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Abstract

The sixth generation (6G) wireless communication is anticipated as a three-

dimensional (3D) network with full support of aerial edge and space edge. Moreover,

semantic communication (SemCom) based on machine learning (ML) is also con-

sidered a significant enabling technology for 6G systems. Nevertheless, integrating

SemCom into future 3D networks introduces emerging semantic coder updating

requirements and new functional challenges considering, e.g. latency, energy, and

privacy. Motivated by the above observations, in this thesis, the challenges of

SemCom in various 6G edge-enable network architectures are investigated.

Firstly, a terrestrial vehicular SemCom system is investigated for vehicle task

offloading in vehicular networks (VNs). A novel mobility-aware split-federated with

transfer learning (MSFTL) framework for SemCom coder updating is then proposed.

Moreover, to incorporate vehicle mobility and training delays I propose a high-

mobility training resource optimisation mechanism based on a Stackelberg game for

MSFTL.

Secondly, an air-terrestrial SemCom system is proposed for energy-efficient

implementation of SemCom in aerial-aided edge networks (AENs). An energy-

efficient game theoretic incentive mechanism (EGTIM) is proposed for improving the

energy efficiency of the AEN for SemCom. To update SemCom coders accurately and

efficiently in AENs, I further present a game theoretic efficient distributed learning

(GEDL) framework based on the renewed EGTIM.

Finally, a space-air-terrestrial (SAT) SemCom system is proposed for the

computation offloading of resource-limited users in SAT networks. An adaptive

pruning-split federated learning (PSFed) method for updating the SemCom coder is

then proposed. Furthermore, the users processing computational tasks strategy

in presented systems is formulated as an incomplete information mixed integer

nonlinear programming (MINLP). A new computational task processing scheduling

(CTPS) mechanism is also proposed based on the Rubinstein bargaining game.
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Chapter 1

Introduction

1.1 Motivations

The 6th generation (6G) wireless communication is considered a three-dimensional

(3D) communication network fully assisted by edge cloud facilities [1], [2]. The

aerial facilities and satellites with edge clouds, i.e., aerial edge clouds (AECs) and

satellites edge clouds (SECs), are anticipated to provide abundant storage and

computing resources to subscribers alongside the terrestrial edge clouds (TECs).

Subscribers are allowed to access these edge facilities to offload computationally

sensitive tasks for rapid processing or acquire massive image/video information etc.

[3]. However, since wireless physical layer capacity is approaching the Shannon limit,

current wireless technologies are becoming increasingly insufficient to satisfy such a

sophisticated, data traffic and diverse offloading need in future 6G 3D networks [4].

How to improve the communication efficiency and Quality of service (QoS) for future

communication systems thus become an emerging challenge in the development of

6G-enabled networks.

Semantic communication (SemCom) is a new intelligent communication paradigm

and is considered a promising solution for 6G to address this challenge [5]. Different

from the conventional Shannon paradigm [6], SemCom is a genuinely intelligent

system that only selects the necessary information to be transmitted. It concentrates

1



Chapter 1. Introduction

on the meaning of the information transmitted and ignores irrelevant information

by employing deep learning (DL) approaches [7]. Using this approach, the network

spectral efficiency is significantly reduced, thereby improving the performance of the

communication network.

Figure 1.1: Semantic versus conventional communication transmission systems.

Generally, the coder in SemCom is designed as a DL-based joint source-

channel (DLJSC) coder to substitute the conventional transmission coder [8] (Figure

1.1). However, in this approach, the DLJSC encoder and decoder are deployed

in the transmitter and receiver separately but are required to be trained for

particular transmission contents together. This introduces the question of SemCom

deployment and utilisation in practical networks. Moreover, in practice, the DLJSC

coder model needs to continue learning and updating on previously untrained

content to ensure providing a consistent QoS [9]. This presents several different

emerging challenges for different future 3D networks, e.g. collaboration coder

2



1.2. Thesis contents and contribution

updating of transmitter and receiver, the dynamism of some networks, and different

users’ different encoder models. Nevertheless, the existing SemCom systems and

distributed learning frameworks for semantic communications (see, e.g., [10]–[12])

in generic networks are however not automatically applicable to the various complex

3D networks. Designing efficient SemCom systems and distributed learning methods

for updating the semantic coders in 6G networks thus is essential.

In addition to the above, SemCom alters the transmission paradigm of con-

ventional networks by increasing the computational load while reducing the

communication load. It changes the existing pattern of communication and

computation resource utilisation. This new communication paradigm means a new

trade-off to be made in future SemCom-assisted networks in terms of technical

factors such as delays, energy cost and privacy.

Therefore, in this thesis, the objectives are to design efficient SemCom systems to

address different unique challenges for various 3D networks, i.e., terrestrial vehicular

networks, air-terrestrial networks and space-air-terrestrial networks. In addition,

novel SemCom coder updating learning frameworks are investigated while new and

technical challenges of SemCom in 6G networks are also considered, e.g. delay,

energy and privacy.

1.2 Thesis contents and contribution

Motivated by the discussions aforementioned, this thesis focuses on the unique

challenges of SemCom in various future wireless networks. Specifically, by designing

SemCom systems and novel ML frameworks, the SemCom coders enable updating

and employment efficiently. Furthermore, economic game theories are utilised to

analyse and investigate the SemCom functional challenges in various networks in

terms of delay, energy and privacy. The main contributions of this thesis are

summarised as the following.

Chapter 2 provides the background theory and literature related to the system

3



Chapter 1. Introduction

design of this thesis. The background knowledge of SemCom, edge cloud and 3D

networks is introduced first. In addition, the basic theory of the technological areas

utilised in this thesis is also presented, i.e., collaborative learning and game theories.

The existing studies of SemCom in networks are then introduced to help readers

understand the research background.

In Chapter 3, the terrestrial vehicular SemCom system is investigated. A

mobility-aware split-federated learning framework is then proposed for SemCom

coder updating to solve the unique challenges of SemCom in vehicular networks.

Moreover, although an un-updated model causes degradation in accuracy for

new transmission tasks, the un-updated encoder model can be exploited to

increase training efficiency and decrease the computing and communications cost

of distributed training. A novel transfer learning (TL) [13] paradigm for vehicular

SemCom is further proposed to be integrated into the presented framework by

employing part of the un-updated encoder. The proposed mobility-aware split-

federated with transfer learning framework is referred to as MSFTL. In addition,

a high-mobility training energy optimisation mechanism for MSFTL is presented

based on the Stackelberg game. The main contributions of this chapter are as

follows:

• The terrestrial vehicular SemCom system is investigated and a novel MSFTL

framework for vehicular semantic communication networks is proposed. The

proposed model splits the coder into four separate components for training.

The vehicle only needs to train parts of the coder to reduce the cost of

computing. MSFTL addresses unique challenges for semantic communications

in vehicular networks that were not addressed by the existing learning

framework for semantic communication networks.

• A new TL-based learning approach is presented in the developed MSFTL.

Here, by utilising the part of the un-updated semantic encoder model, the

MSFTL increases the convergence speed and accuracy. It decreases the

4



1.2. Thesis contents and contribution

training computing and communication cost. This approach also reduces

storage load and performs well on a few sample learning scenarios.

• A Stackelberg game-based energy optimisation mechanism is developed to

further reduce the training energy cost and optimise the proposed framework.

The most appropriate amount of training data is selected for each vehicle and

the entire network. It jointly considers factors such as vehicle residence time,

computational load, and communication overhead.

In Chapter 4, a novel air-terrestrial SemCom system is proposed for aerial-

aided edge networks (AENs). The resource allocation problem during SemCom

usage is then discussed. A new energy-efficient game theoretic incentive mechanism

(EGTIM) based on the proposed system is presented to optimise the network energy

efficiency in a fair way. In addition, a game theoretic efficient distributed learning

(GEDL) framework is designed for semantic coders updating in AENs. It updates

the proposed EGTIM and integrates EGTIM with traditional distributed learning

methods to accurately and efficiently update the semantic coder with respect to

energy consumption. The major contributions of this chapter are summarised as

follows:

• A novel air-terrestrial SemCom system to support AENs is proposed. In this

system, AECs and TECs provide edge services to users via employed ML-based

semantic coders. Moreover, it enables edge devices to schedule the processing

locations of computational tasks due to semantic communication intelligently

to improve the energy efficiency of the AEN. The AENs’ spectral efficiency

and the QoS thus can be improved.

• In particular, a new EGTIM in the proposed SemCom system is presented

to further improve the energy efficiency of AENs. The computational

and communication workload of the AEC and TECs to perform semantic

communication are developed as a Stackelberg game. It is designed to

5



Chapter 1. Introduction

maximise the energy efficiency of the AEN while proportional fairness

maximising the service revenue of each edge device in the network.

• A GEDL framework is proposed for semantic coder updating in AENs. It

is based on our designed renewed EGTIM for semantic coder updating.

Compared to federated learning (FL), it significantly improves the semantic

coder accuracy in Non-IID scenarios and improves the training energy

efficiency by retraining the model after federated aggregation in the AEC.

In Chapter 5, the SemCom system for space-air-terrestrial (SAT) networks is

designed. A new SemCom-assisted SEC (SemCom-SEC) framework is put forward

for computation offloading by terrestrial users. The proposed approach divides the

SemCom service into two scenarios: in-maintenance (where semantic coders need

updating) and in-service (where trained semantic coders are used for offloading

computations). In the in-maintenance scenario, the real-time update of deployed

semantic coders in SemCom-SEC is explored. Following this, a pruning-split

federated learning (PSFed) method is introduced to update semantic coders while

taking into account offloading quality of service (QoS) and ensuring privacy. In the

in-service scenario, the challenge of computational task processing for terrestrial

users under the new SemCom paradigm is examined. A novel computational

task processing scheduling (CTPS) mechanism is then suggested, based on the

Rubinstein bargaining game, which aims to minimize users’ processing delay and

energy consumption while safeguarding their privacy. The main contributions of

this chapter are summarised as follows:

• The SemCom and SEC networks are integrated and a novel SemCom-SEC

framework enabling task offloading for under-served users is proposed. In the

proposed framework, the SemCom coders are deployed on both the TSTs and

satellites. The SemCom-SEC takes into account various user task-processing

approaches and access modalities. The user’s computational tasks can be

either performed locally, at SEC or in the core cloud server. Moreover, users

6



1.3. Thesis outline

have the option to access the LEO satellites either directly or via the semantic

encoder-equipped TST.

