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Abstract  8 

The efficient and sustainable supply and transport of water is a key component to any functioning civilisation making the 9 

role of urban water systems (UWS) inherently crucial to the wellbeing of its customers. However, managing water is not a 10 

simple task. Whether it is aging infrastructure, transient flows, air cavities or low pressures; water can be lost as a result of 11 

many issues that face UWSs. The complexity of those networks grows with the high urbanisation trends and climate change 12 

making water companies and regulatory bodies in need of new solutions. So, it comes as no surprise that many researchers 13 

are invested in innovating within the water industry to ensure that the future of our water is safe.  14 

Deep reinforcement learning (DRL) has the potential to tackle complexities that used to be very challenging as it relies on 15 

deep neural networks for function approximation and representation. This technology has conquered many fields due to its 16 

impressive results and can effectively revolutionise UWS. In this article, we explain the background of DRL and the 17 

milestones of this field using a novel taxonomy of the DRL algorithms. This will be followed by with a novel review of DRL 18 

applications in the UWS which focus on water distribution networks and stormwater systems. The review will be concluded 19 

with critical insights on how DRL can benefit different aspects of urban water systems. 20 

Key words: Deep reinforcement learning; leakage; urban water systems; pressure management; stormwater systems. 21 

1. Introduction 22 

Water scarcity is a reality experienced by 2.3 billion people globally that live in water-stressed countries yet water demand is 23 

set to increase by 40% by 2030 (Endo et al., 2017). Our water preservation practices are not sustainable and will diminish 24 

the availability of clean water. In response to the rising challenges of water distribution in the UK, regulatory bodies such as 25 

Ofwat and the Public Accounts committee have been pushing water companies to reimagine the water sector by 2050 (Mace, 26 

2020). Main themes of the sector-wide strategy include to ‘Deliver resilient infrastructure systems’ and ‘achieving net-zero 27 

carbon’ that will rely on developing better water management within UWS (U.K.W.I.R., 2020). The preservation of the 28 

world’s most important resource increases in complexity as we consider the outdated infrastructure forced to keep up with 29 

the rising customer demands. Tackling such high dimensional scenarios will require more research and extensive efforts 30 

from both industry and academia to rectify the mishandling of water distribution networks.  31 

In this paper we explore a specific subfield of machine learning that has overwhelmed the research community and IT 32 

companies such as OpenAI (Berner et al., 2019) and Google (Silver et al., 2016) - Deep Reinforcement Learning (DRL). 33 

DRL is an emerging field of dynamic computing that has risen through the use of deep neural networks to advance 34 

reinforcement learning (Mnih et al., 2015a). Its successes rely on its applicability in real world scenarios that require 35 

learning from experience and its failures arise from challenges in instability and environment definition. The appealing 36 

nature of finding low-dimensional features the accurately represent high-dimensional real-world problems and experience 37 

driven autonomous learning makes DRL a true advancement in AI. As this field grows, researchers have developed 38 

numerous deep reinforcement learning algorithms that equip computational methods such as bootstrapping, backups, replay 39 

memory and function approximation to overcome any issues that arise and improve results (Li, 2017). In addition to 40 

numerous neural network architectures, deep reinforcement learning has quickly grown to become an unclassified jungle of 41 

artificial intelligence advancements.  42 

Navigating the field of DRL requires a solid knowledge of its predecessor Reinforcement Learning and the major 43 

advancements that were led by the introduction of neural networks which is covered in section two. After reviewing the 44 

wider field of research, this paper focuses on a novel review of the application of DRL in urban water systems which 45 

includes challenges and opportunities to applying DRL in UWS followed by case studies in water distribution and 46 

stormwater management in section three. This in-depth review of the current research in the UWS will lead to an extensive 47 

discussion regarding the future of deep reinforcement learning in UWS in section four. This will hopefully unveil 48 

unexplored avenues of research to promote the use of DRL in water. A list of abbreviations used is available in Table 1-1 49 

below. 50 

Table 1-1 List of Abbreviations 51 
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Abbreviation Name 

A2C Advantage Actor Critic 

A3C Asynchronous Advantage Actor Critic 

ACKTR Actor-Critic using Kronecker-factored Trust Region 

ANN Artificial Neural Networks 

ASM-SMP Activated Sludge Model - Soluble Product 

C51 Categorical Deep Quality Network 

CMA-ES Covariance Matrix Adaptation Evolution Strategy 

CSO Combined Sewer Overflow 

DDPG Deep Deterministic Policy Gradient 

D-DQN Dueling – Deep Quality Network 

DE Differential Evolution 

DMODRL Dynamic Multi Objective Deep Reinforcement Learning 

DP Dynamic Programming 

DQN Deep Quality Network 

DRL Deep Reinforcement Learning 

DST Deep Sea Treasure 

E-PPO Exploration enhanced – Proximal Policy Optimisation 

ExIt Expert Iteration 

FQF Fully parameterised Quantile Function 

FSSRS Fixed-Step Size Random Search 

GA Genetic Algorithm 

GAE Generalised Advantage Estimation 

GCN Graph Convolutional Network 

GCN-DQN Graph Convolutional Network – Deep Quality Network 

GCN-DRL Graph Convolutional Network – Deep Reinforcement Learning 

GLIE MC Greedy in the Limit with Infinite Exploration - Monte Carlo 

GPU Graphics Processing Unit 

I2A Imagination-Augmented Agents 

IQN Implicit Quantile Regression 

KA-PPO Knowledge Assisted – Proximal Policy Optimisation 

k-NN k-Nearest Neighbour 

MADRL Multi Agent Deep Reinforcement Learning 

MBMF Model Based priors for Model Free 

MB-MPO Model Based Trust Region Policy Optimisation 

MBVE Model Based Value Estimation 

MC-ES Monte Carlo Exploration Strategy 

MDP Markov Decision Process 

ME-TRPO Model Ensemble Trust Region Policy Optimisation 

ML Machine Learning 

MO-MCTS Multi Objective – Monte Carlo Tree Search 

MP-DQN Multi Policy – Deep Quality Network 

MPQ Multi-Period Quadratic 

ORM Objective Relation Mapping 

PDW Performance Degree 

PPO Proximal Policy Optimisation 

PQDQN Proposed Parity-Q Deep Quality Network 

PSO Particle Swarm Optimisation 

Q Learning Quality Learning 

QR-DQN Quantile Regression – Deep Quality Network 

QT-Opt Quantile Regression for Reinforcement Learning 

REINFORCE REward Increment = Nonnegative Factor × Offset Reinforcement × Characteristic Eligibility 

RL Reinforcement Learning 

SAC Soft Actor Critic 

SARSA State-Action-Reward-State-Action 

SCADA Supervisory Control and Data Acquisition 

SRI System Resilience Index 

SSC Suspended Sediment Control 

STEVE Stochastic Ensemble Value Expansion 

SVG Stochastic Value Gradients 

SVM Support Vector Machine 

SWMM Storm Water Management Model 

TD Temporal Difference 

TD3 Twin Delayed Deep Deterministic Policy Gradient 



TRPO Trust Region Policy Optimisation 

UCB Upper Confidence Bound 

UWOT Urban Water Optioneering Tool 

UWS Urban Water Systems 

WQR Water Quality Resilience 

WWTP WasteWater Treatment Plant 

2. Deep Reinforcement Learning Background 52 

The field of machine learning (ML) has been a trending topic for researchers from diverse backgrounds such as virologist, 53 

biologists, engineers, psychiatrists, and more (Libbrecht and Noble, 2015; Nichols, Herbert Chan and Baker, 2019) due to its 54 

ability to analyse real world problems using algorithms that tackle more dynamic perspective and improve with experience 55 

(Shinde and Shah, 2018). Machine learning begun as researchers hoped to achieve a novel area where instrumentation can 56 

achieve innate learning and demonstrate more ‘intelligent’ behaviour. From the first ML algorithm in 1951 named ‘response 57 

learning algorithm’ until the current day, artificial intelligence has only been empowered by this new field (Shinde and Shah, 58 

2018). Some of the major achievements in ML was the creation of the algorithms Linear Classifier, Naive Bayes, Bayesian 59 

Network, Support Vector Machines (SVM), k-Nearest Neighbour (k-NN) and Artificial Neural Networks (ANN) (Shinde 60 

and Shah, 2018). ANNs were then adapted further to introduce deep layer and hence the introduction of Deep Learning. 61 

ML has successfully developed the world of artificial intelligence into a true hope for near-human intelligence. Machine 62 

learning methods are often split into supervised learning used for classification and regression (Shinde and Shah, 2018; 63 

Nichols, Herbert Chan and Baker, 2019) or unsupervised learning methods used for clustering and feature engineering 64 

(Libbrecht and Noble, 2015). Where supervised learning depends on our prior knowledge and labelled examples to form an 65 

understanding of the model; unsupervised learning aims to learn some hidden structure using feature extraction of the 66 

unlabelled dataset. Whilst both forms of learning have greatly advanced their respective fields and widened the scope of 67 

artificial intelligence; they fall victim to the curse of time. Overlooking the effect of time can have grave consequences when 68 

implementing ML models to sensitive and stochastic applications which is often the case with engineering problems such as 69 

urban water management. Hence, the need of a learning approach that incorporates the hidden dimension of time – 70 

