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Abstract 

 

No explorer reached a pole without a map, no chef served a meal without tasting, 

and no surgeon implants untested devices. Higher accuracy maps, more sensitive 

taste buds, and more rigorous tests increase confidence in positive outcomes. 

Biomedical manufacturing necessitates rigour, whether developing drugs or creating 

bioengineered tissues [1]–[4]. By designing a dynamic environment that supports 

mammalian cells during experiments within a Raman spectroscope, this project 

provides a platform that more closely replicates in vivo conditions. The platform also 

adds the opportunity to automate the adaptation of the cell culture environment, 

alongside spectral monitoring of cells with machine learning and three-dimensional 

Raman mapping, called volumetric Raman mapping (VRM). Previous research 

highlighted key areas for refinement, like a structured approach for shading Raman 

maps [5], [6], and the collection of VRM [7]. Refining VRM shading and collection 

was the initial focus, k-means directed shading for vibrational spectroscopy map 

shading was developed in Chapter 3 and exploration of depth distortion and VRM 

calibration (Chapter 4). “Cage” scaffolds, designed using the findings from Chapter 

4 were then utilised to influence cell behaviour by varying the number of cage beams 

to change the scaffold porosity. Altering the porosity facilitated spectroscopy 

investigation into previously observed changes in cell biology alteration in response 

to porous scaffolds [8]. VRM visualised changed single human keratinocyte (HaCaT) 

cell morphology, providing a complementary technique for machine learning 

classification. Increased technical rigour justified progression onto in-situ flow 

chamber for Raman spectroscopy development in Chapter 6, using a Psoriasis 

(dithranol-HaCaT) model on unfixed cells. K-means-directed shading and principal 

component analysis (PCA) revealed HaCaT cell adaptations aligning with previous 

publications [5] and earlier thesis sections. The k-means-directed Raman maps and 

PCA score plots verified the drug-supplying capacity of the flow chamber, justifying 

future investigation into VRM and machine learning for monitoring single cells within 

the flow chamber. 



iii 
 

Acknowledgements 

 

Writing this thesis provided a unique learning and development experience, made 

impossible without the opportunity, guidance, and support I received through the 

project. I am forever indebted to all who contributed, not only during the doctorate 

but the years prior encompassing housemates, coursemates, colleagues, lecturers, 

teammates, and the Nottingham lot. 

Specifically, I thank my supervisors, Prof. Rehman, and Dr. Ashton whose research 

and guidance helped shape this project. I am incredibly fortunate to have had both 

of you as my supervisors and have your continued support. Prof. Rehman, who 

brought me into the Bioengineering research group, who I thank for their advice, 

training, and friendship. Whilst in the group I completed my MSc dissertation, 

resulting in this Lancaster University School of Engineering funded PhD opportunity. 

I acknowledge the support of the School of Engineering, both financially and in 

providing a world-leading engineering environment to develop skills, knowledge, and 

resilience. 

The incredible support, phenomenal experiences, and tolerance provided by my 

family are the foundation for any successes I have. Thanking my parents and sister 

for their help and my childhood is therefore critical. To Mitch, I am grateful for the 

friendship and distraction of watching the Garibaldi Reds. Finally, but significantly, 

Ellie, first defence against stress, forgiver of my quirks and geographical distance, 

and enabler of my dreams, I thank you for everything.  

 

 

 

 

 

 



iv 
 

Declaration 

 

This thesis and the results in it are all my own work, have not been submitted for any 

other higher degree, and the word count is below the maximum allowed. 

Michael Greenop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Contents 

 

Chapter 1 - Introduction........................................................................................ 1 

1.1. Introduction ................................................................................................. 1 

1.2. Raman spectroscopy theoretical background ......................................... 4 

1.2.1. Raman theory ........................................................................................ 5 

1.2.2. Volumetric Raman mapping (VRM) ..................................................... 7 

1.2.3. Live-cell Raman .................................................................................. 12 

1.3. Confocal Raman optics theoretical background .................................... 13 

1.3.1. Confocal systems ............................................................................... 14 

1.3.2. Refraction ............................................................................................ 16 

Chapter 2 - Literature review and methods ....................................................... 20 

2.1. Introduction ............................................................................................... 20 

2.2. Literature review (Part A: Cells and scaffolds)....................................... 21 

2.2.1. Direct laser writing ............................................................................. 21 

2.2.2. Directing cells using substrate surfaces .......................................... 23 

2.2.3. Cell response to 3D scaffolds ........................................................... 25 

2.2.4. 3D scaffolds used to test cell behaviour. ......................................... 27 

2.2.5. VRM of cells on DLW scaffolds ......................................................... 29 

2.3. Literature review (Part B: Dimension reduction and machine learning)

 ........................................................................................................................... 31 

2.3.1. Principle component analysis ........................................................... 32 

2.3.2. Cluster analysis .................................................................................. 33 

2.3.3. Machine learning assessment and validation methods .................. 34 

2.3.4. Linear discriminant analysis ............................................................. 36 

2.3.5. Support vector machines ................................................................... 37 

2.3.6. Logistic regression ............................................................................. 38 

2.3.7. Decision trees and random forests ................................................... 38 

2.4. Methods ..................................................................................................... 40 

2.4.1. Scaffold computer aided design (CAD) & fabrication ..................... 40 



vi 
 

2.4.2. Cell culture .......................................................................................... 40 

2.4.3. Microscopy .......................................................................................... 41 

2.4.4. Raman spectroscopy, mapping (2 & 3D) & pre-processing ............ 41 

2.4.5. Spectral and chemometric analysis .................................................. 42 

Chapter 3 - Raman mapping and shading......................................................... 43 

3.1. Introduction ............................................................................................ 43 

3.1.1. Raman mapping .................................................................................. 43 

3.1.2. Repeatability in Raman mapping ...................................................... 46 

3.3. Methods .................................................................................................. 48 

3.4. Results and discussion (section 1) ...................................................... 48 

3.4.1. Challenges of shading single cells ................................................ 49 

3.4.2. Background removal with clustering/intensity levels .................. 51 

3.4.3. Clustering comparison ................................................................... 53 

3.4.4. Single-cell map segmentation comparison ................................... 56 

3.4.5. HaCaT Cell 2 principal component 3 ............................................. 57 

3.4.6. HaCaT Cell 1 principal component 2 ............................................. 60 

3.4.7. HaCaT Cell 1 principal component 3 ............................................. 62 

3.5. Results and discussion (seciton 2) ...................................................... 65 

3.5.1. Assigning colours to the different HaCaT Cell 2 k-means clusters

 65 

3.5.2. Assigning colours to the different HaCaT Cell 1 clusters ............ 67 

3.5.3. Complete k-means-directed shading maps................................... 69 

3.6. Conclusions ........................................................................................... 70 

Chapter 4 - Raman mapping of single cell scaffolds ....................................... 73 

4.1 Introduction ................................................................................................ 73 

4.1.1. Resolution ........................................................................................... 74 

4.1.2. VRM resolution and distortion ........................................................... 76 

4.1.3. Hypotheses ......................................................................................... 77 

4.2. Chapter specific methods ........................................................................ 79 

4.2.1. Calibration block design .................................................................... 79 

4.2.3. Median shading................................................................................... 80 

4.3. Results and discussion ............................................................................ 84 

4.3.1. Arbitrary z-steps and subjective shading ......................................... 84 



vii 
 

4.3.2. Depth profiles showing out-of-focus contributions. ....................... 86 

4.3.3. Staggered tube constructs ................................................................ 89 

4.3.4. VRM z-step calibration ....................................................................... 96 

4.3.5. K-means directed shading of a cell-scaffold. ................................. 100 

4.3.6. Mapping a cell on a porous cage scaffold .................................. 103 

4.4. Conclusions ......................................................................................... 106 

Chapter 5 – Raman spectroscopy of cells on varied scaffolds ..................... 109 

5.1. Introduction ............................................................................................. 109 

5.2. Methods and materials ........................................................................... 112 

5.3. Results and discussion (Part 1: Simple scaffolds) .............................. 113 

5.3.1. Mapping cell morphology on 3D scaffolds ..................................... 114 

5.3.2. Distinguishing cells on and off “simple” scaffolds ....................... 117 

5.3.3. Unsupervised learning: Data exploration ....................................... 118 

5.3.4. Supervised learning: Classification ................................................ 122 

5.4. Mapping cell behaviour on cage scaffolds of varying pore size ........ 125 

5.4.1. Initial visualisation of HaCaT cell on 5- and 10- beamed cage ..... 125 

5.4.2. K-means directed vs. Renishaw WiRETM comparison (5-beamed 

cage) ............................................................................................................ 128 

5.4.3. K-means directed vs. Renishaw WiRETM comparison (10-beamed 

cage) ............................................................................................................ 130 

5.5. Distinguishing cells gown on scaffolds with different pore sizes ...... 133 

5.5.1. PCA: Five-beam cages vs. Off ......................................................... 133 

5.5.2. Supervised learning: Five-beam cages vs. Off .............................. 137 

5.5.3. Supervised learning: Five-beam cages vs. 10-beam cages .......... 139 

5.6. Large, medium, and small square pores. ............................................. 141 

5.6.1. Renishaw WiRETM VRM of HaCaT cells in varied diameter pores 141 

5.6.2. Machine learning analysis of HaCaT cells in varied diameter pores

 ..................................................................................................................... 143 

5.7. Conclusions ............................................................................................ 146 

Chapter 6 - Flow chamber for in-situ Raman mapping .................................. 150 

6.1. Introduction ............................................................................................. 150 

6.2. Flow chamber design, fabrication, & testing ........................................ 152 

6.2.1. Flow chamber design and fabrication ............................................ 153 



viii 
 

6.2.2. Flow chamber testing ....................................................................... 158 

6.3. Results and discussion (Part 1: Fixed cell verification) ...................... 164 

6.3.1. Fixed cell analysis of dithranol-exposed HaCaT cells ................... 165 

6.3.2. Fixed cell analysis score plots ........................................................ 166 

6.3.3. Fixed cell analysis loading plots ..................................................... 167 

6.3.4. Fixed cell univariate mapping comparison .................................... 170 

6.4. Results and discussion (Part B: Unfixed analysis) .............................. 173 

6.4.1. Controlling for cell death ................................................................. 173 

6.4.2. Flow supply to cell ............................................................................ 175 

6.4.3. Cell visual inspection before and after dithranol flow exposure. . 179 

6.5. Conclusion .............................................................................................. 181 

Chapter 7 - Conclusions ................................................................................... 185 

7.1. Introduction ............................................................................................. 185 

7.2. Raman map shading ............................................................................... 187 

7.3. VRM calibration ....................................................................................... 189 

7.4. Machine learning ..................................................................................... 192 

7.5. Flow chamber .......................................................................................... 196 

7.6. Future research ....................................................................................... 200 

References ......................................................................................................... 202 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of abbreviations 

 
 

ANN  ................................................................................... Artificial Neural Network 

CA  .................................................................................................... Collection Area 

DLW  .......................................................................................... Direct Laser Writing 

DPBS  .............................................................................. Dubeccos Buffered Saline 

DR  ................................................................................................... Depth Reolution 

HaCaT  ................................................................. Immortalised Human Keratinocyte 

HEZ  ............................................................................................ Heat Effected Zone 

hMSC  ...................................................................... Human Mesnchymal Stem Cell 

LDA  .............................................................................. Linear Discriminant Analysis 

LgSq  .................................................................................................... Large Square 

lsqr  ........................................................................................ Least Square Solution 

MdSq  ............................................................................................... Medium Square 

PAT  .......................................................................... Process Analytical Technology 

PCA  ........................................................................... Principal Component Analysis 

PEG ............................................................................................  Polyetylene Glycol 

PETA  ............................................................................Pentaerythritol Tetraacrylate 

PFA  .............................................................................................. Parefomaldehyde 

RBF  ........................................................................................ Radial Base Function 

SEM  ......................................................................... Scanning Electron Microscope 

SmSq ..................................................................................................  Small Square 

svd  ............................................................................ Singular Value Decomposition 



x 
 

SVM  ................................................................................... Support Vector Machine 

TPA  ..................................................................................... Two-Photon Absorption 

VRM  ............................................................................. Volumetric Raman mapping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of figures 

 

Figure 1.1 – VRM of SU-8TM Capsule: Three-dimensional Raman map showing the 

location of  amorphous (red) and crystalline (blue) naproxen, alongside PVP (green) 

loaded into a SU-8TM (turquoise) DLW capsule on a silicon (black) surface [31]. ... 8 

Figure 1.2 – Compared cell response between PEG and PEG+MMP+RDG 

scaffolds: Different components such as cytoplasm (blue), nucleus (red), TAGs 

(green) and PLPs (orange) illustrate the difference between inert (left) and 

functionalised (right) scaffold materials with VRM [32], scale bar = 10 μm. ............ 9 

Figure 1.3 – 3D Raman of mitosis: A) Molecular structure of the trans and gauche 

conformations [34]. B) 2850 cm-1 lipid methyl in gauche conformation (green), 2870 

cm-1 lipid methyl in the trans conformation (blue), C) 2870/2850 cm-1 ordered lipids 

(red), E) 2870/2850 cm-1 overlapping 2850 cm-1 lipid methyl peak (green) [33], F) 

High and low viscosity trans/gauche ratios, relating to the low and high gauche 

respectively [34]. ................................................................................................... 11 

Figure 1.4 – Confocal systems and limitations: A) Laser focus through a lens to 

a minimum diameter (do) and length (L). B) The confocal aperture blocking photons 

from outside the intended focal depth (A & B), whilst allowing the intended photons 

(C) through. C) Photons from two different materials are detected from the focal point 

P, showing the limitations of confocal systems. D) Shows the detection of photons 

when the focus is off the sample. E) Material 1 (blue) is seen in a spectrum when 

the laser is focused to the side, through material 2 (red), resulting from photon 

migration through the materials. [42] ..................................................................... 15 

Figure 1.5 – Laser focus refraction: A) Showing the altered angle (red line) and 

depth (Zr) of compared to the expected focus (green line) and depth (Δ). B-C) The 

increasing change in depth resolution (DR) as the focal depth (Δ) increases. [30] 17 

Figure 1.6 – Refractive index matching: A) The compressed view of a polymer 

thread cross-section (compared to known diameter) collected using an air-



xii 
 

immersion objective. B) A cross-section image of the same polymer thread where 

refractive index-matching oil is used to avoid depth distortion.[7] ......................... 18 

Figure 2.1 – PEG/PETA cell adhesion comparison: The increased cell motility 

correlating to larger PETA percentage (0, 4.8, 9.1 and 33.3%) in PEG-PETA 

composite demonstrating PETA cell adhesion [54]. .............................................. 24 

Figure 2.2 – SU-8TM Nanopores: Demonstrating the nanopore capacity of SU-8TM, 

with the scale shown (right) and their effect on cellular behaviour (left) where cellular 

expansion is constrained within the nanopores border highlighted [55]. ............... 25 

Figure 2.3 – Neuron direction: Neuronal cell directed by OrmoCompTM scaffold 

and stained for markers MAP-2 (green), GFAP (red), and DAPI (blue) for nuclei [56], 

[59], scale bars relate to 50 µm ............................................................................. 26 

Figure 2.4 – Neuron towers: 3D culture on towers to monitor neurite development 

and stained for neuronal markers MAP-2 (green), β-tubulin III (red), and DAPI (blue) 

for nuclei [56], [59], scale bars relate to 20 µm ..................................................... 27 

Figure 2.5 – Invasion of log stack scaffold: Cytoplasm (green) of mouse 

embryonic fibroblasts (MEF) is shown in both images but nucleus (red) is submerged 

in Lamin A gene knock out (left), illustrating Lamin A/C effect on nuclear stiffness 

[62]. ....................................................................................................................... 28 

Figure 2.6 – Cell-scaffold complex: 3D Raman mapping of a CaCo2 cell seeded 

onto an OrmocompTM scaffold printed by direct laser writing. Demonstrating the 

capacity of Raman to highlight the nucleus (blue), cytoplasm (green) and scaffold 

(yellow) with the correct scaffold material selection [6], map dimensions are 65 × 43 

× 44 µm ................................................................................................................. 30 

Figure 2.7 – Confusion matrix and classification metrics: Example confusion 

matrix showing the actual positive (pos) and negative (neg), against the classified 

pos and neg, resulting in true positive (tp), true negative (tn), false positive (fp), and 

false negative (fn). Highlighting the formula for accuracy, precision, recall, specificity 

[72], and f1-score [73] ........................................................................................... 36 



xiii 
 

Figure 3.1 – Low-feature shading variability: See text for discussion on shading 

parameters, such as colour intensity and transparency setting used. A-D) Reducing 

intensities of the 1330-1350 cm-1 intensities associated with proteins for the HaCaT 

Cell 1 (mapped area = 21 × 22 µm). E-F) Reducing intensities of the 775-800 cm-1 

intensities associated with nucleic acids for the HaCaT Cell 1. I-L) Reducing 1330-

1350 cm-1 intensities for the HaCaT Cell 2. M-) Reducing 775-800 cm-1intensities for 

the HaCaT Cell 2 (mapped area = 21 × 33 µm). ................................................... 50 

Figure 3.2 – Cluster shading: A) Microscope image of HaCaT Cell 2, B) K-means 

clustering used to capture HaCaT Cell 2 background, C) Zero array substituted 

background k-means image of HaCaT Cell 2, D) Microscope image of HaCaT Cell 

1, E) K-means clustering used to capture HaCaT Cell 1 background and F) Zero 

array substituted background k-means image of HaCaT Cell 1. Pixel counts (x and 

y axis) in B, C, E, & F, are in µm ........................................................................... 52 

Figure 3.3 – Microscopy verification of clustering: A) K-means clustering image 

of HaCaT Cell 1 (5 clusters). B) HCA image of HaCaT Cell 1 (5 clusters). C)  

Univariate Raman map of HaCaT Cell 1 shaded to the 693-713 cm-1 (lipid) spectral 

peak (purple). D) Univariate Raman map of HaCaT Cell 1 shaded to the 775-800 

cm-1 (nucleic acid) spectral peak (blue). E & F) HaCaT cells imaged using 

fluorescence microscopy, labelled using DAPI (blue) to visualise DNA, and WBA 

(green) to visualise proteins. Pixel counts (x and y axis) in A-D, are in µm ........... 55 

Figure 3.4 – HaCaT cell 2 PC3: A) Loading plot of HaCaT Cell 2 (PC2), highlighting 

the 784, 1095, 1489 and 1575 cm-1 loading peaks when a 0.06 threshold was applied 

to the positive loading peaks and 1129, 1436 and 1675 cm-1 when a 0.06 threshold 

was applied to the negative loadings. B-H) Univariate Raman maps of, B) 784 cm-1 

(nucleic acids), C) 1095 cm-1 (nucleic acids), D) 1489 cm-1 (nucleic acids), E) 1575 

cm-1 (nucleic acids), F) 1129 cm-1 (proteins), G) 1436 cm-1 (proteins), & H) 1675 cm-

1 (proteins). I) Hyperspectral image of PC3. Pixel counts (x and y axis) in B-I, are in 

µm ......................................................................................................................... 59 

Figure 3.5 – HaCaT cell 1 PC2: A) Loading plot of HaCaT Cell 1 (PC2), highlighting 

the 1000, 1155, 15007 and 1600 cm-1 loading peaks when a 0.06 threshold was 



xiv 
 

applied to the positive peaks and 1128, 1302, 1448 and 1652 cm-1 when a 0.06 

threshold was applied to the negative loadings. B) Hyperspectral image of PC2. C-

F) Univariate Raman maps of, C) 1128 cm-1 (lipids), D) 1032 cm-1 (lipids), E) 1448 

cm-1 (proteins), F) 1652 cm-1 (proteins). Pixel counts (x and y axis) in B-F, are in µm

 .............................................................................................................................. 61 

Figure 3.6 – HaCaT cell 1 PC3: A) Loading plot of HaCaT Cell 1 (PC3), highlighting 

the 1000, 1155, 15007 and 1600 cm-1 loading peaks when a 0.06 threshold was 

applied to the positive loading peaks and 1128, 1302, 1448 and 1652 cm-1 when a 

0.06 threshold was applied to the negative loadings. B) Hyperspectral image of PC3. 

C-H) Univariate Raman maps of, C) 784 cm-1 (nucleic acids), D) 1488 cm-1 (nucleic 

acids), E) 1678 cm-1 (proteins), F) 748 cm-1 (proteins), G) 1586 cm-1 (lipids), & H) 

1433 cm-1 (protein). Pixel counts (x and y axis) in B-H, are in µm ......................... 64 

Figure 3.7 – HaCaT cell 2 cluster assignment: A) HaCaT Cell 2 Cluster average 

spectra (full). B) HaCaT Cell 2 Cluster average spectra (focused). C-E) Inivariate 

Raman maps of, C) 784 cm-1 (nucleic acids), D) 1436 cm-1 (proteins), & E) 1657 cm-

1 (proteins). F) K-means cluster image using 5 clusters. Pixel counts (x and y axis) 

in C-F, are in µm ................................................................................................... 66 

Figure 3.8 – HaCaT cell 1 cluster assignment: A) HaCaT Cell 1 Cluster average 

spectra (full). B) HaCaT Cell 1 Cluster average spectra (focused). C & D/F-H) 

Univariate Raman maps of, C) 1586 cm-1 (lipids), D) 784 cm-1 (nucleic acids), F) 748 

cm-1 (proteins), G) 1678 cm-1 (proteins), & H) 1433 cm-1 (proteins). E) K-means 

cluster image using 5 clusters. Pixel counts (x and y axis) in C-H, are in µm ....... 68 

Figure 3.9 - Cell visualisation comparison: A) Fluorescence microscopy, 

providing a comparative imaging technique, staining the nucleus blue with a stain for 

DNA (DAPI) and the cell body / cytoplasm green for proteins (WBA). (B-C) showing 

the incremental shading of the 775-790 cm-1 nucleic acid Raman peak (blue) for 

HaCaT cell 1 (mapped area = 21 × 22 µm), and HaCaT cell 2 (mapped area = 21 × 

33 µm) (E-F), with consistent shading for the 1330-1350 cm-1 protein region (green), 

which can be similarly varied. H) The k-means directed false-colour shading of 

HaCaT cell 1, showing the objectively derived and spectrally verified boundaries for 



xv 
 

the nucleus (blue) and the cell body (green). Colour bars indicate the Raman 

intensity for the proteins (green) and nucleic acids (blue) to the right of the map; with 

the same shown for HaCaT cell 2 in (I). Pixel counts (x and y axis) in H and I, are in 

µm ......................................................................................................................... 70 

Figure 4.1 – Multi-resolution image of HaCaT cell: A-D) HaCaT cell (dithranol 3 

hours) Raman mapped using 5 k-means clusters and different resolutions. A) 0.8 

µm2 pixels (44×40-pixel map), B), 2 µm2 pixels (17×17-pixel map), C), 5 µm2 pixels 

(7×7-pixel map), D) a 10 µm2 pixels (4×4-pixel map). E-G) Mapping 20×20 µm DLW 

printed OrmoCompTM pillar, with SEM print accuracy verification (H). E) 0.5 µm2 pixel 

map, F) 2 µm2 pixel map, & G) 10 µm2 pixels. ...................................................... 75 

Figure 4.2 – Percentage fill vs. Fill intensity: A-C) Varied percentage fill from 81% 

(A), to 36% (B), and 16% (C), consistent colour intensity. D-F) Fill intensity change, 

starting at a colour intensity of 100% (D), to 70% (E), and 30% (F), with the 

percentage fill kept consistent. G) Graphing the relationship between map mean and 

median difference (y-axis) and the intensity fill (x-axis). H) Graphing the relationship 

between map mean and median difference (y-axis) and percentage fill (x-axis). .. 82 

Figure 4.3 – Scaffold depth A-I) Maps and VRM of the same book construct. SEM 

lateral view (A), tipped view (B), & depth measurement (C). D & E) Lateral and axial 

view of VRM (2 µm z-step), shaded to produce the closest lateral reproduction of 

(A), shading parameters used for all construct VRM. F & G) Lateral and axial VRM 

views (6 µm z-step). H & I) Lateral and axial VRM views (12 µm z-step). H, D & F) 

showing similar maps, demonstrating consistent lateral resolution between the three 

z-steps, whereas varied maps are produced for E, I, & G, highlighting the complexity 

of identifying suitable z-steps for HaCaT cells (J) when verification imaging is 

impractical. ............................................................................................................ 85 

Figure 4.4 – Z-step depth profiles: Depth profiles of the same XY position on a 6 

µm deep construct using 1 µm (green), 3 µm (blue), and 6 µm (red) z-steps, where 

dots = collection depths. ........................................................................................ 88 

Figure 4.5 – 6 µm Deep tube: A & B) The side (A) and top (B) views of a VRM of a 

6 µm deep OrmoCompTM construct produced using a 6 µm z-step. Violin plots (C) 

file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862340
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862340
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862340
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862340
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862340
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862340
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862341


xvi 
 

show the Raman intensity (y) against the intensity frequency (x), with the slice mean 

(green) and median (blue) directly above their corresponding z-stack slice (D). Slice 

3 (D) is isolated when intensities below 5 × median for each slice is applied, 

producing the expected lateral 10 µm inside diameter (ID) - 20 µm outside diameter 

(OD) and axial (6 µm) dimensions of the tube. Pixel counts (x and y axis) in D, are 

in µm ..................................................................................................................... 91 

Figure 4.6 – 12 µm Deep tube: A and B) The side (A) and top (B) view of a 12 µm 

high OrmoCompTM tube construct mapped using 6 µm z-steps. Shading parameters 

for (A) and (B) determined as previously by ensuring the lateral dimensions 

correlated with the expected dimensions aiming for a 5 µm wall thickness in (B). 

Distribution plots (C) show violin plots, with the Raman intensity (y) against the 

intensity frequency (x),  the slice mean (green) and median (blue) above their 

corresponding z-stack slice in (D). Slices 4 and 5 were shaded using a 2.3 × median 

shading parameter (D) to produce the nearest lateral (10 µm ID & 20 µm OD) and 

axial 12 µm, with the shading range shown in C as a yellow bar. Pixel counts (x and 

y axis) in D, are in µm ........................................................................................... 93 

Figure 4.7 – 18 µm Deep tube: Figure 4.7: The side (A) and top (B) views of a VRM 

of an 18 µm high tube construct produced using 6 µm z-steps. Violin plots (C) show 

the Raman intensity (y) against the intensity frequency (x),  the slice mean (green) 

and median (blue) above their corresponding z-stack slice in (D). Slices 5-7 were 

shaded using a 1.8 × median shading parameter (D) to produce the nearest lateral 

(10 µm ID & 20 µm OD) and axial 18 µm, with the shading range shown in C as a 

yellow bar. Pixel counts (x and y axis) in D, are in µm .......................................... 95 

Figure 4.8 – SEM verification of calibration: A) SEM of a 20×20×3 calibration 

block tipped 40°, measuring the distance between the top and bottom edge of the 

block side (1.938 µm) to calculate block depth (3.015 µm). Block lateral (B), 

measured with X (width) at 19.071 µm and Y (height) 18.375 µm; approximately 1-2 

µm smaller than designed. Corner rounding is seen in (A) and (B). C-E) All use a 1 

µm2 lateral pixels (pixel count along axes). C) VRM z-stack (2 µm z-steps), shaded 

to 12 × median D) VRM z-stack (3 µm z-steps) with 13.5 × median shading. E) VRM 



xvii 
 

z-stack (6 µm z-step), failing to isolate a single slice. Pixel counts (x and y axis) in 

C-E, are in µm ....................................................................................................... 97 

Figure 4.9 – Calibration block repeatability: To determine the capacity of VRM to 

resolve thin sections, a range of z-steps were used to map blocks of 1 (A), 2 (B), and 

3 µm (C) depth. 1 µm2 pixels were used for the lateral resolution for all heights. No 

z-step options mapped the 1 µm deep construct in (A), failing to isolate a single slice 

in any increment between 2 and 5 µm. B) The 2-5 µm range of z-steps were repeated 

for the 2 µm pillar, with the 5 µm z-step isolating slice 1, more than twice the actual 

height of the block. The 3 µm pillar in (C) was mapped using z-steps from 3 to 6 µm, 

isolating slice 1 using a 4 µm z-step. A pixel is missing, located in the blocks bottom 

right corner, potentially resulting from the rounding seen in SEM images (sections 

4.1, 4.3.1, and 4.3.2). The capacity of this depth block to produce the correct lateral 

dimensions shows VRMs capacity to map samples using larger z-steps than the 

sample (as shown in section 4.1). The use of the calibration block therefore provides 

evidence towards the choice of z-step for deeper analysis of samples with optical 

properties suitable for deeper analysis (such as cells and other biological samples), 

by providing a known lateral dimension for map verification. Whilst also showing that 

limitation of the VRM to resolve shallow features (relative to the CA axial depth). 

Pixel counts (C-E), are in µm ................................................................................ 99 

Figure 4.10 – HaCaT cell & porous scaffold: A) Microscope image of HaCaT cell 

on porous scaffold. B) Top view of a HaCaT cell on a porous scaffold, mapped using 

5 µm z-steps and 1 µm2 lateral pixels. The same VRM is shown in (C), showing the 

side view, and (D) and angled view, with the same shading parameters used for (A), 

(B), and (C). E) The individual VRM slices relating to the cell (slices collected above 

the cell discarded). Shading ranges in E for proteins 1330-1350 cm-1 (green), and 

nucleic acids 775-790 cm-1 (blue), are shown to the right of the feature. The colour 

relating to the Raman scattering intensity range within the highlighted region, 

effectively scaling the shading to the region associated with the biomolecule; 

proteins showing the cell body and nucleic acids the probable nucleus location. 

OrmocompTM 1705-1750 cm-1 is shaded yellow, with no shading range, as the 

scaffold location is a qualitative question for this study (present, or not). ............ 101 

file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862347


xviii 
 

Figure 4.11 – Renishaw WiRETM VRM and slices of cell-scaffold: A) WiRETM 

VRM of a similar cage scaffold, shaded to the 1705-1757 cm-1 OrmoCompTM region 

and shaded yellow, B) Slices 0 –4 of cell-scaffold 3 VRM, placed in z-stack, C) 

Analysed region of cell-scaffold 3 & D) WiRETM VRM of cell-scaffold 3, showing 

proteins in green (1330-1350 cm-1) and OrmoCompTM in yellow (1705-1757 cm-1).

 ............................................................................................................................ 104 

Figure 5.1 – Renishaw WiRETM VRM of cell-scaffold 1: Using standardised 

colouring (see methods): A - C) The gradual removal of lower intensity regions of 

the VRM, allowing the focuses of the image (cell and scaffold) observable. Starting 

by imaging the OrmoCompTM 1715-1750 cm-1 Raman peak (yellow), imaging the 

entire range (A), then removing the lower intensities for the OrmoCompTM, proteins 

shown in green (1330-1350 cm-1), and finally using the opaqueness settings to show 

the nucleic acid (775-790 cm-1) high intensity region within the cell (C). ............. 114 

Figure 5.2 – Renishaw WiRETM VRM and slices of cell-scaffold 2: Using 

standardised colouring (see methods), A) WiRETM VRM of cell-scaffold, B) 

Microscope image of the cell-scaffold, C) Slices 0 – 2 of cell-scaffold VRM, shading 

boundaries determined by K-means directed shading, with shading ranges for the 

nucleic acids and proteins enlarged to the right of (A). ....................................... 116 

Figure 5.3 - PCA analysis of cells cultured in 3D morphologies supported by 

18 µm deep scaffolds: In all score plots blue = 5-beamed cage (5BC) and red = 

cells cultured off the scaffold (Off).  Score plots for PC1 vs. PC2 (A), PC1 vs. PC3 

(C), & PC1 vs. PC2 vs. PC3 (F). B) The explained variance plot, accumulated 

variance (y-axis) for the number of principal components (x-axis). Loading plots 

show highly loaded peaks for PC1 (D), PC2 (E), and PC3 (G). .......................... 121 

Figure 5.4 - Learning curves showing the 5-fold cross validation for different 

test-train splits: Logistic regression (A), LDA (C), and SVM with hyperparameters 

C=1 and a linear kernel (E) models trained on PCA reduced data.  Confusion 

matrices for the logistic regression (B), LDA (D), and SVM (F) trained using the 

learning curve indicated test-train split for cross-validation scores of 76.67% (logistic 

regression), 78.89% (LDA), and 76.67% (SVM). ................................................. 124 



xix 
 

Figure 5.5 - SEM and Renishaw WiRETM VRM images of cage constructs and 

cage cell-scaffolds: Using standardised colouring (see methods), A-C) SEM 

images of a 5-beam (A), 7-beam (B), and 10-beam cage (C) cage constructs. D-E) 

Angled SEMs of the 5-beam (D), 7-beam (E), and 10-beam (F) cage constructs. G-

I) WiRETM VRMs of sections of the 5 (G), 7 (H), and 10-beam (I) cages. J-L) WiRETM 

VRM of cells on different beamed cages. ............................................................ 126 

Figure 5.6 - Cut Renishaw WiRETM VRM maps of 5- and 10-beam cage cell-

scaffolds: Using standardised colouring (see methods): In (A-D), axial cutting 

of a 5-beam construct VRM shows cross-sections through the cell-scaffold side from 

the scaffold rear (A), middle (B & C) and the whole VRM (D). In (E-H) a lateral cut 

shows the cross-sections of cells on a 10-beam cage from the bottom (E). Cells 

appear between beams through the middle cross-sections (F & G), with the entire 

VRM shown in (H). .............................................................................................. 127 

Figure 5.7 – Rehishaw WiRETM-produced VRM vs. K-means directed shading 

of a Z-stack: Using standardised colouring (see methods). A 5-beamed cage & cell 

using a WiRETM-produced VRM in (A-C), with an axial cross-section moving through 

the HaCaT cell and scaffold, showing the whole cell, (A), cell centre (B), and rear 

(C). D-K) the separate slices of the VRM z-stack shaded using k-means directed 

shading (see Chapters 3 & 4 for cluster assignment method). Slices start at the top 

of the VRM stack (D), moving through the VRM at 4 µm intervals (z-steps) in (E-K), 

with the entire z-stack shading range in colour bars (right). ................................ 129 

Figure 5.8 – Renishaw WiRETM VRM and slices of cell on a ten-beamed cage: 

Using standardised colouring (see methods): A lateral cut shows a cross-section 

moving through cells on a ten-beamed cage in (A-D), showing cells appearing to 

coat the entire scaffold when the whole WiRETM-produced VRM is shown (D). In (E-

L), the k-means directed shading of the z-stack is shown from the top slice (E), 

through each 5 µm z-step (F-k), to the bottom slice (L). The entire range within the 

related clusters for each cellular sub-section were used and are shown to the right 

of the slices. ........................................................................................................ 132 



xx 
 

Figure 5.9 - PCA analysis of cells cultured in 3D morphologies supported by 5 

beam cage (5BC) scaffolds and cultured off (Off) the scaffolds: B) The explained 

variance plot, with the accumulated variance retained (y-axis) compared with the 

number of principal components (x-axis). The score plot for PC1 vs. PC2 is shown 

in (A), with s blue = 5-beamed cage (5BC) and red = cells cultured off the scaffold 

(Off). B) the loadings plot for PC1, with 915, 1171 & 1742 cm-1 positively loaded 

peaks, and 1250, 1338, 1463, 1643 & 1671 cm-1 negatively loaded peaks. C) The 

loading plot for PC2, with the 1055 cm-1 & 1434 cm-1 relating to the positive loading 

peaks and the 914 cm-1 & 1604 cm-1 negatively loaded. ..................................... 134 

Figure 5.10 - Comparison of class average spectra (top) and dataset standard 

deviation (bottom): Molecular assignments and a spectral peak are highlighting in 

both plots using background shading for nucleic acids (blue background), proteins 

(green background), lipids (purple background) and the 915 cm-1 spectral peak 

shown using the black line. Top) Showing the average spectrum for the 5BC (red) 

and Off (blue) classes, indicating specifically where the two classes deviate, but not 

the spread of the data. Bottom) The standard deviation for the entire dataset, 

showing the spread of the data. .......................................................................... 136 

Figure 5.11 - Cross-validation and classification of cells cultured on a 5-

beamed cage scaffold vs. cells cultured off the scaffold dataset: A) Cross-

validation results of five algorithms using 5-fold cross-validation. An average score 

of 76.66% for logistic regression, decision tree (85%), support vector machine (95%), 

random forest (93.34%), and linear discriminant analysis (81.68%). The highest 

average score (support vector machine) was selected and trained using training data 

(C = 0.1, kernel = poly, gamma = 1) and the test data used to produce predictions, 

with the results showing 100% sensitivity and 100% specificity. ......................... 138 

Figure 5.12 - Score plot and learning curves for 10BC vs. 5BC: A) Score plot for 

PC1 v PC2 v PC3, showing the 5-beamed cage (5BC) in red and the 10-beamed 

cages (10BC) in blue. Learning curves were produced for the logistic regression (B), 

LDA (C), and SVM (D) algorithms trained on the PCA reduced data, with the training 

file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862360
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862361
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862361
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862361
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862361


xxi 
 

lines (blue), validation lines (green) and standard deviation of the cross-validation 

(shading in respective colours). ........................................................................... 140 

Figure 5.13 - WiRETM VRM of cells in OrmoCompTM pores: Using standardised 

colouring (see methods). The side (A) and top (B) views of a cell in the relatively 

small 10 × 10 µm lateral dimension pore. C & D) A cell entering the medium (20 × 

20 µm lateral dimension) pore, supported by pore sides, and (D) showing the cell in 

a central location within the pore. E & F) Map a cell on the large pore (20 × 40 µm 

lateral dimension, where (E) shows the cell using the cell wall to support its 3D 

morphology and (F) shows the cells elongated morphology to stretch along the pore 

wall. ..................................................................................................................... 142 

Figure 5.14 - PCA and classification of cells cultured in, small, medium, & large 

pores, and off the scaffold: A) PCA score plot for PC1 v PC2 v PC3 (76% explained 

variance). C) The confusion matrix for a SVM trained on the entire dataset, learning 

curve (E). Learning curves for algorithms trained on PCA reduced data, with the 

logistic regression (B), LDA (D), and SVM (F) all converging closer to 50% f1-score.

 ............................................................................................................................ 144 

Figure 6.1 - Flow chamber engineering drawings: Drawing of the flow chamber 

base (A) and top (B). The drawings were taken to the Lancaster University 

Engineering Department workshops and produced using precision milling to a 

tolerance of +/- 10 μm. ........................................................................................ 155 

Figure 6.2 - Flow chamber 3D computer aided design images: A) How the base, 

slide, and top fit together and the fluid path shown in a cut through image (B). .. 157 

Figure 6.3 - Flow chamber initial testing: Testing the flow chambers capacity to 

collect a Raman spectrum (B), a  Raman map (red box showing 18 × 11 µm mapped 

area), and a VRM (C-E) under fluid flow conditions. Pixel counts (x and y axis) in A, 

C, & E, are in µm, with the mapped area shown in E (red box – D, showing a mapped 

area of 13 × 13 µm) ............................................................................................. 160 

Figure 6.4 - Biological testing of the flow chamber: A white light microscope 

image for Raman map verification(B), showing the mapped area (31 × 31 µm) in A 

and B. 1330-1350 cm-1 protein (Green - A), 775-790 cm-1 nucleic acid (Blue - C), k-

file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862361
file:///D:/PhD/Corrected%20PhD%20Thesis%20(Michael%20Greenop).docx%23_Toc152862361


xxii 
 

means (D), and k-means directed shading (E) Raman maps. The average spectra 

for the k-means directed shaded Raman map (G). K-means directed shading of a 

VRM z-stack (F) alongside the averaged spectra for the VRM clusters (H). Pixel 

counts (x and y axis) in A, C, & D, are in µm ....................................................... 161 

Figure 6.5 -  Testing flow chamber cooling: Focusing on the polystyrene bead in 

the flow chamber (A), using ice to cool the fluid, and the different cooling rates (C) 

for ice cooled fluid (Ice - black), uncooled fluid flow (Flow – blue) and still fluid (Still 

– red). .................................................................................................................. 164 

Figure 6.6 - VRM of dithranol exposed HaCaT cell: Showing a lateral cut through 

cross-section through the height of the cell (A), a white light microscope image of 

the mapped cell (B), and a (laterally) thinner VRM of the cell (C). ...................... 166 

Figure 6.7 - PCA score plots for varied dithranol concentration: Points coloured 

2.2 µM (MC_2.2 - blue), 4.5 µM (MC_4.5 - green), 9 µM (MC_9 - black), and (0 µM) 

control (MC_C - red) for all score plots. PC3 vs. PC5 (A), PC3 vs. PC4 vs. PC5 (B), 

PC3 vs. PC4 (C), and PC1 vs. PC2 vs. PC3 (D). MC relating to multi-concentration.

