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Abstract

Stochastic simulation is an important tool within the field of operational research. It

allows for the behaviour of random real-world systems to be analysed, evaluated, and

optimised. It is critical to understand the uncertainty and error in outcomes from

simulation experiments, to ensure that decisions are made with appropriate levels of

confidence.

Frequently, input models that actuate stochastic simulations are estimated using

samples of real-world data. This introduces a source of uncertainty into the simula-

tion model which propagates through to output measures, causing an error known as

input uncertainty. Input uncertainty depends on the samples of data that are collected

and used to estimate the input models for the simulation. In this thesis, we consider

problems relating to input uncertainty and data collection in the field of stochastic

simulation.

Firstly, we propose an algorithm that guides the data collection procedure for a

simulation experiment in a manner that minimises input uncertainty. Reducing the

uncertainty around the simulation response allows for improved insights to be inferred

from simulation results. Secondly, we outline an approach for comparing data collection

strategies in terms of the input uncertainty passed to outputs in simulations of viral

loads. This represents a different type of data collection problem to the ones usually

studied in simulation experiments. Thirdly, we adapt two techniques for quantifying

input uncertainty to consider a quantile of the simulation outputs, rather than the
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mean. Quantiles are regularly used to provide alternative information regarding the

simulation outputs relative to the mean, therefore it is equally important to understand

the uncertainty of such measures. Finally, we begin to investigate how input uncertainty

impacts predictive models fit to simulation data. This relates to the field of simulation

analytics, a novel and emergent area of research where the problem of input uncertainty

has not previously been examined.



Acknowledgements

I would like to start by thanking my supervisors, Lucy, Andrew, Susan, and Richard. It

has been a real pleasure to work with you all. You have each made unique and valuable

contributions to this thesis, all of which are very much appreciated. Thank you for

the enduring advice, guidance, patience, and wisdom over an unusually turbulent few

years, you have taught me a great deal.

I would also like to thank all the staff and students at STOR-i, both past and present,

for creating such a friendly and stimulating environment in which to conduct research,

I have thoroughly enjoyed my time here. I am grateful for the financial support, as well

as the numerous opportunities that STOR-i students are privileged to receive. It would

be negligent of me not to mention my cohort, who I must thank for being constant

sources of both help and hilarity, it has been an unforgettable journey.

A major part of my PhD experience, though not part of this thesis, was the intern-

ship I completed at Sportlight Technology. I would like to thank the whole Sportlight

team for being so welcoming and making my time there remarkably insightful and

enjoyable. Particular thanks go to Ian, who afforded me the opportunity.

Penultimately I would like to thank my friends from Durham and LSE, who are

kind, generous, and funny, and have always taken a keen interest in the culmination of

my PhD (asking when I will be finished). Last, but by no means least, I must thank my

family, who have been unwavering with their incredible encouragement and support,

for that I am extremely grateful.

III



Declaration

I declare that the work in this thesis has been done by myself and has not been submitted

elsewhere for the award of any other degree.

A version of Chapter 3 has been published as Parmar, D., Morgan, L.E., Titman, A.C.,

Williams, R.A., and Sanchez, S.M. (2021). A two stage algorithm for guiding data

collection towards minimising input uncertainty. In Proceedings of the Operational

Research Society Simulation Workshop 2021, pages 127-136. Operational Research

Society.

Chapter 4 has been published as Parmar, D., Morgan, L.E., Titman, A.C., Regnier,

E.D., and Sanchez, S.M. (2021). Comparing data collection strategies via input uncer-

tainty when simulating testing policies using viral load profiles. In Proceedings of the

2021 Winter Simulation Conference, pages 1-12. IEEE.

Chapter 5 has been published as Parmar, D., Morgan, L.E., Titman, A.C., Williams,

R.A., and Sanchez, S.M. (2022). Input uncertainty quantification for quantiles. In

Proceedings of the 2022 Winter Simulation Conference, pages 97-108. IEEE.

This thesis is approximately 35700 words.

Drupad Parmar

IV



Contents

Abstract I

Acknowledgements III

Declaration IV

Contents V

List of Figures IX

List of Tables XI

1 Introduction 1

1.1 Stochastic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Input Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Problems and Motivations . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 11

2.1 Input Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Quantifying Input Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Reducing Input Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Simulation Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

V



CONTENTS VI

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Guiding Data Collection to Minimise Input Uncertainty 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Taylor Series Approximation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Gradient Estimation . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Contributions to Input Uncertainty . . . . . . . . . . . . . . . . 40

3.4 Data Collection for Minimising Input Uncertainty . . . . . . . . . . . . 41

3.5 Two Stage Algorithm for Data Collection . . . . . . . . . . . . . . . . . 43

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 M/M/1 Queueing Model . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 Network Queueing Model . . . . . . . . . . . . . . . . . . . . . 49

3.7 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.1 External Parameters . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.2 Small First Stage Allocation . . . . . . . . . . . . . . . . . . . . 57

3.7.3 Internal Minimum Optimal Proportion . . . . . . . . . . . . . . 61

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Comparing Data Collection Strategies when Simulating Viral Load

Profiles 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Modelling Viral Load . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Input Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 71



CONTENTS VII

4.3.4 Comparing Data Collection Strategies . . . . . . . . . . . . . . 72

4.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Input Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Data Collection Strategies . . . . . . . . . . . . . . . . . . . . . 76

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Input Uncertainty Quantification for Quantiles 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Input Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Input Uncertainty Quantification for the Mean . . . . . . . . . . 86

5.2.2 Input Uncertainty Quantification for Quantiles . . . . . . . . . . 88

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Bootstrapping for the Mean . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Bootstrapping for Quantiles . . . . . . . . . . . . . . . . . . . . 92

5.3.3 Taylor Series Approximation for the Mean . . . . . . . . . . . . 94

5.3.4 Taylor Series Approximation for Quantiles . . . . . . . . . . . . 96

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Analytical Example . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.2 Stochastic Activity Network . . . . . . . . . . . . . . . . . . . . 102

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Input Uncertainty in Simulation Analytics 106

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS VIII

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Simulation Analytics on a Network Queueing Model . . . . . . . 112

6.4.2 Model Performance using the True Input Parameters . . . . . . 113

6.4.3 Designed Experiment for Input Parameter Uncertainty and Sen-

sitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.4 An Increase in Input Data . . . . . . . . . . . . . . . . . . . . . 121

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.2 Discussion and Further Work . . . . . . . . . . . . . . . . . . . 124

7 Conclusion 128

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Generalisations, Limitations, and Implications for Practice . . . . . . . 130

7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.1 Guiding Data Collection to Minimise Input Uncertainty: Multiple

Simulation Outputs . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.2 Input Uncertainty Quantification for Quantiles: Adapt More Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Appendix to Chapter 3 137

A.1 Derivation of Optimal Proportions . . . . . . . . . . . . . . . . . . . . 137

A.2 Derivation of Optimal Proportions with Prior Data Collection . . . . . 139

A.3 Analytical Optimal Proportions for the M/M/1 Experiment . . . . . . 141

Bibliography 142



List of Figures

3.6.1 Box plots showing 100 final proportions for λ from the two stage algo-

rithm, compared to the true optimal proportion, shown in red, at 10

different sets of parameters for the M/M/1 queueing model. . . . . . . 48

3.6.2 A graphical representation of the network queueing model. . . . . . . . 49

3.6.3 Box plots showing 100 estimates of input uncertainty from using the

two stage algorithm (TS), using an equal observations approach (EO),

and using a timed observation approach (TO), at 5 different sets of

parameters for the network queueing model. . . . . . . . . . . . . . . . 51

3.7.1 Box plots showing 100 final proportions for λ from the two stage al-

gorithm, compared to the true optimal proportion, shown in red, at 8

different sets of external parameters for the M/M/1 queueing model. . 54

3.7.2 Box plots showing 100 estimates of input uncertainty from using the two

stage algorithm (TS), using an equal observations approach (EO), and

using a timed observation approach (TO), at 5 different sets of external

parameters for the network queueing model. . . . . . . . . . . . . . . . 56

3.7.3 Heat map showing r1 (the optimal proportion for θ1), as both θ1 and θ2

vary over their specified parameter intervals. . . . . . . . . . . . . . . . 62

4.4.1 Interval plot showing the confidence intervals for each data collection

strategy across the two sets of testing policies, from a single macro repli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

IX



LIST OF FIGURES X

4.4.2 Bar plots showing the relative bias of each input parameter for the three

different data collection strategies, across 100 macro replications . . . . 80

5.4.1 A graphical representation of the stochastic activity network. . . . . . 103

6.4.1 Histogram comparing the F1 scores from the classification model applied

to estimated input parameter and true input parameter simulation data. 114

6.4.2 Bar plot of linear regression coefficients representing the impact of each

input parameter and their interactions on the mean F1 score of the

classification model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.3 Bar plot of linear regression coefficients representing the impact of each

input parameter on the mean output of the simulation model. . . . . . 121



List of Tables

3.5.1 Example optimal proportions for a 22 factorial design. . . . . . . . . . 45

3.6.1 Parameter values and analytically derived true optimal proportions for

the M/M/1 queueing model experiment. . . . . . . . . . . . . . . . . . 47

3.6.2 Parameter values for the network queueing model experiment. . . . . . 51

3.7.1 Parameter values and analytically derived true optimal proportions for

the external parameter experiment using the M/M/1 queueing model. 53

3.7.2 Parameter values for the external parameter experiment using the net-

work queueing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7.3 Example optimal proportions for the 24 factorial design in the small first

stage allocation experiment. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7.4 Optimal proportions for the 22 factorial design from the internal mini-

mum optimal proportion experiment. . . . . . . . . . . . . . . . . . . . 61

4.4.1 Average input uncertainty (×10−4) for each data collection strategy

across 100 macro replications. . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 The number of macro replications out of 100 that produced confidence

intervals containing the true performance measure for each data collec-

tion strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

XI



LIST OF TABLES XII

5.4.1 Mean and standard errors of input uncertainty estimates for the analyt-

ical example using bootstrapping and the Taylor series approximation

(TSA), compared to an analytical approximation. . . . . . . . . . . . . 102

5.4.2 Mean and standard errors of input uncertainty estimates for the stochas-

tic activity network using bootstrapping and the Taylor series approxi-

mation (TSA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.3 Average normalised contributions to input uncertainty (%) made by each

input parameter in the stochastic activity network, as estimated by the

Taylor series approximation. . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.1 Average and standard deviation of the F1 scores from the classification

model applied to simulation data generated by each set of design point

input parameters, along with the p-value from the hypothesis test, when

m = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Average and standard deviation of the F1 scores from the classification

model applied to simulation data generated by each set of design point

input parameters, along with the p-value from the hypothesis test, when

m = 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



Chapter 1

Introduction

1.1 Stochastic Simulation

Stochastic simulation serves as a tool for decision-making, allowing users to experiment

with and optimise a model of some inherently random real-world system. Simulation

models usually take the form of computer code, and can be as simple or as complicated

as needed, depending on the objectives of the simulation study. Examples of real-world

systems frequently modelled using simulation include airports, hospitals, and manu-

facturing lines. When studying these complex systems and assessing their behaviour,

certain characteristics or performance measures are often of interest, such as resource

usage, queue lengths, and waiting times. Stochastic simulation enables the estimation

of such performance measures by capturing the randomness of the system via input

distributions or processes, and tracing random variables as they change stochastically

over time.

Simulation models are widely applicable and allow practitioners to run experiments

with a proxy of a real-world system, or even a system that does not exist. Stochastic

simulation is typically utilised when analytical models cannot be applied, and where

performance measures are mathematically intractable or cannot be approximated with
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a bound on the error (Nelson, 2013). In the case of mathematically tractable models

there is an argument that stochastic simulation should be preferred, since in such mod-

els assumptions are frequently made purely for tractability reasons. These unrealistic

simplifying assumptions affect the validity of the model and the impact of this cannot be

quantified, potentially leading to false insights and poor decisions (Lucas et al., 2015).

Stochastic simulation allows complex systems to be analysed and estimates of output

metrics to be obtained using less restrictive modelling assumptions, which results in a

more valid and realistic (albeit an often more complicated) model. This in turn leads to

a more accurate understanding of the behaviour of the system and importantly should

culminate in better decision-making.

Simulation has far and wide-ranging capabilities, from finding optimal revised avi-

ation schedules due to airline disruption (Rhodes-Leader et al., 2018), to modelling the

impact of impaired communication abilities on the capacity of the U.S. army to carry

out an effective attacking operation (Cioppa et al., 2004). Even when considering a

specific application, simulation can be used to tackle many aspects of a multi-faceted

problem. For example, Currie et al. (2020) provide a discussion of the myriad ways

in which simulation modelling can be used to mitigate the effects of the COVID-19

pandemic. They discuss the applicability of various simulation techniques to different

decision-making scenarios, from quarantine strategies and social distancing measures

at the population level, to staffing levels and capacity planning in hospital operations.

Although they specifically consider the coronavirus disease, the matching of simulation

methods appropriate for supporting these kinds of healthcare decisions is no doubt rel-

evant for other epidemics, whilst simulation can also be used to model the propagation

of infectious diseases themselves (Sanchez and Sanchez, 2015).

Stochastic simulation is utilised across an extensive range of industries. Günal and

Pidd (2010) provide a literature review of discrete event simulation models applied in

the health care industry. Even with a narrow focus on patient flow in secondary care
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provided by hospitals, there exists an extremely diverse set of studies with a variety

of different objectives, from increasing throughput in an emergency department, to

designing an appointment system for a dermatology clinic. The literature includes

numerous simulation projects conducted in conjunction with local branches of the UK

National Health Service (NHS), which is reported to be one of the largest non-military

public organisations in the world. Another area where simulation is regularly applied

is the manufacturing industry. Jahangirian et al. (2010) conduct a broad review of

publications in this field, and in doing so find an increasing number of simulation

studies applied to real-world problems with real-world data. Specifically, simulation has

been used within this area to solve problems relating to scheduling, resource allocation,

workforce planning, and transportation management, to name a few. The literature

review includes papers written in collaboration with Deutsche Bahn AG, the national

railway company of Germany, and Hyundai Heavy Industries, the largest shipbuilding

company in the world.

1.2 Input Uncertainty

The abstract framework of a simulation model consists of two key factors, inputs, and

logic. Inputs refer to the stochastic or random elements within the system, and logic

refers to the rules or behaviours of the system as a function of the inputs (Nelson,

2013). Results from stochastic simulation experiments are conditional on the input

models and logic of the simulation model accurately representing those of the real-

world system, or at least being similar enough to yield useful outcomes. Three types of

error arise in stochastic simulation. These may cause the simulation model to exhibit

far different behaviour from the real-world system, or result in unreliable and uncertain

outputs, both of which may induce poor decision-making. In the context of healthcare

or military operations, for example, such errors could have life-changing implications.
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Firstly, there exists modelling error, which arises when the logic of the simulated

system differs from the logic of the real-world system. In practice, this will almost

always be the case, since some rules or behaviours of the real-world system may be

inexplicable or unquantifiable. What is important, however, is that the logic of the

simulation model is accurate enough to render any results useful, and this can be

checked through model verification and validation; see Sargent (2010) for more details.

Secondly, due to the inherent randomness in any system, performance measures

will differ from simulation to simulation and this describes a type of error known as

stochastic uncertainty, or stochastic estimation error. Typically, the effects of this error

are easily quantifiable, and can be made negligible through a large enough simulation

effort, however there can sometimes be complexities due to bias and correlated data

(Nelson, 2013).

Finally, if the simulation input probability models used to approximate the input

models of the real-world system are estimated from data, then these will contain some

error due to the finite nature of the samples. This constitutes the third source of error,

known as input uncertainty, which is the focus of this thesis.

The input models for the simulation, represented by probability distributions or pro-

cesses, are often estimated by applying statistical methods, such as maximum likelihood

estimation, to observations collected from the real-world system. Since the sample of

data collected is finite, uncertainty arises in the estimated input models. As the number

of observations increases, the error in the input models decreases, but they never per-

fectly represent the input models of the real system. The unknown difference between

the input models used in the simulation and those that best characterise the real-world

system is a source of error generally referred to as input uncertainty. As the input

models drive the simulation, this uncertainty propagates through to the performance

measure outputs. Rarely, however, is the propagation of input model error considered

in simulation output analysis (Barton, 2012), and traditional methods for simulation
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output analysis do not account for such uncertainty.

Common practice is to report a simulation-based confidence interval for the perfor-

mance measure outputs, however these typically ignore the effects of input uncertainty,

and only include stochastic uncertainty. Input uncertainty, or input uncertainty vari-

ance, refers to an additional source of variance around the performance measure due

to having estimated the input models. Input uncertainty can overwhelm stochastic un-

certainty, particularly when only small samples of real-world data are available (Corlu

et al., 2020). Unlike stochastic uncertainty, the effects of input uncertainty cannot be

reduced by simply increasing the simulation effort. Without considering the propaga-

tion of input model error in simulation-based confidence intervals, crucial and expensive

decisions are at risk of being made with misleading levels of confidence, which could

have a serious impact on the success of projects, corporate profitability and even human

lives (Barton et al., 2014). Interest therefore lies in quantifying the uncertainty that

arises in the simulation output as a result of the uncertainty from estimating the input

models. This variability can then be taken into account when making decisions based

on the simulation outputs, or be used to justify the collection of additional real-world

data.

Though input uncertainty is used to broadly describe the impact of not knowing the

true input models, quantification of input uncertainty typically focuses on the variance

in the simulation output due to a lack of knowledge about the true input models.

However, the impact of the uncertain input models is actually twofold; in addition

to the input uncertainty variance, input model bias is introduced. Input model bias

refers to the bias in the expected value of the simulation performance measure due to

having estimated the input models. Until recently, input model bias has largely been

ignored, since it is known to decrease by an order of magnitude quicker than input

uncertainty when the number of real-world observations increases. If, however, the

number of observations is small, then the bias could be consequential, and so should
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not be ignored (Morgan et al., 2019).

As simulation models become increasingly more complex, there has been a prolif-

eration of specialised techniques for working with such models. This includes utilising

efficient, high-dimensional designed experiments to explore the impact of input factors

on simulation responses (Sanchez et al., 2020), and the development of data farming,

where simulation analysts aim to grow their simulated data set meaningfully, analo-

gous to the way a farmer cultivates his land to maximise yield (Sanchez, 2020). Such

techniques are required since models potentially have thousands of input factors inter-

acting in convoluted and nonlinear ways. In these instances, uncertainty quantification

becomes even more important, since larger models are likely to contain more uncer-

tain input models, as well as display more complex behaviour that could significantly

propagate such uncertainty.

1.3 Research Problems and Motivations

In this thesis, we investigate various problems relating to data collection and input

uncertainty in the field of stochastic simulation. We now outline our research problems

and motivations for the contributions that follow in each chapter of this thesis.

The first research problem we are interested in is whether input uncertainty can

be taken into consideration prior to any input data collection. The input uncertainty

contribution to the variance of the simulation output depends on the collection of input

model data, and in particular, the number of observations used to estimate each of the

input model distributions. If input uncertainty is of a considerable magnitude, it be-

comes difficult to draw meaningful inferences from the simulation results, and decision-

making is impeded. Unlike stochastic uncertainty, input uncertainty cannot be reduced

by exerting additional simulation effort. Instead, to reduce input uncertainty additional

input data can be collected to enable estimation of higher fidelity input models, which
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can then be used to rerun the simulation experiment. In some instances, collecting

input data may be challenging, costly, or impractical, and hence knowing which input

model data will reduce input uncertainty efficiently is invaluable information. Usually

it is assumed that some input data has been collected, and existing methodologies can

then be used to inform a data collection scheme to reduce input uncertainty effectively.

However, in some instances, it may be that no input data has been collected at all. In

these cases, guiding the initial data collection process to account for input uncertainty,

as opposed to collecting data instinctively, would ensure that more insightful results

and comparisons can be generated from the simulation experiment.

The second research problem we are interested in is developing an approach for com-

paring data collection strategies in viral load simulations. Modelling and simulation of

viral diseases has become extremely pertinent in the past few years, with the potential

to produce hugely impactful results. For such models, real-world data collection can be

extremely difficult and expensive, especially in the case of a novel virus. Consequently,

many of the input models to the simulation can carry a large amount of uncertainty,

which will propagate through to the simulation outputs. In the case of modelling viral

loads, input data collection may present a different challenge to the typical scenario.

There may be decisions on how many individual subjects to take data from, how much

data to collect from each subject, and when to collect data from each subject. Under-

standing how different approaches for collecting input data impact the uncertainty of

results from the simulation model, prior to any actual data collection, can inform the

data collection process resulting in higher fidelity simulation results.

The third research problem we are interested in is developing frequentist methods

for quantifying input uncertainty for a quantile of the simulation response. Input un-

certainty quantification usually assumes that the goal of the simulation experiment is to

estimate the expected value of the simulation response, thus many approaches quantify

the input uncertainty variance for the sample mean of the simulation outputs. Mean
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performance measures mask the variability of the simulation response. Distributional

properties of the response could provide both crucial and relevant information, and may

help to differentiate between systems with similar mean performances. Quantiles are

helpful for assessing risk, and can sometimes offer a more useful statistical description

than the mean. Input uncertainty quantification for quantiles of the simulation re-

sponse exist for Bayesian input modelling, but not for frequentist, therefore developing

methodology from a frequentist perspective would aid more decision makers who are

interested in the distributional behaviour of the simulation response. In addition to

this, it would allow them to understand the uncertainty in a wider range of simulation

response performance measures, facilitating more comprehensive comparisons across

different systems.

The final research problem we are interested in is developing an understanding of

the impact of input uncertainty within simulation analytics. Approaches within the

growing area of simulation analytics frequently fit predictive machine learning models

to simulation-generated data. Specifically, they utilise the sample path data generated

within simulations that is typically not captured, or ignored in standard simulation out-

put analysis. The predictive models can be used to uncover information about the sim-

ulated system, whilst also enabling real-time predictions to aid system control. If these

approaches use input models estimated from real-world data to drive the simulation,

and do not acknowledge or seek to understand the impact of uncertain input models,

then overly assertive inferences may be drawn from the predictive models. Therefore,

studying how the performance of a predictive model may change with respect to the

uncertain input models provides useful information to assist with decision-making.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter 2, we describe the input

uncertainty problem and introduce notation to define input uncertainty. We provide a

thorough literature review on techniques and approaches for input uncertainty quan-

tification. This is followed by two shorter reviews, one on methodologies for reducing

input uncertainty and one on the emerging topic of simulation analytics.

Chapter 3 considers the problem of guiding an initial collection of input data in

order to minimise input uncertainty. We present a new breakdown of the Taylor se-

ries approximation to input uncertainty (Cheng and Holland, 1997), which utilises the

proportions in which input data is allocated to each input distribution. Using this

breakdown, we solve two optimisation problems to find the optimal proportions of in-

put data such that input uncertainty is minimised. The solutions to these two problems

form part of a two stage algorithm, which aims to hone in towards an optimal collection

of input data. This is the first study to consider input uncertainty at the initial data

collection stage.

In Chapter 4, we develop a simulation model of viral load profiles, which can be

used to estimate the performance of different testing policies. We compare strategies

for input data collection in terms of the input uncertainty passed to different simulation

outputs, and we run an experiment motivated by the COVID-19 pandemic, comparing

three data collection strategies across two different sets of testing policies.

Chapter 5 considers the problem of quantifying input uncertainty for a quantile

of the simulation response, in contrast to the usual input uncertainty problem, which

considers the mean. We discuss how the problems differ, before describing how two

existing input uncertainty quantification techniques, the bootstrap resampling approach

described in Nelson (2013) (Section 7.2) and the Taylor series approximation of Cheng

and Holland (1997), can be adapted for the case of quantiles.

In Chapter 6 we consider how a predictive model fit to simulation data generated by
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estimated input parameters may not perform as anticipated on the real-world system.

We use hypothesis testing and a designed experiment to look for changes in the perfor-

mance of a predictive model, when the model is applied to simulation data generated

by different input parameter values. We also consider the sensitivity of the predictive

model performance with respect to the input parameters.

Finally, in Chapter 7 we conclude with a summary of the contributions made in this

thesis, a discussion of the generalisations, limitations, and implications for practice, and

identify a couple of areas for further work.



Chapter 2

Background and Literature Review

In this chapter, we introduce notation to describe the input uncertainty problem and

provide a formal definition of input uncertainty. We briefly discuss some illustrative

examples of input uncertainty, and reference literature where in-depth reviews can be

found. We conduct a literature review of techniques for quantifying input uncertainty,

and also review some methods that consider slight variations of the initially defined in-

put uncertainty problem. We conduct a literature review on methodologies for reducing

input uncertainty, before finally discussing the emerging integration of simulation mod-

els with machine learning methods, and reviewing the relevant literature here which falls

under the recently coined term of simulation analytics. We end with a brief conclusion.

2.1 Input Uncertainty

In stochastic simulation, input models are specified to characterise the behaviour of

the random procedures in the system. Examples of such random procedures include

service times of customers in a restaurant, or the time to failure of machines in a man-

ufacturing plant. Often input models are represented by some probability distributions

(e.g. exponential, log-normal), and the practice of selecting and fitting these is known

as input modelling; see Biller and Gunes (2010) for an introduction. When real-world

11
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data is available, the probability distributions can be fit to the samples of data, or the

samples of data themselves may be used as empirical distributions. Since the samples

of data are necessarily finite, there is no guarantee that the input models fitted to the

data are completely representative of the random procedures of the real-world system.

This unknown difference introduces a source of error into the simulation model that

propagates through to the outputs which is broadly referred to as input uncertainty or

input model uncertainty.

Consider a simulation model that has a single input model G. Let the correct, but

unknown, input model be denoted by G0. In a parametric framework, G may represent

the parameter(s) of a specific distribution, whilst in a nonparametric framework, G may

denote a whole probability distribution. Suppose that data Z1, Z2, . . . , Zm, is collected

from G0, and used to estimate the fitted input model Ĝ, which drives the simulation

model. We can write the output of replication j from the simulation as

Yj(Ĝ) = η(Ĝ) + ϵj(Ĝ),

where η(Ĝ) = E[Yj(Ĝ)] is the expected simulation response depending on the fitted

input model, and ϵj(Ĝ) is a random variable with mean 0 representing stochastic noise.