• A PSFed approach for SemCom coder updating for the SemCom-SEC frame-

work enabling computation offloading is then presented. PSFed adaptively

“splits” and “prunes” the semantic coders for federated aggregation subject to

various users’ personalised conditions. In contrast to the conventional “split”

and “prunes” models, the semantic coder model components remain intact

after updating. PSFed reduces the consumption of training communication

resources and improves the privacy of the trained encoder while enhancing the

training convergence speed and model accuracy.

• A novel CTPS mechanism is proposed by jointly considering user privacy, de-

lay, energy consumption and fairness to solve the new incomplete information

task processing scheduling problem in SemCom-SEC. The CTPS performs in

two steps. A game theoretic model is first designed to convert this mixed

integer nonlinear programming (MINLP) problem from an incomplete infor-

mation problem due to privacy concerns to a complete information problem.

In the second step, the converted complete information MINLP problem

is decomposed and solved by adopting the Lagrangian dual decomposition

method etc.

1.3 Thesis outline

The rest of the thesis is organised as the following. Chapter 2 presents the

background knowledge of this thesis with a brief literature review. In Chapter 3,

Chapter 4, and Chapter 5, SemCom systems for terrestrial vehicular networks, air-

terrestrial networks and SAT networks are presented separately. Finally, conclusions

and future works are discussed in Chapter 6.
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Chapter 2

Theoretical Background and

Literature Review

2.1 Semantic communication

The recent development of ML technologies enabled the integration of semantic

communication into 6G as a promising solution for improving channel spectrum

efficiency. In contrast to the Shannon paradigm that focuses on the accuracy of

symbol transmission, semantic communication exploits ML to extract the actual

meaning of information to reduce the transmission information quantity [7]. In

semantic communication, the conventional coder is substituted by a semantic DLJSC

that compresses and transmits semantic information, where the coder is an ML-

based Autoencoder model [8].

The Autoencoder model (Figure 2.1) is a type of ML used for unlabeled data,

i.e., unsupervised learning. It learns the implicit features, i.e., semantic features,

of the input data, which is called coding from the encoder, and reconstructs the

original input data with the learned new features, which is called decoding from the

decoder. The Autoencoder thus can function as a feature/semantic extractor.

It can be seen in Figure 2.1, there are three main components required for the

construction of an Autoencoder, i.e., encoder, decoder and loss function. Encoder
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Figure 2.1: Autoencoder model.

and decoder are parametric equations that form the Autoencoder model. Normally,

they are based on neural networks, which are derivable with respect to the loss

function based on stochastic gradient descent etc. Furthermore, the loss function

is a metric that measures the volume of information lost after compression and

decompression. Mathematically, the input convert process of Autoencoder can be

expressed as:

x̃1 = A1(x), (2.1)

x̃2 = A2(x̃1), (2.2)

where A1(·) is the coding and A2(·) is decoding, x is the input of the autoencoder

and x̃1 is the compression output of the encoder, i.e., feature/semantic information.

Moreover, x̃2 is the output recovered by decompression through the decoder. The

loss function thus is the comparison between x and x̃2.

In SemCom studies, the encoder part of the Autoencoder can be deployed at the

transmitter and the decoder part can be deployed at the receiver. Encoders and

decoders can also adopt different neural network models. The transmitter merely

transmits the semantic feature of the input encoded by the ML-based encoder to

the ML-based receiver decoder for recovery. The number of transmission bits is

significantly reduced. SemCom thus goes beyond the Shannon capacity limit by

shifting the proportion of the work to computational resources from communication

and significantly increases the spectral efficiency [14].

9
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To do this, various semantic communication studies have been developed for

image transmission [15]–[18], text transmission [10], [19], [20], video transmission

[21],[22], speech [23], and visual question answering transmission [24]. These efforts

demonstrated the excellent performance of the SemCom systems in upgrading

communication efficiency and transmission accuracy. The SemCom is hence

considered one of the emerging and promising techniques for 6G.

2.2 Edge cloud in 3D networks

Next-generation communication networks are considered to be not only networks

supported by terrestrial cellular devices but also 3D networks coordinated by space

(satellites), air (unmanned aerial vehicles (UAVs), airships, and balloons) and

terrestrial communication devices [25]. The development of 3D communications

is necessary for the following reasons:

1. The service area of terrestrial cellular networks generally cannot reach 100%

global coverage. For instance, in mountainous areas and deserts, infrastructures are

difficult to deploy.

2. Natural disasters may destroy the communication entities, resulting in

complete destruction of the terrestrial facilities. In this case, it is crucial to use space

and air networks to improve the robustness of the entire communication system and

to react quickly to the information.

3. Terrestrial facilities’ service capabilities are subject to the constraints of

limited local resources such as spectrum, power or cache capacity, thus requiring

flexible equipment assistance.

Therefore, the integration of space, air and terrestrial networks is necessary. It

extends the coverage of the service area, provides QoS-guaranteed services, balances

inefficient communication resource allocation, and delivers content to the edge of

the network.

Deploying cloud facilities at these edge devices of the 6G networks, i.e., edge

10



2.2. Edge cloud in 3D networks

cloud, is also emerging as one of the key techniques for next-generation wireless

communication systems [26]. Cloud facilities with powerful computation and

storage capabilities are devolved to the edge of the network, allowing for providing

subscribers with abundant cloud computational resources. Subscribers are allowed

to access these edge facilities to offload computationally sensitive tasks for rapid

processing or acquire massive image/video information etc. [3].

Figure 2.2: SemCom coder updating in edge networks based on central learning.

In terrestrial networks, the TECs can be deployed on the base stations (BSs)

and roadside units (RSUs) etc. Vehicles can access these resources by offloading

their tasks (e.g. object/image recognition and processing tasks, etc.) to the TEC in

real-time via a communication link. The aerial facilities, e.g. UAVs, airships, and

balloons, with edge clouds, i.e., AECs, are anticipated to provide abundant storage

and computing resources to subscribers alongside the TECs.

In addition, subscribers located in remote areas or disaster zones might not

be able to connect to TEC infrastructures. The arrival cost of AEC facilities

is also prohibitive. Alternatively, such under-served users may offload their

computationally intensive tasks to remote core cloud servers via Geosynchronous

11
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Equatorial Orbit (GEO) or Medium Earth Orbit (MEO) satellites. In addition to

the costs, the corresponding propagation latency to and from the satellite platforms

however impedes the delay requirements of these users. Using Low Earth Orbit

(LEO) satellites can partly address this issue by providing lower propagation latency

as their orbits are much closer to the ground compared to GEO and MEO satellites.

Comparing to GEO and MEO, constellations of LEO satellites also provide low-

cost, high-throughput services and extensive radio coverage. To further reduce the

propagation delay, the SEC setting was proposed, where the offloaded processing is

conducted on board the LEO satellite, hence reducing the propagation delay by a

factor of 2 [27], [28].

2.3 Distributed learning

Central learning (Figure 2.2) is a conventional collaborative learning approach

developed based on the conventional approach of training neural networks on a

single server. The training data from distributed users are collected by a central

server, e.g. edge cloud. Subsequently, all training data on the central server is

integrated and used as input to jointly train an ML model. The trained model is

then returned to the participating users. Since in central learning, the training data

are trained directly by the ML model, it is therefore capable of obtaining higher

accuracy relative to other distributed learning methods.

However, central learning is not applicable to edge computing [29]. Because

moving heavy training data over the network implies significant transmission delays,

let alone potential privacy breaches during training data transmission. Nevertheless,

allowing distributed users to update/train the ML model locally would suffer from

insufficient performance, energy and few-shot samples.

FL (Figure 2.3) [30] is a promising distributed learning framework for collabora-

tive training in edge cloud networks. In each training epoch, distributed users first

train the entire model on the user side using their individual training data and then

12



2.4. SemCom in networks

Figure 2.3: SemCom coder updating in edge networks based on federated learning.

upload the model weights to a central server for aggregation. The aggregated model

is then sent back to the participating users. This enables individual clients to keep

their private training data locally, hence preserving their data privacy and avoiding

the problems associated with centralised data collection.

2.4 SemCom in networks

Different from point-to-point SemCom techniques research, the existing system

designing and collaborative learning frameworks for SemCom in terrestrial networks

are limited. Xie and Qin [10] proposed a pruned lite ML model for distributed

semantic coders. Their proposed method is a learning model for trained learning

models rather than for coder updating. Furthermore, Shi et al. [11] and Qin et

al. [12] suggested general FL frameworks for semantic coder updating in networks.

Nonetheless, these frameworks incur long service interruptions, energy consumption,

and privacy risks in SEC networks. The above research works highlight the

importance of designing efficient collaborative learning methods for updating the

13
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semantic coders in 6G networks is essential.

Several studies investigate the employment of SemCom for AEC devices. Kang

et. al [31] proposed a new aerial semantic image transmission paradigm based on

deep reinforcement learning (DRL) to improve the transmission accuracy of UAVs.

In [32], semantic communication was integrated into their presented DRL framework

for increasing communication reliability and decreasing the latency of air-terrestrial

networks. Kang et. al [33] introduced a task-oriented semantic communication

framework for UAVs. The UAV sends only the necessary images to the required

users rather than all images, thus reducing its energy consumption. Nevertheless,

these existing studies for semantic communication much more concentrate on AEC

devices but neglect to take into account the influence of SemCom in AENs.

In SAT networks, adopting SEC for users in remote areas or disaster zones has

been recently investigated in [34] and [35]. The authors in [34], and [35] mainly

focused on developing offloading decisions that minimise offloading delay or energy

consumption for cases where users have direct radio links to the satellites. (e.g.,

in C-Band). An alternative access scenario is proposed in [36], where the user

transmits to the SEC indirectly through an intermediary TST. In this approach,

the user transmission to the TST is on a C-band radio link and TST communicates

to the SEC through a K-band radio link. Wang et al. [37] also proposed a dual-edge

cloud network, where the edge servers are placed on both BSs and LEO satellites.

In this approach, a BS acts as a TST to assist users with computation offloading to

the SEC. Similarly, [38] proposed an energy-efficient strategy for terrestrial users to

offload computing tasks to the SEC via TSTs. Tang et al. [39] further investigated

the impact of the core cloud on users’ offloading decisions. They then proposed

a minimal energy consumption computing offloading decision method, where users

access SEC directly. The above approaches often limit their investigations to one

connectivity scenario between the users and the SEC, while considering only part

of the performance (e.g., energy or latency) and overlooking the potential privacy

issues associated with offloading users’ tasks elsewhere. Further, SemCom was also
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not integrated.

