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Abstract— Energy theft is an extremely prominent chal-
lenge causing significant energy and revenue losses for
utility providers worldwide. The introduction of advanced
metering infrastructures (AMI) consisting of smart meter
(SM) deployments has undeniably extended the attack sur-
face, enabling individual consumers or prosumers to trig-
ger composite energy theft attack vectors. In this work,
we introduce an energy theft detection system capable
of distinguishing properties of power consumption and
generation theft with possible misconfigurations caused by
non-malicious intent. The proposed approach is adaptive
through a self-learning operation that is updated contin-
uously as new measurements become available. With the
synergistic use of measurements collected by real PV in-
stallations and openly available weather information, the
system achieves high accuracy and precision result in theft
identification over streamed data measurements. Thus, it
promotes low computational costs and its architecture can
be easily integrated within smart grid infrastructures to
realize next-generation cross-batch energy theft detection.

Index Terms— Energy theft, smart meters, data-driven
detection, smart grid, cybersecurity

I. INTRODUCTION

THE modernisation of traditional power grids into smart
grids through the demand response (DR) paradigm along-

side the integration of distributed renewable energy sources
(DRES) within grid optimisation practices is undoubtedly
contributing towards the global net-zero initiative. A core
property of modern power grids revolves around the adequate
operation and optimisation of AMI as underpinned by net-
worked smart meters (SM). In the UK alone, the number of
SM deployed by utility companies reached 28.8 million by the
first quarter of 2022, with a full coverage projected by the end
of 2025 [1], [2]. Given the diversity of hardware and software
technologies entailed within SM integration and the lack of
holistic grid-specific cybersecurity practices, we witness an
evolving threat landscape in which energy theft activities are
further enabled [3].
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Energy theft has been a problem since the very early
coal-based power grids and its manifestation has changed
dramatically with the introduction of networking technologies,
as well as, advanced energy trading platforms. Estimates of
monetary loss attributed to energy theft in the UK and the US
have been put at $170 million and $6 billion, respectively, in
the last few years [4]. Evidently, the cybersecurity loopholes
inherited by the interface of IoT technologies with AMI and
legacy or bespoke industrial control system (ICS) in modern
grids constitute the basis for various threat vectors in which
consumers or prosumers could exploit primarily for monetary
gain [5].

By virtue of the direct relationship and impact of the
DR paradigm with energy trading as translated into financial
transactions, energy theft has received a considerable level
of attention by a number of studies. Nonetheless, the ma-
jority of studies was limited in scope due to their explicit
focus on particular types of measurements or properties of
the overall smart grid ecosystem. Effectively, existing energy
theft detection schemes rely on readings related to consump-
tion measurements [4], [6]–[15] or focus on DRES energy
generation measurements [3], [16]–[18]. We argue that such
monolithic approaches would be ineffective to be deployed
and synchronised in practice by providers at different levels of
aggregation, since they pose highly demanding computational
requirements. Moreover, the algorithmic properties entailed
within such approaches have proven to fail to adequately
distinguish theft-related activities with anomalous events that
could be caused by non-malicious intent (e.g., AMI equipment
misconfiguration). Finally, the vast majority of theft detection
solutions fail to effectively adapt and re-optimise their de-
tection thresholds as they should by considering the addition
of new types of grid components and the adoption of new
technologies. Hence, a practical, holistic and adaptive energy
theft detection scheme is required, capable to distinguish
energy theft from device misconfiguration.

Therefore, in this paper, we aim to tackle some of the above
challenges and gaps within the literature and thus present
a novel energy theft detection approach that considers both
power generation and consumption measurements. The pro-
posed method is capable of distinguishing theft-related events
from noisy data generated by misconfigured devices and more
importantly, it can self-optimise based on the properties of
incoming measurement streams without human intervention.
In summary, we contribute by:
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1) Formalising a novel and generic adversary model ex-
plicit to stealthy energy theft causing benign anomalies
in consumption and generation measurements.

2) Introducing a novel energy theft detection system de-
fined by the synergy of an adaptive feature composi-
tion scheme and an energy SM classification compo-
nent resulted by the aggregation of weather condition
measurements and misconfiguration events over DRES
deployments.

3) Constructing a self-learning process to enable our sys-
tem to continuously and autonomously retrain based on
instantly available measurements.

The rest of this paper is structured as follows; Section II
elaborates on previous related work, while Section III presents
a generic model for mapping energy theft and misconfiguration
events. Section IV describes the methodology underpinning
our detection system whereas Section V demonstrates our
evaluation methodology. Section VI evaluates the proposed
soluton and demonstrates its ability to achieve high precision
and accuracy in energy theft detection, whereas Section VII
concludes this work.

II. RELATED WORK

In general, energy theft detection can be categorised into
two key approaches: (i) theft detection in consumptionmea-
surements [4], [6]–[15], and ii) theft detection by profiling
DRES generation measurements [3], [16]–[18]. The majority
of recent research falls within the former strategy, aiming to
detect theft activity in consumption measurements. Wen et
al. in [4] introduce a novel privacy-preserving energy theft
detection framework based on consumption measurements
utilising federated learning. Similarly, the studies in Zheng
et al. [6] and Yao et al. in [7] exploit the statistical properties
of consumption measurements along with the use of convolu-
tional neural networks (CNN) and the synergy of CNN with
the Paillier cryptosystem’s address privacy-preserving energy
theft detection as a classification problem.