Frequently, the goal of the simulation experiment is to estimate η(G0), the expected

simulation response given the true input model. Since G0 is unknown, this can be done

by running a nominal experiment consisting of n replications driven by Ĝ, and taking

the sample mean of the simulation outputs

Ȳ (Ĝ) =
1

n

n∑
j=1

Yj(Ĝ),

=
1

n

n∑
j=1

(
η(Ĝ) + ϵj(Ĝ)

)
,

= η(Ĝ) +
1

n

n∑
j=1

ϵj(Ĝ). (2.1.1)
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As the number of replications n increases, the second term in (2.1.1), which represents

the error due to stochastic noise, tends towards 0. Applying the law of total variance

to the estimator, we get

Var[Ȳ (Ĝ)] = E[Var(Ȳ (Ĝ)|Ĝ)] + Var[E(Ȳ (Ĝ)|Ĝ)]. (2.1.2)

The first term in (2.1.2) measures the stochastic uncertainty associated with the point

estimate. This can be easily estimated by dividing the sample variance of the simulation

outputs by the number of replications. The second term in (2.1.2) is defined to be input

uncertainty σ2
I , and this simplifies to

σ2
I = Var[η(Ĝ)]. (2.1.3)

Input uncertainty, as defined in (2.1.3), measures the uncertainty in the system mean

due to having estimated the input model. This is not straightforward to estimate for

two reasons. Firstly, the response surface η(·) is usually unknown. Secondly, the uncer-

tainty around the estimated input model may not always be easily calculated. Input

uncertainty depends on some complex interaction between the structure of the simula-

tion model, and the sample of data used to estimate the input model. Unlike stochastic

uncertainty, input uncertainty cannot be reduced by running extra simulation repli-

cations, but it can be reduced through the collection of additional input data or via

alternative input modelling. Typically, simulation experiments beyond the nominal ex-

periment, known as diagnostic experiments, are required to estimate input uncertainty.

To motivate an interest in studying input uncertainty, we consider some examples where

the problem has been illustrated in the literature.

A motivating example of input uncertainty can be found in Barton (2012). A sim-

ple M/M/1/k queueing model is considered, where the arrival and service rates are

estimated using 500 data points each. The queueing model is simulated to ensure that
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stochastic uncertainty is close to 0, so that the variability in the simulation output pre-

dominantly due to the estimated input models can be studied. When input uncertainty

is ignored, there is a greater than 25% chance that the simulation estimator of the mean

number of customers in the system has an error greater than 25%.

Further to this, Corlu et al. (2020) present some examples using anM/M/1 queueing

model. They show that the expected time a customer spends in the system can exhibit

significant variability, even when stochastic uncertainty is negligible. The subsequent

ramifications of this on a simulation optimisation problem illustrate that ignoring input

uncertainty can lead to a so-called optimal solution that has poor performance. They

also show that increasing the number of replications, whilst ignoring input uncertainty,

can lead to confidence intervals which exclude the true performance measure.

An analytical example of input uncertainty can be found in Nelson (2013) (Section

7.2.1). The variance of the simulation estimator is mathematically derived when esti-

mating the mean number of customers in an M/M/∞ queue via stochastic simulation.

The analytical variance consists of two terms, with one term depending on the number

of replications, and the other depending on the number of real-world observations used

to estimate the input models. This derivation highlights the distinguishing features of

the two terms, stochastic uncertainty and input uncertainty, that comprise the total

variance of the simulation estimator. The author notes that this kind of analytical

derivation is not possible for realistic simulation problems.

An introduction to input uncertainty in stochastic simulation can be found in Nel-

son (2013) (Section 7.2), along with the analytical example discussed above. For fur-

ther descriptions and illustrations of input uncertainty, see Henderson (2003), Barton

(2012), Song et al. (2014), and Lam (2016). These also provide overviews of techniques

for quantifying input uncertainty, which we will cover in more detail in Section 2.2,

whilst the latter also includes some discussion of simulation optimisation techniques

that account for input model uncertainty. A more recent review conducted by Corlu
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et al. (2020) provides a classification of major research streams on input uncertainty

in stochastic simulation, with a particular focus on newer developments. This also

includes a literature review on applications of input uncertainty quantification, and

discusses some areas for future research. Another summary of newer developments for

simulation output analysis and optimisation under input uncertainty can be found in

Barton et al. (2022).

2.2 Quantifying Input Uncertainty

Broadly speaking, input uncertainty quantification techniques focus on either estimat-

ing the input uncertainty term (2.1.3) extrapolated for the case of multiple input mod-

els, or constructing a confidence/credible interval for the mean simulation response

that accounts for this term. The specific representation of input uncertainty and the

confidence/credible interval will differ depending on whether input modelling is done

in a frequentist or Bayesian way. Approaches for quantifying input uncertainty can be

distinguished by whether they assume Bayesian or frequentist input modelling, whether

they utilise direct simulation or a metamodel to propagate uncertainty, and what char-

acteristics of input models they can be applied to. Here, we conduct a literature review

on methodologies for quantifying input uncertainty.

Barton and Schruben (1993) present two approaches for studying the impact of input

uncertainty when using an empirical distribution to drive the simulation model. The

first, bootstrap resampling, utilises the bootstrap technique of Efron and Tibshirani

(1986), to mimic the effect of having multiple samples of data. This involves sampling

the input data, with replacement, in order to compute a new empirical distribution

with which to run each simulation replication. The second, uniform resampling, uses

samples from a standard uniform distribution to induce random changes to the incre-

ments in the empirical distribution which are used to run each simulation replication.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

Further information on these approaches can be found in Barton and Schruben (2001),

where direct resampling is also discussed. The premise of direct resampling is to divide

the input data into subsets, and use the empirical distribution from each subset to run

replications. The outputs from each of these three approaches can be used to construct

percentile confidence intervals that account for input uncertainty. The bootstrap re-

sampling method of Barton and Schruben (1993) is extended for the case of parametric

input models in Cheng (1995).

Nelson (2013) (Section 7.2) describes how simulating multiple replications with each

bootstrap sample can induce a random-effects model. Using a simplifying approxima-

tion that stochastic uncertainty is independent of the fitted input models allows for

the random-effects model to provide an equation for approximating input uncertainty.

Ankenman and Nelson (2012) use a similar approach, however they focus on generating

a point estimate and confidence interval for the ratio of stochastic uncertainty to input

uncertainty. They also develop a follow-up analysis, which can be used to identify the

contributions made to input uncertainty by the input models. This is useful informa-

tion, since input models that contribute more than their fair share can potentially be

targeted for additional data collection. We will provide more detail on this approach,

and other methodologies related to this topic, in Section 2.3.

The two-layer sampling required to estimate input uncertainty via bootstrapping can

result in computationally expensive simulation experiments. Lam and Qian (2018b)

propose a subsampling method to reduce the computational requirements, within a

nonparametric framework. The empirical distributions used to drive the simulation are

re-estimated by drawing subsamples from the input data. Input uncertainty can then

be estimated using less simulation effort, by scaling the results with a multiplicative

factor that depends on the size of the subsample. Further work is presented in Lam

and Qian (2022), which provides theoretical results on the optimal choice of subsample

size and allocation of bootstraps and replications.
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An alternative approach for reducing the computational load of bootstrapping is the

cheap bootstrap approach presented in Lam (2022). Unlike the aforementioned sub-

sampling approach, this method avoids the requirement for a tuning parameter. This

method reduces the need for a large amount of bootstrap resamples, by utilising the

independence between the original simulation outputs and the simulation outputs gen-

erated by the bootstrap resampled input models. A confidence interval is constructed

using an adjusted version of the sample variance of the bootstrapped estimates and a

critical value calibrated via the t-distribution.

Barton et al. (2018) point out that in the nonparametric framework, the direct boot-

strap resampling confidence intervals from Barton and Schruben (2001) can result in

overcoverage. This seems to be particularly problematic when stochastic uncertainty is

relatively large. They propose two new approaches for constructing confidence intervals

that account for both stochastic and input uncertainty in terms of the correct coverage.

One approach utilises a shrinkage operation to reduce the variance of the bootstrap

samples, whilst the other makes use of a hierarchical bootstrap to remove the bias in

the quantile estimates used to construct the intervals.

Another method for constructing confidence intervals that account for input uncer-

tainty in the nonparametric framework can be found in Lam and Qian (2016). The

confidence interval bounds are found by solving a pair of distributionally robust op-

timisation problems, with asymptotic guarantees verified via the empirical likelihood

method. This optimisation-based approach is shown to generate slightly narrower and

more stable confidence intervals than bootstrap resampling, whilst maintaining similar

coverage probabilities.

Glynn and Lam (2018) also consider constructing confidence intervals that account

for both stochastic and input uncertainty. They apply a technique known as sectioning

to the input data. This involves dividing the input data up into smaller sections of equal

size, and using these to drive sets of simulation replications. Selecting the number and
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size of sections presents a trade-off between statistical validity and half-width properties

of the confidence intervals. This approach requires few structural assumptions and is

applicable within both the parametric and nonparametric framework.

Feng and Song (2019) develop a method to quantify input uncertainty using green

simulation, so-called because it involves reusing simulation outputs from previous exper-

iments to assist with future ones. In particular, they utilise the likelihood ratio method

on sample path data to estimate performance measures for each set of bootstrapped

input models, using only a single set of simulation replications. This can significantly

reduce the computational requirements to compute input uncertainty, compared to the

direct bootstrap resampling approach, however there are limitations. In some instances,

the likelihood ratio calculations themselves can present a hefty computational burden.

Barton et al. (2010) introduce a framework for quantifying input uncertainty known

as metamodel-assisted bootstrapping. Here, the premise is to create a metamodel

of the expected value of the simulation response as a function of the input models,

typically via some experimental design. Bootstrap samples are generated and fed into

the metamodel to provide estimators to the simulation response, and these estimators

are used to construct a percentile interval that accounts for both stochastic and input

uncertainty. One advantage of using a metamodel, is that unlike direct simulation, the

output can be a smooth function of the input data, which is a requirement for bootstrap

convergence. They provide examples using parametric input models and a stochastic

kriging metamodel. Extensions to this approach are presented in Barton et al. (2014),

where they investigate which experimental designs are effective for fitting the stochastic

kriging metamodel, when using general input distributions with multiple parameters.

Song and Nelson (2013) point out that the follow-up analysis presented in Ankenman

and Nelson (2012) is in no sense quick, since it requires multiple additional simulation

experiments beyond the one used to quantify input uncertainty. To combat this, they

present an approach that provides an estimate of input uncertainty, as well as the



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

contributions made to input uncertainty by each input model, in one single experiment.

Furthermore, their approach also provides a measure of sensitivity, which approximates

the reduction in input uncertainty due to additional input data. They use a metamodel-

assisted bootstrapping approach to quantify input uncertainty, where the metamodel

is a linear combination of the means and variances of each input model. Bootstrapping

is used to estimate the metamodel parameters, rather than a designed experiment.

Although the bootstrapping approach utilises empirical cumulative distributions, the

nominal experiment may be conducted with any kind of fitted distributions. A detailed

version of this approach along with further experimental results can be found in Song

and Nelson (2015).

Within the parametric framework, Cheng (1994) uses a first-order Taylor series

expansion to provide an approximation to input uncertainty. This approximation, which

expands the expectation of the simulation output at the estimated parameters as a

Taylor series about the true parameters, is described in more depth in Cheng and

Holland (1997). The estimator combines the parameter covariance matrix and the

gradient of the expected simulation output with respect to the input parameters. The

components of the latter are often referred to as the sensitivity coefficients. If maximum

likelihood estimation is used to estimate the parameters, then the parameter covariance

matrix can be approximated by the inverse observed Fisher information. Cheng and

Holland (1997) describe an approach for estimating the gradient known as the delta

method, so-called as it makes simulation runs using parameter values perturbed by a

small displacement value delta. However, this method grows linearly with the number

of input parameters, and can thus become computationally expensive very quickly.

The delta method is modified in Cheng and Holland (1998), so that the majority

of computational effort is applied to just two parameter settings, following an initial

application of the delta method. This is described as the delta/two-point method, and

makes gradient estimation much more efficient and largely independent of the number
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of input parameters. They also present a method known as the simplified two-point

method, which removes the delta method step and makes all simulation runs at just two

parameter settings. This provides an estimate for the upper bound of input uncertainty.

Cheng and Holland (2004) describe how estimates of input uncertainty and stochas-

tic uncertainty from the delta method and the delta/two-point method can be used to

construct confidence intervals for the expected simulation response using asymptotic

normality theory. They also present an adaptation of the simplified two-point method

known as the direct two-point method, which again uses just two parameter settings.

However, this method can directly be used to generate a conservative confidence inter-

val estimate, with the advantage of using limited computational resources relative to

the other methods.

The Taylor series approximation requires an estimate of the gradient, however both

the delta and delta/two-point method require additional simulation replications be-

yond the nominal experiment. Furthermore, they also require specification of the delta

parameter, which presents a bias-variance trade-off. Additionally, the so-called quick

methods developed by Ankenman and Nelson (2012) and Song and Nelson (2013) still

require diagnostic experiments. To combat this, Lin et al. (2015) develop a single-

experiment method for estimating the gradient that requires no further simulation

replications beyond those from the nominal experiment.

They do so by exploiting the gradient estimation method of Wieland and Schmeiser

(2006). Applying least-squares regression to the internal parameter estimates (com-

puted using the random variates generated within replications) and the simulation

outputs, returns a model whose coefficients provide an estimator to the gradient with-

out the need for any diagnostic experiments. Moreover, Lin et al. (2015) point out

that the Taylor series approximation also generates the approximate contribution to

input uncertainty made by each input model. When input uncertainty is considered

to be problematic and additional real-world data can be collected, these measures are
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particularly invaluable.

Lam and Qian (2019) apply the delta method approximation in the nonparametric

framework. The gradient is estimated via random perturbation, bearing some similarity

to the two-point method of Cheng and Holland (1998) and the regression approach of

Wieland and Schmeiser (2006). Since in this case the input models consist of entire

distribution functions, the gradient is measured using the influence function and the

problem grows proportionally to the size of the input data. We now turn our attention

to some Bayesian methods.

The Bayesian model averaging (BMA) approach, developed by Chick (2001), ac-

counts for not only parameter uncertainty, but also structural uncertainty about the

correct choice of input distributions. For each replication, the input distribution and

parameters are randomly sampled from a Bayesian model average, consisting of all the

candidate distributions weighted according to their posterior probabilities based on his-

torical data collection. The distribution and parameter uncertainty is then averaged

out across the simulation results. This method is in contrast to frequentist approaches,

which typically utilise a single choice of input models that offer the best fit.

Although the approach described considers real-world data, it is also valid when no

such data is available, resulting in a sensitivity analysis for the output. A potential

concern when taking a Bayesian approach is the specification of prior distributions.

Chick (2001) provides several methods for assisting with this, including a moment

matching approach, which ties in with subjective assessments of input distributions

that are usually required for simulation experiments anyway. One particular challenge

of the BMA approach is the computational effort required to estimate the posterior

distributions, which often requires the use of Markov chain Monte Carlo.

Zouaoui and Wilson (2004) describe an alternative BMA approach, building upon

their previous work on parameter uncertainty (Zouaoui and Wilson, 2001b, 2003) and

input model and parameter uncertainty (Zouaoui and Wilson, 2001a). For each candi-
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date model, they run replications with parameters generated from the posterior input

parameter distributions. They allow for flexibility in the number of parameters gener-

ated for each candidate model, since the impact of the parameters on the variability

of the simulation response is likely to vary across the models. The final posterior re-

sponse is given by an average of the mean responses for each candidate model, weighted

according to their posterior probabilities.

The approach of Zouaoui and Wilson (2004) is designed to offer three improvements

over the BMA method of Chick (2001). Firstly, it provides a decomposition of the

variance into the three sources of uncertainty: stochastic uncertainty, model uncertainty,

and parameter uncertainty. Secondly, it guarantees to sample from each of the candidate

models, which may not occur with the BMA method of Chick (2001) if a model has a

small posterior probability and the number of simulation replications is limited. Finally,

should any additional candidate models need to be considered, then the calculations

can easily be updated by running additional replications. Using the approach of Chick

(2001), all existing simulation replications would become redundant, and thus the whole

analysis would need to be repeated using updated posterior distributions.

Both Chick (2001) and Zouaoui and Wilson (2003) consider an interval estimate for

the expected simulation response, averaged over the uncertain input parameters. As

an alternative, Xie et al. (2014a) provide a credible interval for the mean response at

the true parameters, which they believe is more desirable to simulation practitioners.

To do this, they develop a fully Bayesian framework that utilises a Gaussian process

metamodel for the simulation response, as opposed to the direct simulation approaches

of Chick (2001) and Zouaoui and Wilson (2003).

Biller and Corlu (2011) note that although the BMA method developed by Chick

(2001) can account for dependence amongst the input models, to implement this re-

quires a Bayesian model for simulations with multiple correlated inputs. They use a

flexible normal-to-anything (NORTA) distribution to characterise the behaviour of the
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correlated inputs, and develop a Bayesian model to sample NORTA parameters from

their posterior density functions. This model is then incorporated into the simulation

replication algorithm from Chick (2001).

Xie et al. (2014b) also consider the input uncertainty problem with dependent in-

put models. Motivated by situations which require a complex simulation model and a

restricted computational budget for replications, they utilise a stochastic kriging meta-

model to propagate uncertainty, in contrast to the direct simulation approach of Biller

and Corlu (2011). They focus on input models characterised by marginal distributions,

and where dependence is measured by Spearman rank correlations. To account for the

dependent input models, they also use NORTA distributions, applying bootstrapping

to quantify the estimation error of the distributions and dependency measures. An

extended version of this method can be found in Xie et al. (2016), where dependence

measured by product-moment correlations is also studied.

The methods described above all assume the input distributions are stationary,

however in reality, non-stationarity is a reasonable assumption. Morgan et al. (2016)

consider input uncertainty quantification for non-stationary input distributions. In

particular, they consider simulation models driven by piecewise-constant non-stationary

Poisson arrival processes, since these provide flexibility, can be easily fit to count data,

and are often included in simulation software. They extend both the Taylor series

approximation of Cheng and Holland (1997), and the mean-variance effects metamodel

approach of Song and Nelson (2015), to account for these specific arrival processes.

Yi and Xie (2017) study the input uncertainty quantification problem from a budget

allocation perspective. Specifically, they focus on efficiently constructing a percentile

confidence interval within a nonparametric framework for cases when simulation repli-

cations are computationally expensive. They use bootstrapping to approximate the

distributional uncertainty and direct simulation to propagate this uncertainty to the

response. Given a simulation budget, they develop a sequential approach to allocate
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more replications to the important bootstrap samples that contribute the most to the

percentile estimation, as opposed to existing methods which allocate simulation repli-

cations equally across bootstrap samples.

Zhou and Liu (2018) propose a method for input uncertainty quantification designed

to work efficiently for online data, that is, data which arrives sequentially in time.

All existing methods typically consider input data in a batch, that is, data which is

collected and available all at once. Though these methods could be repeated as new

data arrives, this would clearly be inefficient, particularly when simulation replications

are computationally expensive. Zhou and Liu (2018) assume parametric input models,

and take a Bayesian approach to estimating the input parameters and quantifying input

uncertainty. Importance sampling is used to transform existing simulation outputs so

that they can be reused under the new posterior distribution each time a data point

arrives. This is somewhat related to the green simulation idea utilised in Feng and Song

(2019).

Zhu et al. (2020) extend the standard input uncertainty quantification problem

to provide rigorous risk quantification of the mean simulation response under input

uncertainty. They propose a nested Monte Carlo approach to estimate common risk

measures such as value at risk (VaR) and conditional value at risk (CVaR), frequently

used in financial portfolio management. These allow for assessment of extreme mean

responses under the uncertain input models, which may be especially useful when the

decisions made based on the simulation analysis are irreversible.

Xie et al. (2018) consider quantifying the uncertainty of percentiles from the simula-

tion response, as opposed to traditional approaches which focus on the mean simulation

response. Building upon the Bayesian framework from Xie et al. (2014a), they construct

a rigorous distributional metamodel, motivated by quantile kriging, that models the re-

sponse of a sequence of percentiles. The metamodel is used to propagate the parameter

uncertainty, quantified via the posterior distributions of input parameters, to the per-
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centile outputs. This approach produces credible intervals that quantify the overall

uncertainty of percentiles of the simulation response, and a variance decomposition

allows for the input uncertainty and stochastic uncertainty to be separated.

Chen et al. (2022) also consider input uncertainty from a distributional perspective.

They propose a method to construct simultaneous confidence bands for the entire dis-

tribution of the simulation response, rather than just the mean. A Brownian bridge is

used to represent stochastic uncertainty, whilst a mean-zero Gaussian process is used

to represent input uncertainty. The covariance of the Gaussian process is controlled

by an influence function, which can be thought of as the gradient of the distribution

of the simulation response, with respect to the input parameters, and a subsampling

approach is used to estimate the covariance function.

Comprehensive tables classifying the literature on input uncertainty quantification

can be found in Corlu et al. (2020). The literature is split into frequentist and Bayesian

approaches, and sorted based on the characteristics of the input models (the dependence

structure and distributional form), and the approach used to propagate the input model

error (direct or metamodel).

2.3 Reducing Input Uncertainty

As we have seen, some methods for quantifying input uncertainty (Song and Nelson,

2015; Cheng and Holland, 1997) naturally provide an approximation of the contribu-

tions made to input uncertainty by each input model. Alternatively, other methods

(Ankenman and Nelson, 2012) prescribe additional diagnostic experiments, beyond the

one used to quantify input uncertainty, to reveal similar contribution information. Gen-

erally speaking, the motivation for obtaining any contribution style measure, is so that

the input models with the largest contributions can be targeted for additional data

collection in an attempt to effectively reduce input uncertainty. Here, we conduct a
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literature review on methodologies for reducing input uncertainty.

More formally, Ng and Chick (2001) specifically consider the problem of allocating

resources for extra data collection to effectively reduce input uncertainty. Parameter

uncertainty is modelled via a Bayesian approach, and the posterior distribution of each

parameter is approximated using asymptotic normality properties. These are updated

via the expected information of additional observations to make inference about the

value of additional real-world data. To optimise the allocation of the real-world data

budget, they require an approximation to the gradient of the response function. They

utilise a Bayesian model average over a set of linear metamodels to approximate the

input-output relationship and thus the gradient, however any technique for gradient

estimation can be applied here.

This work is continued in Ng and Chick (2006), where results are extended to a

broader class of input distributions. They also consider the additional scenario where

the response surface is unknown, and the asymptotic approximation may not be suf-

ficient. Here, their sampling allocation shows whether it is more meaningful to run

additional simulation replications to improve the gradient estimate, or whether to col-

lect additional data to reduce parameter uncertainty.

Freimer and Schruben (2002) describe two approaches for collecting data to reduce

the impact of input uncertainty for simulations driven by parametric input distributions.

Their approaches utilise analysis of variance (ANOVA) based on a fixed effects and

a random effects model. The fixed effects approach uses replications driven by the

confidence intervals bounds of each parameter and tests whether there is a significant

difference in the expected simulation response. If there is a significant difference, then

more input data must be collected to reduce the width of the confidence interval,

and thus reduce the effect of the parameter. The random effects approach does not

require confidence intervals. Instead, bootstrap samples are generated and the random

effects model is used to test whether the expected simulation response is constant over
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the different bootstrap samples. If this is not the case, then additional observations

should be collected. The random effects approach has the advantage of not requiring

calculation of joint confidence intervals, however it is more computationally intensive

than the fixed effects approach.

Ankenman and Nelson (2012) define a measure to describe the fair share of input

uncertainty contributed by each input model, with the aim of identifying input models

that contribute more than their fair share. In an approach motivated by sequential

bifurcation, a technique used to screen factors, they test the contributions made to

input uncertainty by groups of input distributions. The input distributions not in the

group are treated as fixed, whilst those in the group are bootstrapped, to capture the

input uncertainty solely due to the group. The resulting confidence interval can be

used to gauge whether any distributions in the group are contributing more than their

fair share, and if so, the group can be split and the subgroups can undergo the same

procedure.

Song and Nelson (2015) model the expected simulation response as a function of

the mean and variance of each input model. This approach provides the contributions

made to input uncertainty by each input model and sample size sensitivity measures.

These approximate the reduction in input uncertainty should an additional real-world

observation be collected to estimate each input model. To effectively reduce input

uncertainty, the input models with the most negative sensitivity measures should be

targeted for additional data collection, subject to feasibility and costs. Note that the

contribution and sensitivity measures do not necessarily coincide. That is, input models

with large contributions to input uncertainty may not be the most sensitive, particularly

if they are estimated from a relatively large sample of observations.

Xie et al. (2019) consider guiding input data collection for their previously developed

Bayesian framework (Xie et al., 2014a). Here, parameter uncertainty is quantified by

the posterior distribution of input parameters, and a Gaussian process metamodel is
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used to propagate the parameter uncertainty to the expected simulation response. They

adapt the functional ANOVA approach of Oakley and O’Hagan (2004), to provide a

global metamodel-assisted sensitivity analysis for stochastic simulation models. Using

this, they are able to estimate the contribution to input uncertainty from each input

model, and also predict the value in collecting additional data for each input model.

They avoid the assumption that the response surface can be modelled in a linear form,

unlike the methods of both Ng and Chick (2006) and Song and Nelson (2015), that

utilise potentially restrictive linear metamodels.

Instead of collecting additional input data, simulation users can also consider reduc-

ing input uncertainty via better input modelling. Nelson et al. (2021) use frequentist

model averaging as a method to propagate less uncertainty to the simulation output,

weighting a set of candidate parametric distributions using cross-validation. This ap-

proach is particularly applicable in situations where no parametric distribution seems

appropriate for the input data. Morgan et al. (2023) develop a spline-based method for

modelling nonhomogenous Poisson processes. The spline-based method used to model

the rate function is flexible, robust to non-Poisson data, and is shown to outperform

other recent methods in terms of recovering the true rate function of such processes.

Consequently, their approach generally passes less input uncertainty variance to simu-

lation outputs compared to the alternative methods.

Recently, there has been a focus on solving traditional simulation optimisation prob-

lems under input uncertainty, see Lam (2016) and Corlu et al. (2020) for discussion and

reviews. Within the literature on simulation optimisation under input uncertainty,

a few authors have considered the trade-off between running simulation replications

to reduce stochastic uncertainty, and collecting additional input data to reduce input

uncertainty. We briefly review some of these works.

Xu et al. (2020) propose a general framework to study the joint resource allocation

problem for simulation replications and input data collection. Their approach permits
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closed-form solutions for resource allocation that maximise the asymptotic probability

of correctly selecting the system with the best performance. In their approach, they

exploit common random numbers within the simulations and correlations between input

data to reduce costs.

Ungredda et al. (2022) propose a sequential algorithm, that in each iteration de-

cides whether to collect additional input data or run simulation replications. They

use a Gaussian process metamodel for the expected simulation response and take a

Bayesian approach to modelling the input parameters. The impact of additional input

or simulation data is quantified using a value of information criteria. This measures the

future expectation of the existing optimal solution, and actions are chosen to maximise

this value.

Kim and Song (2022) consider a Bayesian ranking and selection problem under

input uncertainty, and investigate optimal sampling ratios from the input data sources.

Specifically, they focus on the optimal estimator being the most probable best, defined

as the solution with the largest posterior probability of being optimal. They then devise

a sequential approach for acquiring input data that aims to optimise the convergence

of the posterior preference of the most probable best, based on the sampling ratios

amongst the input data sources.

