likelihood estimation (MLE). 

The GEV distribution function is of the form 150 

𝐹(𝑥) = 𝑒𝑥𝑝 (− *1 + 𝜉 .
!"#
$ /0%

"&/(

1                                                                          (1) 

where 𝜇 is the location parameter, 𝜎 is the scale parameter, ξ is the shape parameter, ξ	 ≠ 	0 and 𝜎	 > 	0.  

For the sake of simplicity, it was assumed that µ and log	σ vary linearly with covariates, with ξ modelled as a constant. For a 

vector of covariates 𝑥: 

µ(𝑥) = µ) + µ&𝑥& 	+ µ*𝑥* +⋯          (2) 155 

σ(𝑥) = exp(𝜙) + 𝜙&𝑥& +	𝜙*𝑥* +⋯).             (3) 

Thus for a non-stationary fit there are two or more elements of the location parameter to estimate, a constant component µ) 

and µ&, µ*, etc. which represent the influence of the covariates on the parameter, and the same for the scale parameter. 

Physical covariates were included in candidate non-stationary models in accordance with the following:  

• Up to two covariates per model, with a maximum of one being a physical covariate. Collinearity between the physical 160 

covariates was a reason to avoid combining them, as was a need to keep the number of candidate models manageable. 

For other applications in which covariates describing catchment land cover are combined with climatic covariates, it 

may be reasonable to allow combinations of physical covariates. 

• Covariates were considered for modelling either or both of the location and scale parameters.  
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• Models with different physical covariates for the location and scale parameters were not allowed, given the theoretical 165 

way these two parameters link to the properties of the underlying distribution of the hourly river flow data. 

The candidate models included: 

(1) a stationary version,  

(2) versions with just time as a covariate,  

(3a) versions with just one detrended physical covariate,  170 

(3b) versions with just one physical covariate as measured (without detrending), and  

(4) versions with both time and a linearly detrended physical variable.  

At gauges where version 3a fits best, it can be inferred that flood magnitude is statistically associated with the value of the 

(detrended) physical covariate, without any temporal non-stationarity. This can be regarded as a stepping stone to aid 

understanding, rather than an end in itself, because there is no need to detrend the physical covariate if it is not being combined 175 

with time as a covariate. It would seem odd if year-to-year variations were captured by a detrended physical covariate without 

the longer-term changes in that covariate (before detrending) also being important. The value of version (3a) is that it can help 

to disentangle the effect of any long-term trend from shorter-term cycles or fluctuations in the physical covariates. Comparing 

the various models helps us to assess if it is the specifics of the physical covariate or simply that it is maybe approximately 

linear over time which is causing the physical covariate to appear statistically significant. For example, if version (3b) performs 180 

better than (4) then this may indicate that the same physical covariate is capturing both inter-annual variations and a longer-

term trend.  

The best-fitting model was initially judged by the lowest Bayesian Information Criterion (BIC). Before results were extracted 

from the models, any gauges where a version of model 3a had the lowest BIC were reallocated with the version 3b model that 

had the lowest BIC.  185 

Extracting results from non-stationary flood frequency models 

Concepts such as return period or annual exceedance probability (AEP) become unwieldy in a non-stationary setting, and 

various alternative definitions and measures of probability have been proposed. We use the concept of the encounter 
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probability, which is the probability of an event occurring over a defined number of years, such as the expected design life of 190 

a flood defence scheme. It is equivalent to the design life level, proposed by Rootzén and Katz (2013). 

Flood frequency estimates from a non-stationary distribution may change over time and may also depend on any physical 

covariates. For instance, if the only covariate is annual rainfall, then the flow with a specified annual exceedance probability 

(AEP) given 1000mm of rainfall is the flow expected to occur with that AEP under the (clearly hypothetical) conditions that 

the annual rainfall is always 1000mm. We refer to this quantity as the conditional flow estimate. 195 

The conditional flow estimate may be useful when examining the probability of past floods, but it is less informative for design 

and planning for present-day or future floods. We introduce the term integrated flow estimate, which removes the dependence 

on a particular value of the covariates. It is defined as the return level corresponding to the encounter probability averaged 

over covariates in a period of interest. The calculation method is set out below. The concept was introduced by Eastoe and 

Tawn (2009), who refer to it as the marginal return level. This paper describes the first application of the concept of the 200 

marginal return level to flood frequency analysis, following a suggestion by Faulkner et al. (2019).  