A few resource-optimal studies have also been proposed for SemCom-assisted

networks. Yan et. al [40] defined the semantic spectral efficiency optimisation for

resource allocation in terms of channel assignment and the number of transmitted

semantic symbols. In [41], compression ratio and resource allocation were optimised

jointly to maximize the success probability of tasks. Furthermore, quality-of-

experience aware resource allocation in terms of the number of transmitted semantic

symbols, channel assignment, and power allocation was introduced in [42]. However,

these allocation strategies focus more on communication cost than on computation

cost. In addition, they also ignore the privacy, the resource variations associated

with online training of semantic coders and the differences in the specific application

scenarios of SemCom.

2.5 Summaries

Therefore, there are extremely limited studies on integrating SemCom systems in

6G networks. In addition, SemCom deployment in networks faces the problem of

semantic coder updates and the new problematic resource allocation concerns it

entails that also urgently need to be resolved. In this thesis, SemCom systems

for various potential 6G 3D networks will hence proposed and developed. Moreover,

SemCom coder updating mechanisms and resource allocation schemes will presented

for proposed SemCom systems with comprehensive consideration of communications

and computing costs, as well as potential privacy risks.
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Chapter 3

Terrestrial Vehicular SemCom

System

3.1 Introduction

In this chapter, the challenges of SemCom in terrestrial vehicular networks are

analysed and investigated. How to efficiently update semantic coders in the

network in real-time is amongst the main challenges for the SemCom system design.

Nevertheless, the existing studies are extremely limited in addressing this challenge

of SemCom as mentioned in Chapter 2. I can summarise the deployment of

the existing frameworks for SemCom, i.e., frameworks based on FL, in vehicular

SemCom networks for task offloading faces the following challenging questions:

Q1 : Encoders that extract semantic information from different vehicles may

have different models. This prevents the vehicle from participating in coder model

aggregation for FL.

Q2 : FL requires the entire coder (encoder and decoder) to be trained on the

vehicle. This however significantly increases the computational workload on the

vehicle. In addition, the required storage of the trained decoder model for each type

of transmission content increases the vehicle’s storage overhead.

Q3 : The high mobility of vehicles also presents the challenge of selecting
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appropriate vehicles for collaborative training. There is also a trade-off to be made

in terms of technical factors such as training delays, and energy costs.

In this chapter, I provide tractable solutions to these questions. Split learning

(SL) [43] is a new distributed training approach proposed in the ML domain recently.

However, it is also not applicable to vehicular semantic networks. The loss value

required for trained coder updating is unavailable in a dynamic vehicle environment

due to the SL splitting the training model to be trained on different devices. In

this chapter, I show that combining the advantages of FL with SL is a potential

scheme for semantic coder updating in mobile vehicular networks. I propose a

mobility-aware split-federated learning framework to address these urgent needs for

considered vehicular SemCom networks. A TL [13] paradigm for vehicular SemCom

is then proposed to be integrated into the presented framework by employing part

of the trained encoder. I refer to our proposed mobility-aware split-federated with

transfer learning framework as MSFTL. Moreover, a high-mobility training energy

optimisation mechanism for MSFTL is also presented based on the Stackelberg game.

The rest of this chapter is organised as follows: Section 3.2 presents the vehicle

SemCom system model. The proposed MSFTL framework and the analysis of its

computing and communication overhead are presented in Section 3.3. In Section

3.4, the game theoretical mechanism design is proposed for resource optimisation.

Section 3.5 presents the simulation results showing that our proposed framework

and mechanism achieve excellent performance. Finally, this chapter is concluded in

Section 3.6.

3.2 System model

In this section, I first introduce the vehicular SemCom network traffic model, and

then the vehicle computational and communication workload models are presented.
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3.2.1 Vehicle SemCom model

In this chapter, I assume a set of TECs, {1, 2, ...,m, ...,M}, is deployed on roadside

units (RSUs) or base stations (BSs) and a set of vehicles {1, 2, ..., n, ..., Nm} is in

the service range of TEC m (Figure 3.1). Further, there are Im vehicles in TEC

m’s range that participate in the DLJSC coder model training. Different vehicles

transmit the offloading content via various models of DLJSC encoder to the TEC,

where the TEC receives it via a DLJSC decoder. When the vehicle or TEC semantic

knowledge base is scarce, vehicles need to be selected for participation in the training

based on the vehicle‘s velocity. According to [44], I can have the average velocity

(km/h) v̄m of Nm vehicles in the service range of TEC m as:

v̄m = max{vmmax = (1− Nm

Nmmax

), vmmin
}, (3.1)

where vmmax is the maximum vehicle velocity that can be driven within the service

range of TEC m. I assume roads in the TEC service range are uniform and have the

same permissible maximum vehicle velocity. Similarly, vmmin
is the vehicle velocity

when the road is congested. Further, Nmmax is the maximum allowable number

of vehicles in TEC m’s service range on the road. In the case of free-flow traffic

conditions, the velocity of a vehicle n in the service range of TEC m, vn,m is a

normally distributed random variable with the probability density function given by

[44]

f(vn,m) =
1√
2πσ

e−
(vn,m−v̄m)

2σ2 , (3.2)

where σ = kv̄m and vmmin
= v̄m − lv̄m. The two-tuple (k, l) is subject to the traffic

activity observed in real-time. I can also rewrite it as:

f̂(vn,m) =
f(vn,m)∫ vmmax

vmmin
f(vn,m)dvn,m

=
2f(vn,m)

erf(vmmax−v̄m√
2σ

)− erf(
vmmin−v̄m√

2σ
)
. (3.3)

3.2.2 Computing and communication model

I consider a vehicle computing offloading scenario, where vehicle n in the service

range of TEC m has a task with data size kn,m to offload. Further, I assume the

18



3.2. System model

Figure 3.1: Vehicles in the network.

size of training data to be computed by this vehicle during coder model training is

dn,m. I write the training delay of one epoch as:

Tn,m =
dn,m
fn,m

, (3.4)

where fn,m is the CPU-cycle frequency of vehicle n with the unit cycles/s. The

energy cost is [38]

En,m = pcn,mTn,m = εf 3
n,m

dn,m
fn,m

= εdn,mf
2
n,m, (3.5)

where ε is the energy parameter depending on chip [45] and pcn,m is computing power.

According to the Shannon theory, the communication delay for transmitting a

task kn,m should be

tn,m =
kn,m
rn,m

=
kn,m

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
, (3.6)

where rn,m is the transmission rate. Further, Bn,m is the bandwidth, pn,m is

transmission power and gn,m is the channel gain. Thus, the transmission energy

cost is

en,m = pn,mtn,m. (3.7)

SemCom differs from traditional communication in spectral efficiency research

[40],[46]. Conventional communications focus on unit bandwidth rates, while

SemComs focus on effective semantic information delivered per second. I also

consider that in practical signal transmission, the transmission process of SemCom

is still based on traditional communication theory as described above.
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3.3 MSFTL for vehicle SemCom

In this section, the new TL-based approach for the vehicle network QoS enhancement

is presented. I also present the details of our proposed MSFTL framework. Finally,

I compare the computational and communication cost of the proposed MSFTL

framework with that of the conventional FL framework.

3.3.1 Transfer learning for vehicle SemCom network

The successful application of Autoencoder, a deep unsupervised learning model,

has recently been demonstrated in the design of SemCom architectures [16], [47],

[48]. It extracts the input features by downscaling features via the encoder and

subsequently the image is recovered through the decoder. The autoencoder training

process entails converting inputs, x, into intermediate feature variables y via the

encoder part. Therefore, variables, y, are converted into x̃ by the decoder part.

Finally, inputs x and outputs x̃ are compared to ensure that they are both infinitely

close. Nevertheless, training from scratch often takes a long time and a significant

number of samples. Depending on the network composition of the autoencoder,

such as based on transformer [20] or convolutional neural network (CNN) [15], the

training time varies.

To address these challenges, I propose a TL approach. In this approach, I develop

the un-updated DLJSC encoder model in two parts: the pre-training model, and

fine-tuning layers. Every vehicle allows having various types of the pre-training

model. The pre-training model is a part of the encoder model which is the vehicle

encoder that has been trained over a long period of time with a large amount of

data. However, this model is not well suited to the required training task of feature

extraction. Hence, in our model, the last layers of the vehicle semantic encoder

are replaced with the same type of untrained layers. The replaced layers are called

fine-tuning layers which are trained for a specific task. The vehicle does not need

to retrain the pre-trained model again. Only the last few layers of the encoder need
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to be trained. Furthermore, to alleviate the small sample size issues, fine-tuning

layers are trained together at the edges, as specified below. Therefore, vehicles only

need to ensure the last few layers of the encoder have the same model. The storage

resource required and training costs for different missions are thus reduced.

3.3.2 MSFTL design

Considering the pervasive case of semantic coders update, I propose a novel training

framework based on split-federated learning for vehicle SemCom networks. SL is a

collaborative learning approach in distributed systems designed to learn models for

clients [43]. SL splits the model into two parts, one on the decentralised clients and

another one on a centralised server. Multiple clients jointly train a shared model on

the centralised server together with their part of the model. Therefore, it enables

data information sharing and reduces the computational load. FL [30],[49] is also

a distributed collaborative learning approach, where clients train the entire model

and finally aggregate the model weight on the server. Thus protecting privacy and

enabling the indirect sharing of data. The aggregation method generally employs

the widely adopted Federated Averaging (FedAVG) algorithm [50],[51]. It is based

on the weighted average for weight aggregation.

Nevertheless, SL is not very suitable for training server models as the calculation

of loss values requires private raw data that is not available at the same place

as the loss value calculation. Further, FL requires identical models for federated

aggregation which means FL require the same encoder model in our considered

vehicular semantic networks. Therefore, based on the above, neither of these

traditional frameworks can be applied to the vehicle SemCom network as they

face the Q1 -Q3 and privacy challenges. In our proposed MSFTL (Figure 3.2),

the advantages of both SL and FL are sustained, while the mentioned challenges

are also tackled. The coder is split into four parts during training, including the

pre-training model P1, the fine-tuning layers P2, the TEC private decoder (part of

the decoder) P3 and the last layer of the decoder P4. The entire model is split but
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Algorithm 1 MSFTL for vehicular semantic communication

After confirming trainable vehicles

Vehicle Execution:

Batch size: J

1: for each local epoch a = 1, 2, ...A

2: From EC m get Pm
4 weight parameters W a−1

4

3: for each vehicle involved in training n = 1, 2, ...I

4: From EC m get Pm
3 forward propagation output x̃n

3

5: for each local batch bn = 1, 2, ...