2.4 Simulation Analytics

The recent field of simulation analytics, proposed by Nelson (2016), aims to harness the

dynamic data generated within stochastic simulations to develop a more sophisticated

understanding of the system. Typically, the vast quantities of dynamic data generated

within simulation replications are not retained, and additionally, high-level, static sum-

maries are often produced, which hinders the ability to evaluate the risk of, or predict,

the system behaviour. Nowadays, technology allows for the large quantities of dynamic
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data to be stored, and these have the ability to form a synthetic transactional data

set on which modern data analytic techniques can be applied. A conceptual framework

and examples of the increasingly common integration of simulation models and machine

learning methods can be found in von Rueden et al. (2020).

Some proposed objectives for simulation analytics include producing dynamic condi-

tional statements about the relationship of system state to outputs, generating dynamic

distributional statements of the output behaviour at specific points in time, and devel-

oping an understanding of why certain system designs behave differently. Simulation

analytics could be used to develop a model that can provide real-time predictions, and

knowing the key drivers behind this model may help with managing and controlling the

system. Nelson (2016) notes the need for methods to consider, and possibly exploit,

the differences between simulation-generated and real-world data, as well address the

differences in the problem context that mean a simulation model is required over a

traditional field analysis. Here, we review some applications and methodologies within

the field of simulation analytics.

Ouyang and Nelson (2017) present proof-of-concept results for predictive models in

the context of network queueing systems. Motivated by system control (e.g. managing

congestion), they use the dynamic samples paths generated within simulation replica-

tions to develop a regression model that can predict some aspect of the future behaviour

of the queue, based on the given state and time information. They propose a two-step

method, to solve the problem of handling both the state and time of the simulation

as predictor variables. The method is able to predict the probability of the system

state belonging to a certain subset at a future time, given the currently observed state

information. These subsets might represent events such as the queue being blocked or

excessive congestion in the system. Within the model these might be based on, for

example, whether the total number of customers at some collection of nodes exceeds

some threshold, or whether all the servers are busy at another particular set of nodes.
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Jiang et al. (2020) utilise logistic regression to enable online risk monitoring and

classification of a financial portfolio. The existing literature generally considers estima-

tion of the portfolio risk measures once, i.e. at a single point in time. More pertinently,

these approaches usually estimate an unconditional risk measure, only taking into ac-

count the current values of the underlying risk factors, and using static risk limits.

Instead, Jiang et al. (2020) take the simulation analytics approach. By using the sam-

ple path simulation data, they are able to estimate the same exceedance probability,

but conditional on the underlying risk factors at any time. This means the portfolio risk

can be classified at any given time, rather than just from the initial time point. They

take advantage of their knowledge of the simulation model, to perturb the simulation

sample paths and improve the quality of the risk estimators and classifiers, especially

for the earlier time periods. They also consider how to incorporate data from additional

simulation experiments into the analysis to improve the risk estimators and classifiers.

Baldwa et al. (2020) combine simulation and machine learning to make real-time

delay predictions for a neurosurgery ward. Such predictions are typically made using

analytical delay predictors or by using a data-driven approach whereby machine learning

methods are applied to the data logs from the queueing system. However, in this

instance, the system is not mathematically tractable, hence analytical predictors cannot

be derived, and the admissions data does not capture sufficient system state information

to make accurate predictions. Consequently, they develop a discrete-event simulation

model of the admission and patient stay procedures of the ward. Using the steady-state

simulation data, they train and validate machine learning models to predict whether

newly arriving patients will be admitted to the ward, and their waiting time before

admission. In practice, these models can then be used to make real-time predictions

as patients arrive to the ward, provided the hospital administration tracks the system

state variables required as input to make the predictions.

Laidler et al. (2020) apply a k-nearest neighbours classification model to data gen-
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erated from simulating a wafer fabrication facility. The simulation model, which rep-

resents the manufacturing process of semiconductor wafers, is a network of queues

complicated by different product types, repeat visits, and batch processing. The clas-

sification model is trained to identify whether a wafer will be completed early or late

with respect to its due date, based on the system state when it arrives. The motiva-

tion for using the k-nearest neighbours approach is the flexibility, since the model is

nonparametric, and the dynamic sample path data is likely to exhibit non-stationarity

that would be difficult to capture with a parametric model. Although the main focus

is on using metric learning to measure the similarity between state observations, the

application of the method is motivated by system control and the ability to make real-

time predictions. One particular benefit of the approach is the interpretability, since

the matrix produced by metric learning informs them which state variables are most

significant in determining the binary indicator of system performance.

Dantas et al. (2022) develop constructive simulations of beyond visual range air com-

bat, to estimate the most effective moment for launching missiles. The input variables

that feed into the simulations, such as altitudes, speeds, and distances, are sampled

via Latin hypercube sampling from some prespecified intervals. The motivation for the

Latin hypercube sampling approach is to fill the sample space in a better manner than

a purely random process, such as Monte Carlo sampling. The simulations terminate

after all aircraft have been destroyed or until a simulation time of 30 minutes has been

reached. The results from the simulation go through a variable selection process, before

being used to train various machine learning models. Since the data set is imbalanced,

they apply resampling techniques to balance the class distributions, and retrain the

models on the newly balanced datasets. They find that the resampling techniques im-

prove certain model metrics, whilst downgrading others. The air combat data from the

simulations, which are tricky to obtain from the real-world, are able to help develop a

decision support tool which can assist pilots in real-world air combat situations.
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2.5 Conclusion

We end this chapter with a brief conclusion to highlight some research gaps in the

literature and how they align with our research problems. Within the literature on

reducing input uncertainty, all existing approaches suppose an initial collection of input

data. Our first research problem seeks to address a gap in the literature by considering

how to account for input uncertainty prior to any initial data collection. A method

for this is developed in Chapter 3. Considering input uncertainty quantification for a

quantile is a recently researched problem, as such, there exists no approaches within

the literature for quantifying the input uncertainty of a quantile under frequentist input

modelling. Combating this is the goal of our third research problem, and is addressed

in Chapter 5. Within the literature on both input uncertainty and simulation analytics,

there exists no area of crossover. That is, there is no investigation into the impact of

input uncertainty when applying methods from simulation analytics. This forms the

basis of our fourth research problem which is exploratory, and covered in Chapter 6.



Chapter 3

Guiding Data Collection to

Minimise Input Uncertainty

In stochastic simulation, the input models used to drive the simulation are often esti-

mated by collecting data from the real-world system. This can be an expensive and

time-consuming process, so it would therefore be useful to have some guidance on how

much data to collect for each input model. In this chapter, we propose a two stage algo-

rithm that guides the initial data collection procedure for a simulation experiment that

has a fixed data collection budget, with the objective of minimising input uncertainty

in the simulation response.

The majority of content in this chapter has been published as Parmar et al. (2021b).

The main point of difference is that the future research section of the paper is converted

to an additional experiments section here. This still describes the same problems that

were outlined in the future research section of the initially published paper, however

we include some experiments to further investigate and better illustrate these, as well

as giving consideration to one extra problem that motivates an area for future work.

Note that we also update the experiment section to include a table of the parameter

values and optimal proportions for theM/M/1 experiment, and a table of the parameter

34
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values for the network queueing model experiment, to aid with the interpretation of

both these experiments. Furthermore, in the published version, the derivation of the

optimal proportions for the two optimisation problems were not included. Here we

provide them in Appendix A.1 and Appendix A.2. We also include further detail on

theM/M/1 queueing model experiment in Appendix A.3, where we show the derivation

of the optimal proportions using the analytical gradient measures. Notational changes

are made to maintain consistency with other chapters.

3.1 Introduction

The randomness in stochastic simulation is caused by input models, which are often

represented by probability distributions or processes. When the real-world processes

can be observed, samples of data can be collected and used to estimate the input

models. The samples of data from which to estimate the input models are finite, and

thus the input models will never be truly representative of reality. The uncertainty in

the estimated input models is propagated through the simulation model, resulting in an

error in the simulation response known as input uncertainty. Input uncertainty must

be quantified, along with stochastic estimation error, to measure the variability around

the simulation response and ensure that decisions are made with an appropriate level of

confidence; Barton (2012) illustrates the significant risk of ignoring input uncertainty.

A reduction in input uncertainty can be achieved by collecting additional observations

from the real-world processes. One way this is done is by studying the contribution

made to input uncertainty by each of the input models, and specifying how best to

allocate a budget for additional data collection amongst the input models.

Here, instead of looking at additional data collection to reduce input uncertainty,

we introduce the idea of guiding the initial data collection process in a manner that

minimises input uncertainty. We consider the case of parametric input models and by
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assuming some knowledge of what values the parameters may take, we develop a two

stage algorithm that allocates observations amongst the input models with the objective

of minimising input uncertainty. Collecting data in this way is likely to reduce input

uncertainty, and hence the level of variability, in the simulation response compared to

alternative approaches, thus increasing the level of insight that can be derived from

experimental results. This will lessen the need for additional data collection in order

to reduce input uncertainty and may also reduce unnecessary data collection more

generally, both of which are particularly beneficial when data collection is expensive

and time-consuming.

We discuss background literature in Section 3.2 and detail the existing methodology

we build upon in Section 3.3. We present a new breakdown of the existing methodology

in Section 3.4, which allows us to form and solve optimisation problems which minimise

input uncertainty. We describe the two stage algorithm for data collection in Section

3.5 and illustrate the algorithm with some experiments in Section 3.6. We run some

additional experiments in Section 3.7 and then conclude in Section 3.8.

3.2 Background

Various methods have been proposed to quantify input uncertainty, for an overview of

existing techniques see Barton (2012) or Song et al. (2014). We focus on the methodol-

ogy developed by Cheng and Holland (1997) for the case of parametric input distribu-

tions. Here, input model uncertainty reduces to parameter uncertainty and is modelled

using a first order Taylor series expansion around the true input parameters. A recent

development to this approach was made by Lin et al. (2015), who exploit the gradient

estimation method of Wieland and Schmeiser (2006), to estimate input uncertainty

in a single experiment. Although initially restricted to the case of stationary input

distributions, further work by Morgan et al. (2016) has since extended this input un-
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certainty quantification method for simulation models which utilise piecewise-constant

non-stationary Poisson arrival processes.

The problem of allocating resources for extra data collection was considered by

Ng and Chick (2001), who use asymptotic normality properties to approximate the

posterior distribution of each parameter. By considering the expected information of

additional observations and propagating uncertainty through the simulation using a

linear metamodel, they provide sampling plans for further data allocation which aim

to reduce input uncertainty effectively. Alternatively, Freimer and Schruben (2002) use

an ANOVA test to detect whether a parameter has a significant effect on the expected

simulation response as the parameter varies over its confidence interval. If the effect is

significant, then more data should be collected to narrow the confidence interval until

the effect is no longer significant. Finally, Song and Nelson (2015) model the expected

simulation response as a function of the mean and variance of each input model, and

use the sample size sensitivity of each distribution to recommend how to collect further

data. These methods aim to guide data collection based on input models that have

been estimated using real-world observations, however our method aims to guide data

collection before any real-world observations have been collected. We now describe

an existing input uncertainty quantification technique that we will utilise within our

approach for guiding data collection.

3.3 Taylor Series Approximation

Consider a simulation driven by L random processes which follow known independent

parametric distributions with unknown parameters. Let the unknown but true param-

eters be denoted by θ0 = (θ01, . . . , θ
0
q), where q ≥ L, as some distributions may require

more than one parameter. Suppose that real-world data can be collected from each

input distribution and that parameters are estimated via their maximum likelihood es-
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timators (MLEs). Let θ̂ = (θ̂1, . . . , θ̂q) denote the MLEs of the input parameters given

the observed data. In this parametric setup, the simulation response can be thought

of as a function of the input parameters. The output of replication j of the simulation

can be denoted by

Yj(θ̂) = η(θ̂) + ϵj(θ̂),

where η(θ̂) is the expected value of the simulation output given the estimated param-

eters and ϵ is a random variable with mean 0 representing stochastic noise.

The goal of the simulation experiment is to estimate η(θ0), the expected value of

the simulation output given the true input parameters. This can be estimated via the

sample mean of the simulation output over n replications

Ȳ (θ̂) =
1

n

n∑
j=1

Yj(θ̂),

= η(θ̂) +
1

n

n∑
j=1

ϵj(θ̂).

As n increases the error caused by stochastic noise tends towards 0, however the impact

of θ̂ on the expected simulation response is not affected by the choice of n. The

variance of this estimator breaks down into two distinct terms, stochastic estimation

error and input uncertainty. The former arises from the random variates generated

in each replication and can be easily estimated via the sample variance. The latter

measures the variability in the expected output due to having estimated the input

parameters, that is

σ2
I = Var[η(θ̂)].

Using a first-order Taylor series approximation around the true input parameters

θ0, Cheng and Holland (1997) provide the following estimate of input uncertainty

σ2
I ≈ ∇η(θ0)Var(θ̂)∇η(θ0)⊤,
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where∇η(θ0) is the gradient of the expected value of the simulation output with respect

to the input parameters θ, evaluated at θ0. This estimate of input uncertainty depends

on how sensitive the simulation output is to the input parameters and how well the

input parameters have been estimated. Neither of these terms are known, and so both

have to be estimated. Note that this method for quantifying input uncertainty has been

extended for the case of non-stationary input models by Morgan et al. (2016).

3.3.1 Variance Estimation

As the parameters are estimated via maximum likelihood estimation, the variance ma-

trix can be approximated by

V̂ar(θ̂) = I(θ̂)−1,

the inverse Fisher information matrix evaluated at the MLEs θ̂. This follows since

the asymptotic distribution of the MLEs is multivariate normal with covariance matrix

I(θ0)−1, and I(θ0)−1 can be consistently estimated by I(θ̂)−1.

3.3.2 Gradient Estimation

As the true parameters θ0 are unknown, Cheng and Holland (1997) approximate ∇η(θ̂)

instead of ∇η(θ0), however the simulation effort for the method they propose increases

linearly with the number of input parameters. Lin et al. (2015) improve upon this by

providing a method for estimating ∇η(θ̂) which is independent of the number of input

parameters. This method, which extends the work of Wieland and Schmeiser (2006),

requires running simulation replications using the fitted input parameters and record-

ing the simulation output along with internal parameter estimates for each replication.

Internal parameter estimates are obtained using the realisations generated from the

input distributions during a simulation replication, for example inter-arrival times ob-

served within a replication can provide an internal estimate of the arrival rate. Fitting
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a least-squares regression model, with the simulation output as the response variable

and the internal parameter estimates as the explanatory variables, gives a regression

model whose coefficients δ̂(θ̂) provide an estimator to ∇η(θ̂).

3.3.3 Contributions to Input Uncertainty

Input uncertainty can then be approximated by combining the estimates for the variance

matrix and the gradient vector as follows

σ2
I ≈ δ̂(θ̂) I(θ̂)−1 δ̂(θ̂)⊤.

This approximation also provides us with an estimate of the contribution made to input

uncertainty by each input distribution. Let θl denote the parameter vector for input

distribution l, note that this could be a scalar or a vector depending on the distribution.

Since the input distributions are independent, the variance matrix has a block diagonal

form, with elements consisting of individual variance matrices Var[θ̂l] for each input

distribution. Let δ̂(θl) denote the gradient vector for the parameters belonging to

input distribution l, then

σ2
I ≈

L∑
l=1

δ̂(θ̂l)I(θ̂l)
−1δ̂(θ̂l)

⊤,

where the lth term in the sum represents the contribution made to input uncertainty

by input distribution l. This breakdown can be used to show which input distributions

should be targeted for further data collection in order to reduce input uncertainty, for

example, see Lin et al. (2015).
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3.4 Data Collection for Minimising Input Uncer-

tainty

We now present a new breakdown of the Taylor series approximation to input uncer-

tainty, which we propose as a tool for guiding data collection. The Fisher information

for an i.i.d. sample of size m is simply m times the Fisher information for a single ob-

servation. Let ml denote the number of observations used to estimate the parameters

for input distribution l. The Fisher information matrix of θ̂l is then given by

I(θ̂l) = mlI0(θ̂l),

where I0 represents the Fisher information of a single observation. Let m =
∑L

l=1ml

denote the total number of observations used to estimate all input distribution param-

eters. For each input distribution l, we can write ml = rlm, where rl ∈ (0, 1) represents

the proportion of all observations which are from input distribution l, and
∑L

l=1 rl = 1.

Input uncertainty can then be written as

σ2
I ≈ 1

m

L∑
l=1

δ̂(θ̂l)[rlI0(θ̂l)]
−1δ̂(θ̂l)

⊤. (3.4.1)

Initially, let us consider a set of specific parameter values θ = (θ1, . . . , θq). For these

parameters, the Fisher information matrix can be calculated and the gradient vector can

be estimated using the method outlined above. Plugging these into (3.4.1) would give an

approximation of input uncertainty at θ in terms of the total number of observations m,

and the proportions rl in which they are allocated to each input distribution. If θ were

the set of true input parameters, we could use this to guide data collection by finding

the proportions in which to collect data such that input uncertainty is minimised. Note

that the proportions which will minimise input uncertainty are invariant to the total

number of observations.
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We are therefore interested in solving the following optimisation problem

{min
L∑
l=1

al
rl

s.t.
L∑
l=1

rl = 1 and rl > 0 for l = 1, . . . , L}, (3.4.2)

where al = δ̂(θl)I0(θl)
−1δ̂(θl)

⊤, and rl are the proportions to be optimised. This

problem can be converted to an inequality-constrained nonlinear programme and solved

to optimality by studying the first-order KKT conditions proved by Karush (1939) and

Kuhn and Tucker (1951). In Appendix A.1, we show the optimal proportions for (3.4.2)

are given by

rl =

√√√√ al(∑L
l=1

√
al

)2 . (3.4.3)

Alternatively suppose that input parameters θ̂ have been fitted via a collection of

real-world data and that input uncertainty has been quantified via the Taylor series

approximation. If input uncertainty is a cause for concern, then it may be of interest

to collect more real-world data in a manner which effectively reduces input uncertainty.

This is often done by considering a sampling budget D for extra data collection. If

we wish to collect data in a manner such that the overall proportions minimise input

uncertainty, then there is an extra consideration to be made. Given the budget for

collecting extra data and the existing data collected, there is a restriction on how small

each proportion can be, that is, each proportion will have a lower bound.

We are now interested in solving the following optimisation problem

{min
L∑
l=1

al
rl

s.t.
L∑
l=1

rl = 1 and rl ≥ bl for l = 1, . . . , L}, (3.4.4)

where al = δ̂(θ̂l)I0(θ̂l)
−1δ̂(θ̂l)

⊤, bl = ml/(m + D), and rl are the proportions to be

optimised. Again, this problem can be converted to an inequality-constrained nonlinear

programme and solved to optimality using first-order KKT conditions. In Appendix
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A.2, we show the optimal proportions for (3.4.4) are given by finding a partition (I, J)

of {1, . . . , L} such that

for l ∈ I : rl =

√
al
µ

≥ bl, for l ∈ J : rl =

√
al

µ− λl

≥ bl, λl = µ− al
b2l

≥ 0,

where

µ =

( ∑
l∈I

√
al

1−
∑

l∈J bl

)2

.

We use the solutions to these two optimisation problems to develop an algorithm

that aims to guide the initial data collection process in a manner that minimises input

uncertainty. Note that additional constraints could be added to either formulation to

incorporate features of the data collection procedure.

3.5 Two Stage Algorithm for Data Collection

When modelling some systems, for example medical practices or manufacturing pro-

cesses, collecting data to estimate the input models may be an expensive and time-

consuming task. In these scenarios, one may wish to consider a strategy for data

collection rather than taking some arbitrary approach. Here we introduce a two stage

algorithm to guide data collection. We assume that each input parameter lies in some

known interval and study how data might be optimally collected to minimise input

uncertainty within these intervals. In the first stage of the algorithm, data is collected

to hone in towards an optimal collection whilst relaying information about the true pa-

rameters values. In the second stage, extra data is collected to achieve the proportions

that minimise input uncertainty based on the parameter values from the first stage data

collection.

Suppose there has been no data collection for a system. Although we have no

data from which to estimate the input parameters we shall assume that each input
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parameter is known to lie in some interval, θ0i ∈ [li, ui], for i = 1, . . . , q, where the lower

and upper bounds, li and ui, are known. For example, in a medical practice the number

of patients arriving may be known to be between 15-20 per hour, but the exact arrival

rate is unknown. The true input parameters could lie anywhere in this q dimensional

space, and in order to collect data in a way that minimises input uncertainty, we need

to understand how the optimal proportion changes for each input parameter across the

space. An intuitive design that can be used to explore the input parameter space is a

2k factorial design, which is used to study the effects of k factors each at two different

levels (usually high and low) by considering every possible combination of factors and

levels. Since there are q input parameters and each is known to be between a lower and

upper bound, this naturally lends itself to a 2q factorial design where each factor is an

input parameter with low level li, and high level ui.

At each design point we can solve (3.4.2) to find the optimal proportions in which to

collect data should the parameters at that design point represent the true parameters.

Computing the optimal proportions at each design point will give us an idea of the be-

haviour of the optimal proportion for each input parameter over the specified parameter

space. Rather than studying the effects of each parameter, we are instead interested

in the minimum and maximum optimal proportion across the design points for each

parameter. We use these to form an approximate interval for the optimal proportion for

each parameter at the true parameter values. For example, suppose that q = 2 so the

parameter vector is θ = (θ1, θ2). A 2q factorial design gives 22 = 4 design points which

enumerate every combination of factors and levels. Suppose that a 22 factorial design

gives the optimal proportions shown in Table 3.5.1. From this, we approximate that

the optimal proportions for the true parameters will fall within the following intervals:

r1 ∈ [0.3, 0.5] and r2 ∈ [0.5, 0.7].

Suppose we have a budget C for collecting observations, which is to be allocated

amongst all the input distributions. In stage one, we aim to allocate as much of the
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Design Point i θi1 θi2 ri1 ri2
1 l1 l2 0.5 0.5
2 u1 l2 0.3 0.7
3 l1 u2 0.4 0.6
4 u1 u2 0.4 0.6

Table 3.5.1: Example optimal proportions for a 22 factorial design.

budget as possible without ruling out the true optimal proportions, which could occur

anywhere within the limits of our parameter space. By allocating the budget according

to the minimum optimal proportion for each parameter, we can find out information

regarding the true parameter values without ruling out any proportions which lie within

the approximate intervals. For the example under discussion, this would mean allocat-

ing 0.3 of the budget to estimating θ1 and 0.5 of the budget to estimating θ2, utilising

0.8 of the budget. Collecting data according to this allocation would give us informa-

tion about the parameters, whilst ensuring that any proportions within the intervals

can still be achieved by allocating the remainder of the budget. Using the data collected

in stage one, we can calculate the MLEs and the Fisher information matrix, as well as

estimate the gradient vector. We can then solve (3.4.4) to find the optimal proportions

according to the parameter estimates gained from the first stage data collection, using

the existing data to set the lower bounds. The remaining budget can then be allo-

cated in order to achieve these proportions and guide the second stage data collection.

Putting all these steps together gives us the following algorithm.
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Algorithm 1: Two Stage Algorithm for Data Collection.

Result: First stage data allocation mθ1,1,mθ2,1, . . . ,mθL,1;

Second stage data allocation mθ1,2,mθ2,2, . . . ,mθL,2;

Initialise two factorial design;

for each design point i do

Compute I0(θ
i) and δ̂(θi);

Find ri1, r
i
2, . . . , r

i
L by solving (3.4.2);

end

for each input model l do

rl,min = min
i

ril ;

mθl,1 = C × rl,min;

end

Collect data according to first stage allocation;

Compute θ̂, I0(θ̂), and δ̂(θ̂);

Find r1, r2, . . . , rL by solving (3.4.4) using lower bounds r1,min, r2,min, . . . , rL,min;

for each input model l do

mθl,2 = C × rl;

end

Collect remaining data to achieve second stage allocation;

3.6 Experiments

In this section, we illustrate the algorithm on two examples. We first use an M/M/1

queueing model to compare the final allocation of data from the two stage algorithm

with the true optimal allocation. Secondly, using a more realistic simulation model,

we compare input uncertainty estimates given by the two stage algorithm against two

commonly used approaches for data collection.
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3.6.1 M/M/1 Queueing Model

To experiment with the two stage algorithm we use first use an M/M/1 queueing

model since closed-form expressions can be found for many performance measures. We

measure the mean queueing time and since we are able to derive the gradient measures

analytically, we can calculate the true optimal proportions in which to collect data

such that input uncertainty is minimised. To evaluate the performance of the two stage

algorithm, we can compare the final proportions in which the data is allocated to the

true optimal proportions which minimise input uncertainty.

To implement the two stage algorithm, let us assume that the input parameters

are known to fall within the following intervals: λ0 ∈ [3, 6] and µ0 ∈ [9, 12]. Note

these parameter choices are arbitrary, but ensure the traffic intensity is always below 1.

We run the simulation for 1000 time periods, using n = 1000 replications to estimate

the gradients, and the budget for data collection is set to C = 1000 observations.

Within this controlled experiment we can set true parameters and use these to generate

synthetic data, here we use a Latin hypercube sample with 10 intervals to generate

10 sets of true parameters within the parameter space. For each set of parameters,

Parameter Set λ0 µ0 r1 r2
1 5.980 9.364 0.423 0.577
2 4.396 9.038 0.398 0.602
3 3.080 11.516 0.366 0.634
4 3.304 10.015 0.375 0.625
5 3.861 10.602 0.379 0.621
6 5.545 9.780 0.411 0.589
7 5.248 10.856 0.397 0.603
8 4.748 10.401 0.393 0.607
9 4.138 11.732 0.378 0.622
10 5.017 11.223 0.392 0.608

Table 3.6.1: Parameter values and analytically derived true optimal proportions for the
M/M/1 queueing model experiment.

we can derive the true optimal proportions using the analytical gradient measures (see

Appendix A.3 for more detail). Table 3.6.1 shows the values of λ and µ for each
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parameter set, along with the analytically derived true optimal proportions.

At each of set of parameters, we run the two stage algorithm 100 times, recording the

final recommended proportions in which the data is allocated in each of the experiments.

Figure 3.6.1 shows box plots of the final proportion of data allocated to λ for each set

of input parameters. The red dots indicate the true optimal proportion for each set of

parameters calculated using the analytical gradient measures.
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Figure 3.6.1: Box plots showing 100 final proportions for λ from the two stage algorithm,
compared to the true optimal proportion, shown in red, at 10 different sets of parameters
for the M/M/1 queueing model.

For each set of parameters, the box plot of proportions from the two stage algorithm

is concentrated on the true optimal proportion, showing that the two stage algorithm is

able to hone in towards an optimal collection of data. We expect to see some variation

around the true optimal proportions for two reasons. Firstly, the final proportion of

data allocated to λ is based upon the parameter estimates from the first stage data

collection and these will not to be equivalent to the true parameters since we only have

a finite budget. Secondly, the gradient terms are estimated and hence will differ from

the true gradient measures. Although variability is evident, these results are promising.
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3.6.2 Network Queueing Model

We now consider a more realistic simulation model, a network queueing model consisting

of three consecutive multi-server queues. Entities arriving at the system join the queue

at node 1. After receiving service at node 1 an entity may leave the system or join the

queue at node 2, and similarly after receiving service at node 2 an entity may leave

the system or join the queue at node 3. After service at node 3 an entity departs the

system. This model could represent a medical centre for example and may be used to

solve problems relating to capacity planning and resource allocation. Systems such as

this are referred to as operational models of healthcare units in Brailsford (2007).