 ............................................................................................................................ 167 

Figure 6.8 - Dithranol concentration loading plots: Loading plots for PC1 (A), 

PC2 (B), & PC3 (C) from the principal component score plots in Figure 6.7, 

highlighting the 598 cm-1 (red arrow), and the 1178-1179 cm-1 and 1469-1471 cm-

1 peaks (blue arrows). ......................................................................................... 169 

Figure 6.9 - Low(uni)-feature Raman maps of PCA highlighted Raman peaks: 

Comparing the known nucleic acid 775-790 cm-1 region (A) map against the 1178-

1179cm-1 Raman map and mapping the 1460-1480 cm-1 and 598-615 cm-1 loading 

plot highlighted peaks from Figure 6.8. Map dimensions: 26 × 29 µm ................ 171 

Figure 6.10 - PCA control study: PCA explained variance chart showing the 

cumulative explained variance y-axis for each additional principal component (x-

axis). Score plots for PC1 vs. PC2 (A), PC1 vs. PC3 (C), and PC1 vs. PC2 vs. PC3 

(D), with red relating to collections before flow (B) and blue being collections after 

flow (A) for all three score plots. .......................................................................... 174 



xxiii 
 

Figure 6.11 - Flow chamber supplied dithranol: PCA explained variance plot (C). 

Score plots for PC1 vs. PC2 (A), PC1 vs. PC3 (B), and PC1 vs. PC2 vs. PC3 (D), 

where red = before flow supplied dithranol (FD_B) and blue = after flow supplied 

dithranol (FD_A). ................................................................................................. 176 

Figure 6.12 - Loading plots flow supplied dithranol (unfixed analysis): Loading 

plots for the principal components in the score plots for Figure 6.11, with PC1 (A), 

PC2 (B), and PC3 (C). Repeated loading peaks from the dithranol concentration 

(Figure 6.8) highlighted with continued blue arrows on the 1179 cm-1 and 1462-1479 

cm-1 loading peaks. ............................................................................................. 178 

Figure 6.13 - Mapping unfixed cells pre- and post- flow chamber supplied 

dithranol: Qualitative k-means shading of  HaCaT cell before (A) and after (B) 2 µM 

flow supplied dithranol exposure and k-means directed shading of the same maps 

(C=before and D=after). Pixel counts (x and y axis) in A, & B are in µm ............. 180 

 



1 
 

Chapter 1 - Introduction 
 

 

1.1. Introduction 

 

Autologous or allogeneic transplants are the gold standard methods for replacing 

damaged or ineffective organs and tissues such as the heart, skin, or kidneys [9]–

[11]. Autologous transplantation, using the patient tissue, provides immunologically 

matching tissue but frequently does not provide enough tissue and increases patient 

morbidity [12], [13]. In cases where a donor cannot be found (blocking allogeneic 

transplant), tissue engineering can provide an alternative by producing tissues from 

patient cells. However, the formation of tissues is a complex process, with numerous 

biochemical and physical cues [14]. Determining and prioritising the best 

combination of signals during the culturing of cells into tissues is a key issue for 

advancing tissue engineering. A potential method of monitoring cells as they are 

exposed to different stimuli is Raman spectroscopy (section 1.2.1), which can 

provide non-destructive, label-free, aqueous spectral analysis and mapping. Larger 

scale pharmaceutical applications of Raman spectroscopy including Process 

Analytical Technology (PAT) of monitor cell cultures [15], without the use of mapping. 

Raman mapping has been used in research to assess bioengineered bone [16] and 

tissue-engineered cartilage [17], with Raman spectroscopy, also used to monitor 

tissue-engineered skin [18] and single cells [19]. The two have not yet been 

combined into a single platform to monitor cell cultures using combined Raman 

spectral and mapping analysis. 

To understand the cellular processes underlying the formation of tissue-engineered 

contracts, a mixture of morphological, physical, and molecular information must be 

gathered. Cell response to scaffolds can be monitored non-destructively using 

fluorescence microscopy, and destructively using scanning electron microscopy, 

atomic force microscopy, etc. Microscopy is widely used for the collection of 
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morphological information, providing easily interpretable, high-resolution images. 

The limitation of microscopy introduction of large dye molecules into the cell when 

visualising the cells internal structures [20] potentially disrupting the process the 

researcher is trying to observe. The number of distinguishable colours is also a 

limitation, to make target molecules distinct, microscopy images are limited to three 

or four molecules relies on labelling. Vibrational spectroscopy by comparison 

collects a range of wavelengths, typically a range with 1000 wavenumbers, providing 

a greater depth of molecular data [21]. Raman and infrared spectroscopies can 

provide complementary quantitative and qualitative data from a wide range of 

biological molecules, alongside molecular and morphological insights in a single 

process.  

Raman maps are produced by collecting an array of spectra at discrete XY 

coordinates over a plane a set distance from the lens (the focal distance), which are 

the map pixels. Collecting each pixel individually can make Raman maps unintuitive 

to interpret compared to microscope images, especially when optical conditions vary 

over the mapped area. Microscopes focus a lens onto the subject, collecting photons 

from a focal depth in the same way a human eye does, forming a comparable image 

where observers intuitively understand the relative positions of other sections of the 

sample relative to the focused region of the image. An image produced by focusing 

a microscope is therefore intuitively understood, with out-of-focus regions interpreted 

instinctively as separate from the focal region (seen as unfocused). A danger of 

Raman maps is the expectation, or assumption, that all detected Raman photons 

originate in the laser beams focal position, allowing their interpretation in the same 

way as microscope image. However, previous research has shown that not all 

detected photons do originate in the laser focus, with such “out-of-focus” 

contamination potentially resulting spurious images/conclusion. The visual similarity 

of Raman maps to microscope images can therefore result in overconfidence in the 

images produced. Varied optical conditions are especially acute during volumetric 

Raman mapping (VRM) production, see section 1.2.2), which involves sub-surface 

analysis. A challenge for this thesis is there to explore a VRM calibration method, 

moving towards a standardised approach to the production of VRM. 
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Another factor in Raman mapping requiring standardisation is determining and 

presenting shading parameters, as highlighted by Ashton et al [5]. Raman mapping 

can require the allocation of colour to physical features of unknown dimension and/or 

is transparent to the human eye, e.g., organelles like the nucleus. Where labelling is 

used in microscopy to colour target regions of images, Raman maps plot the Raman 

intensity for each pixel. Transparency settings allow Raman maps to be layered, 

called low-feature Raman mapping in this thesis, as the number of features 

(wavenumbers) visualised using this method are typically below four to maintain an 

interpretable image. The colour, colour intensity, and transparency of the different 

layers are typically determined by the researcher, resulting in the potential for 

subjective or arbitrary shading [5]. The aim of this thesis is therefore to determine an 

objective and repeatable method of determining and presenting Raman map 

shading parameters, ideally linked to Raman spectrum features (spectrally justified). 

Another common method of producing Raman maps is hyperspectral imaging, 

where chemometric/machine learning methods such as principal component 

analysis (PCA) [22] or clustering [23] are used to determine features that are then 

visualised over the mapped area. An area of research will be linking low-feature and 

hyperspectral imaging methods to combine their advantages to counter their 

limitations and outline a solution to the issues raised by Ashton et al [5]. 

Each voxel/pixel in Raman maps is a spectrum, making chemometric algorithms 

available, and providing a wide range of features for machine learning analysis. 

Deep learning algorithms have provided medical diagnoses using images [24], [25], 

however, the substantial number of observations required for such a model makes 

such an undertaking impractical for many studies. Deep learning models are also 

less interpretable when compared to less complex models, providing sample 

classification but limited information about which molecules/features resulted in the 

separation. The reduced interpretability makes drawing clear conclusions about the 

underlying biological process complex. The wavenumbers and molecules (features) 

highlighted from the analysis of Raman maps are easier to comprehend and 

compare to comparative studies than the abstract features determined by machine 

vision algorithms. The challenge for this thesis is to explore approaches to improve 
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the repeatability of Raman spectroscopy machine learning, where the high number 

of features increases the risk of algorithm overfitting; where the model overfits to the 

data, rather than discerns insights. Once the technical aspects of collecting data 

from single cells (shading, VRM production, & machine learning methods) have been 

refined for the monitoring of single cells, the final phase of the thesis will explore their 

combination. Tissue-engineered products are designed to be implanted into a 

dynamic environment. A platform to explore the capacity of the methods developed 

in Chapters 3-5 will therefore aim to replicate in vivo conditions as closely as 

possible, leading to unfixed and eventual live cell (section 1.2.3) Raman platform. 

 

 

1.2. Raman spectroscopy theoretical background 

 

Raman spectroscopy is a form of vibrational spectroscopy, which alongside infrared 

spectroscopy detects altered vibrational states in chemical bonds [21]. Six basic 

vibrations occur in three symmetries/directions within bonds constituting molecules 

including latitudinal rocking & scissoring, longitudinal wagging & twisting, and radial 

symmetric or antisymmetric stretching [26], with more complex combinations of 

vibrations occurring in increasingly complex molecules. If a change occurs in a 

biological or chemical system that alters the molecular composition of the system, 

the kinds of bonds and their corresponding vibrations are changed. Vibrational 

spectroscopy detects the altered vibrations within samples to provide qualitative and 

quantitative data describing the changed state in the system. 

A spectrometer detects the changes over a pre-selected spectral range [21], [27] 

based on bonds relating to the research question and available equipment. Changes 

in the spectrum produced relating to the molecular composition of the samples are 

shown using a line plot known as a spectrograph, referred to as a spectrum in this 

thesis. Peaks in the spectrum indicate an increased bond detection relative to the 

other areas of the spectral range. The relative heights and shapes of spectral peaks 
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identify the material alongside some material properties, like sharp peaks relating to 

crystalline structures and rounded peaks indicating amorphous materials. 

Infrared and Raman spectroscopies are complementary analyses due to their 

respective selection criteria [27]. Infrared spectroscopy requires a bond to have a 

change in dipole moment (occurring most frequently in bonds with high polarity). 

Conversely, Raman scattering occurs most frequently in bonds with low polarity. 

Therefore, the two conditions cover the bonds that occur within a molecule, and 

analysis with both techniques provides information on bonds with both a low and 

high polarity. The polarity of bonds links to a key advantage of Raman spectroscopy 

for the aqueous analysis of living biological samples. A limitation of infrared 

spectroscopy is masking, where the high polarity of the H2O molecule results in the 

masking of key biological signals when analysed in water. As this project aims to 

detect changes in living HaCaT cells, experiments will use Raman spectroscopy. 

 

 

1.2.1. Raman theory  

Raman spectroscopy is named after C. V. Raman who discovered the principle 

governing its spectral patterns, Raman scattering. Raman scattering is the inelastic 

scattering of an incident photon after interaction with an atomic bond [21]. Photons 

collide with molecules, and as they do, they briefly disrupt the electron field around 

the molecule atoms in a virtual state [28]. The interaction is typically so brief that the 

relatively quick electrons are pulled into a new arrangement before the nucleus has 

time to adapt its position to an equilibrium geometry the negative and positive 

charge, polarizing the bond [28]. Normally the bond returns to its previous state and 

in these cases, the scattered photon leaves with the same energy as it arrived with 

(elastic, Rayleigh scattering) [21], [28]. In some rare (~1 in 108) [21], [29] cases, the 

bond is left in a higher or lower energy state, resulting in the difference being added 

or subtracted from the scattered photon; known as inelastic, Raman scattering [21], 

[28]. 
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The altered energy level of the Raman scattered photon changes its frequency [21]. 

The frequency of the photon may be reduced, known as a Stokes shift, where the 

bond is in a higher vibrational level post scattering. Conversely, if the bond starts in 

a higher vibrational level than the ground state, the scattered photon may have a 

higher frequency than the incident, with the molecular vibration left in a lower 

vibrational level, known as an anti-Stokes shift [21]. The confirmation of the 

constituent atoms is unique in each bond, the energy required for each bond to make 

an energy state jump is indicative of that bond [21]. The rarity of Raman scattering 

results in a balance being required between collection speed, collection time, laser 

power, and spectral quality [21]. Balancing practical limitations against maximised 

signal-to-noise is especially critical in biological samples where fluorescence and 

sample damage are key considerations [21].   

Raman spectrometers utilise monochromatic light emitted by a laser [21], a filter, 

and a detector. The laser wavelength is a key consideration when determining a 

methodology involving Raman spectroscopy. The wavelength (λ) affects the kind of 

material that can be analysed, for example, a higher energy wavelength may 

damage samples [21]. The spatial resolution is also dependent on wavelength as 

the smaller λ, the smaller the diffraction limit [30]. The diffraction limit determines the 

spatial resolution alongside the numerical aperture of the objective used [7].   

The laser beam is transmitted onto the sample, the Raman scattered photons are 

then allowed to pass through the filter, which removes the incident photon frequency 

[16]. The inelastically scattered light then travels through a slit into the detector onto 

the grating [21]. The grating deflects the different wavelengths with groves that split 

them into the spectrum [21]. A charged-couple devices (CCD) camera, a 

multichannel array consisting of thousands of pixels, then collects the scattered 

photons [21]. The CCD detector produces a charge proportional to the detected 

Raman scattering intensity, which is read out of the detector chip and plotted as a 

function of the wavelengths [21]. 

The advantages of Raman include high molecular specificity producing qualitative 

and quantitative data [21]. Raman can analyse unprocessed biological samples and 
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is a non-invasive, label-free method [21], [29]. Three-dimensional mapping through 

the depth of the sample (VRM) is possible with confocal Raman spectroscopy [6] as 

well as live-cell Raman [20]. A disadvantage of Raman is the possibility of photo-

bleaching and fluorescence [6]. The limitation of confocal Raman spectroscopy is 

the reduced collection area compared to Fourier transform infrared spectroscopy 

(FTIR) due to restriction to the microscope field of view, making FTIR advantageous 

for larger 2D maps. 

 

1.2.2. Volumetric Raman mapping (VRM) 

Volumetric Raman maps (VRMs) are produced by collecting two-dimensional 

Raman maps through a sample, typically using conventional (lateral) mapping, 

where every map is known as a slice in the VRM context. The information provided 

to the system (Renishaw WiRETM/WiRETM system throughout the thesis) is the 

number and distance between coordinates in the X dimension, and Y dimensions, 

determining the number of pixels (spectra) to be used to map a given area 

(resolution) of the slices. The number of slices and distance between them (z-step) 

then determines the intended depth of the map. A consideration for VRM is the 

increase temperature resulting from focusing a laser onto a localised position 

repeatedly, as happens as the laser focus is moved along an axis. In their study 

Slipets et al developed a novel Raman spectroscope to counter the increased 

temperature resulting from VRM [31]. The spectroscope collects the Raman spectra 

at coordinates spaced apart, avoiding high temperature localisations, then returning 

to previous sections when they have cooled [31]. By limiting temperature build up in 

this way, a large VRM of a Direct laser written (DLW) printed capsule, made of the 

epoxy-based negative photoresist SU-8TM, can be collected to show the drug 

distribution within (Figure 1.1) [31]. Finding a method of cooling samples using a 

spectroscope available on the market is an aim of this project, alongside 

investigating other technical challenges relating to the production of VRM and 

shading of Raman maps. 
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Figure 1.1 – VRM of SU-8TM Capsule: Three-dimensional Raman map showing the location of  amorphous 
(red) and crystalline (blue) naproxen, alongside PVP (green) loaded into a SU-8TM (turquoise) DLW capsule on 
a silicon (black) surface [31].   

 

Figure 1.2 uses VRM to compare human Mesenchymal stem cells (hMSCs) cultured 

in inert (left) polyethylene glycol (PEG)  and functionalised PEG (right) using matrix 

metalloproteinase (MMP) degradable and arginylglycylaspartic acid (RGD) peptides. 

The MMPs-RGD functionalised PEG showing the altered cell morphology resulting 

from the hydrogel functionalisation [34]. Vertex component analysis was used by 

Kallepitis et al [32] to “unpack” the hyperspectral dataset into endmembers, allowing 

quantitative analysis of different molecules to be carried out alongside 3D 

visualisation of the cell. The endmembers were linked to different sub-cellular 

regions, allowing for spectral peaks unique to specific regions to be identified and 

used to visualise the different regions distinctly. The PEG network was associated 

with the 847 cm-1 band (C–O–C or C–C stretching), the cytoplasm (blue) relates to 

phenylalanine (1008 cm-1), and red indicates the nucleic acids O-P-O band (789 cm-

1).  
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Figure 1.2 – Compared cell response between PEG and PEG+MMP+RDG scaffolds: Different components 
such as cytoplasm (blue), nucleus (red), TAGs (green) and PLPs (orange) illustrate the difference between inert 
(left) and functionalised (right) scaffold materials with VRM [32], scale bar = 10 μm.   

 

The hMSC in the inert hydrogel retains a spherical morphology, with a more natural 

morphology observed in the PEG-MMP+RGD environment [32]. Observing the cells 

in three dimensions provides the researcher with greater detail and an image that 

can be rotated to show different angles, providing a more thorough inspection. The 

additional perspective provided by the VRM comes at increased complexity due to 

the optical considerations described in section 1.3. Figure 1.3 shows MCF-7 cell 

mitosis using a VRM with collections over a 1× 1×1 µm array, including the 1 µm 

steps along the z-axis [33]. The trans and gauche (A) conformations are visualised 

with the methyl peak, associated with the 2870 cm-1 peak for the gauche 

conformation (B) shown in green, and blue intensity for the trans conformation (C) 

related to the 2850 cm-1 intensity, and the 2870/2850 cm-1 ratio (where a large ratio 

relates to ordered lipids) to visualise in red (D). The ordered lipids within the cell 

located primarily within the nucleus, and suggested as colocalising with the 

chromatin [33].  
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An advantage of VRM was demonstrated, with the ordered lipids (red) in relation to 

the green gauche conformation (E) [33]. However, a potential limitation is also 

highlighted, with the association of the ordered lipids to the nucleus, even during 

mitosis, exclusively shown in the nucleus region of the VRM. References highlighting 

the increased viscosity of lipids ratios with a lower gauche conformation (figure 1.3 

F) [34] might result in the conclusion that the nucleus is comprised of only a high 

viscosity, ordered lipids, where it can only be concluded that they are present or 

most common in the nucleus. The VRMs of unordered lipids (B and C) impede the 

view of the nuclear region, potentially resulting in confusion, where the reader might 

only associate ordered lipids with the nucleus. Clarification is provided in the text, 

and Ramamurthy et al do show unordered lipids inside the nucleus in an earlier 

figure, potentially providing lower viscosity regions to aid nuclear separation during 

mitosis.  

If presented alone, figure 1.3 highlights the care required when presenting a VRM 

and selecting shading parameters [5,6]. The reduced image resolution (figure 1.3 B-

E) in the publication [33] makes it difficult to know the dimensions/scale of the 

mapped area. However, both methods shown in Figures 1.2 and 1.3 distinguish the 

nucleus from the cytoplasm, assigning spectral insight to physical locations within 

the cells. The advantages described can be reinforced by the publication of VRM 

resolution justification, shading parameters [5], transparency, and opaqueness 

settings used in the VRM production for a systematic, repeatable method to be 

available to subsequent VRM research.  
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Figure 1.3 – 3D Raman of mitosis: A) Molecular structure of the trans and gauche conformations [34]. B) 2850 
cm-1 lipid methyl in gauche conformation (green), 2870 cm-1 lipid methyl in the trans conformation (blue), C) 
2870/2850 cm-1 ordered lipids (red), E) 2870/2850 cm-1 overlapping 2850 cm-1 lipid methyl peak (green) [33], F) 
High and low viscosity trans/gauche ratios, relating to the low and high gauche respectively [34]. 
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1.2.3. Live-cell Raman  

Live-cell Raman analysis has found application in immunology [35], and cancer 

research [36]–[38] and is preferable over fixed cell analysis whenever practical. 

Biological samples are typically fixed or preserved with formalin, allowing the 

samples to be more easily transported and analysed at the will of the researcher, 

removing the risk of a sample becoming unviable. The disadvantage of fixed or 

preserved samples during vibrational spectroscopy analysis is that the samples are 

dead and therefore incapable of responding to further stimulation. Observing an 

individual cell before and after a biochemical or physical event removes the 

possibility of inter-sample variance. In vibrational spectroscopy, ethanol, methanol, 

paraformaldehyde, formalin, and formaldehyde have all been shown to degrade 

Raman signals for biological molecules within the nucleic acid and protein regions 

[39]. Live cell Raman avoids these contaminants, as well as unfixed cell analysis. 

Unfixed Raman analysis is defined as the analysis of cells that are not fixed and 

technically alive at the time of analysis, but are not fully supported with the correct 

temperature, nutrients, and CO2 concentration, which is also advantageous when a 

fully live cell is unavailable. 

During live-cell Raman, the cells are maintained in conditions close to an incubator, 

with controlled temperature (typically 37 °C) and CO2 concentration (5%) in an 

incubation chamber that fits around the objective. The drawbacks of fixed cell 

analysis are therefore avoided, at the cost of simplicity, allowing individual cells to 

be monitored during fluctuations in their biochemical state. Changes in the molecular 

composition of a cell may be due to cell cycle, biochemical, or physical stimulation. 

Cells can be analysed in phosphate buffered solution or cell culture media, where a 

low protein content culture media is preferable to minimise protein spectral peak 

contamination. Live-cell Raman should be distinguished from unfixed-cell Raman 

analysis, where Raman spectra are collected from living cells without any provision 

for their capacity to proliferate (temperature and CO2 levels). In unfixed Raman 

spectroscopy, cells are not dead yet but collections from cells under distress erode 

the benefit of analysing living cells.   
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The collection time is a key variable in live-cell Raman analysis, as cells are free to 

migrate away from the collection (especially for Raman mapping), incentivising 

optimised experimental variables to maximise the Raman signal and minimise 

collection time. Studies have compared different experimental variables such as 

substrates [37], cell culture media, and data acquisition methods (point vs. line) [37]. 

Different lasers (488 vs. 785 nm) were compared and the extent of photodamage 

was observed using ratios of spectral peaks (2870/2850 cm-1), with the 785 nm 

producing less photodamage [37]. Different collection methods, point, line, and map 

were also compared, finding ten-point line collections to be as accurate as a map 

[37]. However, maps do provide increased morphological insight and are possible 

for live-cell Raman [35], [37], demonstrating the potential for the possibility of live-

cell VRM, despite the probable necessity for a reduced resolution to minimise 

collection time [37]. VRM inherently takes longer than a Raman map of the same 

dimensions. But by analysing sections of a cell, rather than a whole cell, potentially 

the collection time may be brought down enough for live-cell VRM. 

 

 

1.3. Confocal Raman optics theoretical background 

 

The purpose of a Raman map is to assign a Raman signal to a position within an 

area, allowing changes in Raman intensity to be observed over the area (or through 

a volume for VRM). The more accurately the signal is assigned to each location, the 

higher confidence researchers can have in conclusions drawn from the map. Three 

optical factors that affect the apparent origin location of a detected photon are 

diffraction [40], [41], refraction [7], [41], and out-of-focus contributions [30], [42], 

which must therefore be considered when carrying out Raman mapping in two and 

three dimensions. Diffraction is the most widely understood and accounted for in 

microscopy and spectroscopy, through the calculation of a point-spread function and 

the convention of spacing Raman spectra a minimum of 0.5 the diameter of the Airy 

disk for lateral Raman mapping. Equation 1 was though to indicate the axial 
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resolution for confocal Raman systems [40], [41], where 𝑛 is the refractive index of 

the material, 𝜆 is the irradiating laser wavelength, and 𝑁𝐴 is the numerical aperture 

of the objective. However, for sub-surface analysis, it has previously been shown 

that this convention is insufficient [20], [41]. 

 

Equation 1 [40]: 𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 (𝐷𝐿) =
4𝑛𝜆

𝑁𝐴2
 

 

1.3.1. Confocal systems  

In Figure 1.4 (A), an idealised diagram shows the Raman systems focusing lens, 

located in the objective, focusing a laser beam to its maximum intensity, a volume of 

L length, and do diameter. L and do describe the collection area and the volume of 

maximum focus for the given equipment (laser & objective) being used. The length 

from the objective that the collection area is (the depth-of-focus) is calculated as 

shown in section 1.3.2. Confocal systems aim to exclude photons originating outside 

the collection area, improving the confidence a spectroscopist has that a Raman 

signal originated in the expected location (the collection area). Figure 1.4 B shows 

photon paths after Raman scattered photons are randomly scattered from the 

molecular bonds, some of which align with a path leading through the confocal 

aperture (C - green), which is the position closest to the centre of the collection area. 

In theory, photons from positions outside the collection area (A – red & B – blue) are 

excluded from passing through the aperture onto the detector.  
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Figure 1.4 – Confocal systems and limitations: A) Laser focus through a lens to a minimum diameter (do) and 
length (L). B) The confocal aperture blocking photons from outside the intended focal depth (A & B), whilst 
allowing the intended photons (C) through. C) Photons from two different materials are detected from the focal 
point P, showing the limitations of confocal systems. D) Shows the detection of photons when the focus is off 
the sample. E) Material 1 (blue) is seen in a spectrum when the laser is focused to the side, through material 2 
(red), resulting from photon migration through the materials. [42] 

 

In practice, photons have been shown to reach the detector from outside the 

collection area, known as out-of-focus contributions. In C & D, two examples 

demonstrated by Everall [42] of Raman scattered photons from below the collection 

area are shown, with the focus on a thin layer (C) resulting in spectral peaks being 

produced from the substrate in C, and spectral peaks being produced when the laser 

focus is above the sample altogether in D. The out-of-focus contributions originating 

below the collection area seem reasonable, as their original position may happen to 

align with the confocal aperture. In E, Everall [42] showed a case where photons 

travel through samples. Polyethylene terephthalate (blue) contributed to spectra as 

well as the polyethylene (red) that the laser was focused on, showing that out-of-

focus contributions can occur laterally from the collection area as well as axially. The 

inclusion of photons from outside the collection area is reduced by the confocal 

system. However, the confocal aperture cannot be assumed to remove all out-of-

focus contributions, increasing VRM complexity further, alongside depth distortion, 
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and the non-trivial shading process required even with conventional (lateral 2D) 

Raman maps [5]. 

 

1.3.2. Refraction 

Depth distortion results from several factors during sub-surface Raman analysis.  

One limitation is the collection areas link to the diffraction limit, resulting in a 

collection area typically three or more times larger in the z-axis that x or y [41]. 

Another collection area distortion occurs if the refractive index changes between the 

objective immersion fluid (air, water, media, etc.) as it is stretched increasingly with 

depth as discussed by Neil Everall previously [7] Figure 1.5 shows how the laser 

focus is altered at the sample surface (A) relating to the change in refractive index 

between the immersion media (n1) and the sample (n2). The increase in the depth 

resolution (DR) is shown in Figure 1.5 B and C, where the size of DR increases from 

DR1 to DR2 as the laser is focused on an increased depth position. Depth distortion 

results when the asymmetry between the lateral and axial diffraction limits and the 

change in DR are not accounted for. A solution proposed for the mismatched 

refractive indices was oil immersion objectives (Figure 1.6), where refractive index 

matching oil (B) can be used to significantly improve depth collection when 

compared to the uncorrected axial Raman map in A [7]. Oil immersion minimises 

depth distortion [7] but is inappropriate for live-cell Raman analysis, providing a need 

for a solution to depth distortion in live-cell Raman z-axis analysis. 
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Figure 1.5 – Laser focus refraction: A) Showing the altered angle (red line) and depth (Zr) of compared to the 
expected focus (green line) and depth (Δ). B-C) The increasing change in depth resolution (DR) as the focal 
depth (Δ) increases. [30] 

 

The importance of accounting for depth distortion was demonstrated by Lambert et 

al [43]. Lambert et al demonstrated how depth distortion is calculated before Raman 

analysis through an experiment carried out on multi-layer paint for the automotive 

industry [43]. The investigation aimed to determine the best method of analysing a 

basecoat layer of paint through a transparent clearcoat, without the clearcoat altering 

the spectra [43]. A range of equipment options including different factors that could 

alter the Raman analysis was compared including equipment, settings, and sample 

preparation [43]. The equipment options included laser mode (edge or streamline), 

laser wavelength (488 nm, 514 nm, 633 nm, and 785 nm), and objective (5×, 20×, 

50× and 100×) were analysed [43]. The settings balanced were the accumulations 

(1 or 5) and exposure time (10 or 50 seconds) [43]. Sample preparations considered 

were support material (aluminium or glass), pigment type (varnish of metallic), and 

sample preparation (microtome) [43]. Statistical analysis found that the only factor 

with statistical significance was the sample preparation, with a p-value of 0.0485, 

leading to an investigation into the effects of surface finish and depth [43].  
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Figure 1.6 – Refractive index matching: A) The compressed view of a polymer thread cross-section (compared 
to known diameter) collected using an air-immersion objective. B) A cross-section image of the same polymer 
thread where refractive index-matching oil is used to avoid depth distortion.[7] 

 

Different materials require tailored experimental designs, for example, the use of a 

532 nm laser is applicable for OrmoCompTM but a 785 nm must be used for IP-Dip 

[6]. Factors not found to be of significance for a material may similarly have an effect 

in a different situation. The individual considerations of individual materials 

demonstrate the importance of applying the findings of Neil Everall, who published 

equation 2. 

 

Equation 2 [7]: 𝐷𝑒𝑝𝑡ℎ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐷𝑅)  = ∆ [[
𝑁𝐴2(𝑛2−1)

1−𝑁𝐴2 + 𝑛2]
1/2

−  𝑛] 

 

In the depth study, a 785 nm laser was used to reduce fluorescence alongside a 

100× objective [43]. Equation 2 calculated the true acquisition range for the material. 

The values for the variable are numerical aperture (NA) = 0.85, the refractive index 

of the material (n) = 1.6, and the intended acquisition depth (Δ) altering, and the 

result is graphed with the intended acquisition depth and the actual acquisition range 

from the lower limit (nΔ) to the higher limit (DR + nΔ) [43]. The conditions in Lambert 

et al resulted in a -20 µm intended acquisition depth resulting in a collection range 

of -32 µm to -51 µm [43]. Carrying out pre-calculations allowed the use of an 

acquisition depth of -25 µm, avoiding clearcoat contamination of the sample [83]. 

Clearcoat contamination would have occurred had the depth resolution calculation 

not been carried out, with significant spectral contamination resulting [43]. Although 
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biological samples provide increased complexity, mixed refractive indices are not 

directly comparable to paint where surfaces can be polished. The principle can be 

applied to biological studies and has in the case of melanoma [44].   
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Chapter 2 - Literature review and methods 

 

 

2.1. Introduction 

 

Vibrational spectroscopy can produce spatially resolved quantitative chemical 

information. The quantity of a molecule within a sample is directly proportional to the 

amount of Raman scattering within that location [21]. Unfortunately, Raman 

scattering is not exclusively affected by molecular concentration within a sample. 

The range of factors influence Raman intensity can be broken into three main 

considerations, the laser [45], [46], the confocal system [40], [41] and the sample [7], 

[20]. Pre-processing of collected data prior to analysis and calibration of the results 

typically focuses on the differing laser conditions. Laser wavelength selection aims 

to balance fluorescence, photo-degradation and signal-to-noise ratios depending on 

the sample [21]. Rectifying spectral distortions that result from fluorescence, 

temperature/moisture variation and laser intensity fluctuation over time is carried out 

with normalisation, baseline correction, smoothing and scaling [47]. For quantitative 

measurement, partial least squares has calibrated quantitative Raman 

pharmaceutical measurements [45], [46]. The influence of the confocal system and 

sample are rarely considered, even in volumetric Raman mapping (VRM), where the 

laser and corresponding Raman intensities can fluctuate drastically within a single 

sample [7], [20], [40], [41] . 

The purpose of this thesis is to first demonstrate the effect that confocality, confocal 

variables (microscope objective, pinhole size etc.) and the samples optical 

properties have on Raman measurement. An approach of maximising quantitative 

accuracy through the utilisation of micro-engineered cell scaffolds as a means of 

calibrating VRM collection is then presented. This chapter begins by providing a 

foundation in general confocal and Raman specific optics, informing the techniques 

applied through this thesis. The theory underpinning direct laser writing (DLW) is 
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then described alongside the materials and application of previous DLW scaffolds 

for cell behaviour, influencing the design of scaffolds in later chapters. Finally, the 

theory of chemometric techniques used for calibration and false-colour shading of 

VRM produced will provide context for false-colour shading.  

 

 

2.2. Literature review (Part A: Cells and scaffolds) 

 

2.2.1. Direct laser writing  

Direct laser writing is a two-photon polymerisation printing process, where the 

energy to initiate free-radical polymerisation is provided by the simultaneous 

absorption by a bond of two photons [48]. The amount of energy required to excite 

the initiator into producing free radicals is a distinct amount known as the band gap, 

bridgeable by a single photon during linear absorption [49]. Absorption excites the 

molecule, resulting in a heat effected zone (HEZ) that induces free radical 

polymerisation within a confined focal region, known as a voxel [49]. The resolution 

for linear polymerisation is the diffraction limit, with the smallest resolvable distance 

given by 0.5λ/NA, where λ is laser wavelength and NA is numerical aperture. To 

increase the resolution past the diffraction limit, two-photon absorption is required 

[48].  

Direct laser writing (DLW) therefore uses simultaneous two-photon absorption (TPA) 

predicted by Göeppert-Mayer in her 1931 doctoral dissertation [48], winning her a 

Nobel prize. The simultaneous TPA process requires two photons to hit the bond at 

the same time, hence known as simultaneous [48]. During the simultaneous TPA 

process, two photons of half the band gap energy combine to bridge the gap through 

an imaginary excitation level [48]. In two-photon polymerisation, band gap bridging 

is used to produce a voxel of energy that results in local free-radical polymerisation 

[48]. The voxel is moved in a layered fashion to build the 3D structure with an 
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accuracy that can be reduced to below 100 nm when femtosecond (10-15) lasers are 

used, such as in the Nanoscribe™ system [49].  

Femtosecond lasers provide short (10-15 second) laser pulses, critical to improving 

the resolution of the printing [49]. Reducing pulse width of the laser bursts alters the 

thermal diffusion 𝑙𝑑, which for a pulse within the femtosecond range is faster than 

the electron-photon coupling time in laser-matter interactions (approximately 1-

100ps), under these conditions 𝑙𝑑 is calculated with equation 3 [49].  

 

Equation 3 [49]: 𝑙𝑑 =  [
128

𝜋
]

1

8
 [

𝐷𝐶𝑖

𝑇𝑖𝑚Λ2𝐶𝑒
′]

1

4  

 

D is the heat conductivity, 𝐶𝑖 is the lattice heat capacity, 𝑇𝑢𝑚 is the melting point, Λ 

is the electron-photon coupling instant and 𝐶𝑒
′  is calculated with equation 4.  

 

Equation 4 [49]: 𝐶𝑒
′ =

𝐶𝑒

𝑇𝑒
   

 

In equation 4, 𝐶𝑒 is the electron heat capacity and 𝑇𝑒 is the electron temperature [43]. 

Under the conditions, 𝑙𝑑 = 329 nm for copper, where 𝑇𝑖𝑚 = 1356K. A laser pulse of 

greater length than the electron-photon coupling results in the calculation of 𝑙𝑑 being 

carried out with equation 5, where κ is the thermal diffusivity [49]. Calculating with 

equation 5 results in 𝑙𝑑 = 1.5 µm for copper when τ = 10 ns, clearly shows the 

difference in the diffusion length, reducing the HEZ. The piezo setting produces the 

option for highly accurate printing with NanoscribeTM, dependent on the material.  

 

Equation 5 [49]: 𝑙𝑑 =  √𝐾𝜏  
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Material selection also affects the resolution of DLW printing, which must be 

balanced against a range of other factors including biocompatibility and suitable 

refractive index [6], [7]. Biocompatibility is a diverse term which in this project will be 

defined as; non-toxic to the cells during the culture time frame, adhesive to the cells 

directly or capable of protein coating and non-reactive to culture media. The material 

must be a photoinitiated whilst being providing a suitable surface for cell culture, 

have a defined refractive index (Chapter 1, section 1.3), and be a Raman scattering 

material. A key feature that a material used for low-feature Raman mapping cells on 

scaffolds should have a bio-distinct region, allowing separation of the scaffold from 

biological samples within the map. A range of IP resists are available from 

NanoscribeTM, including IP-Dip, IP-S and IP-L that have been used widely in 

biological studies [50]–[52], with refractive indices of ~1.54-1.57. IP-Dip is a low 

viscosity, high accuracy material previously used in a study exploring the effect of 

different groves, on cell migration speed [50]. OrmoCompTM by comparison suffers 

from post-printing shrinkage, reducing accuracy, but has previously been mapped 

with cells using VRM [6], using the bio-distinct 1715-1750 cm-1 region. Fibronectin 

was selected for cell adhesion, having previously been used to functionalise DLW 

scaffolds [6], [53]. 

 

2.2.2. Directing cells using substrate surfaces  

Section 2.2.1 outlined DLWs capacity to fabricate nano-tolerance substrates and 

scaffolds, but how can this help discern changes in cell behaviour? HaCaT PEG and 

co-polymerised pentaerythritol tetraacrylate-PEG (PETA-PEG) in Figure 2.1 [54], 

where PEG resists protein coating, impeding cell attachment to regions outside of 

pre-defined square blocks. As the percentage of PETA in the co-polymerisation 

rises, the protein coating allows increasing motility to the cells [54]. The experiment 

not only demonstrated the ability of the substrate material to encourage or impede 

cell migration, but the ability to influence cell morphology, with the cells forming a 

square morphology in the 0 and 4.8% PETA percentages in a, b, e & f. 
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Material choice and coatings are not the only way to influence cell migration using 

substrates. Nano-pores produced in SU-8TM photoresist used to increase the 

migration and neurite outgrowth, having overcome SU-8TM leaching cytotoxic 

contaminants into cell cultures previously [55]. The nanopores were compared to 

poly-L-lysine (PLL) coated surfaces and uncoated flat surfaces, producing similar 

migration and neurite outgrowth to the PLL coating (24.3%) an improvement on the 

1.1% seen on the bare surface [55]. The effect of the nanopores was further 

demonstrated by the migration of neurons to a nanoporous area of a plate when a 

region was kept flat, where in Figure 2.2) it can be seen to determine the region 

covered by the cells [55]. The change in cell behaviour raises the question into how 

the change in morphology (Figure 2.1) and migration (Figures 2.1 & 2.2) are 

regulated by the cells. 

 

 
Figure 2.1 – PEG/PETA cell adhesion comparison: The increased cell motility correlating to larger PETA 
percentage (0, 4.8, 9.1 and 33.3%) in PEG-PETA composite demonstrating PETA cell adhesion [54]. 

 

D. Cheng et al demonstrated DLWs capacity for producing surfaces for migration 

studies and IP-Dips suitability for the purpose [50]. The combination of DLW and 

gene inhibition with NSC23766 was used to investigate the influence of the Rac1 on 

neuronal cell migration over wave patterns of square, triangle and sine on cell 

migration [50]. Initially, the different wave geometries were compared, finding that 
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the square wave was found to produce the fastest migration, followed by the triangle 

and the sine wave producing the slowest migration [50]. Rac1 gene inhibited cells 

were found to have increased directional migration on flat surface whilst reducing it 

on the sine waves [50]. The reason for the change in behaviour was determined to 

be Rac1 repressing directional behaviour on flat surfaces whilst being important for 

topography-induced directional migration [50]. The ability to demonstrate how a 

gene influences cell migration over different surfaces, alongside how different 

substrate geometries influence cell behaviour like migration, raises questions about 

how three-dimensional cell scaffolds can direct cell behaviour. Including a depth 

dimension to the substrate using different grove geometries incentivises the 

investigation of two- and three-dimensional environments as part of the thesis 

investigation. Asking whether difference between substrate/scaffold geometry and 

dimensions can be detected using Raman spectroscopy. 

 

 
Figure 2.2 – SU-8TM Nanopores: Demonstrating the nanopore capacity of SU-8TM, with the scale shown (right) 
and their effect on cellular behaviour (left) where cellular expansion is constrained within the nanopores border 
highlighted [55]. 

 

2.2.3. Cell response to 3D scaffolds  

Three-dimensional scaffolds, fabricated in OrmoCompTM using DLW have been 

applied to directing pluripotent stem cell derived neuronal cell behaviour [56]. The 

OrmoCompTM, an inorganic (Si-O-Si)-organic hybrid polymer (refractive index ~1.51-

1.53 [57]), with previous applications for Raman investigation of cells [6], [53], [58] 

was laminin coated [56] to aid cell attachment (Figure 2.3). The advantage of 

repeatability provided by DLW was clearly demonstrated through repeat 
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experiments. For example, four copies of the scaffold were printed, aiding the 

verification of findings. The paper reported cells appearing to migrate towards the 

structures with promising neurite guidance. Figure 2.3 showing neurite stained green 

(MAP-2) travelling along the scaffold channel, suggesting the possibility for DLW 

printed scaffold directing of neurite growth [56].  

 

  

 
Figure 2.3 – Neuron direction: Neuronal cell directed by OrmoCompTM scaffold and stained for markers MAP-
2 (green), GFAP (red), and DAPI (blue) for nuclei [56], [59], scale bars relate to 50 µm 

 

 

More recently, the same group took the DLW printed scaffold process further, 

printing towers to study more complex 3D structures and their effect of neuronal 

culture [59]. Figure 2.4 shows the scanning electron microscope (SEM) image and 

confocal image stacks, immunocytochemically stained for neuronal markers MAP-2 

(green), β-tubulin III (red), and DAPI (blue) for nuclei [59]. The neurons clearly 

produce neurite “bridges” extending from the towers and crossing to other towers, 

demonstrating DLWs capacity for true 3D culture of cells [59]. The use of SEM and 

confocal allows different aspects of the study to be interrogated, SEM providing high 

resolution and the confocal (and staining) providing molecular data [59]. The 
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combining of spatial and chemical information would clearly be an advantage, 

allowing information to be determined in a single process.  