Reinforcement Learning. Figure 2-1 highlights the place of RL as a subfield of machine learning. RL’s ability to consider 71 

the effects of time through semi-supervised learning was the first expression of artificial foresight in machine learning and 72 

its closest form to human intelligence.  73 

 74 

Figure 2-1 The subfields of machine learning 75 

In its infancy, the use of reinforcement learning (RL) was an exciting concept that promised an introduction to responsive 76 

and continuously-learning AI systems. A behaviourist mathematical approach for experience-driven learning was finally 77 

attainable through RL (Sutton and Barto, 2018).This entails a reward-driven learning from interaction with an unmapped 78 

environment rather than hard computing or supervised learning where it is near difficult to obtain examples of desirable 79 

behaviour. Despite the initial successes of RL (Tesau and Tesau, 1995; Singh et al., 2002; Kohl and Stone, 2004), it could 80 

not escape the ‘curse of dimensionality’ when applied to real life problems. RL was limited by complexity issues ranging 81 

from memory complexity, computational complexity and sample complexity (Strehl et al., 2006). 82 



 The recent surge of deep learning and deep neural networks that has spearheaded the movement in function approximation 83 

and representation learning giving hope to unlock the true potential of RL by overcoming the issues of scalability; hence the 84 

rise of the field of DRL. This technology gained the interests of companies such as Google and Tesla during their race for 85 

driver-less vehicles (Kool, Van Hoof and Welling, 2018; Nazari et al., 2018). It has lent its abilities to the field of robotics 86 

(Levine et al., 2016; Nguyen and La, 2019; Zhao, Queralta and Westerlund, 2020), gaming (Mnih et al., 2015a; Silver et al., 87 

2016) and many more sectors (Li, 2017). As deep reinforcement learning gained popularity and developed further, the field 88 

of reinforcement learning was quickly populated with novel algorithms. The field of RL has quickly transformed to a forest 89 

of methods, architectures and concepts that are difficult to navigate because of its non-modularity. Defining the scopes of RL 90 

(and DRL) will help researchers understand the trade-offs involved with algorithm design. Similar work surveying offline 91 

reinforcement learning methods with a taxonomy can be found in (Prudencio, Maximo and Colombini, 2022). To highlight 92 

the diversity in RL and DRL, we have gathered and classified a novel taxonomy of the algorithms (Figure 2-2). This 93 

classification tree can serve as a map to new researchers interested in the field of DRL. It classifies the algorithms based on 94 

model free vs model based; on policy vs off policy; value-based vs policy-based; gradient based vs gradient free labels. 95 

Dotted lines are used to label fields of DRL methods such as dynamic programming, Monte Carlo, temporal difference and 96 

distributional RL algorithms. In addition, RL fundamental algorithms are written green, RL methods are in blue and DRL 97 

algorithms are written in black. The classification tree aims to introduce a variety of DRL algorithms and methods that might 98 

be useful for application in urban water systems.99 



 100 

Figure 2-2 Taxonomy of reinforcement learning algorithms. 101 



2.1. The Components of DRL 102 

To fully comprehend the aspects and range of methods available in DRL, it is crucial to delve into the formalism that make 103 

the RL paradigm. Reinforcement learning tackles its problems as Markov Decision Processes (MDPs) which is a commonly 104 

used description in the field of computing that depict real word processes.  MDP formalism is based on evaluating the 105 

probability of transitions between different states in its process and is sometimes denoted with the five tuple (S,A,P,R,γ) that 106 

stand for states (S), actions (A), probabilities/dynamics (P), reward (R) and initial state (γ) (Puterman, 1990; Desharnais et 107 

al., 2004). This helps evaluate the sequential interactions between actuators (agents) and their environment to influence both 108 

the state of the agent (state, S) and the relevant state of the environment (observation). The agent is then fed the observation 109 

data and a reward signal (Reward, R) that serves as an assessor to the new state that this action has led to. The aim of the 110 

agent is to find the optimal policy (π) that will maximise the expected reward which is achieved by learning the probability 111 

of state transitions attached to a state-action pair. A visual description of this process can be found in Figure 2-3. The deep 112 

neural network is an addition only found in DRL methods whilst RL methods tend to use a tabular data frame. The 113 

components of RL and DRL can be therefore redefined to suit most real-world applications in an organic and straightforward 114 

manner. 115 

 116 

Figure 2-3 Standard Deep Reinforcement Learning Schematic 117 

2.1.1. Reward and Return 118 

The reward (r) is the crucial identifier that tells the agent whether their action was beneficial or harmful. The cumulative 119 

reward over a trajectory is named the return (R(𝜏)) and it can be a finite-horizon undiscounted return (Eq. 2-1) or an infinite-120 

horizon discounted return (Eq. 2-2). Finite return is the sum of rewards for a fixed number of steps whilst infinite returns, 121 

like the name suggests, is the summation of the sum of all the rewards ever. The infinite returns must include the discount 122 

factor γ Є (0,1) used to control how much weight should be placed on the agent’s foresight. This helps the infinite sum 123 

converge to a finite value. 124 

𝑅(𝜏) = ∑ 𝑟𝑡
𝑇
𝑡=0 .  For finite-horizon undiscounted return.                                                                                                    ( 2-1 ) 125 

𝑅(𝜏) = ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 . For infinite-horizon discounted return.                                                                                                  ( 2-2 ) 126 

This return is usually modified and incorporated into a value function for value-based RL methods or an objective function 127 

for policy-based RL methods. Both methods have their advantages and disadvantages; for example policy-based methods are 128 

generally less sample efficient than Value based algorithms but can learn stochastic policies and converge faster than their 129 

alternative (Lapan, 2019). We discuss this further in the classifiers section below. 130 

2.1.2. Value Based 131 

Value functions are used in almost every RL algorithm. They are a fundamental concept in RL which calculates the expected 132 

infinite horizon return to evaluate how beneficial individual states or state-action pairs are. Value functions that solely 133 

evaluate the current state without the action are often denoted by the symbol V(s) and named state value functions (Eq. 2-3). 134 

Alternatively, state-action value functions are called quality functions, and they provide more of an insight on the trajectory 135 

of the agent given its current state-action pair (Eq. 2-4). The Q-value is denoted by the symbol Q(s,a).   136 

𝑉(𝑠) =  𝔼[∑ 𝛾𝑘𝑅𝑡+1+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠]                                                                                                                                    ( 2-3 ) 137 

𝑄(𝑠, 𝑎) =  𝔼[∑ 𝛾𝑘𝑅𝑡+1+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                                                                                                   ( 2-4 ) 138 

Where 𝔼[. ] is the expected discounted infinite horizon return, s is the state sampled from St, a is the action sampled from At 139 

and t is any time step.  140 



An important property of RL is foresight which enables agents to weight the future consequences of their actions using the 141 

expected return hence it is rare to find value functions operating without the incorporation of the bellman equations 142 

(Bellman, 1952). Bellman equations are self-consistency equations integral to dynamic programming and MDPs that follow 143 

the concept that the value of any starting point is the reward you expect from being at the starting point in addition to the 144 

value of the next point (Bellman, 1952; Puterman, 1990). Because the actions taken by an agent depend on the policy that it 145 

follows, value functions are often described in relation to its policy. On-policy value functions estimate the expected returns 146 

as the agent follows the behavioural policy (π). On-policy value functions can either evaluate a state (state-value function) or 147 

a state-action pair (state-action value function or quality function). On-policy state-value functions are denoted by Vπ(s) and 148 

evaluates the expected return as the agent acts under behaviour policy (π) and starts with state (s) and is followed by the state 149 

(s’). The bellman equation decomposes the value function to the sum of the current value and the future discounted values. 150 

Similarly, the Q-value denoted by (Qπ(s,a)) bellman equation is formally defined as the expected return as the agent acts 151 

under the behavioural policy (π) starting with the state-action pair (s,a) and followed by the next state-action pair(s’,a’). 152 

When attempting to find the optimal policy and action for a RL problem, off-policy value functions are used to remove the 153 

restrictions of the behavioural policy and allow the agent to explore the value function following the optimal policy This 154 

leads to the off-policy state value function and off-policy state-action function. These are also called the optimal value 155 

functions (V*(s) and Q*(s,a)). The main difference between the on-policy and optimal bellman equations is that the optimal 156 

uses the maximum rewardable action as shown in the equations below (Eq. 2-5, Eq. 2-6). 157 

𝑉∗(𝑠) =   𝔼[𝑟(𝑠, 𝑎) + 𝛾𝑉∗(𝑠′)]𝑎   
𝑚𝑎𝑥                                                                                                                                      ( 2-5 ) 158 

𝑄∗(𝑠, 𝑎) =  𝔼[𝑟(𝑠, 𝑎) + 𝛾 𝑄∗(𝑠′, 𝑎′)𝑎′  
𝑚𝑎𝑥 ]                                                                                                                             ( 2-6 ) 159 

The optimal action of an RL problem can be extracted by finding the maximum reward argument of the off-policy state-160 

action value function bellman equation (optimal Q-function). In instances where there are multiple optimal actions, the 161 

algorithms often select an action at random (Achiam, 2020). Another method to evaluate the value of an action is by using 162 

the advantage function (A(s,a)) . This compares how beneficial an action is to the average value of all actions by subtracting 163 

the state value from the state-action value under policy (π) (Eq. 2-7). 164 

𝐴𝜋(𝑠, 𝑎) =  𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)                                                                                                                                             ( 2-7 ) 165 