This section sets out methods for calculating both conditional and integrated flow estimates, in each case for a non-exceedance 

probability value of p.  

Let 𝐹(𝑦|𝑥; 𝜃) be the conditional distribution function of annual maximum flow, where 𝑥 is a vector of covariate 

values for the year in which the annual maximum is considered, and 𝜃	is the vector of parameters of the distribution, 205 

including the coefficients that relate the distribution parameters to the covariates. 

Let 𝑦+(𝑥) be the conditional flow estimate for probability p (the conditional pth quantile), i.e. conditional on a 

particular set of values 𝑥 for the covariates. 

Let 𝐹(𝑦; 𝜃) be the distribution function for annual maximum flow in the period of interest (e.g. current or future time 

window typically exceeding a year in duration – such as over a design lifetime), where 𝜃 is the vector of parameters 210 

of the distribution. This distribution function does not depend on the covariate values of the particular year in which 

the annual maximum occurs but incorporates the distribution of the covariates over the period of interest. 

Let 𝑦+ be the integrated flow estimate for probability p (the marginal pth quantile). 

Deleted: For instance, if the covariate is annual rainfall, then the 
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Let 𝑓(𝑥) be the joint density function of the covariates for the time period of interest, so this distribution could change 

depending on whether the period of interest is the current or a future time window. 

Let Φ be the domain of the covariates. 220 

𝐹(𝑦; 𝜃) can be obtained from the conditional distribution function 𝐹(𝑦|𝑥; 𝜃) by integrating out the covariates: 

𝐹(𝑦; 𝜃) = 	∫ 	𝐹(𝑦|𝑥; 𝜃)	𝑓(𝑥)	𝑑𝑥, .	                                                        (4)                      

The integrated flow estimate for the period of interest is then 𝑦+, which is such that 𝐹I𝑦+; 𝜃J = 𝑝.	

The integrated flow estimate for a year in the period of interest is obtained by inverting the distribution function: 𝑦+ =

𝐹"&(𝑝; 	𝜃). This needs to be solved numerically. 225 

In practice, the parameters 𝜃 of this distribution are not known, nor is the true density 𝑓(𝑥) of the covariates, so to get an 

integrated flow estimate, they need to be replaced with estimates in Equation 4. Here, 𝜃 is estimated by 𝜃K, the maximum 

likelihood estimate of the parameters, and the joint density of the covariates 𝑓(𝑥) needs to be replaced by some estimate 𝑓L(𝑥), 

for example, the empirical density of the data or a kernel density estimate, which smooths the empirical estimate (Silverman, 

1998). The data used to construct this kernel density estimate depends on the period of interest.  230 

The integrated flow estimate for probability p, 𝑦M+, is found from 	𝑦M+ 	= 𝐹K"&(𝑝;	𝜃K).  

Similarly, the conditional flow estimate for probability p is obtained from 𝑦M+(𝑥) 	= 𝐹K"&(𝑝|𝑥; 𝜃K). 

The integrated flow estimate should be understood as applying over a period rather than instantaneously. This is a useful 

concept for planning investment decisions in flood risk management.  

If the covariates include both time and physical variables, it is possible to calculate an integrated flow estimate by averaging 235 

the probabilities corresponding to the observed physical covariate values, but setting the time covariate to a single value, such 

as the final year of record. This gives what we term a single-year integrated flow estimate. If the river flow record runs up 

to the present day, this estimate is representative of the flow expected to be exceeded with a given probability under current 

conditions, without being conditional on any particular value of a covariate. The single-year integrated flow estimate can be 

more easily compared with alternative estimates such as those from a model that uses only time as a covariate. 240 

A method for calculating confidence limits of the estimates is presented in Faulkner et al. (2020).  
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Application in England and Wales 

Dataset and screening 

The method described above was applied to annual maximum flow series at a set of 375 river gauging stations in England and 

Wales. The dataset was screened to eliminate gauges where apparent non-stationarity might arise from changes in the flow 245 

measurement method or the local hydraulics. Details of the screening and of the final dataset are given in Faulkner et al. (2020), 

which also presents the findings of non-parametric testing for trends and change points. These are not included here since our 

focus is on parametric models of flood frequency and in particular the role of physical covariates.  