 

 

 

 

 
Figure 2.4 – Neuron towers: 3D culture on towers to monitor neurite development and stained for neuronal 
markers MAP-2 (green), β-tubulin III (red), and DAPI (blue) for nuclei [56], [59], scale bars relate to 20 µm 

 

2.2.4. 3D scaffolds used to test cell behaviour. 

Three-dimensional scaffolds provided support for a wider and directed range of 

neuronal cell growth in section 2.2.3 when compared to the flat surfaces in Figure 

2.5. An area of interest in this thesis is exploring how DLW printed scaffolds can be 

used to determine differences in cell behaviour. A study exploring the metastatic 

potential of different cell lines [60] (MCF-10A, MCF-7 and MDA-MB-231) used DLW 

cages, printed from IP-L (refractive index ~1.51-1.53) [57]. The migration of the sub-

type through the cage was used as a means of gauging the metastatic potential of 

each sub-type [60]. The higher the metastatic potential, the greater its capacity to 

spread from the primary site, through the vasculature system and initiating 

secondary tumours. The more metastatic tumours spreading through the cage 

demonstrated the capacity of DLW to target specific biological characteristics, such 

as the metastatic potential of a biopsy [60]. The application of vibrational 

spectroscopy could increase the diagnostic power of a scaffold invasion assay. 

Vibrational spectroscopy distinguishes tumour sub-types and grades [61], providing 
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the biomolecular composition providing key information alongside the physical 

invasion of the scaffold. The advantages of IP-resists must be balanced against the 

fluorescence induced by laser wavelengths such as 532nm [6] and a limitation in 

properties that could be manipulated with a self-produced resist.  

  

 
Figure 2.5 – Invasion of log stack scaffold: Cytoplasm (green) of mouse embryonic fibroblasts (MEF) is shown 
in both images but nucleus (red) is submerged in Lamin A gene knock out (left), illustrating Lamin A/C effect on 
nuclear stiffness [62]. 

 

In another study, genetic changes for 3D scaffolds as was seen in section 2.2.2 for 

Cheng et al and the effect of the Rac1 gene [50]. Pentaerythritol tetra acrylates 

(PETAs) use alongside Irgacure® 379 photoinitiator (Ciba®) during fabrication of 

an invasion scaffold for A549 cells (human lung carcinoma cells), Wildtype mouse 

embryonic fibroblasts (MEF WT) and Lamina A gene knocked out (lmna-/-) MEFs 

(MEF lmna KO) [62]. A range of log stack scaffolds were produced with 2×2 µm, 5×5 

µm & 10×10 µm meshes to allow changes in invasiveness of the scaffold to be 

monitored over different pore sizes [62]. Demonstrating the effect the scaffold 

surface and geometrical environment has on the cells of the same type. The Lamin 

A gene were then knocked out because it is responsible for expressing the Lamin 

A/C intermediate fibrils [62]. Lamin A/C was shown to be responsible for nuclear 

stiffness through measurement of the nucleus through atomic force microscopy [62]. 

The reduction in nuclear stiffness is shown to increase invasiveness in MEF lmna 

KO cells (Figure 2.5 right), then the MEF WT cells (Figure 2.5 left) [62]. The MEF WT 

cells clearly sitting on the scaffold surface, leaving more nuclei (red) sitting on top of 
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the scaffold. Greiner et al clearly demonstrated the ability of one variable (mesh size) 

to provide conclusions on the physical effect of a single gene (Lamin A) [62]. The cell 

adhesion property PETAs demonstrates its suitability for cell behaviour analysis 

platforms.  

In a second stage to their experiment Greiner et al printed a second scaffold onto a 

porous membrane, resting it upon chemoattractant to determine its effect on driving 

invasion [62]. The inclusion of chemoattractant resulted in the A549 cells being found 

to be more invasive when a chemoattractant was used but no significant difference 

was reported in the MEF cells compared to the previous stage of the experiment [62]. 

The two-stage experiment demonstrated the benefit of high tolerance printing. The 

production of repeatable conditions that allowed the influence of a single variable 

(pore size) to be compared to others such as nuclear stiffness or a chemoattractant. 

Greiner et al and the other studies discussed through sections 2.2.3 and 2.2.4 

demonstrate the wide range of investigations that demonstrate the advantage of 

nano-tolerance printing. The varied experiments were all limited to external imaging 

of the constructs with staining used to highlight key biochemical features, making 

sub-surface analysis an area of progress within the field. One technique capable of 

providing increased information is Raman spectroscopy. Confocal Raman 

microscopy produces chemical maps that combine spatial resolution with chemical 

composition [6], potentially in live cells [20]. The use of confocal Raman can bridge 

the gap, allowing researchers to monitor internal interactions between the cell and 

scaffold both spatially and chemically.  

 

2.2.5. VRM of cells on DLW scaffolds  

The previous studies discuss in section 2.2.4, justifies the exploration of VRM as a 

method of combining the spectral analysis used for molecular investigation 

(distinguishing Lamin A/C +/-), with the 3D microscopy mapping. The use of VRM 

allows for a 3D image to be produced that projects molecular features determined 

using spectral inspection through the volume. In their study, Baldock et al showed 

the capacity of VRM to map cell on DLW printed scaffolds [6]. A log stack scaffold 
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was printed from OrmoCompTM and seeded with a CaCo2 cell [6]. A clear advantage 

of using OrmoCompTM for cell-scaffold VRM was shown in Figure 2.6, with the bio-

distinct spectral band allowing the nucleus (blue), cytoplasm (green) and scaffold 

(yellow) to be viewed in isolation, highlighting the interaction between the cell and 

the scaffold [6]. The reference highlighted the increased difficulty in selecting 

shading parameters, alongside the optical considerations discussed in Chapter 1. 

Having demonstrated the uses of DLW printed scaffolds and the application of VRM 

to map cells on them, an overview of the different chemometric/machine learning 

techniques that can be used to interrogate the spectral dataset further will be 

provided next. 

  

 
Figure 2.6 – Cell-scaffold complex: 3D Raman mapping of a CaCo2 cell seeded onto an OrmocompTM scaffold 
printed by direct laser writing. Demonstrating the capacity of Raman to highlight the nucleus (blue), cytoplasm 
(green) and scaffold (yellow) with the correct scaffold material selection [6], map dimensions are 65 × 43 × 44 
µm 
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2.3. Literature review (Part B: Dimension reduction and machine 

learning) 

 

Sections 2.2.3 and 2.2.4 showed substrates and scaffolds influencing or directing 

cell behaviours like migration and invasiveness and verified the physical impact on 

cells relating to the Rac1 [50] or Lamina A genes [62]. Raman spectroscopy was 

highlighted as a method of combining three-dimensional imaging/mapping (VRM) 

with spectral analysis in section 2.2.5. The findings from section 2.2 inform a 

hypothesis for the thesis that Raman spectroscopy can be used to monitor cellular 

response to scaffold geometry. A future application would be the use of Raman 

spectroscopy to monitor the production of bioengineered constructs. Technical 

challenges in producing VRM like the one shown in section 2.2.5, were discussed in 

Chapter 1 (section 1.3), the use of spectral analysis is typically complemented with 

the use of chemometrics, the topic of Part B of the literature review.  

It is common to prior to comparison of two Raman spectra, or inspection of a single 

spectrum, to carry out some pre-processing. The most common types of processing 

that are caried out before inspection or comparison are smoothing, baseline 

correction, and normalisation, although other kinds of pre-processing are available. 

Smoothing is used to remove random noise. Baseline correction remove baselines 

typically caused by fluorescence. Normalisation or scaling are used to minimise 

differences in spectra resulting from fluctuations in collection conditions, like detector 

temperature, or laser differences in laser focus between different collections. The 

pre-processing in through this thesis (see methods section 2.4.4.) was kept 

consistent with the aim of maximising comparability of results, with some exceptions 

resulting from Covid-19 induced unavailability to software. The kinds of chemometric 

analysis used through the thesis will now be described and compared to alternatives, 

providing a background and justification for their use. 
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2.3.1. Principle component analysis  

Principle component analysis (PCA) is an unsupervised (chemometric or dimension 

reduction) technique. Chemometrics is a term that describes statistical methods for 

the analysis of chemical systems, which PCA is when applied to vibrational 

spectroscopy. PCA is a dimension reduction method as it transforms the data, 

allowing insights to be determined from fewer dimensions (features in data science 

and wavenumbers in spectroscopy), reducing complexity and computational costs 

from larger datasets [63], [64]. Being unsupervised and interpretable makes PCA 

ideal as an initial analysis, as unsupervised methods do not use sample labels, 

increasing objectivity during the data exploration stage of the analysis. In 

spectroscopy, the data set is collected into an n×m matrix (X), where n is the number 

of observations (points analysed in a scan) and m is the measurements (spectra of 

that point) [64]. The definition of Principle component analysis is the Eigen 

decomposition of X multiplied by X transpose (XT) [64]. Eigen decomposition 

produces two matrices, the first (W) provides eigenvectors in each column [64].  

The eigenvectors, known as the principal components (PCs) become the new axis 

[64]. The PCs are ranked largest to smallest, maximising the variance accounted for 

with the smallest number of PCs [64]. Variance is a measure of the spread of the 

data, it is calculating by squaring the distance each point is from the mean of the 

data set and dividing the result by the number of points being analysed [65]. By 

plotting the PCs in virtual space, the maximum information is retained whilst 

observable on a two- or three-dimensional plane (score plot). Producing a score plot 

that provides insights by forming clusters relating to the covariance between 

wavenumbers. The covariance reveals the interdependence of one wavenumber to 

another, indicating how they affect each other within the complex system. The 

second matrix provides eigenvalues (λ) that quantify the load (statistical importance) 

of each column (wavenumber) [64]. The column is given a value between 0 and +/-

1, the further from zero, the greater the wavenumber influences the PCs maximised 

variance [63]. By providing an indication of the wavenumbers responsible for the PC 

variance, the highly loaded wavenumbers can be investigated for links to a physical 

phenomenon, providing interpretability to PCA analysis.  
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PCAs limitation also relates to it being an unsupervised technique. Being 

unsupervised means that there is no input into the calculation to direct it towards the 

specific research question being asked. PCA finds new axes (dimensions) within the 

dataset based on maximised variance, this means that features within the dataset 

that may be unrelated to the experiment will be prioritised (have a higher loading) 

than subtler features that may be of greater interest to the researcher. The 

subsequent of different unsupervised and/or supervised methods may be required 

to focus the analysis once PCA has provided initial results. Relationships indicated 

by PCA add strength to any further conclusions, as they are present without any 

directing of the analysis. Variations/extensions of PCA include sparse-PCA [66] and 

kernel-PCA [67]. Sparse PCA highlights the most impactful features, wavelengths in 

a spectroscopy context, frequently to one or two key regions of the spectrum. Sparse 

PCA can, therefore, simplify interpretation but can oversimplify the results for 

biological analysis (where many molecules/peaks may need to be 

considered/balanced. Kernel-PCA provides non-linear dimension reduction [67], 

extending the kinds of relationships discernible through PCA (a linear technique) 

through the addition of a kernel (similar to support vector machines; section 2.3.5).  

 

2.3.2. Cluster analysis  

Cluster analysis assigns samples to groups (clusters), typically visualising the 

clusters in two- or three-dimensional plots using different colours for each cluster. 

The assignment of a spectrum to a cluster means that clustering can be used for 

qualitative shading of Raman/vibrational spectroscopy maps [68]. Forms of 

clustering used in vibrational spectroscopy are k-means clustering, hierarchical 

cluster analysis (HCA), and fuzzy C-clustering (also called soft k-means). Fuzzy C-

clustering can assign probabilities of cluster membership to each point or pixel, 

essentially providing the capacity to describe the points (samples) relation to two or 

more clusters [69]. Assigning probabilities to each point provides the capacity to 

reveal a level of uncertainty when allocating labels to samples and potentially 

highlights regions of maps for further investigation. Uncertainty increases the 
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complexity in the context of mapping, the main application of clustering for this 

thesis. As a result of the limitation of fuzzy c-clustering, this thesis will focus on k-

means clustering and HCA.  

In k-means clustering, a researcher selects a k number of centroids [68], [70], 

suitable for the research question, or selected with the aid of an elbow plot. The 

features (wavenumbers) for each observation or element (spectrum) are then 

assigned to the centroid has the traditionally Euclidean, minimum distance from, 

forming a cluster [70]. The mean is calculated for each cluster and the distance 

between the means and each observation calculated, with each point then assigned 

/ reassigned to the closest mean position [68], [70]. The new clusters that are 

produced have a mean calculated and the process is repeated until the clusters 

remain consistent [68], [70]. The entire process is then repeated iteratively N time, 

where N is determined by the researcher selects, with a thorough approach being to 

increasing N until the clusters remain consistent [70]. The clusters produced 

minimise variance within each cluster, whilst maximising the difference between 

clusters [70].  

In Hierarchical cluster analysis (HCA), Euclidean distance is again commonly used, 

alongside other distance measures. Clusters are formed based on the distance 

between observations, either divisive clustering, where a single cluster is produced 

and then broken into incrementally smaller clusters, or more commonly 

agglomerative clustering, where the number of clusters starts as the number of 

observations and increasing numbers of clusters are formed as samples are grouped 

based on how similar they are. Dendrograms can be used to visualise how the 

samples have been split into the different clusters. 

 

2.3.3. Machine learning assessment and validation methods 

Sections 2.3.1 and 2.3.2 discussed unsupervised PCA and clustering methods, 

where assessing the separation of clusters is carried out using score plots (PCA), 

elbow plots (k-means), and dendrogram (HCA). The remaining algorithms are 

supervised methods, meaning that the class labels are used in the classification 
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calculations. Supervised learning methods have some general advantages, such as 

the easily saved models that can then be used to make predictions about new, 

unknown (unlabelled) samples. Another advantage of supervised learning is the 

researchers influence over the focus of the analysis through the labelling of the 

samples, meaning that the analysis can be focused directly onto a specific research 

question. The general disadvantage for supervised learning is that the researcher 

input through the labelling process increases the subjectivity of the analysis. Another 

problem is that the labels may be assumed to be 100% accurate, which may not be 

the case. Any error in the labelling would be carried forward, distorting learning, and 

reducing the accuracy of predictions made by the trained model. To counter the 

increased risk of subjective analysis, a range of verification methods are available.  

Regression and classification have different metrics, with regression metrics 

including R2, and mean squared error, and many others [71]. The supervised 

learning carried out in this thesis focuses on classification, where many metrics 

relate to the four quadrants of a confusion matrix (see Figure 2.7). A key distinction 

to make is the specific meaning of accuracy in a machine learning context, where it 

is defined as the number of correct predictions divided by the total number of 

predictions, giving a decimal percentage accuracy (0 = 0% & 1 = 100%); as opposed 

to a general “accuracy” statement relating to any high metric score. A range of plots 

are available to assess model validity and the effect of parameter change on different 

metrics including receiver operating characteristic–area under curve (ROC-AUC) 

plots [72] and learning curves. Exploring learning curves, which plot changes in a 

metric against a varied variable such as dataset size or hyperparameter, is a key 

focus for this project; with the aim of exploring the repeatability of vibrational 

spectroscopy machine learning. 
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Figure 2.7 – Confusion matrix and classification metrics: Example confusion matrix showing the actual 
positive (pos) and negative (neg), against the classified pos and neg, resulting in true positive (tp), true negative 
(tn), false positive (fp), and false negative (fn). Highlighting the formula for accuracy, precision, recall, specificity 
[72], and f1-score [73] 

 

2.3.4. Linear discriminant analysis 

Linear discriminant analysis (LDA) is a supervised method that aims to minimises 

within class variance alongside maximising variance between classes. LDA 

components can be plotted in a similar manner the principal component score plots, 

reducing the dimensionality of the data to make visualisation of clusters within the 

data possible. Discrimination rules such as maximum likelihood, Fisher’s linear 

discriminant rule, and Baye’s discriminant rule are used to classify the samples, with 

Baye’s rule being used most to produce a probability field. Samples are then 

assigned to the class based on largest probability. In the python package Scikit-learn 

1.1.1, the solver is a hyperparameter that can be optimised. Solvers available are 

the singular value decomposition (svd), least square solution (lsqr), and eigenvalue 

decomposition (eigen). The svd solver is the default option in and is used for all LDA 
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analysis through the thesis to maintain consistency through the analyses. Limitations 

of LDA relate to the assumptions, LDA assumes features have a Gaussian 

distribution and can be linearly distinguished [74]. It is also advised that the classes 

are of similar sizes (the dataset is balanced). If a non-linear classification is required, 

quadratic discriminant analysis is an alternative. 

 

2.3.5. Support vector machines 

Support vector machines (SVMs) produce decision boundaries (support vectors) 

around hyperplanes determined using functions known as kernels. The availability 

of different kernels, hyperparameter tuning, binary and multi-class analysis [75], and 

classification and regression capability makes SVM highly adaptable to different 

research questions and datasets. The hyperparameters that can be optimised 

include C and gamma depending on the kernel, with different kernels another 

variable to be selected depending on the dataset being analysed, e.g., linear kernel 

for linear data and polynomial kernel form non-linear data [75]. The most used 

kernels, which are the kernels compared in this thesis, are the linear, polynomial, 

and radial basis function (RBF) kernels [76]. The kind of kernel determines required 

the hyperparameter tuning, C is tuned for the linear, C and gamma (γ) for the RBF, 

and γ, a constant (r), and the polynomial degree (d) for the polynomial kernel. C 

influences the decision boundary by penalising misclassified samples, reducing the 

support vectors as C increases to lower the probability of misclassification [75]. For 

the kernels that use γ, it reduces a samples area of influence, increasing the area of 

influence as gamma reduces [77].  

The range of options (kernels & hyperparameters) available to researchers means 

that SVMs can be tailored for a wide range of applications, focusing on a higher 

sensitivity or specificity, or optimised for any metric. However, the higher range of 

potential models comes at the cost of an increased risk of finding a model that fits 

the data by random chance, rather than learning key features; especially when 

paired with the large number of features (and relatively low number of 

observations/spectra) available in vibrational spectroscopy datasets. The increased 
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risk of overfitting must be countered with a raised burden of proof when assessing 

the validity of SVM models. 

 

2.3.6. Logistic regression 

Logistic regression classification uses a sigmoid function to provide a probability of 

a sample being in a class between 0 and 1, with samples assigned to the class 

closest to their probability e.g. sample < 0.5 (assigned to 0) and sample > 0.5 

assigned too 1. Logistic regression has advantages including efficient classification 

of new samples (when data is linearly separable), providing binary (binomial) and 

multi- (multinomial) classification, and interpretability through evaluation of the 

feature coefficients. A limitation of logistic regression for vibrational spectroscopy is 

the high number of observations (spectra) required per feature (wavenumber). The 

approximately 10 observations recommended per feature typically necessitates 

dimension reduction, as a 1000 wavenumber spectrum could need 10,000 spectra 

to be effective [77].The sigmoid function used in logistic regression is also used as 

activation functions in artificial neuronal networks (ANNs), where the value of each 

feature is assessed in a process known as back propagation. ANNs can outperform 

logistic regression, with the disadvantage of increasing the algorithm complexity and 

can be further developed into increasingly advanced deep learning depending on 

the application. The increased complexity comes at the cost of increasingly large 

datasets and reduced interpretability. The disadvantages make higher complexity 

algorithms unsuitable for early-stage studies such as those carried out through this 

thesis, however, an advantage for large datasets have been seen using a 

convolutional neural network, where the need for pre-processing was avoided [78]. 

 

2.3.7. Decision trees and random forests 

Decision trees are simple algorithms that divide and subdivide the dataset into 

separate branches based in order of the feature that provides the greatest 

separability at the points where the branches split; known as nodes [79]. A key 

advantage of decision trees is therefore the capacity for feature selection, ordering 
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the features using splitting algorithm such as gini impurity to inform the user of which 

features sperate the classes most efficiently. It is an objective of this study to explore 

the use of decision trees as a method of streamlining feature selection, for 

applications such as identifying principal components the distinguish classes most 

clearly. Another benefit of decision trees is their simplicity and robustness, being 

able to handle missing data, not requiring scaling, and capable of using categorical 

or continuous data [79]. For vibrational spectroscopy studies, features are typically 

continuous, e.g., wavenumbers or chemometric features such as principal 

components [77]. The branches can keep subdividing the data until each sample is 

cleanly placed into a class, however, this will probably result in the decision trees 

key disadvantage, overfitting [79]. One way to reduce the risk of overfitting is to tune 

the decision tree depth, accepting some misclassifications in the training dataset by 

limiting the number of nodes. Another way of limiting overfitting is to use a Random 

Forest. Random Forests are ensemble algorithms, produced by combining decision 

trees to counter overfitting [80], [81] and similarly limiting the algorithm size through 

a process known as pruning.  
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2.4. Methods 

 

2.4.1. Scaffold computer aided design (CAD) & fabrication  

Design aims are described in the individual chapters/sections. Constructs are 

modelled using the computer-aided design package Solidworks RX 2018 and 

converted into STL. file format and uploaded to the DeScribe™ software that 

produces a script for the NanoscribeTM 3D printer. Indium TIN Oxide (ITO) coated 

glass coverslips 70-100 Ω2, No 1.5 (Diamond coatings, UK) were used. The 

coverslip is wiped on both sides with 2-3 ml acetone, then isopropanol (2-3 ml) and 

dried with dry nitrogen. The top is determined by measuring the resistance of each 

surface with a multi-meter, either more or less 4.000, with the top being the higher 

resistance. The slip is glued onto the holder top up, left to dry for 5 minutes, and 

checked to ensure the glue has not spread into the centre of the slip. The 

commercially available resist, OrmoCompTM, is drop cast onto the coverslip and the 

holder is loaded into the Nanoscribe™ GmbH, which is equipped with 100‐fs–pulsed 

780‐nm laser. The laser was focused with either a micro‐scale ×63 (NA 1.4) or a 

mesoscale times 25 (NA 0.8) laser objective directly into the material. The printed 

scaffolds are developed by immersing the scaffold, with remaining unused resist 

removed. OrmoCompTM immersed in acetone 50% / isopropanol 50% for 5 min, then 

isopropanol for 5 min and dried with nitrogen. 

 

2.4.2. Cell culture 

Cell culture was carried out on ITO coated glass coverslips to facilitate DLW printing 

of scaffolds and maintain consistency of analysis. The coverslips were sterilised 

through immersion in 70% ethanol and left to dry in a 35 ml cell-culture dish. 

Fibronectin solution was applied to the scaffold and/or slide surface, left to dry, and 

washed three times with Dulbecco’s phosphate buffered saline (DPBS). A 

concentration of ~1 × 105 cells were then seeded onto the scaffolds and slide 

surfaces in 2 ml of fresh complete media and incubated overnight to attach. In 
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experiments where the cells were fixed, 4% paraformaldehyde (PFA) in DPBS and 

incubated at room temperature. The PFA is removed prior to Raman analysis, the 

cells washed, and the cells stored and analysed in DPBS to avoid dehydration. In 

Chapter 6, dithranol exposure is carried out prior to fixing (if fixed) through the 

inclusion of the descried concentration. For unfixed cell analysis, the dithranol is 

provided in the quoted concentration during analysis (see chapter).  

 

2.4.3. Microscopy 

White light images of HaCaT cells were collected in the Confocal Raman system 

(inViaTM, Renishaw plc, Wotton‐under Edge, UK) using a 60 × NA = 1.00 water 

immersion objective (LUMPLFLN60XW Olympus). Scanning electron microscope 

(SEM) images collected under vacuum by Scanning Electron Microscopy (JEOL 

JSM-7800F - JEOL Ltd., Tokyo, Japan) after gold coating. The fluorescence 

microscopy verification (Zeiss LSM880) in Chapter 3 used DAPI staining was used 

to image the nucleus after the HaCaT cells were incubated for 1-5 minutes in a 300 

nM DAPI solution. The cell body (proteins) were imaged using wheat germ agglutinin 

(WGA), the cells being incubated for 10 minutes in a WGA solution of 5 µg / mL 

concentration. Cropping, colour, and scale bars were added to the microscopy 

images using ImageJ Fiji 2.9.0 software. 

 

2.4.4. Raman spectroscopy, mapping (2 & 3D) & pre-processing 

Renishaw spectroscope Confocal Raman system (inViaTM, Renishaw plc, Wotton‐

under Edge, UK) with a 532 nm laser (~10 mW). Two- and three-dimensional 

mapping was carried out using WiRETM 4.0 software (Renishaw plc, Wotton‐under 

Edge, UK), alongside depth profiles (Chapter 4) were collected by selecting the 

number of collections and distances between them along the z-axis. Raman maps 

were produced by selecting the number and distance between X and Y spectral 

collection coordinates (2D mapping & 3D slices) and then specifying the number and 

distance (z-step) between the collection of slices along the z-axis for 3D maps, with 
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“WiRETM produced” VRM were generated in Volume Viewer. K-means directed 

shading was carried out using an approach developed for conventional Raman 

mapping in Chapter 3 and expanded for shading VRM slices in Chapter 4.  Pre-

processing was carried out in WiRETM 4.0, with a standardised process of cosmic 

ray removal, noise filter smoothing, baseline correction, and linearly scaled between 

0 and 1 for chemometric analysis and cosmic ray removal, noise filter smoothing, & 

baseline correction for mapping. Asymmetric least squares baseline correction is 

used in Chapter 3, using a script written in python. An alteration resulting from Covid-

19 restrictions on lab and software availability. 

 

2.4.5. Spectral and chemometric analysis  

After pre-processing and Raman mapping carried out in Renishaw WiRETM 4.0 and 

volume viewer software, subsequent analysis was carried out using open source or 

in house software facilitated by the Python 3.6 programming language. Data 

manipulation was carried out using the NumPy 1.19.1 and Pandas 1.1.4 Python 3.10 

packages, data visualisation used the matplotlib 3.5.2 library, and chemometric and 

machine learning models used Scikit-learn 1.1.1 for cluster analysis, and SciPy 

1.8.1. Example code for the k-means directed shading method described through 

Chapter 3 is provided in a GitHub repository [82], alongside the python modules 

used within the example [83].  
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Chapter 3 - Raman mapping and shading 

 

 

3.1. Introduction 

 

A monitoring method for bioengineered constructs requires a repeatable method of 

analysis, that provides the broadest understanding of the biological system possible. 

Currently, shading parameters are not published enough [5] and the information that 

is published is insufficient to replicate Raman maps exactly when two or more 

wavenumbers are mapped simultaneously and overlapped. For example, if two 

researchers produced Raman maps, using the same map data showing a cell, with 

consistent software, pre-processing, and colour allocation, the lack of published 

transparency and colour intensity parameter choices would inevitably result in 

different images being published. Any technique being designed for research or 

manufacturing environments requires complete repeatability, where different labs 

following all published information produce the same results. Publishing 

transparency settings alongside colour intensity ranges [5], would produce 

repeatable results, but does not provide a method of linking spectral insights to 

regions of a Raman map. The aim of this chapter is to present a method for 

producing Raman maps with reproducible map boundaries that can be justified by 

comparison to a Raman spectrum. 

 

3.1.1. Raman mapping 

Raman maps are produced by collecting Raman spectra over a plane and assigning 

colours relating to the relative intensity of a spectral region, peak, or chemometric 

feature, such as a principal component (PC). Raman maps combine the high 

chemical specificity of Raman spectroscopy alongside greater context and 

morphological insight, increasingly in three dimensions. Univariate, multispectral, 

and hyperspectral [84]–[95] methods are all used to produce Raman spectroscopy 
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maps. In vibrational spectroscopy mapping, univariate mapping plots the distribution 

of a single wavelength or spectral feature (e.g., spectral peak or molecule), 

producing easily interpreted images [95]. Univariate maps are frequently presented 

alongside clustering or hyperspectral maps [85]–[94], providing 

verification/clarification of conclusions drawn from the less interpretable 

hyperspectral maps.  

Multispectral and hyperspectral techniques determine features from five or more 

wavelengths [96], as opposed to the single spectral features used in univariate 

analysis. The number of wavelengths analysed can also distinguish multi- from 

hyperspectral imaging, where 5-12 wavelengths, or spectral bands (depending on 

the application) are used for multispectral [96]. Hyperspectral techniques use far 

more wavelengths (hundreds to thousands) [96]. However, it is not uncommon for 

hyperspectral datasets to have multispectral techniques applied to them [85], [87]–

[89], [91]–[93]. As all datasets are within the hyperspectral range in this chapter, all 

statistical shading methods will be referred to as hyperspectral.  

Examples of hyperspectral imaging include dimension reduction and clustering. 

Dimension reduction includes principal component analysis (PCA), which rotates the 

data onto new axes that maximises variance, providing an objective method of 

imaging key features. Clustering algorithms such as k-means clustering [97] or 

hierarchical cluster analysis (section 2.3.2.) cluster the Raman maps constituent 

spectra, providing a method of distinguishing groups within the image. The key 

advantage of hyperspectral imaging is the capacity to visualise spectral features that 

have been determined using the entire spectral range. Hyperspectral imaging 

therefore increases the information used in the image production, at the cost of 

complexity during map production and interpretation. 

Both the univariate and hyperspectral Raman mapping then use false-colour 

shading to reveal the intensity of the Raman peak, molecule, or hyperspectral feature 

being visualised. False-colour shading [5], [6], [98], [99], sometimes called pseudo-

colour shading [100], refers to the assignment of a colour to a molecule or statistical 

feature that has no relation to the actual colour of the object or substance being 
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imaged. Terms can vary when discussing vibrational spectroscopy imaging 

methods. Differences can occur due to their development or earlier application in 

different, frequently overlapping research fields. For example, variables (statistics), 

features (data science), and dimensions (linear algebra) can all refer to wavelengths 

(spectroscopy). Similarly, variate (e.g., uni/multivariate) is the statistical term for 

techniques once applied to spectral mapping that can be called spectral (e.g., multi 

or hyperspectral). Spectral terms are prioritised in this chapter unless the naming 

convention within spectroscopy/chemometrics has retained the general term (e.g., 

univariate) or when the term is part of a non-spectroscopy context. 

The Raman mapping method used will depend on the research question. As 

highlighted by Ashton et al [5], [6], low-feature analysis is widely used for the 

mapping of cells, including processes such as monitoring drug uptake. Selecting a 

Raman peak associated with a drug allows its location within the cell to be mapped 

[5], where the signal may be too subtle for hyperspectral methods to discern. 

However, the limitation of low-feature mapping is the inherently reduced information 

provided by a small number of (commonly one) features, making judgements about 

the shading parameters currently subjective [5]. The difficulty of objectively 

determining accurate shading parameters is further complicated when mapping is 

carried out in three dimensions [6], with a range of complicating factors explored 

further in Chapter 4. To minimise complicating factors and to make the solution as 

clear as possible before moving on to distortion factors, this chapter will focus on 

conventional two-dimensional Raman mapping.  

In some cases, univariate shading is layered through the manipulation of shading 

parameters like transparency, opaqueness, and colour intensity [5], [6]. The layering 

of univariate Raman maps allows the distribution of two or more wavelengths to be 

visualised simultaneously, which in a single cell context, can visualise different 

regions of the cell like the nucleus and cytoplasm, showing cell-scaffold interaction 

[6]. A small number of wavelengths or spectral features can be visualised using this 

method if the final image is to remain clear and interpretable. The layering of 

univariate Raman maps will therefore be referred to as low-feature Raman mapping 

through the remainder of the chapter and thesis. 



46 
 

Unfortunately, the information provided by Raman maps is degraded when shading 

is applied arbitrarily and reproducibility is hindered when parameters are published 

opaquely, if at all [1]. Ashton et al previously showed that a single Raman map can 

be presented showing varied intensities for different selected molecular signals to 

highlight the necessity of careful shading with transparent shading parameters [5]. 

The use of a distribution plot was recommended approach to reduce shading 

parameter ambiguity [5], [6]. In Raman mapping, comparing machine learning-

generated images to labelled microscopy provides a method of determining the 

morphological accuracy of a completed map [37]. However, no current approach 

provides a method of systematically verifying the shading parameters selected 

during the production of Raman (or vibrational spectroscopy in general) maps 

revealing a current gap in the research. 

 

3.1.2. Repeatability in Raman mapping 

One solution previously published was to present the shading range used alongside 

a distribution plot to aid reproducibility [5]. Care is required during low-feature 

mapping, where the current protocol is to produce a map for each feature being 

visualised using pseudo/false-colour shading, then determining shading boundaries 

to allow the key regions of each map to be layered to distinguish key sections of the 

map; different sub-cellular regions when analysing single cells. The non-arbitrary 

nature of choosing/justifying the boundaries between key features has been 

previously published [5]. The complexity of boundary choice can be especially acute 

in biological samples, where the spectral features (Raman peaks) used to define 

each morphological feature can be present in both features. For example, proteins 

are detected in both the cytoplasm and nucleus. K-means clustering compares the 

entire spectrum to determine groups (clusters) within the data, providing objective 

shading of the Raman map that clearly distinguishes different sub-sections within a 

single cell, e.g., the nucleus and cytoplasm. The limitation of clustering is the blocked 

(qualitative) shading it provides, with each cluster assigned a single colour providing 
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no capacity to relate colour intensity to molecular intensity. The number of clusters 

used is also a source of subjectivity. 

This chapter presents a novel application of k-means clustering to colour map 

regions of interest (the cell nucleus, cytoplasm, etc.) or disinterest (the map 

background, a scaffold material, etc.) based on clusters verified through spectral 

inspection. Known as k-means directed shading, this approach provides the 

quantitative and interpretability of low-feature shading, alongside the objectivity and 

increased spectral input of unsupervised hyperspectral imaging. A secondary aim of 

this chapter is to demonstrate K-means directed shadings capacity for image 

background removal, where spectra associated with the map background are 

replaced with arrays filled only with zeros (a zero array), the same length of the 

spectrum. By removing the background, a range for low-feature shading can be more 

simply defined as the range within the cell, the entire range within a single 

morphological feature. The use of spectral substitution can also reduce the influence 

of highly Raman scattering scaffold materials within an analysis, which distracts from 

biological targets during cell-scaffold analysis (continued in Chapter 4). 

Unsupervised clustering methods (k-means and hierarchical clustering) are 

compared to determine the most effective solution. Feature selection is carried out 

with PCA for verification of the number of clusters and to aid the assignment of 

molecules and corresponding colours to them through comparison with the low-

feature maps produced after background removal. 

 

Chapter aims: 

1) To provide a method of justifying cellular subsections in Raman maps by comparing 

spectral features. 

2) To provide a repeatable method of combining two or more low-feature Raman maps.  

3) To demonstrate K-means directed shadings ability to select or remove regions of 

interest and disinterest respectively from Raman maps. 
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3.3. Methods 

 

See Chapter 2, section 2.4. for all methods including the cell culture (section 2.4.2), 

microscopy (2.4.3), Raman map collection (2.4.4), and Raman map 

production/analysis (2.4.5) 

 

 

3.4. Results and discussion (section 1) 

 

Raman mapping provides a label-free and non-destructive method of mapping the 

molecular composition of single cells, where the colour intensity indicates molecular 

concentration. As the map represents the intensity of inelastically scattered photons 

instead of labels, a wide number of molecules including nucleic acids, proteins, 

lipids, carbohydrates, and polysaccharides are analysed simultaneously. Molecular 

distributions can then be visualised individually or together by layering the individual 

Raman maps of different molecules [6], such as proteins and nucleic acids, as shown 

in Figure 3.1. Raman mapping reveals the morphology of the cell and its nucleus, 

like microscopy methods, which can be key indicators of cell function and behaviour 

[6], with additional molecular pathological biomarkers and concentration. Layered 

Raman maps can save space and make the relationship between different cell 

structures clearer [6]. Target molecules are regularly present throughout cells, 

proteins for example are found in both the nucleus and cytoplasm. Contamination of 

Raman spectra and unwanted collections outside the cell can also reduce the clarity 

of Raman maps. To counter these issues and provide flexibility when producing 

Raman maps, shading parameters in Raman mapping software such as Renishaw 

WiRETM are easily adaptable.  
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3.4.1. Challenges of shading single cells  

Figure 3.1 shows how parameters such as shading range and transparency can 

drastically alter the presented image. Figure 3.1 (A-D) shows the 1330-1350 cm-1 

protein intensity map, where the shade of green indicates the intensity of proteins. 

Figure 3.1 (A) includes 95-5% of the range, showing most of the analysed area as 

bright green. The intensity and apparently high concentration of proteins that it 

represents is then reduced through Figure 3.1 B-C, fading away as the mapped 

intensity is reduced. There is no change in the underlying data in the adaption of the 

maps, only the range of Raman intensity included. In Figure 3.1 E-H, the intensity of 

the 775-800 cm-1 nucleic acid region of the spectrum is mapped and overlaid over 

the protein map by making lower-intensity regions transparent. In the highest 

intensity map, Figure 3.1 (E) blocks the protein map below as 100% of the range is 

included with no transparency. Figure 3.1 (E) demonstrates that nucleic acids have 

been detected throughout the cell, although these settings make layering ineffective 

as the protein map is obscured. As the nucleic acid intensity is reduced through 

Figure 3.1 (E-H), the protein shading is revealed below. 
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Figure 3.1 – Low-feature shading variability: See text for discussion on shading parameters, such as colour 
intensity and transparency setting used. A-D) Reducing intensities of the 1330-1350 cm-1 intensities associated 
with proteins for the HaCaT Cell 1 (mapped area = 21 × 22 µm). E-F) Reducing intensities of the 775-800 cm-1 
intensities associated with nucleic acids for the HaCaT Cell 1. I-L) Reducing 1330-1350 cm-1 intensities for the 
HaCaT Cell 2. M-) Reducing 775-800 cm-1intensities for the HaCaT Cell 2 (mapped area = 21 × 33 µm). 
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The choice of shading parameter is hidden in Figure 3.1, removing the capacity of 

the reader to make a judgement on the parameters used. Providing the shading 

parameters is critical due to the significant effect on the morphological information 

provided by the map and altered apparent molecular concentration, especially when 

different parameters are used for the different molecules. The same process is 

carried out through Figure 3.1 (I-P), except for mapping a cell (HaCaT Cell 2), where 

the most noticeable difference is lines that are across the map; probably resulting 

from the dragging of the objective over the analysed area, missing the cell except 

for a small section on the left of the cell. The distorting effect the contamination has 

on the map and any further analysis can result in the discarding of otherwise valuable 

data. To counter these issues, a method of substituting the Raman spectra for zero 

intensity spectra (spectra where every intensity is zero) and objectively determining 

subsections within the cell, and their constituent molecules. Ready to apply this 

approach to more complex volumetric Raman mapping in further chapters.  

 
 

3.4.2. Background removal with clustering/intensity levels  

In Figure 3.2, the microscope view of the cells (HaCaT Cell 1 & HaCaT Cell 2) before 

Raman mapping is shown in (A) and (D). Five initial clusters determined using the 

k-means clustering algorithm are shown in (B) and (E), with bold colours used to 

easily distinguish the different clusters. By comparison with the microscope maps in 

(A) and (D), it is observed in (B) that clusters zero (blue), one (red), two (blue), and 

three (yellow) are associated with the background of HaCaT Cell 2. Similarly, it can 

be seen for HaCaT Cell 1 in (E) that clusters zero (blue), one (red), three (yellow), 

and four (turquoise) are linked to the background. In Figure 3.2 (C) and (F), 

substituting the spectra of the highlighted clusters with an array of the same length 

that contains only zeros (a zero array), a new cluster for the background is produced 

(coloured black). As the new background is represented by spectra where all 

wavenumbers are zero, the differences determined by the k-means clustering are 

focused exclusively on the cell. The number of clusters for background removal 

requires that the total cell morphology, as determined by the microscope image 
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(Figure 3.2 A & D), is captured (the external clusters then being substituted with zero 

arrays). The number of sub-cellular clusters is then verified through spectral and 

hyperspectral investigation (next sections). The advantages of substituting 

background spectra for zero arrays are shown in Figure 3.2 (C) and (F). Figures 3.2 

(C) and (F) provide details within the cell, as opposed to being distracted by the 

background. The same effect can be obtained by increasing the number of clusters, 

however, increasing the number of clusters can result in a cluttered image and 

convolute further analysis. A homogeneous background also removes distracting 

artefacts from the image, providing clarity and increased contrast between the 

background and the subject of the image. Removing the background makes the 

image easier to understand for observers and focuses any further statistical analysis 

on the cell.  

 

 
Figure 3.2 – Cluster shading: A) Microscope image of HaCaT Cell 2, B) K-means clustering used to capture 
HaCaT Cell 2 background, C) Zero array substituted background k-means image of HaCaT Cell 2, D) Microscope 
image of HaCaT Cell 1, E) K-means clustering used to capture HaCaT Cell 1 background and F) Zero array 
substituted background k-means image of HaCaT Cell 1. Pixel counts (x and y axis) in B, C, E, & F, are in µm 
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3.4.3. Clustering comparison  

To ensure the most accurate method is being used to remove the background and 

determine regions of interest within the cell, hierarchical cluster analysis (HCA) was 

carried out for comparison to the k-means clustering method using the HaCaT Cell 

1 cell Raman map. To verify the accuracy of the clustering algorithms, false-colour 

Raman maps were produced of the 693-713 cm-1 lipid (C – purple), and the 775-800 

cm-1 nucleic acid (D – blue) [5], [6] regions of the spectrum. A custom shading range 

was coded in Python 3.7.6, using the Matplotlib 3.1.3 library. The shading indicated 

the background in black, with dark colour indicating low Raman intensity and 

increasing colour intensity/brightness relating to a higher Raman intensity. Black was 

chosen for the background to highlight the cell and conform to the shading 

convention used throughout the chapter. By comparing the maps of molecular 

regions of the spectrum, conclusions about the accuracy of the clustering can be 

determined, verifying the clustering.  