6: Forward propagation in Pm
4 and get output x̃i

4

7: Loss y ←− 1
J

∑J
j=1(x

n
j − x̃n

4,j)

8: Get backpropagation output x̃i′
4 and send back x̃i′

4

9: Update W a
4,n

10: end for

11: Transmit W a
4,n to EC m

12: end for

13: end for

EC m Execution:

1: From each vehicle n involved in training get P n,m
1 output x̃n

1

2: for each epoch a = 1, 2, ..., A

3: Forward propagation in Pm
2 and Pm

3 , and get output x̃n
3 for each vehicle n

4: After vehicles training ...

5: Get x̃n′
4 from vehicles and perform backpropagation

6: Update W a
2 & W a

3

7: Get W a
4,n from vehicles

8: Update W a
4,n

9: end for
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Figure 3.2: The functional block diagram of the proposed MSFTL.

trained together. Trainable vehicles are selected based on factors such as velocity,

and computational capability. I will elaborate on the details in the next section.

The SemCom model update algorithm is shown in Algorithm 3.1. Firstly,

the trainable vehicles and training data are identified. These are based on the

Stackelberg game based resource optimisation mechanism. We will elaborate on the

details in the next section.

In the coders’ training process, the pre-training model, P1, and the last layer of

the decoder, P4, are trained on the vehicle while fine-tuning layers P2 and the EC

private decoder P3 are trained on the EC.

For a trainable vehicle n in EC m’s range, the fuzzy features x̃n,m
1 are first

extracted from training samples xn,m. The features x̃n,m
1 are obtained through a

freezing pre-training model P n,m
1 and transmitted to the EC m. Subsequently, the

ECm treats fuzzy features x̃n,m
1 as inputs and start the training cycle. In one epoch,

the EC uses x̃n,m
1 performing forward propagation training of the fine-tuning layer

Pm
2 and the EC private decoder Pm

3 . The results of the forward propagation from
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Pm
3 , i.e., x̃n,m

3 , are sent to the corresponding vehicle n. The corresponding vehicle

n then trains the last layer of decoder P n,m
4 and gets output x̃n,m

4 . Thereafter, the

vehicle gets the loss value Ln,m by comparing the variability between source message

xn,m and forward propagation output x̃n,m
4 . The backpropagation process is then

carried out based on Ln,m and returning along with the same path until fine-tuning

layers Pm
2 . Finally, since the last layer of the encoder P n,m

4 has only been trained for

a single vehicle, a federated aggregation is required to guarantee that the decoders

are identical.

The vehicles participating in the training send it to EC m for aggregation, which

then returns the aggregation result Pm
4 to each sending vehicle. All vehicles involved

in the training complete a training epoch after performing the process once. After

the training, P n,m
1 and Pm

2 forms the vehicle n’s DLJSC encoder. Similarly, Pm
3 and

Pm
4 forms the EC’s DLJSC decoder. During the whole process, the user’s private

information P n,m
1 and xn,m is not leaked, i.e., the client encoder models can be

different, and the privacy of clients is protected. The vehicle only needs to replace

the fine-tuning layer for different transmission contents, thus reducing the vehicle’s

storage load.

3.3.3 Comparison of computing and communication over-

head

For vehicles, regardless of the employed collaborative learning framework, a certain

degree of computational and communication load is expected. Neither FL nor SL is

applicable to the vehicle SemCom network due to the Q1 -Q3 and privacy challenges.

However, to enable making the employment of FL, I can assume that the vehicle

encoder models are the same. To further validate the advantages of our MSFTL in

the following, I compare the computational and communication load of the existing

FL framework with the proposed MSFTL for the same encoder model.

I assume the total number of training epochs is e. The computational delay of

the vehicle n in the service range of TEC m to be consumed by the model update
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in the FL framework is expressed as:

T FL
n,m = Dn,m

dP
fn,m

e, (3.8)

where dP is the size of the computation required for the coder model of one training

data in one epoch andDn,m is the number of training data from vehicle n. Therefore,

the required energy for computations is

EFL
n,m = ϵDn,mdPf

2
n,me. (3.9)

In contrast to FL, the imposed computational delay and energy of the proposed

MSFTL can be expressed as:

TMSFTL
n,m = Dn,m(

dPn,m
4

fn,m
e+

dPn,m
1

fn,m
), (3.10)

EMSFTL
n,m = ϵDn,m(dPn,m

4
f 2
n,me+ dPn,m

1
f 2
n,m), (3.11)

where dPn,m
1

is the size of the computation needed to derive the output x̃n,m1 from

the pre-trained model. Furthermore, dPn,m
4

is the training computation load of the

final layer of the decoder. Hence, for the same coder model,

dP > dPn,m
1

+ dPn,m
4

. (3.12)

I can also write:

T FL
n,m > TMSFTL

n,m , (3.13)

EFL
n,m > EMSFTL

n,m . (3.14)

Therefore, our proposed framework requires a lower computational cost in

vehicles than FL.

I express the communication cost during training in terms of communication

rounds for visual representation. FL requires clients to offload the trained model

weights to the TEC and return them after TEC aggregation in each training epoch.

FL therefore communication load of vehicle n is

CFL
n,m = 2ωpe, (3.15)
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where ωp is the size of coder model weights. Therefore, the communication cost of

federated the last layer of the decoder is

C1MSFTL
n,m = 2ωpn,m

4
e, (3.16)

where ωpn,m
4

is the size of the last layer of the decoder weights. As MSFTL requires

the client to first send the pre-trained model output x̃n,m1 to the TEC, the TEC and

client need to perform forward and backpropagation of the final layer of the decoder.

The split training communication load is therefore

C2MSFTL
n,m = On,m

1 Dn,m + 2On,m
3 Dn,mep, (3.17)

where On,m
1 and On,m

3 are the number of output layer neurons of pre-trained model

P n,m
1 and partial decoder model Pm

4 , respectively. Thus, the total communication

load of the proposed MSFTL is

CMSFTL
n,m = C1MSFTL

n,m + C2MSFTL
n,m = 2e(ωpn,m

4
+On,m

3 Dn,m) +On,m
1 Dn,m. (3.18)

Since e is usually a large number, I have 2e(ωpn,m
4

+ On,m
3 Dn,m) >> On,m

1 Dn,m.

Therefore, I ignore On,m
1 Dn,m in the comparison. Hence, the comparison of the

communication cost of the FL and MSFTL can be expressed as ωp versus ωpn,m
4

+

On,m
3 Dn,m. I can conclude that MSFTL is more communication efficient in case

the amount of the coder model weight is larger, otherwise, FL performs better.

Nevertheless, FL only applies to special cases where the encoders of all vehicle

models are the same. In contrast, our proposed MSFTL not only adapts to variable

network environments but also performs better in terms of computational load.

3.4 Stackelberg game based resource optimisa-

tion mechanism

In this section, I present a high-mobility training energy optimisation mechanism

for the MSFTL. The mechanism is based on the Stackelberg game, which jointly
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takes into account vehicle mobility and minimises training energy costs. First, I

present the game at vehicles in the mechanism and the selection of training vehicles

considering mobility. I then introduce the design of the game at the TEC and

present mechanism optimisation formulation and its solution.

3.4.1 Game design at the vehicles

It is important to ensure that the vehicle has sufficient training time before training.

First, I analyse the available training time for the vehicle. I assume Dn,m is the

number of training data participants training from vehicle n in the range of TEC m

and Dmax
n,m is the maximum available training data from vehicle n. Further, I assume

that the communication status of vehicle n remains constant during training. The

duration of the training can be expressed as:

Ψn,m = Dn,m(
dPn,m

4

fn,m
e+

dPn,m
1

fn,m
+

zOn,m
1 + 2zOn,m

3 e

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
) +

∑Im
n Dn,m(

dPm
2,3

+dPm
4

fm
)e,

(3.19)

where z is the parameter to convert the data number to the size to be transmitted

and fm is the CPU-cycle frequency of TEC m. Further, dPm
2,3

is the training

computation size of Pm
2 and Pm

3 , and dPm
4

is federated aggregation computation

load. Moreover, Im is the number of trainable vehicles and
∑Im

n Dn,m denotes the

total number of training data submitted from the trainable vehicles. For simplicity,

I set

Ψn,m = Dn,mΓn,m +
Im∑
n

Dn,m(
dPm

2,3
+ dPm

4

fm
)e. (3.20)

The vehicle residence time can be estimated as:

Kn,m =
hn,m
v̄m

, (3.21)

where hn,m is the distance that the vehicle n travels out of the TEC m’s service

range. Moreover, v̄m is the vehicles’ average velocity in TEC m’s service range

mentioned in Section 3.2. To ensure learning efficiency, hn,mis considered as the

shortest distance at multiple forks in the road. Therefore, trainable vehicles should
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satisfy Ψn,m ≤ Kn,m, that is

Dmin
n,m ≤ Dn,m ≤ Dn,m

Kn,m

Ψn,m

, (3.22)

where Dmin
n,m is the minimum training data required to guarantee accuracy.

Once suitable trainable vehicles have been identified, semantic coder model

training can be initiated. I mainly consider the computational and communication

energy cost of the vehicle during training. Energy cost is defined as cost and the

cost of vehicle n can be denoted by

Θn,m = EMSFTL
n,m +Dn,m

zpn,mO
n,m
1 + 2zpn,mO

n,m
3 e

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
. (3.23)

Nevertheless, the vehicle is not necessarily willing to participate in the training

due to the different situations faced. Sufficient data is one of the guarantees of

model accuracy. I hence set a pricing function and design a game for the vehicles

to incentivise the vehicles to participate in the training. To ensure fair allocation of

bonuses, I use a weight-sharing model commonly used in the game bonuses design.

I write

Rn,m =
ωn,mDn,m∑Im
n ωn,mDn,m

Rm, (3.24)

where Rm is the total bonus from the TEC and ωn,m is the coefficient depending on

the quality of vehicle communication as it affects the quality of transmitted data.

Here, Rn,m and Rm have no unit, they are numerical values and they are judged

by comparing the magnitudes. The corresponding coefficient of vehicle n is ωn,m.