The use of advantage function is intuitive as it evaluates the performance of actions relative to an average. It is simpler to 166 

compare the consequence of an action with respect to another. Learning the advantage, rather than the quality or state 167 

function, has been a recent trend in DRL algorithms (Schulman et al., 2015; Wang et al., 2015; Gu et al., 2016; Mnih et al., 168 

2016). For more details on the basics of value functions, we recommend the following introductory books, papers and 169 

articles (Arulkumaran et al., 2017; Li, 2017; Sutton and Barto, 2018; Achiam, 2020). 170 

2.1.3. Policy Driven 171 

Other than value-based algorithms, there are policy driven techniques to solve the reinforcement learning problem and reach 172 

an optimal policy. Whilst the value-based methods use a learnt value functions to reach an implicit policy, policy-based 173 

methods do not use a value function but directly learns a policy. The value function approach often works well but it is 174 

important to be aware of its limitations. Value functions’ approach to policy optimisation is focused mostly on deterministic 175 

policies which is rare in the real world since optimal policies are often stochastic. They also are subject to high sensitivities 176 

as a minor change in the expected value of an action might cause the algorithm to accept or reject it. This has been identified 177 

as a key fault that inhibits the convergence of value-based methods such as Q learning, SARSA and dynamic programming 178 

methods (Baird, 1995; Gordon, 1995; Bertsekas, Tsitsiklis and Τσιτσικλής, 1996). Policy driven methods bypass these 179 

limitations leading to better convergence properties, ability to learn stochastic policies hence more effective algorithms for 180 

higher dimensional and continuous action spaces (Sutton et al., 2000). However, these methods can habitually converge to 181 

local minimums and are more computationally demanding with higher variance. 182 

Direct policy search methods fine tune a vector of parameters (θ) to select the best action to take for policy π(a|s,θ). The 183 

policy πƟ is updated to find the maximum expected return. They can either employ gradient free or gradient based 184 

optimisation. Gradient free algorithms often use the concepts of evolution strategies (Gomez and Schmidhuber, 2005; 185 

Koutník et al., 2013; Salimans et al., 2017) or the cross entropy function (Kalashnikov et al., 2018). Gradient-free 186 

optimisation methods can perform well in low dimensional spaces and update non-differentiable policies but, despite some 187 

successes in applying them to neural networks, the favoured method remains gradient-based training for DRL algorithms. 188 

Gradient based training methods are more sample efficient when dealing with high parameter policies (Arulkumaran et al., 189 

2017). 190 

The gradient-based policy methods, also called policy gradient, optimise a selected objective function (J(πθ)) which can be 191 

defined by the average reward formulation or start-state formulation (Sutton et al., 2000). Policy function approximation is 192 

challenging since gradients cannot be used through samples of a stochastic function hence why use a gradient estimator; the 193 

theory of the REINFORCE algorithm (Williams, 1988, 1992; Sutton et al., 2000). The objective function (J) of the 194 



parameterised policy (πθ) is the expected average return (R) under trajectory (τ). The trajectory is defined by parameterised 195 

policy.  196 

The aim is to optimise the policy through gradient ascent by numerically defining the gradient of policy performance 197 

(∇θJ(πθ)) also called the policy gradient. A full derivation of the policy gradient can be shown in (Achiam, 2020) however 198 

the policy gradient can be redefined as (Eq. 2-8). 199 

∇𝜃𝐽(𝜋𝜃) = 𝔼[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|Τ
𝑡=0 𝑠𝑡)𝑅(𝜏)]                                                                                                                         ( 2-8 ) 200 

Where the policy gradient is the expected sum of returns (R(τ)) multiplied by the gradient of the log of the parameterise 201 

policy (∇θ log (πθ (at|st))) for timesteps (t) in episode length (T). This is the simplest policy gradient; there are different 202 

variations of the policy gradient definition like the Expected Grad-Log-Prob Lemma (Schulman et al., 2015; Achiam, 2020). 203 

Policy-based and value-based RL coincide at the actor-critic algorithms (A2C, A3C, AC, DDPG, SAC) where the actor 204 

performs and action using policy-based RL and the critic evaluates the resulting reward using a value function. The critic 205 

influences the actor using temporal difference error (TD error) to improve the algorithm’s performance. 206 

2.1.4. Other DRL Algorithm Terminology 207 

To fully comprehend DRL algorithms, it is necessary to explain the parlance and methods that form those algorithms. One 208 

way to describe DRL algorithms is whether the agent is provided with a state transition function (model-based) or having to 209 

learn solely from experience through trial and error (model-free). Agents that have access to a model make use of sample 210 

efficiency and display a heightened ability of foresight but can often underperform when applied in real-world applications 211 

due to discrepancies between the model used for training and the ground-truth model. Model free methods can be 212 

implemented and easily tuned to real world application (Li, 2017). Algorithms can also be trained on sequentially generated 213 

data (online mode) or on a pre-set training batch (offline mode).  214 

A commonly used label for RL is whether it is on-policy or off policy. On policy methods evaluate or improve the 215 

behavioural policy of the current action-value pair of the current policy (e.g. SARSA) whilst off-policy methods explore the 216 

best value policy without necessarily following the current behavioural policy; they are also called optimal methods (e.g. Q-217 

learning) (Arulkumaran et al., 2017; Li, 2017). The value functions used to achieve were highlighted previously.  218 

2.2. Notable DRL Algorithms 219 

Many successes have stemmed from scaling RL using deep neural networks through function approximation. Deep neural 220 

networks can be used to approximate the optimal policy (π*) or the optimal value functions (Q*, V*, A*). In this section, we 221 

discuss the current trends and notable deep reinforcement learning algorithms that have progressed the field. This will help 222 

contextualise the current state of the research field and expose any future work.  223 

The timeline and milestones that led to the creation of DRL was well illustrated in (Nguyen, Nguyen and Nahavandi, 2020, 224 

fig. 1) showing how trial and error learning, TD learning and deep neural networks came together to incentivise the first 225 

deep reinforcement learning algorithm – the deep Q-network (DQN). DQN was first introduced by Mnih et al. as they used 226 

convolutional neural networks (CNN) to feature engineer images from a series of 49 games (Mnih et al., 2015a). It was then 227 

used to tackle MuJoCo physics problems (Duan et al., 2016) and three-dimensional maze problems (Beattie et al., 2016). 228 

Following the success of DQN, researchers have built on the existing DQN architecture to improve its performance hence 229 

creating new algorithms such as Double DQN (DDQN) and Duelling DQN (D-DQN). Double DQN minimises the effect of 230 

noise on DQN by avoiding the overestimation of Q values (Van Hasselt, Guez and Silver, 2016) whilst the duelling network 231 

architecture combines two streams of data (the value stream and advantage stream) to produce a more accurate Q function 232 

(Wang et al., 2015).  233 

Another milestone was the introduction of the Actor-Critic algorithms that combine the use of value functions and policy 234 

gradients to forego the trade-off of variance reduction in policy methods and bias introduction from value functions (Konda 235 

and Tsitsiklis, 1999; Schulman et al., 2015). Quickly, the DRL research community has direct their efforts to improve the 236 

AC methods. Schulman et al. improves the actor using generalised advantage estimation (GAE) to produce better variance 237 

reduction baselines (Schulman et al., 2015). The critic is also improved separately using target network in (Mnih et al., 238 

2015b). Introducing deterministic policy gradients (DPG) in actor-critic algorithms was first observed in (Silver et al., 2014). 239 

DPGs allow the use of policy gradients in deterministic policies when they were initially exclusive to stochastic policies. 240 

This lowers the computational load as DPGs only integrate over the state space and can therefore tackle large action spaces 241 

using less sampling. Stochastic Value Gradients (SVG) are another method to apply standard gradients to stochastic policies 242 

by ‘reparametrizing’ (Kingma and Welling, 2013; Rezende, Mohamed and Wierstra, 2014). This trend was first introduced 243 

in (Heess et al., 2015) and created a flexible method capable of being using with and without value function critics and 244 

models (Arulkumaran et al., 2017). SVG and DPG provide algorithmic means of improving learning efficiency in DRL. 245 

On the lines of learning efficiency, Google’s DeepMind lab released the Asynchronous Advantage Actor Critic algorithm 246 

(A3C) (Mnih et al., 2016). This advancement entails the use of an advantage function in an actor-critic architecture through 247 



training parallel agents asynchronously yielding high accuracy and applicable in continuous and discrete action spaces (Zhu 248 

et al., 2016; Lapan, 2019) hence creating a trend for asynchronous and parallel learning.  249 

2.3. Current DRL Trends  250 

The field of DRL is growing exponentially as researchers ground their understanding of reinforcement learning in human 251 

psychology. Using methods that parallel our natural learning trends has helped develop DRL methods further leading to 252 

fields such as inverse reinforcement learning (IRL). Moreover, there is more effort on improving algorithms by modelling 253 

the reward as a distribution of values similar to our brain’s reward system (Dabney et al., 2020). Multi agent reinforcement 254 

learning (MADRL) models the real-world nature of multiple agents interacting with the same environment and reward 255 

probability. In this section of the review, we focus on current trends in the field of deep reinforcement learning. We explain 256 

the recent advancements and highlight notable work and challenges that are being addressed. 257 