In Figure 3.3, the largest feature within the cell shown within the false-colour maps 

is the nucleus (D), which appears as a high-intensity region in the nucleic acid (775-

790 cm-1) map and a low-intensity region in the lipid (693-713 cm-1) map (C). Figure 

3.3. E & F visualise the nucleus [101] in blue and proteins (WGA) in green, with the 

DAPI-stained nuclei showing the presence of DNA. The expected size of the nucleus 

(E-F) aligns most closely with cluster 3 (orange) for the k-means algorithm, whereas 

the HCA image produces a larger orange cluster (number 0). Another region of 

interest in the false colour maps is the inner cell body above the nucleus (yellow), 

cluster 1 in the k-means, and cluster 4 in the HCA image, probably relating to the 

endoplasmic reticulum (ER) [102], [103]. The ER shows low nucleic acid intensity (D), 

with the lipids (C), maps indicating higher intensities. The third region of interest is 

the outer cell body, shown as a ring around the nucleus and the inner cell body 

(blue), cluster 2 in the k-means image and cluster 1 in the HCA. The outer cell body 

is shown as a ring in the nucleic acid map (D) but is undistinguishable in the lipid 

map (C). The final feature in the clustering images on the edge of the cell (green), is 

shown as cluster 4 in the k-means image and 2 in the HCA. The defining factor of all 
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molecular maps within this region is a low concentration, potentially indicating a 

reduction in cell thickness.  

 

Differences are present in Figure 3.3 between the k-means (A) and HCA (B) images, 

including the size of the nucleus and the inner and outer cell bodies. The HCA image 

groups the nucleus and part of the outer cell body, reflecting the ring of nucleic acids 

shown around the ER in the nuclear acid map. The ER (yellow) is shown as larger 

in the k-means image, more closely matching the low-intensity region in the nucleic 

acid map (D). The nucleus, defined by the high-intensity region in (D) the nucleic 

acid map (verified in E & F), and the low-intensity region in the lipid map (C) is more 

accurately depicted by the k-means clustering image. The use of k-means as a 

method of shading further clustering images will therefore be carried forward for the 

remained of the project. The colours assigned to the clusters in this section were 

designed to increase contrast, without the assignment of molecules to those colours. 

The next section will be focused on assigning the appropriate false-colour shading 

to each cluster so that a reader can determine what molecule defines that cluster, 

distinguishing it from the others / maximised the variance between them. 
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Figure 3.3 – Microscopy verification of clustering: A) K-means clustering image of HaCaT Cell 1 (5 clusters). 
B) HCA image of HaCaT Cell 1 (5 clusters). C)  Univariate Raman map of HaCaT Cell 1 shaded to the 693-713 
cm-1 (lipid) spectral peak (purple). D) Univariate Raman map of HaCaT Cell 1 shaded to the 775-800 cm-1 (nucleic 
acid) spectral peak (blue). E & F) HaCaT cells imaged using fluorescence microscopy, labelled using DAPI (blue) 
to visualise DNA, and WBA (green) to visualise proteins. Pixel counts (x and y axis) in A-D, are in µm 
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3.4.4. Single-cell map segmentation comparison 

Some Raman peaks and regions are only associated with a single class of molecule, 

in section 3.4.3, the regions, 693-713 cm-1 (lipids) [5], 775-800 cm-1 (nucleic acids), 

and 1330-1350 cm-1 (proteins) [6] were chosen for this reason. Other Raman peaks 

do not provide such a simple interpretation, where the vibration (or a similar 

vibration) responsible for the peak can be found in more than one molecule, an 

example is lipids and proteins that share regions of the spectrum. In such cases, 

determining the exact combination of molecules responsible for the Raman peak can 

become complex, making the assignment of colours to those regions non-trivial, with 

the reward of potentially increased insight. Raman mapping provides a method of 

visualising disputed target peaks, which once compared to known (single) molecular 

region maps allow for conclusions to be drawn as to the contributor or contributors 

to the peak and the assignment of a colour to reflect these conclusions. The purpose 

of a rigorous approach to assigning colours to subsections of Raman maps is to 

minimise subjectivity when deciding on morphological boundaries within a cell, which 

may indicate altered behaviour [104]–[107]. The use of unsupervised learning is 

therefore justified when identifying boundaries and selecting target spectral regions 

for their verification.    

PCA is a commonly used technique in vibrational spectroscopy, as an unsupervised 

method of determining new axes (components) that account for the maximum 

variance within the dataset (as described in Chapter 2, section 2.3.1) The columns 

of the loadings matrix produce the loadings plot, which describes the “importance” 

of each feature (wavenumber). Greater importance is defined as the wavenumbers 

contribution towards maximising the variance within that dimension (axis) and 

indicated by the loadings distance from zero (the greater the more important). PCA 

therefore provides the advantage of objectively highlighting wavenumbers or 

spectral regions for further analysis. As each spectrum within a PCA data matrix, is 

a pixel in a Raman map (assuming the correct order is retained), once the data has 

been rotated onto new axes, the PC provides a score for each spectrum which can 

then be rearranged into an image. PCA can objectively indicate key constituents of 
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each region of the cell, which can then be used to aid verification of cluster colour 

assignments in the next section. By false colour shading the maps to regions 

indicated by the PCA loadings plot, the distribution of these factors can be observed. 

Factors that indicate morphological features are then selected for the next section of 

the chapter and maps that do not show anything of interest can be discarded. 

Shading using PCA is a hyperspectral imaging method, as a larger number of 

features (wavenumbers) are used to produce the image. Each PC images the 

feature or features that maximises the variance within the dimension, therefore 

producing images that incorporate the different features whilst minimising 

subjectivity. The limitation of objective methods, like PCA, is that any known subject 

of an investigation (to the researcher), may be disregarded if it does not maximise 

variance [108]. An example is dithranol absorption by a cell, visualised by shading 

to a spectral peak intensity [5] may be disregarded due to PCA’s purpose of 

determining axes relating to variance rather than clusters within the data [109]. For 

example, the shading of drug absorption. PCA hyperspectral images are therefore 

hypothesised as providing an additional method of combining Raman maps, where 

the loading plot can be used to determine the features that have maximised the 

variance to produce the image. Testing the ability of PCA to aid cluster assignment 

to sub-cellular regions, can be tested by mapping the PC by plotting the PC loading 

plot, and false-colour shading target spectral regions indicated by the loading plot. 

By using the loading plot determined false-colour maps and hyperspectral images to 

identify regions within the cell, PCA will have reduced subjectivity in the selection of 

molecules used to assign clusters to sub-cellular regions.  

 

3.4.5. HaCaT Cell 2 principal component 3 

In Figure 3.4 (A), a threshold of 0.06 was used on the loading plot for PC3. The 0.06 

threshold was determined through inspection of maps above the threshold and is 

used to identify the highest intensity loadings using the find_peaks function provided 

in the python SciPy 1.8.1 signal library, which is labelled. A hyperspectral image of 

the third PC (PC3) is shown with the selected molecular maps to aid molecular 
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assignments through comparison. PC3 was selected as its image (I) reproduced the 

spectrally verified k-means image. The positive and negative loadings for PC3 also 

reinforce the molecular assignments relating to the nucleus and cell body regions of 

the cell. Positive loading peaks in the 784 cm-1, 1000 cm-1, 1095 cm-1, 1489 cm-1, 

and 1575 cm-1 mainly indicate the positive loadings relate to nucleic acids [37], 

[110]–[112]. Only the 1000 cm-1 phenylalanine loading peak [37], [110] relates to 

protein but does not provide morphological detail and will not be used in further 

stages. The maps were shaded blue to visualise their distribution in Figure 3.4 (B-

E), where the overlapping regions of the highest intensity overlap reinforcing the 

assigned molecule. It can therefore be said that the high positive intensity regions of 

the PC3 hyperspectral image relate to nucleic acids.  
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Figure 3.4 – HaCaT cell 2 PC3: A) Loading plot of HaCaT Cell 2 (PC2), highlighting the 784, 1095, 1489 and 
1575 cm-1 loading peaks when a 0.06 threshold was applied to the positive loading peaks and 1129, 1436 and 
1675 cm-1 when a 0.06 threshold was applied to the negative loadings. B-H) Univariate Raman maps of, B) 784 
cm-1 (nucleic acids), C) 1095 cm-1 (nucleic acids), D) 1489 cm-1 (nucleic acids), E) 1575 cm-1 (nucleic acids), F) 
1129 cm-1 (proteins), G) 1436 cm-1 (proteins), & H) 1675 cm-1 (proteins). I) Hyperspectral image of PC3. Pixel 

counts (x and y axis) in B-I, are in µm 
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Negative loading peaks under a -0.06 threshold include lipids or proteins (1129 cm-

1, 1436 cm-1, and 1657 cm-1) [110], where the highest intensity regions surround the 

nucleus region of the map. The intensities drop slightly within the nucleus, 

suggesting a small contribution of lipids as proteins would not drop within the 

nucleus, whereas lipids would be expected to drop significantly, as shown in section 

3.4.3. The 1129 cm-1, 1436 cm-1, and 1657 cm-1 relate primarily to proteins, resulting 

in a green shading in Figure 3.4 (F-H), with a small lipid contribution that cannot be 

clearly visualised but must be acknowledged. In cases where a PC is only focused 

on a single feature such as nucleic acids, there would be no additional benefit to 

using PCA to shade the image. In this case, the negative loadings focus primarily on 

proteins, allowing the different molecules to be shaded in Figure 3.4 (I) 

simultaneously and providing a shading gradient that does not require a 

transparency setting to shade multiple features within the cell.  

 

3.4.6. HaCaT Cell 1 principal component 2 

In Figure 3.5 (A) the HaCaT Cell 1 PC2 loadings plot, the negative loadings with a 

0.05 threshold highlighted the 1128 cm-1 loading peak of lipids [21] and 

carbohydrates [112], 1302 cm-1 lipids [3], nucleic acids and proteins 1341 cm-1 [110], 

1448 cm-1 proteins and lipids [21] or lipids [111] and 1652 cm-1 (proteins and lipids) 

[21], [37]). The positive loadings do not provide morphological insight when 

assigning clusters to sub-cellular regions, so 1000, 1155, 1507, 1600, and 1341 cm-

1 are excluded from the morphological analysis alongside the 1341 cm-1 negatively 

loaded peak. The high-intensity region for HaCaT Cell 1s PC2 is associated with the 

inner cell body with a high protein and lipids concentration, Figure 3.5 (B).  
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Figure 3.5 – HaCaT cell 1 PC2: A) Loading plot of HaCaT Cell 1 (PC2), highlighting the 1000, 1155, 15007 and 
1600 cm-1 loading peaks when a 0.06 threshold was applied to the positive peaks and 1128, 1302, 1448 and 
1652 cm-1 when a 0.06 threshold was applied to the negative loadings. B) Hyperspectral image of PC2. C-F) 
Univariate Raman maps of, C) 1128 cm-1 (lipids), D) 1032 cm-1 (lipids), E) 1448 cm-1 (proteins), F) 1652 cm-1 

(proteins). Pixel counts (x and y axis) in B-F, are in µm 
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The reversed colour bar for the PC2 hyperspectral image provides a clearer image, 

as the loadings responsible for the shading are negative. The shaded molecules 

shown in Figure 3.5 (C-F) reflect this, with the highest intensity map (1652 cm-1) 

being assigned to proteins, the most abundant molecule in the cell. Proteins are also 

assigned to 1448 cm-1, which alongside 1652 cm-1 does not have a significant drop 

in intensity in the region of the cell associated with the nucleus when compared to 

the protein and lipid maps in section 3.4.5. Green is therefore assigned to 1448 cm-

1 and 1652 cm-1 maps.  

The 1302 cm-1 map has lower intensities than the protein map and has a large 

difference between the nucleus and cell body, as would be expected for lipids. The 

1128 cm-1 map has the lowest intensities from the selected wavenumbers, with the 

higher intensities in the cell body. In section 3.4.5, 1129 cm-1 is green for proteins as 

the highest contributor to the spectral peak. The lower intensity of the 1128 cm-1 

maps, combined with the low-intensity region associated with the nucleus suggests 

a higher relative lipid concentration for the 1128 cm-1 map, resulting in purple 

shading. The reduction in the nucleus region of the map is not as significant as in 

the 1302 cm-1 map; therefore, lipids (purple) are assigned to the map, with the 

expectation of some protein contribution.  

 

3.4.7. HaCaT Cell 1 principal component 3 

For HaCaT Cell 1 PC3, the positive loadings in Figure 3.6 (A) relate primarily to the 

nucleus, with loadings over a 0.06 threshold of 784 cm-1 (nucleic acids) [21], [37], 

1095 cm-1 (DNA) [21], 1488 cm-1 (DNA) [21] and 1678 cm-1 relating to proteins [21], 

[37]. 1095 cm-1 provided no morphological information and was removed. The 

nucleic acid maps (784 cm-1 and 1488 cm-1), in Figure 3.6 (C and D) have high 

intensities in the nucleus region of the maps, with rings associated with the cluster 2 

region surrounding the inner cell body of high lipids and proteins determined in 

section 3.4.6. The 1678 cm-1 map in Figure 3.6 (E) could have been related to lipids 
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also, but the high-intensity regions are focused on the nucleus, indicating that they 

are proteins.  

Negatively loaded peaks included 748 cm-1 (nucleic acids or protein) [21] or proteins 

and lipids (1433 cm-1 1586 cm-1) [21], [37], [112]. The 1586 cm-1 map shows a ring 

of proteins and lipids, where the intensity is the lowest from the negative loadings, 

suggesting lipids. The 1586 cm-1 map in Figure 3.6 (G) has a very low intensity in 

the nuclear region of the cell, with slightly higher intensity within the inner cell body, 

resulting in lipids being assigned to this map, with purple shading. The 748 cm-1 map 

(F) has a high-intensity region in the cluster 2 section of the cell, similar to a ring of 

nucleic acids seen in the 784 cm-1 and 1488 cm-1 nucleic acid map (Figure 3.6 (C 

and D)). The 748 cm-1 Raman peak can be assigned to nucleic acids or proteins, 

although there is no high-intensity region where the nucleus is, resulting in an 

assiginment of proteins and green shading for the 748 cm-1 map. The map for 1433 

cm-1 in Figure 3.6 (E) shows a drop in intensity, similar to the 693-713 cm-1 lipid 

region in Figure 3.3. However, the 1433 cm-1 intensity is the highest of all the map, 

suggesting a large protein constituent of the peak that incentivises a green shade. 

The hyperspectral map of HaCaT cell 1 PC 3 in Figure 3.6 (B) reflects the shading 

of the highlighted spectral regions, except for the outer ring of nucleic acids, proteins, 

and lipids. The combination of all the factors being visualised in PC2 to distinguish 

the nucleus, and the cell body, the positive intensity shading the nucleus and the 

lower and negative intensities shading the cell body. The only spectral peak to isolate 

the nucleus similarly is the 1678 cm-1 protein peak (seen in E). The distinction 

between the nucleus and cell body is difficult to determine with the 1678 cm-1 map, 

highlighting the advantage of hyperspectral imaging for some applications.  
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Figure 3.6 – HaCaT cell 1 PC3: A) Loading plot of HaCaT Cell 1 (PC3), highlighting the 1000, 1155, 15007 and 
1600 cm-1 loading peaks when a 0.06 threshold was applied to the positive loading peaks and 1128, 1302, 1448 
and 1652 cm-1 when a 0.06 threshold was applied to the negative loadings. B) Hyperspectral image of PC3. C-
H) Univariate Raman maps of, C) 784 cm-1 (nucleic acids), D) 1488 cm-1 (nucleic acids), E) 1678 cm-1 (proteins), 
F) 748 cm-1 (proteins), G) 1586 cm-1 (lipids), & H) 1433 cm-1 (protein). Pixel counts (x and y axis) in B-H, are in 
µm 
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3.5. Results and discussion (seciton 2) 

 

In section 3.4, PCA indicated regions of the spectrum that resulted in the maximum 

variance within the dataset that constitute the Raman maps. The indicated regions 

of the Raman spectrum can now be compared to the k-means cluster image Figure 

3.7 (F) to verify the number of clusters and assign colours to the clusters that 

represent that primary molecular constituent. By associating the high-intensity 

regions of a molecule to locations within the cell, it is hoped that the primary 

molecules that define clusters can be isolated, linking biological insights to physical 

locations in the cells. The advantage of using hyperspectral methods to determine 

regions within the cell and determine key biological features within them is their 

inherent objectivity and capacity to balance each wavelength in the Raman spectrum 

whilst reducing the number of dimensions. 

 

3.5.1. Assigning colours to the different HaCaT Cell 2 k-means clusters  

Figure 3.7 shows the full range spectrum (A) with the spectral peaks selected in 

section 3.4. highlighted with colour shading, alongside focused sections in (B). The 

green lines/shading are associated with proteins and blue for nucleic acids. Plotting 

the average spectrum for each sub-cellular cluster allows the average molecular 

information to be compared when assigning the cluster to a region of the cell (e.g., 

cell body vs. nucleus). For example, it can be seen in Figure 3.7 (C) that the 784 cm-

1 Raman peak, assigned nucleic acids, has approximately 25% higher intensity in 

cluster 4. Whereas the map of 1436 cm-1 (D) and 1657 cm-1 (E) intensities show 

darkening (reduced Raman intensity) in the region of cluster 4, most clearly seen in 

(D). The gradient in proteins is reflected in the spectra, where the protein intensities 

are highest for cluster 2, lowest for cluster 3, and in between for cluster 1 for the 

highlighted protein regions, dividing the cell body into outer, inner, and edge. Cluster 

3 shows the lowest intensities, potentially because of reduced sample thickness near 

the edge of the cell, as all Raman peaks are shown to be reduced compared to the 

other clusters, justifying grey to show the reduced molecular content. 
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Figure 3.7 – HaCaT cell 2 cluster assignment: A) HaCaT Cell 2 Cluster average spectra (full). B) HaCaT Cell 
2 Cluster average spectra (focused). C-E) Inivariate Raman maps of, C) 784 cm-1 (nucleic acids), D) 1436 cm-1 
(proteins), & E) 1657 cm-1 (proteins). F) K-means cluster image using 5 clusters. Pixel counts (x and y axis) in 
C-F, are in µm 
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3.5.2. Assigning colours to the different HaCaT Cell 1 clusters  

Figure 3.8 repeats the analysis from Figure 3.7 for HaCaT cell 1, linking (colouring) 

the clusters (E) to different regions of the cell (nucleus vs. cell body). The 

assignments are based on spectral regions highlighted through PCA shown behind 

the spectra on both the full spectrum (A) and the focused spectral regions (B). The 

background is captured by cluster 1, which is not included in the spectral comparison 

due to the zero-array substitution and subsequent elimination, the background is 

then shaded black concurring with the shading convention. The distinct nucleic acids 

(748 cm-1) and proteins (1678 cm-1 - G) define the cluster 4 average spectrum, with 

the higher nucleic acid 784 cm-1 spectral peak allowing the cluster to be shaded blue, 

as previously nucleus regions have been coloured. The 748 cm-1 protein (F), 1433 

cm-1 protein (H), and 1586 cm-1 lipid (C) maps justify the distinction of cluster 0 as a 

molecularly distinct region of the cell, also highlighted in the 784 cm-1 nucleic acid 

(D) map. As clusters 0 and 3 are shown to have the highest protein contents through 

inspection of the cluster average spectra in Figure 3.8 (B). The assignment of 

different shades of green to both cluster 0 and 3 is therefore justified, showing 

proteins are the primary constituent of both, with the use of different shades 

highlighting the intensity difference. The average spectrum of cluster 2 has the 

lowest intensities in all regions of the spectrum except for the 775-800 cm-1 nucleic 

acid region, where it has slightly higher intensities than cluster 3, although this is 

more due to the reduced nucleic acid levels in the inner cell body as shown in the 

784 cm-1 map. Cluster 2 can also be assigned the colour grey to indicate the low 

intensity detected from the edge of the cell.   
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Figure 3.8 – HaCaT cell 1 cluster assignment: A) HaCaT Cell 1 Cluster average spectra (full). B) HaCaT Cell 
1 Cluster average spectra (focused). C & D/F-H) Univariate Raman maps of, C) 1586 cm-1 (lipids), D) 784 cm-1 
(nucleic acids), F) 748 cm-1 (proteins), G) 1678 cm-1 (proteins), & H) 1433 cm-1 (proteins). E) K-means cluster 

image using 5 clusters. Pixel counts (x and y axis) in C-H, are in µm 
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3.5.3. Complete k-means-directed shading maps 

Having assigned clusters to different sub-cellular regions in section 3.4, k-means 

directed shading provides the capacity to shade the combined areas indicated by 

the clusters with a colour associated with the morphological feature. In keeping with 

previous conventions, the 1330-1350 cm-1 (proteins) and 775-790 cm-1 (nucleic 

acids) spectral regions were associated with the cell body and nucleus respectively 

[6], providing relatively homogeneous regions of the spectrum. Figure 3.9 (B-G) 

reiterates the variable shading that can be produced using WiRETM (from section 

2.4.4), for HaCaT cell 1 (B-D) and HaCaT cell 2 (E-G). The final k-means directed 

maps for HaCaT cell 1 and HaCaT cell 2 are shown in Figure 3.9 (H) and (I) 

respectively, where the shading range for each region is the entire range within the 

identified area, shown on the colour bars. Background removal increased the clarity 

most for HaCaT cell 2 (I), focusing the image onto the cell. K-means-directed 

shading is shown to provide clarity similar to that achieved by fluorescence 

microscopy (Figure 3.9 A). K-means-directed false-colour shading, therefore, retains 

the increased molecular information provided by spectroscopy, whilst gaining 

objectively determined boundaries between features such as the nucleus through 

unsupervised learning, which are verifiable through spectral inspection. Removal of 

the background also improved the contrast between the cell and background for 

HaCaT cell 1. The main benefit of k-means directed shading is the increased 

confidence when visualising boundaries between features such as the cytoplasm 

and nucleus, whereas shading previously relied on incremental alterations (Figure 

3.1) and researcher judgement, the sub-cellular regions in the k-means directed 

shading are determined using unsupervised k-means clustering and assigned 

through spectral and hyperspectral (PCA) analysis. 
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Figure 3.9 - Cell visualisation comparison: A) Fluorescence microscopy, providing a comparative imaging 
technique, staining the nucleus blue with a stain for DNA (DAPI) and the cell body / cytoplasm green for proteins 
(WBA). (B-C) showing the incremental shading of the 775-790 cm-1 nucleic acid Raman peak (blue) for HaCaT 
cell 1 (mapped area = 21 × 22 µm), and HaCaT cell 2 (mapped area = 21 × 33 µm) (E-F), with consistent shading 
for the 1330-1350 cm-1 protein region (green), which can be similarly varied. H) The k-means directed false-
colour shading of HaCaT cell 1, showing the objectively derived and spectrally verified boundaries for the nucleus 
(blue) and the cell body (green). Colour bars indicate the Raman intensity for the proteins (green) and nucleic 
acids (blue) to the right of the map; with the same shown for HaCaT cell 2 in (I). Pixel counts (x and y axis) in H 
and I, are in µm 

 

 

3.6. Conclusions 

 

K-means directed shading is a method that provides increased objectivity, compared 

to the subjective shading described by Ashton et al [5] and demonstrated in Figure 

3.1. Plotting the averaged spectrum for clusters provides the capacity to justify 

molecular allocations to the cluster, fulfilling the first aim of the chapter. The second 

aim of the chapter, providing a repeatable method that reduced shading subjectivity, 

was provided by combining a hyperspectral method (k-means clustering) with low-

feature Raman. The interpretability of low-feature Raman is maintained, whilst 

gaining repeatability through the publication of the number of clusters and molecular 

assignment justification.  Breaking Raman maps into distinct regions determined by 

unsupervised clustering took advantage of hyperspectral techniques, which discern 

insights from the entire Raman spectrum. Using the clusters to define boundaries 

within the maps for the application of low-feature mapping then retained the 
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interpretability that can be lost through the abstraction of many features into reduced 

dimensions or clusters. The challenge was then to objectively assign the different 

regions to target morphological features, Ashton et al discussed the desire to 

determine suitable shading parameters for each molecule that can then be 

overlapped [5]. Combining the two techniques addressed the second aim of the 

chapter, providing a repeatable and spectrally justifiable method. 

Focusing on the repeatability of Raman map production in this chapter allows the 

approach to be applied to subsequent chapters looking at further challenges and 

studies towards an automated method of cell culture and monitoring. For studies 

aiming to understand a cellular response with greater objectivity and depth before 

developing a cell culture monitoring method, a deeper investigation into the 

molecules being mapped or used as biomarkers for cell behaviour can be carried 

out using PCA. PCA provides an objective method of selecting the molecules to be 

mapped during the verification and assignment of colours (molecules) to clusters. 

The automation of the analysis steps using Python scripts and Jupyter 7.0 Notebook 

[82], [83] makes the analysis accessible for future researchers. Investigating two 

commonly used clustering algorithms (k-means and hierarchical) provided an 

opportunity to verify the clustering by comparison to false-colour shaded maps of the 

same cell and fluorescence microscopy DAPI stained cells. K-means clustering was 

found to not only be quicker but produce clusters that more closely matched the 

false-colour shaded maps.  

The third aim of the chapter was to explore the use of k-means to exclude or select 

Raman map regions. Removing the backgrounds by zero-array substitution allowed 

clearer, more easily interpreted images to be produced (Figure 3.2). Substituting 

zero-arrays also provides a method of removing high Raman scattering regions, 

such as those associated with scaffold materials, in future studies and the next 

chapter. The process of exploring different regions of the Raman map facilities the 

development of tools to quantify different aspects of the cell being mapped. Creating 

a map exclusively of the nucleus, or cell body is carried out technically by creating a 

data feature relating only to that cellular region. Carrying out standard statistical 

analyses of Raman intensity (min, man, averages, standard deviation, etc.) on 
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specific regions within the map is therefore simplified. As the area of a pixel is known 

during Raman mapping, it is easy to determine the area of a cellular feature, say the 

nucleus, through the multiplication of the pixel area by the count of spectra in the 

nucleus data feature. Measuring the area of target map features through the 

multiplication of selected pixels is not available in standard Raman map visualisation 

software, to the best knowledge of the authors. Having established a protocol for 

and demonstrated the application of k-means directed shading using conventional 

two-dimensional Raman mapping, expanding the process for analysis of three-

dimensional VRM can be carried out in Chapter 4, where depth-associated 

challenges will be addressed.  
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Chapter 4 - Raman mapping of single cell scaffolds 

 

 

4.1 Introduction 

 

Confocal Raman analyses and visualises the bulk chemical / molecular composition 

of samples by focusing a laser beneath the sample surface and detecting the Raman 

scattered photons from that location [6], [7]. Applications include determining paint 

layer thickness [43], mapping pharmaceutical drug particle coatings [113], locating 

surface enhanced Raman spectroscopy nanoparticle cellular uptake [114], 

visualising extracellular vesicles in cells [115], microplastic analysis [116], and 

monitoring drug release from polymer capsules in three dimensions [31]. By 

collecting Raman maps (slices) through a sample at regular z-axis intervals (z-

steps), 3D Raman mapping, or volumetric Raman Mapping (VRM) [31], [32], non-

destructively visualises molecular distributions through a sample [6], [7], [32]. 

However, mapping along the Z-axis increases sample thermal damage [31] and 

makes axial morphological verification complex. Conventional Raman mapping 

(across a single XY plane) is commonly verified through comparison to stained [117], 

[118] or labelled [37] microscope images, as was carried out in chapter 3. For VRM, 

Raman mapping along the z-axis increases experimental complexity [6], [7]. 

Complicating factors for VRM include physical properties of light like diffraction [41], 

refraction [7], [40], and a range of practical considerations specific to each Raman 

system. Practical considerations include manufacturing tolerances, system 

calibration, maintenance, and confocality have a greater influence on VRM than 

conventional Raman mapping, resulting in the detection of photons from outside the 

collection area (out-of-focus contributions) [30], [42]. Verification of axial VRM details 

is not currently available within VRM-producing software. Chapter 4 investigates the 

hypothesis that calibrating z-steps for a specific Raman system to counter z-axis 

incurred abortions, will increase confidence in morphological conclusions drawn 
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from VRM. The VRM axial dimensions are verified through comparison to electron 

microscopy images.   

 

4.1.1. Resolution 

The starting point for VRM calibration is understanding image resolution and 

acknowledging the resolution asymmetry between the axial and lateral axes. The 

resolution of an image determines the detail it can visualise, measured in pixels. A 

pixel contains a colour for a given area of the image. In Raman mapping, the colour 

can indicate quantitative data through shade intensity relating to Raman intensity [5], 

or chemometric features such as principal component score [21]. Chemometrics can 

also provide shading to qualitative data such as association to a cluster [37]. Higher-

resolution images contain more pixels per image area, revealing greater detail. 

Higher resolution in Raman mapping, where every pixel relates to a Raman 

spectrum, increases resolution by reducing the distance between collections. 

Increased resolution improves both the molecular and morphological insight 

provided by the map [21], with the image detail increased alongside the reduced 

distance between measurements of any molecular fluctuation [21]. Calculating the 

diffraction-limited Airy disk indicates confocal microscope resolutions (lateral and 

axial), defining the minimum distance between two collections to avoid sampling the 

same area twice (oversampling) [21] for conventional (lateral) Raman mapping. 

Calibration of the laser focus before experiments can produce a laser focus 

approaching the diffraction limit, with high-quality equipment and calibration for 

lateral mapping. 

Resolution is a key factor in Raman mapping, where every pixel is collected 

individually, so increased detail must be balanced against increased data collection 

times. One of the chapters aims is to show the effect of map resolution on the 

capacity of the map to show the size of a physical feature. Figure 4.1 (A-D) shows 

Raman maps produced using k-means clustering of the same HaCaT cell produced 

with different resolutions. The colours relate to sub-cellular regions and the map 

background (black), where the loss in detail can be seen as the resolution reduces. 
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(A) shows the clearest 44×40-pixel map, in (B) the map shown in 17×17-pixel 

resolution requires less memory with a small detrimental effect on map detail. By 

(C), an 8×8-pixel map, the information is provided in 27.5 times fewer pixels, but the 

image detail is significantly diminished and by (D) a 4×4-pixel map of the cell, it is 

difficult to know what the map focus is of without prior knowledge of the image 

subject. By altering the level of detail, resolution affects the apparent sample 

dimensions. To demonstrate this, a 20×20 µm OrmoCompTM direct laser written 

(DLW) block is shown in Figure 4.1 (E-G) mapped using four different pixel sizes, 

with qualitative shading of the construct (yellow) and the background (black). (A) 

shows 0.5×0.5 µm pixels, where the edges of the scaffold appear rounded and 

undefined, explained by the rounded corners observed in the SEM image of a 

comparable block in (D). The apparent dimensions and shape of the block vary due 

to the different resolutions used in (B) 2×2 µm pixels, and (C) 10×10 µm pixels. The 

altered dimensions are clear for constructs of known size, but potentially misleading 

for samples of an unknown size such as the multi-resolution HaCaT cell shown 

above it in the figure. 

 

 
Figure 4.1 – Multi-resolution image of HaCaT cell: A-D) HaCaT cell (dithranol 3 hours) Raman mapped using 
5 k-means clusters and different resolutions. A) 0.8 µm2 pixels (44×40-pixel map), B), 2 µm2 pixels (17×17-pixel 
map), C), 5 µm2 pixels (7×7-pixel map), D) a 10 µm2 pixels (4×4-pixel map). E-G) Mapping 20×20 µm DLW 
printed OrmoCompTM pillar, with SEM print accuracy verification (H). E) 0.5 µm2 pixel map, F) 2 µm2 pixel map, 
& G) 10 µm2 pixels. 
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4.1.2. VRM resolution and distortion 

 

In VRM, the calculation of lateral and axial dimensions for three-dimensional pixels 

(voxels) is similarly indicated using the diffraction limit. The lateral resolution remains 

the same for VRM as conventional Raman mapping for the same laser and objective. 

A different equation is used to calculate the diffraction limit along the optical axis (z-

axis for VRM) than the lateral diffraction limit [40], [41]. The diffraction limit equations 

describe an inherent laser focal asymmetry, where focal depth is larger than focal 

width [119], [120]. Measurement of a confocal Raman lasers depth of focus is carried 

out by measuring the full width half maximum for the depth profile of a silicon wafer, 

plotting the 520 cm-1 spectral peak intensity [40], [41]. Different studies may desire 

oversampling to increase Raman map contrast [121], under sampling to speed 

analysis, or a balance between speed and accuracy. However, determining which is 

occurring during analysis is critical to obtaining the highest accuracy conclusions in 

a study. The axial collection area (CA) dimension will not match the dimensions 

calculated by the diffraction limit formulae if there is a difference between the 

refractive indices of the sample and the immersion media (air, oil, or water) [7], [40], 

[41]. The diffraction limit calculations assume the laser is focused in the immersion 

media, whereas in reality, the CA is distorting from that ideal, immediately once 

focused into the sample (if the sample has a different refractive index from the 

immersion media). Refraction, alongside further aberrations, result in the axial CA 

dept, and corresponding VRM resolution, rarely achieve anything near the diffraction 

limit laser focus of conventional Raman mapping. The influence of refraction and 

out-of-focus contributions increase the collection area axial depth, resulting in the 

collection of photons from a larger volume than expected incentivising increased z-

steps to counter oversampling or a required acknowledgement if oversampling is 

used. Although the diffraction limit does provide a starting point when selecting a z-

step, a benchmark that calibration can distinguish further distortion from when aiming 

to maximise the accuracy when mapping a samples height. 
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The resulting disparity between the actual and expected collection area location and 

volume results in the assignment of Raman scattered photons to the incorrect region 

of a VRM reduces confidence a spectroscopist could place in the assignment of 

coordinates to a Raman signal [7], [40], [41]. Initial research into depth distortion 

focused on depth profiles analysing the thickness of polymer layers [30], [40]–[42] 

and the development of mathematical models to correct results showing shallower 

layers than expected [40], [41]. Depth distortion reveals the sample thickness at 

which confidence that a Raman signal assigned to a position originated within an 

expected volume is lost. VRM collected at axial depths dominated by depth distortion 

are corrupted, resulting in VRM distortion, eroding the morphological insight 

provided by mapping the z-axis. In 2000, the calculation of depth resolution was 

published, quantifying depth distortion [40], [41]. Everall [40], [41] demonstrated the 

distorting effect of depth distortion on VRM and then used refractive index matching 

oil-immersion objectives to avoid the distortion [40], [41]. Depth distortion makes 

determining a samples true axial dimension highly complex, with accurate sub-

surface analysis previously described as impossible with mismatched refractive 

indices [40], [41]. Refractive index matching biological studies is possible using 

phosphate-buffered saline solution, which has a similar refractive index to cells [122], 

[123]. Matching refractive indexes and the mathematical corrections developed for 

correcting depth profiles becomes prohibitively complex for multi-material samples 

used in some pharmacological and bioengineering applications [6], [31], especially 

for potential adopters of VRM. 

 

4.1.3. Hypotheses 

A potential solution is to determine a range and z-steps, calibrated using a method 

suggested for calibrating the false-colour shading of VRM by Baldock et al [6]. 

Baldock et al described constructs DLW to known dimensions, where comparison 

provides a verification method for shading parameters [6], where a hypothesis to be 

tested is; z-steps can be determined that minimise VRM distortions. Constructs are 

distinguished from scaffolds as DLW printed articles unused for cell growth support. 

Another hypothesis to test a chapter aim of developing a calibration method for VRM 
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z-steps; that the z-step calibration can be verified. Verification of the z-steps can be 

tested using scanning electron microscopy of calibration blocks and scaffolds, to 

determine the accuracy of spatial information provided by the VRMs. The z-step that 

most accurately reproduce the known dimensions of the calibration block have then 

been calibrated as the most accurate for the system. Finding the smallest z-step that 

avoids oversampling therefore provides a target resolution for this chapter / project. 

A range of heights will be tested, aiming to determine out-of-focus contaminated 

slices outside the known calibration block, which are then reduced by increasing the 

z-step. Having determined constraints around the upper and lower bounds of the 

collection area which account for diffraction, refraction, and the unique features of 

the system being used, the only remaining factor to be considered is the increased 

heat exposure to the sample, which is discussed in Chapter 6. The findings from the 

calibration block experiments will be used to explore the aims of VRM mapping a 

cell on a scaffold (with the hypothesis that k-means directed shading can be used to 

shade a cell-scaffold VRM, building on the previously applied k-means shading for 

3D Raman [124], [125]). The final aim of the chapter will be to use the calibration 

block findings to design further scaffolds that account for depth distortion.  

 

Chapter aims:  

1) To establish that image resolution relates to the confidence in spatial/morphological 

insights determined using Raman mapping.  

2) Develop a calibration method for volumetric Raman mapping (VRM) to increase the 

confidence researchers have in VRM spatial measurements. 

3) Verify the ability of z-step calibrated VRMs to map a cell on scaffolds prior to further 

application of the technique in subsequent chapters.  

4) Use the VRM calibration findings to develop improved scaffold design for the 

production of Raman maps of cells in three-dimensional morphologies, whilst 

minimising depth related distortions.  
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4.2. Chapter specific methods 

Methods for the VRM, cell culture, and DLM are found in Chapter 2 (materials and 

methods), which contains experimental details of methods employed in multiple 

chapters.  

 

4.2.1. Calibration block design 

Constructs are modelled using the computer-aided design package Solidworks RXTM 

2018 and converted into STL. file format and uploaded to the DeScribeTM software 

that produces a script for the NanoscribeTM 3D printer. Calculating the axial 

diffraction limit (DL) for the system being used provides a starting point when 

investigating the axial resolution for that system, calculated with equation 1, 

  

Equation 1 [126]: 𝐷𝐿 =
4𝑛𝜆

𝑁𝐴2 

 

where n is the ratio of refractive indices between the refractive index of the material 

being analysed 𝑛(𝑚) and immersion media 𝑛(𝑖), λ is the lasers wavelength and NA 

is the objectives numerical aperture. As λ = 532 nm, NA = 1, and n = 1.52/1.33 = 

1.14 when a water immersion objective is used, the diffraction limit is 2.4 µm. As 

described in the introduction, Depth resolution (DR), determines the depth at which 

assigning a coordinate to a Raman signal becomes impractical. DR is calculated 

using equation 2, where Δ is the intended depth of analysis provides a method of 

determining the extent to which the collection areas axial depth has changed in 

response to refraction. The aim of the calibration block is to determine a consistent 

CA depth and corresponding z-step, where distortion of the collection area is 

minimised to minimise out-of-focus contributions being detected. By substituting DR 

for the known value of DL (2.4 µm) and rearranging for Δ, the depth at which DR 

exceeds DL can be determined and used to define the depth at which refraction 

degrades a VRM: 
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Equation 2 [7]: 𝐷𝑅 = ∆ [[
𝑁𝐴2(𝑛2−1)

1−𝑁𝐴2 + 𝑛2]
1/2

−  𝑛] 

 

For an NA = 1 objective, the denominator in equation 2 (1 − 𝑁𝐴2) becomes 1 – 12 = 

0, resulting in a division of zero. Graph 4.1 shows the depth when DR = DL for 

different increments of NA as NA approaches one. The closer NA gets to one, the 

closer the depth DR = DL gets to zero. The calibration block was therefore designed 

to be a similar depth to the diffraction limit for the water immersion objective Where 

NA = 1 and a 532 nm laser. 

 

 
Graph 4.1 - DL vs. DR: The depth when the diffraction limit (DL) equals the depth resolution (DR), plotted against 
numerical apertures approaching one, showing the trend for the depth where DL = DR to approach zero as NA 

tends to one. 

 

4.2.3. Median shading  

Once the calibration block is fabricated, using it to determine a z-step that achieves 

research aim 1 for aim 2 is the next step. A definition of image resolution is the 

capacity of an image to distinguish two points. In this study, an aim is to produce 

images of cells that are resolved along the axial dimension. Producing resolved VRM 
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requires proof that the chosen z-step produces slices independent of each other, 

defined as supplying slices that are not oversampled (providing the same information 

twice). This chapter aims to determine the smallest z-step that avoids oversampling, 

to provide the highest accuracy VRM when compared to SEM measurements, a 

previously applied method of verifying VRM accuracy [127]. A further goal is to 

produce VRM z-steps that do not miss sections of the sample (under sampling), 

distorting the VRM (see Figure 4.3). Median shading is a shading method where 

shading parameters relate to a multiple of the median Raman intensity for the slice. 

As each slice is multiplied by the same multiple, a proportional shading is applied 

through the VRM, whilst favouring slices showing features with intensity distributions 

above the slice mean for that wavenumber.   

A region containing high Raman intensities appears on histograms and violin plots 

as Raman peaks higher along the scale and is also noticeable when comparing the 

difference between the slice mean and median. The difference between the mean 

and median grows in slices with a high-intensity region, as occurs when mapping 

polymer constructs. The difference between the mean and median results from the 

way the two averages are calculated. The mean is the summed Raman intensities 

divided by the number of slice collections. As the mean accounts for all Raman 

intensities, regions of higher intensity (such as the construct) increase the mean. 