Hence, I have the utility function of the game at vehicles as:

µn,m = αRn,m − βΘn,m, (3.25)

where α and β are normalisation factors enable αRn,m ≤ 1 and βΘn,m ≤ 1. This

allows the utility function to be a pure numerical function and the utility value is a

unitless number. I can further define the vehicles’ game problem as:
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Problem 3.1:

max
Dn,m

αRn,m − βΘn,m, (3.26a)

s.t. Dn,m ≥ Dmin
n,m , (3.26b)

Dn,m ≤ Dn,m
Kn,m

Φn,m

. (3.26c)

3.4.2 Game design at the TEC

In this subsection, I design the game at the TEC and its utility function. I assume

the accuracy of the model is related to the amount of training data. The objective

of the TEC is to minimise the reward offered while satisfying the minimum QoS

(accuracy) after training. Without loss of generality, the TEC m’s utility is defined

as:

Um ≜ γΩ− δRm, (3.1)

where γ and δ are normalisation factors and Ω is a function related to the accuracy

of the training model. As the relationship between the amount of training data and

the accuracy of the model shows an increasing trend with a gradual decrease in the

rate of growth in our simulation (Figure 3.7). I thus use a logarithmic function to

model the Ω as:

Ω ≜ ln(1 + θ
Im∑
n

Dn,m), (3.2)

where θ is a parameter related to the training model. Further, it is limited to more

than minimum permissible the accuracy Ωmin and less than the maximum accuracy

Ωmax possible for the model. The game problem at the TEC thus can be written as:

Problem 3.2:

max
Rm

γ ln(1 + θ
Im∑
n

Dn,m)− δRm, (3.3a)

s.t. Rm > 0, (3.3b)

Ωmin < ln(1 + θ

Im∑
n

Dn,m) ≤ Ωmax. (3.3c)
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3.4.3 Optimal solutions and equilibrium analysis

NE Existence: Problem 3.1 (follower) and Problem 3.2 (leader) form a Stackelberg

game. I assumeD∗
n,m and R∗

m are the optimal solutions for Problem 3.1, and Problem

3.2, respectively. Thus, the game needs to satisfy the following equation to reach

Stackelberg Equilibrium (SE) point(s)

µ(D∗
n,m, R

∗
m) ≥ µ(Dn,m, R

∗
m), (3.1)

U(D∗
n,m, R

∗
m) ≥ U(D∗

n,m, Rm). (3.2)

It is found from Problem 3.1 that the strategy set at vehicles is compact and

convex. Further, as the second order partial derivative is less than zero, i.e.,

∂2µu,m

∂D2
n,m

= − 2ω2
n,mRm

∑Im
j,j ̸=n ωj,mDj,m

(
∑Im

j,j ̸=n ωj,mDj,m+Dn,mωn,m)3
< 0, the utility function is continuous and

concave in Dn,m. Thus, according to the Debreu-Glicksberg-Fan theorem a pure NE

exists [52].

I then employ classic backward induction to find SE points. The optimal

strategies for vehicles are obtained first, followed by the optimal strategy for the

TEC. If the vehicle residence time is less than the minimum trainable time, i.e.,

Kn,m < Ψn,m(D
min
n,m). Then Dn,m∗ = 0. If Kn,m ≥ Ψn,m(D

min
n,m), by deriving the first

order partial derivative of (3.26a) with respect to Dn,m, I have

∂µn,m

∂Dn,m

= α
ωn

∑Im
j,j ̸=n ωj,mDj,m

(
∑Im

n ωn,mDn,m)2
Rm −

βΘn,m

Dn,m

. (3.3)

For simplicity of presentation, I set Hn,m = βΘn,m

Dn,m
. In case that (32) equals

0, the optimal training data obtained as fn,m(D
∗
n,mRm) =

√
αR

∑Im
j,j ̸=n ωj,mDj,m

ωn,mHn,m
−∑Im

j,j ̸=n ωj,mDj,m

ωn,m
and the TEC’s utility function can be written as:

Um = γln(1 + θ

Im∑
n

fn,m(D
∗
n,m, Rm))− δRm. (3.4)

Due to the high complexity and multiple constraints, sub-games NE cannot be

derived in a closed form. Therefore, I solve the game in two segments through

numerical search. In the first step, I employ the simplicial method [53] to achieve
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Algorithm 3.2 Stackelberg game-based energy optimisation mechanism

1: Set the maximum number of iterations K, and learning rate θ

2: Set initial positive numbers for R and Di

3: while k < K

4: Di(k)←−
√

αR
∑Im

j,j ̸=n ωjDj

ωiHi
−

∑Im
j,j ̸=n ωjDj

ωi

5: D∗
i (k)←− constraints and Di

6: U(k)←− R(k) and D∗
i (k)

7: R(k + 1) = R(k) + θ

8: end while

9: Find the maximum U(k) and corresponding R(k) and D∗
i (k)

10: return R(k) and D∗
i (k)

each Dn,m‘s optimal decision by solving a piecewise linear approximation of the

problem while holding Rm fixed. Subsequently, fn,m(Dn,m, Rm) is substituted in

(3.33), Rm is updated using the two-dimension grid search, and Rm is substituted

back into the first step. Dn,m and Rm thus iteratively tighten until convergence.

The solution algorithm is shown in Algorithm 3.2.

3.4.4 MSFTL

3.5 Simulation results

In this section, I evaluate the performance of the proposed MSFTL and optimisation

mechanism. First, I compare the proposed MSFTL framework with the existing FL

framework for SemComs in terms of convergence speed, and accuracy. Then, the

advantage of the presented optimisation mechanism based on the Stackelberg game

is assessed in a variety of different scenarios.

I first elaborate on the simulation settings in evaluating the performance of

our proposed framework and ignore the communication noise when training. The
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Table 3.1: The setting of the CAE in the proposed semantic network framework.

LayerName Number of neurons

Conv+ReLU 128

Pre-training model Conv+Pool+ReLU 64

Conv+Pool+ReLU 32

Fine-tuning layer Conv+Sigmoid 10

transConv+ ReLU 10

TEC private decoder transConv+ ReLU 32

transConv+ ReLU 64

Final layer of decoder transConv+ Sigmoid 128

adopted SemCom model is based on convolutional autoencoder (CAE) [15], the

details of the CAE setting are shown in Table 3.1. Since the baseline frameworks

for SemCom networks are limited and all based on FL, e.g., [30],[49], to enable

the FL to operate in a vehicle SemCom network, I assume all users have the same

encoder model and the same degree of pre-training. Further, training and pre-

training datasets employed are CIFAR 10 and CIFAR 100 [54], respectively. They

are both composed of a 50,000-image training set and a 10,000-image test set. The

difference is that CIFAR 10 has 10 classes, while CIFAR 100 has 100 classes.

In order to more realistically verify the performance of the proposed framework

in the case of vehicle task offloading, I set the experimental environment to

object/image recognition after computing offloading. I validate the classification

of the transmitted images using a fully trained VGG16 [55] network, and its

accuracy comparison with the images before transmission visualizes the performance

of the frameworks. I also assume the similarity of the recognition accuracy of the

object/image after transmission in VGG16 compared to before transmission as the

SemCom model accuracy. In addition, the number of users involved in the training

of our network is 10 and the sample set is divided randomly and equally into 10

copies, if not stated in particular.
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Figure 3.3: Convergence speed comparison of different frameworks.

Figure 3.3 illustrates the performance of the proposed MSFTL in terms of

convergence speed. I set the batch size as 64 and compared the proposed MSFTL

with the FL framework and the MSFTL without the TL model. I can observe

that as the number of training times increases, the loss values of each approach

gradually decrease and eventually plateau. The decrease curve of the MSFTL

without TL almost coincides with FL, proving that both sides can achieve almost

similar performance in terms of convergence. Nevertheless, our proposed MSFTL

convergence rate and the final loss values achieve a very significant outperformance.

This is because the pre-training model accelerates the training and a well improves

the model feature extraction capability.

Figure 3.4 presents the image offloading accuracy of CAEs trained by different

training frameworks for different numbers of participating vehicles. It can be

seen that the accuracy of all the training frameworks increases as the number of

participating vehicles increases. This is because the increase in the number of

participating vehicles leads to an increase in the total training sample. Furthermore,
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Figure 3.4: Accuracy of different frameworks.

our proposed MSFTL consistently achieves the optimal transmission/offloading

accuracy as varying numbers of vehicles are involved in the training. This increases

the QoS of vehicle task offloading. Moreover, although the accuracy is not smoothly

increasing as the number of vehicles (samples) increases due to the stochastic

property of machine learning, it is still noticeable that the trend is similar to the

log function. It validates Eq. (3.28) in our game design.

Figure 3.5 shows the computing cost of the vehicle under different training

frameworks. For comparison purposes, I define the computing cost as the number

of neurons that need to be computed in the forward and backpropagation of the

vehicle in one Epoch. Vehicles are not limited to aggregating only the last layer

of the encoder. Furthermore, FL is set to a constant value due to its aggregation

of all weights. It can be observed that the vehicle computing cost increases as the

number of layers to be aggregated increases. When all the last five layers need to be

aggregated, it has the same computing cost as FL. This is because all the network

models are trained on the vehicles at that moment. Our proposed MSFTL reduces
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Figure 3.5: Computing cost of different frameworks.

the backpropagation overhead of the pre-training model due to the presence of TL

so that the vehicle computing cost is always kept at the lowest of all frameworks.

Further, the aggregation of the last layer decreases the computing cost for the vehicle

and simultaneously mitigates the risk of model privacy leakage.

Figure 3.6 evaluates the communication cost of the different frameworks in one

Epoch. As the analysis in Session III-C, our proposed framework communication

cost involves the federated aggregation communication cost C1 versus the split

training communication cost. For simplicity in examining communication overhead

trends, I still assume that the federated aggregation communication cost is related

to the number of neurons. In addition, I set χ as a weighting parameter indicating

the split training communication overhead versus the number of neurons for different

amounts of training data. Thus, C2 ≜ χ× number of neurons. The increase of χ

implies an increase in the amount of training data.

It can be seen in Figure 3.6, similar to Figure 3.5, that the FL communication

cost is independent of the amount of training data and thus remains fixed to a

constant value. As χ increases, the communication cost of proposed MSFTL and
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MSFTL without TL also increases. Moreover, in case χ is small, our proposed

MSFTL achieves less communication cost, otherwise, FL achieves less. This is

because as the amount of training data increases, the number of samples transmitted

by the vehicle to the edge for training increases. Therefore, the communication

cost incurred during forward propagation versus backpropagation communication is

increasing. Furthermore, our proposed MSFTL always has less communication cost

than without TL due to the reduced times of backpropagation.

Figure 3.6: Communication cost of different frameworks.