The range of record lengths was from 27 to 134 years, with a median of 48 years. Data used for model fitting were restricted 

to the period 1950 onwards, the start year of the atmospheric circulation index datasets used. 250 

Choice of physical covariates 

The following seven variables were selected as trial physical covariates:  

• Catchment-average rainfall, calculated over the water year (October to September), the autumn and the winter 

seasons.  

• North Atlantic Oscillation (NAO) index, averaged over the winter, summer and autumn. 255 

• East Atlantic pattern (EA) index, averaged over the winter. 

Although some studies have used indices of extreme rainfall as covariates (e.g. Chen, Papadikis et al., 2021), we excluded 

them to avoid shifting the problem into estimating the frequency distribution of an extreme value elsewhere in the hydrological 

cycle. We also considered only covariates that are expected to be significant across many catchments in preference to those 

that represent locally specific effects such as urbanisation or changes in forest cover.  260 

Rainfall accumulations were calculated from the CEH-GEAR dataset which provides daily rainfall on a 1km grid across the 

UK from 1890 (Tanguy et al., 2016). NAO and EA indices were obtained from NOAA (2019). Covariates were centred and 

scaled, subtracting the mean from each observation and dividing the result by the standard deviation.  

Formatted: Font: Bold

Deleted:  (Faulkner et al., 2020). 

Deleted: All five versions of the non-stationary GEV models 265 
described earlier were fitted at each gauging station, with every 
possible combination of the covariates. This resulted in 109 candidate 
models for each gauging station, which were then compared. The 
calculations used the R package nonstat (Warren and Longfield, 
2020).¶270 



12 
 

Trends in physical covariates 

All covariates were significance tested for trend using the Mann-Kendall trend test, which is recommended for trend detection 

by the World Meteorological Organisation (2009). It is a non-parametric test which is based on the ranks of the data. A full 

description is given by World Meteorological Organisation (2009). The test  was applied over the specific period of record of 

each individual gauging station. Table 1 summarises the significance of the trends. A large majority of stations show no 275 

evidence of significant trends in annual, autumn or winter rainfall over their catchment, at the 5% significance level. At 13% 

of stations, mostly in the north of England, there is a positive trend in annual rainfall, at the 5% significance level.  Trends in 

the climatic indices NAO and EA depend entirely on the period of record covered by the gauging station, since the magnitude 

of these indices does not vary spatially. A positive trend in winter NAO is common for gauges with records starting in the 

1950s-60s. Most stations apart from those starting before 1955 correspond with a period of (weaker) negative trend in the 280 

summer NAO. 

 

Table 1: Summary of covariate trend test results at the 5% significance level 

Covariate 

% of stations with 
null hypothesis 
(not trend) not 
rejected 

% with null hypothesis 
rejected and positive 
trend 

% with null hypothesis 
rejected and negative 
trend 

Water year rainfall 87% 13% 0% 
Autumn rainfall 100% 0% 0% 
Winter rainfall 93% 7% 0% 
Winter NAO 43% 57% 0% 
Summer NAO 10% 0% 90% 
Autumn NAO 100% 0% 0% 
Winter EA 25% 75% 0% 

 

Model fitting 285 

At each gauging station all five versions of the GEV models described in section 2 were fitted, i.e. one stationary model, one 

with time as a covariate and three versions with various implementations of physical covariates, some in conjunction with 

time. For these latter three, each of the seven physical covariates was tested. Covariates were applied to either or both of the 

location and scale parameters. 
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This resulted in 109 candidate models for each gauging station, which were then compared. The calculations used the R 295 

package nonstat (Warren and Longfield, 2020). 

Results 

In presenting the results, we start by asking how much improvement in fit results from adding physical covariates to models 

versus modelling non-stationarity only as a function of time. We examine which model versions are preferred most often across 

England and Wales and investigate any geographical patterns or relationships with catchment properties. We then move on to 300 

ask which physical covariates appear in the preferred models, and again whether there are geographical patterns in this aspect 

of the results. Finally we present flow estimates extracted from the preferred models, first at two example sites and then a 

comparison at the national scale between the preferred models and  stationary models, including an assessment of confidence 

intervals. 