(c1, s1, µ1) (c2, s2, µ2) (c3, s3, µ3)
λ

1− π1
i

π1
i

1− π2
i

π2
i

Figure 3.6.2: A graphical representation of the network queueing model.

The network queueing model is set up as follows. At nodes 1, 2 and 3 there are c1, c2,

and c3 servers respectively, each of which have a shifted exponential service distribution

with parameters (s1, µ1), (s2, µ2) and (s3, µ3). Arrivals to the system follow a stationary

Poisson process with rate λ. To represent different demographics of the population the

arrivals are split into three different types; 50% of arrivals are of type A, 30% are type

B, and 20% are type C. Each type refers to how likely an entity is to travel through

the system and so each is defined by a set of probabilities (π1
i , π

2
i ) representing the

probability of continuing from node 1 and node 2 respectively. Finally, let us suppose

the performance measure of interest is the average queueing time weighted by type.

For simplicity, we shall assume the shift parameter of each service distribution and the

routing probabilities for each type are known. The unknown input model parameters

that require estimation are therefore the arrival rate λ, and the three service rates

µ1, µ2, µ3. To implement the two stage algorithm, we assume that the input parameters
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are known to fall within the following intervals: λ0 ∈ [12, 16], µ0
1 ∈ [18, 22], µ0

2 ∈ [8, 12],

and µ0
3 ∈ [6, 10]. The remaining information about the system is known and is as follows:

there are two servers at each node (c1, c2, c3) = (2, 2, 2), the shift parameters for the

service distributions are (s1, s2, s3) = (0.05, 0.05, 0.1), and the routing probabilities for

types A, B, and C are (π1
A, π

2
A) = (0.4, 0.4), (π1

B, π
2
B) = (0.7, 0.7), and (π1

C , π
2
C) =

(0.9, 0.9) respectively.

We now evaluate the performance of the two stage algorithm against other data

collection approaches by comparing the input uncertainty passed to the simulation re-

sponse. One alternative we consider is the equal observations approach, where the same

amount of data is collected to estimate each input model. This may be the case in a

simple service system where arrivals and services are recorded consecutively. To imple-

ment this approach, we can simply split the budget equally amongst the input models

and generate observations from each true input distribution. The second alternative

we consider is the timed observation approach, where data is collected by observing the

true system over some set period of time. An example of this can be found in Griffiths

et al. (2005) where an intensive care unit model was developed using data taken over

the course of a year. By using the true parameters to run our simulation model for

some chosen period of time, we can imitate collecting data from a timed observation of

the real-world system.

Within our experiment, we wish to compare input uncertainty estimates given by the

three approaches when using the same budget. Since the timed observation approach

has no fixed number of observations, we run this first for 250 time periods. The total

number of observations gathered from this approach is then used as the budget for the

two stage algorithm and for the equal observations approach. We generate 5 random

sets of true parameters, so we can compare the approaches across the parameter space

when the optimal proportions of the true parameters vary. Table 3.6.2 shows the

parameter values for each of the 5 parameter sets. For each of set of parameters, we
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Parameter Set λ0 µ0
1 µ0

2 µ0
3

1 12.746 19.617 8.127 6.005
2 13.296 18.683 10.523 7.403
3 14.021 18.226 10.049 8.357
4 15.206 20.313 11.236 9.808
5 13.754 19.228 10.928 9.467

Table 3.6.2: Parameter values for the network queueing model experiment.

run the three approaches 100 times. Input uncertainty estimates for each approach are

estimated using the same amount of simulation effort and are recorded in the box plots

in Figure 3.6.3.
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Figure 3.6.3: Box plots showing 100 estimates of input uncertainty from using the two
stage algorithm (TS), using an equal observations approach (EO), and using a timed
observation approach (TO), at 5 different sets of parameters for the network queueing
model.

For each parameter set, the two stage algorithm reduced the mean input uncer-

tainty between 31.44% and 40.81% compared to the equal observation approach, and

between 16.05% and 24.23% compared to the timed observation approach. For each

set of parameters, the two stage algorithm allocates more observations to the arrival

rate compared to the other two approaches, and by doing so reduces input uncertainty
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despite using the same overall number of observations. The two stage algorithm shows

that by using some knowledge of what values the input parameters might take, we can

collect data for our input models in a manner that effectively reduces the input uncer-

tainty of our performance measure. A caveat here is that both the equal observation

and timed observation approach require no prior knowledge of input parameter values

nor any simulation runs, and can be completed in a single collection.

3.7 Additional Experiments

In this section, we run some additional experiments with the two stage algorithm to

help identify areas for future work. We firstly investigate the performance of the algo-

rithm when the true input parameters lie outside the specified intervals, using both the

M/M/1 queueing model, and the network queueing model. Following this, we illustrate

the problem of a small first stage data allocation and a potential pitfall of using the

two factorial design, and briefly discuss a potential solution for each of these problems.

3.7.1 External Parameters

The two stage algorithm assumes that each input parameter lies within some known

interval, however in reality it is unlikely that such an interval is known with complete

confidence. Although experts and practitioners may be able to provide estimates for

such intervals, these will only be approximations, and therefore we cannot be certain

that the true parameters will lie within the intervals. It is worth noting however that

the two stage algorithm works regardless of the values that the true parameters take.

The second stage allocation minimises input uncertainty for the MLEs calculated from

the first stage collection, regardless of whether the MLE for each parameter lies in

its interval or not. The minimisation however is constrained by the first stage data

allocation, which is based upon the optimal proportions found from the two factorial
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design over the parameter space. The issue with true parameters taking values outside

their specified interval is that the optimal proportions for these parameters without

any constraints may not be achievable, as the first stage data collection could rule

them out. To understand the behaviour and performance of the algorithm in these

situations, we run some experiments using both the M/M/1 queueing model and the

network queueing model.

Firstly, we run some experiments using the M/M/1 queueing model. Recall that

the initial intervals for the two parameters were given by λ0 ∈ [3, 6] and µ0 ∈ [9, 12].

We wish to test the performance of the algorithm when the true input parameters lie

externally to the initially specified parameter space. We experiment with 8 different

parameter sets; 4 generated using a two factorial design when the lower and upper

limits of each interval are extended by 1, and 4 by repeating the factorial design but

extending the limits by 1.25. These parameter values are likely to lead to situations

where the true optimal proportions become unobtainable due to the first stage data

collection. The parameter values and the analytically derived true optimal proportions

are shown in Table 3.7.1.

Parameter Set λ0 µ0 r1 r2
1 2.0 8.0 0.364 0.636
2 2.0 13.0 0.351 0.649
3 7.0 8.0 0.471 0.529
4 7.0 13.0 0.406 0.594
5 1.75 7.75 0.360 0.640
6 1.75 13.25 0.349 0.651
7 7.25 7.75 0.484 0.516
8 7.25 13.25 0.408 0.592

Table 3.7.1: Parameter values and analytically derived true optimal proportions for the
external parameter experiment using the M/M/1 queueing model.

At each set of external parameters, we run the two stage algorithm 100 times,

recording the final proportions in which the data is allocated in each of the experiments.

Figure 3.7.1 shows box plots of the final proportions of data allocated to λ for each set
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of parameters, along with red dots to indicate the true optimal proportions. For the

majority of parameter sets, the red dot does not lie close to the median of the box plot.
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Figure 3.7.1: Box plots showing 100 final proportions for λ from the two stage algorithm,
compared to the true optimal proportion, shown in red, at 8 different sets of external
parameters for the M/M/1 queueing model.

The factorial design used to estimate the proportion intervals in the two stage

algorithm uses parameter values from the end points of the specified intervals. In this

case, subject to some gradient approximation error, the suggested proportion intervals

for λ and µ will approximately be [0.364, 0.429] and [0.571, 0.636] respectively. The first

stage data collection is guided based on the premise that the true optimal proportion

for each parameter will lie in these proportion intervals. In the cases where the external

parameter sets have true optimal proportions that fall in these intervals (parameter sets

4 and 8), the proportions are achievable, demonstrated by the box plots being centred

around the true optimal proportions. In the other cases where the external parameter

sets have true optimal proportions that lie outside, or at the edge of these intervals, the

proportions often become unachievable, and this is seen by the true optimal proportions

being located away from the centre of the box plots. However, we can see that in these
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scenarios, the final proportions from the algorithm typically lie as close as possible to

the optimal, given the suggested proportion intervals from the two factorial design,

and ultimately this may still produce a reduced level of input uncertainty than if the

algorithm had not been used at all.

We continue our experiments with external parameters, this time using the network

queueing model. Recall that the initial parameter intervals were given by λ0 ∈ [12, 16],

µ0
1 ∈ [18, 22], µ0

2 ∈ [8, 12], and µ0
3 ∈ [6, 10]. To generate some input parameters that

lie outside these specified parameter intervals, we use the parameter values from Table

3.6.2 and add some random noise via a normally distributed random variable with mean

0 and variance 4. This returns the sets of parameters in Table 3.7.2. We use bold text

to denote when a parameter lies outside its specified interval, so we can see for sets 1,

2, and 5, two parameters lie outside their specified intervals, whilst for sets 3 and 4,

only one parameter lies outside its specified interval.

Parameter Set λ0 µ0
1 µ0

2 µ0
3

1 14.059 24.715 8.057 4.666
2 13.280 22.237 8.246 10.139
3 16.680 18.899 10.062 7.446
4 14.473 21.610 15.377 9.501
5 10.972 17.781 11.445 8.833

Table 3.7.2: Parameter values for the external parameter experiment using the network
queueing model.

As we did in the previous network queueing model experiment, we compare input

uncertainty estimates given by the two stage algorithm against two other data collection

approaches, when using the same total budget for observations. The timed observation

approach is run first for 250 time periods, and the total number of observations taken

from this approach is then used as the budget for the two stage algorithm and for the

equal observations approach. For all the external parameter sets shown in Table 3.7.2,

we run each of the three data collection approaches 100 times. We then estimate the

input uncertainty introduced by each approach, using a consistent amount of simula-
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tion effort for each estimate. Figure 3.7.2 presents box plots of the input uncertainty

estimates produced by each data collection approach across each of the parameter sets.

Due to the variation in input uncertainty values, the box plots for each parameter set

are given on separate scales.
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Figure 3.7.2: Box plots showing 100 estimates of input uncertainty from using the two
stage algorithm (TS), using an equal observations approach (EO), and using a timed
observation approach (TO), at 5 different sets of external parameters for the network
queueing model.

Figure 3.7.2 illustrates that in these preliminary experiments where one or two

parameters lie outside their specified intervals, the two stage algorithm still gives a

reduction in input uncertainty compared to both other data collection approaches.

This suggests that having an approximate idea of what value each parameter may take

is still effective in guiding data collection to minimise input uncertainty, although this

may not always be the case.

Further experimentation could be undertaken here, for example a larger scale study

could be conducted on this specific model and setup to see whether the reduction in

input uncertainty is still obtained when more than two parameters lie outside their spec-

ified intervals. Additionally, similar experiments could also be conducted using different
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parameter intervals, as the results are likely to vary depending on the parameter space

and the optimal proportions found across the two factorial design. Although empirical

results from such experiments may give us confidence that the two stage algorithm can

produce a reduced level of input uncertainty when input parameters lie externally to

their intervals, such results are likely to be specific to the particular simulation model

and parameter intervals.

If some parameters lie far outside their initially specified intervals, then there may be

a chance that input uncertainty becomes larger under the two stage algorithm compared

to the alternative approaches. However, since the two stage algorithm aims to take into

account input uncertainty prior to data collection, we might expect it to return a

reduced level of input uncertainty compared to other approaches that do not consider

input uncertainty, even when parameters may lie externally.

3.7.2 Small First Stage Allocation

We currently impose no constraint on how large the first stage data allocation needs to

be for each parameter. If the minimum optimal proportion for a parameter is small, or

the budget multiplied by the minimum optimal proportion is small, then the first stage

data allocation will suggest collecting few observations for the parameter, which is likely

to lead to an inaccurate parameter estimate. If this is the case then the proportions

calculated using the first stage data collection, which are the target proportions, will

minimise input uncertainty at a point in the parameter space which may be far away

from where the true parameters lie. Consequently, the proportions in which the data

is collected may differ greatly from the optimal proportions at the true parameters.

We might expect this to occur when very wide parameter intervals are specified.

Although very wide intervals are more likely to contain the true parameter, in queueing

style simulation models they may lead to design points in which the system doesn’t

reach steady state. In general, the design points will represent extreme scenarios in
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which certain parameters may hardly impact input uncertainty and hence have very

small optimal proportions. Consequently, the minimum optimal proportion for some

parameters may be very small, leading to small first stage data allocations and poor

parameter estimates. Here, we will demonstrate this problem using a specific example

with the network queueing model.

We consider the exact same experimental setup for the network queueing model

as previously, where the input parameters were assumed to fall within the following

intervals: λ0 ∈ [12, 16], µ0
1 ∈ [18, 22], µ0

2 ∈ [8, 12], and µ0
3 ∈ [6, 10]. Suppose that we run

the two stage algorithm, with a data collection budget of C = 1000 observations.

First, we use the two factorial design to generate the set of design points. For each

design point, we estimate the Fisher information matrix and run a set of replications

with the design point parameters to estimate the gradient vector. This gives us the

al terms in (3.4.2) required to calculate the optimal proportions, at each design point.

Table 3.7.3 contains the design point parameter values and their corresponding optimal

proportions, shown to four decimal places.

Design Point i λi µi
1 µi

2 µi
3 ri1 ri2 ri3 ri4

1 12 18 8 6 0.5149 0.1218 0.1986 0.1647
2 16 18 8 6 0.5576 0.1306 0.1710 0.1408
3 12 22 8 6 0.5226 0.0655 0.2326 0.1793
4 16 22 8 6 0.5631 0.0606 0.2039 0.1725
5 12 18 12 6 0.5401 0.1854 0.0639 0.2106
6 16 18 12 6 0.5896 0.1927 0.0249 0.1927
7 12 22 12 6 0.5490 0.0887 0.0716 0.2908
8 16 22 12 6 0.5731 0.1069 0.0232 0.2969
9 12 18 8 10 0.5239 0.1795 0.2500 0.0465
10 16 18 8 10 0.5733 0.1814 0.2365 0.0087
11 12 22 8 10 0.5201 0.1067 0.3145 0.0586
12 16 22 8 10 0.5593 0.0799 0.3493 0.0115
13 12 18 12 10 0.5697 0.2870 0.0929 0.0503
14 16 18 12 10 0.5789 0.3432 0.0407 0.0373
15 12 22 12 10 0.5673 0.1991 0.1358 0.0978
16 16 22 12 10 0.5821 0.2393 0.1086 0.0700

Table 3.7.3: Example optimal proportions for the 24 factorial design in the small first
stage allocation experiment.
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For each input model parameter, we need to find the minimum optimal proportion

across the design points. The bold numbers in each column represent the minimum

optimal proportions, and these are used to allocate data in the first stage collection.

Noticeably, the minimum optimal proportions vary in magnitude across the four input

parameters. For individual parameters, the optimal proportions exhibit different levels

of variability across design points. For example, the optimal proportions for λ (ri1)

appear quite consistent across design points, however the optimal proportions for each

of the service rate parameters (ri2, r
i
3, r

i
4) are much more variable. Multiplying the

minimum optimal proportion for each parameter by the data collection budget gives us

the following first stage data allocation

mλ,1 = 515, mµ1,1 = 61, mµ2,1 = 23, mµ3,1 = 9,

utilising a total of 608 observations. The small number of observations allocated to esti-

mating µ2 and µ3 are concerning, as they are unlikely to give rise to accurate parameter

estimates.

We are interested in what happens here when we run the remaining steps of the two

stage algorithm, with particular interest in µ3. Suppose that the true input parameters

are given by the midpoints of each interval, θ0 = (14, 20, 10, 8). We collect observations

according to the first stage allocation and calculate the MLEs, Fisher information ma-

trix, and then estimate the gradient vector. Using this information, we find the final

targeted optimal proportions based on the first stage data collection. In two separate

cases of the two stage algorithm, we found the following first stage parameter estimate

and subsequent optimal proportion for parameter µ3, based on the 9 observations

µ̂3 = 15.14 → r4 = 0.013,

µ̂3 = 6.17 → r4 = 0.280.
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The two parameter estimates are significantly different, and hence so are the optimal

proportions. In reality, the true parameter is µ0
3 = 8, which has an optimal proportion

of r4 = 0.110. In the first case, the larger parameter estimate corresponds to a quicker

service time at node 3. Since the performance measure relates to queueing time, the

gradient of this parameter becomes smaller than at the true parameter value, and hence

the algorithm suggests allocating a smaller amount of data to estimate this parameter.

Conversely, the smaller parameter estimate corresponds to a slower service time at node

3. This leads to a situation where the simulation response appears more sensitive to

the parameter, and hence the gradient of the parameter is greater than at the true

parameter. The algorithm therefore suggests allocating a larger amount of data to

estimate this parameter. Either way, the final targeted proportion differs drastically

from the optimal proportion of the true parameter.

A possible solution to this problem of a small first stage allocation is to introduce

a minimum allocation level. This would involve allocating at least a minimum number

of observations for each parameter in the first stage data allocation, to ensure that

sufficiently accurate parameter estimates are obtained. How to pick this minimum

allocation level is not instantly straightforward. We might like to consider whether the

minimum allocation level should be fixed across different scenarios, or whether it should

somehow be adapted to the specific problem and parameters at hand. For the latter,

we might want to investigate whether the minimum allocation level should in some way

depend upon the number of input parameters and the data allocation budget, as well

as the minimum optimal proportion for each parameter. It is also worth noting that

considering the minimum optimal proportion for a parameter ignores the variability

of the optimal proportion over the design points. It is possible that all other optimal

proportions for the parameter may be much greater than the minimum, or perhaps

only slightly greater, and this information would likely affect the choice of the minimum

allocation level.
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There is a trade-off in introducing a minimum allocation level. For those parameters

whose number of observations increases due to the minimum allocation level, although

we are more likely to gain an improved parameter estimate we rule out proportions that

may give a reduced level of input uncertainty had we collected fewer observations. This

might be the case if the simulation response is extremely insensitive to a certain input

parameter and therefore an accurate parameter estimate is not necessary to ensure a

small value of input uncertainty.

3.7.3 Internal Minimum Optimal Proportion

In the two stage algorithm, we use a two factorial design to explore how the optimal

proportion for each parameter varies across the parameter space. We set the lower and

upper factor levels for each parameter using the lower and upper bounds of the specified

intervals. This means we only study parameter values at the bounds of each interval,

and fail to examine any values that fall directly within each interval. This could prove

problematic, as we demonstrate briefly in the following experiment.

Consider a simulation model with two parameters θ = (θ1, θ2), and suppose that

the intervals for each parameter are given by θ01 ∈ [2, 4] and θ02 ∈ [2, 4]. Suppose we

initialise the two factorial design and find that the optimal proportions at each of the

four design points are given by the results in Table 3.7.4.

Design Point i θi1 θi2 ri1 ri2
1 2 2 0.45 0.55
2 4 2 0.45 0.55
3 2 4 0.45 0.55
4 4 4 0.45 0.55

Table 3.7.4: Optimal proportions for the 22 factorial design from the internal minimum
optimal proportion experiment.

In this case, the optimal proportions are the same across all the design points,

and hence the minimum optimal proportion for each parameter occurs at every design
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point. Based on these results, the two stage algorithm would allocate 0.45 of the data

allocation budget to estimating θ1, and the remaining 0.55 to estimating θ2. In this

unique case, the algorithm would be completed in a single stage of data collection.

However, suppose that the optimal proportion for θ1 across the parameter space is

represented by the heat map shown in Figure 3.7.3.
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Figure 3.7.3: Heat map showing r1 (the optimal proportion for θ1), as both θ1 and θ2
vary over their specified parameter intervals.

Across the parameter space, the optimal proportion for θ1 falls as low as 0.2, and

thus the optimal proportion for θ2 must reach as high as 0.8. These specific values occur

when each parameter lies at the centre of their respective interval. They are not picked

up by the two factorial design, since this only considers combinations of the interval end

points, which are represented by the corners of the heat map. In this example, should

the true parameters lie anywhere towards the centre of the parameter space, the two

stage algorithm would be unable to get close to the optimal allocation of observations,

due to the nature of the results from the two factorial design.

Although this experiment is contrived to illustrate this point, it highlights a potential

issue with the two stage algorithm that could occur in practice. There are a multitude of



CHAPTER 3. DATA COLLECTION TO MINIMISE INPUT UNCERTAINTY 63

different ways that the parameter space may be explored in order to understand how the

optimal proportions for each parameter vary, rather than via a two factorial design. For

example, we could consider using a central composite design, which would include centre

points and axial points (Montgomery, 2017), or we could use Latin hypercube sampling

(McKay et al., 2000) to generate sets of input parameters. Alternative approaches are

likely to perform better or worse in different circumstances, depending on the number of

input parameters and how the true optimal proportions vary over the specified intervals.

We therefore might like to investigate finding an approach that is robust across different

scenarios. Approaches that utilise more design points are more likely to give a better

understanding of how the optimal proportion for each parameter changes, and hence

more likely to hone in towards an optimal collection of data. However, more design

points equates to a larger initial simulation effort since more gradient vectors require

estimation, so there is a trade-off to be had here.

3.8 Conclusion

In this chapter, we introduced the novel idea of allocating an initial budget for data

collection in a manner that minimises input uncertainty. In particular, we have devel-

oped an algorithm that by collecting data in two different stages aims to hone in on an

optimal allocation of data across the input models. We use a two stage approach so

that we can approximate the parameter values first, and then attempt to collect data

optimally. Using an M/M/1 queueing model, we have demonstrated that the algorithm

achieves an allocation of data that is close to the true optimal allocation. On a more

realistic simulation model, we have shown that the two stage algorithm results in a

reduced level of input uncertainty compared to two other viable approaches for data

collection.

We have started to investigate how the algorithm behaves and performs when the
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assumption of parameters lying in the specified intervals is broken, and the preliminary

results indicate a reduced level of input uncertainty can still be achieved compared to

alternative data collection approaches. We have also illustrated two potential problems

with the algorithm. The first is the issue of a small first stage data allocation, which can

lead to inaccurate parameter estimates and hence suboptimal proportions. The second

is the issue of the two factorial design only exploring the corner points of the parameter

space, which could be problematic if the minimum optimal proportion for a parameter

lies internal to its specified interval. We have suggested some potential solutions to these

problems, introducing a minimum allocation level and utilising different experimental

designs to explore the parameter space, however these require further investigation and

experimentation. We could also investigate using additional stages in the algorithm,

though there is likely to be a trade-off here in terms of the reduction in input uncertainty

and the effort required for additional data collection steps.



Chapter 4

Comparing Data Collection

Strategies when Simulating Viral

Load Profiles

Temporal profiles of viral load have individual variability and are used to determine

whether individuals are infected based on some limit of detection. Modelling and simu-

lating viral load profiles allows for the performance of testing policies to be estimated,

however viral load behaviour can be very uncertain. We describe an approach for

studying the input uncertainty passed to simulated policy performance when viral load

profiles are estimated from different data collection strategies. The content of this

chapter has been published as Parmar et al. (2021a), with some minor textual changes.

4.1 Introduction

Individuals infected by a virus have a temporal profile of viral load starting from the

moment they are infected. If and when they are tested their test sensitivity, the proba-

bility that an infected individual will correctly receive a positive test result, is a function

of their viral load. There is individual variability in profiles of viral load, and therefore

65
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in test sensitivity too. Viral load can be a chief predictor for the risk of virus transmis-

sion (Quinn et al., 2000) and can also be strongly linked to mortality (Pujadas et al.,

2020), therefore monitoring and understanding the behaviour of viral load is extremely

important. We are interested in modelling the individual variability in temporal pro-

files of viral load and test sensitivity, and using this model to simulate and compare

the performance of different testing policies, where a testing policy is a choice of how

many times to test an individual and when. This might assist in suppressing the spread

of a virus by for example indicating which testing policies are most effective in terms

of successfully identifying the virus. Estimates of the shape of viral load profiles and

the individual variability can be very uncertain, since it requires observations of viral

load across a group of individuals at different time points. In collecting such data there

are choices to be made regarding the number of individuals to observe, the number

of times to observe each individual and the time points at which the observations are

taken. We shall refer to a particular choice of these as a data collection strategy. Mod-

elling viral load profiles directly from data will introduce a source of uncertainty into

the simulation that will propagate through to the outputs. We wish to study how data

collection strategies differ in terms of the amount of uncertainty they pass through the

simulation to the estimated performance of a testing policy, as if a particular strategy

offers a reduced level of uncertainty then this can be used for future data collection.

Here, we outline an approach to compare the uncertainty passed to simulation out-

puts due to different data collection strategies. We use a nonlinear mixed effects model

to allow for individual variability in viral load profiles and test sensitivity, and using

this as our input model we are able to simulate the performance of different testing

policies. We focus on how different data collection strategies used to estimate the input

model parameters compare in terms of the uncertainty that propagates through the

simulation model to the output, known as input uncertainty. This comparison allows

us to consider whether a particular strategy should be adopted in order to obtain a
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reduced level of input uncertainty and thus gain greater insight from the simulated

performance of testing policies.

The rest of the chapter is organised as follows. We discuss background literature in

Section 4.2 and outline the steps for our general approach in Section 4.3. An experiment

using this approach is illustrated in Section 4.4. We discuss the results of our experiment

and areas for future work in Section 4.5 before concluding in Section 4.6.

4.2 Background

Lindstrom and Bates (1990) proposed a general nonlinear mixed effects model for data

observed from a number of individuals repeatedly under different conditions, otherwise

known as repeated measures data. They estimate the model parameters via a two-step

iterative procedure that draws on methods developed for nonlinear fixed effects models

and linear mixed effects models.

Chen et al. (2021) model respiratory viral load for patients infected with SARS-

CoV-2 using a mechanistic model for respiratory virus kinetics based on a system of

differential equations. Heterogeneity of viral load is evaluated by fitting Weibull dis-

tributions at each time point in which sample data is available. Kucirka et al. (2020)

model the time profile of test sensitivity using Bayesian hierarchical logistic regres-

sion. By using a nonlinear mixed effects model, we are able to incorporate individual

variability in viral load and test sensitivity under a single model.

Quilty et al. (2021) consider how quarantine and testing policies impact transmission

of SARS-CoV-2 using an agent-based model to simulate the dynamics of viral load for

exposed individuals. Larremore et al. (2021) use temporal profiles of viral load to

simulate the effectiveness of certain testing policies and tests with different properties

in controlling an epidemic. Rather than aiming to compare different testing policies

directly, we are interested in how using different data collection strategies to model
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viral load profiles can result in varying levels of uncertainty in simulated responses.