Hierarchical Reinforcement Learning 258 

As the field of DRL grows, researchers have learnt how to include biases into the algorithm’s learning experience. 259 

Hierarchical reinforcement learning (HRL) is a field of DRL dedicated to introducing inductive biases by factorising the 260 

final policy into several levels through state or temporal abstractions. This approach allows algorithms to tackle higher and 261 

lower level goals simultaneously by allowing top-level policies to focus on the main goal and sub-policies to focus on fine 262 

control (Tessler et al., 2017; Vezhnevets et al., 2017). This is how HRL attempts to achieve compositionality; achieving new 263 

representations by the combination of primitives (Hutsebaut-Buysse, Mets and Latré, 2022). The challenges faced in HRL 264 

stem from the selection of sub-behaviours or policies and how to efficiently learn state abstractions. 265 

Inverse Reinforcement Learning 266 

As humans, we can often learn from others’ mistakes and successes. Similarly, researchers have developed methods to 267 

bootstrap the learning process using trajectories from other controllers. This is known as imitation learning (also known as 268 

behavioural cloning). The success of behavioural cloning lead to the success of an autonomous car using ALVINN in 269 

(Pomerleau, 1989).The main challenge with imitation learning is its susceptibility to uncertainties. Imitation learning’s 270 

inability to adapt can lead the agent down a destructive trajectory hence why it is paired with reinforcement learning. Using 271 

RL, the policy can fine-tune whist imitation learning guides the general learning leading to faster convergence properties and 272 

better stability properties. Introducing behavioural imitation to DRL births the field of inverse reinforcement learning (IRL). 273 

IRL applies behavioural cloning by relying on provided trajectories for the desired solution to approximate the reward 274 

function (Ng and Russell, 2000). Intuitively, the motivation behind using IRL usually includes learning behaviour from 275 

experts, assisting humans and learning about systems (Adams, Cody and Beling, 2022). Application of IRL are mostly 276 

concerned with teaching robots to imitate experts (Adams, Cody and Beling, 2022). Notable work and algorithms in this 277 

field include (Ziebart and Fox, 2010; Finn, Levine and Abbeel, 2016; Ho and Ermon, 2016; Levine and Van De Panne, 278 

2018; Paine et al., 2018; Peng et al., 2018). 279 

Distributional Reinforcement Learning 280 

Distributional RL grounds itself in our natural brain reward system (Dabney et al., 2020). Like our natural dopamine system, 281 

DRL displays returns as a value probability distribution learned from interacting with the environment. This parallel between 282 

distributional RL and our brains opens up opportunities for collaboration between AI and neuroscience (Lowet et al., 2020). 283 

This new method of value distribution has shown its usefulness in improving learning speed and stability. The original 284 

distributional reinforcement learning algorithm is the categorical DQN (C51) (Bellemare, Dabney and Munos, 2017) where 285 

using value distributions the authors have surpassed most gains on the Atari2600 environment thus beating the benchmark 286 

DQN and DDQN. Other algorithms include quantile regression DQN (QR-DQN) which uses quantile regression to minimise 287 

the Wasserstein metric and improve greatly on the previous C51 in the Atari 2600 (Dabney et al., 2017). Implicit quantile 288 

regression (IQR) and fully parameterised quantile function (FQF) are the latest algorithms in distributional RL and they 289 

build further on the foundations of QR-DQN (Dabney et al., 2018; Yang et al., 2019). 290 

Multi Agent Reinforcement Learning 291 

With the rising complexity of real-world systems, deep reinforcement learning algorithms often play catch-up to be able to 292 

process and scale their models. Most of the methods devised for DRL algorithms aim to simplify complex environments and 293 

feature extraction. On the other hand, multi agent DRL introduces complexity in its algorithms by introducing several agents 294 

in the algorithms that simultaneously interact with the environment. This represents having multiple employees working as a 295 

team to carry out a desired goal (or policy) on the same system. The complexity of the algorithms brings forth multiple 296 

challenges that are currently the focus of the research community with the promise to solve more complex environments and 297 

real-world problems. There have been different approaches to tackle MADRL including sending signals to the agents, 298 

having bidirectional channels between the agents and an all-to-all channel (Arulkumaran et al., 2017). Major challenges in 299 

the field stem from non-stationarity, partial observability, complexity in training schemes, application in continuous action 300 

spaces and transfer learning (Nguyen, Nguyen and Nahavandi, 2020). Previous reviews and surveys include (Nguyen, 301 

Nguyen and Nahavandi, 2020) that provides a review of MADRL challenges, solutions, applications and perspectives; 302 



(Buşoniu, Babuška and De Schutter, 2008) evaluates stability and a taxonomy of MADRL algorithms; (Bloembergen et al., 303 

2015) surveys dynamical models devised for multi agent systems; (Hernandez-Leal, Kartal and Taylor, 2019) bridges the 304 

gap between DRL and MADRL including benchmarks for MADRL. Other notable reviews include (Da Silva, Taylor and 305 

Costa, 2018; Hernandez-Leal, Kartal and Taylor, 2018). 306 

3. Urban Water Systems (UWS) 307 

Urban water systems are a collection of complex infrastructure and processes that supply, treat, transport, and manage water 308 

and wastewater within urban environments. These systems are crucial for managing the supply of clean drinking water as 309 

well as treating wastewater and controlling storm water. Henceforth, they are paramount for the sustainability and well-being 310 

of cities. Effective management of UWS through sustainable practice aims to ensure a resilient supply of clean water despite 311 

climate change and seasonality. It should also minimise water loss through leakage and energy consumption through 312 

inefficient water supply and distribution. The key processes in UWS can be split into four major systems which are raw 313 

water treatment plants, water distribution networks, wastewater treatment plants, and stormwater systems (Loubet et al., 314 

2014; Etikala, Madhav and Somagouni, 2022) . Some of the processes involved in each function are displayed below in 315 

Figure 3-1. 316 

 317 

Figure 3-1 Urban Water Systems 318 

Urban areas often obtain their water from several resources such as rivers, lakes, groundwater and desalination plants which 319 

are managed by raw water treatment plants. Raw water goes through several treatment processes to remove impurities, and 320 

contaminants. The main treatment methods used in raw water treatment plants include screening through mesh filters or 321 

screens, coagulation, flocculation, sedimentation, filtration, disinfection, corrosion control, pH adjustment, fluoridation, and 322 

quality monitoring (Benjamin, 2014; Jiang, 2015; Teodosiu et al., 2018; Lipps, Braun-Howland and Baxter, 2022).  323 

Once treated, clean water is distributed from the plants to the customers through a network of pipes, valves, pumps and 324 

reservoirs. This process requires advanced pressure and asset management to minimise leakage and contamination. Due to 325 

the varying elevations, demand and climate change, the distribution of water increases in complexity and leakage has 326 

become a natural phenomenon in water distribution networks (Xu et al., 2014; Barton et al., 2019).  327 



Similar to raw water treatment, wastewater treatment plants are concerned with treating wastewater collected through a 328 

sewer pipeline network. Treatments include a variety of physical and chemical processes. Physical methods of screening, grit 329 

removal, sedimentation, and filtration remove heavier contaminants and large contaminants. Water is then treated 330 

biologically in the secondary treatment by using microorganisms to break down organic matter in wastewater (Hussain et al., 331 

2021). Coagulant and flocculants help remove fine particles and dissolved contaminants during the tertiary advanced 332 

chemical treatment. A final step of disinfection could use chemicals such as chlorine and UV to remove harmful pathogens 333 

(Kentish and Stevens, 2001; Crini and Lichtfouse, 2019).  334 

During detrimental events such as floods and storms, stormwater management controls the impact on the environment and 335 

infrastructure (Ahiablame and Shakya, 2016; Aryal et al., 2016; Jefferson et al., 2017). Stormwater management deal with 336 

several high-level objectives such as flood control, water quality monitoring, erosion/sediment control, groundwater 337 

recharge (Jotte, Raspati and Azrague, 2017). 338 

3.1. Challenges and Opportunities in Urban Water Systems 339 

UWS include a wide range of processes that are riddled with unique dependencies and impacting factors. However, the 340 

preservation and use of water is a holistic process that incorporates the wider ecosystem, climate, and wildlife as much as 341 

human use. Understandably, UWS share challenges that stem from external factors and opportunities to adapt deep 342 

reinforcement learning techniques. In this section, common current challenges that plague UWS processes are discussed and 343 

how DRL can provide innovative solutions. This is followed by challenges that researchers might encounter when applying 344 

DRL algorithms to UWS. 345 

High trends of urbanisation globally increase the stress and demand on UWS with 60% of the world's population expected to 346 

live in urban areas by 2030 (UN-Water, 2012). This rise in demands causes heavier loads and more uncertainty throughout 347 

all processes in UWS due to increased supply and network expansions (Sharma et al., 2010). Navigating these uncertainties 348 

can be challenging for meta-heuristic decision making algorithms (Maier et al., 2014) in comparison to DRL algorithms that 349 

learn from experience and are able to act in real time (Fu et al., 2022). DRL provides a method for managing uncertainties 350 

that outperforms traditional decision-making algorithms and can learn from experience which allows it to adapt to the rise in 351 

urbanisation.  352 

Another challenge that plagues UWS is the energy consumption and carbon emissions associated with operating water 353 

systems (Nair et al., 2014; Xu et al., 2014). It was estimated that 1-18% of all energy consumed in urban areas is due to 354 