In addition, Zheng et al. in [9] employ measurements
obtained from a smart observer meter installed to aggregate the
sum of consumption measurements of each consumer group
in a specific geographical area. The approach proposed in
[9] is a composite of two data-driven techniques, namely, the
maximum-information coefficient and a clustering technique
facilitated by fast search and finding density peaks (CFSFDP).
The detector developed by Takiddin et al. [10] is based on an
adaptation of deep autoencoders with a long short-term mem-
ory network (LSTM) based sequence-to-sequence structure,
with the synergy of energy consumption measurements. Gu
et al. in [11] proposed a classification energy theft detection
scheme based on a one-dimensional CNN, along with a set of
fully-connected networks. Cui et al. in [8] adopt a synergistic
approach that comprises a hand-crafted correlation feature
extraction scheme and a CNN-based classifier.

In parallel, Gao et al. in [12] adapt the synergy of a
modified linear regression model to estimate energy con-
sumption measurements and examine regression residuals and
thus detect energy theft activities. Similarly, Raggi et al.

in [13] employ a data analytical detection approach based
on a three-phase state estimator. Tariq et al. [14] introduce
a theft detection system in which they initially construct a
probabilistic Petri net model to analyse instances of energy
theft attacks. They then employ singular value decomposition
to accurately estimate line losses. Based on voltage and current
observations, Salinas et al. [15] develop a Kalman filter-based
state estimation scheme to identify measurement biases that
can be used to detect energy theft activities. The scheme
proposed in [15] employs a distributed approach to enable
privacy-preserving identification of energy theft activities by
leveraging communication technologies.

Nonetheless, all the aforementioned studies require large
amounts of data that in practical resource-constrained energy
systems and AMI deployments would incur high computa-
tional costs. In addition, the use of federated learning as
in [4] or the employment of a smart observer meter as in [9]
requires local detection points. and adding new components or
customers to the grid would negatively affect both scalability
as well as accuracy performance. Moreover, the effectiveness
of the detector proposed in [12]–[15] relies on obtaining
voltage data, distribution network topology and parameters.
However, these may not be fully accessible to utility providers,
thereby limiting the applicability of such detection schemes in
practical scenarios.

A number of studies have developed energy theft models
based on energy generation readings as reported by DRES
owners (i.e. prosumers). The work by Ismail et al. in [16]
considers energy theft as a classification problem through
a deep learning-based approach and by integrating diverse
DRES-oriented data sources, including weather data, super-
visory control and data acquisition (SCADA) measurements.
Moreover, Shaaban et al. in [3] develop an anomaly detection-
based approach entailing a regression tree model and a prob-
ability density function. Yuan et al. [18] develop a theft
detection approach using a synergistic least-squares method
and a moving time window. Nevertheless, theft detection
in individual DRES is proposed by Krishna et al. in [17]
by exploiting the synergy of principal component analysis
(PCA) with Kullback-Leibler divergence and auto-regressive
integrated moving average (ARIMA) regression.

However, the unsupervised nature of such approaches as
well as the data imbalance properties within actual test data
sets may very possibly mislead the detection process, resulting
in any abnormal profiles occurring due to non-malicious
activity being detected as malicious behaviour. In addition,
SCADA measurements as well as local metering components
may not be readily available for detecting stealthy energy theft
vectors and in many cases are not available to some utility
providers, as also discussed in [19]. Hence, the applicability
of the approach in [16], [18] is not generic.

In general, we witness that existing detection strategies lag
behind in the following respects: (i) a holistic approach that
considers both generation and consumption measurements has
not been proposed in the context of energy theft detection, (ii)
none of the schemes proposed in previous studies can adapt
to varying properties of energy theft attack vectors along with
SM misconfigurations, as we investigate in this paper, and (iii)
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most of the current solutions fail to re-optimise their detection
thresholds; they should be considering how these need to
adapt in response to the adoption of new grid components
and technologies.

III. SMART GRID & ENERGY THEFT

A. System description
We consider an energy distribution network G = {A,N}

consisting of a set of consumers A distributed in several geo-
graphical regions and a set of low/medium voltage distribution
buses N . Bidirectional data communication and power streams
are used for energy transmission and distribution through
corresponding power systems and networked data management
components.

Each consumer ui in G is equipped with an SM to measure
energy consumption. The consumption of a single ui at a
given hour h ∈ H for a day d ∈ D and month m ∈ M ,
is represented by Eci(h, d,m). For this representation, H =
1, 2, ..., 24, D = 1, 2, ..., 30 and M = 1, 2, ..., 12 are defined
as the set of hours within a day, the set of days in a month
and the set of months in a year, respectively. We define a
subset R ⊆ A as a group of consumers owning and managing
a DRES installation (e.g. domestic solar panels) as well as
consuming power (i.e. prosumers). The energy produced by
a single prosumer i ∈ R in a given time period h, d,m
is measured by a second SM and mapped as the function
Eri(h, d,m) : Eri(h, d,m) = 0 ∀i 6∈ R.

In this context, energy theft activities result in energy losses
defined as the difference between the energy supplied into a
grid and the energy consumed under normal conditions [9].
Thus, the cumulative energy loss over a single time period
h, d,m can be expressed as follows:

NTL(h, d,m) = ∆Es(h, d,m) +

|R|∑
i=1

∆Eri(h, d,m)

−
|A|∑
i=1

∆Eci(h, d,m) +

|N |∑
i=1

TLp(h, d,m)

(1)
where Es(h, d,m) is the energy supplied by the utility
provider to all individuals in A at a time interval h, d,m.
∆ is the discrepancy in the SM measurements for the actual
and reported readings of a single consumer/prosumer ui due
to the energy theft activities at time h, d,m, and TL is the
transmission line losses caused by physical restrictions.