Barton (2012) and Song et al. (2014) give an introduction to input uncertainty, a

term which refers to the variance passed to a simulation output due to having estimated

the input models via real-world data, and describe techniques to quantify it. For recent

advancements, see Lam and Qian (2017, 2018a). Efforts by Nelson et al. (2021) have also

been made to reduce input uncertainty using frequentist modelling averaging. Morgan

et al. (2019) recently considered detection and quantification of bias caused by input

modelling.

4.3 Approach

In this section, we outline the steps in our approach. We introduce our model for viral

load and discuss how we simulate the performance of testing policies. We define input

uncertainty, a method for quantifying it, and describe how we can compare the impact

different data collection strategies have on it.

4.3.1 Modelling Viral Load

To represent the individual variability in temporal profiles of viral load we use a non-

linear mixed effects model, as it seems appropriate that all profiles follow the same

functional form but with individual variability in some parameters. Let us consider a

group of infected individuals who have unique temporal profiles of viral load and sup-

pose we are able to observe, with noise, the viral loads of these individuals at different

time points. An example of this can be found in Wölfel et al. (2020), where daily mea-

surements of viral load are taken from different patients using RT-PCR. Let yij denote

the viral load observed in individual i at time tij, where i = 1, . . . , N , and j = 1, . . . , ni.
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Our nonlinear mixed effects model is as follows

yij = v(tij,θi) + g(tij,θi,ϕ)ϵij,

θi ∼ N (θpop,Ω),

ϵij ∼ N (0, 1),

where v is a nonlinear function for the temporal profile of viral load, θi is a param-

eter vector of length m for the ith individual, g is a function for the residual error,

ϕ is a parameter vector of length q for the residual error function and ϵij is an error

term which follows a standard normal distribution. Individual parameter vectors are

assumed to be normally distributed with mean θpop, a vector of length m representing

the fixed population parameters and variance Ω, an m×m covariance matrix represent-

ing the random effects. The residual errors are assumed to be independent for different

individuals and independent of each other for the same individual.

The parameters of the model (θpop,Ω,ϕ) can be estimated by maximising the log-

likelihood function or the restricted log-likelihood function of the observed data. These

expressions cannot be evaluated analytically as they have no closed form, however

computational methods can be used to obtain parameter estimates (θ̂pop, Ω̂, ϕ̂).

4.3.2 Simulation

We can use the estimated fixed and random effects to simulate a large number of

parameter vectors, where each parameter vector defines the temporal profile of viral

load for an individual. This tells us about the behaviour of viral load profiles amongst

a population. Moreover, the residual error function and its estimated parameters tell

us about the distribution of error that would occur in observing the viral load of an

individual at any time point. A test result for an individual at a specific time is based on

whether their viral load measurement lies above or below some limit of detection. For
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each simulated individual, we can calculate the probability of their observed viral load

lying above or below the limit of detection at some given testing time by considering

the distribution of error around the true viral load.

Suppose we use the estimated fixed and random effects to simulate K individuals.

Each individual k is defined by a parameter vector θ̃k, where

θ̃k ∼ N (θ̂pop, Ω̂).

The true viral load for individual k at some time point t is given by v(t, θ̃k), however

we observe the viral load with noise. This noise is distributed according to the residual

error function multiplied by a standard normal random variable. The residual error

function can be estimated by g(t, θ̃k, ϕ̂), therefore it follows that the distribution of the

observed viral load for individual k at time point t is

N (v(t, θ̃k), g(t, θ̃k, ϕ̂)
2).

For some limit of detection γ, we can use this distribution to measure the probability of

an individual correctly or incorrectly returning either a positive or negative test result

at any time point. We can use the simulated individuals to study the performance of

different testing policies amongst a large population. The performance of a policy, which

is a choice of how many times to test each individual and when, could be measured

in different ways, for example using the expected number of true positive tests or the

average probability of a false negative test.

Let Θ̂ = {θ̂pop, Ω̂, ϕ̂} denote the estimated parameters of the nonlinear mixed effects

model that will drive the simulation. For a testing policy p we denote the simulation

output of replication j by

Yj(Θ̂, p) = η(Θ̂, p) + ej(Θ̂, p),
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where η(Θ̂, p) is the expected value of the simulation output for policy p given the

parameters Θ̂, and e is a random variable with mean 0 representing stochastic noise.

Note that within a replication, a choice for the number of individuals to simulate must

be made. We consider this to be analogous to choosing the run length of replications,

and so it is not included in the notation.

We assume that there are unknown but true parameters Θ0 = {θ0
pop,Ω

0,ϕ0} from

which the real-world data is observed and that the goal of the simulation experiment

is to estimate η(Θ0, p), the expected value of the simulation output for policy p given

the true parameters Θ0. We estimate this value by taking the sample mean across n

simulation replications using the fitted parameters, that is

Ȳ (Θ̂, p) =
1

n

n∑
j=1

Yj(Θ̂, p),

= η(Θ̂, p) +
1

n

n∑
j=1

ej(Θ̂, p).

The variance of this estimator breaks down into two distinct terms, stochastic estima-

tion error and input uncertainty. Stochastic estimation error arises from the random

variates generated in each replication and can be easily estimated via the sample vari-

ance.

4.3.3 Input Uncertainty

Input uncertainty refers to the variance in the expected simulation output that arises

due to having estimated the input models. In our case input uncertainty simply reduces

to parameter uncertainty and is given by

σ2
I = Var[η(Θ̂, p)].
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Input uncertainty is not straightforward to estimate since it requires knowledge of the

sampling distribution of Θ̂ and the functional form of η(·) both of which are usually

unknown (Song et al., 2014).

A simple way to estimate input uncertainty is using bootstrapping, which involves

sampling with replacement from the input model data, fitting input models according

to this bootstrapped data and running replications using the bootstrap fitted input

models. Repeating this bootstrapping procedure multiple times and treating the results

as a random-effects model allows us to estimate input uncertainty (Nelson, 2013). In

the case of repeated measures data bootstrapping can be done by resampling with

replacement from entire individuals, this is known as a case or paired bootstrap.

4.3.4 Comparing Data Collection Strategies

By choosing the functions v and g, and selecting some true parameters (θ0
pop,Ω

0,ϕ0) we

can simulate viral load observations from the nonlinear mixed effects model. This allows

us to generate data sets of observations where we choose the number of individuals

observed, as well as the number of observations per individual and the times at which

they are observed. Using these data sets we can estimate input parameters, simulate

the performance of different testing policies and quantify input uncertainty. This will

allow us to investigate how different data collection strategies perform in terms of the

uncertainty they propagate to the simulation outputs. If a particular approach clearly

returns a reduced level of input uncertainty compared to any alternatives, then using

this data collection strategy will provide more insightful simulation results and allow

for better comparisons to be made between different testing policies.
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4.4 Experiment

In this section, we describe an experiment using the approach outlined in Section 4.3.

We select functions and parameters for the nonlinear mixed effects model and compare

three different data collection strategies across two sets of testing policies.

4.4.1 Input Model

To provide an example of functions and parameters we use the recent literature on

SARS-CoV-2. Note, we are not aiming to accurately model viral load profiles that

occurred during the COVID-19 pandemic, rather just choose a nonlinear mixed effects

model that is somewhat representative of a real-world problem. We select our model and

parameters such that the viral load profiles have properties that match the behaviour

found in various sources of literature.

To model the temporal profile of viral load we choose a shifted scaled lognormal

function as this has a single peak and an unbounded right tail, with a shape similar to

the right-skewed plots of viral load in Wölfel et al. (2020). Individual i is represented

by parameter vector θi = (µi, σi, αi), where µi and σi are parameters to the lognormal

distribution and αi is the scale parameter. The viral load of individual i at time t is

given by

v(t,θi) =


αif(t−s,µi,σi)

f(exp(µi−σ2
i ),µi,σi)

, t ≥ s

0, t < s

where f(t, µi, σi) is the probability density function of a lognormal distribution with

parameters µi and σi, s > 0 represents the shift, and t is interpreted as days since

infection. The mode of f(t, µi, σi) is given by t = exp(µi − σ2
i ), therefore αi represents

the peak of the viral load profile for individual i. Note that v measures viral load in

units of log10.

We find fixed and random effects, and a shift value such that the viral load profiles
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generated by the nonlinear mixed effects model match properties found in the literature,

such as the peak viral load behaviour in Chen et al. (2021) and the time between

infection and the peak viral load in Backer et al. (2020). The fixed and random effects

are given (to three decimal places) by the following

θ0
pop = (3.453, 1.415, 7.023), Ω0 =


0 0 0

0 0.030 0.046

0 0.046 2.639

 ,

with shift s = 1.5.

We consider a multiplicative residual error function with parameter vector ϕ =

(β, ρ), where the residual error function for individual i at time t is given by

g(t,θi,ϕ) = βv(t,θi)
ρ.

We set the true residual error parameters to be ϕ0 = (0.25, 1), as this means the test

sensitivity over time exhibits similar behaviour to that found in Kucirka et al. (2020).

4.4.2 Simulation

In our experiment, we measure policy performance using the average probability of an

individual returning at least one positive test. An individual will return a negative test

result if their observed viral load is below some limit of detection γ. The probability of

a simulated individual k with parameters θ̃k returning a negative test result at time t,

where t > s, is given by

Φ

(
γ − v(t− s, θ̃k)

g(t, θ̃k, ϕ̂)

)
,

where Φ denotes the cumulative distribution function of the standard normal distribu-

tion. Reported limits of detection of the PCR tests for SARS-CoV-2 have a wide range,

we will use γ = 4 which appears to be the most common. Note that this could be altered



CHAPTER 4. DATA COLLECTION STRATEGIES FOR VIRAL LOADS 75

depending on the specific context and requirements of the simulation experiment.

A policy that involves testing every individual at d time points given by t1, . . . , td,

is denoted by pt1,...,td . For example, p3 denotes a policy where every individual is tested

on day 3, whilst p3,5 denotes a policy where every individual is tested on both day 3

and day 5. The probability that an individual returns at least one positive test for

a particular policy is equal to 1 minus the probability that the individual returns a

negative test result at all time points in the policy. For individual k, the probability of

returning at least one positive test under the policy pt1,...,td is given by

1−
d∏

i=1

Φ

(
γ − v(ti − s, θ̃k)

g(ti, θ̃k, ϕ̂)

)
.

We can consider how the policy pt1,...,td performs across all simulated individuals by

computing the mean probability of an individual returning at least one positive test

under the policy, thus our simulation output is

1

K

K∑
k=1

[
1−

d∏
i=1

Φ

(
γ − v(ti − s, θ̃k)

g(ti, θ̃k, ϕ̂)

)]
.

This performance measure might be used to help successfully identify infected individ-

uals and implement effective isolation measures.

We simulate the performance of 22 policies, which are split into two sets. The

first set consists of policies pt1 , pt1,t2 , pt1,t2,t3 where t2 = t1 + 2 and t3 = t1 + 4 for

t1 = 3, 4, 5, 6. These policies might be simulated to study how increased testing affects

policy performance, we will refer to them as the multiple testing policies. The second

set consists of policies p3 and p3,t2 , for t2 = 4, . . . , 14. These policies might be simulated

to help decide when to conduct a follow-up test on individual, we will refer to these as

the follow-up testing policies.
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4.4.3 Data Collection Strategies

We are interested in comparing data collection strategies where the total number of

viral load observations are the same, but the observations are split differently in terms

of the number of individuals observed and the number of observations per individual.

We consider three strategies, all of which use 350 observations of viral load. The

first takes 10 observations from 35 individuals, the second takes 7 observations from

50 individuals, and the third takes 5 observations from 70 individuals. These will be

referred to as the 35×10, 50×7, and 70×5 strategies respectively. For each strategy,

individuals are observed at equally spaced time points, with their first observation taken

at a randomised time after s such that their final observation is taken before 21 + s.

4.4.4 Results

We now have our input model functions and parameters, simulation output, testing

policies, and different data collection strategies to compare. For each strategy we gen-

erate a data set of viral load observations as appropriate from the true input model and

estimate the input model parameters using the R package developed by Pinheiro et al.

(2020) which implements the computational methods described in Lindstrom and Bates

(1990). These input parameters drive the simulation model in the nominal experiment,

where each policy performance is estimated across n = 100 replications, each of which

simulates K = 10000 individuals. We then approximate input uncertainty and stochas-

tic estimation error for each policy performance via a diagnostic experiment where the

data is bootstrapped B = 250 times, and where for each bootstrap the same number

of replications and individuals are used as in the nominal experiment. This gives us an

estimate of policy performance, input uncertainty and stochastic estimation error for

each of the 22 policies.

Measures of input uncertainty and stochastic estimation error are typically used

to construct confidence intervals for simulation outputs. We use the asymptotic nor-
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mality theory method described in Cheng and Holland (2004), however we make a

slight adjustment. Since the simulation output is a probability, we construct 95% confi-

dence intervals using normality theory on the logarithm of one minus the bootstrapped

outputs, and then transform the intervals back to the original scale. The confidence

intervals for each policy performance produced by the three data collection strategies

are shown in Figure 4.4.1. Note that the stochastic estimation error is very small, so

the uncertainty in policy performance is primarily due to input uncertainty.
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Figure 4.4.1: Interval plot showing the confidence intervals for each data collection
strategy across the two sets of testing policies, from a single macro replication.

We can see that the widths of the confidence intervals and their estimates of the

performance measure differ for each strategy. In this case, the 35×10 strategy has the

smallest input uncertainty for policies p3, p3,5, p4 and p3,4, whilst the 50×7 strategy has

the smallest input uncertainty for all other policies. Note that policies that test more

frequently have a reduced level of input uncertainty, and this translates to narrower

confidence intervals. To understand the behaviour of each strategy more generally, we

conduct 100 macro replications, that is, we repeat this experiment 100 times. First, we

compare the average input uncertainty estimates for the two sets of policies across the
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three data collection strategies.

(a) Multiple testing policies

Policy 35×10 50×7 70×5
p3 39.7 33.9 32.4
p3,5 12.6 10.8 10.7
p3,5,7 4.79 3.96 3.74
p4 21.7 18.6 18.4
p4,6 7.35 6.21 6.00
p4,6,8 3.60 2.85 2.61
p5 13.6 11.7 11.6
p5,7 5.30 4.28 3.97
p5,7,9 3.23 2.42 2.16
p6 10.8 9.19 9.01
p6,8 4.85 3.72 3.33
p6,8,10 3.42 2.46 2.15

(b) Follow-up testing policies

Policy 35×10 50×7 70×5
p3 39.7 33.9 32.4
p3,4 21.6 18.6 18.9
p3,5 12.6 10.8 10.7
p3,6 9.03 7.68 7.43
p3,7 7.79 6.50 6.17
p3,8 7.55 6.20 5.82
p3,9 7.82 6.36 5.93
p3,10 8.40 6.79 6.30
p3,11 9.19 7.40 6.85
p3,12 10.1 8.16 7.54
p3,13 11.2 9.03 8.35
p3,14 12.3 10.0 9.27

Table 4.4.1: Average input uncertainty (×10−4) for each data collection strategy across
100 macro replications.

From Table 4.4.1 we see that all the multiple testing policies have the smallest

average input uncertainty when using the 70×5 strategy and the largest average input

uncertainty when using the 35×10 strategy. The same holds for all the follow-up testing

policies, apart from policy p3,4 where the 50×7 strategy has the smallest average input

uncertainty. Although not shown here, the average stochastic estimation error is of order

×10−7 for p3 and order ×10−8 for all other policies across each of the data collection

strategies, and is therefore relatively small compared to input uncertainty. Since input

uncertainty and stochastic estimation error combine to give the total variance of a

simulation output, these results suggest that the simulation outputs from using the

70×5 data collection strategy will have the smallest variance and will hence offer the

greatest level of insight.

As we have seen in Figure 4.4.1, the confidence intervals produced by each data

collection strategy can cover quite different output values. Using the true input model

parameters to run simulation replications, we are able to estimate the true performance

of each policy, and check whether these lie in the confidence intervals. Table 4.4.2 shows
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how many of the 100 macro replications produced confidence intervals that contained

the true performance measure for each of the three data collection strategies.

(a) Multiple testing policies

Policy 35×10 50×7 70×5
p3 87 89 65
p3,5 87 94 84
p3,5,7 93 94 89
p4 85 92 80
p4,6 91 94 86
p4,6,8 94 95 89
p5 84 95 81
p5,7 94 95 86
p5,7,9 94 96 91
p6 91 95 82
p6,8 94 94 89
p6,8,10 96 94 91

(b) Follow-up testing policies

Policy 35×10 50×7 70×5
p3 87 89 65
p3,4 90 94 82
p3,5 87 94 84
p3,6 87 94 82
p3,7 90 93 84
p3,8 91 92 84
p3,9 93 91 85
p3,10 93 92 87
p3,11 93 89 86
p3,12 92 86 86
p3,13 92 87 86
p3,14 92 87 85

Table 4.4.2: The number of macro replications out of 100 that produced confidence
intervals containing the true performance measure for each data collection strategy.

For the multiple testing policies, we see that generally the 50×7 strategy produces

the most confidence intervals that contain the true performance measure. The 70×5

strategy produces many confidence intervals that do not contain the true measure,

particularly for the single day testing policies. For the follow-up testing policies, we

again see that the 70×5 strategy produces the least amount of confidence intervals

containing the true performance measure. For policies p3 to p3,8 the 50×7 strategy

has the highest coverage, whilst for policies p3,9 to p3,14 the 35×10 strategy has the

highest coverage. These results suggest that the 50×7 approach performs best in terms

of capturing the true performance measure. The results of Table 4.4.1 and Table 4.4.2

combined suggest that the 70×5 approach is reducing the variance the most but around

the incorrect point, possibly indicating some input modelling bias. Note that across all

policies, the 35×10 strategy has the largest average interval width. The 70×5 strategy

has the smallest average interval width for all policies apart from p3,4 and p3,5, where

the 50×7 strategy has the smallest.
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We investigate whether the true performance measure lies above or below the con-

fidence intervals and find that there is a very strong tendency for the performance

measure to lie above the confidence intervals across all data collection strategies, par-

ticularly for the 50×7 and 70×5 strategy. This suggests that the policy performances

estimated by the nominal experiments are underestimating the true performance mea-

sures, which we confirm by finding a negative bias for each simulated policy performance

across every data collection strategy. Following this, we calculate the bias in the input

model parameter estimates. Figure 4.4.2 shows the relative bias induced by each data

collection strategy across the 100 macro replications for each of the 8 input parameters.

By considering relative bias, we are able to make comparisons across parameters.
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Figure 4.4.2: Bar plots showing the relative bias of each input parameter for the three
different data collection strategies, across 100 macro replications

From the top row we see that the relative bias in the population parameters, or the

fixed effects, is smallest when using the 35×10 approach and is largest when using the

70×5 approach. Notably, the relative bias is negative for each population parameter

and strategy, perhaps indicating a tendency for each of these parameters to be underes-

timated regardless of how the data is collected. We see that parameters σ and α have a
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larger relative bias than µ for each strategy. Conversely the relative bias in estimating

the terms of the variance matrix, or the random effects, generally seems to be largest

when using the 35×10 strategy and smallest when using the 70×5 strategy. Again, the

relative bias is negative for each parameter and strategy, and is particularly large for

the covariance of σ and α under the 35×10 and 50×7 strategy. The two terms in the

residual error function have the smallest relative bias when using the 35×10 strategy.

Interpreting the results in Figure 4.4.2 is not straightforward, as the relative bias

in the estimated parameters occur simultaneously. For example, if we just consider a

negatively biased estimate of α then this will clearly result in underestimated simulation

outputs since this represents the mean peak height of the viral load profiles. However,

a biased estimate of α occurs at the same time as biased estimates of all other input

parameters, and we do not know how these interact in terms of affecting the simulation

output.

4.5 Discussion

Initially we compared the input uncertainty induced by different data collection strate-

gies and the results in Table 4.4.1 showed that the 70×5 data collection strategy gener-

ally had the smallest average input uncertainty across all policies. However, the results

in Table 4.4.2 showed that this strategy performs poorly in terms of producing confi-

dence intervals for the simulation outputs that contain the true performance measure,

whilst the 50×7 strategy showed the best coverage. We found that in many cases the

true performance measures were greater than the upper bounds of the confidence inter-

vals and that the true policy performance was being underestimated by the simulation

outputs. Figure 4.4.2 showed that each data collection strategy provided negatively

biased estimates of every fixed and random effect of the nonlinear mixed effects model.

Based on the results in this experiment, it appears that the 50×7 strategy is most
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suitable, not because it returns a reduced level of input uncertainty across policies com-

pared to the alternative strategies, but because it produces the best coverage of the true

performance measure. Clearly, it is inappropriate to solely compare the data collection

strategies based on input uncertainty and that the confidence interval coverage should

be considered, along with the bias in the simulation outputs. Should the data collec-

tion strategies give similar coverage and bias across all policies, then comparing input

uncertainty may help to differentiate between them.

With the example discussed, we have seen negatively biased estimates of the fixed

and random effects in our input model. Whether this is due to the amount of data

being used to fit the input parameters or due to an inherent trait of the model fitting

methodology remains to be seen and requires further investigation. Regardless of this,

considering how the input parameter estimates produced by each data collection strat-

egy compare to the true input parameters may help us to understand the differences

between strategies in terms of replicating the true input model behaviour. In addition,

an input parameter sensitivity analysis would indicate which of the input model pa-

rameters is most influential in estimating each policy performance, as well as revealing

how the simulation outputs are affected by interactions between the parameters.

More generally, there are alternative methods for bootstrapping that could be used,

such as the parametric bootstrap as well as bootstrap methods specific to nonlinear

mixed effects models. Comparing these methods is difficult however, as the true value

of input uncertainty is unknown. There are also alternative techniques for quantifying

input uncertainty that could be implemented, which may offer a computational advan-

tage over a bootstrapping procedure. We have seen issues with the simulation outputs

behaving differently to the true performance measures, demonstrated by the poor con-

fidence interval coverage shown by some of the data collection strategies. It therefore

might be suitable to compare the strategies via the mean squared error due to input

modelling, which incorporates input uncertainty and squared input model bias.
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4.6 Conclusion

In this chapter, we outline an approach for comparing different data collection strategies

via input uncertainty when modelling temporal profiles of viral load and simulating the

performance of different testing policies. In particular, we use a nonlinear mixed effects

model to represent individual variability in temporal profiles of viral load and use the

residual error function to model measurement error. By selecting the functions and

parameters of the model, we can generate different sets of viral load observations that

represent different strategies for collecting data. For each strategy we use the observa-

tions to estimate the model parameters which are used to simulate the performance of

different testing policies. The different data collection strategies are compared by the

impact of input uncertainty in the simulation outputs.

We demonstrate this approach using a nonlinear mixed effects model, which aims

to replicate the behaviour of viral load profiles seen during the COVID-19 pandemic.

We simulate the probability of an individual returning at least one positive test across

two sets of testing policies and compare data collection strategies which use the same

number of total observations but split differently between the number of individuals

and the number of observations per individual. In this example, we find that compar-

ing the strategies solely based on input uncertainty is not sensible, as the strategies

perform differently in terms of producing confidence intervals for the simulation output

that contain the true performance measure. We find a tendency for the true per-

formance measures to be underestimated by the simulation and although this can be

linked to negatively biased parameter estimates it requires further investigation through

some sensitivity analysis. Future research includes considering alternative techniques

for quantifying input uncertainty and incorporating confidence interval coverage and

simulation output bias in the approach.



Chapter 5

Input Uncertainty Quantification

for Quantiles

Input models that drive stochastic simulations are often estimated from real-world sam-

ples of data. This leads to uncertainty in the input models that propagates through to

the simulation outputs. Input uncertainty typically refers to the variance of the out-

put performance measure due to the estimated input models. Many methods exist for

quantifying input uncertainty when the performance measure is the sample mean of the

simulation outputs, however quantiles that are frequently used to evaluate simulation

output risk cannot be incorporated into this framework. Here, we adapt two input

uncertainty quantification techniques for when the performance measure is a quantile

of the simulation outputs rather than the sample mean. The content of this chapter

has been published as Parmar et al. (2022), with some minor textual additions made

for clarity and consistency with other chapters, as well as some notational adjustment

also to maintain consistency with other chapters.

84
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5.1 Introduction

The randomness in stochastic simulation models comes from input models that are

typically represented by some probability distributions or processes. Often, these input

models are fit using samples of data taken from the real-world system. Since the

samples are necessarily finite, the fitted input models are never truly representative

of reality. This introduces a source of uncertainty into the simulation model that will

propagate through to the outputs. If this uncertainty is not considered in simulation

output analysis, then important decisions are at risk of being made with misleading

levels of confidence. Input uncertainty broadly refers to the impact of input model

uncertainty on simulation outputs. More specifically, input uncertainty quantification

aims to quantify the variance in the performance measure due to having estimated the

input models. These methods often consider the performance measure to be the sample

mean of the simulation outputs, however alternative performance measures might be

helpful, for example to learn about the distributional properties of the simulation output

or to identify different features between two systems that have similar sample means.

Quantiles are useful for assessing risk. They are particularly common in financial

portfolio management, where they are referred to as value at risk. Quantiles can be

estimated from simulation outputs using the empirical cumulative distribution function.

Existing work on quantile uncertainty quantification accounts for the uncertainty in the

quantile estimate due to the finite number of outputs. If the simulation model is driven

by input models fitted using real-world data, then there is input model uncertainty

which will propagate through the model to the quantile estimate. Current methods

do not account for this additional source of error. We are interested in quantifying

the effect of input model uncertainty on quantile estimates calculated from simulation

outputs. That is, this work aims to quantify input uncertainty when considering a

quantile of the simulation outputs, rather than the sample mean.

The rest of the chapter is organised as follows. In Section 5.2 we discuss the input
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uncertainty quantification problem for the mean and describe how this changes for

quantiles. In Section 5.3, we describe two input uncertainty quantification methods

that apply to the mean, and adapt them specifically for the case of quantiles. We run

some experiments in Section 5.4 to illustrate the performance of the methods, before

concluding in Section 5.5.

5.2 Input Uncertainty

Consider a simulation model driven by L independent input distributions denoted by

G = {G1, . . . , GL}, each of which could be parametric or nonparametric. We represent

the output of replication j as

Yj(G) = η(G) + ϵj(G),

where η(G) = E[Yj(G)] is the expected value of the simulation output random variable

and ϵj(G) is a random variable with mean 0 representing stochastic noise. Assume

there are true input distributions denoted by G0 = {G0
1, . . . , G

0
L}. Suppose the true

input distributions are unknown, but real-world data can be collected from each distri-

bution. Suppose we take a sample of ml observations from the lth input distribution

and compute a collection of fitted input distributions denoted by Ĝ = (Ĝ1, . . . , ĜL). A

nominal experiment consists of running n i.i.d. simulation replications using the fitted

input distributions to obtain outputs Y1(Ĝ), Y2(Ĝ), . . . , Yn(Ĝ).