UWS (Olsson, 2012) which in return produces a lot of carbon emissions. The negative effects of high energy consumption 355 

lie beyond the financial impacts as it promotes climate change and global warming. The circular effect of carbon emissions, 356 

water scarcity and energy consumption is displayed in the water-energy-green house nexus (Nair et al., 2014, fig. 1). DRL 357 

has had a proven record of improving energy management within the water systems (Hernández-Del-olmo et al., 2016; 358 

Hernández-del-Olmo et al., 2018) and in system efficiency (Kılkış et al., 2023).  359 

UWS often deal with a heterogeneously aging infrastructure that add to the complexity of asset health management. The 360 

aging pipes, pumps, valves, and other system components can lead to high non-revenue water and effect the systems’ overall 361 

resilience. Hence why, it is essential to provide decision making algorithms that can deal with high-level dependencies and 362 

complexities. A challenge that manifests with decision making algorithms is the high computational costs associated with 363 

this complexity thus why deploying DRL agents can benefit UWS as they rely on function approximators to lower the 364 

computational load (Sutton and Barto, 2018). Furthermore, asset management for UWS operations can be achieved by 365 

leveraging DRL for optimal design, strategic planning and predictive maintenance (Fu et al., 2022). This area of research 366 

requires more experimentation and social proof despite its clear advantages. 367 

In most pipeline infrastructure, it is necessary to quantify leakage and asset health. Managing leakage effectively is an 368 

ongoing battle that effects UWS especially water distribution systems. The use of DRL for leakage management is an 369 

unrealised opportunity but has been recommended by reviews and surveys (Mosetlhe et al., 2020; Fu et al., 2022). The use 370 

of a tabular Q-learning method for leakage reduction using pressure management in water distribution networks was tested 371 

in (Negm, Ma and Aggidis, 2023b) and whilst the results were positive, it was clear that using DRL would enhance it further 372 

and overcome the curse of dimensionality.  373 

3.1.1. Challenges of DRL in UWS  374 

Building DRL algorithms is a science. In this section we build on the challenges and trade-offs underlined in the previous 375 

sections inherent in algorithm design. It is crucial to note that the field of RL research, much like the algorithms, has been 376 

expanded by experience followed by theory. In essence, some challenges were identified but not completely understood such 377 

as the deadly triad issue (Sutton and Barto, 2018). 378 

In DRL algorithm design, most researchers will make use of some form of function approximation, bootstrapping or off-379 

policy. Function approximation uses examples to generalise an entire function hence it aids with the scalability and 380 

generalisation issue that riddles tabular algorithms and is the main tide driving the success of deep neural networks in 381 

reinforcement learning (DRL). On the other hand, bootstrapping used in DP and TD fields help with improving the 382 

algorithm’s data efficiency, hence reducing computational loads. Finally, off-policy methods free our agent from target 383 



policy to explore optimality. Separately, each of these methods help RL researchers reach their desired benefits and design a 384 

better optimisation algorithms, however when combined the same methods induce instability and divergence – the deadly 385 

triad issue (Tsitsiklis and Van Roy, 1997; Sutton and Barto, 2018). This instability can be detrimental when controlling 386 

urban water management system and could result in undesirable states. Issues rising from instability often spill into sub-387 

optimal policy development which leads to low performing algorithms. In addition, this could lead to weak dependencies 388 

between the observation data and the action space forming unresponsive algorithms. In UWS, this would echo as low 389 

performing water systems affecting their resilience and ability to handle change. Further implications depend mostly on the 390 

system being managed for example in water distribution, which could mean supply interruptions or pressure limit violations. 391 

Ensuring stability and resilience should be a primary goal of DRL design. 392 

Another common challenge is the ‘credit assignment problem’. This refers to the notable phenomena of incorrectly 393 

evaluating the credit of the action due to unclear or unforeseeable consequences manifesting later (Arulkumaran et al., 394 

2017). These long-term dependencies are necessary to allow the agent to better comprehend the value of its action. Hence, 395 

value functions have been modified to incorporate the estimated subsequent rewards and they have been discounted to 396 

signify the dwindling nature of consequence (Eq. 2-5 & 2-6). UWS applications tend to be connected through both short-397 

term and long-term dependencies therefore it is importance to include these consequences in the DRL algorithm’s learning 398 

strategy. UWSs are complex and interconnected systems, and the consequences of specific actions may not be immediately 399 

apparent. Unforeseeable impacts on water quality, pipeline integrity, or energy consumption may manifest over time. In 400 

addition, UWS are often dynamic with changing environments which will further emphasise the effect of the credit 401 

assignment problem when attempting to navigate the evolving nature of UWS.  402 

Finally, the exploration versus exploitation dilemma. This problem riddles most RL (and DRL) algorithms as agents tend to 403 

behave in a reward greedy manner. Since the agent’s observation depends on its actions and its actions depend on the reward 404 

generated; RL agents can find themselves in a loop around a local optimum rather than finding the global optima - 405 

exploitation. Ultimately, the only way to solve this is to introduce randomness to the agent’s behaviour hence allowing the 406 

agent to receive new observations and possibly lead it to the global optima – exploration. This trade-off in agent behaviour 407 

has been navigated in many ways and the simplest is the use of ε-greedy exploration policy where the agent acts randomly 408 

with probability ε ϵ [0,1]. The value of ε decreases as time passes leading the agent to a more exploitative nature as it learns. 409 

For continuous control, more complex methods have been used to introduce randomness over time to preserve momentum 410 

(Lillicrap et al., 2016; Arulkumaran et al., 2017). Other methods to tackle the exploration-exploitation dilemma include 411 

Osband et al.’s bootstrapped DQN using experience replay memory (Osband et al., 2016), Usuneier et al.’s exploration in 412 

policy space (Usunier et al., 2017) and upper confidence bounds (UCB) (Lai and Robbins, 1985; Arulkumaran et al., 2017; 413 

Pathak et al., 2017). Managing the exploration-exploitation trade-off should be bespoke to each UWS application to ensure 414 

that agents don’t converge at sub-optimal policies. If not managed properly, the exploration-exploitation dilemma could 415 

affect UWSs manifest in operational inefficiencies. This is particularly critical in regions where water resources are scarce, 416 

and efficient use is imperative.  417 

These challenges are inherent in most RL problems and navigating them is a skill necessary to develop an effective DRL 418 

algorithm. The application of DRL in UWS include specific limitations such as its reliance on clear data. Data-driven 419 

optimisation tends to be insightful nevertheless it requires sensor data across the entire network. UWSs vary in their data 420 

availability and data quality which could limit the usability of DRL algorithms. Therefore, this study is best applied to UWSs 421 

that have established a coherent data pipeline and are looking to expand their facilities. Consequently, it is important to build 422 

accurate models/data pipelines that can be used to build the DRL agents. Well-developed DRL models also tend to be quite 423 

sensitive to erroneous observation data which could falsely trigger harmful actions by the pressure valves. The DRL input 424 

data must be cleaned and tested for accuracy to ensure that it represents the current state of the system.  425 

Furthermore, the application of DRL requires reliability evaluations before being deployed on UWSs. It is necessary to 426 

ensure that the optimisation algorithm won’t endanger the customers/water system. For example, in WDN, agents need to 427 

ensure that water supply remains uninterrupted without affecting asset life or risking future bursts. These concerns were 428 

covered by (Tian, Liao, Zhi, et al., 2022) where the authors devised a ‘voting’ method to improve reliability. Most UWSs are 429 

subject to daily and seasonal changes that will undoubtedly influence the performance of the DRL models. While the DRL 430 

algorithms were proven to deal with randomness in the observation data, seasonal changes might require re-training of the 431 

models and further policy development. This could be achieved through a continuous integration/deployment (CI/CD) 432 

pipeline for the DRL models which automates the deployment of newer, more suitable models.  433 

Limitations also include the effect of the DRL algorithm on designing a reward function that incorporates multiple 434 

objectives. Most UWSs control tasks require the optimisation of multiple objectives as they influence each other hence why 435 

any relevant objectives should be included in the reward formulation design to ensure that the agents are trained with a 436 

complete picture of the desired behaviour. Complex model design is not limited to the selection of the reward function but 437 

includes DRL sensitivity to hyperparameters and neural network architecture. The design of DRL algorithms involve many 438 

decisions including various options for neural network architectures, optimisers, activation functions, pre-training 439 

techniques, and hyperparameters. The complexity of making these design choices require careful consideration and 440 

experimentation. Furthermore, generalisation of the DRL models is limited since the policy developed for one network may 441 



not necessarily work for another therefore it is important to develop a separate model for each network. On another hand, the 442 

option for transfer learning between the neural networks is valid as that could help train models from different networks.  443 

The risks associated with DRL issues stem from unreliable sub-optimal control. This could appear as concerns with water 444 

quality. Unanticipated consequences, such as changes in flow patterns or variations in water treatment processes, may lead to 445 

water quality issues that pose risks to public health. Other issues could arise from adjustments in water flow and pressure 446 

affecting the integrity of the pipeline infrastructure. Over time, actions that seem reasonable in the short term may contribute 447 

to pipeline degradation or leaks. The challenge lies in identifying the causal relationships between management decisions 448 

and the gradual deterioration of the infrastructure. UWSs often require energy for pumping, treatment, and distribution 449 

processes. Management decisions that impact system dynamics can influence energy consumption. Unforeseen 450 

consequences may lead to suboptimal energy use or inefficiencies in the system, affecting both operational costs and 451 

environmental sustainability. Further implications are bespoken to the application of DRL and would appear with testing. 452 