B. Energy theft and SM misconfiguration model
The primary assumption of this work is that prosumers

and/or consumers can manipulate their consumption and/or
generation measurements to report erroneous energy readings.
Thus, in Eq. 1, we rule out discrepancies in the energy supplied
by the utility provider having ∆Es(h, d,m) = 0, since this
measurement is assumed to be usually secure under a reliable
communication link [20]. However, the discrepancy in the SM
generation and consumption readings in Eq. 1, ∆, may occur
by both a theft-related activity or a non-malicious event, such
as a misconfiguration. In general, energy losses defined in

Eq. 1 relate to metering conditions that manifest as anomalous
behaviour in the measurement of that particular meter. Such
occurrences are common in instances of energy theft-related
activities as well as SM misconfiguration incidents.

Therefore, to distinguish SM discrepancies, we present in
Table I a taxonomy of SM anomaly function definitions,
based on energy consumption and generation measurements.
All functions mimic pragmatic characteristics of fraudulent or
misconfigured SM patterns in terms of erroneously reported
measurements. There anomaly functions are based on findings
in the literature [9], [16], [20]–[24] and reflect a representa-
tive collection of common anomaly operations. According to
Table I, misconfiguration and theft activities can partially or
completely change the reported energy timeseries signal. Theft
activities within consumption measurements target to decrease
the monetary value of a consumer and thus they are mapped as
a direct decrease in consumed energy. However, SM miscon-
figurations lead to unexpected increases in consumed energy.
Theft functions exploiting DRES generation measurements
with a goal for monetary gain feature an increase in the
reported generated energy, while the misconfiguration of the
DRES’s SM is described as the curtailment of DRES energy
back to the grid.

IV. ENERGY THEFT DETECTION

As illustrated in Fig. 1, our system consists of two stages:
(i) feature construction and, (ii) SM classification modules.

Fig. 1: Data-flow of the proposed system.

A. Feature construction
The feature construction stage processes timeseries data

from the infrastructure and builds extended feature sets. This
is achieved by composing first order statistics (e.g., min/max,
variance) of generation and consumption measurements for
each group of consumers and prosumers. We consider cor-
related spatiotemporal behaviour across timeseries measure-
ments by virtue of behavioral similarities in seasonal consump-
tion and generation patterns.

For example, a peak in consumption pattern caused by air-
conditioning demand during a hot wave could be observed
across a large number of neighbouring consumers with similar
characteristics. Similarly, prosumers managing solar panels
can have a correlated generation pattern based on sunlight
availability. It is thus feasible to establish a ground truth
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TABLE I: Energy theft and SM misconfiguration functions where α, β, γ(.), ζ(.), ι(.) and τ(.) are anomaly coefficients.

Type Measurement Function
Curtailment misconfiguration Generation ∆Eri(h, d,m) = αEri(h, d,m) ∀ Eri(h, d,m) > 0, where

{
α ∈ R | 0 ≤ α < 1

}
Amplification misconfiguration Consumption ∆Eci(h, d,m) = βEci(h, d,m) ∀ Eci(h, d,m) > 0, where

{
β ∈ R |β > 1

}
Disconnect misconfiguration Generation ∆Eri(h, d,m) = NaN

Consumption ∆Eci(h, d,m) = NaN

Total scaling theft Generation ∆Eri(h, d,m) = γ(h, d,m)Eri(h, d,m) ∀ Eri(h, d,m) > 0, where
{
γ(h, d,m) ∈

R |γ > 1
}

Consumption ∆Eci(h, d,m) = ζ(h, d,m)Eri(h, d,m) ∀ Eci(h, d,m) > 0, where
{
ζ(h, d,m) ∈

R | 0 ≤ ζ(h, d,m) < 1
}

Partial scaling theft Generation ∆Eri(h, d,m) =

{
Eri(h, d,m), Eri(h, d,m) ≥ ι
ι, Eri(h, d,m) < ι

where
{
ι >∈ R |ι > Min

(
Eri(1, d,m), Eri(2, d,m), ..., Eri(24, d,m)

)}
Consumption ∆Eci(h, d,m) =

{
Eci(h, d,m), Eci(h, d,m) ≤ τ
τ, Eci(h, d,m) > τ

where
{
τ ∈ R |τ < Max

(
Eci(1, d,m), Eci(2, d,m), ..., Eci(24, d,m)

)}
Off-peak theft Generation ∆Er(h, d,m) =

{
γ(h, d,m)Eri(h, d,m), hs ≤ h ≤ he|Eri(h, d,m) > 0

Eri(h, d,m), otherwise
where hs and he is the off-peak operating weather conditions for DRES.

On-peak theft Consumption ∆Ec(h, d,m) =

{
ζ(h, d,m)Eci(h, d,m), hb ≤ h ≤ hc|Eci(h, d,m) > 0

Eci(h, d,m), otherwise
where hb and hc is the on-peak load hours.

Reply theft Generation ∆Eri(h, d,m) = Max
(
Eri(h− 1, d,m), Eri(h, d,m)

)
Consumption ∆Eci(h, d,m) = Min

(
Eci(h− 1, d,m), Eci(h, d,m)

)
Stability theft Generation ∆Eri(h, d,m) = Max

(
Eri(1, d,m), Eri(2, d,m), ..., Eri(24, d,m)

)
Consumption ∆Eri(h, d,m) = Min

(
Eci(1, d,m), Eci(2, d,m), ..., Eci(24, d,m)

)

with respect to normal generation or consumption profiles.
In particular, the feature construction module stage clusters
SM using an incremental K-means algorithm, which partitions
SMs into k clusters based on a set of consumer/prosumer
characteristics. In this work, these characteristics include geo-
graphical location, DRES physical characteristics (i.e. solar
panel capacity), and tariff agreement type. Clustering SMs
based on common characteristics allows the classification
stage to extract common energy generation and consumption
patterns emerging between consumers/prosumers within the
same cluster [25], [26].