Preferred model versions 305 

Figure 1 compares the BIC of the best fitting non-stationary model at each station with the stationary model, and Table 2 

records the proportion of gauges with the lowest BIC for each model type.  
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Figure 1: Boxplots showing the distribution of the BIC improvement between the best-fitting model of each version and the 310 

stationary model 

 

Table 2: Proportions of model versions preferred across the dataset 

Model 
version 

(1) 
Stationary: 
No 
covariates  

(2) Non-
stationary: 
time the 
only 
covariate 

(3a) Temporally 
stationary with 
detrended physical 
covariates 
(subsequently 
replaced with 3b) 

(3b) Non-
stationary: 
measured 
physical 
covariates 

(4) Non-
stationary: time 
and detrended 
physical 
covariates 

% of gauges 2% 1% 26% 48% 24% 
 

The results show that physical covariates (versions 3 and 4) give an improvement in fit over the stationary model at 97% of 315 

gauges. A large majority of these (74% of all gauges) were version (3): models without time as a covariate. In contrast, at most 

gauges, version (2) models with time as the only covariate give a slightly worse fit than the stationary model. There are some 

exceptions where version (2) models give a substantial improvement in fit. It is clear that physical covariates are adding useful 

information in nearly all cases. The increase in model complexity is outweighed by the increase in goodness of fit. 

These findings indicate that regressing against covariates which aim to pick up only linear trends ignores more statistically 320 

important additional sources of inter-annual variation. Even when linear trends are removed from covariates (model 3a), there 

is a near-universal improvement in model fit compared with the stationary model. This is an important finding which hints at 

a causal relationship between the physical covariates and flood flows.  

Figure 1 shows little difference in the fit of model versions (3a), (3b) and (4), although (3b) more commonly has the lowest 

BIC (Table 1). If the selection of models is limited to only (3b) and (4), at 64% of gauges (3b) fits better than (4). This is as 325 

expected, indicating that the linear trends captured by the time covariate included in (4) can often be sufficiently represented 

by progressive changes in a physical covariate.  (3b) has an advantage of simplicity over (4), which has more covariates.  

Out of versions (3a) and (3b), (3b) shows the better fit at 71% of gauges. Again, this is expected to be the case, given the 

tendency for most gauges to show some progressive trend in annual maximum flow, which (3b) is more likely to be able to 

capture than the de-trended physical covariate used in (3a).  330 
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We  examined the results for any differences in the physical characteristics of the catchments for the groups of gauges at which 

each model type fits best. Comparing versions 3(a or b) and 4, a two-sided Student’s t-test found no significant differences, at 

a 5% significance level, in the mean of any of the characteristics tested: catchment area, mean gradient, mean annual rainfall, 

soil type, urban extent, influence of lakes and extent of floodplains. It appears that there is no consistent physical difference 335 

between catchments for which non-stationarity can be modelled using the chosen physical covariates and those for which an 

additional unknown covariate (represented by water year) adds useful information to the model. Neither is there any clear 

difference in the locations of these two groups of catchments (Figure 2).  

All the following discussion considers results only from the preferred model at each gauge. As mentioned earlier, gauges where 

a version of model 3a had the lowest BIC were reallocated with the version 3b model that had the lowest BIC. 340 

Preferred physical covariates 

When physical covariates are selected, the annual rainfall is by some way the most common choice (Table 3). It is included as 

a covariate for the location parameter at 66% of all gauges, and for the scale parameter at 22% of all gauges (the scale is 

modelled as constant, with no covariate, at most gauges). In some cases, annual rainfall is included alongside time as a 

covariate, and in others it is the sole covariate. 345 

 

Table 3: Most commonly selected covariates  

Covariates for the location parameter Covariates for the scale parameter 
Rank Covariate % of 

gauges 
where 
chosen 

Rank Covariate % of 
gauges 
where 
chosen 

1 Annual rain 66 1 None (i.e. parameter is 
constant) 

62 

2 Winter rain 22 2 Annual rain 22 
3 Time 15 3 Time 13 
4 Autumn rain 5 4 Winter rain 4 
Note: Percentages in the columns can add up to more than 100, because models can include both time 
and a physical covariate together. 
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The second most useful physical covariate was the winter rainfall, chosen at 22% of gauges for the location parameter and 4% 

for the scale parameter. 