3.2. DRL Research in UWS 453 

In essence, there are many parameters to consider when selecting a DRL algorithm but through careful consideration of 454 

selecting the correct DRL components and algorithms. Depending on the optimisation objective, the agent’s nature (pump, 455 

valve, etc.) and requirements (nodal pressures, head measurements, pump speed, etc.) would vary. In a critical review of 456 

deep learning in the water industry Fu et al. mentioned the applicability of DRL in water distribution networks (WDN) and 457 

urban wastewater systems (Fu et al., 2022). In (Croll et al., 2023), the applications of reinforcement learning techniques in 458 

wastewater treatment were reviewed with a few studies utilising DRL methods. Otherwise, there are no mentions or reviews 459 

published on DRL algorithms in UWS research. There is limited literature on the application of DRL in UWS where most 460 

research relate to stormwater systems, water distribution networks and a few publications in wastewater systems. This shows 461 

a massive gap in the research field and an exciting journey for researchers in UWS at the cusp of realisation. In this section 462 

we will review the available literature on deep reinforcement learning in urban water systems. 463 

3.2.1. DRL in Water Distribution 464 

In  article (Hajgató, Paál and Gyires-Tóth, 2020), the authors use a Duelling Deep Q Network (D-DQN) to find the optimal 465 

pump speeds for hydraulic efficiency in randomly generated demands. The algorithm minimises the inflow and outflow of 466 

tanks whilst keeping heads within an acceptable range in all the nodes. The reward is calculated by evaluating the consumer 467 

satisfaction as the number of problematic nodes divided by the number of all nodes; the efficiency of the pumps as the 468 

product of standalone pumps divided by the product of theoretical peak efficiencies; the feed ratio by comparing the ratio of 469 

pumps supplying the water to the tanks and reservoirs supply. When compared to a test set of Nelder-Mead, Differential 470 

Evolution (DE), Particle Swarm Optimisation (PSO), Fixed-Step Size Random Search (FSSRS) and One-shot Random Trial; 471 

the agent performed at a comparable level to the differential evolution algorithm and much better than the rest of the test set. 472 

All the algorithms were tested on a small (Anytown) and large (D-town) WDN model. When using the one-shot random trial 473 

as a reference solution as a sub optimal policy; the agent reaches a better solution and moves off policy to overperform the 474 

DE algorithm. This technique relies entirely on live measurement data and can predict the best action in real-time making it 475 

the most suitable controller for real life application. 476 

Hu et al. conducted a thorough experiment where they optimised the scheduling of fixed speed pumps to minimise the 477 

electric cost of the pumps and tank level variations whilst adhering to sensible hydraulic constraints using Proximal Policy 478 

Optimisation (PPO) and Exploration enhanced Proximal Policy Optimisation (E-PPO) (Hu et al., 2023). Both DRL 479 

algorithms are policy-driven methods set out to find the best policy to achieve the highest rewards. They conducted three 480 

experiments that introduced three increasing levels of uncertainty to the consumer demand patterns using 0.3, 0.6 and 0.9 481 

multiplier respectively on the Net3 test networks model. The results were compared with metaheuristics including genetic 482 

algorithms (GA), PSO and DE. GA converged after 100 epochs and were considered the optimal solutions (Hu et al., 2023). 483 

They were followed in performance E-PPO followed by PPO, DE and PSO. The exploration enhanced policy saves 484 

approximately 6.10% of the energy cost with respect to PPO. Unlike the rest of the metaheuristic methods that require to be 485 

trained before each scheduling case; the DRL methods (PPO, E-PPO) can just call their trained models to act in a fraction of 486 

a second (0.4s) (Hu et al., 2023). 487 

(Xu et al., 2021) tackles the pump scheduling optimisation problem in WDNs through combining knowledge learning and 488 

deep reinforcement learning in a knowledge assisted proximal policy optimisation learning (KA-PPO) (Xu et al., 2021). KA-489 

RL evaluates the state using historical nodal pressure data and a reward function. Pressure management objectives were 490 

placed to maintain junction heads within a specific range, minimise water age, and increase pump efficiency. The proposed 491 

algorithm was tested on the benchmark Anytown network to manage the performance of two pumps in the pump station. The 492 

results show that the algorithm performs favourably in comparison to the Nelder-Mead method and the DDQN algorithm 493 

used in (Hajgató, Paál and Gyires-Tóth, 2020; Xu et al., 2021). Future work can improve the reward formulation process by 494 

including energy prices. The problem setup can also be modified to consider a continuous action space and long period 495 

accumulated return. The use of emulators and parallel computing can also minimise the training time.  496 

In (Hasan et al., 2019), the authors offer four novel contributions to the fields of dynamic multiple-objective deep 497 

reinforcement learning and water quality resilience applications. Based on the deep-sea treasure (DST) test bed, the authors 498 



develop a new test bed to fit the RL settings hence creating the first test bed accommodating for dynamic multi-objective 499 

DRL (DMODRL). They also devise a new for multi-objective optimisation using DRL and the first deployment of objective 500 

relation mapping (ORM) to construct the govern policy (Hasan et al., 2019). The last contribution is an expert system to 501 

evaluate the water quality resilience (WQR) in Sao Paulo, Brazil. The proposed parity-Q deep Q network (PQDQN) 502 

algorithm proposed was tested in the two DST environments and the WQR model. In all three test beds, the PQDQN 503 

algorithm has outperformed the state-of-the-art multi-policy DRL algorithms which were multi-policy DQN (MP-DQN), 504 

multi-objective monte carlo tree search (MO-MCTS) and multi-pareto Q learning (MPQ). In all three test beds, the 505 

performance of the algorithms were assessed using the evaluation matrices generational distance measure (GD), inverted 506 

generational distance (IGD) and hypervolume (HV) (Hasan et al., 2019). PQDQN managed priorities best using the ORM 507 

aiding its impressive performance and defeating the other multi-policy algorithms (MP-DQN, MO-MCTS, MPQ) (Hasan et 508 

al., 2019). This work can benefit by experimenting with multi-agent DRL and integrating real-world scenarios to the WQR 509 

model. Parallel computing and GPU processors can also reduce training time. Hyperparameter optimisation may even 510 

improve the performance of the PQDQN algorithm further.  511 

In a broader look on water systems, (Fan, Zhang and Yu, 2022) tackles asset management of water distribution networks 512 

post-earthquake. The problem setup involves four models that assess damages incurred by the earthquake, recover the water 513 

distribution network (WDN) using the optimisation algorithms, measure the WDN hydraulic performance using the 514 

performance degree (PDW) at each timestep, quantify the overall WDN resilience using the system resilience index (SRI). 515 

The chronological and iterative process between these models is clearly displayed in (Fan, Zhang and Yu, 2022, fig. 2). A 516 

graph convolutional network (GCN) was deployed as the function approximator for a DQN algorithm hence creating GCN-517 

DQN. This selection was a great step towards better representation for water distribution networks since the graphical nature 518 

of the data requires a similar deep neural network architecture. Other strategies used for comparison included two greed 519 

search algorithms (static importance based and dynamic importance based), genetic algorithm (GA) and diameter-based 520 

prioritisation method. All five strategies were tested under three identical earthquake scenarios with different magnitudes. In 521 

all three scenarios the GCN-DRL model outperforms the other strategies by following repairing sequences that lead to higher 522 

SRI scores (Fan, Zhang and Yu, 2022). The importance-based methods cam second and third whilst the diameter-based 523 

prioritisation came last. In order to minimise the training computation time, the authors have used transfer learning to use the 524 

previous GCN weights on an old damage scenario to initialise the GCN weights for the new scenario. This reduced the 525 

computational load significantly and proved the scalability of the GCN-DRL model across all scenarios. Accommodating 526 

more sophisticated assumptions can be easily implemented to improve the GCN-DQN model’s reliability and improve the 527 

problem setup. Applying this work on different test networks can further prove its generality and encourage more 528 

development of asset management through deep reinforcement learning. 529 

3.2.2. DRL in Stormwater Systems 530 

Mullapudi et al. provide a first look on the application of deep reinforcement learning for real time control in storm water 531 

systems  (Mullapudi et al., 2020). The authors test a simple DQN algorithm on the urban watershed in Ann Arbor as a 532 

benchmark test network. The problem setup involved agents taking actions to control valves status; water levels and 533 

outflows as states and an assumption of uniform rainfall and negligible base flow (Mullapudi et al., 2020). The authors set 534 

out to test the stability of DRL algorithms in controlling storm water management models (SWMM) through controlling a 535 

singular basin and controlling multiple basins. Their research highlighted DRL algorithms’ known sensitivity to reward 536 

formulation and deep neural network architecture. Even though the agent could have benefitted from a longer learning phase, 537 

the DRL proved useful in managing the single-basin SWMM scenario. Due to the increase in state and action space, 538 

controlling multiple basins was more challenging. The agent behaved favourably in comparison to uncontrolled SWMMs in 539 