Let an initial set of K-means
[
ξ

[1]
1 , ξ

[1]
2 , ..., ξ

[1]
K

]
, each con-

sumer/prosumer ui ∈ G would group into a cluster whose
mean is the shortest squared Euclidean distance as:

s[r]
q =

{
ui :|| ui − ξ[r]

q ||2 ≤ || ui − ξ
[r]
j ||

2 ∀ j ∈ [1, k]

}
(2)

In each iteration, the mean of the clusters can be updated
as follows:

ξ[r+1]
q =

1

| s[r]
q |

∑
uj∈s[r]q

uj (3)

Formally, the objective here is to minimise intra-cluster
variance as:

arg min
s

k∑
q=1

∑
u∈sq

|| u− ξq ||2 (4)

where ξq is the mean of consumers and prosumers in sq . The
output of this process is a list of clusters S =

[
s1, s2, ..., sK

]
determining which cluster each individual ui ∈ G is grouped
into and a list of the mean of each cluster Ξ =

[
ξ1, ξ1, ..., ξK ,

]

determining the mean of the individuals in each cluster. Once
consumers and prosumers with correlated consumption and
generation measurements are grouped, we calculate a set
of variables representing regular consumption and generation
patterns for the individuals within each cluster.

Hence, for each cluster, we calculate the minimum (min),
maximum (max), (var) variance, standard deviation (std), sum
and mean of the generation and consumption measurements
of a set of completely legitimate consumers/prosumers in that
cluster. These variables provide different perspectives on the
generated and consumed energy within that cluster, and overall
they reflect the regular consumption and generation patterns
for customers within that group. Thus, these features are
preserved to serve as the ground truth of the regular generation
and consumption patterns to support the detection process
within each cluster.

B. SM classification
Due to its ability to address multiple tasks simultaneously,

this module adopts a dual deep feed forward neural network
(D-FFNN) to determine whether each consumption and gener-
ation measurement is malicious, misconfigured or legitimate.
This ability of the proposed D-FFNN offers several advan-
tages over conventional feed-forward neural networks (FFNN),
which adapt two isolated networks for each classification
process. Hence, our D-FFNN is able to learn information
shared between the classification processes of consumption
and generation measurements in order to boost the perfor-
mance of both. In addition, the inherent layer-sharing of our
D-FFNN reduces the memory demands of both classification
processes. Similarly, the proposed D-FFNN avoids repeatedly
calculating the features in shared layers, which substantially
increases the inference speeds of both classification processes.
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The structure of the proposed D-FFNN is illustrated in Fig.
2. It comprises of an input layer with v neurons followed
by l fully-connected hidden layers, each with ne neurons,
and finally, dual output layers, each with 3 neurons as per
the category each sample is stratified (i.e. malicious, mis-
configured, legitimate). The input layer sends the input data
X =

{
x[1], x[2], ..., x[|X|]} to the hidden layers to extract

features and understand patterns to facilitate producing a given
category by each output layer. Each x[i] ∈ X is an instance in
the v − dimensional feature space, i.e. x[i] =

[
x1, x2, ..., xv

]
.

Fig. 2: The basic architecture of the D-FFNN.

This feature space includes the reported consumed energy
Eci(h, d,m) and generated energy Eri(h, d,m) together with
the features constructed in Section (IV-A) and the weather
conditions of i’s geographical region for each i ∈ G over the
time slot h, d,m. The first output layer projects the category of
the consumer’s i consumption measurement ŷ[i]

c whereas the
second output layer projects the category of the generation
reading ŷ[i]

r at the time h, d,m. These two decisions indicate
whether each SM of each consumer or prosumer is legitimate,
malicious, or misconfigured.

To train the D-FFNN, the input instances in X are mapped
through the hidden layers from the input layer to the dual
output layers as follows:

z[n] = σ
(
θ[n] · z[n−1] + b[n]

)
∀ n ∈

[
1, l + 1

]
(5)

where: 
z[0] = x[i] =

[
x1, x2, ..., xv

]
z[l+1]1 = ŷ

[i]
c

z[l+1]2 = ŷ
[i]
r

Here b represents a bias vector, θ is the connection weight,
and σ(·) is a sigmoid function for the hidden layer and a
softmax function for the dual output layers. The objective
of the training process of our D-FFNN is to use a standard
back-propagation to find b and θ. The training process here is
achieved by minimizing the dual objective function:

arg min
θ,b

J =
1

| X |

|X|∑
i=1

(
L
(
ŷ[i]
c , y

[i]
c

)
+ L

(
ŷ[i]
r , y

[i]
r

))
(6)

where y[i]
c and y[i]

r represent the actual category corresponding
to a sample x[i] ∈ X and L(·) is a three-class cross entropy

function formulated as:

L(ŷ, y) = −
3∑
i=1

ηi yi log(ŷi) (7)

where η represents an adjustment weight map for each cate-
gory to force the detector to focus on the category where a
larger learning loss occurs, resulting from an imbalance issue,
to improve its performance.

Algorithm 1 outlines the workflow for the entire training
process. Within this algorithm, � represents element-wise
multiplication, ρ is a predefined learning rate, T is transpose
operation, σ′(·) is the derivative of an activation function σ(·),
∇z is the gradient of the loss function J with respect to z, and
δ[n] is the error in the layer n. As illustrated in this algorithm,
each training sample x[i] ∈ X undergoes forward processing
in our D-FFNN to determine the output vectors of each layer
n ∈

[
1, l+ 1

]
. This process yields the final dual classification

outputs, denoted as ŷ[i]
c and ŷ

[i]
r . The gradient of the three-

class cross-entropy function (Equation (6)) with respect to the
output of the last layer, l+1, is then computed by utilizing an
error term δ[l+1]. Subsequently, the gradient is backpropagated
through the D-FFNN to obtain gradients with respect to the
inputs and weights of the previous layers. The weights θ and
bias b values for each layer of the D-FFNN are then adjusted
utilizing the gradient descent method.