 

 

Figure 2: Preferred model version and type of covariate chosen at each gauge  355 

 

Figure 2 shows that, while the annual rainfall is widespread as a preferred physical covariate across the country, the winter 

rainfall tends to be preferred in some parts of southern England. There appears to be some correspondence between these 
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gauging stations and the locations of chalk outcrops, which are concentrated in central southern England and along a band 

running from there north-east into East Anglia. The correspondence is consistent with the results on Figure 3(a) which shows 360 

that catchments with winter rainfall as a covariate tend to have a higher baseflow index, indicating a more groundwater-

dominated flow regime. This makes sense physically: flood flows on groundwater-dominated catchments are expected to be 

strongly linked with the level of the water table, which is determined mainly by the volume of winter recharge. On chalk 

catchments, rainfall outside the winter recharge season may be lost due to evaporative demands and so have little impact on 

flood flows.  365 

  

Figure 3: Boxplots showing the distribution of (a) baseflow index and (b) catchment rainfall for catchments classified by the physical 

covariate included in the preferred model. Rain_DJF is winter rainfall, Rain_SON is autumn rainfall and Rain_WY is water year 

rainfall. 

 370 

There is also an association between choice of physical covariate and the average annual rainfall of the catchment (Figure 

3(b)). For example, where covariates other than annual, winter or autumn rainfall are preferred, this tends to be on catchments 

with high rainfall.  Deleted: This is consistent with findings by Chen, Papadikis et al. 
(2021) that annual rainfall tends to be the best covariate in lowland 375 
areas of England, whereas elsewhere in the UK catchments tend to be 
dominated by low permeability bedrock and so are sensitive to high 
intensity rainfall.
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Role of time as a covariate 

When the water year is included as a covariate, the sign of its regression coefficient indicates the effect that it is having on the 380 

estimated flows. In most cases (83%), the coefficient on the location parameter is positive, so the magnitudes of flood flows 

are modelled as increasing over time. For the scale parameter the picture is more mixed: the coefficient is positive in 58% of 

cases. At these stations, the variability of flood flows is modelled as increasing over time. 

Example results from non-stationary models 

Example results for two stations in north-east England are shown in Figure 4. It is common to present results of non-stationary 385 

models as a time series, but this is less appropriate for models with physical covariates. Instead the results are shown in the 

probability domain, as integrated flow estimates for a range of encounter probabilities evaluated over the length of each gauged 

record. The magnitudes of the recorded annual maximum floods are marked on the y axis. 

  

 390 
Figure 4: Examples of integrated flow estimates compared with stationary estimates for (a) the Leven at Leven Bridge, with 48 years 
of record and (b) the Bedburn Beck at Bedburn, with 58 years of record 
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The covariates for the preferred model at Leven Bridge (Fig. 4a) are water year and annual rainfall for the location parameter, 

with the scale parameter modelled as constant. There is an upward trend in the location parameter. The non-stationary flow 395 

estimates are distinctly higher than the stationary, especially for low probabilities. They also have much wider confidence 

limits. The highest flood on record, 125m3/s, is associated with an encounter probability over the 48-year record length of 38% 

according to the stationary results and just under 80% according to the non-stationary results. 

The results at Bedburn (Fig. 4b) are quite different. The covariates here are water year and Autumn NAO for the location and 

water year for the scale, with a strong upward trend for both parameters. The physical covariate appears to add little to the 400 

quality of model fit, since the model with only water year achieves a similar BIC.  For this catchment the non-stationarity is 

thought to be due mainly to changes in land cover, specifically afforestation and felling. For all except low probabilities, the 

non-stationary estimates are lower, and with narrower confidence limits, than the stationary.  Findings of this type are to be 

anticipated as the inclusion of covariates reduces variation which the stationary model takes as implying that the data have a 

heavier tail (Carter and Challenor, 1981). 405 

At both stations, the non-stationary estimates lie within the 90% confidence interval of the stationary results. 