both scenarios but were outperformed by the equal-filling algorithm. The authors remain determined that RL-based 540 

controllers need to be explored further and applied to SWMM in hopes of reaching a stable real-time controller. The results 541 

provided in this paper could be used as a starting point to compare more capable DRL algorithms A3C and advanced 542 

variations of DQN. Also, a more systematic method for reward formulation and neural network hyperparameter optimisation 543 

would greatly improve the scalability and stability of the model.  544 

A common issue with real-time control using DRL is concerns of the reliability and uncertainty of its fluctuating actions in 545 

high-risk real-world cases. Tian et al.’s paper tackles this issue through a novel methodology called ‘voting’ (Tian, Liao, Zhi, 546 

et al., 2022). Voting compares actions from five different DRL algorithms to select the safest and most rewardable action 547 

hence minimising the risk associated with DRL control. If none of the DRL agents provide a viable action, a backup user-548 

defined rule-based action is executed. The methodology is used to minimise combined sewer overflow (CSO) and flooding 549 

in urban drainage system. The DRL algorithms used in this study are DQN, DDQN, PPO1, PPO2 and A2C. Voting uses a 550 

novel independent security system to evaluate whether the actions meet the user-defined safety requirements. All five DRL 551 

algorithms and voting algorithms are compared to a GA algorithm that was used as an upper bound performance reference 552 

by subjecting them to eight scenarios under different rainfall patterns. The results prove that voting avoids harmful actions to 553 

minimise risk hence improving the reliability of the real-time control. Figure 16 highlights that voting often draws its actions 554 

from PPO1 and never needed to use the backup action in all eight scenarios (Tian, Liao, Zhi, et al., 2022, fig. 16). All DRL 555 

algorithms have performed well in this sequential problem and are therefore suitable candidates for CSO and flooding 556 

mitigation. Concerns of long training times and computational loads can be mitigated with parallel computing and an 557 

emulator for the stormwater model. The DRL algorithms can benefit from hyperparameter optimisation to improve the 558 



results further. Future work can also attempt deploying the voting algorithm on a SCADA system or online monitoring 559 

system to uncover uncertainties from real world applications.  560 

It is worth mentioning that the authors published a different paper where they developed an emulator for the stormwater 561 

model to relieve the high computational load associated with training the DRL agents (Tian, Liao, Zhang, et al., 2022). This 562 

emulator succeeded in decreasing the training time by 9 hours and 57 minutes hence improving data efficiency when 563 

compared to the regular RL-stormwater model approach. 564 

Like the previous article, (Bowes et al., 2021) leverages the power of DRL for flood mitigation. In this experiment, the 565 

authors developed a DDPG algorithm to create control policies that mitigate flood risks in the coastal city of Norfolk, 566 

Virginia. The DRL agent manages to balance flooding throughout the system and follow the control objectives of 567 

maintaining target pond levels and mitigating flood through controlling valves in the stormwater management model. The 568 

performance of DDPG as a DRL method was compared to rule-based control strategy, model predictive control and a 569 

passive system. In summary, the DDPG algorithm boasted a 32% reduction in flooding in comparison to the passive system 570 

and a 19% reduction with respect to rule-based control. The model predictive control strategy deployed an online genetic 571 

algorithm optimisation as in (Sadler et al., 2020) to produce similar results to the DDPG algorithms (3% reduction in flood 572 

compared to DDPG). The model predictive control was too computationally expensive to run on the complete dataset whilst 573 

RL provided an 88x speed up in the creation of control policy (Bowes et al., 2021). This research highlights the power of 574 

DRL in real-time control of stormwater systems and its ability to produce impressive results with a lower computational 575 

load. Further research should aim to recreate these results on real-world systems through RL controllers. Combining the 576 

different real-time control methods as decision support tools should be investigated to enhance stormwater systems. 577 

3.2.3. DRL in Wastewater Treatment 578 

Wastewater treatment has initially experimented with RL methods to manage the oxidation-reduction potential and pH levels 579 

of wastewater using Model Free Linear Control (MFLC-MSA) (Syafiie et al., 2011), improve the cost of N-ammonia 580 

removal using tabular Q-learning (Hernández-Del-olmo et al., 2016), improving energy and environmental efficiency of N-581 

ammonia removal using policy iteration (Hernández-del-Olmo et al., 2018), and optimising hydraulic retention through 582 

aerobic and anaerobic processes for biological phosphorous removal using Q-learning (Pang et al., 2019). In addition, actor 583 

critic RL methods are utilised for pH adjustment for electroplating industry wastewater in a continuous action space (Alves 584 

Goulart and Dutra Pereira, 2020). This RL method was mimicked in (Yang et al., 2022) where the authors utilise an actor 585 

critic RL method to track the desired dissolved oxygen set points in a wastewater treatment plant (WWTP). A more detailed 586 

review of RL application in WWTP can be found at (Croll et al., 2023). Following the successes of DRL algorithms and its 587 

growing popularity, more research has deployed DRL methods to solve issues in WWTPs.  588 

The only use of value-based DRL algorithm in wastewater treatment is present in (Nam et al., 2020). The article carries out 589 

an experiment involving both RL (Q, SARSA) algorithms and DRL (DQN, deep-SARSA) to reduce the aeration energy 590 

consumption without decreasing the effluent quality index. These factors were estimated using the activated sludge model 591 

soluble product (ASM-SMP) named benchmark simulation model 1 (BSM 1) developed by (Alex et al., 2018). The DQN 592 

model largely outperformed the other methods as it develops a trajectory that simultaneously improves the economic 593 

benefits by 36.53% and the environmental efficiency by 0.23%. The RL methods deployed fail to handle the complexity and 594 

caused decreases in energy savings and environmental efficiency. Further work recommended includes the experimentation 595 

with multi-agent systems to control environmental and economic benefits whilst minimising risks from membrane fouling 596 

(Nam et al., 2020). The authors did not discuss hyperparameter optimisation which could further improve their current 597 

results. In addition, the use of policy gradient methods can provide insights on the difference in policy gradient and value 598 

driven DRL in performance.  599 

In (Panjapornpon et al., 2022), the author leverage the hybrid properties of multiple DDPG agents as an actor critic method. 600 

This study is more focused on developing a MADRL for pH control and tank level control by simultaneously managing the 601 

flow rates of the influent stream and neutralisation stream (Panjapornpon et al., 2022) in a continuous stirred tank reactor. 602 

The authors use the grid search methods for hyperparameter tuning of three performance indexes. The DDPG uses a gated 603 

recurrent unit and rectified linear units for the actor and critic networks as shown in figures 6 & 7 (Panjapornpon et al., 2022, 604 

figs 6 & 7). The multi agent DDPG algorithm performed favourably in comparison to the proportional-integral controller 605 

with controlling efficiency with better performance indexes and less oscillations (Panjapornpon et al., 2022). This paper 606 

highlights the benefits of using DRL to optimise control performance. Deploying the RL controllers using programmable 607 

logical controllers on real WWTPs can provide social proof.  608 

MADRL is utilised in (Chen et al., 2021) to control dissolved oxygen set points and chemical dosage in WWTP. In this 609 

article, the authors use a multiple agent DDPG algorithm to lower environmental impacts, cost and energy consumption 610 

using a life cycle driven reward function. The life cycle assessment driven strategy has outperformed cost oriented and 611 

effluent quality optimisation in eliminating environment impacts. The use of multiple agent DDPG has provided good results 612 

however the study lacks comparisons with other optimisation algorithms which should be investigated in the future. 613 

MADRL should enable better navigation in highly complex environments therefore it would be great to validate this novel 614 

algorithm with field data.  615 



A statistical learning based PPO algorithm is used to develop a predictive control strategy that minimises energy 616 

consumption in a wastewater pumping station in (Filipe et al., 2019). The model free method decreases electrical 617 

consumption by 16.7% and tank level violations by 97% in comparison to the current operating conditions of the pumping 618 

station based in a WWTP in Fábrica da Água de Alcântara, Portugal. The authors also compare the results of using 619 

wastewater intake rate forecasts to improve the PPO algorithm’s results. Indeed the forecasts help improve the results of the 620 

algorithm with cumulative energy consumption dropping from 459MWh-469MWh to 340MWh-348MWh (Filipe et al., 621 

2019). Bayesian optimisation was also utilised to optimise the forecasting hyperparameters. It is important to compare these 622 

results to other model predictive control methods used in WWTP pumping stations and other optimisation approaches to 623 

highlight the DRL algorithm’s performance with respect to known benchmarks. It will be beneficial to recreate the results 624 

using WWTP benchmark models and validate the results in real-world applications. 625 

3.2.4. DRL in Raw Water Treatment 626 

The authors haven’t found many papers to review relating to the application of DRL to the supply and treatment of raw 627 

water. A related paper discusses the use of DRL as a smart planning agent for off-grid camp water infrastructure 628 

(Makropoulos and Bouziotas, 2023) therefore it is not an urban water system. DQN, PPO and multi-armed bandits were 629 

tested using an urban water optioneering tool (UWOT). The DRL agents are tasked with using an array of different supply 630 

technologies with relevant costs and a set of demand pattern for potable and non-potable water to explore conditions of 631 

deployment in the off-grid system. This paper’s ability to train and test DRL agents in strategic planning paves the way for 632 

strategic planning opportunities in UWS as well. 633 

The only raw water supply application can be found in (Li et al., 2023) where the researchers apply proximal policy 634 

optimisation (PPO) algorithm to lower suspended sediment concentration (SSC) and energy consumption tested on data from 635 

the Yellow River pumping station in China. The DRL environment is made by combining data from the hydraulic model and 636 

the SSC predictive model which is formed of a multilayer perceptron model. The PPO algorithm is trained on the predicted 637 