The median is the middle value in the range of slice Raman intensities and is 

therefore unaffected by the regions of higher intensity remaining lower in those 

slices. Determining shading parameters such as a lower range to exclude using the 

median, therefore hypothesised as an opportunity to exclude out-of-focus 

contributions. Median shading exclusion of out-of-focus contributions from VRM 

would then facilitate the smallest resolvable distance between VRM slices, 

maximising the resolving power for a given Raman system. 
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Figure 4.2 – Percentage fill vs. Fill intensity: A-C) Varied percentage fill from 81% (A), to 36% (B), and 16% (C), consistent 
colour intensity. D-F) Fill intensity change, starting at a colour intensity of 100% (D), to 70% (E), and 30% (F), with the 
percentage fill kept consistent. G) Graphing the relationship between map mean and median difference (y-axis) and the 
intensity fill (x-axis). H) Graphing the relationship between map mean and median difference (y-axis) and percentage fill (x-
axis). 
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Figure 4.2 demonstrates two considerations when designing a construct to calibrate 

z-steps using median shading. Both considerations relate to factors that influence 

the difference between the slice mean and median. Datasets of 200,000 simulated 

30×30-pixel slices per sample type were produced by looking at two variables, the 

percentage of a slice the scaffold fills (percentage fill) and the intensity difference 

between the scaffold and the background (fill intensity). Figure 4.2 top (A-C) shows 

the difference in fill intensity, where the colour intensity drops from A to C, indicating 

a reduction in fill intensity. The simulated slices for fill intensity kept the percentage 

fill (36%) and background intensity range (1-20) consistent, using a random number 

generator for the background and fill values. The fill values were then increased 

within ranges between 100-200, 200-300, 300-400, and 400-500, to simulate 

incrementally increasing Raman intensities within the scaffold. The mean and 

median of each simulated slice were calculated and averaged. The 200,000 slices 

were chosen as the number at which the averages became consistent to within three 

decimal places when repeated five times. The average for each range was then 

calculated over the five repeats and the difference between the means and medians 

plotted in Figure 4.2 (G), producing a linear trend being produced showing the 

increasing difference between the mean and median as the fill intensity increases 

relative to the background intensity. 

The percentage fill of the slice is the percentage of the slice that the construct or 

sample fills, as demonstrated by Figure 4.2 (D-F), where the fill intensity (colour 

intensity) remains consistent, but the percentage of the slice filled by the construct 

reduces between D and F. Figure 4.2 (H) shows the plot calculated using the same 

method, except keeping the fill intensity consistent and varying the percentage fill at 

10% intervals between 10 and 90%. A similar trend can be seen, although the rate 

is not as consistent, that the mean-median difference increases with the percentage 

fill. Both the percentage fill and the fill intensity affecting the mean-median difference 

make a consistent lateral dimension critical for a calibration block, as this keeps the 

percentage fill consistent (assuming each slice has the same lateral dimensions), 

focusing the difference on the fill intensity.  
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4.3. Results and discussion 

 

4.3.1. Arbitrary z-steps and subjective shading 

Figure 4.3 reveals the non-trivial nature of producing VRM, with scanning electron 

microscope images (A-C) of a book construct showing Lancaster University crest 

book, printed in OrmoCompTM. Figure 4.3 (A) shows the lateral view of the scaffold 

and the (B) shows the construct tipped at a 40° angle. The SEM images verify the 

print quality for the lateral (VRM top view), with some rounding occurring at the edges 

and shallow sections of the print shown in the tipped image. The axial depth of the 

construct can be measured using the SEM of the construct whilst tipped, by 

measuring the distance from the top and bottom of the side of the construct, 1.67 

μm, and dividing by sin(40), equalling 2.59 µm. The measurement is not exact, due 

to the rounding of the top edge of the construct, however, the axial depth of the 

construct being below 5 µm can be asserted with confidence. The drastically 

increased effect of the z-step on apparent sample dimensions is demonstrated by 

comparing the four VRMs produced of the same construct. The book is mapped 

using staggered z-steps 2, 6, & 12 µm, the VRM lateral resolutions shown in Figure 

4.3 (D, F, & H), and the axial views shown in (E, G, &, I). The shading parameters 

used were chosen to produce the best reproduction of the construct lateral 

resolution, which stays relatively consistent compared to the axial dimensions. The 

resulting axial views are drastically changed when shading parameters are chosen 

to keep the lateral view consistent, where improving the axial dimension degrades 

the lateral. 
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Figure 4.3 – Scaffold depth A-I) Maps and VRM of the 
same book construct. SEM lateral view (A), tipped 
view (B), & depth measurement (C). D & E) Lateral and 
axial view of VRM (2 µm z-step), shaded to produce 
the closest lateral reproduction of (A), shading 
parameters used for all construct VRM. F & G) Lateral 
and axial VRM views (6 µm z-step). H & I) Lateral and 
axial VRM views (12 µm z-step). H, D & F) showing 
similar maps, demonstrating consistent lateral 
resolution between the three z-steps, whereas varied 
maps are produced for E, I, & G, highlighting the 
complexity of identifying suitable z-steps for HaCaT 
cells (J) when verification imaging is impractical.      
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It can be seen from Figure 4.3 that the choice of z-step can drastically alter the 

apparent size of a sample at this scale. The altered apparent height of the construct 

is comparable to the increased interface depth previously described by Neil Everall 

[40], [41]. Under-sampling changing the book constructs axial dimension of the 

construct in the same way the lateral dimensions were changed for the cell and 

construct in Figure 4.1. In cases where the size is known, this can be corrected or 

acknowledged in publications. Axial inaccuracy is a greater challenge when studying 

samples of unknown depth, as verifying the axial accuracy (side view) requires the 

sample to be tipped, which is unavailable in typical Raman spectroscopy. The dually 

complex nature of axial distortions previously described by Everall [7], [40], [41] 

where sample interfaces grow, and deeper samples shrink as a result of depth 

distortion. Depth distortion occurs as refraction increases the actual depth of the 

collection area, resulting in it passing through the sample in fewer slices, producing 

a VRM showing a shallower sample than expected [7]. In Figure 4.3, the construct 

is too shallow for depth distortion, with the same axial depth as the calculated 

collection area. Refraction cannot increase the depth of the collection area to deeper 

sections of the sample, instead, refraction pushes it past the sample. An increased 

VRM constructs depth occurs because the collection area is focused onto the 

sample more than once, resulting in more than one slice mapping the construct. The 

slices above the scaffold are contaminated through oversampling, increasing the 

apparent height of the construct. 

 

4.3.2. Depth profiles showing out-of-focus contributions. 

The apparent construct/sample shape or size is not only influenced by over or under-

sampling. In an ideal confocal Raman system, Raman scattered photons originating 

outside the diffraction-limited collection area would be excluded from the analysis. 

Even when the axial depth of the collection area is considered there are several 

other causes of distortion in VRM including, photon migration [30], [42], and 

equipment engineering tolerances such as imperfect confocality. The combination 
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of these effects results in the detection of Raman scattered photons from outside the 

collection area, which will collectively be referred to as out-of-focus contributions, as 

they are detected photons that originated outside the laser focus (collection area). 

Out-of-focus contributions have been reported in conventional Raman mapping [30], 

[42], where the intensity is typically low enough not to distort a conventional Raman 

spectrum/map. For mapping along the z-axis, out-of-focus contributions are more 

significant and must be addressed. 

Figure 4.4 indicates the effect of out-of-focus contributions with three depth profiles 

collected at the same XY coordinate of a 6 µm deep direct laser written construct. 

The plots show the intensity at regular positions along the optical axis (1 µm - green, 

3 µm – blue, and 6 µm - red). An ideal Raman system would only detect Raman 

scattered photons when focused onto the sample, producing a depth profile peak 

relating to the sample axial depth. A researcher setting the axial 0 µm position on 

the slide surface to analyse a sample resting on the slide surface would expect the 

peak to extend from around the 0 µm position. The depth profile peak would persist 

through the sample axial depth, reducing as it rises above the sample (and the 

corresponding Raman signal). Signal detected from positions outside the anticipated 

axial depth would therefore suggest either a larger sample than expected, a poorly 

set zero position, or out-of-focus contributions.  
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Figure 4.4 – Z-step depth profiles: Depth profiles of the same XY position on a 6 µm deep construct using 1 

µm (green), 3 µm (blue), and 6 µm (red) z-steps, where dots = collection depths.   

 

Figure 4.4 shows a rising profile peak from around -10 µm, rising steeply until the 0 

µm position, and dropping steeply from the 6 µm position (depending on the z-step) 

until it reaches the 16 µm position. An additional range equally spaced 10 µm either 

side of the 0-6 µm expected axial depth suggests that the zero position and construct 

height are correct, and the Raman signal detected outside the 0-6 µm range has an 

increased probability of being out-of-focus contributions. The three z-steps produce 

the closest agreement between the -10 to 0 µm and 6 to 16 µm regions, diverging 

once interacting more closely with the construct. The 1 µm z-step plot (green) is the 

smoothest because the difference between the Raman intensities is small. A small 

difference between the highest-intensity collections shows how the same information 

is captured multiple times when the collections are too close. The lines between the 

3 µm z-step collections have a sharper change in gradient between collections than 

the 1 µm z-step, showing an increased difference between collections. The different 

z-step depth profiles have similar Raman intensities at each collection (dots), as the 

same position is analysed.  

The steepest gradient occurs between the collections using a 6 µm z-step, indicating 

that a VRM collected using this z-step would have distinct slices and corresponding 

lowest levels of out-of-focus contributions. However, the disadvantage of increasing 
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the z-step length is the potential under-sampling, where sections of the sample are 

not exposed to the collection area, risking the loss of key features. The choice of z-

step is therefore determined by the goals of the study, balancing accuracy, cost, and 

the use of oversampling to increase signal. If the status of the collection is 

understood and reported. The goal of this study is to maximise axial accuracy, 

defined as collecting the tightest z-steps, whilst avoiding oversampling. The depth 

profiles, therefore, suggest a z-step in the 3-6 µm range would meet these goals, 

with further investigation required in the next sections to determine z-steps that 

maximising the Raman signal without duplicating information through oversampling.  

 

4.3.3. Staggered tube constructs   

Having demonstrated the necessity of calibrating VRM z-steps in section 4.3.2, a 

starting point is to explore z-steps intended to match the collection area depth. The 

diffraction limit provides an initial z-steps, with its conventional link to resolution. A 

guide for the maximum depth for a given construct is identified by calculating the 

depth at which the depth resolution exceeds the axial diffraction limit aiming to 

minimise the influence of depth distortion. To increase the analysis depth without 

tailoring the construct material refractive index, analysis of cells sitting on a pore 

(section 4.3.5). Cells can also be analysed on the scaffold side, or the scaffolds 

designed for shallow axial depth (Chapter 5). By pairing construct height with a z-

step that reproduces the correct construct height, the capacity of median shading to 

exclude out-of-focus contributions can be explored. DLW fabricated constructs were 

mapped using a 0.75 NA air immersion objective with a 532 nm laser, producing a 

diffraction-limited minimum depth of 5.75 µm. A 6 µm z-step (rounding to the nearest 

µm) was used to analyse tube constructs with a maximum height to avoid significant 

depth distortion at 6, 12, and 18 µm heights. Mapping the 6 µm construct in a single 

slice, the 12 µm in two, and the 18 µm in three slices would indicate the median 

shadings capacity to remove out-of-focus contributions or indicate the need for 

increasing z-steps to reduce out-of-focus contributions. 
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In Figure 4.5 – C, distribution plots show the higher Raman intensities measured as 

the laser is focused within the construct produce pixels with an above-median 

Raman intensity for the slice (section 4.2.3.). The pixels with greater intensity than 

the median in slice 3 increase the mean for the slice, causing a gap between the 

averages. As the median is the middle value for the slice in question, the external 

slices (1, 2, and 4), above and below the construct inevitably contain pixels with 

above-median values. As the VRM and construct lateral dimensions remain 

consistent, the smaller difference between averages occurs because the detection 

of Raman scattered photons in external slices are out-of-focus contributions (section 

4.2.3.), which are less predictably distributed over the slice. The difference in Raman 

intensity between contaminated and uncontaminated (external slice) pixels is also 

smaller than between internal and external pixels for slices visualising the construct. 

As the pixel intensities relating to the construct are higher above the median than 

the out-of-focus contributions, applying shading parameters based on the median 

discriminates the external slices. 



91 
 

 
Figure 4.5 – 6 µm Deep tube: A & B) The side (A) and top (B) views of a VRM of a 6 µm deep OrmoCompTM 
construct produced using a 6 µm z-step. Violin plots (C) show the Raman intensity (y) against the intensity 
frequency (x), with the slice mean (green) and median (blue) directly above their corresponding z-stack slice (D). 
Slice 3 (D) is isolated when intensities below 5 × median for each slice is applied, producing the expected lateral 
10 µm inside diameter (ID) - 20 µm outside diameter (OD) and axial (6 µm) dimensions of the tube. Pixel counts 

(x and y axis) in D, are in µm 
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Figure 4.5 shows the side (A) and top (B) views of the WiRETM VRM, the combination 

of matching z-step and construct depth producing VRM dimensions that appear to 

closely match the expected construct dimensions. Analysis of the individual slices 

provides the opportunity to calculate the exact sample cross-sectional area by 

multiplying the number of pixels representing the sample by the area of each pixel. 

steps that avoid out-of-focus contributions (Figure 4.5 - D) show allow the tube 

thickness to be estimated when the z-steps are large enough to avoid out-of-focus 

contributions. By including intensities above 5 times the median, the third slice 

showed a ring cross-section of the tube between 3-7 pixels (each 1 µm2), where the 

outer wall of the tube was designed with a 5 µm larger radius than the inner wall. A 

small amount of contamination in slice 2 indicates that the z-step might need to be 

slightly larger to exclude all out-of-focus contributions. Showing that a 6 µm construct 

(with measurable dimensions) can be isolated in a single slice using 6 µm z-steps 

provides evidence that the method of calculating diffraction and refractive distortions 

can increase the axial accuracy of VRM. Validating VRM z-steps also increases the 

strength of conclusions drawn from VRM analysing the morphology of larger 

biological samples where the optical properties allow deeper analysis, but the 

morphological dimensions cannot be checked as easily. Further evidence is 

provided by visualising any distortion incurred when mapping deeper into a sample 

depth.  

 

 



93 
 

 
Figure 4.6 – 12 µm Deep tube: A and B) The side (A) and top (B) view of a 12 µm high OrmoCompTM tube 
construct mapped using 6 µm z-steps. Shading parameters for (A) and (B) determined as previously by ensuring 
the lateral dimensions correlated with the expected dimensions aiming for a 5 µm wall thickness in (B). 
Distribution plots (C) show violin plots, with the Raman intensity (y) against the intensity frequency (x),  the slice 
mean (green) and median (blue) above their corresponding z-stack slice in (D). Slices 4 and 5 were shaded 
using a 2.3 × median shading parameter (D) to produce the nearest lateral (10 µm ID & 20 µm OD) and axial 12 
µm, with the shading range shown in C as a yellow bar. Pixel counts (x and y axis) in D, are in µm 
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Analysis of the 12 μm construct (Figure 4.6 – C & D) highlighted two slices (4 and 

5), which had the greatest slice mean-median difference. Two slices excluded pixels 

below 2.3 times the median, with some contamination above and below the 

construct. A 2-3 μm difference in tube radius may have resulted from the tube bulging 

around the centre, the VRM (A-B) shows a bulge in the lateral VRM (A), although 

microscopy verification is required for verification. To determine if the method works 

for the 6-18 µm range an 18 μm construct was printed and mapped in WiRETM 3D 

Volume Viewer (Figure 4.7 – A & B). The difference between the means and 

medians on the violin plot (B) indicated the fifth, sixth, and seventh slices, with each 

slice representing the 6 μm below it. The difference between the means and medians 

was not as clearly distinct as in Figures 4.5 and 4.6, possibly indicating the approach 

of the VRM depth limit for this refractive index difference, as predicted when the 

maximum height was set at 18 µm. Pixels with an intensity above 1.8 times the 

median indicated three slices (D). Slice 6 shows a 2-4 μm larger radius than slices 

5 and 7, and contamination above and below the construct. Basing the z-step (6 μm) 

on the calculation of the axial diffraction limit provided a6method of isolating 1, 2, 

and 3 slices for the 6, 12, and 18 μm high tube construct respectively, within a 

maximum range indicated by depth resolution. The disparity between lateral 

dimensions that increased with depth may have resulted in a deviation from the 

construct design during printing, or a potential limitation of the system used for VRM 

of deeper, complex structures, reinforcing the necessity for a microscopy-verified 

method of calibrating Raman systems for VRM. The ability to link the number of 

slices, with corresponding z-steps, indicates that the first hypothesis is correct, that 

z-steps can be identified to minimise depth distortion (within a range), justifying 

further investigation. 
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Figure 4.7 – 18 µm Deep tube: Figure 4.7: The side (A) and top (B) views of a VRM of an 18 µm high tube 
construct produced using 6 µm z-steps. Violin plots (C) show the Raman intensity (y) against the intensity 
frequency (x),  the slice mean (green) and median (blue) above their corresponding z-stack slice in (D). Slices 
5-7 were shaded using a 1.8 × median shading parameter (D) to produce the nearest lateral (10 µm ID & 20 µm 
OD) and axial 18 µm, with the shading range shown in C as a yellow bar. Pixel counts (x and y axis) in D, are in 
µm 
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4.3.4. VRM z-step calibration 

The previous section (4.3.3) demonstrated the capacity of a 0.75 NA objective and 

532 nm laser to map three different construct heights. For a system to analyse cell-

scaffold complexes, the objective must be a water immersion objective for the cell to 

stay hydrated. The benchmark set in the previous section is next developed using 

square pillar constructs of specific dimensions for testing z-steps. Pillars are square 

to allow lateral accuracy to be easily determined. In section 4.3.3, limited 

contamination was observed, with the correct number of slices, and the correct 

distance apart, isolated for the different height constructs. Differences in the 12 and 

18 µm high tube diameter in different slices were observed, incentivising the use of 

scanning electron microscopy to verify the construct dimensions in the next section 

of the experiment. The experiment was carried out over two stages. The first proof-

of-concept stage made sure that the correct number of slices could be isolated whilst 

retaining the lateral accuracy by comparing the slice of a 20×20×3 µm construct to 

measurements made using scanning electron microscopy in Figure 4.8. The second 

repeated experiment used constructs with a 15×15 µm lateral dimension and 

staggered axial depth, verifying the inability of VRM to visualise features smaller than 

the CA accurately.  
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Figure 4.8 – SEM verification of calibration: A) SEM of a 20×20×3 calibration block tipped 40°, measuring the 
distance between the top and bottom edge of the block side (1.938 µm) to calculate block depth (3.015 µm). 
Block lateral (B), measured with X (width) at 19.071 µm and Y (height) 18.375 µm; approximately 1-2 µm smaller 
than designed. Corner rounding is seen in (A) and (B). C-E) All use a 1 µm2 lateral pixels (pixel count along 
axes). C) VRM z-stack (2 µm z-steps), shaded to 12 × median D) VRM z-stack (3 µm z-steps) with 13.5 × median 
shading. E) VRM z-stack (6 µm z-step), failing to isolate a single slice. Pixel counts (x and y axis) in C-E, are in 
µm 
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A 20×20×3 μm pillar was used for comparison to scanning electron microscopy 

(SEM) images to verify the true dimensions of the construct. Figure 4.8 (B) shows 

the X and Y dimensions of the pillar are 20×20 μm. Two corners have become 

rounded through shrinkage. The height of the pillar was determined by tipping the 

scaffold 40 degrees and measuring the distance between the construct observable 

side top and bottom corners (when observed from above), shown in Figure 4.9 (A). 

Trigonometry then determined the height of the construct (z-dimension) was 3.015 

μm, using the method described in section 4.3.1. In Figure 4.8 (C-E), the slices for 

the different z-steps used, 2, 4, and 6 μm are shown, with the multiple of the median 

used for each slice and the z-step used highlighted. In alignment with the previous 

section, the 4 μm z-step produces the closest agreement with the measured 

dimensions. The 4 μm distance between slices is within 1 μm of the measured 

construct height. The rounded corners and edges are shown in the SEM image 

distorting the edges of the construct. The SEM provides the second hypothesis, that 

VRM z-steps can be verified, providing information such as showing the reduced 

thickness at the edges of the constructs, which may produce missing pixels.  

 

 

  



99 
 

 

 
 

 

Figure 4.9 – Calibration block repeatability: To determine 
the capacity of VRM to resolve thin sections, a range of z-
steps were used to map blocks of 1 (A), 2 (B), and 3 µm (C) 
depth. 1 µm2 pixels were used for the lateral resolution for 
all heights. No z-step options mapped the 1 µm deep 
construct in (A), failing to isolate a single slice in any 
increment between 2 and 5 µm. B) The 2-5 µm range of z-
steps were repeated for the 2 µm pillar, with the 5 µm z-
step isolating slice 1, more than twice the actual height of 
the block. The 3 µm pillar in (C) was mapped using z-steps 
from 3 to 6 µm, isolating slice 1 using a 4 µm z-step. A pixel 
is missing, located in the blocks bottom right corner, 
potentially resulting from the rounding seen in SEM 
images (sections 4.1, 4.3.1, and 4.3.2). The capacity of this 
depth block to produce the correct lateral dimensions 
shows VRMs capacity to map samples using larger z-steps 
than the sample (as shown in section 4.1). The use of the 
calibration block therefore provides evidence towards the 
choice of z-step for deeper analysis of samples with optical 
properties suitable for deeper analysis (such as cells and 
other biological samples), by providing a known lateral 
dimension for map verification. Whilst also showing that 
limitation of the VRM to resolve shallow features (relative 
to the CA axial depth). Pixel counts (C-E), are in µm 
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The next stage used constructs with 15×15 μm lateral dimension, looking at 

constructs of different heights. The focus of the analysis was the repeatability of 

determining the z-steps and ensuring features shallower than the calculated 

collection area depth could not be isolated. Constructs deeper than 3 µm were not 

mapped, as the increased depth would result in depth distortion, which was outside 

the scope of the experiment. Of the 1 and 2 µm pillar z-steps, only the 5 µm z-step 

isolated a single slice showing the correct lateral dimensions (Figure 4.9 B). The 

constructs that were shallower than the collection area axial depth are difficult to 

isolate because once the z-step is big enough for the slices to be distinguishable, 

there is not enough material interacting with the collection area to produce significant 

Raman scattering. The 5 µm z-step maintaining the correct dimensions for the 2 µm 

pillar fits with this theory, as the z-step is large enough to distinguish slices, with less 

than ten pixels missing from the high-intensity slice and contaminating the external 

slice. A single slice showing the correct lateral resolution was isolated using 4 µm 

for the 3 µm pillar.  One pixel is missing from the high-intensity slice, incentivising 

the use of scanning electron microscopy to verify the construct dimensions and 

surface finish, as suggested in section 4.3.1. 

 

4.3.5. K-means directed shading of a cell-scaffold. 

Section 4.3.4 produced a calibrated z-step, using staggered pillars to determine a z-

step range of 3-5 μm, potentially fluctuating in response to laser alignment and power 

variation on different days. The next chapter aim (3) could therefore be addressed, 

whether the calibrated z-steps could be applied to the focus of the study, single cells 

and single cells on scaffolds. A 5 μm z-step was used when analysing a cell attached 

to the surface of a porous scaffold comparable to the porous construct in Baldock et 

al [6] (Figure 4.10) to produce the typical collection area depth.  

If the map subject is a cell, water-polymer refraction index mismatch-induced depth 

distortion can be avoided if the cell is above or next to the scaffold. In Figure 4.10, 

the cell sits on a deep scaffold, in a pore, meaning that the depth distortion occurs 

below the cell, with only a thin beam supporting the cell (Figure 4.10). Mapping a cell 
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and scaffold together requires the shading of multiple molecules simultaneously, 

incentivising the application of the k-means-directed shading to shade 2D Raman 

maps in Chapter 3. The production of this VRM shows deeper constructs can be 

used as scaffolds, as long as the cell being mapped has attached to the side or top 

of the construct, where spectral contamination and depth distortion will be avoided. 

It also verifies the capacity of calibrated z-steps to map cells and scaffolds, the third 

aim of this chapter. The production of a VRM of a cell on a scaffold also confirms 

that calibrated z-steps can be used for cell-scaffold mapping, meeting the goal 

outlined in chapter aim 3. 

 

 
Figure 4.10 – HaCaT cell & porous scaffold: A) Microscope image of HaCaT cell on porous scaffold. B) Top 
view of a HaCaT cell on a porous scaffold, mapped using 5 µm z-steps and 1 µm2 lateral pixels. The same VRM 
is shown in (C), showing the side view, and (D) and angled view, with the same shading parameters used for 
(A), (B), and (C). E) The individual VRM slices relating to the cell (slices collected above the cell discarded). 
Shading ranges in E for proteins 1330-1350 cm-1 (green), and nucleic acids 775-790 cm-1 (blue), are shown to 
the right of the feature. The colour relating to the Raman scattering intensity range within the highlighted region, 
effectively scaling the shading to the region associated with the biomolecule; proteins showing the cell body and 
nucleic acids the probable nucleus location. OrmocompTM 1705-1750 cm-1 is shaded yellow, with no shading 
range, as the scaffold location is a qualitative question for this study (present, or not). 

 

Figure 4.10 compares a WiRETM VRM and k-means directed shading of cell-scaffold 

complex (Chapter 3) produced using z-steps determined using the calibration blocks 

(5 μm). The elongated cell morphology can be seen in a simple microscope image 
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in Figure 4.10 (A), with the VRM providing additional perspective with depth in Figure 

4.10 (B). In Figure 4.10 (C), the cell is supported by the shape of the scaffold, with a 

beam crossing the pore underneath the cell. The cell position encourages a three-

dimensional morphology, with the sides of the pore supporting the cell. In the slices 

of the VRM (Figure 4.10 - D), starting at the lowest on the left, the scaffold 

surrounding the cell at the lowest point. In the second slice, the top of the scaffold, 

with a lower paler shade of the yellow colour linked to the OrmoCompTM reveals a 

smaller concentration of the material within the analysed voxel (collection area). 

Removal of background and scaffold spectra was unnecessary as the height of the 

scaffold avoided spectral contamination from the slide surface. 

The value of directing the shading with k-means clustering is highlighted in Figure 

4.10 by the difference in nucleus area between the WiRETM-produced (Figure 4.10 - 

B-D) and k-means-directed shading of the z-stack slices (Figure 4.10 - E). Being 

able to observe the individual slices provides a more precise view of how the nucleus 

and cell body change over distances (z-steps) through the cell-scaffold depth. 

Previous applications of z-stacking shaded with k-means [124], [125] were built upon 

by providing spectral justification of maps combining the advantages of univariate 

and cluster shading. The WiRETM-produced VRM indicates the nucleus position, but 

the k-means directed shading (E) indicates the nucleus sits lower in the cell than the 

WiRETM-produced map suggests. The nucleus can be seen to match the morphology 

of the cell body, which in turn is directed by the pore shape. The cell body is a similar 

size in the maps produced using the different methods, resulting from researcher 

judgment of the cell body boundaries. It is therefore recommended that shading 

using WiRETM (or similar software) be accompanied by some clustering if specific 

conclusions about the size of the nucleus or cell body are to be drawn. 
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4.3.6. Mapping a cell on a porous cage scaffold 

A wide range of single-cell Raman spectroscopy studies will never need to analyse 

a greater depth than the cell, as it is a single cell. The mapping method outlined in 

section 4.3.5 is therefore sufficient for many single-cell studies. However, 

experiments looking to monitor the cellular response to a bioengineered construct 

may find the visualisation of the cell invading the construct surface useful. The 

question of how such a study could use DLW and single-cell analysis under the 

optical conditions outlined in this chapter should therefore be addressed. As 

calculated in section 4.3.4, the maximum depth of analysis for the water-immersed 

OrmoCompTM that can be mapped in three dimensions before depth distortion 

lowers the confidence in the positional accuracy of the spectral measurement is 

between 3 and 5 μm. Section 4.3.5 showed that a cell on top of a scaffold could be 

mapped using VRM, as the depth distortion occurs below the cell (in situations where 

deeper sections of the scaffold are not the focus of the research). Figure 4.11 shows 

a simple, novel, solution. By designing a scaffold created from beams that are at an 

angle (angled beams), the depth of the scaffold is increased, whilst the depth of the 

material remains within a suitable range to avoid depth distortion for this system.  

Figure 4.11 (A) shows the white light microscopy image of HaCaT cells attached to 

a hexagonal scaffold designed to form a cage from beams angled (angled beams) 

to meet at a point in the centre of the hexagon, forming pores on each side of the 

hexagon. The red square in Figure 4.11 (A) is the mapping area for a VRM, where 

the z-stack through the cell-scaffold complex, showing the constituent slices in their 

relative positions through the VRM is shown in Figure 4.11 (B). A reduced region of 

the cell-scaffold complex is analysed in Figure 4.11 (B), reducing the analysed area 

provides a method of speeding collection, whilst retaining the maximum 

morphological information. There are two main advantages of speeding the 

collection time by mapping a region through the centre of the cell. The first is that 

the collection of VRM when analysing living cells may become possible if the 

collection time is reduced, as cell movement currently makes live-cell VRM unlikely. 

A reduced collection time is the other advantage, as angled beams (such as the 
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ones used in the cage scaffold) diminish interpolation, especially when z-steps are 

increased to match the collection area depth to avoid oversampling. 

 

 
Figure 4.11 – Renishaw WiRETM VRM and slices of cell-scaffold: A) WiRETM VRM of a similar cage scaffold, 
shaded to the 1705-1757 cm-1 OrmoCompTM region and shaded yellow, B) Slices 0 –4 of cell-scaffold 3 VRM, 
placed in z-stack, C) Analysed region of cell-scaffold 3 & D) WiRETM VRM of cell-scaffold 3, showing proteins in 

green (1330-1350 cm-1) and OrmoCompTM in yellow (1705-1757 cm-1). 

 

As VRMs produced in WiRETM is not quantitative, a solution is to increase the 

number of slices, reducing the z-step and then excluding any inappropriate slices if 

a z-stack is produced. The additional slices increase the collection time, therefore 

incentivising a method to produce meaningful information with a reduced analysis 
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volume. The z-stack slices (figure 4.11 B) had their backgrounds removed and were 

shaded using k-means directed shading. The k-means associated molecules with 

the cell body (green) and nucleus (blue) using 1330-1350 cm-1 and 775-790 cm-1 

regions of the spectrum respectively based. The colour bars at the side of the z-

stack indicate the cluster Raman intensity range, relating to the It has previously 

been shown that nuclear elasticity affects the capacity of cells to migrate through 

pores [53]. The nucleic acid region of the map is primarily in the top slice, showing 

that the more elastic cytoplasm progresses through the pore. It cannot be said with 

100% certainty in which direction the cell is travelling. However, as the cell has 

landed on top of the scaffold, that Figure 4.11 (B) probably shows the nucleus as 

being the last part of the cell to move through the pore when the z-stack is inspected, 

as was the case for Greiner et al [53]. 

Figure 4.11 (C) shows the cage scaffold in isolation, the simplified map, and showing 

the consistent beam thickness without the cell blocking or distracting the view. To 

avoid depth distortion in the scaffold, the cells, which have a matching refractive 

index to the phosphate-buffered saline (PBS) immersion media, allow the cells to be 

mapped the full scaffold depth. Figure 4.11 (D) shows an intuitive WiRETM-produced 

version of the VRM from Figure 4.11 (B). The cell is shown in green, using the 1330-

1350 cm-1 protein intensity. The cell and scaffold were made visible using WiRETM 

transparency settings to remove lower-intensity regions, based on the expected size 

of the cell in relation to the scaffold/scaffold pore. The cell is seen travelling through 

the pore, as would be expected looking at Figure 4.11 (B). A big difference is the 

poor visualisation of the nucleus, with the cell densely packed and through the pore. 

Choosing transparency and opaqueness settings to visualise the cell body from the 

scaffold OrmoCompTM (1715-1750 cm-1) yellow and the nucleic acids (775-790 cm-

1) blue produced only unsatisfactory results.  

As a proof-of-concept study, the cage was designed with a 25 μm radius hexagon, 

with a 10 mm deep base, to ensure the structure remained stable whilst the capacity 

of angled beams to avoid depth distortion was established; for a Raman 

spectroscope using a 532 nm laser, a NA=1 objective, and PBS immersion to map 

through 25 μm of cell and scaffold. Demonstrated in Figure 4.11 as providing a more 
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than 6× improvement on the previous 3 μm scaffold depth limit. The clear limitation 

of the deeper base is depth distortion in the base, which is not the focus of this study 

(like the deeper sections of the porous scaffold in section 4.3.5), but the aim will be 

to avoid this distortion also. Design refinements for the next chapter will include 

producing larger cages, with shallower bases that avoid depth distortion. Another 

development for the next phase of the project will be varied pore sizes. If the radius 

of the outer ring is kept consistent, the size of the pores around the edge of the 

scaffold can be altered by varying the number of beams, potentially stimulating the 

cells cultured on the scaffold. An aim for the next chapter would be to establish 

whether Raman spectroscopy could detect molecular changes resulting from any 

altered cellular response to the cell and to determine whether such an approach is 

suitable for monitoring cells on bioengineered constructs. 

 

 

4.4. Conclusions  

 

Using Raman spectroscopy to map molecules through three-dimensional spaces 

(VRM) takes advantage of the aqueous and non-destructive capabilities provided by 

detecting Raman scattering. Humans visualise the world in three dimensions and 

providing researchers with a three-dimensional map not only provides greater 

context to a map (the fore and backgrounds) but an easier image to interpret, 

understand, and communicate to non-experts. The advantages supplied by VRM 

have led to its increased application to biological studies, without a thorough 

consideration of previous research developed for the analysis of materials [7], [30], 

[40]–[42].  

The first aim of the chapter was to explore the capacity of a map to show the size of 

an object and explore how resolution affects the accuracy of any conclusion drawn 

from an image. Figure 4.1 showed how the dimensions of a HaCaT cell and DLW 

printed construct were altered when the lateral resolution. Similarly, the depth of a 
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book scaffold was altered in Figure 4.3, when the lateral map typically used to verify 

shading parameters, remained consistent. 

Experiments highlighted a contradiction, where the desire to optimise accuracy 

through the tightest possible distancing of z-steps has led to oversampling. In section 

4.3.5 it was shown that z-steps larger than the minimum (z-steps of 3-5 µm), 

provided comparable information whilst lowering the number of slices collected, 

reducing collection time. The hypothesis stating that z-steps can be identified that 

minimise VRM distortion was tested in section 4.3.3, showing different depths of tube 

constructs. The tube constructs (Figures 4.5 - 4.7) showed that out-of-focus 

contributions can be minimised when z-steps correspond to the collection area 

depth.  

The second aim of the chapter was to develop a method of calibrating z-steps to 

minimise distortions in VRM, relating to the hypothesis raised in the introduction; 

calibration of z-steps can be verified. The hypothesis was shown to be true in Figure 

4.8, with SEM used to check the accuracy of the print and effectiveness of the 

calibration. The experimentally determined z-step range of 3-6 µm was shown to be 

larger than the diffraction-limited optimum of 2.4 µm, with contamination of slices 

above and below the expected range of the construct. Contamination of slices and 

ambiguity as to the true dimensions of the constructs incentivised an experiment to 

determine z-steps for the specific Raman system being used, verified against 

scanning electron microscopy images. 

Having verified VRM z-steps using SEM, which provided nanometre resolution in 

section 4.3.4, Figure 4.10 achieved the third aim of the chapter, using calibrated z-

steps to map a cell on a scaffold. Figure 4.10 shows a cell on a porous scaffold 

inspired by a conventional Raman map by Baldock et al [6]. Collecting a VRM of a 

cell on a scaffold also provided an opportunity to test the hypothesis that k-means-

directed shading can be adapted for VRM. The findings from section 4.3.4 inform 

subsequent scaffold design, completing the fourth aim of the chapter for greater 

depth scaffolds with the design and testing of cage scaffolds in Figure 4.11. 

Comparison of the slices to the WiRETM VRM demonstrated the value of both 
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methods and their presentation together. The WiRETM-produced VRM provides an 

intuitive image with greater visual context and the slice provides greater 

morphological accuracy and objectivity. Observing changes in cell morphology using 

the calibrated z-step method justifies Chapter 5 exploring the relationship between 

scaffold design and cell morphology on the molecular composition of the cells. 
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Chapter 5 – Raman spectroscopy of cells on varied 

scaffolds 

 

 

5.1. Introduction 

 

Raman spectroscopy is increasingly being used for monitoring cellular responses to 

the millions of bioengineered products that extend and enhance lives worldwide 

[128]–[131]. Joint replacements and immunologically matched transplant organs 

[132]–[134] require 3D cell culture to match the in vivo environment. Raman 

spectroscopy has previous monitoring applications for tissue engineering including 

skin [18], [135], cartilage [136], cells [137], and the extracellular matrix [138]. The 

limitations of 2D cell culture [139]–[141] incentivise an investigation of the capacity 

of Raman spectroscopy to distinguish cells cultured on different dimension 

substrates. By exploring the capacity of Raman spectroscopy to distinguish 

substrate geometries, the findings can inform studies monitoring bioengineered 

constructs such as bone [142], skin [143]–[145], cartilage [146]–[148], and others 

[135], [149]–[151]. A key advantage of Raman spectroscopy is the capacity to link 

machine learning classification with 3D mapping [152], [153], a benefit previously 

unexploited in single cell analysis. PCA and VRM/3D Raman have previously been 

shown as complementary [84], [154], [155], no previous study monitoring cells have 

linked VRM with machine learning classification of Raman spectra. The VRM method 

developed over the previous two chapters to visualise cellular morphology will 

therefore be presented alongside machine learning algorithms, providing 

complementary analysis to visualise morphology alongside corresponding 

substrate-influenced molecular alterations.  

Having found that scaffolds designed with angled beams avoid depth distortion in 

Chapter 4, with the increased scaffold depth making more intricate designs available, 

an experiment was designed to take advantage of the more complex scaffolds. The 
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cages formed by the angled beams (cage scaffolds) provide varied pore dimensions, 

providing different support to the simple scaffolds. The same analysis, VRM 

visualisation of cell morphology, PCA data exploration, and supervised learning 

analysis will be carried out to test the repeatability of the method. A final analysis will 

then explore the ability of Raman spectroscopy to distinguish cells grown on different 

3D morphologies. The cage design provides an opportunity to test the hypothesis 

that pore dimension influences cell morphology and molecular composition, with the 

experiment, also repeated with a different pore design (small, medium, and large 

square pores). 

Having optimised k-means directed shading in Chapter 3 and z-step calibration in 

Chapter 4 for single-cell analysis, one of the aims of this chapter is to determine the 

adaptability of methods to different scaffold types. To investigate the ability of Raman 

spectroscopy to distinguish cells cultured on flat 2D surfaces from those supported 

in a 3D morphology, the direct laser writing (DLW) method described in Chapter 2 

provides cell scale constructs (scaffolds). The scaffold designs will initially be simple, 

simple being defined as straight-edged and having an axial depth greater than the 

cell. Once cells have attached to the side of the scaffolds, maintaining a 3D 

morphology, k-means-directed shading of VRM z-stacks can be carried out to ensure 

the cell has formed a three-dimensional form. The spectra from the volume maps 

can then be used in datasets aimed at distinguishing the 3D cells from those cultured 

on a flat surface. Due to the greater cost in time and complexity of the k-means 

directed shading of z-stacks, a secondary area of investigation for this chapter is 

comparing them to WiRETM-produced VRM. The two VRM types will be used to map 

the different scaffold types and a key research question asking how well the z-step 

calibrated WiRETM VRM compares to k-means directed shading when applied to 

different scaffold types. 

Once the capability of VRM to visualise differences between cells grown on and off 

scaffolds has been determined, a dataset can be collected of cells on and off 

scaffolds. Collecting the dataset allows the research question; can Raman 

spectroscopy distinguish cells with a three-dimensional morphology from cells 

cultured on a flat surface? Providing evidence towards Raman spectroscopy being 
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used to monitor tissue engineering and the development of cells grown on the three-

dimensional scaffolds used in bioengineered constructs [6], [156]–[158]. The 

analysis will be carried out over two stages, to explore whether principal component 

analysis can identify molecular changes between the two groups. PCA provides 

unsupervised and relatively interpretable results, which provide the greater biological 

understanding required to describe the process being monitored. The initial 

investigation of the dataset being unsupervised increases confidence in 

relationships found as potential user biases are avoided before moving on to labelled 

data. The next stage of the analysis will focus on the aim of determining whether 

supervised learning can repeatedly distinguish cells grown on different scaffolds. 

The repeatability of the supervised learning section must be established as strongly 

as possible at this stage of development, as any approach aiming to monitor 

anything over time must provide stable classifications. Assessing the classification 

confidence for the supervised learning techniques is therefore a key research aim 

for this chapter. The approaches used to assess the repeatability of the analysis will 

look at three factors.  

1. The first is repeatability over different experiments, explored through the 

analysis of different scaffold types throughout the chapter, the ability to 

separate cells over consistent situations, such as on and off scaffolds, or both 

on scaffolds, increasing the confidence that similar results are producible on 

different days and using different equipment. 