5.2.1 Input Uncertainty Quantification for the Mean

The original input uncertainty problem assumes the goal of the experiment is to estimate

η(G0), the expected value of the simulation output random variable under the true input
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distributions. We estimate this via the sample mean of the simulation outputs

Ȳ (Ĝ) =
1

n

n∑
j=1

Yj(Ĝ) = η(Ĝ) +
1

n

n∑
j=1

ϵj(Ĝ).

The variance of this point estimator is

Var[Ȳ (Ĝ)] =
1

n
E
[
Var(ϵ1(Ĝ) | Ĝ)

]
+Var

[
η(Ĝ)

]
, (5.2.1)

where the outer expectation and variance on the right-hand side of the equation are

with respect to the sampling distribution of Ĝ. The first term in (5.2.1) measures the

expected variability due to the stochastic noise, given the fitted input distributions. We

shall define this as stochastic uncertainty for the mean and denote with σ2
S,M

σ2
S,M =

1

n
E
[
Var(ϵ1(Ĝ) | Ĝ)

]
. (5.2.2)

This can be driven towards 0 by increasing the number of replications. The second

term in (5.2.1) measures the variance in the system mean due to having estimated the

input distributions. We shall define this as input uncertainty for the mean and denote

with σ2
I,M

σ2
I,M = Var

[
η(Ĝ)

]
. (5.2.3)

This depends on the sample sizes of real-world data used to fit the input distributions,

as well as the structure of η(·), which is usually unknown. The aim of input uncertainty

quantification is to estimate this term.

Various methods have been proposed to quantify input uncertainty for the mean of

simulation outputs, for an overview see Song et al. (2014) or Lam (2016). There are

two existing methods that we will adapt in this chapter. The first, from Nelson (2013)

(Section 7.2), uses bootstrapping to capture the variability of the input distributions and

simulation to propagate input model uncertainty. Input uncertainty can be estimated
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by subtracting the stochastic uncertainty from the total variability of the bootstrapped

outputs. The second method, by Cheng and Holland (1997), considers the case of

parametric input distributions. Input uncertainty is modelled using a first-order Taylor

series approximation and requires estimates of the parameter variance and the gradient

of η(·). We choose these two methods as they cover both parametric and nonparametric

input models, and provide the foundation for more complex methodology.

5.2.2 Input Uncertainty Quantification for Quantiles

Suppose that instead of estimating the expected value of the simulation output random

variable under the true input distributions, we estimate a quantile of the simulation

output random variable under the true input distributions. For a random variable Y

with a strictly increasing cumulative distribution function (CDF) F , the p-quantile, for

0 < p < 1, is defined as the constant ξp = F−1(p) = inf{y : F (y) ≥ p}. A common

example of a quantile is the median, which is the 0.5-quantile, ξ0.5.

Denote the simulation output random variable under the true input distributions

by Y (G0), with CDF F0. The p-quantile of F0, for 0 < p < 1, is given by ξp(G
0) =

F−1
0 (p) = inf{y : F0(y) ≥ p}. Assume that F0 is strictly increasing, differentiable at

ξp(G
0), and that f(ξp(G

0)) > 0, where f is the derivative of F . Given n i.i.d. outputs,

we can construct an empirical CDF, which can be inverted to obtain a quantile point

estimate (Serfling, 2009) (Section 2.3). We can estimate F0 via the empirical CDF F̂n,

defined by

F̂n(y) =
1

n

n∑
j=1

I(Yj(Ĝ) ≤ y),

where I(·) denotes the indicator function. The p-quantile estimator from our nominal

experiment is given by ξp,n(Ĝ) = F̂−1
n (p). This is equivalent to ξp,n(Ĝ) = Y(⌈np⌉)(Ĝ),

where Y(1)(Ĝ) ≤ Y(2)(Ĝ) ≤ · · · ≤ Y(n)(Ĝ) are the order statistics of the outputs and ⌈·⌉

represents the ceiling function.
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Applying the law of total variance to the quantile estimator gives

Var
[
ξp,n(Ĝ)

]
= E

[
Var(ξp,n(Ĝ)|Ĝ)

]
+Var

[
E(ξp,n(Ĝ)|Ĝ)

]
, (5.2.4)

where the outer expectation and variance on the right-hand side of the equation are

with respect to the sampling distribution of Ĝ. The first term in (5.2.4) measures the

expected variability of the quantile estimate given the fitted input distributions. We

shall define this as stochastic uncertainty for the quantile and denote with σ2
S,Q

σ2
S,Q = E

[
Var(ξp,n(Ĝ)|Ĝ)

]
. (5.2.5)

This is the uncertainty due to having estimated the quantile via simulation. This will

tend towards 0 as the number of replications increases, since given the fitted input

distributions, the simulated CDF will approximate the true CDF. The second term in

(5.2.4) measures the variance of the expected value of the quantile estimate given the

fitted input distributions. We shall define this as input uncertainty for the quantile and

denote with σ2
I,Q

σ2
I,Q = Var

[
E(ξp,n(Ĝ)|Ĝ)

]
. (5.2.6)

This measures the uncertainty in the expectation of the quantile estimate due to having

estimated the input distributions. This is complex and depends upon the sample sizes

used to estimate the input distributions as well as the CDF of the simulation output

random variable at the fitted input distributions, which is usually unknown. As this

term is different to input uncertainty for the mean in (5.2.3), we will require differ-

ent methods to quantify it. Note that since the quantile estimator is asymptotically

unbiased (Nakayama, 2014), then for large enough n it follows that

E(ξp,n(Ĝ)|Ĝ) ≈ ξp(Ĝ), (5.2.7)
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where ξp(Ĝ) is the p-quantile of the simulation output random variable under the

estimated input distributions.

There is little literature on input uncertainty quantification for quantiles. Zhu et al.

(2020) define and provide estimators to quantiles of the mean performance measure

under input uncertainty. Xie et al. (2018) develop a Bayesian framework to quantify

both the stochastic uncertainty and input uncertainty of percentiles of simulation out-

puts. Our work aims to quantify input uncertainty for quantiles from a frequentist

perspective.

5.3 Methods

We have outlined the original input uncertainty problem and discussed how this changes

for quantiles. We now develop two input uncertainty quantification techniques for

quantiles. We consider a bootstrapping approach and a Taylor series approximation,

the latter of which is restricted to the case of parametric input distributions. For each

method we describe its application to the mean followed by our adaptation for quantiles.

When we refer to just input uncertainty or stochastic uncertainty in this section, this

will be specific to the mean or quantile, depending on the subsection.

5.3.1 Bootstrapping for the Mean

Here we describe the bootstrapping method from Nelson (2013) (Section 7.2) which

is used to estimate input uncertainty for the mean. Bootstrapping approximates the

sampling distribution of the fitted input models. A single bootstrap consists of three

parts. Firstly, for each input distribution, we sample with replacement ml observations

from each set of ml initial observations. Secondly, these samples are used to estimate

bootstrap fitted input distributions. Thirdly, the bootstrap fitted input distributions

are used to run simulation replications. Suppose we use B bootstraps. We denote the
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bootstrap fitted input distributions by Ĝk for k = 1, . . . , B, and we denote the outputs

from the kth bootstrap by Y1(Ĝk), . . . , Yn(Ĝk). This diagnostic experiment requires a

total of Bn replications.

Let the mean of the outputs from the kth bootstrap be denoted by Ȳ (Ĝk) =∑n
j=1 Yj(Ĝk)/n, and let the mean of these means be denoted by ¯̄Y =

∑B
k=1 Ȳ (Ĝk)/B.

The total variance of the mean performance measure from the nominal experiment is

estimated by the sample variance of the bootstrapped means

σ̂2
T,M =

1

B − 1

B∑
k=1

(Ȳ (Ĝk)− ¯̄Y )2.

This term approximately measures both input uncertainty and stochastic uncertainty.

Stochastic uncertainty is approximated by calculating the sample variance of the out-

puts in each bootstrap, averaging these across bootstraps, and dividing by a factor of

n

σ̂2
S,M =

1

n

(
1

B

B∑
k=1

(
1

(n− 1)

n∑
j=1

(Yj(Ĝk)− Ȳ (Ĝk))
2

))
.

To estimate input uncertainty we subtract stochastic uncertainty from the total variance

σ̂2
I,M = σ̂2

T,M − σ̂2
S,M .

Note that this could return a negative estimate of input uncertainty, which is interpreted

as meaning that the effect of input uncertainty is relatively small compared to stochastic

uncertainty.
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5.3.2 Bootstrapping for Quantiles

We now adapt the bootstrapping method for quantiles. For the kth bootstrap, we can

compute an empirical CDF from the outputs of the n replications

F̂n,k(y) =
1

n

n∑
j=1

I(Yj(Ĝk) ≤ y),

and a quantile estimate ξp,n(Ĝk) = F̂−1
n,k(p). Let ξ̄p,n,B =

∑B
k=1 ξp,n(Ĝk)/B denote the

average of the quantile estimates across bootstraps. The total variance of the quantile

estimate from the nominal experiment is approximated by the sample variance of the

bootstrapped quantile estimates

σ̂2
T,Q =

1

B − 1

B∑
k=1

(ξp,n(Ĝk)− ξ̄p,n,B)
2.

This term approximately measures both input uncertainty and stochastic uncertainty.

As previously, we estimate input uncertainty by subtracting an estimate of stochastic

uncertainty from the total variance, however we cannot approximate stochastic un-

certainty for the quantile in the same way as for the mean. Recall that stochastic

uncertainty for the quantile is the expectation of the variance of the quantile estimate

with respect to the sampling distribution of Ĝ. The sample variance of the simulation

outputs does not provide an approximation to the variance of the quantile estimate, so

we require a different method here.

There are myriad ways to approximate the variance of the quantile estimator. The

quantile estimator satisfies a central limit theorem (Serfling, 2009) (Section 2.3.3), how-

ever the asymptotic variance contains the density function, which is typically unknown.

Computing a consistent estimator of the asymptotic variance is non-trivial (Nakayama,

2014). Although finite differences can be used to estimate the density (Serfling, 2009)

(Section 2.6.2), this requires specification of a suitable bandwidth parameter. Alter-
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natively, bootstrapping methods can be used to directly estimate the variance. The

conventional unsmoothed bootstrap is shown to have high relative error (Hall and Mar-

tin, 1988), which can be reduced by using a smoothed bootstrap based on a kernel

density estimate (Hall et al., 1989). However, this requires stronger smoothness con-

ditions on the density and a suitable choice of smoothing bandwidth. Cheung and

Lee (2005) estimate the variance of the quantile estimator using a modification of the

bootstrap known as the m out of n bootstrap. Although this requires a choice for m

it seems to be less crucial than the choice of the smoothing bandwidth in terms of the

sensitivity and stability of the mean squared error of each estimator. Shao and Wu

(1989) show that the jackknife estimator with d observations removed gives consistent

and asymptotically unbiased estimates of the quantile estimator variance for suitable

choices of d.

Alternatively, we can approximate the variance of the quantile estimator by applying

batching or sectioning (Asmussen and Glynn, 2007) (Section III.5a). These methods

avoid the complication of consistently estimating the density function and are less com-

putationally intensive than bootstrapping procedures, since they only use the results

from the nominal experiment. Both involve dividing the outputs into batches and tak-

ing quantile estimates from each batch. Batching utilises the variance of the batch

quantile estimates, whilst sectioning replaces the sample mean in the variance calcu-

lation with the quantile estimator from all the outputs. The batching and sectioning

variance divided by the number of batches provides an approximation to the quantile

estimator variance.

Whichever method is used, suppose that σ̂2
k represents the variance of the quantile

estimate from the kth bootstrap. We estimate stochastic uncertainty by averaging these

variance estimates across bootstraps

σ̂2
S,Q =

1

B

B∑
k=1

σ̂2
k.



CHAPTER 5. INPUT UNCERTAINTY FOR QUANTILES 94

To estimate input uncertainty we subtract stochastic uncertainty from the total variance

σ̂2
I,Q = σ̂2

T,Q − σ̂2
S,Q.

Again note that this could return a negative estimate of input uncertainty which we

interpret similar to previously. We now describe the Taylor series approximation for

the mean.

5.3.3 Taylor Series Approximation for the Mean

Suppose that the L input distributions follow known parametric distributions. In this

case, input model uncertainty becomes input parameter uncertainty, so the input models

can be denoted by a set of parameters G = θ = (θ1, . . . , θq), where q ≥ L. The

true input models are given by the true parameters of the distributions, denoted by

G0 = θ0 = (θ01, . . . , θ
0
q). We suppose the parameters are estimated via maximum

likelihood estimators (MLEs), which we denote by θ̂ = (θ̂1, . . . , θ̂q).

Cheng and Holland (1997) use a Taylor series approximation to estimate input

uncertainty when taking the sample mean of simulation outputs. Input uncertainty

can be approximated by

σ̂2
I,M = ∇η(θ0)Var(θ̂)∇η(θ0)⊤,

where∇η(θ0) is the gradient of the expected value of the simulation output with respect

to the input parameters θ, evaluated at θ0. This approximation of input uncertainty

combines the sensitivity of the expected simulation output with respect to the input

parameters, with how accurately the input parameters have been estimated. To use

this approximation, we need to estimate both the parameter variance and the gradient

of the expected value of the simulation output.

Since the input parameters are estimated via maximum likelihood, we can approxi-
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mate the parameter variance by the inverse Fisher information matrix evaluated at the

MLEs

V̂ar(θ̂) = I(θ̂)−1.

This follows since the asymptotic distribution of the MLEs is multivariate normal with

covariance matrix I(θ0)−1, which can be consistently estimated by I(θ̂)−1. Lin et al.

(2015) note that MLEs are not required for the Taylor series approximation method,

only that the covariance matrix of the parameter estimates can be approximated, which

is most easily done when using MLEs.

There are many ways to estimate the gradient of the expected value of the simulation

output. Cheng and Holland (1997) describe the delta method, which employs finite

forward differences and requires computational effort that increases linearly with the

number of parameters. To improve upon this, they develop the two-point method

(Cheng and Holland, 1998), which utilises the delta method but makes most simulation

replications at just two settings of parameter values. Lin et al. (2015) provide a method

for estimating the gradient that requires no diagnostic experiment, only the replications

from the nominal experiment.

Outside the input uncertainty literature, Fu (2006) provides an overview of gradient

estimation techniques. Approaches for gradient estimation are divided into two main

categories, direct and indirect. Direct approaches aim to estimate the true gradient

via some analysis of the underlying mechanism of the simulation model. Methods in-

clude perturbation analysis, the likelihood ratio method, and weak derivatives (also

known as measure-valued differentiation). Indirect approaches are characterised by two

features; they estimate an approximation to the true gradient, and they only utilise

evaluations of the simulation model. Methods include finite differences and simultane-

ous perturbations. Generally, indirect gradient estimators are more widely applicable

since direct estimators can involve analysis specific to the problem and may also require

some changes to how the simulation model runs. However, direct estimators usually
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give unbiased estimators and eliminate the choice of a suitable perturbation parameter.

The gradient estimate can be combined with the parameter variance estimate to

employ the Taylor series approximation of input uncertainty. Lin et al. (2015) note that

the approximation also provides estimates of the contribution made to input uncertainty

by each input distribution. Let θl denote the parameters belonging to the lth input

distribution, note that this could a scalar or a vector depending on the distribution.

Under the initial assumption that the input distributions are independent, it follows

that

∇η(θ0)Var(θ̂)∇η(θ0)⊤ =
L∑
l=1

∇η(θ0
l )Var(θ̂l)∇η(θ0

l )
⊤,

where Var(θ̂l) is the covariance matrix of θ̂l. Each term in the summation represents

the contribution to input uncertainty from the lth input distribution. These measures

can be useful when input uncertainty is large, as we can identify which distributions

it would be most beneficial to collect additional data from in order to reduce input

uncertainty. Typically, input distributions with the largest contributions would be the

best target for additional data collection.

5.3.4 Taylor Series Approximation for Quantiles

We now adapt the Taylor series approximation for quantiles. Applying (5.2.6) and

(5.2.7) in the context of known parametric input distributions, for large enough n it

follows that

σ2
I,Q ≈ Var

[
ξp(θ̂)

]
,

where ξp(θ̂) is the p-quantile of the simulation output random variable at the estimated

parameters. Subsequently, under the same regularity conditions as stated in Cheng and

Holland (1997), we have that

σ̂2
I,Q = ∇ξp(θ

0)Var(θ̂)∇ξp(θ
0)⊤,



CHAPTER 5. INPUT UNCERTAINTY FOR QUANTILES 97

where ∇ξp(θ
0) is the gradient of the p-quantile with respect to the input parameters

θ, evaluated at θ0. This approximation of input uncertainty combines the sensitivity

of the quantile with respect to the input parameters, with how accurately the input

parameters have been estimated. To use this approximation, we need to estimate both

the parameter variance and the gradient of the p-quantile. As in the mean case, we can

estimate the parameter variance using the inverse Fisher information matrix, however

the gradient estimation requires a bit more thought.

A point of difference between the mean and quantiles is the number of estimates we

obtain. For the mean, each of the n outputs provides an estimate to the expectation

of the simulation output random variable. However, for quantiles, we only obtain a

single estimate from a set of n outputs. Consequently, the gradient estimation methods

described by Cheng and Holland (1997), Cheng and Holland (1998), and Lin et al.

(2015), which can be used for the mean are not applicable for quantiles. Neither are the

direct gradient estimators described in Fu (2006), since they are specifically derived for

performance measures that are expectations. The indirect gradient estimators described

in Fu (2006) however, can be applied when the performance measure is a quantile.

There is a small amount of fairly recent literature on direct gradient estimators

for quantiles. Hong (2009) proposes a consistent estimator by combining infinitesimal

perturbation analysis with batching. Alternatively, Heidergott and Volk-Makarewicz

(2009) present a quantile gradient estimate based on measure-valued differentiation.

Liu and Hong (2009) describe a kernel estimator that is consistent and more efficient

than Hong (2009). Fu et al. (2009) use conditional Monte Carlo to derive a consistent

estimator that does not require batching. More recently, Lei et al. (2018) applied a

generalised likelihood ratio method to develop an estimator that also does not require

batching. Since these methods all fall under the category of direct gradient estimation

they typically require some problem-specific analysis, and consequently they are not

applicable to a broad range of simulation models.
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Note, we do not advocate for any particular method to be used to estimate the

quantile gradient, but in the experiments that follow we use the symmetric difference

estimator described in Fu (2006) (Section 3.1). This works by perturbing the value of

each parameter in turn, whilst keeping the remaining parameters at their nominal val-

ues. In particular, the symmetric difference estimator perturbs each parameter by both

a positive and negative difference, and the gradient is estimated by the difference in

mean simulation outputs from the perturbed parameter values, divided by twice the size

of the difference parameter. Once we have an estimate for the quantile gradient, we can

combine this with the parameter variance estimate to employ the Taylor series approx-

imation of input uncertainty. Again this naturally yields the approximate contribution

to input uncertainty by each input distribution, where each term in the summation

represents the contribution to input uncertainty from the lth input distribution

∇ξp(θ
0)Var(θ̂)∇ξp(θ

0)⊤ =
L∑
l=1

∇ξp(θ
0
l )Var(θ̂l)∇ξp(θ

0
l )

⊤.

5.4 Experiments

We now implement both input uncertainty methods for quantiles on two different ex-

amples. In the remainder of this chapter, when we refer to just input uncertainty or

stochastic uncertainty, this will be for the quantile. Firstly, we derive an analytical

example. This allows us to illustrate the problem of input uncertainty and compare

input uncertainty estimates produced by each method against an approximation of the

true value. Secondly, we use a stochastic activity network that utilises more input

distributions than the analytical example. This allows us to consider more interesting

results for the estimated contributions to input uncertainty.
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5.4.1 Analytical Example

To illustrate the problem of input uncertainty, we shall create an analytical example.

This is contrived to enable input uncertainty to be derived analytically and is not meant

to represent a realistic simulation problem. To create an analytical example, we need

to be able to compute both E(ξp,n(Ĝ)|Ĝ) and Var(ξp,n(Ĝ)|Ĝ). If we know the CDF of

the simulation output random variable and can derive the inverse CDF, then we can

write ξp(Ĝ) explicitly. Since the quantile estimator is asymptotically unbiased, this

will give us an approximation to E(ξp,n(Ĝ)|Ĝ). We can approximate the variance of

the quantile estimator given the fitted input models using the well-known asymptotic

distribution of the sample quantile (Nelson, 2013) (Section 7.1). Using the asymptotic

variance it follows that

Var(ξp,n(Ĝ)|Ĝ) ≈ p(1− p)

nf(ξp(Ĝ))2
, (5.4.1)

where f(ξp(Ĝ)) is the probability density function evaluated at the p-quantile under

the fitted input models.

Suppose a simulation model has two input models which are known to follow expo-

nential distributions with unknown parameters. The input models are defined by two

parameters G = (µ, β) both of which are to be estimated from real-world observations.

In this case, input model uncertainty can be thought of as input parameter uncertainty.

Suppose we observe m1 = m2 = m, i.i.d. observations from each distribution. Obser-

vations Z1,1, . . . , Z1,m are used to estimate µ and observations Z2,1, . . . , Z2,m are used

to estimate β. The fitted input models are then given by the estimated parameters

Ĝ = (µ̂, β̂). The parameters can be estimated by their MLEs

µ̂ =

(
1

m

m∑
i=1

Z1,i

)−1

, β̂ =

(
1

m

m∑
i=1

Z2,i

)−1

.

Suppose that these parameters drive the simulation model for n i.i.d. replications and

the distribution of the simulation output random variable is given by Y ∼ Gumbel(µ̂, β̂).
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Using (5.2.5), (5.4.1), and the probability density function of the Gumbel distribution,

stochastic uncertainty for the quantile is approximately

σ2
S,Q ≈ E

[
p(1− p)n−1

(
e−(z+e−z)β̂−1

)−2
]
,

≈ p(1− p)n−1E

[(
e−(z+e−z)β̂−1

)−2
]
, (5.4.2)

where z = (ξp(µ̂, β̂)− µ̂)/β̂. Although we cannot compute this expectation analytically,

it can be approximated via numerical integration. The expectation term in (5.4.2)

will not depend upon the number of outputs n, and therefore stochastic uncertainty

will tend towards 0 as n increases. Using (5.2.6), (5.2.7), and the inverse CDF of the

Gumbel distribution, input uncertainty for the quantile is approximately

σ2
I,Q ≈ Var

[
µ̂− β̂ln(−ln(p))

]
,

≈ m2µ2

(m− 1)2(m− 2)
+
(
ln(−ln(p))

)2 m2β2

(m− 1)2(m− 2)
. (5.4.3)

This follows since if observations a1, . . . , am are i.i.d. from an exponential distribution

with rate θ and X =
∑m

i=1 ai, then 1/X ∼ Inv-Gamma(m, θ) and hence Var[1/X] =

θ2/((m− 1)2(m− 2)). Note that (5.4.3) does not depend on the number of outputs n,

but does depend on the number of observations m used to fit the input parameters.

To illustrate the importance of input uncertainty quantification, we will consider

the following experiment. Let µ = 2, β = 3 and m = 250. Suppose we use a nominal

experiment of n = 10000 replications, from which we estimate the 0.95-quantile. If input

uncertainty is not considered, then we approximate the variance of our quantile estimate

by applying any of the methods described in Section 5.3.2. Suppose we use sectioning.

This involves dividing the outputs into batches and calculating the sum of squared

errors between the batch quantile estimates and the overall quantile estimate. The

variance is then given by the sum of squared errors divided by the number of batches.
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We run 1000 macro replications of our nominal experiment, and each time we compute

the variance of the quantile estimate using sectioning with 20 batches (Asmussen and

Glynn (2007) suggest choosing 30 batches or fewer). The average variance across the

macro replications is approximately 0.01812.

The variance of our quantile estimate from the nominal experiment should be given

by the sum of stochastic uncertainty and input uncertainty. Using (5.4.2) and (5.4.3),

these are approximately

σ2
S,Q ≈ 0.01794, σ2

I,Q ≈ 0.3390,

where we have used 1×105 samples of (µ̂, β̂) to estimate the expectation term in (5.4.2).

Sectioning provides an approximation of stochastic uncertainty, but does not capture

input uncertainty. Input uncertainty is almost 19 times larger, so ignoring it could have

serious practical consequences. Although we can derive an analytical approximation of

input uncertainty in this particular example, for most realistic simulation problems this

is not the case. This motivates the need for methods to quantify input uncertainty.

We use this analytical example to test the accuracy of our two methods. If a nominal

experiment uses n replications, and we estimate input uncertainty via B bootstraps,

then this diagnostic experiment requires a total of Bn replications. For a fair compar-

ison between the bootstrapping method and the Taylor series approximation method

we use the same number of total replications to estimate input uncertainty for each

method. Since estimating the parameter variance requires no replications, we utilise

Bn replications to estimate the quantile gradient.

We keep µ = 2, β = 3, n = 10000, and compare estimates of input uncertainty for

quantiles p = (0.8, 0.95) and input sample sizes m = (250, 1000). For the bootstrapping

method we use B = 10000 bootstraps and apply sectioning with 10 batches. For the

Taylor series approximation, we estimate the quantile gradient using the symmetric

difference gradient estimator described in Fu (2006) (Section 3.1), with c = (0.1, 0.1).
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This requires simulation runs at 4 sets of parameters, so for each set we use 2.5 × 107

replications. The results from each approach, averaged across 1000 macro replications,

are shown in Table 5.4.1, along with the analytical approximation of input uncertainty

computed using (5.4.3).

m Method
p = 0.8 p = 0.95

Mean Std. Error Mean Std. Error

250
Bootstrapping 9.967× 10−2 1.564× 10−2 3.432× 10−1 6.002× 10−2

TSA 9.853× 10−2 1.081× 10−2 3.389× 10−1 4.176× 10−2

Analytical 9.856× 10−2 - 3.390× 10−1 -

1000
Bootstrapping 2.433× 10−2 1.853× 10−3 8.356× 10−2 7.074× 10−3

TSA 2.433× 10−2 1.321× 10−3 8.361× 10−2 5.068× 10−3

Analytical 2.435× 10−2 - 8.373× 10−2 -

Table 5.4.1: Mean and standard errors of input uncertainty estimates for the analytical
example using bootstrapping and the Taylor series approximation (TSA), compared to
an analytical approximation.

For m = 250, the Taylor series approximation estimates have a more accurate

mean and a smaller standard error than the bootstrapping estimates for both values

of p. For m = 1000, the bootstrapping estimates and the Taylor series approximation

estimates return similarly accurate means for both values of p, although the Taylor

series approximation estimates have a smaller standard error. These results show us

that both methods are accurately estimating the approximate true value.