Figure 3.7 evaluates the performance of the novel TL approach for the proposed

learning framework in the presence of sparse training samples. The proposed

MSFTL is comparable to the MSFTL without TL in the case of only one vehicle.

It can be viewed from the figure that as the number of samples increases, all the

frameworks’ accuracy increases. However, compared to the MSFTL without TL,

the MSFTL achieves a performance that far exceeds MSFTL without TL accuracy.

This demonstrates the significant contribution of the proposed TL-based learning

approach to improving the system performance in the case of sparse training samples.
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3.5.1 Optimisation mechanism

I show the simulation results in evaluating the performance of our optimisation

mechanism in this subsection. To demonstrate the effectiveness of our game

theoretical mechanism more intuitively, I assume all vehicles involved in the training

have the same conditions (such as CPU cycles, velocity etc. Thus, in case Eq. (3.32)

equals 0, Eq. (3.33) can be written as

Um = γln(1 + θ
αRm(I − 1)

ImHn,m

)− δRm. (3.5)

I set γ = 0.13, α = 10, δ = 0.08 and θ = 8.5 to approximate the simulation results

in Figure 3.4. The maximum accuracy is set as 98% and the training epoch is set

as 100 simulation results above. Similarly, the data set is divided into 100 parts,

Dmin
n,m = 1 and Dmax

n,m = 2.5. In addition, I use Hn,m to denote the data unit training

cost and Γ(n,m) = 20 s. The computation capability fm allocated to each vehicle is

3 Gcycles/s [39] and computational size required dPm
2,3

+ dPm
4

of TEC m is 30 MB.

Figure 3.7: Accuracy of different frameworks with sparse samples.
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Figure 3.8: Reward impact on training data number.

In Figure 3.8, I investigate the influence of bonuses on the number of training

data in different unit costs. I assume that the residence time of all vehicles is

sufficient. It is seen that vehicles are less to participate in training at low bonus

values. Because low bonus results in low motivation. As the bonus value increases,

the vehicles perform more training data, with higher-cost vehicles willing to train

fewer data. Eventually, the same amount of data is trained and remains the same

for vehicles with different unit costs. This is because, at a high bonus value, the

TEC is limited by the maximum accuracy, so the amount of training data no longer

changes.

Figure 3.9 illustrates the variation in training unit cost for different residence

times and mechanisms. It is seen that the vehicle does not have enough time to train

the most appropriate amount of data at a short residence time and therefore vehicles

with different costs provide the same training data. The amount of data increases

as the residence time increases, but the proposed mechanism in different costs

reaches stability successively at different residence times. This is because the optimal
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Figure 3.9: Total training time versus various residence time.

number of data for vehicle participation in training has been reached. The method

without the game continues to grow and results in more energy costs. Moreover, our

mechanism is less than or equal to the non-game theoretical mechanism in all cases.

This demonstrates the effectiveness of our mechanism in reducing energy costs.

3.6 Summaries

In this chapter, I designed a new vehicle SemCom framework, named MSFTL. It

divides the trained DLJSC coder into four parts and utilises the proposed split

federated learning for training, which can adapt to complex and various vehicle

offloading scenarios. Further, in the proposed framework, I presented a novel

approach based on TL to speed up training as well as increase its accuracy. In

particular, this approach performs excellently in a low training sample environment

and reduces computing and communication costs. Moreover, an efficient high-

mobility energy optimisation mechanism for MSFTL was proposed. It was designed
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based on the Stackelberg game theoretic by jointly taking into account vehicle

mobility and semantic model accuracy. I have also conducted simulation experiments

to evaluate our proposed framework and energy optimisation mechanism. The

simulation results demonstrated the effectiveness of our learning framework and

mechanism. In the next chapter, the optimisation mechanisms for one of the

extended 6G networks, i.e., air-terrestrial networks, will be investigated.
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Air-terrestrial SemCom System

4.1 Introduction

In this section, the challenges of SemCom in air-terrestrial networks are analysed

and investigated. We first summarised several significant outstanding challenges

for SemCom in AENs. First, the implementation of SemCom in AENs raises the

sophisticated network energy optimisation challenge. Because SemCom shifts part

of the communication load to the computational load to increase spectral efficiency.

The transformation of energy utilisation locations poses an extra energy optimisation

issue to AENs that inherently require energy efficiency improvements. How to

develop an energy-efficient SemCom architecture for the air network and how to

optimise the energy efficiency of SemCom is hence an essential concern.

Furthermore, SemCom requires real-time updating ML-based semantic coders

for various specific content [7]. The existing FL framework for updating semantic

coders in general networks [11], [12] however faces several challenges in AENs. For

instance, the distributions of training data from different coder owners are frequently

not independent and identically distributed (Non-IID) [56]. Furthermore, as the

AEN is sophisticated and AECs are energy-limited, the energy efficiency of the

learning framework has to be considered. How to timely update the semantic coder

accurately and energy-efficiently in an AEN with Non-IID training data thus is a
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challenge for SemCom to apply in AENs.

In this chapter, we propose a novel energy-efficient SemCom system for AENs.

We also discuss the resource allocation problem during SemCom usage. A new

EGTIM based on the proposed system is presented to optimise the network energy

efficiency fairly. In addition, we propose a GEDL framework for semantic coders

updating in AENs. It renews the proposed EGTIM and combines EGTIM with

a conventional distributed learning approach to update semantic coders accurately

and efficiently in terms of energy consumption.

The remainder of this chapter is organised as follows. We describe the proposed

system model in Section 4.2. In Section 4.3, the game problem formulation and

the proposed EGTIM are presented. Section 4.4 describes the presented GEDL

framework for semantic coder updating in AENs. Simulation results are shown in

Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 System model

In this chapter, I consider a three-dimensional edge network aided by an AEC j

(Figure 4.1). The TECs provide edge services via semantic coders to subscribers on

the terrestrial. An AEC j with semantic coders hovers in the air and assists TECs

to provide edge services to subscribers. It communicates with subscribers via TECs

which act as relay nodes. The network thus does not share the same spectrum

resources between AEC-TECs and TECs-subscribers. Furthermore, to optimise

the allocation of network energy resources, semantic extraction task locations allow

for replacement by conventional communication transmission, followed by SemCom

calculations and transmission to the subscribers.

I assume that the energy power of AEC j lingers in the air is P l
j . The free

computational capability (free CPU-cycle frequency) of AEC j is fj. Moreover,

there are I TECs within the service range of AEC j that provide edge service to

subscribers. I denote the data size of tasks that each TEC i prepare to transmit to
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Figure 4.1: Proposed system model.

subscribers as mi bits. The semantic encoder execution latency of TEC i for these

tasks can be expressed as:

TC
i =

ami

fi
. (4.1)

where fi is the CPU-cycle frequency of TEC i to process these semantic compression

tasks and the unit is cycles/s. Further, a is the pure number of CPU-cycle consumed

to calculate each 1-bit [57]. According to [38], the computing power of the TEC i

can be denoted by

PC
i = κf 3

i , (4.2)

where κ is the CPU architecture-related coefficient. I thus have the execution energy

consumption of TEC i for these semantic compression tasks as:

EC
i = κamif

2
i . (4.3)
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Similarly, in the case of the TEC i provides part of the semantic compression

task bits mi,j to the AEC j, the execution latency and energy consumption of AEC

j can be expressed as:

TC
j =

ami,j

fj,i
, (4.4)

EC
j = κami,jf

2
j,i, (4.5)

where fj,i is the CPU-cycle frequency that AEC j allocate to the task bits mi,j.

To ensure the QoS, in this chapter, we assume fj,i = fi. In addition, during the

semantic compression task providing process, the data transmission rate of the TEC

i to the AEC j can be denoted by

rTi = Bi log2(1 +
pigi
σ2

), (4.6)

where Bi is the bandwidth of the communication channel between the TEC i and

the AEC j. Further, pi, gi and σ are the transmission power, channel gain and

additive white Gaussian noise (AWGN) power in this channel, respectively. I then

can have the transmission delay as:

T T
i =

mi,j

rTi
=

mi,j

Bi log2(1 +
pigi
σ2 )

. (4.7)

Thus, the transmission energy consumption is

ET
i = piT

T
i =

pimi,j

Bi log2(1 +
pigi
σ2 )

. (4.8)

As the completed semantic extraction task result size is much smaller than the

task size. Resembling [58], [39], we hence ignore the transmit delay and energy

consumption of transmission tasks after semantic compression.
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4.3 Stackelberg game theoretic mechanism design

To improve the AEN energy efficiency, the fairness optimising assignment of the

number of semantic compression tasks processed by the TECs and the AEC is

essential. I identify that when AEC edge resources are underutilised, more energy

is consumed on air hover. This results in a significant amount of energy being

wasted rather than performing edge services. Therefore, I construct the TECs and

the AEC interaction as a Stackelberg game [52] from the economic perspective.

It incentivises TECs to provide partial semantic extraction tasks to the AEC in

fairness, where the AEC is trusted, thus improving the network energy efficiency.

The Stackelberg game is comprised of a leader and followers, where the followers

change their policies according to the policies developed by the leader. Thus, the

proposed incentive mechanism consists of the game at the AEC (leader) and the

game at TECs (followers), which I elaborate on in detail in the following two

subsections.

4.3.1 Game at the AEC

Without loss of generality, I define the monetary utility Uj of the AEC j as:

Uj = Nj +Rj −Bj −Gj. (4.9)

where Nj is the net income of AEC j to transmit semantic compression tasks to

subscribers and Rj is the additional energy cost revenue of AEC j gained as a

result of performing provided semantic compression tasks from TEC i. Further,

Gj is the gain loss of AEC j due to the transfer of some holdup energy to the

additional semantic transmission execution resulting in a reduction of the holdup

time. Moreover, Bj is the bonus paid to TECs providing the tasks. I consider the

monetary salary Nj as the energy consumption similar to the previous study [59].

Thus, I have
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Nj(mi,j) +Rj(mi,j) = (α + β)
I∑

i=1

κami,jf
2
j,i, (4.10)

where α is the net income monetary parameter and β is the energy cost monetary

parameter.