SSC (predictive control) and real-world SSC data (perfect predictive control). Both strategies are compared to manual 638 

strategy developed by experienced operators. The SSC predictive model was not accurate as it deviates from the training and 639 

validation sets. In both the predictive and perfect predictive control, the DRL algorithm outperforms the manual strategy 640 

resulting in a smoother sediment profile, decreases the energy consumption by 8.33%, and average sand volume per unit 641 

water withdrawal by 37.01% and 40.575% respectively (Mullapudi et al., 2020). Furthermore, the authors investigate the 642 

effects of reservoir water outflows and initial reservoir water volumes. There is a strong relationship between reservoir initial 643 

water volume. This paper can benefit by comparing the DRL algorithm to other heuristic optimisation algorithms such as 644 

iterations of genetic algorithm (GA) or differential evolution (DE). The researchers should attempt to optimise the reward 645 

function by experimenting with different weights and apply some form of hyperparameter optimisation to increase the 646 

accuracy of the SSC predictive model. 647 

Table 3-1 Summary of reviewed articles 648 

System Application Algorithms Case Study Remarks Reference 

Water 

Distribution  

Pump control DDQN D-town, 

Anytown 

DDQN controls pump speeds to minimise 

tank outflows and keep junction heads within 

an acceptable range. 

(Hajgató, 

Paál and 

Gyires-

Tóth, 2020) 

PPO, E-

PPO 

EPANET 

Net3 

E-PPO achieves the better performance in 

minimising tank level fluctuations and pump 

energy consumption. 

(Hu et al., 

2023) 

KA-PPO Anytown KA-PPO controls pump speed to keep 

junction heads in acceptable range, minimise 

water age and increase pump efficiency 

(Xu et al., 

2021) 

Water quality PQDQN Sao Paolo, 

Brazil 

A novel DST and WQR expert system for 

DMODRL. PPQN outperforms the other 

algorithms.  

(Hasan et 

al., 2019) 

Asset 

management 

GCN-DQN Rancho 

Solano Zone 

III 

Novel problem setup to test resilience post-

earthquake. Use of GCN as function 

approximator and transfer learning greatly 

improves results. 

(Fan, Zhang 

and Yu, 

2022) 

Stormwater 

systems 

Flood control DQN, 

DDQN, 

PPO1, 

PPO2, A2C, 

Voting 

Sewer system 

in eastern 

China 

Novel method to improve the reliability of 

DRL algorithms (voting). Novel emulator 

that outperforms benchmarks in modelling 

storm water systems. 

(Tian, Liao, 

Zhi, et al., 

2022)  

DDPG Norfolk, 

Virginia, USA 

DDPG used for flood mitigation in real-time. 

Better results than rule-based control and 

faster than model predictive control by 88x. 

(Bowes et 

al., 2021) 



Valve control DQN Ann Arbor DQN algorithm successfully controls SWMM 

but raises issues of reliability for real-world 

application. Serves as a starting point for 

further research.  

(Mullapudi 

et al., 2020) 

Wastewater 

systems 

Dissolved 

oxygen settings 

Deep 

SARSA, 

DQN 

BSM 1 DQN algorithm outperforms all RL and DRL 

methods used to simultaneously increase 

environmental efficiency and minimise 

energy consumption. 

(Nam et al., 

2020) 

Multi agent 

DDPG 

Jiangsu 

Province, 

China 

Life cycle assessment proven as a superior 

reward function for a multi agent DDPG in 

minimising environmental impact. 

(Chen et al., 

2021) 

Pump control PPO Fábrica da 

Água de 

Alcântara, 

Portugal 

WWTP pump control using wastewater 

intake rate forecasting to improve energy 

efficient and tank level violations with 

respect to normal operating conditions.  

(Filipe et 

al., 2019) 

pH control, tank 

level control 

Multi agent 

DDPG 

Servo-

regulatory 

MATLAB test 

Multi agent DDPG used to improve real time 

control of pH and tank levels with respect to a 

proportional integral controller. 

(Panjapornp

on et al., 

2022) 

Raw water 

supply 

Sediment 

control 

PPO Yellow river 

pumping 

station 

PPO outperforms experts’ manual strategy 

and decreases energy consumption by 8.33%. 

Should be compared to other optimisation 

algorithms 

(Li et al., 

2023) 

 649 

4. Future Work 650 

As repeatedly displayed throughout this review, the field of deep reinforcement learning is growing rapidly and expanding 651 

across various real-world applications; the most recent of which being the water industry. This field of application is 652 

relatively new and is brimming with new possibilities for the real-time control. Extending this technology to the operational 653 

management of water systems is a field of untapped potential with many avenues to explore. DRL provides a method to 654 

continuously train the model to react and adjust to the environment it is placed in. This ability for unsupervised learning 655 

makes DRL a great tool for the instantaneous optimisation of any foreign network hence possibly globalising it water 656 

networks across the country. Researchers are therefore encouraged to experiment with simple DRL algorithms in different 657 

aspects of water distribution networks, stormwater systems, water treatment and sanitation, wastewater management such as 658 

strategic planning and asset management. The link between leakage and greenhouse gas emissions has been repeatedly 659 

mentioned in water management literature (Negm, Ma and Aggidis, 2023a) due to its relevance in the research community. 660 

It will be interesting to extend DRL algorithms in water applications to minimize carbon emissions. 661 

As this is the first review paper dedicated to deep reinforcement learning in UWS, the collation of this evolving field should 662 

be constant to act as a beacon to new researchers. More review papers will also help define the community’s direction, 663 

evaluate recent findings and reveal possible novelties. Nevertheless, it is essential that researchers interested in this field 664 

spend a considerable amount of effort understanding the fundamentals of DRL. This will help clear any misconception on 665 

the applicability of the field and highlight any new advancements. Hopefully, this will steer academics away from repeating 666 

mistakes. More research articles with the purpose of formalising methods of DRL application would serve as a great bridge 667 

for aspiring researchers. Whilst researcher focus on testing DRL on models and software case studies, it is necessary to 668 

validate the use of DRL as controllers in real-world case studies. Finally, focusing on the application of DRL in graphical 669 

based distribution systems such as the electrical distribution networks will provide a clearer perspective on possible overlaps 670 

and trends that could benefit water distribution.   671 

To fuel further research, the research community should focus its efforts on benchmarking scalable DRL environments for 672 

testing. Early efforts to benchmark environments can save upcoming researchers the need to repeatedly contextualise the 673 

optimisation problem in the scope of DRL. These environments should be able to communicate effectively with the most 674 

popular hydraulic simulators (e.g., EPANET, SWMM and so on) through wrappers such as PYSWMM (McDonnell et al., 675 

2020) and EPYNET (Vitens, 2017). They should also be written in the necessary syntax to include benchmarked DRL 676 

libraries such as Stable Baselines, PyTorch, TensorFlow and so on. As this is an engineering application, researchers should 677 

aim to develop models that focus on reliability and scalability. Demonstrations of these algorithms acting on live data and 678 

ground-truth models in real-time should be the objective from an engineering perspective.  679 

5. Conclusions 680 

In this new age of digitalisation, it is necessary that our physical systems do not lack too far behind. Hence the need to 681 

constantly explore new avenues to incorporate and test the state-of-the-art algorithms. After introducing the proposed field of 682 

DRL in the water industry, the field was contextualised in the realm of artificial intelligence and machine learning. The main 683 

advantages and properties of reinforcement learning were highlighted to explain the appeal behind the technology. This was 684 

followed with a gradual explanation of the formalism and mechanisms behind reinforcement learning and deep 685 

reinforcement learning supported with mathematical proof. Different computing fields were explained thoroughly to 686 



highlight the origins of commonly used computing methods in DRL. Furthermore, the milestones, trends and challenges of 687 

deep reinforcement learning were discussed to develop a better understanding of the current research area. The main research 688 

articles that have adapted deep reinforcement learning methods to solve problems in urban water systems were review 689 

thoroughly and summarised in Table 1. Finally, future works and recommendations were included to provide a clear view 690 

for the application of DRL in UWSs. Therefore, the conclusion of this review can be summarised below. 691 

• Deep reinforcement learning improves on reinforcement learning using deep neural networks for function 692 

approximation. This has improved scalability and resulted in many successes across simulated and real 693 

applications.  694 

• Current DRL trends tackle high dimensional complexity by mimicking human psychology and natural hierarchy 695 

structures.  696 

• The field of deep reinforcement learning can benefit from better classification to help new researchers navigate 697 

better. 698 

• The application of DRL in the UWS is still developing yet it shows great promise to improve our current practices 699 

with water. Early efforts to benchmark DRL test beds and environments will aid the growth of this topic. 700 

This paper aims to spark discussions and actions on future applications that harness the power of deep reinforcement 701 

learning’s experience-based real-time learning in the UWS. Water is earth’s most valuable resource hence the necessity to 702 

continuously improve our water practices. 703 
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