2. The second aspect of repeatability tested is repeatability within a single 

dataset, aiming to show that an ideal subset of test samples is not chosen by 

random using 5-fold cross-validation and learning curves. 

3. The third aspect of repeatability is testing using different algorithms, testing 

the performance of three different algorithms to establish consistent 

classification using different algorithms. 

 

 

 



112 
 

Hypotheses: 

1) VRM be used to visualise scaffold-influenced changes in HaCaT cell 

morphology. 

2) Dimension reduction can distinguish Raman spectra collected from cells on 

two- and three-dimensional substrates. 

3) Machine learning algorithms can be trained to classify cells grown on two- 

and three-dimensional substrates. 

 

 

5.2. Methods and materials 

 

K-means directed shading (method described in Chapters 3 and 4) was used to 

shade slices where descried. A standardised colouring convention through the 

chapter to match previous chapters and references [6], selected for their link to a 

specific molecule. Standardised colouring through the chapter therefore relates 

yellow to OrmoCompTM (1715-1750 cm-1) for all scaffold material (all scaffolds being 

DLW printed OrmoCompTM), cell bodies (green) for the 1330-1350 cm-1 protein 

Raman peak, and nucleic acids (775-790 cm-1) blue. Qualitative shading was used 

for the OrmoCompTM scaffold regions, as their position (there vs. not) is a qualitative 

question, with no benefit gained from a quantitative shading range for the research 

questions posed. No shading ranges are provided for the WiRETM-produced VRM, 

as the technique is used for an initial investigation of the map, with k-means directed 

shading of VRM z-stacks applied (and advised for future applications) to thorough 

exploration of Raman maps. All other methods are descried in Chapter 2. 
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5.3. Results and discussion (Part 1: Simple scaffolds) 

 

To establish the capacity of Raman spectroscopy to monitor bioengineered 

constructs, a proof-of-concept study will first establish the influence of environment 

geometry on the cells. The VRM method outlined in Chapter 4 and the shading 

method described in Chapter 3 will be applied to visualise any morphological 

difference resulting from the geometry of the culture substrate. Gargotti et al 

compared HaCaT cells cultured on two- and three-dimensional membranes to 

explore the difference [159]. The aim was to investigate previous assertions that 3D 

cultures improved viability and reduced toxicity in cell cultures, finding no evidence 

that they were but 3D cultures do provide a method of altering the cell cycle [159]. 

3D cell culture systems influencing the cell cycle [159] reveal potential changes in 

molecular composition that can be detected using Raman spectroscopy [160] to 

distinguish cells grown on two- and three-dimensional structures. Changes in HaCaT 

cell and nucleus morphology have been induced using electrospun scaffolds [161] 

and in primary keratinocytes [162] using varied substrate designs.   

PCA will initially be employed to investigate relatable changes produced through 

DLW-fabricated scaffolds. PCA provides the dual advantages of objectively 

indicating class separation (scaffold vs. flat surface), alongside reducing the 

dimensionality of the data for further analysis. Reducing the dataset dimensions 

provides the advantage of avoiding the collection of a large dataset (thousands or 

hundreds of samples) to avoid model overfitting when testing machine learning 

algorithms to distinguish cells grown on different substrates. The collection of a large 

dataset is outside the timeframe allocated to this chapter. The training of models 

from smaller (tens of samples) datasets justifies the collection of larger datasets in 

future studies, addressing research questions potentially looking at multi-stimuli 

systems. 
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5.3.1. Mapping cell morphology on 3D scaffolds 

The key advantage provided by volumetric Raman mapping over conventional (two-

dimensional) Raman mapping is the increased morphological insight provided by the 

extra dimension. In Figure 5.1, three versions of the same three-dimensional Raman 

map showing a cell grown on a scaffold, are produced in Renishaw WiRETM 

software. Figure 5.1 (A) shows the VRM before parameter alteration, with the 

OrmoCompTM (1715-1750 cm-1) region selected and without parameter alteration 

blocks the other spectral regions, leaving yellow. In (B), the transparency settings 

are used to remove lower intensity regions of the OrmoCompTM from the VRM, 

allowing the proteins (1330-1350 cm-1) to be viewed and shaped in green. Any region 

of the spectrum can be mapped using this method, proteins were selected as the 

next logical step to view the entire cell, due to the protein region 1330-1350 cm-1 

region previously being linked to the cell body [6].  

 

 
Figure 5.1 – Renishaw WiRETM VRM of cell-scaffold 1: Using standardised colouring (see methods): A - 
C) The gradual removal of lower intensity regions of the VRM, allowing the focuses of the image (cell and 
scaffold) observable. Starting by imaging the OrmoCompTM 1715-1750 cm-1 Raman peak (yellow), imaging the 
entire range (A), then removing the lower intensities for the OrmoCompTM, proteins shown in green (1330-1350 
cm-1), and finally using the opaqueness settings to show the nucleic acid (775-790 cm-1) high intensity region 
within the cell (C). 

 

Subcellular features can be highlighted through the use of opaqueness settings, 

applied in Figure 5.1 (C) to highlight in blue prominent nucleic acid (775-790 cm-1) 

regions within the cell; possibly indicating the location of the nucleus. Opaqueness 

settings, therefore, aid the production of more complex maps, making the 
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relationship between the cell, nucleus, and scaffold easier to interpret. However, the 

cell body opaqueness and the obscured nucleus alter their colour intensities, 

stopping robust conclusions from being drawn from the colour shade, and reducing 

Raman mapping advantage.   The nucleus can be presented in a single feature map, 

showing either the nucleic acid intensity throughout the entire cell or on its own by 

removing lower intensity regions with transparency settings.  

No standard or calibration method is enforced (or available) in the WiRETM software. 

Researchers are forced to choose colour intensity, transparency, and opaqueness 

settings based on fluorescence microscopy images, making shading objective and 

impossible to exactly duplicate. In Figure 5.2. C, the individual slices of the VRM 

(Figure 5.2 D) of a cell (white light image – B) that are shaded using the method 

outlined in Chapter 3, where the background and scaffold spectra were removed 

from the analysis. K-means clustering combines different spectral features when 

determining boundaries within the hyperspectral image, increasing the strength of 

the analysis. However, the clustering of different regions within the image results in 

a single shade being used for the entire cluster, removing the varied shade and 

corresponding molecular information.  

K-means directed shading produces images with the morphological precision of k-

means clustering, alongside the molecular insight of low-feature shading. The use 

of z-stacking or looking at the slices individually also avoids transparency and 

opaqueness settings. Slices reveal greater morphological accuracy as pixels are a 

set distance apart. If a systematic approach is taken (see Chapter 3), counting the 

number of pixels is a method of determining the size of a feature, such as a nucleus. 

The z-step (distance between slices) is a more precise way of understanding that 

slices combine the molecular composition of the sample between the slices. 

Interpolation can then be used in 3D Raman mapping software, bridging the gap to 

produce more intuitive images if appropriate. 
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Figure 5.2 – Renishaw WiRETM VRM and slices of cell-scaffold 2: Using standardised colouring (see 
methods), A) WiRETM VRM of cell-scaffold, B) Microscope image of the cell-scaffold, C) Slices 0 – 2 of cell-
scaffold VRM, shading boundaries determined by K-means directed shading, with shading ranges for the nucleic 

acids and proteins enlarged to the right of (A). 

 

Figure 5.2 (A) shows the average spectrum for each cluster, with the 775-790 cm-1 

region indicated with a blue highlight and 1330-1350 cm-1 indicated with the green 

highlight. Providing the average spectrum for the clusters associated with the 

different cellular regions provides a spectral justification for the association. For 

example, the 1330-1350 cm-1 region of the spectrum is slightly higher for the cell 

body (green line), than the nucleus (blue line). Spectral peak in the 1715-1750 cm-1 
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region for the cell body spectrum may indicate some OrmoCompTM contamination of 

the spectra assigned to the cell body. Contamination by a scaffold material could be 

expected when mapping a cell attached to the scaffold. Observing the contamination 

in the averaged spectrum for a map region shows the value of producing the regions 

average spectrum. By seeing the contamination in a spectrum, the contamination is 

detected and removed from future analysis. The cluster associated with the nucleus 

does not have a clearly higher nucleic acid (775-790 cm-1) region, however, when 

the lower baseline of the spectral peak is considered, the area under the spectral 

peak is larger, with lower intensities for other key regions such as the 1420-1470 cm-

1 proteins & lipids region [151]. 

An intuitive assessment of the maps indicates the cell is supported in a three-

dimensional morphology by the scaffolds with a centrally located nucleus. The use 

of WiRETM software to draw these conclusions would therefore be justified for 

applications aiming to determine the general location and morphology of the cell 

body, alongside the approximate position of the nucleus within the cell. However, 

more detailed conclusions are unadvisable when using WiRETM produced VRM, due 

to the inconstant nature of the shading parameters used to remove obscuring lower 

intensity regions (Figure 5.1 A-D) [6]. Colour bars were not included for the WiRETM 

maps, as the shading parameters cannot be added for each colour and the shade 

does not relate to a molecular concentration. Difficulty in accurately associating 

Raman peak and colour intensities is a key Renishaw WiRETM limitation compared 

to k-means-directed shading of VRM slices.  

 

 

5.3.2. Distinguishing cells on and off “simple” scaffolds  

Visualising the cell attached to the side of a simple scaffold using VRM (Figure 5.2) 

showed the 3D morphology of the cell. The 3D dimensions of the VRM give a 

rotatable view of the cell morphology, resulting in a clearer understanding of the cell 

attachment to the scaffold than a conventional Raman map. Having observed the 

cell attachment to the scaffold and the resulting 3D morphology, the question of 
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whether a 3D morphology supported by a scaffold changes the molecular 

composition of the cell. To answer this question, a dataset was collected consisting 

of 5 maps collected from cells attached to scaffold sides (3D) and cells off the 

scaffolds, on the surface of the slide (Off). Raman maps were collected to capture 

spectra from different sections of the cells, to avoid the accidental distinction of 

subcellular regions.  

K-means mapping was used to identify regions of the map associated with the cell 

to avoid the inclusion of spectra associated with the background or the scaffold 

material. The removal of the scaffold material was a key target, to avoid the 

separation of the classes based on OrmoCompTM contamination. Five Raman 

spectra from each map were included. Two spectra were randomly selected using 

the random module in python 3.6 from the subset associated with the cell with k-

means mapping [163]. A third spectrum was an averaged spectrum of the entire 

cellular subset (minus the two previously selected), and the final two were averaged 

spectra from two randomly selected subcellular K-means clusters. The aim of this 

selection method was to maximise the randomness of spectra in each class (the two 

randomly selected spectra and clusters), whilst averaging out random fluctuations 

within any given subset, either relating to the cell or an individual subcellular region.  

 

5.3.3. Unsupervised learning: Data exploration 

VRM provides the capacity to observe the changes in the cell and nuclear 

morphology reported in previous studies [162]. Providing the context of 

morphological insight, such as comparing the spherical cell and nucleus in Figure 

5.1 and the elongated morphology in Figure 5.2. The differences between cells 

cultured into different substrate-influenced morphologies have resulted in altered 

actin filaments and producing elongated nuclei [161]. Changes in the protein regions 

of the Raman spectrum are therefore a target region of the spectrum. Actin is also 

responsible for structures adjusting the nucleus morphology in response to the 

substrate geometry [164]. Nucleic acid regions of the spectrum are also key spectral 

regions, with changed nuclear morphology providing a link between the observable 
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change seen in VRM with altered phenotype, as nuclear morphology is hypothesised 

as influencing genome function [164].  

Chemometric analysis using dimension reduction (PCA) and machine learning 

(section 2.3) provides approaches for the identification of features between classes, 

in the case of Figure 5.3, the classes “3D” cells and cells “Off” the scaffold. The first 

stage of analysis is data exploration, with PCA selected as a technique capable of 

analysing datasets with more features (wavenumbers) than observations (spectra), 

which is the case for this dataset. PCA also provides the advantage of being 

unsupervised, therefore indicating whether class separation is possible without the 

potentially biasing influence of class labels. In Figure 5.3, the scores plots (A, C, & 

F) are shown for PC1, PC2, and PC3, which represent 91% of the variance in the 

dataset, as shown in the explained variance plot (B). The loadings plots for PC1 (D), 

PC2 (E), and PC3 (G) indicate the features (wavenumbers) that are responsible for 

the variance in each principal component. In the loadings plots, the positions (peaks) 

furthest from zero indicate a greater influence on the increased variance.  

In Figure 5.3 (A), PC1 is plotted against PC2, with the cells in a 3D morphology 

indicated in blue and the cells cultured off the scaffolds shown as red. PC1 provides 

the greatest distinction between the two groups, with the 3D morphology cells being 

found predominantly in the negative scores. The loading plot for PC1 (D) indicates 

that both the positive and negative loadings are mainly associated with proteins, 

potentially linked to the changed actin in 3D morphology cells [161], [164]. The large 

positive loading peak at 1606 cm-1 relates to C=O stretching in the amide I (proteins) 

[165], [166]. The negatively loaded peak at 1124 cm-1 is either the C-N bond in 

proteins [167]–[169] or C-C stretching mode in lipids [168], [169]. The negative 1447 

cm-1 loading peak relates to protein and lipid CH2 bending mode [170] and can be 

used as a marker for protein concentration due to CH2 deformation [166]. The 1654 

cm-1 loading peak relating to C=C [169], [171], [172]. PC2 is also highly linked to 

proteins, with the positively loaded peak for PC2 (E), the 1161 cm-1 peak, which is 

in the region for 1158 cm-1 and 1160 cm-1 C-C/C-N stretching proteins [MG5-38]. 

The negatively loaded PC2 peak (1648 cm-1) is with the 1640-1680 cm-1 region C=C 

and amide I absorption [171], or lipid (C-C stretch) [169].  
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Figure 5.3 (C) plots PC1 against PC3, where PC3 is primarily associated with nucleic 

acids, potentially relating to molecular alterations in the nucleus of 3D cells [164]. 

PC3 loading plot (G) has positive peaks at 809, 1509, and 1726 cm-1. The 809 cm-1 

peak is located near the 813 cm-1 nucleic acid peak [110], which can also be an 

indicator of RNA [166]. 1509 cm-1 is linked to DNA [166]. The final peak indicated in 

the positive loadings (1726 cm-1) is assigned to C=O (lipids) [172], the same as in 

Chapter 3. The negatively loaded peaks for PC3 seem associated with proteins, as 

the 1127 cm-1 peak can be linked to the C-N in proteins [167]–[169], or the C-C 

stretching mode in lipids [168], [169] and [169] 1585 cm-1 can relate to amino acids 

[167], [172]–[174]. For this dataset, the principal components associated with the 

greatest amounts of variance within the dataset are primarily linked to the regions 

predicted through literature research [161], [164]. PC1 provides the greater 

distinction, suggesting cellular adaptations predominantly relate to proteins, possibly 

actin directing the morphological response to the substrate in the cell body and 

nucleus.  
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Figure 5.3 - PCA analysis of cells cultured in 3D morphologies supported by 18 µm deep scaffolds: In all 
score plots blue = 5-beamed cage (5BC) and red = cells cultured off the scaffold (Off).  Score plots for PC1 vs. 
PC2 (A), PC1 vs. PC3 (C), & PC1 vs. PC2 vs. PC3 (F). B) The explained variance plot, accumulated variance 
(y-axis) for the number of principal components (x-axis). Loading plots show highly loaded peaks for PC1 (D), 
PC2 (E), and PC3 (G). 
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5.3.4. Supervised learning: Classification 

Data exploration with PCA (section 5.3.2.) showed the Raman spectra collected from 

cells on 3D scaffolds and flat slide surfaces can be separated without the class labels 

influencing the analysis. The reduced dataset allowed for the assessment of 

supervised learning algorithms using learning curves. Learning curves can either be 

used to visualise the effect of a hyperparameter (C, gamma, etc.) by plotting the 

change in a metric (e.g., accuracy, precision, recall, f1-score, etc.) as the 

hyperparameter is varied, with a single dataset size used or see how the metric 

changes in response to changing dataset size. In Figure 5.4, the cross-validated 

metric (f1-score) is calculated as the dataset split (train & validate) is altered to 

determine the ideal split for further analysis. The datasets are incrementally varied 

in size, starting with one sample in the training dataset and adding one until only one 

sample remains in the validation set. The metric, say accuracy, is plotted for the 

model trained at each increment, producing a line with the spread of the metric 

indicated by the plotting of the cross-validation standard deviation. The two lines are 

thus produced, with the standard deviation shown in light shading around the lines 

(see Figure 5.4 A, C, & E). 

The f1-score for the training data lines typically starts high, as it contains all but 1 

sample, it should have ample data to determine which class the remaining sample 

in the test dataset belongs to. Conversely, the validation line should be relatively low 

compared to later models. In an ideal plot, the training data line drops as samples 

are transferred to the verification dataset, where the verification data line rises as 

more samples are added. Lines remaining at a consistent level are said to have 

converged, which is important as convergence indicates the probable best model 

that a dataset is expected to produce. Gaps between the training and verification 

data lines are said to be under-fitted and unrepresentative, with not enough training 

data supplied to demonstrate the model has found a suitable signal to make accurate 

classifications. If the training data line crosses the verification data line, the model is 

said to overfit. Overfitting suggests the model has begun to fit itself using noise, 

reducing its generalisability, and reducing prediction repeatability for the model due 

to low variance. Overfitting is also indicated when the standard deviation of the 
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training data line exceeds the verification line, as one of the cross-validation folds 

has been overfitted, and the researcher has no way of knowing which subset of the 

data has caused the overfitting, it is better to reduce the amount of data, removing 

the risk of overfitting. 

In Figure 5.4, the first two principal components (1 and 2) were selected to train 

algorithms as they represented 83.25% of the explained variance 65.78 % in PC1 

and 17.47% in PC2, including further principal components leading to overfitting. 

Learning curves were produced with 5-fold cross-validation for logistic regression, 

random forest, LDA, and support vector machine (C = 1 and liner kernel selected 

through grid search cross-validation), with underfitting shown in the learning curves 

excluding random forest and decision tree. F1-score was selected as the metric as 

it indicates changes in precision and recall, and as the application does not require 

an optimisation of one or the other, the f1-score provides a metric influenced by both. 

Logistic regression (A), LDA (C), and support vector machine (E) for PCA-reduced 

data. Similar learning curves were produced for the three models, converging in 

towards 80-83% f1-score, with the standard deviation of the cross-validation 

overlapping the verification data line in the 35-37 samples mark, indicating the 

possibility of model over-fitting. As 50 samples were used, the test-train split for 

models was therefore chosen to be 70% training (35 samples) and 30% test. Similar 

learning plots (A, C, & E) were followed by identical confusion matrices were 

produced (B, D, F), producing an f1-score of 79.99%. Slightly better than the 5-fold 

cross-validation scores (76.67% LR, 78.89% LDA, and 76.67%) 
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Figure 5.4 - Learning curves showing the 5-fold cross validation for different test-train splits: Logistic 
regression (A), LDA (C), and SVM with hyperparameters C=1 and a linear kernel (E) models trained on PCA 
reduced data.  Confusion matrices for the logistic regression (B), LDA (D), and SVM (F) trained using the learning 
curve indicated test-train split for cross-validation scores of 76.67% (logistic regression), 78.89% (LDA), and 
76.67% (SVM). 
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5.4. Mapping cell behaviour on cage scaffolds of varying pore size 

 

Section 5.3 determined that Raman spectroscopy can distinguish cells cultured on 

simple 3D scaffolds providing a wall to support a 3D morphology. The disadvantage 

of simple scaffolds is the incapacity of VRM to map the entire scaffold in relation to 

the cell as a result of depth distortion. In Chapter 3, a cage design scaffold was 

mapped using VRM, showing that angled beams provide a method of circumventing 

depth distortion and increasing the range of scaffold designs available. Angled 

beams are especially useful for sample systems involving materials with two or more 

refractive indexes, where refractive index matching immersion media [7] is 

impossible. Angled beam scaffolds are therefore ideal for samples like single HaCaT 

cells cultured on an OrmoCompTM scaffolds. The VRM avoided biological masking 

when a cell migrating through an angled beam (cage) scaffold pore in Chapter 3. By 

combing the findings from section 5.3, changes in cell behaviour and the cage 

scaffold design from Chapter 3, cell response to pore size can be explored. The 

increased insight made available through the analysis of individual slices (Chapters 

3 and 4) can then be applied to objectively visualise the findings.  

 

5.4.1. Initial visualisation of HaCaT cell on 5- and 10- beamed cage 

Using the same data to visualise physical manifestations of altered cell behaviour, 

such as changed morphology, and carry out chemometric analysis is a key 

advantage of VRM. To provide higher resolution (than VRM) images for comparison, 

Figure 5.5 (A-C) provides SEM lateral views of the cages (5, 7, & 10-beamed), 

providing the view that a conventional Raman or microscopy image would provide. 

Figure 5.5 (D-F) provides an angled SEM view of the same cages, each below its 

lateral image above, providing an indication of the DLW prints axial accuracy (for 

comparison to the VRM below). Having confirmed the print accuracy of the more 

delicate cage scaffold designs, SEM conformation of scaffold dimensions is not 

required for future DLW printed scaffold during the project.  
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Figure 5.5 - SEM and Renishaw WiRETM VRM images of cage constructs and cage cell-scaffolds: Using 
standardised colouring (see methods), A-C) SEM images of a 5-beam (A), 7-beam (B), and 10-beam cage (C) 
cage constructs. D-E) Angled SEMs of the 5-beam (D), 7-beam (E), and 10-beam (F) cage constructs. G-I) 
WiRETM VRMs of sections of the 5 (G), 7 (H), and 10-beam (I) cages. J-L) WiRETM VRM of cells on different 
beamed cages. 
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Another key advantage of Raman mapping is the ease with which a single spectral 

feature can be isolated. For example, Figure 5.5 (G-I) shows the VRM of the 

constructs only (cages), allowing the VRMs ability to map the construct to be 

determined (though comparison to the SEM) without the distraction of the biological 

section of the samples obscuring the view. It can be seen through comparison of 

Figure 5.5 A-F to the corresponding ta analytics and contains 100 batches with all 

available process and Raman spectroscopy measurements (~2.5 GB). This data is 

highly suitable for the development of big data analytics, machine learning (ML) or 

artificial intelligent scaffold VRMs (Figure 5.5 G-I) that the angled beams can be 

mapped without depth distortion. The lack of depth distortion with angled beamed 

scaffolds provides confidence going forward when the cell body (green) and nucleus 

(blue) are included in Figure 5.6.  

 

 
Figure 5.6 - Cut Renishaw WiRETM VRM maps of 5- and 10-beam cage cell-scaffolds: Using standardised 
colouring (see methods): In (A-D), axial cutting of a 5-beam construct VRM shows cross-sections through the 
cell-scaffold side from the scaffold rear (A), middle (B & C) and the whole VRM (D). In (E-H) a lateral cut shows 
the cross-sections of cells on a 10-beam cage from the bottom (E). Cells appear between beams through the 
middle cross-sections (F & G), with the entire VRM shown in (H). 
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5.4.2. K-means directed vs. Renishaw WiRETM comparison (5-beamed cage) 

An initial visualisation of the cellular response to the different beam numbers (pore 

size) can be carried out using WiRETM, however, a rigorous analysis requires the 

objective shading of slices. The position of the cells is indicated in Figure 5.7 (J-L), 

where low-feature shading is used to false colour proteins (1330-1350 cm-1) coloured 

green, nucleic acids (775-790 cm-1) blue, and the OrmoCompTM scaffold material 

(1715-1750 cm-1) yellow. The 5-beamed cage (Figure 5.7 – J) allows cells through 

the pore, with limited support for the cells between the beams resulting in an 

apparent elongation of the cell morphology, stretching along the cage beam. In 

Figure 5.7 (K), the 7-beamed cage (with the same diameter base) results in a tighter 

pore. The tighter pores in the 7-beamed cage look to provide the cells with the 

opportunity to spread across the pore and be supported by two beams, typically 

favouring the position between the beams. The 10-beamed cage in Figure 5.7 (L) 

has the tightest pores of the three options. The cells in Figure 5.7 (L) are shown in 

the pores, resting their higher nucleic acid regions (probably associated with the 

nucleus) on top of the pores and in some cases, across the beams. 

The VRM in Figure 5.7 provides an external view of the cells cultured on the cage 

scaffolds. A feature of WiRETM produced VRM is the ability to arbitrarily cut the map 

through a cross-section that provides a more detailed view of internal sections of the 

sample. The axial cross sections in Figure 5.7 (A-D) allow for the conformation that 

cells are only seen when attached to the beams, as opposed to sitting within the 

cage, using the same VRM as Figure 5.7 (J). Different views are provided starting 

with the cross-section showing the rear of the VRM view (A), steadily moving through 

the VRM to visualise more of the sample (B & C), until the entire VRM is shown (D). 

The different views (A-D) confirm the initial conclusion that the cells are exclusively 

seen along the cage beams for the five-beam cage. In Figure 5.7 (E-H), the same 

process is carried out for a 10-beam cage, selected to maximise the contrast in cell 

behaviours. The cross-section is lateral, providing a superior view of the cells resting 

their high nucleic acid (probable nuclei) between the cage beams. The lowest view 

(E) shows the bottom of the cells, with the cross-section moving higher in (F), with 

the blue region (nucleic acids) remaining between the beams. By (G), it can be seen 
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that the cells are resting on top of the beams as well as between them, with the cells 

appearing to coat the cage in (H). The WiRETM produced VRM do provide a faster 

initial map, indicating the general location of the cell in relation to the scaffold. 

 

 

 
Figure 5.7 – Rehishaw WiRETM-produced VRM vs. K-means directed shading of a Z-stack: Using 
standardised colouring (see methods). A 5-beamed cage & cell using a WiRETM-produced VRM in (A-C), with 
an axial cross-section moving through the HaCaT cell and scaffold, showing the whole cell, (A), cell centre (B), 
and rear (C). D-K) the separate slices of the VRM z-stack shaded using k-means directed shading (see Chapters 
3 & 4 for cluster assignment method). Slices start at the top of the VRM stack (D), moving through the VRM at 4 

µm intervals (z-steps) in (E-K), with the entire z-stack shading range in colour bars (right).      
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Figures 5.5 and 5.6 demonstrate the advantages of viewing 3D views of VRMs, 

providing an intuitive overview of the sample. Viewing VRM as constituent slices 

provides the opportunity to apply objectively determined shading parameters 

(Chapter 4). Figures 5.7 & 5.8 compare two VRM in 3D and slice form for a 5-beamed 

cage (Figure 5.7) and a 10-beamed cage (Figure 5.8). The use of 5 and 10-beamed 

cages will be continued from Figure 5.6, as they provide the greatest contrast 

between cages. The shading convention for Figure 5.7 is consistent with the rest of 

the chapter, with the individual slices shaded using k-means directed shading, and 

the WiRETM produced VRM shaded using subjective shading, providing a quick 

overview image. Figure 5.7 shows a single HaCaT cell cultured on a 5-beamed cage, 

with a cell sitting on the connection between the beams, allowing it to form a 

spherical morphology. A-C shows a vertical cross-section moving through the cell, 

showing that the probable location of the nucleus, indicated through the mapping of 

the high nucleic acid region (775-790 cm-1). The nucleus is centrally located, 

stretching between the two beams at the top of the scaffold and the thickness of the 

cell.  

 

5.4.3. K-means directed vs. Renishaw WiRETM comparison (10-beamed cage) 

The tendency to support the nucleus between beams is also observed in Figure 5.9, 

where the narrower pores allow for support closer to the base of the scaffold. The 

response of the cells to different positions on the scaffold is highlighted in the 

WiRETM VRM (Figure 5.8 A-D). Cells closer to the top of the scaffold supported 

between the scaffold beams, resulting in a more expended morphology compared 

to the cells closer to the slide surface. The advantage of using a WiRETM-produced 

VRM to visualise a large section of the scaffold, with several cells, is therefore 

highlighted by Figure 5.8 A-D. Although the k-means directed slices provide a more 

objective shading method for the analysis of specific molecular distributions, the 

WiRETM VRM provides a general impression of how the cells have responded to the 

scaffold. To provide the most consistent analysis, the collection of Raman maps or 
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spectra for datasets exploring differences between scaffolds may need to take the 

differences between the cells grown on different scaffold positions into account. 

A difference between the 3D VRM in Figure 5.7 (A-C) and the slices (D-K) is that the 

slices show the top of the cell as higher (30 µm) in slice (A), the highest slice, with 

empty space shown in the 3D VRM, highlighting the danger of arbitrary shading for 

3D (WiRETM) VRM. K-means directed shading provides strength to conclusions 

drawn from VRM, due to the increased objectivity of the shading method. The slices 

in Figure 5.8 (E-L) show the cells located between the beams from the maximum 

height at the cells detected (30 µm) in (F). The findings in Figure 5.7, where cells 

remain above the pores, are confirmed with the cells remaining between the beams 

until K/L (0-5 µm), where high nucleic acid regions are seen within the pore. The 

high nucleic acids regions in Figure 5.8 (K & L) suggest the cell is located within the 

pore, like the cell in Figure 5.5 and in Greiner et al [53], except closer to the bottom 

of the pore, suggesting a minimum width that the cell can migrate through. The cell 

in Figure 5.7 avoids the gap between the pores entirely, sitting in a position where 

the beams can support the spherical morphology shown in A-C, a conclusion 

reinforced when the slices are viewed in Figure 5.7 (D-K).  
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Figure 5.8 – Renishaw WiRETM VRM and slices of cell on a ten-beamed cage: Using standardised 
colouring (see methods): A lateral cut shows a cross-section moving through cells on a ten-beamed cage in 
(A-D), showing cells appearing to coat the entire scaffold when the whole WiRETM-produced VRM is shown (D). 
In (E-L), the k-means directed shading of the z-stack is shown from the top slice (E), through each 5 µm z-step 
(F-k), to the bottom slice (L). The entire range within the related clusters for each cellular sub-section were used 

and are shown to the right of the slices. 
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5.5. Distinguishing cells gown on scaffolds with different pore 

sizes 

 

Having shown that VRM can visualise the morphological difference between cells 

grown on different cage scaffolds in section 5.4, a dataset was collected to establish 

whether the cage scaffold caused a molecular change in the cells. 

 

5.5.1. PCA: Five-beam cages vs. Off 

A dataset of 5-beamed cages (5BC) and off the scaffold (Off) was collected using 

the same method as that used in section 5.3, to see if the analysis was repeatable. 

Figure 5.9 shows the results from the PCA, using the first and second principal 

components that consist of 70.37% and 11.32% of the explained variance 

respectively. Figure 5.9 (A) shows the scores plot of PC1 and PC2, with clusters 

forming but overlapping. The loadings for PC1 (B) provide a wide range of molecules 

causing variance within the dataset. The positive loadings related to RNA 915 cm-1 

[166], cytosine/guanine [166], or tyrosine/phenylalanine [110], [167], [175] shown in 

the (1171 cm-1), where cytosine/guanine would link to the RNA seen in the 915 cm-

1 peak. The PC1 negative loading peaks can be related to amide III [176] (1250 cm-

1), and 1338 cm-1 is in the 1330-11350 cm-1 protein region [6]. The benefit of 

including averaged spectra into the dataset is shown in PC1, where spectra that 

have all been randomly selected from the dataset may result in selection only from 

the nucleus by chance, producing spurious results. The negative loadings also 

highlight the CH2 bending mode of proteins in the 1463 cm-1 peak [169], 1643 cm-1 

(From Chapter 3), C=C, and amide I absorption [171]. Amide I is also linked to the 

1671 cm-1 Raman peak [170]. The negative loadings, therefore, relate to the nucleic 

acids and proteins, previously associated with the change in morphology in section 

5.3.1. 
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Figure 5.9 - PCA analysis of cells cultured in 3D morphologies supported by 5 beam cage (5BC) scaffolds 
and cultured off (Off) the scaffolds: B) The explained variance plot, with the accumulated variance retained 
(y-axis) compared with the number of principal components (x-axis). The score plot for PC1 vs. PC2 is shown in 
(A), with s blue = 5-beamed cage (5BC) and red = cells cultured off the scaffold (Off). B) the loadings plot for 
PC1, with 915, 1171 & 1742 cm-1 positively loaded peaks, and 1250, 1338, 1463, 1643 & 1671 cm-1 negatively 
loaded peaks. C) The loading plot for PC2, with the 1055 cm-1 & 1434 cm-1 relating to the positive loading peaks 
and the 914 cm-1 & 1604 cm-1 negatively loaded. 

 

Due to the difficulty of determining a specific molecule that is independently 

responsible for the variance in PC1 and PC2, the off cells (red) generally favour the 

positive scores of PC2. The loading plot for PC2 (Figure 5.9 C) has fewer, but larger 

loadings peaks, with the positive loadings linked to lipids. The 1055 cm-1 could be 

protein C-O or C-N stretching (protein) [166], suggesting 1434 cm-1, which can be 

linked to proteins or lipids [173], [177] is also related to proteins. The association 

with proteins is shown in Figure 5.10 through green highlighted in the 1055 cm-1 and 

1434 cm-1 spectral regions in the average spectrum plot. The negative loadings are 

associated with RNA (914 cm-1) [166] and the 1604 cm-1 C=O stretching in the amide 

I (proteins) [165], [166]. The negative loadings for PC2 similarly match the negative 

loadings of PC1, indicating a link to nucleic acids and proteins. The nucleus is an 

organelle high in both nucleic acids and proteins, as shown in low-feature mapping 

in Chapter 3. The negative loadings for both PC1 and PC2 may therefore be related 

to changes in the nucleus, or cytoplasm near the nucleus in response to the different 

support geometry.  
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To further investigate the spectral regions highlighted in the principal components, 

the average spectra of the two classes (top) and standard deviation of the entire 

dataset (bottom) are compared in Figure 5.10. The averaged spectra of the classes, 

5-beamed scaffold (5BC – red) and the cells cultured off the scaffolds (Off – blue), 

show regions of the spectrum where the two classes diverge. Comparing averages 

provides a method of comparing the two classes at the cost of the data spread, which 

can be described by the standard deviation. Figure 5.10 (bottom) plots the standard 

deviation for each wavenumber for the entire dataset. The purpose of plotting the 

standard deviation for the entire dataset is to identify the wavenumbers with the 

greatest spread when looking at both classes. The standard deviation is a descriptive 

statistic, providing the spread of the data but missing a direct comparison between 

the classes. The two plots provide complementary information, with the averaged 

spectra providing a comparison between the two classes, with the limitation of 

averaging that the spread of the data is averaged out mitigated by the standard 

deviation plot.    

Figure 5.10 shows the regions highlighted by the PCA by shading the background 

of the plot using colours associated with different molecules or combinations of 

molecules (blue = nucleic acids, green = proteins, & purple = lipids). The RNA 915 

cm-1 Raman peak (blue background) indicated in PC1+ and PC2- is in a wider range 

of divergence between the two averaged spectra. The same region is associated 

with a broad peak when looking at the standard deviation in the entire dataset 

(bottom), centred on 915 cm-1 (black line). A change in the RNA peak may be linked 

to the changes in nuclear morphology discussed in section 5.3.3. The 1715-1750 

cm-1 peak indicating potential OrmoCompTM contamination is not prominent in the 

average spectra or the standard deviation. The lack of a large spectral peak in the 

1715-1750 cm-1 region (compared to that seen in section 5.4) demonstrates another 

advantage of partitioning Raman maps using k-means clustering, as the 

contamination that may influence the classification of cells grown on and off scaffolds 

can be removed or minimised, which will be continued in the next sections and 

chapter. 
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Figure 5.10 - Comparison of class average spectra (top) and dataset standard deviation (bottom): 
Molecular assignments and a spectral peak are highlighting in both plots using background shading for nucleic 
acids (blue background), proteins (green background), lipids (purple background) and the 915 cm-1 spectral peak 
shown using the black line. Top) Showing the average spectrum for the 5BC (red) and Off (blue) classes, 
indicating specifically where the two classes deviate, but not the spread of the data. Bottom) The standard 

deviation for the entire dataset, showing the spread of the data.   

 

Proteins dominate the remainder of the spectral differences highlighted by the PCA, 

correlating with the findings in section 5.3. Changes in protein regions of the 

spectrum were hypothesised as relating to actin adaption in cells cultured in two- 

and three-dimensional morphologies. A shoulder (1050-1070 cm-1) is highlighted as 

green on the broader 1050-1100 cm-1 spectral peak, associating the shoulder with 
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proteins in PC2+. The same peak is represented in the standard deviation peaks 

(bottom), with the 1050-1070 cm-1 shoulder apparent. 1330-1350 cm-1 region is 

associated with proteins [6], with 1338 cm-1 from PC1- therefore highlighted green 

for proteins. 1330-1350 cm-1 peak is shown on the standard deviation plot, showing 

that the collections of this wavenumber are spread further around the mean. Other 

protein-associated regions include 1440-1470 cm-1 shoulder relating to 1434 cm-1 

(PC2+) & 1463 cm-1 protein (PC1-) assignments in the region. The 1590-1620 cm-1 

Raman peak is highlighted green for the 1604 cm-1 Raman peak (PC2-) proteins. 

Highly loaded protein spectral peaks in the 1620-1680 cm-1 green region include the 

1643 cm-1 peak in PC1- (assigned proteins or lipids for 1648 cm-1 in section 5.3.3) 

and 1652 cm-1 (proteins and lipids in PC1). The lipid assignment for 1630-1650 cm-

1 is indicated with purple shading. The standard deviation for 1620-1680 cm-1 peak 

is one of the two highest, with a difference shown between the two classes also, 

resulting in a higher confidence that molecular changes are occurring in the protein 

and lipid composition in the cells due to being grown on the 5-beamed cage rather 

than a flat slide surface.  

 

5.5.2. Supervised learning: Five-beam cages vs. Off 

To replicate the analysis in section 5.3.4, learning curves were produced for the 

dataset using the same logistic regression (B), LDA (D), and SVM using 

hyperparameters C = 1 and linear kernel (F) in Figure 5.11. Initially, the algorithms 

failed to converge the training and validation lines whilst using the first and second 

principal components, suggesting under-sampling. To identify the principal 

components that distinguish the classes most effectively, a decision tree was trained 

(A) to indicate features (principal components) that distinguish the data most 

effectively, showing that the PCs with the greatest classification power were PCs 2, 

5, and 6, which were selected as for further analysis, representing 14.34% of the 

explained variance combined. PC5 and PC6 represented 1.57 % and 1.45% of the 

explained variance respectively, potentially too small percentages to warrant 

selection. The use of PC5 and PC6 is justified by the production of learning curves 
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for all three algorithms shown in Figure 5.11, logistic regression (B), LDA (D), and 

SVM (F), converging. All three algorithms, using separate classification approaches, 

finding a cross-validated distinction between the classes supplies strength to the 

conclusion that those principal components retained signal rather than noise. All 

three models converge close to the 90% f1-score and similarly to the section 5.3.4 

results, show 35 samples (70%) of the data as providing the highest f1-score for all 

three models without any overfitting occurring. Models were therefore trained using 

70% training data, with the confusion matrices shown in Figure 5.11 C, E, & G 

respectively, with the models achieving F1-scores of 70.59% (LR), 93.33% (LDA), 

and 85.71% (SVM). 

 

 
 

Figure 5.11 - Cross-validation and classification of cells cultured on a 5-beamed cage scaffold vs. cells cultured off the 
scaffold dataset: A) Cross-validation results of five algorithms using 5-fold cross-validation. An average score of 76.66% 
for logistic regression, decision tree (85%), support vector machine (95%), random forest (93.34%), and linear discriminant 
analysis (81.68%). The highest average score (support vector machine) was selected and trained using training data (C = 
0.1, kernel = poly, gamma = 1) and the test data used to produce predictions, with the results showing 100% sensitivity 
and 100% specificity. 
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The 70.59% f1-score is the lowest, shown as a score at the lower edge of the range 

shown in the cross-validation standard deviation (green shading) in (B). Whereas 

the 93.33% and 85.71% f1-scores for the LDA and SVM algorithms are the higher 

scores for those algorithms. The high scores within the range indicated by the 

standard deviations for the LDA and SVM reveal that the training set data selection 

can produce the appearance of inflated model performance, showing the value of 

cross-validation and justifying excluding train-test splits producing standard 

deviations that cross the validation line whilst using learning curves. Conversely, an 

f1-score in the lower edge of the standard deviation range for the logistic regression 

reveals that if a different subset of samples were selected for the training dataset, 

the confusion matrix and f1-score would produce “better” looking results, which 

would not be seen when observed in isolation.    

 

5.5.3. Supervised learning: Five-beam cages vs. 10-beam cages 

Section 5.3 and 5.4 established that cells cultured on two-dimensional surfaces and 

three-dimensional scaffolds can be distinguished using Raman spectroscopy. 

Classification of cells grown on different 3D scaffold designs was the next phase of 

the investigation, to explore the effect of different scaffold geometries on cell 

morphology. Figure 5.12 shows the three-axis PCA plot for the first three principal 

components, relating to 89.62% of the explained variance. Clear clustering was not 

seen in the PCA between the five and ten beam cage samples for the combinations 

tested, including using a decision tree to identify the principal components that divide 

the classes most efficiently, which identified the fourth principal component as 

providing the most distinction between the classes. However, no greater separation 

was seen in the PCA plot, at the cost of variance. Figure 5.12 B, C & D show the 

learning curves for logistic regression, LDA, and SVM, repeating the analysis used 

in sections 5.3 and 5.4. The learning curves did not fully converge, with some 

meeting of the standard deviations but not a consistent meeting of the validation and 

training lines. The lines do seem to be moving together, suggesting they may 

converge with additional samples. The f1-score in the region where convergence 
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may occur is not high, shown as between 50-70% at the final points on the learning 

curves in (B, C, & D). However, the converged learning curves increase confidence 

in conclusions drawn from the models, providing a foundation for further 

investigation.   