The gain loss Gj depends on the aerial hover time and I define it as gain loss

of not performing its regular tasks. To obtain the Gj, I first formula the residence

time of AEC j without additional semantic compression tasks as:

T 0
j (mi,j) =

Ej

P l
j + P n

j + κf 3
j0

, (4.11)

where Ej is the hover energy of AEC j and fj0 is the CPU-cycle frequency required

for the AEC j to perform its regular tasks. Further, P n
j is the AEC utilising power

with no economic benefit. I then have the residence time of AEC j with additional

semantic compression tasks as:

T 1
j (mi,j) =

Ej − ej
P l
j + P n

j + κf 3
j0

, (4.12)

where ej =
∑I

i=1 κami,jf
2
j,i is the energy consumption of the AEC j to execute the

provided tasks. Therefore, I can find the Gj as:

Gj(mi,j) = γκf 3
j0(T

0
j − T 1

j ), (4.13)

where γ is the income monetary parameter. As the energy benefit that would have

been gained by the sale disappears, γ = α + β.

In addition, I set the unit price of each task bit being transmitted from the TEC

to the AEC to b. The bonus paid Bj to TECs providing the tasks can be expressed

by

Bj(b,mi,j) =
I∑

i=1

bmi,j. (4.14)

Therefore, I have
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Uj(b,mi,j) = (α + β)
I∑

i=1

κami,jf
2
j,i −

I∑
i=1

bmi,j − γκf 3
j0(T

0
j − T 1

j ). (4.15)

Mathematically, the AEC’s game problem can be presented as:

Problem 4.1:

max
b

(α + β)
I∑

i=1

κami,jf
2
j,i −

I∑
i=1

bmi,j − γκf 3
j0(T

0
j − T 1

j ) (4.16a)

s.t.
I∑

i=1

fj,i ≤ fj (4.16b)

b > 0 (4.16c)

Ej > ej. (4.16d)

4.3.2 Game at TECs

Similarly, I can define the utility of a TEC i as:

Ui = Bj + Cc
i −Ni − Ct

i − Si. (4.1)

I will explain the meaning of this formula in turn. First, Bi is the bonus gain of

TEC i from the AEC j. Based on Eq. (4.14), I have

Bj(b,mi,j) = bmi,j. (4.2)

Further, Cc
i is the revenue of the saved computing energy cost of TEC i. As it

not performing the provided task locally and save the cost. I can express Cc
i by

Cc
i (mi,j) = βκami,jf

2
i . (4.3)

The Ni from Eq. (4.17) is the net income forgone of TEC i to transmit semantic

compression tasks to subscribers. The net income is transferred to the AEC.

Therefore, similar to Eq. (4.10), I have the net income forgone of TEC i as:
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Ni(mi,j) = ακami,jf
2
i . (4.4)

In addition, Ct
i is the transmission energy income loss from the TEC i to the

AEC. As no economic benefit is generated from this energy, I denoted the Ct
i by

Ct
i (mi,j) = γ

pimi,j

Bi log2(1 +
pigi
σ2 )

. (4.5)

Particularly, Si is set as the satisfaction revenue change of TEC i due to

the semantic transmission tasks transfer from the TEC to the AEC. The lower

satisfaction results in a lower motivation for subscribers to access the edge services,

resulting in lower gains. In this chapter, I argue that subscriber satisfaction is related

to task processing delay. I hence model the satisfaction revenue as a logarithmic

function related to execution delay. Because the logarithmic function based on

execution delay precisely expresses the satisfaction of subscribers with the edge

services [60], [61]. The Si can be denoted by

Si(mi,j) = φ(ln(1 + θ − TC
i )− ln(1 + θ − TC

i − T T
i )), (4.6)

where φ is the monetary parameter and θ ≤ TC
i + T T

i to ensure the satisfaction is

positive. Therefore, I have

Ui(b,mi,j) = bmi,j + (β − α)κami,jf
2
i − γ

pimi,j

Bi log2(1 +
pigi
σ2 )

− φ(ln(1 + θ − TC
i )− ln(1 + θ − TC

i − T T
i )). (4.7)

Problem 4.2:

max
mi,j

bmi,j + (β − α)κami,jf
2
i − γ

pimi,j

Bi log2(1 +
pigi
σ2 )

− φ(ln(1 + θ − TC
i )− ln(1 + θ − TC

i − T T
i )) (4.8a)

s.t. 0 ≤ mi,j (4.8b)

pri ≤ ζ (4.8c)
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Algorithm 4.1 EGTIM

1: Initialization: semantic transmission tasks mi, CPU-cycle frequency fi, the

maximum number of iteration K, the stopping criterion threshold ξ > 0, and

learning rate θ

2: for each i = 1, 2, ..., I

3: Derive optimal m∗
i,j, i.e., fi(b) by

∂Ui

∂mi,j
= 0

4: end for

5: Substitute fi(b) in Uj(b)

6: while k < K

7: b
′
= b− θ▽ Uj(b)

8: b
′′
= b, b = b

′

9: until b
′′ − b < ξ

10: end while

11: Derive optimal mi,j according to optimal b

12: return b and mi,j

where pri is the TEC i’s privacy concern and ζ is the privacy leakage threshold.

Because even though the AEC is trusted, setting a TEC privacy breach tolerance

value is necessary to prevent possible attacks. It indicates the maximum acceptable

providing task bits. According to [62], I can denote the relationship between transfer

tasks bits and privacy leakage value as:

pri = log2(1 + e
1−mi+1

mi,j ). (4.1)

4.3.3 Nash equilibrium for the game

The game of TECs and the AEC can model as a Stackelberg game. To guarantee

fairness, the objective of the TECs is to maximise their utility by simultaneously

selecting the most appropriate mi,j when given the known unit price b. Meanwhile,
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the AEC’s objective is to maximise its utility by varying b, for a known mi,j. The

game can be expressed by

Ui(b
∗,m∗

i,j) ≥ Ui(b
∗,mi,j), (4.2)

Uj(b
∗,m∗

i,j) ≥ Uj(b,m
∗
i,j), (4.3)

Where b∗ and m∗
i,j are solutions in which the parties jointly pursue the optimal

strategies, i.e., the NE point(s). First, I demonstrate the existence of NE in this

game.

Existence of NE:

The second-order partial derivative of Ui(b
∗,mi,j) can be denoted by

∂2Ui

∂m2
i,j

= φ((

a
fi

θ − TC
i + 1

)2 − (

a
fi
+ 1

rTi

θ − TC
i − T T

i + 1
)2). (4.4)

Since θ−TC
i +1 > θ−TC

i −T T
i +1 and a

fi
< a

fi
+ 1

rTi
. I can observe that ∂2Ui

∂m2
i,j
< 0.

Hence, Ui is concave in mi,j. As the strategy set of the TEC i is also compact

and convex, based on the Debreu-Glicksberg-Fan theorem [52], the NE of this game

exists.

In order to achieve NE, I utilise the backward induction approach in game theory

and obtain the optimal strategies of followers (TECs) first. Subsequently, based on

these TECs’ strategies, the leader’s (AEC’s) optimal strategy is developed. Thus, I

first derive the first-order partial derivative of Ui as:

∂Ui

∂mi,j

= b+ (β − α)κaf 2
i − γ

pi
rTi

− φf 2
i (θ + 1)

(fi − ami,j + θfi)(rTi fi − fimi,j − rTi ami,j + rTi θfi)
. (4.5)

As Ui is concave in mi,j, the maximum of Ui and corresponding mi,j thus can be

derived by ∂Ui

∂mi,j
= 0. Due to it being hard to be expressed, I simply denoted the

optimal m∗
i,j = fi(b). Therefore, the utility function of Uj can be rewritten as:
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Uj(b) = (α + β)
I∑

i=1

κafi(b)f
2
j,i −

I∑
i=1

bfi(b)− γκf 3
j0(T

0
j − T 1

j ). (4.6)

If I can derive the maximum Uj and corresponding b, I therefore can obtain

the corresponding m∗
i,j in a closed-form based on Eq. (4.29). However, due to the

complexity of Eq. (4.30), I cannot derive the NE closed form. Fortunately, b and

mi,j both have boundaries. The NE thus can be obtained by performing a gradient

descent method [63] over b and mi,j. The solution step is shown in Algorithm 4.1.

4.4 Efficient distributed Learning Design

The application of SemCom significantly improves the network QoS. Nevertheless,

how to update users’ ML-based semantic coders efficiently and accurately in real-

time becomes one of the biggest challenges of SemCom studies. FL is a potential

approach to cope with the challenge of semantic coder updates in the network [12].

Nevertheless, the 3D network environment is sophisticated, and energy limited. In

particular, the case where the users’ training data are Non-IID significantly reduces

the SemCom QoS. FL thus is not the optimal solution for AENs.

To address these challenges, I propose a GEDL framework for AENs (Figure

4.2). Specifically, TECs first transmit some Non-IID SemCom transmission tasks to

the AEC based on our proposed renewed EGTIM for semantic coder updating. The

TECs then update the semantic coder based on their training data and transmit the

new coder model to the AEC for the federated aggregation. Subsequently, the AEC

performs the federated aggregation and retrains the aggregated model utilising the

tasks provided by TECs. This is because AEC is flexible in terms of data collection,

it is often used as a federated aggregation node [64]. Finally, the AEC sends back the

model to participate in TECs and complete one training epoch. The model accuracy

thus can be improved while maximising energy efficiency. I will demonstrate these

in our simulations.
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Figure 4.2: The process of proposed GEDL.

I first renew the EGTIM for semantic coder updating. As increased semantic

coder accuracy can improve the network QoS, it enhances network revenue. Similar

to [65], I utilise a logarithmic function to model the relationship between training

accuracy and training task size. The revenue of model accuracy improvement thus

can be denoted by

At
j = δ(ln(1 +

I∑
i=1

mt
i,j) + η), (4.7)

where mt
i,j is the proving task bits from the TEC i to the AEC j before training

and δ is the monetary parameter. Further, η is the basic accuracy of FL.

Therefore, I should update the utility function of the AEC j as:

U t
j = At

j +Rt
j −Bt

j −Gt
j. (4.8)

Similar to Eq. (4.9), in Eq. (4.32), Rt
j is the additional energy cost revenue of
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AEC j gained during training and Bt
j is the bonus paid from the AEC j to TECs

providing the tasks. Further, Gj is the gain loss of the AEC j due to the transfer

of some holdup energy to additional training.