Results at a national scale 

Widening the focus to a national scale, we compare the flow estimates from the preferred model at each gauge with those from 

the stationary model, for three specified annual exceedance probabilities: 50%, 10% and 1% (Figure 5). Where the preferred 

model includes time as a covariate, the single-year integrated flow estimates has been extracted, for the most recent year in the 410 

period of record (the year 2016, at 93% of gauges) to provide a near present-day estimate. Where the preferred non-stationary 

model includes physical covariates only, the integrated flow estimate has been extracted for comparison.  
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Figure 5: Box and whisker plot showing ratios of integrated or single-year integrated flow estimates from preferred model (if non-

stationary) to estimate from stationary model. Results are all representative of the most recent year of record. 415 

 

For all three AEPs shown in Figure 5, the median ratio of flow estimated from the preferred model (where it is non-stationary) 

to the flow from the stationary model is close to 1. The ratios can, however, be much larger, particularly for the 1% AEP 

(typically used as a standard for spatial planning in England). At one gauge the non-stationary flow estimate is nearly seven 

times larger than the stationary estimate. This particular example is due to poor estimation of the shape parameter at a short 420 

record (33 years). It is also possible that flow estimates from the preferred non-stationary models can be smaller than stationary 

estimates, with the minimum ratio for the 1% AEP being 0.54.  

At most stations the flow estimates from the preferred model fall within the 90% confidence interval of the stationary estimates.  

This is the case at 77% of stations for an AEP of 50% and at 87% of stations for the 1% AEP. At most of the other stations the 

non-stationary estimates lie above the 90% confidence interval of the stationary. Likewise, at most stations the estimates from 425 
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the stationary model fall within the (typically wider) 90% confidence interval of the non-stationary estimates. This is the case 

at 82% of stations for AEP 50% and at 90% of stations for AEP 1%. 

Discussion  

Model fitting and selection 

One reason why the non-stationary models occasionally give results much larger than the stationary may be poor estimation 440 

of the shape parameter, particularly at sites with a shorter record. At all four stations where the non-stationary estimate at the 

1% AEP is more than twice the stationary estimate, the shape parameter is modelled as non-stationary. Estimation of the shape 

parameter could be improved by adding a penalty to the likelihood function to constrain the range of shape parameters such as 

the “geophysical prior” of Martins and Stedinger, 2000. Although this was attempted and not found to be helpful, further 

research could look at improved implementations. 445 

A possibility for future investigation would be to fit models using regularisation methods such as LASSO (least absolute 

shrinkage and selection operator) regression. These could be a promising way of fitting more complex models without having 

to try large numbers of combinations of covariates, and of avoiding difficulties with collinear covariates. However, LASSO 

could still have problems picking between causal and non-causal covariates when they are all strongly collinear. 

For site-specific studies that lead to decisions about investment in flood management measures, it is important to take a more 450 

nuanced view of model selection, accounting for other types of information in addition to the BIC measure of model fit 

(François et al., 2019). These include other statistical measures such as AIC and likelihood ratios, inspection of model fit, 

consistency of model form between locations, hydrological reasoning, confidence limits and sensibility comparisons between 

the flow estimates and the peak flow data (Faulkner et al., 2020).  

Looking to the future 455 

Decision makers need information on future flood frequency. In theory, the integrated flow estimate could be calculated by 

averaging over a distribution of covariate values intended to represent future conditions. As discussed earlier, this climate-
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informed approach is only valid if the physical covariates provide a complete causal description of the non-stationarity in peak 

flows, which is unlikely to be the case. 

It would be desirable to have a hybrid approach that could draw on the strengths of both the climate-informed and hydrological 

simulation approaches  (Schlef et al., 2020, 2023). One possibility would be to use the outputs of hydrological simulation as a 

covariate in climate-informed statistical models, for example using soil moisture as a covariate (Tramblay et al., 2014). A 505 

hybrid approach might seamlessly model both past and projected future non-stationarity, and account for the impact of climate 

change on localised, short-term rainfall intensity as well as on longer-term rainfall and soil moisture. It should also allow for 

the possibility of non-stationarity due to land use change.  

There are some advantages to fitting statistical models to the output of physics-based climate models rather than only to 

observations. These include more confidence in identifying causal relationships and the ability to separate forced and stochastic 510 

components of the signal (Vecchi et al., 2011). Slater et al. (2021b) promote so-called hybrid statistical-dynamical modelling 

as a way of taking advantage of the ability of physical models to predict and explain large-scale phenomena and the strengths 

of non-stationary statistical models to estimate probabilities of extreme events. 