5.4.2 Stochastic Activity Network

Additionally, we run experiments using a stochastic activity network, which models the

completion time of a project using a group of activities with precedence constraints and

random durations. Such models can aid with project planning problems. Specifically,

we use the stochastic activity network described in Dong and Nakayama (2014) and

Nelson (2013) (Section 3.4). The model consists of L = 5 random processes, each of

which models the completion time of an activity. The completion times of the activi-

ties follow independent exponential distributions, therefore we have q = 5 parameters,
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denoted by θ = (θ1, θ2, θ3, θ4, θ5). The activities form 3 paths in the network, denoted

by P1 = {1, 2}, P2 = {1, 3, 5} and P3 = {4, 5}. The simulation output is the time to

complete the project, which is measured by the longest path in the network. Using Aj

to denote the duration of the jth activity, for 1 ≤ j ≤ 5, the simulation output is given

by Y = max{A1 +A2, A1 +A3 +A5, A4 +A5}. Project planners may be interested in a

quantile of the simulation outputs to estimate the probability of completing the project

within a certain timeframe.

4

1

3

2

5

Figure 5.4.1: A graphical representation of the stochastic activity network.

Suppose the true parameters are given by θ0 = (1, 1, 1, 1, 1) and each parameter is

estimated using the same number of observations, that is ml = m, for 1 ≤ l ≤ 5. Again,

our nominal experiment consists of n = 10000 replications, and we compare estimates

of input uncertainty for p = (0.8, 0.95) and m = (250, 1000). For the bootstrapping

method we use B = 10000 bootstraps and apply sectioning with b = 10 batches. For

the Taylor series approximation, we use the symmetric difference gradient estimator

with cl = 0.1, for 1 ≤ l ≤ 5. This requires simulation runs at 10 sets of parameters,

so for each set we use 1 × 107 replications. The results from each approach, averaged

across 1000 macro replications, are shown in Table 5.4.2.

For 3 of the 4 combinations of m and p, the mean estimates of input uncertainty

from the bootstrapping and Taylor series approximation match to 2 decimal places.

Although we cannot approximate the true values of input uncertainty, it is reassuring

that both methods are returning similar mean estimates. Across all 4 combinations, we

see that the Taylor series approximation has a smaller standard error than bootstrap-
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m Method
p = 0.8 p = 0.95

Mean Std. Error Mean Std. Error

250
Bootstrapping 2.044× 10−2 2.047× 10−3 4.375× 10−2 4.924× 10−3

TSA 2.015× 10−2 1.549× 10−3 4.296× 10−2 3.934× 10−3

1000
Bootstrapping 4.994× 10−3 2.690× 10−4 1.060× 10−2 6.592× 10−4

TSA 4.971× 10−3 1.891× 10−4 1.055× 10−2 4.831× 10−4

Table 5.4.2: Mean and standard errors of input uncertainty estimates for the stochastic
activity network using bootstrapping and the Taylor series approximation (TSA).

ping. Although we see this smaller standard error across both experiments, there are

too many variables to conclude whether we would expect to see this generally.

Using the results from the Taylor series approximation, we can look at the contribu-

tions made to input uncertainty by each input distribution. We calculate the average

normalised contribution to input uncertainty by each input distribution across the 1000

macro replications. Table 5.4.3 shows the results for p = (0.8, 0.95) when m = 1000.

p θ1 θ2 θ3 θ4 θ5
0.80 32.0 6.4 23.4 6.4 31.8
0.95 33.8 4.1 24.5 4.1 33.5

Table 5.4.3: Average normalised contributions to input uncertainty (%) made by each
input parameter in the stochastic activity network, as estimated by the Taylor series
approximation.

Firstly, note that for each quantile the normalised contributions to input uncertainty

are approximately the same for parameters θ1 and θ5, and also for θ2 and θ4. We would

expect to see this due to the symmetry of the stochastic activity network. We could

switch the labels of these activities and the simulation model would remain the same.

Secondly, for both quantiles, we see that θ1 and θ5 make the largest contributions. We

would expect to see this since all activities are identically distributed and both these

parameters represent activities that feature in 2 out of the 3 paths in the network. Both

also feature in the path with the highest number of activities, which is likely to be the

longest path. The second-largest contributions to input uncertainty for both quantiles

comes from θ3, whilst θ2 and θ4 return the smallest contributions. Moving from the 0.8-
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quantile to the 0.95-quantile, the contributions made by θ1, θ3 and θ5 increase, whilst

the contributions made by θ2 and θ4 decrease. Parameters θ1 and θ5 should be targeted

for additional data collection since these make the largest normalised contribution for

both quantiles.

5.5 Conclusion

In this work, we considered input uncertainty quantification for quantile performance

measures of simulation outputs. This allows us to identify a source of uncertainty in

quantile estimates that may previously have been ignored, enabling simulation practi-

tioners to make better-informed decisions.

We focused on the case where input models follow independent distributions and

input modelling is done from a frequentist perspective. We adapt two methods of quan-

tifying input uncertainty for the mean, a bootstrapping approach and a Taylor series

approximation. The latter is only appropriate for parametric input distributions. We

applied both methods to an analytical example, which shows they accurately estimate

an analytical approximation of the true value of input uncertainty. We also applied both

methods to a stochastic activity network, where they returned similar mean estimates

of input uncertainty.

In the future, we should consider how to construct asymptotically valid confidence

intervals for the quantile estimator, that account for both stochastic uncertainty and

input uncertainty. This will help with the interpretation of input uncertainty for quan-

tiles. We could also consider how other input uncertainty quantification techniques for

the mean, which may offer benefits over both methods used here, could be adapted for

quantiles. We should also investigate how input uncertainty estimates are impacted

when using a smaller number of replications, which would violate the asymptotic rela-

tionship in (5.2.7).



Chapter 6

Input Uncertainty in Simulation

Analytics

Increasingly, within the field of simulation analytics, predictive machine learning models

are being fit to simulation sample path data. The motivation here is to discover factors

that drive dynamic performance and enable real-time prediction, both of which can

provide insight into and aid with system management and control. These approaches

typically treat the simulation input models as fixed, neglecting any possible input model

uncertainty, however input models are frequently estimated from real-world samples of

data and thus are uncertain. Here, we begin to investigate how such a predictive model

might be impacted by input uncertainty.

6.1 Introduction

Simulation output analysis regularly focuses on mean performance measures, or long-

run averages, which can mask variable and dynamic behaviour. Simulation analytics

aims to utilise the sample path data generated within simulation replications to discover

novel insights into the performance of the simulation model, and to assist with real-time

decision-making. This usually involves the application of machine learning methods to

106
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the dynamic sample path data to enable a deeper and more nuanced analysis of the

simulation model.

Often, the input models used to drive simulation replications are estimated from

real-world samples of data. Uncertainty arises in the input models, as they are never

truly representative of the random processes of the real-world system. Current ap-

proaches that fit machine learning models to simulation sample path data generally

treat the input models as fixed. We are interested in investigating how these types of

approaches are impacted when estimated input models drive the simulation. We wish to

study the impact that input model uncertainty has on the performance of a predictive

machine learning model, with a view to learning which uncertain input models most

affect the model performance.

The rest of this chapter is organised as follows. In Section 6.2 we discuss some

background and motivation and in Section 6.3 we introduce notation and outline the

research problem. In Section 6.4 we run an experiment to explore different aspects of

the research problem. We conclude the chapter in Section 6.5, providing a summary, a

discussion on extensions to the experiment, and outlining areas for future work.

6.2 Background and Motivation

Recently, there has been an interest in using data generated within stochastic simula-

tions, often referred to as state data, to develop a deeper understanding of the simulated

system. For example, in a queueing network, the state data might measure the queue

size and number of servers in use at each node, at a specific time. There has been

a particular focus on fitting classification and regression models to pairs of state and

output data from the simulation. For example, Baldwa et al. (2020) fit various classi-

fication and regression models to data generated by a neurosurgery ward simulation,

to enable prediction of patient admission outcomes and wait times, whilst Jiang et al.
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(2020) apply logistic regression to data generated by financial portfolio simulations, to

allow for prediction of portfolio risk measures. These types of prediction models can be

used to provide interpretation about the system performance, in addition to facilitating

real-time predictions which can assist with system control.

Formally, these approaches typically consider observations of system state x, paired

with a system response y. Across a set of n replications, or by collating data across a sin-

gle or multiple replications of a steady-state simulation, n pairs of data {(xi, yi)}ni=1, are

obtained. These form the data set from which various predictive models can be trained

and validated, using standard techniques from machine learning such as data set trans-

formations, hyperparameter tuning, and cross-validation. The models are evaluated

using some selection of scoring metrics, allowing for their performances to be compared

and contrasted. The best performing or most appropriate model can then be selected

to be used for interpretation and prediction.

Running a simulation model requires specification of the input models, to repre-

sent the randomness in the simulation. For example, queueing models require arrival

rate and service rate distributions. These are often estimated from real-world data, and

hence carry some level of uncertainty that propagates through the simulation model. In

many of the examples of simulation analytics reviewed, the input distributions and input

parameters are assumed to be known. For example, the wafer fabrication model dis-

cussed in Laidler et al. (2020) features 11 stations which have log-normally distributed

processing times with known parameters. The experiments on queueing models consid-

ered in Ouyang and Nelson (2017) utilise a Poisson arrival process and exponentially

distributed service times, the parameters of which are all assumed to be known.

The neurosurgery ward described in Baldwa et al. (2020) uses input distributions

to model the arrival rates and length of stays for each patient type. Poisson arrivals

are assumed, and these rates are calculated from real-world admissions data. Goodness

of fit tests indicate no suitable parametric distribution for the real-world length of stay
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data, hence these are modelled using empirical distribution functions. In this case,

machine learning models are fitted to the simulation data driven by uncertain input

models, however the possible impact of any input model or input parameter uncertainty

is not considered.

We are interested in exploring how input uncertainty impacts the performance of a

predictive model. In particular, we want to study whether a model fitted to simulation

data generated using input models estimated from real-world data has the same level of

performance when applied to the real-world system. If the performance of the predictive

model on the real-world system is not as expected, then the predictive model may not

be applied or utilised in the same way as initially planned.

We are also interested in considering how the performance of the predictive model

changes when taking into account the uncertainty of the input models, with a view

to learning which input models the predictive model performance is most and least

sensitive to. If the performance of the predictive model is very sensitive to an input

model that is highly uncertain, then the practitioner may place less confidence in any

inference from the predictive model had this analysis not been conducted.

6.3 Research Problem

For simplicity, let us consider a simulation model that has L input models, all of which

follow known parametric distributions. Then a parameter vector θ = (θ1, . . . , θp),

where p ≥ L, must be specified to run the simulation model. Additionally, let us

ignore any kind of controllable inputs (e.g. number of servers) that might be used

for experimentation or optimisation. Let the true but unknown input parameters be

denoted by θ0 = (θ01, . . . , θ
0
p), and suppose that these are estimated from real-world

data. Let the estimated input parameters be denoted by θ̂ = (θ̂1, . . . , θ̂p), and suppose

these are used to run the simulation model.
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The n pairs of state-output data generated by the simulation model depend upon

the input parameter vector specified in the experiment. Therefore, the following pairs of

data are generated {(xi(θ̂), yi(θ̂))}ni=1, where xi represents the system state information

and yi represents the system responses. These form the data set from which machine

learning techniques can be applied, in order to extract insights and understand system

behaviour, as part of the goal of simulation analytics. Suppose that various machine

learning algorithms are trained and validated on this data set, with the objective of

finding the best performing model that can subsequently be used for interpretation and

prediction.

Let us consider how the performance of the predictive models are measured. Com-

mon practice is to split the data into two sets, where one is used to train the models

and the other is used to test the performance of the models. This is done to avoid

overfitting the models to the data. The various machine learning procedures can be

compared via a particular choice of metrics and scores on the test data set. For ex-

ample, the performance of classification models might be measured via precision and

recall, whilst regression models might use R-squared and mean squared error. A final

predictive model can be selected based upon this comparison.

Since the input parameters are uncertain, we want to consider the impact of apply-

ing the predictive model to simulation data generated using different input parameter

values. Suppose that a different set of parameter values, θ̃ = (θ̃1, . . . , θ̃p), are used to

run the simulation model. Then n different pairs of state-output data are obtained,

and these can be denoted by {(xi(θ̃), yi(θ̃))}ni=1. We can measure the performance of

the final predictive model, which is fitted to {(xi(θ̂), yi(θ̂))}ni=1, on this new data set by

feeding the model instance the state data xi(θ̃). We can then compare the predictions

against the system responses via the same choice of metrics used to select the final pre-

dictive model. Using these results, we can begin to understand how the performance of

the predictive model changes, when the input parameters take different values.
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We are interested in learning whether the performance of the predictive model sig-

nificantly changes under the true input parameters, that is, when θ̃ = θ0, as this is

equivalent to applying the predictive model to the real-world system. Although we can

test this within a controlled experiment, in reality the true parameters of the simulation

model are unknown. We are therefore interested in learning whether the performance

of the predictive model significantly changes over the uncertain input parameter space,

and whether we can determine the changes to particular input parameters which have

driven the changes in predictive performance. We can achieve this by experimenting

with various choices of parameter values θ̃, as informed by the variability of the esti-

mated input parameters, and selecting these appropriately will provide information to

aid our understanding of which input parameters the predictive model performance is

most sensitive to.

6.4 Experiment

In this section, we run an experiment to explore some of the ideas outlined above. We

first fit a classification model to the state-output data from a network queueing model,

where the simulation is run using estimated input parameters. We then compare the

performance of the model on simulation data from the estimated input parameters

versus simulation data from the true input parameters, in a controlled experiment where

everything is known to us. Since in reality, the true parameters would be unknown, we

consider how an experimental design could be used to examine the impact that different

input parameter values have on the predictive performance of the model. Finally,

we consider how the comparison against the true parameters and the experimental

design results differ, when an increased amount of data is used to estimate the input

parameters.
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6.4.1 Simulation Analytics on a Network Queueing Model

Here, we experiment with a network queueing model consisting of three consecutive

queues, each with a single server. Arrivals to the queue follow a Poisson process, whilst

the service times at each queue follow exponential distributions. There are periods of

time when the server at the final queue stops serving, and for ease, both the intervals

between these periods, and the periods themselves, are constant. The model requires

specification of four input parameters, an arrival rate and three service rates, which

we denote by θ = (λ, µ1, µ2, µ3). Although simplistic, this type of simulation model

could be representative of a manufacturing process, with the final server representing a

machine that requires regular maintenance.

For each arrival, we measure the time in the system, and are interested in whether

this time falls above or below some threshold. In the context of a manufacturing process,

this might define whether jobs or products are completed early or late, for example,

see Laidler et al. (2020). To describe the system state for each arrival into the system,

we consider the observable components of the system, which consists of whether each

server is busy, the number in each queue, and whether the final server is out of action.

The data set generated by the simulation model {(xi(θ), yi(θ))}ni=1, is therefore made

up of a 7-dimensional measure of system state xi, with an associated binary response

yi, which can be used to fit a classification model.

We set the true input parameters to be θ0 = (4, 6, 8, 6), and estimate these by

applying maximum likelihood estimation to m = 500 observations from each distribu-

tion. This gives us a set of estimated input parameters θ̂ = (4.29, 5.75, 8.16, 5.80). We

run the simulation model using the estimated input parameters for 2000 units of time,

where the third and final server is out of action every 100 time periods, for a length of

5 time periods. We utilise a threshold of 2.5 to classify the time in the system, which

results in approximately 28.2% of values falling above the threshold, after discarding a

warm-up period from the data set to focus on the steady-state behaviour.
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We fit a logistic regression model to the simulation data, using 5-fold cross-validation

to evaluate the estimator performance. We evaluate the performance using the F1 score,

a popular classification metric which measures the harmonic mean of the precision and

recall, that is

F1 = 2× precision× recall

precision+ recall
.

Precision measures the number of true positives out of the total positive predictions,

and recall (sensitivity) measures the number of true positives out of the total positive

results. Positive here refers to points of class 1. For the logistic regression model, we

find an average F1 score of 0.8280.

Note that we could extend this classification model fitting process by tuning hy-

perparameters, fitting more complex models, or by creating additional features for the

model to take into account, however this is not the purpose of our experimentation,

and thus we have not pursued it further. This would still lead to a similar point where

we have a final predictive model with an estimated measure of performance. This is

typically where the existing analysis would stop, and the classification model would be

used to make real-time predictions, or offer some interpretation about the simulation

model.

6.4.2 Model Performance using the True Input Parameters

We now wish to measure the performance of the classification model on simulation data

generated using the true input parameters, as this is akin to applying the model to the

real-world system. Since we are running a controlled experiment where everything is

known to us, this is possible here.

We first generate a sample of F1 scores to summarise the performance of the model

on data generated by the estimated input parameters. We run 100 replications of the

simulation model with the estimated input parameters, apply the classification model

to each of these data sets, and measure the F1 scores. We then repeat this process but
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running the simulation model with the true input parameter values. The histogram in

Figure 6.4.1 compares the performance of the classification model on simulation data

generated using the estimated input parameters and simulation data generated using

the true parameters.
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Figure 6.4.1: Histogram comparing the F1 scores from the classification model applied
to estimated input parameter and true input parameter simulation data.

We see that the distribution of F1 scores from each set of parameters have a similar

shape, each is approximately normal, however the centres of the distribution are differ-

ent. The distribution of F1 scores from the true input parameters lies to the left of the

distribution from the estimated input parameters. This indicates a potential difference

in the performance of the classification model on simulation data from the two different

sets of parameter values.

To investigate this further, we use a hypothesis test to measure whether there is

a significant difference in the performance of the classification model when applied

to simulation data driven by the two different sets of input parameter values. Let

(a1, a2, . . . , ar) be the sample of F1 scores from applying the classification model to

simulation data generated using the estimated input parameters, and let (b1, b2, . . . , br)
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be the sample of F1 scores from applying the classification model to simulation data

generated by the true input parameters.

We want to compare the means of the two independent samples. Our null hypothesis

is that the two independent samples have the same mean, H0 : µa = µb, and our

alternative hypothesis is that the two samples do not have the same mean, H1 : µa ̸= µb.

Although the population variances are unknown, the number of samples should be large

enough to for normality to approximately hold via the central limit theorem, and this

is evidenced by Figure 6.4.1. We can therefore use a two-sample independent z-test,

with the test statistic given by

z =
(ā− b̄)√
σ2
a

r
+

σ2
b

r

,

where r is the sample size of the F1 scores, and σ2
a and σ2

b are the population variances

that can be approximated by the sample variances.

Applying this hypothesis test to our samples of F1 scores, we find that z = 6.647,

which returns a p-value of 2.987 × 10−11. This very small p-value provides strong evi-

dence that the means of the two samples are different, indicating that the performance

of the model changes. When applied to simulation data generated by the true input

parameters, i.e. the real-world system, the performance of the classification model is

significantly different compared to what would be anticipated based on applying it to

data generated by the estimated input parameters. If this information were known,

then the classification model may not be treated and used for predictions or interpre-

tation in the usual way. This highlights a potential issue with applying simulation

analytics techniques to simulation data generated using uncertain input parameters,

and suggests that it is worth investigating how the model performs on simulation data

generated by various different input parameter values.
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6.4.3 Designed Experiment for Input Parameter Uncertainty

and Sensitivity

In reality, the true parameters of the simulation are unknown. We therefore would

not be able to run such an experiment to learn whether there is a difference in the

performance of the predictive model when applied to simulation data generated by

the true input parameters. Instead, what we can consider, is how the performance of

the model changes when applied to simulation data generated by a range of plausible

input parameter values, as determined by the input data. We can apply the same

hypothesis test to learn whether there is a difference in model performance for each of

the alternative input parameter values compared to the estimated input parameters.

If hypothesis tests indicate that the performance of the predictive model frequently

changes, then this might decrease the level of confidence placed in any inference from

the model. In conjunction with this, we might also want to consider how changes to

each input parameter impact the performance of the model.

To understand the impact of changes to each input parameter on the predictive

model performance, we need to experiment by running the simulation model with dif-

ferent choices of input parameter values θ̃. To select these input parameter values,

we can utilise techniques from design of experiments (Montgomery, 2017). Using an

experimental design will help us to select the parameter values in such a way that we

are able to separate the effects of each input parameter, as well as study the impact of

any possible interactions between parameters. Moreover, such techniques are often ex-

tremely efficient, allowing us to identify the impact of changes to the input parameters

whilst using minimal computational effort.

Since the input parameters in our experiment are estimated using maximum likeli-

hood estimation, we can approximate the variance of each parameter by computing the

inverse observed Fisher information. This captures the uncertainty of each parameter,

so can be used to inform the choice of parameter values to explore in the experimental
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design. We decide to use a full factorial design across the four input parameters, where

the upper and lower level of each parameter is given by the MLE plus and minus one

standard deviation. This gives us a feasible space around the MLEs that the true input

parameters are likely to lie in. Each of the 16 design points from the factorial design

corresponds to a unique set of input parameter values with which we run the simulation

model for 100 replications.

For each of the state-output data sets generated by running the simulation using

the design point input parameters, we apply the classification model trained on the

estimated input parameters, and measure the performance of the predictions via the

F1 score. This gives us a sample of 100 F1 scores for each design point. We apply the

hypothesis test to the sample of F1 scores from each design point, to see whether there

is evidence that the performance of the model at the design point input parameters is

different compared to the performance of the model at the estimated input parameters.

Table 6.4.1 shows the design point input parameters for the 16 design points, along

with the mean and standard deviation of the F1 scores. Note that the mean F1 score

from using the estimated input parameters is 0.833. We also include the p-values from

each of the hypothesis tests, shown to three decimal places, comparing the sample of F1

scores from each set of design point input parameters against the sample of F1 scores

from using the estimated input parameters. The design points are ordered by their

mean F1 score.

It is interesting to see that in some instances, the classification model performs

better on simulation data generated using different input parameter values, compared

to simulation data generated using the estimated input parameters, since the model is

fitted to data from the latter. The mean and standard deviations of the F1 scores exhibit

variability across the design points, however they are all around a similar magnitude.

The p-values provide evidence that the performance of the model changes for 14 of

the 16 design points, indicating that the performance of the model frequently differs
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λ̃ µ̃1 µ̃2 µ̃3 Mean F1 SD F1 p-value
4.486 5.492 8.525 5.536 0.882 0.018 0.000
4.486 5.492 7.795 5.536 0.880 0.019 0.000
4.486 6.006 8.525 5.536 0.865 0.018 0.000
4.486 6.006 7.795 5.536 0.860 0.020 0.000
4.486 5.492 8.525 6.054 0.857 0.019 0.000
4.486 5.492 7.795 6.054 0.855 0.019 0.000
4.486 6.006 8.525 6.054 0.834 0.021 0.747
4.486 6.006 7.795 6.054 0.829 0.019 0.272
4.101 5.492 8.525 5.536 0.820 0.020 0.000
4.101 6.006 8.525 5.536 0.818 0.024 0.000
4.101 5.492 7.795 5.536 0.817 0.021 0.000
4.101 6.006 7.795 5.536 0.816 0.023 0.000
4.101 6.006 8.525 6.054 0.812 0.022 0.000
4.101 5.492 7.795 6.054 0.811 0.019 0.000
4.101 5.492 8.525 6.054 0.810 0.020 0.000
4.101 6.006 7.795 6.054 0.809 0.026 0.000

Table 6.4.1: Average and standard deviation of the F1 scores from the classification
model applied to simulation data generated by each set of design point input parameters,
along with the p-value from the hypothesis test, when m = 500.

from what we would expect. Knowing this would surely raise a concern that the model

might not perform as anticipated on the real-world system. Additionally, we would not

be aware of whether the true input parameter values lie within the space captured by

the design points or not. These results might suggest that more input data should be

collected, or perhaps that the performance of classification models discarded during the

model selection process should be tested over the uncertain parameter space to look for

more consistent performance.

Note that the design points with the largest mean F1 scores all have λ̃ at the

upper factor level, suggesting that an increase in this parameter value improves the

predictive performance of the model, whilst a decrease in this parameter value worsens

the performance. To aid our understanding of the impact of the input parameters on

the model performance, we fit a linear regression model using the design point input

parameters as the predictor variables, and the mean F1 scores as the response variable.

We include the interaction terms in the linear regression model, which returns an R-
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squared score of 0.998. Note that we normalise the variables to ensure the regression

coefficients are all on the same scale. The model coefficients associated with each input

parameter and their interactions are shown in Figure 6.4.2.
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Figure 6.4.2: Bar plot of linear regression coefficients representing the impact of each
input parameter and their interactions on the mean F1 score of the classification model.

We see that λ has the coefficient of the largest magnitude, indicating it has the

biggest impact on the performance of the predictive classification model. The coefficient

is positive, indicating that an increase to this input parameter value positively impacts

the F1 score of the model, suggesting an increase in the predictive ability. Conversely,

a decrease to λ negatively impacts the F1 score of the model, suggesting a decrease in

the predictive ability. The term with the coefficient of the next largest magnitude is µ3,

which is around two fifths the size of the coefficient of λ. The coefficient is negative here,

indicating that an increase to µ3 causes a decrease in the performance of the predictive

model. After this, there are three terms, all with negative coefficients of around the

same size, these are µ1, and the interactions between λ and µ1, and λ and µ3. Again, an

increase in any of these terms suggests a decrease in the predictive model performance.

All the terms discussed are statistically significant at a 0.001 significance level, whilst
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the remainder of the terms are not.

In the context of the network queueing model, an increase to λ equates to an in-

crease in the number of arrivals to the system, which will result in more congestion.

Subsequently, arrivals are likely to spend more time in the system, which may result

in a greater number of responses falling above the threshold, thus making it easier to

predict such behaviour. An increase to µ3 equates to a decrease in the service time at

the third queue, which is where the largest queues form, resulting in less congestion.

This may result in a smaller number of responses falling above the threshold. These

results potentially indicate a relationship between the model performance and the class

balance (proportion of 0 and 1 binary responses) of the data sets.

We briefly compare these results to those from a traditional sensitivity analysis,

which would study the impact of the input parameters on the mean simulation output.

We might expect there to be some similarities between how the input parameters affect

the simulation output, and how the input parameters affect the performance of the pre-

dictive model. Using the simulation results from the experimental design, we measure

the sensitivity of the mean time in the system with respect to each input parameter. We

fit a linear regression model using the design point input parameters as the predictor

variables, again including interaction terms, and the mean time in the system as the

response variable. This model produces an R-squared score of 0.999 and the bar plot

in Figure 6.4.3 shows the coefficients associated with each term.

We see that the mean simulation output is most sensitive to λ, which aligns with

the predictive model F1 score sensitivity results. As previously, this is followed by µ3,

and then µ1, however the interaction terms that seemed important to the performance

of the predictive model seem to have less impact on the mean simulation output. This

is an intriguing result, and shows that the impact that the input parameters have

on the simulation output is not necessarily the same as the impact they have on the

performance of the predictive model. In this case, all the individual parameters are
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Figure 6.4.3: Bar plot of linear regression coefficients representing the impact of each
input parameter on the mean output of the simulation model.

statistically significant at a 0.001 significance level, as well as the interactions between

λ and µ1, and λ and µ3.

6.4.4 An Increase in Input Data

We now repeat the previous experiment, but using a larger amount of input data.

Specifically, we increase the number of observations used to estimate each input pa-

rameter from m = 500, to m = 10000. In this case, we obtain the following set of

estimated input parameters θ̂ = (3.98, 5.91, 8.09, 6.03). We run the simulation model

using these estimated input parameters, and as previously, fit a logistic regression model

to the state-output data.