 

 

 

 

 

  

Figure 5.12 - Score plot and learning curves for 10BC 
vs. 5BC: A) Score plot for PC1 v PC2 v PC3, showing the 
5-beamed cage (5BC) in red and the 10-beamed cages 
(10BC) in blue. Learning curves were produced for the 
logistic regression (B), LDA (C), and SVM (D) 
algorithms trained on the PCA reduced data, with the 
training lines (blue), validation lines (green) and 
standard deviation of the cross-validation (shading in 
respective colours). 
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5.6. Large, medium, and small square pores. 

 

Having shown in section 5.3 that VRM can visualise changes in cell behaviour 

resulting in altered pore dimensions and established that Raman spectroscopy can 

classify cells depending on their morphology (2D vs. 3D). In section 5.4, cells grown 

on different pore dimensions, produced using different numbers of beamed cage 

scaffolds (5 vs. 10) resulted in the inconclusive distinction of the classes based on 

learning curves. The learning curves (Figure 5.12) suggested that convergence may 

be possible if a larger dataset is collected. Double the number of samples per class 

were therefore collected to study if a difference in square 18 µm deep pore 

dimension altered cell behaviour. Small (10µm2), medium (20µm2), and large 

(20×40µm2) lateral dimension pores were produced, resulting in the shape remaining 

constant. The ability to determine any change simulating the response of a cellular 

population to a porous material, such as those found in bioengineered bone. 

 

5.6.1. Renishaw WiRETM VRM of HaCaT cells in varied diameter pores 

Figure 5.13 shows the WiRETM (3D) VRM of the cells in the small pore (A & B), the 

medium pore (C & D), and an example of the large pore (E & F). It can be seen in 

the axial view of the small pore (A), that the cell has fit itself within the pore, with the 

lateral view showing that it has provided support for itself on all four sides. As the 

pore grows in size, the medium pore stops the cell from being able to support itself 

on more than two sides (C & D). For the chemometric analysis, the decision was 

taken to focus on cells supported on two sides for the medium pores and one side 

for the large pores (with similar morphologies to the cell shown in Figure 5.2). By 

mapping cells supported by distinct wall numbers, the greater distinction between 

the cells in the medium pores and cells situated in the corner of a large pore (E & F) 

was aimed to be avoided. 
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Figure 5.13 - WiRETM VRM of cells in OrmoCompTM pores: Using standardised colouring (see methods). The 
side (A) and top (B) views of a cell in the relatively small 10 × 10 µm lateral dimension pore. C & D) A cell entering 
the medium (20 × 20 µm lateral dimension) pore, supported by pore sides, and (D) showing the cell in a central 
location within the pore. E & F) Map a cell on the large pore (20 × 40 µm lateral dimension, where (E) shows the 
cell using the cell wall to support its 3D morphology and (F) shows the cells elongated morphology to stretch 
along the pore wall. 
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5.6.2. Machine learning analysis of HaCaT cells in varied diameter pores 

Figure 5.14 (A) shows a three principal component score plot for PC1, PC2, and 

PC3. The three principal components plotted in (A) represent 76% of the variance, 

as shown in the explained variance plot in (B). Distinct clusters are not produced in 

(A) with overlapping of cells cultured off scaffolds (Off-black), large (LgSq–blue), 

medium (MdSq-red), and small square pores (SmSq-green). The decision tree 

selection of principal components used in section 5.5.2. could not produce suitable 

class separation. To establish whether the principal components provided 

statistically significant relationships, Mann-Whitney U-tests were carried out on all 

pairs of principal components of over 1% explained variance, highlighting no 

statistical significance. The lack of clustering or statistical significance between the 

principal components leaves the conclusion that any molecular changes induced by 

different square pore dimensions cannot be identified using PCA. For applications 

where a Raman detectable change has been established, Raman spectroscopy 

could therefore be used to ascertain whether that change has occurred or not. The 

same method as 5.3.4 and 5.5.3. will be used for supervised learning to determine 

whether the use of class labels will provide improved performance. 
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4

 
Figure 5.14 - PCA and classification of cells cultured in, small, medium, & large pores, and off the 
scaffold: A) PCA score plot for PC1 v PC2 v PC3 (76% explained variance). C) The confusion matrix for a SVM 
trained on the entire dataset, learning curve (E). Learning curves for algorithms trained on PCA reduced data, 
with the logistic regression (B), LDA (D), and SVM (F) all converging closer to 50% f1-score. 

 

Initial investigation of supervised learning provided optimistic results using an SVM 

algorithm (C = 10 and polynomial kernel) that appeared to produce high-accuracy 

classification when trained on the entire spectrum. A model was initially trained on 

the entire spectrum, providing a starting point for the analysis, with accuracy chosen 

as the metric over the f1-score as it requires only correct and incorrect classification 
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for calculation. F1-score is calculated using false positives and false negatives, 

making a single learning curve incalculable for multiclass analysis. Figure 5.14 (C) 

shows the confusion matrix for the support vector machine (L = large pore, M = 

medium pore, S = small pore), trained on 75% of the data, resulting in an overall 

model accuracy of 84%. The learning curve for the full dataset (D) shows the 

improbability of this result generalising to new data (overfitting), with the validation 

accuracy raising no higher than 50%, indicating the ineffectiveness of the model. 

The 5-fold cross-validation of the training dataset produced an average score of 

88.67%. Observed in isolation, these outputs provide significantly better model 

metrics than the learning curve (D) invalidated.  

The training and validation line gap was reduced for logistic regression, LDA, and 

SVM (C=10 and linear kernel) models (B, D, & F) by following the previously outlined 

method for the larger dataset. The models were trained on a dataset of PCA-reduced 

dimensions (PC2, PC3, PC4, & PC6) selected by a decision tree. The three models 

(B, D, & E) produced similar learning curves, all close to convergence, indicating that 

the true maximum accuracy is close to 50%, which is unobservable using the 

confusion matrix in isolation. The lack of classification, using methods shown to 

distinguish cell cultures in two and three dimensions, results in the conclusion that 

Raman spectroscopy cannot distinguish molecular changes resulting from the 

changed pore dimension. A repeated result when looking at both the cage and 

square pore scaffold designs. An inability to distinguish cells grown on different pore 

dimensions could still be valuable when monitoring bioengineered constructs. In the 

case of an experiment looking at the effect of a biochemical stimulant, any 

classification seen could be isolated as resulting from the biochemical stimulus 

rather than the porous substrate/scaffold design. However, a control would be 

required for this to be stated with confidence. 
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5.7. Conclusions 

 

The capacity to monitor cells using Raman spectroscopy, potentially as part of an 

automated cell culture system, initially requires two constraints to be met. The first 

is that the biological system is understood and the second is that a method of 

automating an output from that knowledge is carried forward. In this chapter, VRM 

and PCA were used to explore the biological system, both spatially (VRM) and 

biochemically (PCA). Analysis was carried out over three experiments, simple 

scaffolds, cage scaffolds, and small, medium, & large pores started with the simple 

scaffolds. Simple scaffolds were defined as such to note the block design of the 

scaffold, avoiding depth distortion by focusing on cells attached to the scaffold side. 

The VRM of a cell on the side of a scaffold (Figure 5.2) showed an altered 

morphology, elongated when compared to the VRM of cells sitting on the slide 

surface (Figure 4.3). An initial hypothesis asked if VRM could show morphological 

differences between cells grown on different scaffold dimensions, which was shown 

through the chapter in sections 5.3, 5.4, & 5.5. 

Once SEM imaging had verified the scaffolds print quality, the next aim was to 

compare K-means directed shading to Renishaw WiRETM (Volume Viewer) 

produced VRM. WiRETM-produced VRM are quicker to produce and provide more 

intuitive images, especially when z-steps are chosen to minimise distortions 

(Chapter 4). WiRETM-produced VRM were previously used to indicate general 

changes in cell behaviour in response to scaffolds (sections 5.3.1, 5.4, & 5.5). 

However, it must be reiterated that shading parameters chosen by the researcher 

cannot constitute evidence towards conclusions on sample dimensions, due to lack 

of reputability. Z-stack was therefore used to map the simple scaffold (section 5.3.1) 

and cage scaffold (section 5.4) mapping, demonstrating the ability to repeatably 

separate the regions into key structures (scaffold, background, nucleus, & 

cytoplasm), solving the problem highlighted by Ashton et al [5] for VRM. Another 

hypothesis, which raised the research question asking if k-means directed shadings 

repeatability when mapping cells on different scaffold types, was established over 
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Figures 5.2, 5.8, & 5.9, showing cells on a simple scaffold (5.2) and cage scaffolds 

(5.8 & 5.9). K-means directed shaded VRM of cells on scaffolds will next be 

complemented with maps of cells without scaffolds to test the method in a different 

application (Chapter 6). 

Having determined the repeatability of K-means directed shading, another 

advantage was used for further analysis, the removal or diminishment of unwanted 

regions such as the background, scaffold, or contamination. Having noticed some 

OrmoCompTM contamination in the averaged cluster spectra for the cell body in 

Figure 5.2, the k-means directed shading method was adapted to exclude scaffold 

material contamination from further analysis. PCA was then used to investigate 

molecular changes in the cells. Score plots established separation between cells 

grown on and off scaffolds (Figure 5.3), and loading plots were used to highlight 

protein (actin) and nucleic acid regions as responsible for the maximised variance in 

the principal components; suggesting their adaptations are linked to changes in 

morphology. The cage scaffolds followed the design of an angled beam scaffold in 

Chapter 4, the capacity of cage design scaffolds to alter cell behaviour compared to 

cells off scaffolds was tested (section 5.5). Average (mean) spectra for each class 

were plotted alongside the dataset standard deviation (Figure 5.10), strengthening 

the analysis by showing in which regions the classes deviated, repeating the spectral 

peaks highlighted in Figure 5.3. After Figure 5.9 repeated the separation shown in 

Figure 5.3, the next step was to test whether altered pore dimensions could influence 

the molecular composition of HaCaT cells.  

For studies aiming to progress towards the automated monitoring of bioengineered 

constructs, it must also be established that the distinctions determined using 

unsupervised learning and Raman mapping can be transitioned onto techniques that 

can be trained for repeated use. One of the aims of this chapter was therefore to 

carry out machine learning classification, looking at repeatability in the analysis, over 

algorithms, and within the dataset. Justifying the investigation of the third hypothesis, 

that machine learning algorithms be trained to classify cells grown on two- and three-

dimensional substrates. Using PCA for an initial investigation had an additional 

benefit, providing dimension reduction, with a decision tree used to streamline 
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feature (principal components) selection. Three algorithms were tested throughout 

the chapter (logistic regression, linear discriminant analysis, and support vector 

machine), which all rely on different statistical processes to carry out classification 

(Chapter 2). The repeatability of the classification using different algorithms was 

further reinforced using learning curves, which plotted the 5-fold cross-validation for 

the range of training dataset sizes. Training of the 3D vs. Off dataset resulted in 

learning curves that had an f1-score over 80%, indicating that the changes seen in 

the PCA could be translated into a supervised classification for more complex (cage) 

scaffolds. Repeating the same methods used to analyse the “simple” 3D scaffolds 

produced similar results with a wider spread of f1-scores, between 70 and 95% for 

the different algorithms.  

The next step after separating cells on 2D and 3D substrates was to investigate the 

capacity of the method to separate cells on different variations of the scaffolds. 

Initially, 5 and 10 beamed scaffolds were selected, providing the greatest contrast in 

morphology as shown using VRM (section 5.4). Neither the PCA nor supervised 

learning methods were able to distinguish the two classes satisfactorily. Potentially 

resulting from the analysed cells being at different positions on the scaffold, with 

cells closer to the base of the pore being in a different morphology than those at the 

narrower pore region at the top. To counter the changing pore dimension, a final 

pore design was used alongside increasing the number of samples per class. As 

binary classification had already been completed in sections 5.3.4 and 5.5.3 (simple 

scaffolds and 5 beamed cages vs. Off), three pore dimensions were chosen, large 

(20×40), medium (20×20), and small (10×10), which with cells cultured off the 

scaffold included as a control. In Figure 5.13, the cells in/on the side of the scaffolds 

were visualised, showing the altered support structures provided to the cells by the 

different pores using VRM. PCA could not separate the four classes, followed by 

poor supervised classification.  

The value of publishing learning curves was demonstrated in section 5.6.2. Initial 

inspection of the confusion matrix indicated impressive accuracy in distinguishing 

the ten samples/class. Inspection of the learning curve revealed overfitting, with 

subsequent feature selection resulting in model convergence for the three models, 
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but towards an unsuitable 50% accuracy. Potentially this indicates cells grown on 

different three-dimensional structures do not vary enough from one another for 

Raman spectroscopy to distinguish them, as two scaffold styles failed to produce 

suitable distinctions using unsupervised or supervised techniques. The capacity to 

determine when a culture system has not changed can be just as valuable as 

sensing altered behaviour when applied to monitoring a bioengineered construct. It 

is more difficult to assert with confidence that something has not changed, as 

opposed to cannot be detected, without the use of controls as a minimum and 

potentially statistical methods such as the calculation of p-values.   
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Chapter 6 - Flow chamber for in-situ Raman mapping 
 

 

6.1. Introduction 

 

Fluid flow provides a range of benefits to Raman spectroscopy. Thermal control of 

the fluid provides the opportunity to simulate in vivo temperatures, supporting live-

cell Raman spectroscopy, or depending on the application, minimising thermal 

damage by cooling samples. A design aim (aim 1) for the flow chamber is therefore 

to include a method of controlling the fluid temperature, where the cooling may 

reduce thermal damage to the sample as highlighted in the Chapter 4 conclusions. 

For live or unfixed-cell Raman analysis, a target for the chapter is to warm the fluid 

to 37 °𝐶. Fluid flow also provides a second aim (aim 2) for the chapter, to use the 

fluid to supply a drug, dithranol, as factors (nutrients, drugs, growth factors, etc.) are 

supplied in vivo, in a dynamic environment. A synergetic benefit when combined with 

the non-destructive monitoring that live-cell Raman provides.  

The confocal Raman mapping of cells in a flow-immersion objective is unknown to 

the author. The use of enclosed flow chambers [178], [179] for Raman analysis of 

cells has resulted in the absence of Raman mapping and VRM (and the additional 

morphological detail) from previous Raman spectroscopy flow analyses. Testing of 

the flow chamber will follow a structured approach, first testing the capacity of 

Raman spectroscopy to collect a spectrum in the flow chamber from a direct laser 

written (DLW) construct, providing a well-defined structure for the initial test. Having 

established that Raman spectra can be collected, the testing will move onto Raman 

mapping, VRM, and repeats for single cell analysis; with the explicit objective of 

providing an open flow chamber that does not endanger the spectroscope through 

fluid spillage or flooding.  
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The development of an open flow chamber provides the opportunity to analyse cells 

in flow using an immersion objective, with the benefits of simpler refractive index 

matching, Raman mapping / VRM, or improved mapping resolution. The design, 

manufacture, and testing of such a flow chamber would determine the ability of 

Raman to analyse and visualise the effect of a drug (or another factor) supplied to 

cells within the Raman spectroscope, minimising disruption and avoiding the need 

for fixing [20]. Dithranol has previously been visualised within HaCaT cells [5], 

providing a key opportunity to observe the uptake and effect of the drug on cells. 

Dithranol provides the opportunity to map not only the response of the cell to the 

drug, which is feasible for many other drugs/factors but to visualise the location of 

the drug in the cell [5]. The advantage this provides is the increased confidence 

gained in assertions about the location of the drug that can then be linked to drug-

affected regions of cells. Raman spectroscopy, as shown in Chapter 5, provides the 

capacity to link spectrally presented molecular insights to locations within 2D areas 

or 3D volumes with Raman mapping and VRM respectively. The use of dithranol 

also allows for the testing of a third aim (aim 3), to show an application of VRM to 

map a dithranol distribution through a cell. 

Having expanded the visualisation of dithranol through a cell to three dimensions, 

spectra can be taken from the maps and used in chemometric algorithms to explore 

the cellular response to the drug alongside morphological insights. The value of an 

open flow chamber will therefore be demonstrated using Raman maps for the next 

aim (aim 4) of the chapter. Aim 4 is to verify the fluid flow supply of dithranol to 

unfixed cells using chemometric separation and Raman map visualisation of fluid-

supplied dithranol exposed and unexposed cells. An initial investigation, as defined 

in Chapter 5, will use principal component analysis to investigate the biological 

response of the cell to dithranol. A controlled study will be carried out, using the 

same method used to supply the dithranol, except without the dithranol. Any 

subsequent change in the PCA score plots can therefore be linked to the addition of 

dithranol, with k-means directed shading adding confidence in morphological 

changes mapped, with findings then compared to previous sections and studies. 
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Hypotheses: 

1) Dithranol distribution can be mapped using VRM. 

2) Dithranol supplied by a flow chamber to unfixed HaCaT cells can be 

mapped using Raman spectroscopy. 

3) Dithranol supplied by a flow chamber to unfixed HaCaT cells can be 

distinguished using Raman spectroscopy. 

 

 

6.2. Flow chamber design, fabrication, & testing 

 

The design of a flow chamber for use inside a Raman spectroscope with an 

immersion objective provides a range of challenges to overcome before flow Raman 

mapping is possible. Considerations can relate to the analysis of samples, ensuring 

the design supports cell survival for the duration of the experiment and that the 

sample will not move because of the flow. Alongside design considerations for 

Raman mapping, countering impediments relating to the additional weight or blocked 

movement of the flow chamber (and all supporting tubes, heaters, and the objective). 

To balance all the factors relating to the flow chamber design, the study challenges 

will be grouped into three design objectives:  Spatial compatibility with the 

spectroscope. 

• Slide stability for Raman mapping 

• Biological support for the cells 
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6.2.1. Flow chamber design and fabrication 

The first design objective, spatial compatibility with the spectroscope, required 

consideration of factors such as being able to fit inside the spectroscope hood. The 

Raman spectroscope stage had to be inspected to determine the size of the flow 

chamber it could accommodate and the weight it could predictably be able to move 

accurately enough for mapping in two and three dimensions. The spectroscope hood 

had a hole in the side for heating wires and thermostat cables for static liquid live-

cell Raman spectroscopy, which were suitable for the tubes leading to a pump 

providing the flow (see Figure 6.5). The fluid tube is therefore fed through the hole 

and the tube is attached to either end of the flow chamber. The second consideration 

was designing the flow chamber in such a way that the slide could be kept as still as 

possible for mapping in the flow, to avoid distortion of the map. The flow chamber 

was therefore tailored to the slides being used in the Nanoscribe™, 25×25 mm 

square slides that are 0.5 mm deep. Both vertical and horizontal movements must 

be avoided for mapping to be successful. In Figure 6.1 the depth of the slide tray is 

0.5 mm deep, the flow chamber top overlaps the slide at its sides providing a space 

for the fluid to flow through the centre of the flow chamber (over the sample) 

alongside a tightly fitting area for the slide (preventing vertical movement); however, 

the brittle slide could not be put under clamping forces, as the hard material of the 

flow chamber would probably result in damage to the slide in cases of miss alignment 

or over-tightening. Semi-circles (radius 2.5 mm) were added to aid the removal of 

the slide post-analysis. To stop horizontal movement or transit of the slide along the 

direction of the flow, a 1.25 mm lip was added to the flow chamber base, providing 

a stop to the slide.  
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Figure 6.1 - Flow chamber engineering drawings: Drawing of the flow chamber base (A) and top (B). The drawings were 
taken to the Lancaster University Engineering Department workshops and produced using precision milling to a tolerance 
of +/- 10 μm. 
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As can be seen in Figure 6.2 the slide is clamped in the flow chamber by the flow 

chamber top being bolted to the flow chamber bottom (dashed lines showing bolt 

positions). Once secured, the slide is in a position for the flow to be pumped through 

a 5 mm diameter tube placed in the 4 mm diameter holes (producing an interference 

fit, holding the tubes in place) in the flow chamber top. The end providing the liquid 

has a small 4 mm wide trough (with 2 mm radius ends) in the flow chamber bottom 

(shown in Figure 6.1), this is to ensure that the end of the tube isn’t crushed or 

pressed flush with the flow chamber bottom surface, potentially impeding the flow 

from the tube or providing pressure to eject it from the hole in the flow chamber top. 

The returning tube is then placed in the reservoir at the other end of the flow chamber 

base, a 9 mm wide and 8 mm deep trench that collects the fluid, providing a pool 

that ensures the tube is fully submerged when removing the fluid from the flow 

chamber, avoiding the production of bubbles within the flow. The flow provides an 

opportunity to regulate the temperature within the flow chamber, with the tubing 

being submerged in a heat bath, increasing the temperature to 37 °C, a key aspect 

of live-cell and unfixed Raman analysis. Another biological consideration for the cells 

in the maintenance of 5% CO2 in the atmosphere, replicating the slightly higher CO2 

levels experienced in vivo, is critical to live-cell Raman. For proof-of-concept studies, 

a rudimentary plastic cover will be used to provide CO2 to the flow chamber opening, 

however, the further development of CO2 control will be an objective for the next 

stages of development, where unfixed analysis will be used for proof-of-concept. 

Unfixed Raman spectroscopy draws a distinction between the analysis of cells that 

are analysed within an incubation chamber (maintaining 37 °C and 5% CO2) within 

the Raman spectroscope and those taken from an incubator and analysed without 

fixing prior to cell death. The studies will initially use unfixed Raman spectroscopy, 

as the CO2 levels and temperature are not controlled with tight enough tolerances to 

constitute true live-cell Raman analysis. Sterilisation of the tubes will be carried out 

by pumping 70% alcohol through the tubes, followed by deionised water to remove 

the alcohol, and finally, culture media, which will be replaced with fresh culture media 
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for the cell experiments, to avoid dilution of the media. The flow chamber itself can 

be autoclaved or submerged in 70% alcohol. 

 

 

Figure 6.2 - Flow chamber 3D computer aided design images: A) How the base, slide, and top fit together and the fluid 
path shown in a cut through image (B). 
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The material selection for the flow chamber is reliant on factors already discussed, 

such as the ability to sterilise, using either alcohol or an autoclave. The weight of the 

flow chamber is also a key consideration, so the Raman stage can support the flow 

chamber without having movement inhibited for focusing and Raman mapping, or 

even damage to the stage through overloading. Stainless steel was chosen as a 

material resistant to corrosion and able to be sterilised in an autoclave and alcohol. 

Testing was required to ensure the weight of the flow chamber did not deteriorate 

the capacity of the spectroscope to produce maps, with aluminium an alternative if 

so. Stainless steel is resistant to oxidation or corrosion, which could contaminate the 

culture media and lead to flow chamber damage due to the fluid flowing through it. 

Design considerations for the fluid required enough depth to fully submerge the 

sample, and to provide enough fluid depth for the immersion objective to work at its 

correct depth of focus. The design had to make it impossible for the flow chamber, 

once set up correctly, to be unable to pump the fluid over the height of the chamber 

into the Raman stage and equipment. The design accounts for this by using a single 

tube for the supply and removal of the fluid, taking the fluid from the flow chamber, 

through a heat bath, through the pump, and back to the other end of the flow 

chamber. The use of a single tube means that if a pump malfunctions, the input of 

fluid is inherently stopped alongside the removal. 

 

6.2.2. Flow chamber testing 

Advantages of using a flow chamber include reduced thermal damage to samples 

and dynamic supply of biochemical factors to cells, more closely matching the in vivo 

environment were flow supplies cells with factors alongside physical stimulation. The 

experiments were broken into two phases. The first experiments determined if the 

flow chamber could successfully be used within the Raman equipment to collect 

Raman spectra, Raman maps, and volumetric Raman maps and if so, allow the next 

section to demonstrate the benefits of flow Raman analysis. The second phase 

determines if the flow chamber could successfully provide living cells with a 
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biochemical factor, with dithranol provided in the flow after an hour and mapped 

within the cell.  

 

Test 1: Collecting a Raman spectrum and maps in two and three dimensions. 

The first check was that the flow chamber did not introduce some unexpected 

contamination that would distort or destroy the collection of Raman spectra. Figure 

6.3 (B) shows the first Raman spectrum of OrmoCompTM collected in a flow chamber 

of this kind (after pre-processing). Next, potential problems resulting from the 

increased collection times for mapping and VRM were checked. Figure 6.3 (A) 

shows that flow does not move the sample during map collection by mapping an 

arrow designed OrmoCompTM scaffold. Figure 6.3 (A) shows the arrow shape is 

retained when a 1×1µm resolution is used under flow conditions, demonstrating that 

the fluid flow does not destabilise this sample type during mapping. The next phase 

of the test checked the sample remained stable during VRM and that the flow 

chamber weight did not impede the VRM vertical movement. A 5 μm z-step and 2×2 

μm lateral resolution were used to collect a VRM of a similar arrow scaffold shown 

in Figure 6.3 (C). The slice relating to the arrow is shown in Figure 6.3 (E) compared 

to a white light microscope image in Figure 6.3 (D). The arrow shape is again 

retained, with reduced image clarity, as expected from a reduced-resolution image. 

The ability of the Raman microscope to map polymer samples in two and three 

dimensions was determined by these initial tests. A key advantage for polymer 

samples would be to reduce thermal damage, especially for 3D Raman mapping 

with the inherently larger number of collections per area than conventional Raman 

mapping increasing the probability of thermal damage. Determining the capacity of 

the flow chamber to analyse 3D printed polymer samples justified the next phase of 

testing examining the suitability of the flow chamber for mapping single cells. 
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Figure 6.3 - Flow chamber initial testing: Testing the flow chambers capacity to collect a Raman spectrum (B), a  Raman 
map (red box showing 18 × 11 µm mapped area), and a VRM (C-E) under fluid flow conditions. Pixel counts (x and y 
axis) in A, C, & E, are in µm, with the mapped area shown in E (red box – D, showing a mapped area of 13 × 13 µm) 

 

 

Test 2: Collecting a Raman spectrum and maps of cells in two and three 

dimensions. 

Having ensured the capacity of the flow chamber to map samples, the next test was 

to test whether the fluid flow did not wash fixed cells of the slide surface whilst 

producing two or three-dimensional Raman maps. In Figure 6.4 (B), a white light 

microscope image of a HaCaT cell and Raman maps (1×1 µm) the Raman intensity 

for each pixel for the 1330-1350 cm-1 protein region in green 6.4 (A) and 775-790 

cm-1 nucleic acid in blue 6.4 (C) were initially produced in the test respectively. Figure 

6.4 (D) shows a Raman map of two HaCaT cells, visualised using k-means cluster 

analysis qualitative shading. Three clusters relate to the cells, and one relates to the 

background, each shaded based on the average spectrum for each cluster. The 

averaged spectrum for each cluster is shown in Figure 6.4 (G) where the blue line 

relates to the blue cluster in Figure 6.4 (D), coloured blue in keeping with the shading 
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conventions in previous chapters, relating to nucleic acids (775-790 cm-1). The high 

nucleic acid Raman peak shown on the average spectrum indicates the cluster is 

probably associated with the position of the nucleus.  

 

 

Figure 6.4 - Biological testing of the flow chamber: A white light microscope image for Raman map verification(B), 
showing the mapped area (31 × 31 µm) in A and B. 1330-1350 cm-1 protein (Green - A), 775-790 cm-1 nucleic acid (Blue 
- C), k-means (D), and k-means directed shading (E) Raman maps. The average spectra for the k-means directed shaded 
Raman map (G). K-means directed shading of a VRM z-stack (F) alongside the averaged spectra for the VRM clusters (H). 
Pixel counts (x and y axis) in A, C, & D, are in µm 
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Two clusters are associated with the cell body, where the nucleic acid peak is 

present but less prominent in the average spectra relating to the cell body, where 

the green spectrum relates to the dark green cluster and the red spectrum to the 

light green cluster, providing greater contrast in the plot. Figure 6.4 (E) therefore 

demonstrates that k-means directed shading from Chapters 3, 4, and 5, are possible 

within the flow chamber. The cell having not been washed off from the slide in the 

two-dimensional mapping (Figure 6.4 (E)) or when the mapping was repeated for the 

same two cells using VRM, the slices shown in Figure 6.4 (F). Repeating the 

mapping on the same two cells is important to show that they remained attached to 

the slide for a considerable amount of time and repeated maps. The repeatability 

research goal from Chapter 5 is also reinforced, achieving the goal stated in the 

conclusions to map cells off a scaffold using k-means directed shading of a z-stack, 

with the average spectra for the VRM clusters shown in 6.4 (H). 

 

Test 3: Flow reduction in UV degradation  

The third test explored the ability of the flow to reduce thermal damage in polymer 

samples. Figure 6.5 (A & B) shows the flow chamber set-up with polystyrene beads 

attached to a stainless-steel slide. A 244 nm ultraviolet laser, selected as the most 

damaging laser wavelength available, is focused on the bead, and ten collections 

were made in the same position, repeated five times for each analysis state. Figure 

6.5 (C) shows the gradient of a Raman peak where the bond is breaking (the peak 

is reducing with greater laser exposure). The red line (still water) has the steepest 

gradient, showing that the bond breaks at the fastest rate without the flow. The blue 

line, showing the gradient for fluid flowing over the sample has the next steepest 

gradient, showing that the flow does reduce the rate at which the bond is broken 

through laser exposure. However, thermal degradation is only one potential cause 

of the bond breaking, for example, if the bond is breaking due to photodamage, the 

altered rate may result from the flow changing the laser focus. To control against 

photodamage, the flow analysis was repeated, except at a lower temperature. The 

black line relates to the set-up shown in Figure 6.5 (B), where the water tube is 
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placed in a box of ice as the water is pumped into the flow chamber. The temperature 

of the water was measured to drop from room temperature (22°C) to 10°C. The 

reduction in temperature further lowers the rate of degradation, with the lowest 

gradient relating to the black line. The reduced gradients in the blue (flow) and black 

(cooled flow) result in the conclusion that the degradation does relate to temperature 

and that the flow does reduce thermal damage. Figure 6.5 (C) shows that cross-

linking can be reduced in the flow chamber, with the gradients showing the 

degradation of the 960-1040 cm-1 (benzine ring [180]) spectral peak, where this time 

the still water (red) results in the greatest rate of cross-linking, then flow (blue), and 

cooled flow (black) resulting in the slowest rate of cross-linking. 
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Figure 6.5 -  Testing flow chamber cooling: Focusing on the polystyrene bead in the flow chamber (A), using ice to cool the 
fluid, and the different cooling rates (C) for ice cooled fluid (Ice - black), uncooled fluid flow (Flow – blue) and still fluid (Still 
– red). 

 

 

6.3. Results and discussion (Part 1: Fixed cell verification) 

 

Having tested the capacity of the flow chamber to map both polymer and cell 

samples in section 6.2, the ability of the flow chamber to provide drugs and factors 

to the cells within the flow chamber, and the ability of the Raman spectroscope to 

analyse and visualise the changes produced in the cell will be the focus of the 

remained of the chapter. 
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6.3.1. Fixed cell analysis of dithranol-exposed HaCaT cells  

Dithranol has previously been mapped inside cells using the 598-615 cm-1 Raman 

peak [5], with the cellular response to the drug being shown over 22 hours. Being 

able to visualise the drug within the cell provides a key advantage to a study verifying 

the capacity of the flow chamber to deliver a drug, that by mapping the cell before 

and after flow drug exposure, the difference can be easily observed. To provide a 

baseline analysis, Figure 6.6 shows a VRM of a HaCaT cell that has been cultured 

for 3 hours in media with 2 µM dithranol and fixed, with a white light microscope 

image (Figure 6.6 - B) for comparison. The cell was cultured for two days before the 

dithranol exposure, a measure taken for the flow analysis to provide cells with the 

greatest opportunity to securely fix to the slide surface, providing continuity with the 

unfixed analysis (section 6.4). Figure 6. 6 (A) shows the dithranol (red) in the cellular 

matrix that the cell is sitting in, using the 598-653 cm-1 range reported by Aston et al 

[5]. However, dithranol is also visible within the cell. A narrower WiRETM-produced 

VRM is shown in Figure 6.6 - C), demonstrating that the presence of dithranol can 

be visualised through a cell without mapping the entire cell; a potential method of 

speeding VRM for unfixed or lice-cell Raman. The VRMs (Figure 6.6 – A & C) confirm 

the presence of dithranol inside the cell (and that it can be visualised), therefore 

justifying further exploration/stages and confirming the findings from [5]. 
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Figure 6.6 - VRM of dithranol exposed HaCaT cell: Showing a lateral cut through cross-section through the height of the 
cell (A), a white light microscope image of the mapped cell (B), and a (laterally) thinner VRM of the cell (C). 

 

 

6.3.2. Fixed cell analysis score plots 

In Figure 6.7 the principal component analysis (PCA) score plots provide an 

unsupervised method of visualising differences detected between the cells exposed 

to different dithranol concentrations, shown for principal components 1-5 relating to 

over 90% of the explained variance. The 2.2 µM (blue), 4.5 µM (green), and 9 µM 

(black) exposed cells are not separated in any of the score plots in Figure 6.7. 

However, the control cells (red), which relate to cells unexposed to dithranol, are 

seen as a separate cluster in PC3 vs. PC5 (A), PC3 vs. PC4 vs. PC5 (B), PC3 vs. 

PC4 (C), and PC1 vs. PC2 vs. PC3 (D). The control cells, which were not exposed 

to dithranol (red) are shown clustered separately in all the score plots. The clearest 

distinctions are seen in PC3-5, relating to 7% of the explained variance, indicating 

that further studies are required where separation is seen between the classes in 

principal components relating to a greater percentage of the variance; potentially 

suggesting fewer classes should be compared 9 (as was seen in Chapter 5). 
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Figure 6.7 - PCA score plots for varied dithranol concentration: Points coloured 2.2 µM (MC_2.2 - blue), 4.5 µM (MC_4.5 
- green), 9 µM (MC_9 - black), and (0 µM) control (MC_C - red) for all score plots. PC3 vs. PC5 (A), PC3 vs. PC4 vs. PC5 (B), 
PC3 vs. PC4 (C), and PC1 vs. PC2 vs. PC3 (D). MC relating to multi-concentration. 

 

 

6.3.3. Fixed cell analysis loading plots 

Figure 6.8 shows the loading plots for the three principal components used in Figure 

6.8, showing the loading plots for PC1 (A), PC2 (B), and PC3 (C). Dithranol is shown 
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to have a significant influence on maximising the variance within the dataset, with 

the highest loading peaks in principal components 1 and 2 being the 589 cm-1 peak 

related to dithranol (red arrows). The high loadings for dithranol result from three of 

four classes are dithranol exposed. The dithranol concentration was also increased 

to 4 times that used in a previous study looking at Raman mapping of dithranol in 

cells [5] in the highest dithranol concentration class (MC_9). The other highly loaded 

1178-1179 cm-1 and 1469-1471 cm-1 peaks are not only seen in more than one 

principal component but are also seen in the later PCA loading plots for unfixed cells 

(shown in blue arrows).  
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Figure 6.8 - Dithranol concentration loading plots: Loading plots for PC1 (A), PC2 (B), & PC3 (C) from the principal 
component score plots in Figure 6.7, highlighting the 598 cm-1 (red arrow), and the 1178-1179 cm-1 and 1469-1471 cm-1 
peaks (blue arrows). 
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The 1178 cm-1 peak in the positive loadings of PC1 and 1179 cm-1 in the negative 

loadings of PC3. The 1160-1180 cm-1 region has many associations with proteins 

[110], with the 1161 cm-1 Raman peak identified as relating to proteins in Chapter 5 

[172]. The 1175-1180 cm-1 region also has references linking it to nucleic acids [169], 

[181], Raman mapping of the distributions will be used in further investigation (Figure 

6.9). The 1469 cm-1 peak has a high loading in the negative loading of principal 

component 1 and 1471 cm-1 the negative loading of principal component 3, the 1470 

cm-1 region was associated with proteins and lipids in Chapter 5 [110], [170], which 

could indicate changes in the cell cytoplasm. In their study, Ashton et al [5] observed 

the dithranol initially (hours 0-6) located in the outer regions of the HaCaT cells they 

were mapping. The adaptation of lipids and proteins, molecules constituting large 

parts of the cytoplasm, would naturally be affected within the two-hour timeframe of 

this experiment, with the dithranol also seen in the cytoplasm in Figure 6.6. 

 

6.3.4. Fixed cell univariate mapping comparison 

Figure 6.9 compares the univariate maps of the wavelengths indicated by the PCA 

loadings in Figure 6.8. A univariate map of the 775-790 cm-1 Raman peak (Figure 

6.9 - A) provides an indication of the nucleic acid distribution within the cell, a 

standard method used to locate the probable location of the nucleus throughout the 

thesis. Comparing the 775-790 cm-1 map with the 598 cm-1 map (Figure 6.9 - D) 

shows that the dithranol is outside of the high nucleic acid intensity region, matching 

the observation of Ashton et al [5] for this time point (2 hrs). the 1178-1179 cm-1 map 

(Figure 6.9 - B) has high-intensity regions more closely overlapping with the nucleic 

acid (775-790 cm-1) high-intensity regions, suggesting that it may be linked to nucleic 

acids rather than proteins. The combination of the similar spatial distribution and 

Raman intensities for the 1178-1179 cm-1 (B) and 775-790 cm-1 (A) maps will result 

in 1178-1179 cm-1 Raman peak being assigned to Cytosine, guanine, and adenine 

[169] and coloured blue (Figure 6.9). 
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Figure 6.9 - Low(uni)-feature Raman maps of PCA highlighted Raman peaks: Comparing the known nucleic acid 775-790 
cm-1 region (A) map against the 1178-1179cm-1 Raman map and mapping the 1460-1480 cm-1 and 598-615 cm-1 loading 
plot highlighted peaks from Figure 6.8. Map dimensions: 26 × 29 µm 

 

 

Conversely, the 1460-1480 cm-1 region (Figure 6.9 - C) has significantly higher 

Raman intensities (over 150) than 1178-1179 cm-1 and 775-790 cm-1 (both near 20) 

regions, which matches the spatial distribution of the 598-615 cm-1 dithranol map 

(D).  Lipids and proteins are linked to the cytoplasm and the high-scoring regions for 

the hyperspectral images – where we know that the high-intensity regions for the 
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hyperspectral images are linked to dithranol (as the most loaded peaks for the first 

two principal components were the 598 cm-1 peak). The 1460-1480 cm-1 will 

therefore be coloured green, which has been used throughout the thesis to indicate 

the cell body, although it should be noted that the spectral region is also associated 

with lipids. The different highly loaded peak regions being associated with different 

physical phenomena are shown in the direction of the loadings (Figure 6.8), with 

1178-1179 cm-1 and 1469-1471 cm-1 peaks always loading in a different direction in 

principal components one and three respectively.  
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6.4. Results and discussion (Part B: Unfixed analysis) 

 

Having established that Raman can distinguish fixed HaCaT cells that have been 

exposed to different concentrations of dithranol, the ability of the flow chamber to 

replicate the results relating to drug exposure or not can be carried out focusing on 

replicating the clearest results from the PCA (drug-exposed or not) within the flow 

chamber. Unfixed Raman spectroscopy will be used during proof-of-concept studies, 

where suitable results will justify the further development of the flow chamber to 

provide full live-cell analysis for further development towards an in-Raman 

environment for the monitoring of bioengineered constructs. 

 

6.4.1. Controlling for cell death  

As this is unfixed analysis, defined as analysing cells that are alive but unsupported 

in terms of 5% CO2 levels, a control test was carried out to determine if any cell 

adaptions result from the dithranol exposure instead of cell death resulting from 

diminished culture conditions. The same procedure was carried out for the control 

analysis as the flow-supplied dithranol analysis in section 6.4.2. (minus the inclusion 

of the drug). Initial maps were collected of the cells using phenylalanine-free culture 

media, the cells were then cultured in the flow of phenylalanine-included media 

(providing the closest comparison to the experimental method used in section 6.3) 

for an hour, heated to 37 °C (dropping to 30 °C) through the hour. Phenylalanine-

free culture media was then used for Raman mapping of the cells. PCA was used 

as a commonly used unsupervised method that allows for some interpretation 

through the loading plots. In Figure 6.10 B, more than 70% of the explained variance 

is captured in the first three principal components. Neither Figure 6.10 A, plotting 

PC1 VS. PC2, B (PC1 vs. PC3), nor C showing the three-dimensional plot looking 

at all three principal components revealed any separation, providing confidence that 

separation in these principal components in any further studies would result from the 

exposure of the drug. 
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Figure 6.10 - PCA control study: PCA explained variance chart showing the cumulative explained variance y-axis for each 
additional principal component (x-axis). Score plots for PC1 vs. PC2 (A), PC1 vs. PC3 (C), and PC1 vs. PC2 vs. PC3 (D), with 
red relating to collections before flow (B) and blue being collections after flow (A) for all three score plots. 
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6.4.2. Flow supply to cell 

The same process was carried out as described in section 6.4.1., except with the 

addition of 4.5 µM of dithranol with the phenylalanine-included media. The maps 

were again collected in the phenylalanine-free media. Figure 6.11 C shows the first 

three principal components of the dataset produced from the flow-supplied dithranol 

cells representing nearly 80% of the explained variance. Figure 6.11 A, B, and D 

show clear separation of the clusters for the same principal components used in 

section 6.4.1., where no separation can be seen. The concentration of Dithranol 

used in the experiment (2 µM) was shown to have a significant effect on cells in 

section 6.3. The separation between the drug-exposed and unexposed cells would 

therefore perhaps be expected, however, this study aims to show that the flow 

chamber can support unfixed cells well enough to take up drugs, it is strong evidence 

that the flow chamber has achieved that goal. Especially when paired with the control 

in section 6.4.1., where no such separation was achieved under the same conditions 

except for the presence of the drug. The swapping of the media provides another 

advantage, as the phenylalanine-free media is not contaminated by the drug, 

showing that any signal relating to the drug is that which the cell has retained. 
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Figure 6.11 - Flow chamber supplied dithranol: PCA explained variance plot (C). Score plots for PC1 vs. PC2 (A), PC1 vs. 
PC3 (B), and PC1 vs. PC2 vs. PC3 (D), where red = before flow supplied dithranol (FD_B) and blue = after flow supplied 
dithranol (FD_A). 
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Figure 6.12 below shows the loading plots (PC1 – A, PC2 – B, & PC3 – C) for the 

PCA score plots in Figure 6.11 above. Key spectral peaks from section 6.4 (fixed 

cell analysis) are present in all three principal components, such as the 1178-1179 

cm-1 region relating to nucleotides and 1462-1479 cm-1 region (proteins and lipids). 