Such a hybrid approach would depend on having a coupled climate-catchment model that was capable of accurately 

reproducing the evolution of the statistical characteristics of floods over a period of time equivalent to typical gauged river 515 

flow record lengths, and into the future as well. To achieve this on many UK catchments the climate model would need to run 

at a high resolution to resolve local-scale atmospheric convection. The UKCP CPM (convection-permitting model) (Chen, 

Paschalis et al., 2021) meets this requirement and is capable of running for time slices covering several decades. The statistical 

component of a hybrid model might benefit from including a covariate that functions as an indicator variable to distinguish 

between observed (past) and modelled (future) data. Brown et al. (2014) applied this technique when developing a non-520 

stationary statistical model fitted to both observed rainfall and modelled projections of future rainfall.  
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Conclusions 

This research has made it possible to apply non-stationary flood frequency analysis incorporating physical covariates to some 

practical problems in flood risk management, although other barriers remain to widespread application (c.f. François et al., 

2019), including the need for a method that can be applied at ungauged locations. 525 

We have shown that incorporating stochastic physical covariates improves the fit of flood frequency models for nearly all river 

gauging stations in England and Wales. Annual rainfall and winter rainfall are the most commonly selected covariates out of 

those tested. The findings are consistent with those of Chen, Papadikis et al. (2021) that annual rainfall tends to be the best 

covariate in lowland areas of England, with the annual maximum daily rainfall being preferred in the rest of the UK where 

catchments tend to be dominated by low permeability bedrock and so sensitive to high intensity rainfall. 530 

Importantly for a model to be used in prediction (Wasko et al., 2021),, we have found evidence of a causal relationship between 

the physical covariates and flood flows, shown by the fact that even detrended covariates give a near-universal improvement 

in model fit compared with the stationary model. 

At about a quarter of stations, the best-fitting model is a non-stationary version that had time as a covariate in addition to 

detrended physical covariates. By integrating over the distribution of the covariates it is possible to extract estimates from such 535 

models that define the flow for a given encounter probability over the period of record (the integrated flow estimate). It is also 

possible to calculate the integrated flow estimate by integrating over a sample of covariates that spans a period different from 

that covered by the river flow data. For instance, the record of the covariates might be longer, enabling a more confident 

estimate of the distribution of the covariates.  

If the integration is only over the physical covariates, the estimate can define the flow for a given AEP in a given year, for 540 

example the most recent year of record (the single-year integrated flow estimate). This novel concept can be a useful quantity 

for flood risk managers or insurers who need an updated estimate of flood hazards that avoids having to assume stationarity. 

More generally, integration could be restricted to stochastic physical covariates, as opposed to any others whose behaviour is 

reasonably predictable such as urban cover. 

Although the best-fitting non-stationary models often give results similar to those of stationary models, in some cases their 545 

results are substantially higher or (less often) lower, occasionally falling outside the 90% confidence interval of the stationary 
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estimates. Despite the typically wide confidence intervals associated with non-stationary models, occasionally the stationary 

estimate falls outside the 90% non-stationary confidence interval. It appears that, while uncertainty is certainly a major feature 

of extreme value distributions, it does not always obscure the signal of non-stationarity (c.f. Serinaldi and Kilsby, 2015).  550 

The methods described in this paper are now available to practitioners in the form of a user-friendly R package and guidance 

document, and have been used since 2020, alongside conventional stationary methods, in the planning and design of flood 

alleviation schemes in England.  

Code availability 

The procedures for non-stationary flood frequency estimation are implemented in the R package nonstat, available from 555 

https://www.gov.uk/flood-and-coastal-erosion-risk-management-research-reports/development-of-interim-national-

guidance-on-non-stationary-fluvial-flood-frequency-estimation. 

Data availability 

The dataset of annual maximum flows for England and Wales was based on the National River Flow Archive dataset available 

from https://nrfa.ceh.ac.uk/peak-flow-dataset. The version of the dataset used for the analysis is available from the authors. 560 

The results of the national analysis are available from https://www.gov.uk/flood-and-coastal-erosion-risk-management-

research-reports/development-of-interim-national-guidance-on-non-stationary-fluvial-flood-frequency-estimation. 
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