Algorithm 1 D-FFNN training.

1: Initialise θ[n] and b[n] randomly ∀ n ∈
[
1, l + 1

]
2: for each training sample x[i] ∈ X do
3: for each layer n ∈

[
1, l + 1

]
do

4: Calculate z[n](x[i]) using Equation 5
5: end for
6: Calculate

δ
[l+1]

(x
[i]

) = ∇zJ(x
[i]

)� σ
′(
θ
[l+1] · z[l](x[i])

+ b
[l+1])

7: Calculate θ[l+1] = θ[l+1] − ρ δ[l+1](x[i])
(
z[l](x[i])

)T
8: Calculate b[l+1] = b[l+1] − ρ δ[l+1](x[i])
9: for each hidden layer n ∈

[
1, l

]
do

10: Calculate

δ
[n]

(x
[i]

) =
(
(θ

[n+1]
)
T
δ
[n+1]

(x
[i]

)
)
� σ

′(
θ
[n] · z[n−1]

+ b
[n])

11: Calculate θ[n] = θ[n] − ρ δ[n](x[i])
(
z[n−1](x[i])

)T
12: Calculate b[n] = b[n] − ρ δ[n](x[i])
13: end for
14:
15: end for

Finally, the initial D-FFNN defined by its trained parame-
ters, i.e. θ and b, is preserved to save the knowledge acquired
during the learning process from the input data X . Thus, it
can be used for detecting further measurements where each
SM is listed in one of three groups – legitimate, malicious,
or misconfigured – based on the results of the classification
process.

C. Self-learning operation
The self-learning operation of our detection system starts

once a new batch of SM measurements is available. In this
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regard, new consumption and generation measurements are
collected from the grid’s consumers and prosumers, whose
measurements may have been collected in the first data batch,
or from new individuals who were connected recently to
the power system. In order to accommodate new individuals
within a new batch of SM measurements without rerunning
the clustering process on old individuals within old batches,
our self-learning operation builds on top of the incremental
clustering strategy proposed by Chakraborty and Nagwani in
their work [27].

A generalised workflow of the self-learning operation is
described in Algorithm 2. As illustrated in this algorithm, the
system initially assigns each individual in the new batch to a
corresponding cluster defined in the saved list of clusters S
in Section IV-A. However, if the new batch contains measure-
ments from new consumers/prosumers, the squared Euclidean
distance between these new individuals and the K-means in
Ξ is measured. Subsequently, each new consumer/prosumer
is assigned to the nearest cluster whose mean is the shortest
distance, if this distance is smaller than a predefined threshold
Tk. Otherwise, the system creates a new cluster for this new
individual and updates the cluster set S and means set Ξ
by adding the means of the recently created cluster. We set
the threshold Tk by referencing the longest distance between
each individual and its cluster mean in the initial measurement
batch. Once consumers and prosumers are clustered, the
system calculates the set of features proposed in Section IV-
A from the newly available measurements to create the new
input batch X ′ along with the weather data.

Algorithm 2 Self-learning operation.
1: Recall S and Ξ
2: Assign each consumer/prosumer ui to its cluster sq
3: for each new ui do
4: Find ξq ∈ Ξ : || ui − ξq ||2 is the smallest
5: if || ui − ξq ||2< Tk then
6: sq = sq ∪ ui
7: Updated Ξ
8: else
9: Updated S

10: Updated Ξ
11: end if
12: end for
13: Construct features from each cluster
14: Collect weather condition measurements
15: Merge all measurements to create input data X′

16: Load D-FFNN
17: for each x[i] ∈ X′ do
18: ŷ

[i]
r and ŷ[i]c ← D-FFNN(θ, b, x[i])

19: end for
20: Calculate ACc and ACr using Equation (8)
21: if ACc ≤ Tc OR ACr ≤ Tr then
22: Retrain D-FFNN with X′ using Equation (5) to minimise the objective function in

Equation (6)
23: end if
24: Save D-FFNN

Following the update of the new features based on newly
available measurements, the previous version of the D-FFDD
detection module is loaded such as to predict the consumption
categories ŷc and generation categories ŷr in X ′. The accuracy
of this detection process is measured as follows:

AC =
1

3

3∑
c=1

TP c + TN c

TP c + FN c + FP c + TN c
(8)

where TP are true positives, TN are true negatives, FN are
false negatives, and FP are false positives.

As a result, we obtain two values ACc and ACr indicating
the average number of correct predictions of ŷc and ŷr,
respectively, for all observations in X ′. If one of the calculated
values is less than the predetermined thresholds Tc and Tr, the
batch is considered challenging, and the preserved D-FFDD is
retrained automatically, using Equation (5), with the goal of
minimizing the objective function in Equation (6). We set these
thresholds by referencing arbitrary values around the accuracy
of the training step of the system in the initial measurement
batch. Similarly with the rest of the parameters, the weights
for the preserved D-FFNN will also be incrementally updated
with the back-propagation as the new batch X ′ pass. This
step is required such as the proposed classification module will
adapt to observe the newly arrived generation and consumption
measurements and self-optimise its own parameters.

V. DATASETS AND EVALUATION METHODOLOGY

A. Datasets description
To validate our work, we utilise energy consumption and

generation datasets collected in the power network of Aus-
tralia’s largest electricity provider, Ausgrid 1. The dataset
represents the generation and consumption measurements cap-
tured at a real installation of 300 different consumers and
prosumers with rooftop solar panels from 1 July 2010 to
30 June 2013. However, in this work, we use only 139
individuals whose measurements were valid for the entire
period. In addition to the consumption and generation SM
measurements, the dataset includes information with respect to
consumer/prosumer geolocation (e.g., postal codes) and solar
panel capabilities (e.g., capacity).