Similar peaks occurring in the loading plots suggest that some of the same molecular 

adaptations are occurring in the unfixed cells. An absent peak from the loading plots 

for the unfixed cells is the 598 cm-1 Raman peak, which was a prominent positive 

loading in principal components one and two for the fixed cells. The loss of the 

dithranol Raman peak could be because only one class is dithranol exposed in the 

unfixed analysis (as opposed to three in the fixed), with higher concentrations also 

used in the fixed analysis. A range of other peaks is also observed in the unfixed 

loading plot, potentially showing the benefit of avoiding fixing. 
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Figure 6.12 - Loading plots flow supplied dithranol (unfixed analysis): Loading plots for the principal components in the 
score plots for Figure 6.11, with PC1 (A), PC2 (B), and PC3 (C). Repeated loading peaks from the dithranol concentration 
(Figure 6.8) highlighted with continued blue arrows on the 1179 cm-1 and 1462-1479 cm-1 loading peaks. 
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6.4.3. Cell visual inspection before and after dithranol flow exposure. 

Images provide a more intuitive method of inspection, having shown the response 

of the cells to flow-supplied dithranol in section 6.4.2., Raman mapping of cells 

before and after the exposure to dithranol allows for comparison to the images of 

fixed cells in section 6.3. Having used the WiRETM VRM for section 6.3.1., where the 

objective was to simply confirm the presence of dithranol in the cell, this section uses 

the k-means directed shading to visualise the difference in cell morphology and 

identify the regions where the dithranol has become concentrated inside the cell. to 

remove the background to make drawing conclusions easier (from the slices). Figure 

6.13 A and B show the k-means clustering images, using qualitative shading and 

colours uncorrelated with a molecule to reduce the risk of confusion when 

molecules/colours are assigned to each region using the method described in 

Chapter 3 (see appendix). Figure 6.13 C and D show the k-means directed shading 

of each cell. The 598-653 cm-1 region relating to dithranol covers the entire cell 

(appendix), which shows no significant areas of concentration, with the cell only 

highlighted because the background has been removed. Therefore, no clusters are 

coloured red (dithranol) in C. C has a region of high nucleic acid which has 

correlating to the same region as the nucleus, as verified by fluorescence 

microscopy in Chapter 3. The yellow cluster in the K-means cluster image (A) is 

therefore coloured blue for nucleic acids in the k-means directed image. The pink 

cluster in the A relates to a high lipid region, resulting in it being coloured purple in 

the k-means directed image, with both placed on the 1330-1350 cm-1 protein spectral 

peak, which is high intensity throughout the cell, as has been seen through the 

project.  
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Figure 6.13 - Mapping unfixed cells pre- and post- flow chamber supplied dithranol: Qualitative k-means shading of  
HaCaT cell before (A) and after (B) 2 µM flow supplied dithranol exposure and k-means directed shading of the same maps 
(C=before and D=after). Pixel counts (x and y axis) in A, & B are in µm 

 

 

D has a similarly high protein (1330-1350 cm-1) region throughout the cell, although 

the nucleic acids are not as specifically packed into a region that could be the 

nucleus (as was seen in chapter 3), therefore no clusters are coloured blue. The 

orange and pink clusters in B relate to the high dithranol and lipid regions, when the 

entire cell is inspected (appendix), with a lower intensity region relating to the pink 

cluster in B. The Orange cluster was therefore assigned red, for dithranol, showing 

that the drug had concentrated in the lipid-rich region of the cytoplasm, the relatively 

low nucleic acid region within the image correlating with images in Ashton et al (Ref 

- 2015), which showed high-intensity regions for proteins and dithranol, with the 

nucleus becoming increasingly prominent over time (Ashton 2015). The visualisation 

of the maps proves further evidence that the cells have had the drug supplied to 
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them by the flow, in the Raman spectroscope, and responded in a similar fashion as 

to when the drug was supplied to them in an incubator. The clear demonstration 

justifies the further refinement of the flow chamber design, incentivising the 

development of a fully live-cell version for the investigation of factors used in the 

production of bioengineered constructs. 

 

 

6.5. Conclusion  

 

Supplying a drug (dithranol) in fluid flow more closely replicates in vivo conditions, 

incentivising the design, fabrication, and testing of a flow chamber that fits within a 

Raman spectroscope. Dithranol was selected as a drug capable of being Raman 

mapped within cells [5]. The ability of dithranol to Raman scatter enough to be 

discerned within the cell has the advantage of highlighting a key focus of this project, 

combining the morphological and molecular analysis provided by Raman 

spectroscopy. No flow chamber has previously been designed to facilitate two- and 

three-dimensional Raman mapping to the knowledge of the authors. Due to the 

novelty of the flow chamber design, the testing phase of the chapter started with the 

most basic feature of a spectroscope, to collect a spectrum. Further factors tested 

included the sample stability for Raman mapping in two and three dimensions, and 

the capacity of flow and cooled flow to reduce thermal damage in polystyrene beads.  

Having tested the capacity of the flow chamber for mapping, fixed cells were initially 

analysed to ensure dithranol could not only be Raman mapped but could be 

distinguished from control cells using Raman spectroscopy and PCA. Looking at the 

dithranol provided an opportunity to clearly show how a molecular signal can be 

mapped (in 3D) alongside chemometric analysis. The first step of the dithranol 

analysis was to expand dithranol Raman mapping onto 3D from the previously 

published two-dimensional mapping [5], allowing the distribution of the drug to be 

observed through the cell (Figure 6.6); achieving the third chapter aims. Showing 
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that Raman spectroscopy can distinguish dithranol exposed and unexposed cells in 

section 6.3 increased confidence that moving onto unfixed cell analysis was possible 

for analysis of dithranol in HaCaT cells.  

An initial study aimed to distinguish fixed cells exposed to different concentrations of 

dithranol, with score plots shown in Figure 6.7, showing cluster separation between 

the drug-exposed and unexposed, but not between the different dithranol 

concentrations. Loading plots were produced for Figure 6.8, and univariate mapping 

of highly loaded peaks is shown in Figure 6.9, showing the adaptability of the method 

described in Chapter 3. Inverting the method from using the observation of 

wavenumber intensity distribution over maps to allocate molecules (colours) to 

cellular regions, to instead using the method to verify molecular assignments to PCA 

loading plot peaks. The deeper analysis clarified which loaded peaks related to the 

drug-affected region of the cell (1460-1480 cm-1). Map comparisons also established 

that although Chapter 5 assigned the 1161 cm-1 Raman peak to proteins, the 1178-

1179 cm-1 peak was highlighted by the PCA loadings in Chapter 6 related to 

nucleotides. The fresh media also provided a washing effect for further verification 

using mapping. 

After demonstrating that PCA can separate dithranol exposed from unexposed fixed 

HaCaT cells, the next step was to investigate unfixed cell analysis. A controlled study 

was carried out to check that the flow chamber maintains an environment stable 

enough to avoid altering the molecular composition of the cell. The same planned 

method to distinguish cells exposed to dithranol and not was employed, except the 

dithranol was withheld. Maps of cells were collected immediately on immersion in 

the flow chamber in Dulbecco’s Modified Eagle Medium minus (phenylalanine red), 

followed by 2 hours of flow in full culture media, and finally, the full media was 

replaced, and the cells mapped again. PCA was then used on the selected spectra, 

with the aim of separating them into two classes (before and after). Figure 6.10 

revealed a lack of separation in the score plot clusters. It is difficult to categorically 

state that the two classes could not be distinguished, but the lack of separation using 

this method provides strength to future analyses that see subsequent separation 

following the change of a single factor (the inclusion of dithranol in this case).     
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Clear separation of the before and after (drug exposure) classes is seen in Figure 

6.11, which combined with the control study in section 6.4.1 provides clear evidence 

that Raman spectroscopy and PCA can distinguish cells exposed to dithranol in fluid 

flow; proving the second hypothesis correct. Importantly, once verified, it 

demonstrates the capacity of the flow to support cells and supply drugs/factors over 

two hours. The method used, replacing the dithranol-included culture media with 

fresh culture media before both analyses reduce the possibility that the dithranol 

influence is in response to the drug in the media. Loading plots were produced and 

showed continuity in some highly loaded peaks between the unfixed and fixed 

(Figures 6.8 & 6.12) cell PCA loadings.  

Finally, the questions raised by Ashton et al [5] looking for a repeatable and objective 

shading method are addressed, by using k-means directed shading on the unfixed 

cells in section 6.4.2. A repeatable and objective mapping method allows for 

mapping to be used as verification, with increased confidence in the shading and 

boundaries between sub-cellular regions. The mapping in figure 6.13 provided a 

check that the HaCaT cells prior to and post dithranol flow exposure exhibit 

alterations. The mapping in Figure 6.13 also confirmed the drug is present in the 

post-exposure cell and the cellular response to the drug follows the pattern seen in 

previous sections and studies [5] and third chapter aims. The molecular adaptations 

localised around the location of the drug are significant enough that the k-means 

clustering identifies those regions before the nucleus (Figure 6.13 - D), which was 

also seen in the fixed cells (Figure 6.13 - C). The drug is again seen around the outer 

edge of the cell body, outside the region of higher intensity in the 775-790 cm-1 

Raman map (Figure 6.13), comparable to the distribution seen for the fixed cell VRM 

(Figure 6.6). Two-dimensional mapping was used for the comparison of unfixed cells 

as VRM takes too long for cells that can move. Future studies may aim to determine 

the minimum VRM resolution that provides suitable morphological insight for the 

given experiment for unfixed or live-cell Raman VRM. 

Another area of further investigation would be to see if cell behaviour changes as a 

result of fluid flow over the cells when they are cultured on different scaffold 

geometries. Using the VRM to map any change in morphology. Further research 
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could also focus on full live-cell Raman analysis, developing the flow chamber to 

control the environmental CO2 levels, with refined control of the temperature, and 

automated fluid control. Automation could include varying the fluid flow rate, 

switching culture media for Raman mapping and extended cell culture, and 

drug/feature supply. Longer-term goals would be the further refinement of 

automation of culture conditions for streamlined experiments to include the collection 

of Raman spectra at given times, although this would require a direct interface with 

the Raman spectroscope.  
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Chapter 7 - Conclusions 

 

 

7.1. Introduction 

The purpose of this thesis was to build on research related to critical considerations 

for a method of monitoring bioengineered constructs or pharmaceutical testing of 

single cells. Low Raman scattering from water (H2O) removes the dehydration 

necessity faced by infrared spectroscopy, providing the opportunity to analyse 

unfixed or living cells. Previous applications of Raman spectroscopy have previously 

monitored tissue-engineered constructs [156]–[158], cell stages, stem cells  [182], 

and cell states [183]. The use of a flow chamber for Raman mapping has not been 

applied to mammalian cells previously. The final goal of the project was to develop 

an environment within a Raman spectroscope allowing the monitored culture of 

human cells, providing a platform to both spectrally and morphologically inspect the 

cellular response to environmental or pharmaceutical stimulation.  

By strengthening both the Raman mapping and machine learning analysis, both 

could be applied in a dynamic environment of a Raman spectroscopy flow chamber, 

justifying the chamber design, fabrication, and testing. The application of both VRM 

and machine learning is a combination not previously seen by the author, potentially 

providing a platform for automated assessment of pharmaceuticals and possible 

production of immunologically matching organs. The versatility of a combined 

mapping-chemometric analysis approach was demonstrated through application to 

both bioengineering and pharmaceutical research questions within this thesis.  

Any technique developed for the pharmaceutical industry demands repeatability and 

structured methods, easily transitioned into a fully calibratable standardised 

approach. Therefore, before the development of the flow chamber, several technical 

challenges needed addressing, relating to publications relating to Raman map/VRM 

collection [7], [40]–[42], shading [5], [6], and machine learning model training [3], [4]. 

The chapters were ordered to tackle iterative milestones simplifying subsequent 
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steps and moving toward the end goal of a Raman spectroscope platform for 

monitoring cell cultures. Working backward from the goal of applying machine 

learning and VRM to monitor cell cultures within a Raman spectroscope. Developing 

a platform to analyse cell cultures using Raman spectroscopy within a dynamic 

environment provides opportunities for temperature control, automated supply of 

pharmaceutical agents, and closer replication of in vivo conditions. But, before 

developing an entirely new device, bridging known Raman mapping/VRM/machine 

learning research gaps was critical.    

A key outcome of the project was assessing the compatibility of VRM with machine 

learning classification to monitor cultured cells, requiring the collection of both VRM 

and machine learning train/test datasets. The need for deeper investigation of 

machine learning metrics was demonstrated, with the learning curve applied to 

reveal the training behaviour when different test-train spits are employed to increase 

confidence that the model is not over-trained. Assessing the repeatability of the 

machine learning analysis was chosen to be carried out using datasets collected 

from HaCaT cells cultured on different substrate dimensions (2D vs. 3D) and varied 

scaffold designs. Exploring cells cultured into different morphologies provided 

evidence that the method could be used to track changes in cell response to 

bioengineered scaffolds, alongside an ideal study to establish the computability of 

VRM and machine learning. The ability to map the altered cell morphologies being 

linked to PCA-determined biomarkers and then classified using machine learning. 

However, to effectively assess the VRM and machine learning, key research 

questions relating to VRM first required addressing. Critical refinements for VRM of 

cell-scaffold constructs highlighted in the literature related to both shading [5], [6] 

and collection [7], [40]–[42] related distortions. Breaking the challenge into collection 

and data processing (shading) simplified the challenges. The design of accurately 

fabricated blocks, that could be used as a standard for calibrating VRM had been 

suggested by Baldock et al [6]. But representing the findings using a consistent 

approach throughout the chapter incentivised the first chapter to be focused on 

tackling challenges raised by Ashton et al [5], who questioned the current 

approaches to applying shading parameters to univariate Raman maps. The initial 
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focus on shading also provided another key simplification, the use of conventional 

(two-dimensional lateral) Raman mapping for the development of the method, for 

expansion to VRM in subsequent chapters. 

 

 

7.2. Raman map shading 

 

Ashton et al highlighted the need for a repeatable Raman map shading method, 

showing the disadvantages associated with automated (5-95%) Raman map 

shading, with the variability resulting from arbitrary selection of parameters 

demonstrated also in Chapter 3. A key research question for the project was the 

development of a shading method that could produce spectrally justified shading 

parameters. The benefit of tackling this research challenge for the thesis is to 

maximise confidence in morphological conclusions drawn from Raman maps 

throughout the project and in subsequent studies. To develop the shading 

justification suggested by Ashton et al, using violin plots [5], whilst employing the 

dithranol mapping, the thesis focused on single-cell analysis. A target of the shading 

method was to spectrally justify sub-cellular boundaries, highlighting key cellular 

regions like the nucleus and cytoplasm. Immortalised human keratinocytes (HaCaT) 

cells were selected for the development of the Raman mapping method, due to their 

use in a cell-dithranol psoriasis model [184]–[186]. The psoriasis model was a 

beneficial model to test Raman map shading on as Dithranol, the drug response 

being modelled, had previously been Raman mapped within HaCaT cells [5]. 

Different methods of shading Raman maps were highlighted with their benefits and 

limitations. The interpretability of univariate Raman mapping as contrasted with the 

reliability of clustering, inspired exploration of a shading method that could combine 

the two approaches. The first step of Chapter 3 was to select a clustering algorithm. 

Chapter 3 started with cluster images of HaCaT cells, using a standardised colour 

scheme for the thesis, which continued from a previous publication [6]. The limitation 
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of cluster shading is qualitative, removing the molecular fluctuation revealed within 

each cluster. Selecting k-means clustering instead of hierarchical cluster analysis 

achieved better HaCaT morphology correlation when verified fluorescence 

microscopy and principal component analysis hyperspectral images. K-means 

clustering also achieved quicker computation times, a beneficial property for a 

method designed to be applied to VRM datasets, which are inherently larger than 

conventional Raman maps of the same area and resolution. The chapter, therefore, 

aimed to combine the morphological accuracy and repeatability of k-means 

clustering with the molecularly interpretable (potentially quantitative) univariate 

Raman mapping.  

Associating regions of Raman maps to clusters made achieving a critical goal of the 

thesis possible. By viewing the generalised (mean) cluster spectral distribution, 

assigning the cluster a colour (molecule) became spectrally informed when 

determining sub-sections within the Raman map to visualise the sample (cell). For 

example, the capacity to link the cluster to the nucleus or cytoplasm was 

demonstrated, providing a solution to the questions raised in previous studies [5], 

[6]. Another key outcome for the k-means directed method is the ability to isolate 

regions of interest (to the research question) or external to the cell (scaffold or 

background), also using spectral justification. Another key benefit of k-means-

directed shading is increased objectivity, with subjectivity limited to the choices of 

the number and assignment of clusters. 

The key finding of Chapter 3 was demonstrating the capacity of Raman spectroscopy 

to repeatably and objectively visualise morphological changes using mapping, a key 

objective in the monitoring method. By providing confidence in morphological 

analysis when monitoring changes in behaviour, the results are more effectively 

paired with machine learning. Outlining a robust Raman map shading method was 

an important first step in the project, reducing the effect of shading variability when 

investigating depth-related distortions in Chapter 4. [6][7], [30], [42]The choice of 

transparency settings [6] and opaqueness settings being further complicated by the 

need for consideration of sample refractive index published in a non-biological 

context [7], [30], [40]–[42]. Demonstrating k-means directed shading on conventional 
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Raman maps retained clarity before developing onto the opaqueness settings or z-

stacking required in VRM. Comparison to PCA hyperspectral imaging provided both 

verification of the cluster boundaries and an indication of molecular signatures to 

investigate further using univariate mapping. The publication of spectrally justified 

shading is a key research outcome for the chapter and a significant step forward to 

the arbitrary choice of shading parameters highlighted by Ashton et al in 2015 [5]. 

 

 

7.3. VRM calibration 

 

As with milestone 1, milestone 2 aimed to maximise confidence in morphological 

findings, this time focused on data collection. Bioengineered constructs are large 

enough to form tissues and eventually, organs are normally three-dimensional 

structures. A system designed to monitor cell-structure interactions for advanced 

constructs must therefore be capable of visualising the morphological response of 

the cells in 3D. In microscopy, the common method of determining the resolution is 

0.5 × Airy disk, width for lateral resolution, and height for axial, a method previously 

shown ineffectual for axial resolution [7], [20], [40], [41]. Additional complexities 

compared to conventional Raman mapping include lateral and axial resolution 

asymmetry [20], [40], [41], and out-of-focus contributions [30], [42] justified a refined 

VRM method.  

Direct laser writing (DLW) provided a method of determining VRM spatial accuracy, 

when investigating the influence of depth distortion, resolution asymmetry, and out-

of-focus contributions [30], [42]. An important conclusion to draw from the DLW 

printed books (Figure 4.3) was that the apparent size of an object can be altered 

significantly by the z-step used in the VRM collection. DLW was found to provide 

suitable accuracy for calibrating VRM at a suitable scale for single-cell mapping, 

verified by scanning electron microscopy. The known size of the calibration block 

indicates the error level for a given VRM. 
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DLW is also a tool for fabricating three-dimensional cell culture environments, with 

high print accuracy providing the opportunity to investigate the effect of depth 

distortions on single-cell VRM. Developing the method specifically for the analysis 

of cells and scaffolds in the same map ensures the applicability of the method with 

a wide range of tissue engineering applications that use polymeric materials [187]–

[190]. The challenge for Chapter 4, was therefore to produce a calibration method 

that uses material compatible with Raman mapping of cells, alongside accounting 

for optical considerations. OrmoCompTM was selected, with the previous publication 

of the bio-independent Raman peaks [6]. OrmoCompTM also has acceptable optical 

properties for single-cell VRM, especially when combined with effective design. 

Designing scaffolds taking depth distortion and the diffraction limit was found to be 

useful when mapping tubes of staggered height, providing a starting point for 

iterative refinement of the method for analysing HaCaT cells with scaffolds. A couple 

of methods were used, initially looking at the differences between the mean and 

median of each Raman slice, using the violin plots suggested by Ashton et al 

(providing a linking analysis) to show the multiple of the slice median used as a 

threshold for the shading. Mapping varied scaffold depths that were hypothesised 

(section 4.3.3.) as within a range for the Raman system used 0.75 NA 50× objective 

in air, with a 532 nm laser, showed the need for an empirical calibration method, 

incentivising the design of calibration blocks in the next iteration. Comparing the 

results to scanning electron microscopy verified the shading method, allowing k-

means directed shading (developed in parallel) to be applied to the calibrated VRM 

datasets. 

An important outcome for the chapter was demonstrating that k-means directed 

shading developed in Chapter 3 could be applied to the shading of VRM z-stacks, 

visualising cells in different morphologies (Figures 4.10 & 4.11). The first experiment 

to combine the calibrated z-steps and k-means directed shading produced a VRM 

of a cell on a porous scaffold. The cell attachment to the scaffold, in a pore, meant 

the depth distortion and interference from the scaffold were avoided, informing the 

design of “simple” scaffolds in Chapter 5. The avoidance of scaffold axial depth also 

inspired the development of angled beam scaffolds, where thin sections (beams) 



191 
 

were angled at 45° and combined to produce a scaffold twenty times deeper than 

the calibration block defined maximum depth whilst avoiding depth distortion; 

tackling a chapter aim to advance scaffold design using the calibration findings 

(section 4.3.6). Defining z-steps and depth ranges provides a structured approach 

to VRM production, with the potential for expansion to larger applications than single-

cell analysis. 

The innovation of angled beam scaffolds provides a wider scope for influencing cell 

behaviour than simple scaffolds, and significantly more than calibration block depth 

scaffolds would. The final figure in Chapter 4 showed a hexagonal construct 

produced by joining angled beams together to form a cone, or cage structure. The 

avoidance of depth distortion for the cage scaffold provided the potential to alter the 

design to determine if the cellular response changes. Calibration block increases 

confidence in reported cell morphology changes, a key outcome for Chapter 5 

comparing VRM visualised morphology to machine learning classification. The larger 

refractive index of the calibration block results in lower depth-related distortions 

within water-immersed cells, improving confidence in cellular VRM coordinates in 

calibrated maps. Scaffold designs that counter depth distortion and out-of-focus 

contributions when paired with suitable z-steps were next adapted to determine any 

influence on cell behaviour in Chapter 5. By combining the k-means directed shading 

with z-step calibrated VRM, the 3D morphologies can be investigated using 

dimension reduction and classified to demonstrate the capacity for cell-scaffold 

monitoring using supervised learning. 

The key conclusion for the depth distortion section of the thesis is that DLW provides 

a fabrication method for constructs of known size, allowing for the calibration of VRM. 

The approach was shown to produce comparable results in VRM shaded using two 

different methods, including k-means-directed shading. By addressing gaps in the 

research relating to the collection and processing of Raman maps and VRM, the 

next stages of the thesis could focus on applying Raman mapping with machine 

learning for the monitoring of cell behaviour with maximised confidence in the 

findings. The additional findings of background removal and target region selection 

during the production of k-means directed Raman maps can be providing clearer 
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Raman map images and focus chemometric/machine learning analysis on regions 

within Raman maps.  

 

 

7.4. Machine learning  

 

To monitor a system, you must first understand it. Developing a monitoring method 

can therefore be broken into two stages. The first stage is to define an expected 

response from the system being monitored, allowing future behaviour to be 

compared to that standard. The second stage is to build a system that can carry out 

the comparison automatically and repeatably. In the context of a monitoring method 

of cells on a bioengineered construct, previous examples include tissue-engineered 

skin [18], [135], cartilage [136], single cells [137], and the extracellular matrix [138], 

with PCA also employed for drug response investigations [191]–[195]. A study 

exploring cell response to scaffold design provided an opportunity to combine the 

scaffold designs from Chapter 4, alongside developing the previous PCA analysis of 

cells in flow with VRM. The ability to view the cell response to porous scaffolds is 

advantageous in three dimensions. A previous publication by Greiner et al [8] 

previously showed altered invasiveness in response to the gene editing-induced 

nuclear stiffness reduction. Chapter 5 flipped this study, looking to detect molecular 

changes in cells changing their morphology in response to substrate geometry.   

PCA provided an objective analysis ideal for initial data exploration, as the earlier 

introduction of subjectivity into a study may have a cascading effect through the 

analysis. The PCA loading plots increase interpretability by indicating the spectral 

regions maximising variance within the principal components. A broad analysis is 

provided by Raman spectroscopy through the linking of PCA-derived molecular 

information with VRM visualised morphological insight. Showing unsupervised 

separation in the PCA score plots increases confidence in subsequent supervised 

algorithm predictions, as the relationship being classified has a large enough 
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influence on the system to appear without the influence of labels. The addition of 

VRM allowed for the visualisation of altered cell morphology alongside any potential 

biomarkers or spectral regions of interest to the research question.  

A key research question raised in Chapter 4 was: Is k-means directed shading of z-

stacks generalisable/repeatable when mapping different scaffold designs scaffolds. 

The analysis was carried out over three scaffold design types “simple” scaffolds, 

cage scaffolds, and varied pore-size scaffolds. The findings from the previous 

chapters and phases into each subsequent experiment. PCA formed good cluster 

separation for the simple scaffold vs. Off and the 5-beamed cage scaffold vs. Off 

datasets but did not achieve separation for 5-beamed vs. 10-beamed cage scaffolds, 

or the varied pore sizes dataset. Combining VRM and PCA for an initial analysis, 

allowed the varied cellular responses to the scaffolds to be visualised, with the first 

figure showing the complexity of choosing transparency and opaqueness settings 

for WiRETM-produced VRM.  

To determine the benefit of a more rigorous but complex shading method, the 

capabilities of different VRM approaches were initially compared. WiRETM VRM and 

k-means directed z-stacks were then produced to visualise the morphology of a cell 

on a scaffold, both showing an elongated morphology when compared to the VRM 

of cells on a flat surface in Chapter 4, Figure 4.3. However, WiRETM-produced VRM 

cannot be used in direct comparisons between subcellular regions in the way that 

you can for k-means directed shading of z-stacks. The use of k-means-directed 

shading allowed the averaged cluster spectra, showing the benefit of publishing this 

information through the detection of OrmoCompTM contamination in the cell body 

cluster. The detection of spectral contamination incentivising the use of k-means 

clustering for region selection in subsequent sections of the thesis. The ability to map 

cells on different substrates and scaffolds (chapter 5 hypothesis 2) allowed another 

chapter hypothesis (1) to be tested, linking changed morphology to two and three-

dimensional substrates. 

The removal of scaffold-contaminated regions of the Raman maps was especially 

important when training machine learning models to demonstrate their capacity to 
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distinguish cells grown in different morphologies. Logistic regression, linear 

discriminant analysis (LDA), and support vector machine (SVM) were selected as 

supervised learning techniques capable of classifying datasets with under one 

hundred observations. The use of learning curves provided a more thorough 

illustration of the three models performance, with the 5-fold cross-validation 

behaving similarly for the three analyses. Learning curves show the researcher has 

not found the one subset within the dataset, or even one training dataset size, that 

has produced the correct metric. The suitable size of the training dataset is indicated 

alongside the spread of the results for each increment, if the lowest accuracy (or 

other metric) indicated by the standard deviation is suitable for the application, 

greater confidence in the model repeatability is provided.  

A secondary purpose of the chapter relates to a thesis theme, standardisation, and 

repeatability, with the application of learning curves to increase confidence in the 

repeatability of the analysis. The publication of learning curves would increase the 

confidence in all machine learning models for vibrational spectroscopy. The 

convergence (or not) of all three trained models to similar scores, further increases 

confidence that a significant signal is detected to trust the class separation. 

Classification was achieved when distinguishing cells on simple scaffolds and the 

slide surface (off), and cells on the 5-beamed cage and off. Successful supervised 

classification of the cell on and off scaffolds was correlated with good separation in 

the PCA score plots, with poor classification produced for the 5-beam vs. 10-beam 

and the varied pore size datasets. The value of k-means removal of OrmoCompTM 

contaminated regions of the map, by increasing confidence that separation is a result 

of biological differences rather than contamination of scaffold materials, or not. 

Determining whether dimension reduction (chapter 5 hypothesis 2) can separate, 

and achieve the chapter aim of supervised learning distinguishing cells grown on 

different geometry scaffolds provides a key research outcome towards monitoring 

cells on bioengineered constructs. The scaffold influence on the analysis is removed 

by the k-means removal of contaminated regions of the maps used. Further 

confidence is gained that OrmoCompTM contamination was avoided through its 

relatively high Raman intensity when compared to biological molecules. If 
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OrmoCompTM contamination remained, there would be a significant spectral 

difference, which could result in the separation of the Off class (which would not 

have any OrmoCompTM).  Reasons for the lack of separation could be not enough 

data, potentially the dataset is too unbalanced towards the porous scaffold cells. In 

a subsequent dataset with potential class imbalance, the control cells are isolated 

(Figure 6.7), where dithranol may result in more significant adaptations than size. 

However, it must also be said that pore dimension-induced adaptation in cells may 

be too small compared to the off cells. To try and counter the imbalanced dataset in 

section 5.3.4, random forest and decision tree classifiers were trained, as they are 

compatible with imbalanced datasets; failing to achieve suitable accuracies. Future 

studies looking to separate cells grown on different scaffold varieties (requiring 

unbalanced datasets) may target larger datasets for random forest algorithms.  

The subtler differences between cells cultured in different 3D morphologies also 

provide potentially useful information moving forward. Although harder to 

demonstrate without controls, that a scaffold does not induce a significant difference 

in the cells is also useful information when monitoring a bioengineered construct. 

Beneficial results were repeatably shown to separate cells grown on two- and three-

dimensional substrates. The morphological response of cells to being cultured in a 

three-dimensional morphology shown was shown using VRM. The molecular 

changes detected in response to being on or off a scaffold, typically relating to 

proteins and nucleic acids shown using PCA. It can therefore be concluded that cells 

on and off scaffolds could be monitored, with three trained models showing 

repeatability in proof-of-concept datasets. The key objective of Chapter 5 is the 

strengthened repeatability of machine learning systems for monitoring cell 

behaviour. The use of Raman spectroscopy to distinguish cells grown on different 

scaffold designs allowed the next experiments to develop the analysis from a static 

environment to a dynamic one. 
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7.5. Flow chamber  

 

The last stage of the thesis looked to progress from static Raman analysis to 

dynamic, moving towards a platform for automated cell culture using full live-cell 

Raman with temperature and CO2 control. Previous research had mapped cell-drug 

interactions [196]–[198] in static environments or limited to enclosed flow cytometry 

chambers [197]. Chapter 6 aimed to combine these approaches with the techniques 

developed in earlier chapters, developing an open design to allow for the use of an 

immersion objective. The use of an immersion objective provides an advantage over 

other flow mapping methods [196]–[198] in improving the optical properties between 

the objective and the sample, making VRM possible. The purpose of the chapter 

was to determine the flow chamber capabilities, iteratively increasing the complexity 

of analysis to build towards a platform, providing combined VRM-machine learning 

monitoring as seen in previous sections of the thesis.  

The in-situ Raman flow chamber design aimed to build on the previous experiments, 

expanding the applications from monitoring substrate/scaffold influence on cell 

morphology to a pharmaceutical application (psoriasis model). No open flow 

chamber has been developed for dynamic VRM to the knowledge of the author. The 

novelty of the design demanded rigorous testing to ensure safety and data quality 

when bridging that gap. The testing ensured the flow chamber met the specified 

design aims, starting with simple spectral collection, moving onto conventional 

(lateral) Raman mapping, and VRM of DLW printed construct. The capacity of the 

flow chamber to influence sample temperature was demonstrated using both UV-

laser analysis of polystyrene (cooling) and unfixed HaCaT cell analysis (warming). 

A Chapter 6 objective was exploring the versatility of the cell behaviour monitoring 

approach developed through the previous chapters (k-means directed shading, 

calibrated VRM z-steps, and chemometric approach. Collecting a VRM of a fixed 

HaCaT cell showed that VRM of a cell within the flow chamber is possible, even if 

some refinement is required for VRM to be quick enough for lice-cell Raman. 
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A VRM was collected within the flow chamber using a fixed HaCaT cell, justifying 

the continued investigation into an open flow chamber for Raman spectroscopy/VRM 

and justifying the dithranol-HaCaT cell investigation. The first dithranol experiments 

established a baseline for comparison in subsequent (more complex) analyses using 

fixed HaCaT cells. The malleability of the cell-scaffold experiments was tested by 

replicating the use of VRM and PCA to explore the system. A VRM of a HaCaT cell 

exposed to 2 µM of dithranol built on the analysis published by Ashton et al [5] 

visualising the dithranol within the cell in three dimensions. The dithranol distribution 

in the cytoplasm of the cell, as seen previously [5].  

The VRM was then paired with PCA analysis, aiming to provide morphological and 

molecular standards for unfixed Raman analysis. PCA was selected for the unfixed 

analysis, to align with the exploratory method applied in Chapter 5 and previous 

publications exploring flow cytometry of cell drug exposure using Raman mapping 

[196], [197]. PCA score plots showed that the difference between dithranol-exposed 

and unexposed cells could be more easily distinguished than cells exposed to varied 

dithranol concentrations over two hours. The lack of separation in the score plot 

between the cells exposed to different dithranol concentrations may indicate the 

need for a larger dataset, the cellular response to the different concentrations not 

being significant enough, of the fixing process reducing the spectral information 

available.  

The separation of the dithranol exposed and unexposed showed that the exposure 

to the drug could be detected with Raman spectroscopy and PCA, where PCA score 

plot separation of class clusters correlated with supervised learning classification 

success in Chapter 5. The loading plots for the principal components used also 

provided information as to the regions of the spectrum responsible for the separation 

of the drug-exposed from the drug-unexposed cells. The highly loaded peaks relating 

to the dithranol, proteins, and lipids regions, suggest that adaptions were occurring 

in the cytoplasm, concurring with the dithranol distribution seen in the VRM and the 

findings of previous research [5]. The main findings from the fixed analysis in 

Chapter 6 showed that mapping the three-dimensional dithranol distribution within 
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cells is possible and that PCA can separate dithranol exposed and unexposed 

HaCaT cells. 

Alongside providing an opportunity to explore the adaptability of the VRM-

chemometric analysis for monitoring cell behaviour, a dynamic environment was 

desirable for replicating in vivo conditions more closely. The flow chamber was 

shown to provide an approach for controlling cell culture variables (temperature, 

factors, culture media type) to be altered without disturbing the sample position, 

critical for a system designed for Raman mapping. The control of temperature was 

valuable when investigating unfixed cell Raman analysis, where a key Chapter 6 

aim, supporting cell life through an extended (1-2 hour) study. Being able to support 

cell life in a stable enough condition to be undetectable in a control study incentivised 

the study of unfixed cells, increasing the complexity of the analysis, and moving 

towards monitoring of cells using true live-cell Raman spectroscopy. 

The unfixed analysis is the more accurate term for the initial flow chamber analysis, 

with control of the CO2 concentration limited and the temperature inconsistent 

compared to true live-cell Raman. The flow chamber did provide predictable survival 

of the cells over the two hours of the previous fixed cell analysis. A control study 

found that the flow chamber did not cause detectable changes in the cells using 

Raman spectroscopy and PCA. Following the control study, the same experiment 

was carried out, using the same method except for including the dithranol. Raman 

maps were collected before and after the two hours in the flow chamber using 

phenylalanine-free culture media. The PCA score plot results showed no separation 

of the cells before and after the flow chamber, suggesting that any subsequent 

cluster separation would result from any change in the culture conditions. The PCA 

results for the before and after maps subsequently showed clear separation when 

the drug was included in the two-hour flow exposure resulting from the dithranol. 

Inspection of the loading plots showed some concurrent peaks from the fixed cell 

analysis previously relating to proteins and lipids, relating to the cytoplasm, 

highlighting the value of the fixed cell analysis and a standard moving forward. 

Unfixed mapping of the cells before and after the dithranol flow exposure, shaded 
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using k-means directed shading, showed similar dithranol distribution to the VRM 

carried out on a fixed cell, showing further concurrency in the analyses. 

A key research outcome for Chapter 6 was establishing that cells could be supplied 

a drug (dithranol) inside a Raman spectroscope and that Raman mapping and 

chemometrics were able to verify the presence of the drug (Figures 6.10-13). 

Successfully supplying a drug to cells in a flow chamber justifies the development of 

the flow chamber to true live cell Raman spectroscopy, potentially with the addition 

of automated temperature, fluid, and CO2 control. The automation of the live-cell 

environment would allow for longer-term experiments and incentivise the further 

development of automated Raman spectra and map collections. A wider range of 

drug and cell combinations could be monitored, providing simpler studies to refine 

the technology upon, building towards tissue or bioengineered constructs. The loss 

of the dithranol Raman peak in the loadings between the fixed and unfixed dithranol 

supply provides an area of research for future studies, understanding whether it 

relates to an unbalanced dataset (75% varied dithranol – 25% control), or whether 

the flow provided a better means of supplying the drug; more closely replicating the 

human bodies environment. An important outcome from Chapter 6 is the testing of 

a flow chamber for Raman spectroscopy, which now tested is a platform that 

significantly expands the cell stimulation within a Raman spectroscope that can be 

Raman mapped. 
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7.6. Future research 
 

The goal of the project was to develop methods of monitoring cells for the further 

development of an automated method of monitoring bioengineered constructs. 

Chapters 3 and 4 looked at the production and processing of Raman maps in two- 

and three-dimensions. The potential of Raman spectroscopy for the visualisation 

and monitoring of altered cell behaviour was explored in Chapter 5 and the findings 

from the previous three chapters were applied within the novel in situ Raman 

spectroscope flow chamber in Chapter 6. The flow chamber provides a platform for 

single cells to be monitored in a dynamic environment, allowing the cells to be 

visualised and analysed using the mapping techniques developed in the previous 

chapters. A potential area of further investigation would be to see if cell behaviour 

changes result from fluid flow over the cells when they are cultured on different 

scaffold geometries. Using the VRM to map any change in morphology through 

exploration of methods to speed VRM collection times [199]–[201]. 

The focus of this thesis has been single HaCaT cells, future research would ideally 

identify a wider range of target cells (e.g. different disease models, stem cells, or 

primary cells). Investigating different cell types and research questions would further 

demonstrate the versatility of the approach. Different cell types would also stimulate 

further scaffold designs, with different bioengineering research goals, such as cell 

attachment, deeper scaffold invasion, or cell migration, to be explored. Different and 

varied cell behaviours may necessitate increasingly complex monitoring 

requirements, requiring the training of more complex machine learning models. The 

collection of larger datasets would therefore be a key focus of future research to 

provide greater strength to the monitoring capacity of Raman spectroscopy. The 

production of larger datasets may provide the opportunity to train robust multi-class 

machine learning models, providing the opportunity to monitor a wider range of 

behaviours with a single model.  

Visualising (Chapter 4) and classifying (Chapter 5) altered cell morphology in 

response to scaffold design using VRM (Chapters 4 and 5) invites questions about 

other adaptations it can reveal. Potential areas of research could include molecular 
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variation in response to substrate material properties, like changes in nuclear 

stiffness in response to higher scaffold Young’s modulus. The tools developed in 

Chapters 3 and 4, facilitate the linking of changes in a specific location/organelle 

within a cell to a desirable outcome that can subsequently be used to train machine 

learning models, potentially exploring larger biological systems. 

Bridging gaps in Raman spectroscopy and machine learning to monitor 

bioengineered constructs provides rigorous methods for testing cells for tissue 

engineering and pharmaceutical research. The thesis focused on single-cell 

analysis, reducing the collection times, and maintaining a link to research that guided 

key research outcomes for the project [6]. Reduction of VRM collection times is 

important for research with the goal of developments towards live-cell VRM. 

However, larger systems have been mapped using VRM, like whole Zebrafish [84]. 

A longer-term goal for the research could be the monitoring of tissues or tissue-

engineered constructs. Goals that require quicker VRM collection or a targeted 

analysis to indicate the health of the entire system through inspection of key regions. 

Improving collection time would also increase testing time, providing medical devices 

to surgeons sooner.  
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