We apply this classification model to 100 simulation data sets generated by the

estimated input parameters, and 100 simulation data sets generated by the true input

parameters, measuring the F1 score each time. We then apply the hypothesis test to the

two samples to look for a significant difference in performance. In this instance, we find

that z = 0.0158, which returns a p-value of 0.9874. This provides strong evidence that
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the mean F1 score from each sample is equivalent, indicating no significant difference

in the performance of the model. This highlights that if enough input data is used to

run the simulation, then the predictive model performance in the real-world will be as

anticipated based on the simulation results.

We also run the designed experiment as previously. Again, we use a full factorial

design across the four input parameters, setting the upper and lower levels by deviating

the MLEs by a single standard deviation. Table 6.4.2 shows the design point input

parameter values for the 16 design points, along with the mean and standard deviation

of the F1 scores, and the p-values from the hypothesis tests. Recall that the hypothesis

test compares the performance of the model at the estimated input parameters versus

the performance of the model at the design point input parameters. Note that the

mean F1 score from using the estimated input parameters is 0.806. Again, we order

the design points by their mean F1 score.

λ̃ µ̃1 µ̃2 µ̃3 Mean F1 SD F1 p-value
4.020 5.974 8.170 5.978 0.811 0.026 0.143
4.020 5.974 8.170 6.099 0.810 0.024 0.155
4.020 5.856 8.170 6.099 0.809 0.023 0.375
4.020 5.856 8.170 5.978 0.808 0.023 0.449
4.020 5.856 8.008 6.099 0.807 0.022 0.573
3.940 5.974 8.170 5.978 0.807 0.025 0.772
4.020 5.856 8.008 5.978 0.807 0.026 0.786
3.940 5.856 8.170 5.978 0.805 0.023 0.858
3.940 5.856 8.008 6.099 0.805 0.022 0.745
4.020 5.974 8.008 5.978 0.805 0.024 0.732
3.940 5.974 8.008 5.978 0.804 0.026 0.707
3.940 5.974 8.170 6.099 0.804 0.026 0.667
4.020 5.974 8.008 6.099 0.803 0.023 0.493
3.940 5.974 8.008 6.099 0.803 0.023 0.465
3.940 5.856 8.008 5.978 0.802 0.028 0.315
3.940 5.856 8.170 6.099 0.798 0.025 0.032

Table 6.4.2: Average and standard deviation of the F1 scores from the classification
model applied to simulation data generated by each set of design point input parameters,
along with the p-value from the hypothesis test, when m = 10000.

Since the input parameters are estimated from a greater amount of data, the param-
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eter variances are much smaller and therefore the design points are much closer than

previously. Consequently, the mean F1 scores are less variable, and the performance

of the predictive model is much more consistent across the design points. The large

p-values provide evidence that the performance of the model at the design point input

parameters is equivalent to the performance at the estimated input parameters. That

is, we are much more certain about the performance of the model over the uncertain

parameter space. This provides some assurance that the performance of the model is

likely to be similar to as anticipated when applied to the real-world system.

6.5 Conclusion

We end this chapter by summarising the experiment, methods, and findings. Following

this, we provide a discussion around aspects of the experiment that could be extended

or given further consideration, and identify some areas that could be investigated in

future work.

6.5.1 Summary

In this chapter, we have taken a first step in considering how input uncertainty impacts

predictive models fit to simulation data generated by estimated input parameters. We

experimented with a network queueing model, and fitted a logistic regression model to

classify whether the time in the system was above a certain threshold, using observable

state data. We applied this model to data sets generated by the estimated input

parameters, to understand the variability in the model performance, as measured by

the F1 score. We then applied the model to simulation data generated using the true

input parameters, to mimic the application of the classification model to the real-

world system. A hypothesis test provided evidence that the performance of the model

significantly changed when applied to the true parameter simulation data. When we
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repeated this experiment using a greater amount of input data, the hypothesis test

provided evidence that there was no such difference in the model performance.

We used an experimental design, to generate sets of input parameters that would

explore the parameter space according to their individual levels of uncertainty. By

running the simulation model at these sets of input parameters, applying the classifi-

cation model, and running the hypothesis test, we found that the performance of the

model frequently changed over the uncertain parameter space. We used linear regres-

sion to model the relationship between the input parameters and the performance of

the predictive model, which allowed us to identify which parameters and interactions

impacted the model performance the most. We also repeated the experiment using a

greater amount of input data, and found that the predictive model performance was

much more consistent over the smaller uncertain parameter space.

To summarise, we have shown that a predictive model fitted to simulation data

generated by estimated input parameters may not perform as anticipated when applied

to the real-world system. We have proposed a hypothesis test as a potential method

for identifying whether the performance of the model changes under different input

parameter values. We have considered how an experimental design may be used to

explore the uncertain parameter space and in conjunction with the hypothesis testing,

be used to ascertain whether the performance of the model is as expected or not.

6.5.2 Discussion and Further Work

Although we use the F1 score in our experiment to evaluate the predictive ability of the

classification model, we could conduct the same analysis using a different scoring metric,

such as the balanced accuracy, or the area under the receiver operating characteristic

curve. The hypothesis testing, designed experiment, and sensitivity analysis could

be applied in the same way to look for differences in model performance. Note that

the approach we have described is invariant to the choice of classification model and
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additionally, it could be applied to study the impact of input parameter uncertainty on

a predictive regression model, utilising a different scoring metric.

We saw from the F1 score input parameter sensitivity analysis, that the change in

model performance might be related to the class balance of the data sets, that is, the

proportions of 0 and 1 binary responses. We could investigate this further by measuring

the correlation between the class balances of the data sets and the corresponding F1

scores of the classification model. If there is a strong correlation, then the hypothesis

testing may be identifying changes to class balance, rather than model performance.

In this case, it might be interesting to compare the performance of other classification

models, that would be generated during a typical model selection process, over the

uncertain parameter space, to see whether they vary in the same way as the logistic

regression model.

Predictive models fitted to simulation state-output data might also be used for

interpretation. For example, the coefficients of the logistic regression model would

inform us how each state variable impacts the probability of being above or below the

threshold for time in the system. If decision-making is based on, or influenced by, the

model interpretation, then the impact of input parameter uncertainty on the model

interpretation should be considered too. Within the existing experiment, we could fit

the logistic regression model to state-output data sets from each of the design point

input parameters, to compare the model coefficients against those from the original

model. This might give us some understanding of how variable the model interpretation

is with respect to the uncertain input parameters.

It might be interesting to consider using the regression coefficients to find approxi-

mately which input parameter values cause a change in the classification model perfor-

mance. To do this, we could look at constructing parameter sets, within the parameter

space of the experiment, to identify the parameter values where the estimated F1 score

of the classification model drops below some threshold, where the threshold may be
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motivated by the hypothesis test statistic.

In our experiment, the R-squared score of the linear regression model was close to

1, indicating that the changes to the input parameters explained a large proportion of

the variance in the mean F1 scores. If the linear regression model returned a low R-

squared score, this would indicate a poor goodness-of-fit. Subsequently, the regression

coefficients would offer less explanation and interpretation about the impact of the input

parameters on the performance of the predictive model. We could consider including

higher-order terms to improve the goodness-of-fit, however the interpretation of the

coefficients becomes more complex, and an appropriate experimental design would be

required to ensure the effects are not confounded.

We have experimented using a small simulation model, however a more realistic

large-scale simulation model with an increased number of input parameters may present

some different challenges. The number of design points in a full factorial design grows

exponentially with the number of factors, therefore a model with more uncertain input

parameters would require substantially more simulation effort to explore all the param-

eter value combinations. In such an instance, one might choose to reduce the number

of design points by using an alternative experimental design, such as a fractional fac-

torial design. These utilise a fraction of the design points from a full factorial design,

whilst still obtaining information about the main effects and lower-order interactions

(Montgomery, 2017). Furthermore, with an increase in input parameters, fitting and

interpreting the subsequent linear regression model with interaction terms becomes dif-

ficult. This could be combated by applying the lasso method (Tibshirani, 1996), which

performs both variable selection and regularisation to balance model accuracy with

simplicity.

In the experiment, we run multiple replications of the simulation model using the

estimated input parameters. This is to create state-output data sets on which we

can test the classification model, to better gauge the model performance. Creating a
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sample of performance metrics is usually not considered, however it is useful for us to

understand the variability of the metric due to the stochastic nature of the simulation.

It also enables us to compare the model performance for different input parameters

via hypothesis testing. It would make sense to utilise this additional simulation data

from the estimated input parameters to train a better classification model, rather than

solely using it to measure the performance of the existing model. However, this would

prevent us from using the data to produce samples of the performance metric required

for the hypothesis tests. We should investigate how to use the additional data to fit

a better model, whilst still being able to run hypothesis tests to compare the model

performance across different input parameter values. Additionally, we might also wish

to consider how the simulation data driven by the design point input parameters could

be used to build a predictive model that accounts for input parameter uncertainty.



Chapter 7

Conclusion

In this chapter, we conclude the thesis. Firstly, we summarise the contributions made to

input uncertainty and data collection problems within the field of stochastic simulation.

Secondly, we discuss some generalisations and limitations of our work, as well as the

practical implications. Finally, we consider how our research might be extended by

identifying some areas for further work.

7.1 Summary of Contributions

In Chapter 3 we addressed our first research problem of whether input uncertainty can

be considered prior to any input data collection. Specifically, we presented a two stage

algorithm to guide input data collection in a manner that minimises input uncertainty.

To the best of our knowledge, this is the first procedure that considers the input uncer-

tainty problem, prior to any type of initial data collection. By collecting data in two

stages and assuming the input parameter values fall within some specific intervals, the

algorithm aims to hone in towards an allocation of data amongst input distributions

that minimises the Taylor series approximation to input uncertainty. Experiments on

a simple M/M/1 queueing model, from which we could analytically derive the true

optimal proportions, indicated that the algorithm was able to achieve close to an op-
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timal allocation of input data. Further experiments on a more sophisticated network

queueing model demonstrated that the algorithm returned a smaller measure of input

uncertainty compared to two other approaches for collecting data.

Chapter 4 addressed our second research problem of developing an approach to com-

pare data collection strategies for viral load simulations. We presented an approach

for comparing the input uncertainty passed to the simulated performance of different

testing policies, when viral load profiles are estimated using different data collection

strategies. Specifically, we used a nonlinear mixed effects model to represent viral load,

and used the residual error function to evaluate the probabilities of returning correct

or incorrect test results, based on some limit of detection. In our experiment, we found

that data collection strategies differed substantially in terms of input uncertainty, how-

ever they also varied in confidence interval coverage of the true performance measure.

We found that the simulation output was frequently underestimated, so subsequently

investigated the input parameter bias. We provided a discussion of our methodology

and experiment, and suggested some adaptations and areas for future work that would

improve the general approach. This work was motivated by the COVID-19 pandemic,

and would potentially be useful for future pandemic responses.

In Chapter 5 we addressed our third research problem of developing frequentist in-

put uncertainty quantification methods for a quantile of the simulation response, as

quantiles are often used to evaluate risk. We adapted two existing input uncertainty

quantification techniques to consider a quantile of the simulation outputs, rather than

the sample mean. Whilst the Taylor series approach is restricted to parametric input

distributions, the bootstrapping approach can be used for both parametric and non-

parametric input distributions. We constructed a contrived simulation example, from

which we could derive an analytical approximation of input uncertainty for the quantile.

We used this example to illustrate the problem if input uncertainty for the quantile is

ignored, and we also used it to show that the two adapted methods accurately estimate
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the correct quantity. Finally, we also compared both approaches on a stochastic ac-

tivity network, where the Taylor series approximation consistently returned a smaller

standard error across estimates of input uncertainty compared to the bootstrapping

approach. Since we addressed this research problem by adapting two existing methods

from the mean to the quantile, there may be scope to continue this approach of adapt-

ing methods to help further address the research problem. This is discussed further in

Section 7.3.2.

Chapter 6 began to address our fourth research problem of developing an under-

standing of the impact of input uncertainty within simulation analytics. Using hypoth-

esis testing, we showed that the performance of a predictive classification model trained

on simulation data generated using estimated input parameters, can perform differently

than expected when applied to the real-world system. We used a two factorial design

to explore the uncertain parameter space and found that the performance of the clas-

sification model, as measured by the F1 score, changed frequently compared to the

performance on simulation data generated by the estimated input parameters. We also

used these results to measure the sensitivity of the predictive model performance with

respect to the input parameters. Finally, we found that when an increased amount of

input data was used, the performance of the classification model was more consistent

over the uncertain parameter space. Since simulation analytics is a growing area, there

is more work that can be done to address wider aspects of this new research problem.

7.2 Generalisations, Limitations, and Implications

for Practice

In this section, we discuss the generalisability and limitations of the methods developed

in this thesis, as well as the implications for practice.

The two stage algorithm developed in Chapter 3 requires specification of intervals



CHAPTER 7. CONCLUSION 131

for each of the input parameter values. In practice, this may not always be straight-

forward, especially if the parameter has no clear interpretation. In this case, graphical

representations of the input distribution may help to select the parameter intervals,

and it is worth reiterating that the algorithm works regardless of whether the parame-

ters fall in their intervals or not. The solution to two optimisation problems form the

basis of the algorithm developed, however these solutions are generalisable in that they

may be utilised in alternative ways to help reduce input uncertainty. For example, the

solution to (3.4.4) may be used solely for an additional data collection problem. The

practical implication of the algorithm, that allocates an initial collection of input data

to minimise input uncertainty, is that more precise simulation results can be generated

compared to alternative data collection approaches.

The approach developed in Chapter 4 is generalisable, in that it could be adapted

and utilised for novel viruses by selecting appropriate functions and parameters. How-

ever, it is limited currently without incorporating bias into the data collection strategy

comparisons. In developing this approach we found that existing methodologies for col-

lecting data to reduce input uncertainty do not account for complex input models like

the nonlinear mixed effects model used, where there is a temporal component to data

collection. This work could therefore give rise to new research on such methodologies

to cover these particular cases. In practice, this approach should be able to aid with

the understanding of which data collection strategy is most valuable for generating in-

sightful results from the simulation of different testing policies. However, in reality, we

may find that the data collected does not conform exactly to the input model process

selected, in which case the input data could be utilised to derive a more appropriate

choice of input model.

The methods developed in Chapter 5 enable input uncertainty quantification for the

quantile of a simulation response under frequentist input modelling. Though the Taylor

series approach is limited to parametric input distributions, the bootstrapping approach
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can be used for both parametric and nonparametric input distributions, however the

latter approach can be computationally expensive. In practice, these methods can

help practitioners to understand the input uncertainty associated with any quantiles

estimated from simulation outputs, an error which would previously be ignored. This

improved understanding of the total uncertainty of the quantile estimate should ensure

decisions are made with appropriate levels of confidence.

Chapter 6 focused on investigating the impact of input uncertainty on predictive

models, fit under the goal of simulation analytics. Our exploratory approach focused on

the F1 score of a logistic regression model, but is applicable to any other scoring metric

and predictive model. The approach we have described is limited in that it requires

the use of parametric input distributions, and becomes computationally expensive with

a greater number of input parameters. The results here suggest that in practice, sim-

ulation users should take caution when applying a predictive model to the real-world

system when the model is fitted using simulation data generated by estimated input

parameters, and that they should seek to understand the impact of uncertain input

parameters on the performance of the model beforehand.

7.3 Further Work

We now outline possible areas for further work, and describe some additional experi-

ments that may assist with these. We first discuss extending the two stage algorithm

to account for multiple simulation outputs and then discuss adapting more input un-

certainty quantification techniques for the case of quantiles.



CHAPTER 7. CONCLUSION 133

7.3.1 Guiding Data Collection to Minimise Input Uncertainty:

Multiple Simulation Outputs

In the two stage algorithm for data collection developed in Chapter 3, the objective is

to minimise input uncertainty for a single simulation output, however when running a

simulation model, there may be interest in multiple simulation outputs. For example,

even in a simple queueing model, there might be interest in both the waiting times

and the queue lengths. Generally, more complex simulation models are likely to exhibit

lots of interesting behaviour, and thus a greater number of simulation outputs may

be recorded. Each output will have a different input uncertainty measure associated

with it, and these will be impacted by data collection in contrasting ways. We therefore

might like to consider how the two stage algorithm could be extended to include multiple

simulation outputs.

To account for the input uncertainties of multiple simulation outputs, we could

investigate updating the objective function coefficients in the optimisation problems

(3.4.2) and (3.4.4). Currently, these minimise the input uncertainty of a single sim-

ulation output. Intuitively, we might alter them to minimise the sum of the input

uncertainties associated with each simulation output. An issue we might anticipate

here is that no consideration is given to the size of input uncertainty relative to the

simulation output, and therefore the optimal proportions are likely to focus on minimis-

ing the largest values of input uncertainty. However, smaller values of input uncertainty

may be a greater cause for concern if they are large relative to their corresponding sim-

ulation output. Therefore, it may be more suitable to minimise the sum of the input

uncertainties relative to their simulation output.

We could test out this idea by including extra simulation outputs within our existing

examples. With the M/M/1 experiment, we should again be able to analytically derive

the true optimal proportion for any additional outputs. So, for example, if we decided

to consider the mean number in the system, in addition to the mean queueing time, it
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would be interesting to see how the analytically derived true optimal proportions that

minimise input uncertainty for each of these simulation outputs compare. We could

also analytically derive the true optimal proportions that minimise the sum of input

uncertainties, as well as those that minimise the sum of input uncertainties relative to

their simulation output, to see how these compare. Furthermore, we could then run

the two stage algorithm using the updated optimisation problems to see if it is able

to provide the trade-off in terms of reaching the optimal allocation of input data to

minimise both input uncertainty values.

With the network queueing example, it would be interesting to consider additional

simulation outputs within the existing experiment. For example, as well as measuring

the average queueing time weighted by type, we could also measure outputs such as

the average queueing time of each arrival type, the average queue length at each node,

or the server utilisation at each node, to name a few. More specifically, it would be

interesting to compare the input uncertainties of these additional simulation outputs

under the different data collection approaches, where the two stage algorithm is used to

minimise the input uncertainty of the average queueing time weighted by type. For these

other simulation outputs which the two stage algorithm does not take into account, we

could produce box plots similar to Figure 3.6.3, to see how the algorithm compares

against the two other data collection approaches. We could then update the two stage

algorithm to account for the multiple simulation outputs and repeat the experiment.

This experiment would be fruitful for two reasons. Firstly, to see how the results differ

when considering a single output versus multiple outputs, and secondly, to see whether

the two stage algorithm is able to produce a reduced level of input uncertainty compared

to the other data collection approaches across multiple simulation outputs.
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7.3.2 Input Uncertainty Quantification for Quantiles: Adapt

More Techniques

Chapter 5 studied input uncertainty quantification for a quantile of the simulation

outputs, as opposed to the typical input uncertainty problem which considers the mean.

We adapted two existing techniques for input uncertainty quantification of the mean

simulation output, to work for a quantile of the simulation outputs.

In the usual input uncertainty context, each of the approaches we have adapted,

bootstrapping and the Taylor series approximation, has certain disadvantages. For

example, bootstrapping involves a two-layer sampling scheme, which can result in com-

putationally expensive simulation experiments, whilst the Taylor series approach is only

a first-order approximation, and requires the use of parametric input models. For these

reasons, amongst others, many alternative techniques for quantifying input uncertainty

have been developed, each with their own unique set of advantages and disadvantages.

We therefore might want to adapt some more techniques so that they can be applied

to a quantile of the simulation outputs.

One technique we might be interested in adapting is the approach of Song and

Nelson (2015). Here the expected simulation output is modelled as a linear combination

of the means and variances of each input distribution, and bootstrapping with empirical

cumulative distribution functions is used to estimate the metamodel parameters. This

approach is appealing for two reasons. Firstly, it places no restrictions on the types of

fitted input distributions used in the nominal simulation experiment. Secondly, from

a single diagnostic experiment, the approach is able to estimate input uncertainty, the

contribution made to input uncertainty by each input distribution, and the sensitivity

of input uncertainty to increases in the sample size of data used to estimate each input

distribution. The challenges with adapting this approach would be checking whether

the variance decomposition of the model would hold for the case of a quantile, and

re-considering the validity of the bootstrap approximation.
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Prior to considering which methods to adapt, we could run further experiments with

the two existing adapted techniques. Applying these techniques over a wider range of

quantiles and input data sizes, as well as utilising a more complex simulation model with

an increased number of input models, would be valuable for a couple of reasons. Firstly,

it would help us to understand the behaviour of the approaches in more depth, and

in particular, we could learn when and why the input uncertainty estimates produced

by each approach may suffer. This could enable us to identify certain properties or

characteristics that we would like any new methodologies to have, which in turn may

inform which existing input uncertainty quantification techniques we would choose to

adapt. Secondly, it would give us a benchmark against which we could compare any

new methods, to learn whether they do indeed outperform the existing approaches in

the scenarios identified, and to see how the methods compare more generally.



Appendix A

Appendix to Chapter 3

A.1 Derivation of Optimal Proportions

We wish to solve the following optimisation problem

{min
L∑
l=1

al
rl

s.t.
L∑
l=1

rl = 1 and rl > 0, for l = 1, . . . , L},

where al = δ̂(θl)I0(θl)
−1δ̂(θl)

⊤ and rl are the proportions to be optimised. We can

write this problem as

{min
L∑
l=1

al
rl

s.t.
L∑
l=1

rl ≤ 1 and rl ≥ 0, for l = 1, . . . , L}.

We do not need to specify that the proportions sum to 1 or that each proportion is

positive, as this will occur at the optimal solution anyway. This problem takes the form

of an inequality-constrained nonlinear programme and can be solved to optimality by

studying the first-order KKT conditions proved by Karush (1939) and Kuhn and Tucker

(1951).

Let µ be the dual multiplier for the first constraint, and λl be the dual multiplier
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for the following L constraints. The Lagrangian is given by

L(µ,λ) =
L∑
l=1

al
rl

− µ

(
1−

L∑
l=1

rl

)
−

L∑
l=1

λlrl,

and the derivative with respect to proportion l is given by

∂L

∂rl
=

−al
r2l

+ µ− λl.

An optimal solution will satisfy, for l = 1, . . . , L, the following four conditions

• primal feasibility :
∑L

l=1 rl ≤ 1 and rl ≥ 0,

• dual feasibility : µ ≥ 0 and λl ≥ 0,

• stationarity : ∂L/∂rl = 0,

• complementary slackness : µ
(
1−

∑L
l=1 rl

)
= 0 and λlrl = 0.

At an optimal solution, we have rl > 0, for l = 1, . . . , L. By complementary slack-

ness it follows that λl = 0, for l = 1, . . . , L. Applying this result to the stationarity

conditions we find

rl =

√
al
µ
.

Since the sum of proportions will equal 1, it follows that

µ∗ =

(
L∑
l=1

√
al

)2

,

and hence the optimal proportions are given by

rl =

√√√√ al(∑L
l=1

√
al

)2 .
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A.2 Derivation of Optimal Proportions with Prior

Data Collection

We wish to solve the following optimisation problem

{min
L∑
l=1

al
rl

s.t.
L∑
l=1

rl = 1 and rl ≥ bl, for l = 1, . . . , L},

where al = δ̂(θ̂l)I0(θ̂l)
−1δ̂(θ̂l)

⊤, bl = ml/(m + B) and rl are the proportions to be

optimised. Similarly to Appendix A.1, we can write this as

{min
L∑
l=1

al
rl

s.t.
L∑
l=1

rl ≤ 1 and rl ≥ bl, for l = 1, . . . , L}.

Let µ be the dual multiplier for the first constraint, and λl be the dual multiplier

for the following L constraints. The Lagrangian is given by

L(µ,λ) =
L∑
l=1

al
rl

− µ

(
1−

L∑
l=1

rl

)
−

L∑
l=1

λl(rl − bl),

and the derivative with respect to proportion l is given by

∂L

∂rl
=

−al
r2l

+ µ− λl.

An optimal solution will satisfy, for l = 1, . . . , L, the following four conditions

• primal feasibility :
∑L

l=1 rl ≤ 1 and rl ≥ bl,

• dual feasibility : µ ≥ 0 and λl ≥ 0,

• stationarity : ∂L/∂rl = 0,

• complementary slackness : µ
(
1−

∑L
l=1 rl

)
= 0 and λl(rl − bl) = 0.
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Here we do not know that rl ≥ bl is not active at the optimal solution, so we cannot

say that λl = 0, for l = 1, . . . , L. Instead, let {rl : l ∈ I} be the proportions for which

rl > bl in the optimal solution, and let {rl : l ∈ J} be the proportions for which rl = bl

in the optimal solution. By stationarity it follows that

rl =


√

al
µ
, for l ∈ I,√
al

µ− λl

, for l ∈ J.

(A.2.1)

Since rl = bl, for l ∈ J , by complementary slackness it follows that

λl =


0, for l ∈ I,

µ− al
b2l
, for l ∈ J.

(A.2.2)

Since the sum of proportions will equal 1, it follows that

∑
l∈I

√
al
µ

+
∑
l∈J

bl = 1,

and this yields

µ =

( ∑
l∈I

√
al

1−
∑

l∈J bl

)2

. (A.2.3)

To find an optimal solution, we need to find a partition of the proportions that

returns a solution that is both primal and dual feasible. So for each partition (I, J) of

{1, . . . , L}, calculate

• µ, via (A.2.3),

• λl, for l ∈ J , via (A.2.2),

• rl, for l = 1, . . . , L, via (A.2.1).

If the solution is both primal and dual feasible, then the solution should be optimal.
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A.3 Analytical Optimal Proportions for the M/M/1

Experiment

The mean queueing (waiting) time of customers in an M/M/1 queueing model can be

derived using Little’s law, and is given by

E[W ] =
λ

µ(µ− λ)
.

The gradient of the mean queueing time with respect to each parameter is therefore

∂E[W ]

∂λ
=

µ2

(µ2 − µλ)2
,

∂E[W ]

∂µ
=

λ2 − 2µλ

(µ2 − µλ)2
. (A.3.1)

Since λ and µ are both estimated using maximum likelihood estimation on sets of

exponentially distributed data, their Fisher information is given by

I0(λ) =
1

λ2
, I0(µ) =

1

µ2
. (A.3.2)

Input uncertainty can be approximated by combining the gradients in (A.3.1) with the

Fisher information for each parameter in (A.3.2), via (3.4.1). This gives

σ2
I ≈ 1

m

((
µ2

(µ2 − µλ)2

)2
λ2

r1
+

(
λ2 − 2µλ

(µ2 − µλ)2

)2
µ2

r2

)
,

where m is the overall number of observations and r1 and r2 represent the proportions

of observations used to estimate λ and µ respectively. For any given values of λ and µ,

we can solve for the optimal proportions by using (3.4.3), with

a1 = λ2

(
µ2

(µ2 − µλ)2

)2

, a2 = µ2

(
λ2 − 2µλ

(µ2 − µλ)2

)2

.
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