As already mentioned, our system depends solely on
weather conditions. For this purpose, the available weather
measurements were extracted from the World Weather On-
line API 2 and predictions of worldwide energy resources
(POWER) project API 3 over the same observational period
as that of the measurements obtained for Asugrid individuals.

B. Evaluation methodology
To demonstrate the effectiveness of our system, we conduct

a performance comparison across four clustering algorithms
named the density-based spatial clustering of applications with
noise (DBSCAN), agglomerative nesting (AGNES), affinity
propagation (AP), and fuzzy C-means clustering (FCM). We
measure the silhouette coefficient (SC) score to evaluate
whether individuals are clustered in well-defined groups. The
SC is defined as:

SC =
1

| A |

|A|∑
e=1

c(e)− o(e)
Max

(
c(e), o(e)

) (9)

1Explore – Ausgrid Solar Home Electricity Data, Available:https:
//www.ausgrid.com.au/Industry/Our-Research/
Data-to-share/Solar-home-electricity-data

2Explore – Weather API, Available:https://www.
worldweatheronline.com/developer/api/

3Explore – Power Hourly API, Available:https://power.larc.
nasa.gov/api/pages/
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where | A | is the total number of individuals in the grid,
c(.) is the average distance between a consumer/prosumer and
other individuals in the same cluster, and o(.) is the minimum
average distance between that individual and all individuals
belonging to other clusters.

Furthermore, we conduct a performance evaluation of vari-
ous classification algorithms including both classic techniques
(such as conventional FFNN, decision tree (DT), support vec-
tor (SVM) and K-nearest neighbours (K-NN)) and advanced
methods (such as extreme gradient boosting (Xgboost)). This
evaluation excludes advanced deep learning models such as
LSTM because they require a two-dimensional feature vector,
whereas our data is only one-dimensional. For this compari-
son, we utilise the following performance metrics:

1) Precision (PR) defined as:

PR =
1

3

3∑
c=1

TP c
TP c + TF c

(10)

2) Recall (RE) defined as:

RE =
1

3

3∑
c=1

TP c
TP c + FN c

(11)

3) F1 Score (F1) defined as:

F1 = 2× RE × PR
RE + PR

(12)

4) Area Under the Curve (AUC) defined as:

AUC =
1

3

3∑
i=1

3∑
j>i

(
BAUC

(
i, j
)

+BAUC
(
j, i
))

(13)

where

BAUC
(
x, y
)

=
Ranks− AP

2 × (1 +AP )

AP ×AN
(14)

Here Ranks represents the sum of the ranks from class
x, AP is the number of samples in class x and AN
represents the number of samples in class y. The samples
are arranged in ascending order based on the prediction
of class i for ranking [6].

5) Computational complexity: to measure the inference
time required to obtain classification decisions on test
data.

It is worth mentioning that the computational complexity
excludes the grid search process utilised to train and fine-tune
hyper-parameters. It transforms a hyper-parameter domain into
a grid and then traverses each point on the grid to obtain the
optimal classifier parameters. Utilising such a search strategy
is straightforward, and the optimal search speed is quite
reasonable. In addition, the optimal hyper-parameters are de-
termined independently, enabling simultaneous optimization.
Table II illustrates the results of the grid-search process for
each classification algorithms.

In addition, the RE, PR, F1 and AUC are utilised to con-
duct a performance evaluation of the self-learning operation
employed within the cross-batch theft detection process. The
cross-batch theft detection process is described as the classifier
trained on the initial batch training data is used to directly

TABLE II: Optimal hyper-parameters of the classification
algorithms.

Algorithm Measurement Hyper-parameters
D-FFNN

Dual
(Generation,

Consumption)

l=8, ne in hidden layer 1=70, ne in
hidden layer 2=70, ne in hidden layer
3=60, ne in hidden layer 4=50, ne in
hidden layer 5=30, ne in hidden layer
6=40, ne in hidden layer 7=20, ne
in hidden layer l=4, Batch size=32,
Optimizer=adam, Learn rate=0.001

FFNN Generation Number of hidden layers= 5,
Number of neurons in each hidden
layer=[20, 20, 10, 5, 5], Batch
size=32, Optimizer=adam, Learn
rate=0.01

Consumption Number of hidden layers= 7,
Number of neurons in each hidden
layer=[50, 40, 30, 20, 10, 10, 6],
Batch size=32, Optimizer=adam,
Learn rate=0.0001

SVM Generation Kernel= radial basis function, C=1,
Gamma=0, 2

Consumption Kernel= radial basis function, C=10,
Gamma=0, 1

DT Generation Maximum depth=12, Minimum
samples split=2, Minimum samples
leaf=2

Consumption Maximum depth=15, Minimum
samples split=4, Minimum samples
leaf=2

K-NN Generation Number of neighbors=15
Consumption Number of neighbors=20

Xgboost Generation Number of estimators=7, Maximum
depth=10

Consumption Number of estimators=10, Maximum
depth=15

identify thefts and misconfigurations for the test set across
other batches.

During our evaluation, we synthetically inject anomalous
patterns within Ausgrid’s dataset using the functions in Ta-
ble I to emulate fraudulent and misconfigured samples. In
order to avoid a data imbalance issue resulting from this
procedure, a higher weight to the loss encountered by the
samples associated with minor categories in Equation 7 is
assigned. To note that we filter out instances of disconnect
misconfgurations during the pre-processing stage. Evidently,
such events demonstrate extremely large numbers of missing
values in both generation and consumption measurements and
they were affecting significantly the training phase. We also
adjust the value of the solar panel SM to zero for a randomly
chosen third of individuals to simulate simple consumers (i.e.
not owning/managing a DRES).

Moreover, we group the Ausgrid dataset by year to sim-
ulate a scenario in which SM measurements were presented
continuously over time. Nevertheless, to simulate a scenario
in which new individuals join the grid, we removed the
measurements of ten arbitrarily chosen individuals from the
first batch, and reintroduce them incrementally across batches.
Each batch is split into training and testing sets, with a ratio
of 70 : 30 respectively. Overall, the training data size for all
batches is set to 32, 824, 584 samples, while the testing data
size is 14, 336, 712 samples. In order to reliably evaluate the
performance of our classifiers, we utilise the 10-fold cross-
validation technique on the training data. This enables us to
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fine-tune the hyper-parameters, while the test data is employed
for the final evaluation. We then normalise the training and
test data incrementally to transform all the features’ values
into a single scale with unit variance and mean of zero and
for categorical time series, we encode them using a binary
encoder [28].

As part of our evaluation, we analyse the sensitivity of
the proposed approach in order to reflect its robustness to
emerging energy-theft behaviours. We introduce three cases
of training data for this evaluation. In the first case, we
inject malicious samples based on two arbitrarily selected
theft functions from Table I into the training data of the
2010 batch, while retaining all legitimate and misconfigured
samples. Malicious samples gradually increase as we inject
one more theft function across the other two training-data
cases. Test data were maintained across all three cases to
include all seven functions of theft. Hence, in this scenario, our
detection approach is evaluated against theft-attack functions
that were not included in the training data sets.

VI. RESULTS

Following the evaluation methodology presented earlier,
the produced outputs in Fig. 3 indicate that the K-means
formulation achieved the highest SC score (i.e. SC=0.44), with
5 clusters generated during the training phase of our system.
Thus, we utilize its capabilities for the proposed detection
system. Note that DBSCAN and AP algorithms, unlike K-
means, AGNES, and FCM, do not require a prior determi-
nation or estimation of the number of clusters. Instead, they
infer the number of clusters from the number of individuals
in the training dataset. In Fig. 3, the SC scores of these
algorithms are plotted solely with respect to their calculated
cluster number (i.e. 5 clusters for the AP algorithm and 4
clusters for DBSCAN).

Fig. 3: SC score of different clustering algorithms.

In addition, the D-FFNN, formulation performed better
than all classification algorithms in detecting malicious and
misconfigured meters as demonstrated in Table III. With
respect to generation measurements, the D-FFNN scheme
recorded a precision of 0.92, 0.90, 0.85, 0.84 and 0.91 higher
than that of the conventional FFNN, DT, SVM, K-NN and
Xgboost respectively. This was similar to the consumption
measurements, where the D-FFNN outperformed the other
classifiers, as it recorded a 72% precision accuracy, while the

TABLE III: Detection performance of the SM classification
module using different algorithms.

Algorithm
Performance Parameter

Consumption Generation
PR RE F1 AUC PR RE F1 AUC

D-FFNN 0.72 0.69 0.70 0.73 0.92 0.92 0.92 0.91
FFNN 0.69 0.67 0.67 0.68 0.89 0.88 0.88 0.89

DT 0.68 0.61 0.64 0.68 0.90 0.89 0.89 0.88
SVM 0.71 0.69 0.69 0.69 0.85 0.85 0.85 0.84
K-NN 0.59 0.49 0.53 0.60 0.84 0.84 0.84 0.83

Xgboost 0.68 0.65 0.66 0.67 0.91 0.90 0.90 0.89

conventional FFNN, DT, SVM, K-NN and Xgboost achieved
0.69, 0.68, 0.71, 0.59 and 0.68 respectively.

Evidently, the D-FFNN superiority over the conventional
FFNN, DT, SVM, K-NN and Xgboost in generation and
consumption measurements were uniform, even when RE,
F1 and AUC scores were measured. We argue, that the D-
FFNN formulation is superior due to its ability to capture
hidden patterns in the weather condition data as well as the
constructed features in Section IV-A. Moreover, compared
to the conventional FFNN, our proposed D-FFNN scheme
is superior because of its ability to handle multiple tasks
simultaneously. It can fully utilize shared information in the
classification processes of consumption and generation SMs
to improve the performance of both.

Superior detection performance in terms of RE, PR, F1, and
AUC was observed, particularly for generation measurements,
as depicted in Table III. This better performance can be
attributed to the feature construction module discussed in
Section IV-A, which effectively enhances the performance of
our classifier for generation SMs. The aim of this module
is to build a set of variables that profile normal energy
behaviours in order to boost the classification process of
generation and consumption SMs, i.e. whether each one is
malicious, misconfigured or legitimate. However, Ausgrid’s
data set does include some consumer/prosumer characteristics.
The characteristics included in Ausgrid’s data set are geo-
graphical location, DRES physical characteristics (i.e. panel
capacity) and tariff agreement type. In the case of generation
measurements, the variables distilled by the original solar-
panel capacity feature, which are available in Ausgrid’s data
set, were instrumental in profiling prosumer normal behaviour
with respect to generation. Hence, the objective of the module
to construct valuable features was achieved, and classification
performance was boosted. Nonetheless, Ausgrid’s data set
lacks consumer characteristics (e.g. number of rooms, appli-
ances) that can contribute to better profiling of consumers with
similar consumption patterns. Accordingly, the objective of the
feature construction module was not met, and the classification
performance of consumption measurements was not improved
as required.

In this scenario, it is necessary to use extra features in the
SM clustering procedure in order to improve the performance
of the classification process in consumption measurements.
However, a trade-off should be made between the efficiency
benefit and the issue of over-fitting. Hence, the addition of
features can lead to a detection strategy that is specifically
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tailored to suit particular data conditions and settings, limiting
its generalisability. Overall, these findings indicate that our
feature construction module plays a significant role in boosting
up the detection performance; however, it should be trained
with consumer/prosumer characteristics that effectively reflect
behavioral similarities in consumption and generation patterns.

Apart from high precision accuracy, the D-FFNN formu-
lation also operates with relatively lower computational time
compared to other schemes including the conventional FFNN
as depicted in Fig.44. Arguably, this outcome revolves around
the fact that the rest of the formulations required independently
trained models explicit to either generation or consumption
measurements incurring extensive computational overheads. In
addition, compared to the conventional FFNN, the proposed
D-FFNN avoids repeatedly calculating the features in shared
layers, which significantly increases the inference speeds of
energy theft classifications. This demonstrates the efficacy of
using a dual, deep learning technique instead of conventional
techniques in our detection system, as we need to train one
model with two outputs to address both tasks simultaneously.

Fig. 4: The computational complexity time of different clas-
sification algorithms.

Deteriorated performance over time was observed in the
cross-batch detection process, where the 2010 training data is
used to detect thefts and misconfigurations across 2011, 2012
and 2013 as depicted in Fig. 5. The impact on accuracy perfor-
mance is a result of the change in data distribution properties
across the batches. Consequently, such change misleads the
detection system over the years and results in further detection
errors.

The main cause for such a change is attributed via including
entirely new individuals whose measurement patterns vary
from the patterns included in the first batch’s training data.
Therefore, the detection system fails to identify the measure-
ments of consumers/prosumers who have recently connected to
the network and decide whether they are legitimate, malicious,
or misconfigured. Even in cases where no new individuals are
linked with the grid, the generation and consumption mea-
surements of the same individuals usually have non-stationary
properties, so the distribution of the data also varies across
batches. The non-stationary properties in the consumption

4On 64-bit Windows operating system with an Intel Core i7 (7th Gen)
CPU with a 2.80 GHz clock cycle and 32 GB of RAM.

Fig. 5: Cross-batch detection performance.

TABLE IV: Accuracy of the SM classification module in the
cross-batch detection process.

Batch Consumption Generation Consumption
Threshold

Generation
Threshold

2010 0.72 0.92 0.71 0.91
2011 0.67 0.90 0.71 0.91
2012 0.67 0.87 0.71 0.91
2013 0.70 0.90 0.71 0.91

measurements are caused by changes in consumption habits,
for example, installing eco-friendly equipment that reduces
energy consumption [29], while the non-stationary nature of
the generation measurements is usually caused by changes in
the weather conditions over many years [30].

However, as depicted in Table. IV, whilst the detection
accuracy of the consumption and generation measurements are
less than the predefined thresholds in the 2011 data batch, the
system considers the batch challenging and self-optimises by
retraining on that batch. As a result, the performance of the
proposed system is improving based on the test data of the
2011 batch (see Fig. 5). The same process was also carried
out for the years 2012 and 2013 to ensure validation.

The sensitivity analysis of our detection approach is de-
picted in Table V. The D-FFNN formulation maintains supe-
rior detection performance even when testing with emergent
theft behaviours, demonstrating the robustness of the proposed
detection approach. In the first case, the D-FFNN formulation
achieved PR, RE, F1, and AUC of 0.68, 0.66, 0.66 and 0.67
in consumption meters, and PR, RE, F1, and AUC of 0.87,
0.88, 0.87, and 0.88 in generation meters. In addition, the per-
formance of the D-FFNN gradually improved as the number
of malicious samples increased, and a further theft function
was provided in the remaining two cases. These observations
are due to the capacity of the DFFNN to generalise pattern-
learning knowledge. The DFFNN was effectively able to gen-
eralise its knowledge of the most distinguishing characteristics
of observed meter patterns, and their relationship to weather
condition data and constructed feature in Section IV-A.
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TABLE V: The sensitivity analysis of the detection approach.

Case
Performance Parameter

Consumption Generation
PR RE F1 AUC PR RE F1 AUC

1 0.71 0.60 0.64 0.71 0.88 0.86 0.87 0.89
2 0.73 0.63 0.66 0.72 0.89 0.87 0.88 0.89
3 0.72 0.66 0.68 0.72 0.90 0.89 0.89 0.89

VII. CONCLUSION

Modern energy theft techniques exploit the highly dis-
tributed nature of the modern smart grid and cause significant
financial loss to energy providers. Hence, tracking such events
is critical but also challenging due to the diversity of the
composite attack vectors triggering them where faults promote
the same properties as theft. In this paper, we propose a self-
learning system that can distinguish energy theft from faults
with the joint use of consumption and generation measure-
ments as well as openly available weather information. The
outcomes of an extensive and comparative evaluation over real
measurements reveal that the introduced scheme can reach
over 90% of accuracy under the D-FFNN formulation and
with relatively low computational overheads. Its joint use
with other ML techniques under the proposed methodology
that can provide for the analysis of cross-batch measurement
streams can adequately adapt over varying properties of theft
or misconfiguration scenarios. It can thus benefit the design
of next-generation energy theft detection systems.

As future work, we are currently exploring the use of
quantum machine learning strategies in our proposed detection
system. Unlike traditional computers that rely on the physical
implementation of the 0 and 1 states, quantum computers
use qubits that can simultaneously represent both |0〉 and |1〉
states, allowing for the execution of multiple computational
processes concurrently [31]. We anticipate that using quantum
machine learning will improve the learning efficiency of our
D-FFNN, potentially enabling us to achieve the same detection
performance with fewer training data or simpler architectures.
Additionally, the use of quantum machine learning techniques
may also reduce computational complexity and speed up the
theft classification process for scalable energy systems.
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