Therefore, the game problem for AEC j when coder training can be presented

as:

Problem 4.3:

max
b

δ(ln(1 +
I∑

i=1

mt
i,j) + η) + βκaf t2

j

I∑
i=1

mt
i,j

−
I∑

i=1

bmt
i,j − γκf 3

j0(T
0
j − T 1

j ) (4.9a)

s.t. f t
j ≤ fj (4.9b)

b > 0 (4.9c)

Ej ≥ ej (4.9d)

where f t
j is the CPU-cycle frequency of the AEC j to perform the additional

training after federated aggregation. Due to the requirement to perform federated

aggregation, the power of AEC j for the regular task without economic benefit also

needs to be plus the aggregation power. Furthermore, the reduction in training

sample size reduces the model accuracy and thus affects the accuracy of the model

after federated aggregation. Therefore, TECs still train the number of new tasks

they have. The utility function of proving semantic transmission tasks thus can be

changed from Eq. (4.17) by

U t
i = Bt

i − Ct
ira− St

i . (4.1)

where Bt
i is the training bonus gain of TEC i from the AEC j and Ctra

i is the

transmission energy consumption. Further, St
i is the revenue change due to the

satisfaction change. As satisfaction is associated with training time, I have

St
i = φ(ln(1 + θt − T t

i )− ln(1 + θt − T t
i − T a

i )), (4.2)
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where T t
i is the distributed learning training computing time without AEC additional

training, i.e., FL training computing time. Further, T a
i is the AEC additional

training time. Since the training time tends to be much greater than the training

data transmission time, I ignore the variation in satisfaction due to the transmission

time. Hence, I have the game problem for the TEC i during training new coders as:

Problem 4.4:

max
mt

i,j

bmt
i,j − γ

pim
t
i,j

Bi log2(1 +
pigi
σ2 )
− φ(ln(1 + θt − T t

i )

− ln(1 + θt − T t
i − T a

i )), (4.3a)

s.t. 0 ≤ mi,j (4.3b)

ϱ log2(1 + e
1−

1+mt
i,j

mt
i,j ) ≤ ζ (4.3c)

where ϱ is the weight parameter. It measures the increased risk of privacy leakage

arising from the transmission of mt
i,j as it relates to the new coder. Furthermore,

mt
i is the total training task bits of the TEC i. It can be found from Problem 4.4

that the strategy set of the TEC i is also compact and convex as same as Problem

4.2. In addition, the second differentiation of U t
i is similar to Ui and concave in mt

i,j.

Thus, the NE of this game is still existing and the NE point can be achieved by

Algorithm 4.1.

4.5 Simulation results

In this section, I provide simulation results to validate the performance of the

proposed EGTIM and GEDL. First, I elaborate on the energy efficiency of our

EGTIM. The advantage of our GED framework is then assessed by comparing it

with baseline distributed learning in image transmission scenarios [11], [12].
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4.5.1 EGTIM

I first elaborate on the simulation settings in assessing the performance of our

proposed EGTIM. I assume there are 5 TECs in the service range of the AEC

j. To better demonstrate our proposed mechanism, I assume that all TECs have

the same conditions. Similar to [38] and [39], I set a = 120; pi = 0.2w; κ = 10−26;

fi = 0.5 × 109cycles/s; fj0 = 0.5 × 109cycles/s. Further, I assume the monetary

parameter α = 1, β = 1 and thus γ = 2. If not mentioned, the hold-up power of the

AEC is set as 1 w and by default the constraints are all satisfied.

Figure 4.3: NE existence under the proposed EGTIM.

In Figure 4.3, the existence of NE is demonstrated. It can be observed that as the

unit reward value increases, the optimal task size that TECs are willing to provide

also increases. This is due to the increased transfer task size allowing TECs to earn

greater benefits as the unit rewards increase. However, the utility function of the

AEC shows an increasing trend followed by a decreasing trend. There is therefore

an NE point that maximises the utility of the ATC while ensuring that the utilities

of TECs are maximised (i.e., optimal transfer task size).
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Figure 4.4: Energy saving of proposed EGTIM in various scenarios.

Figure 4.4 illustrates the energy savings in joules (J) at different amounts of TECs

and different hover consumption power. I define energy saving as the reduction in

wasted hover consumption minus the lost energy consumption for regular AEC tasks

and the power consumption of TECs transmitting. Mathematically, the energy

saving equals
Rj

β
− Gj+Ct

i

γ
. As can be observed, more energy can be saved as the

number of TECs increases. This is due to the fact that the increase in the number

of TECs decreases the energy consumption in hover and outweighs the resulting

loss raise. It is notable that the number of TECs does not grow indefinitely as the

AEC has a finite computing capacity. In addition, the higher the hover power, the

greater the energy saving, but the magnitude of the increase is decreasing. Because

the hover power increase means consuming the same energy for additional semantic

transmission tasks, the AEC can be maintained on air for a longer time. The

corresponding cost loss thus falls and the magnitude of the increase is decreasing as

the percentage of hover energy consumption of the AEC becomes larger.

In Figure 4.5, I evaluate the influence of different CPU-cycle on providing task
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Figure 4.5: Effect of different CPU-cycle on providing task size.

size from TECs to the AEC. It is observed that more CPU-cycle frequency required

for semantic task transmission makes TECs more inclined to transfer more task

bits. However, the increase in CPU-cycle frequency required for regular tasks results

in lower providing task sizes. This is because the increased CPU-cycle frequency

required for tasks increases the efficiency of AEC hover energy utilisation. Therefore,

TECs are biased towards providing more tasks for more revenue. Further, the

increased fj0 increases the hover time reduction benefit loss and therefore reduces

the overall data transfer revenue and hence the unit reward.

4.5.2 GEDL

To estimate our GEDL, I employ the convolutional neural network (CNN) as

the semantic coder and set the application scenario as an image transmission

environment, similar to [17]. Further, I train models on the CIFAR-10 [54] dataset

with 60000 training data and 10000 test data, which all have 10 class images. As in

the same previous subsection, I assume there are 5 TECs involved in the training.
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To create the Non-IID training environment, I enable each TEC in training to have

only four classes of the training data in the different 10000 CIFAR-10 data. The

transmission accuracy is determined by the PSNR, which is a criterion for the quality

of image transmission in SemCom [17]. I have

PSNR = 10lg
MAX2

∥x− x̂j∥2
, (4.1)

where MAX is the maximum value for a pixel and x is the input of the image and

x̂j is the output via the semantic coder.

Figure 4.6: The accuracy of various training frameworks with the AEC input samples

grows.

Figure 4.6 demonstrates the comparison of accuracy under different learning

frameworks. I compare the different learning frameworks together when the training

data is IID. Furthermore, I also add the FL model with IID training data as a

reference. It is seen that as the training data obtained by the AEC increases, the

coder accuracy also increases. In particular, the trend of the increase exhibits a

trend of the logarithmic function, thus verifying our hypothesis in Eq. (31). In
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addition, with the increase in the volume of data, the accuracy of the proposed

GEDL increased and even exceeded the performance of FL trained with the IID

model. The accuracy of our proposed GEDL without FL also rapid growth. This

is because the greater the amount of data AEC has, the more the training process

approaches central learning. The training data is mixed together for training and

therefore the accuracy increases. Nevertheless, it is noteworthy that due to privacy,

AEC’s available computing resources and energy constraints, the data AEC obtains

is limited. However, our proposed GEDL is always more accurate than FL with the

Non-IID training scenario.

Figure 4.7: Convergence speed of different training frameworks.

Figure 4.7 shows the comparison of the convergence speed of FL and our proposed

distributed learning. I also included FL trained with the IID data as a reference.

It can be observed that all learning eventually reaches convergence and the time to

reach convergence is almost the same. However, our proposed GEDL is always more

accurate than FL after each communication round. This is because our proposed

GEDL is based on the FL for accuracy improvement and thus it increases the training

59



Chapter 4. Air-terrestrial SemCom System

accuracy but needs the FL process to reach convergence.

Figure 4.8: Energy saving of proposed GEDL in various scenarios.

In Figure 4.8, the energy savings in joules (J) at different amounts of TECs

and different hover consumption power are shown. I set the training epoch is

200. I can see that in contrast to Figure 4.4, there is a declining trend in energy

savings as the number of TECs increases. This is because accuracy revenue shows

a logarithmic function trend. Providing more data when there are more TECs may

increase energy savings, but not the corresponding accuracy gains. As a result, the

total task size provided by TECs is decreasing and thus decreases the total energy

saving. However, the GEDL I propose can always improve energy efficiency and save

energy. Furthermore, the magnitude of the energy saving increase with the hover

power increase is decreasing varies from Figure 4.4. It is likewise due to the existence

of the trend in the logarithmic function of accuracy revenue. The decrease in regular

task revenue due to time reduction makes the task size increase dramatically in order

to reach the NE point.

Figure 4.9 illustrates the impact of changes in β value on energy saving. I evaluate
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Figure 4.9: The impact of β value on energy saving.

this by adjusting the size of the energy cost monetary factor β. The smaller β means

a higher energy cost price. I can observe that as the cost price grows, the overall

energy saving of the network also rises exponentially. Due to the reduction in net

income, the network members are more inclined to save energy for monetary benefits.

Consequently, mt
i,j from the TEC i increases sharply in order to reach the NE point,

thus making the energy saving increase.

4.6 Summaries

In this chapter, I first proposed a novel energy-efficient SemCom system in AENs. I

then presented an EGTIM based on the Stackelberg game. In our EGTIM, the

edge facilities on the terrestrial are incentive to transfer part of their semantic

transmission tasks to the AEC via the traditional communication encoder. The

AEC performs the semantic feature extraction of these tasks and transmits the

semantic information to the subscribers. The energy efficiency of the aerial devices

61



Chapter 4. Air-terrestrial SemCom System

thus can be improved. In addition, I further proposed a GEDL framework based

on the renewed EGTIM for energy-limited 3D networks updating semantic coders

with Non-IID training data. The simulation results demonstrated the effectiveness

of our mechanism and learning framework. In the next chapter, the optimisation

mechanisms for one of the extended 6G networks, i.e., space-air-terrestrial networks,

will be investigated.
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Space-air-terrestrial SemCom

System

5.1 Introduction

In this chapter, the challenges of SemCom in SAT networks are analysed and

investigated. In the SEC network, designing the SemCom system and updating

the semantic coder presents several emerging challenges, e.g., mobility of SEC, low

tolerance of service interruption and energy consumption, and privacy. Nevertheless,

the existing distributed learning frameworks for SemCom in generic networks are

however not automatically applicable to the SEC network. In addition, SemCom

alters the transmission paradigm of SEC networks by increasing the computational

load while reducing the communication load. Users are therefore required to develop

optimal computational task strategies in case trained semantic coders are utilised for

computation offloading. Such strategies need to be developed taking into account

not only scenarios specific to SemCom in the SEC, but also operational factors

that have not been considered in the existing SEC offloading research. Such factors

include using both access modalities, the task processing entities, latency, energy

consumption and privacy.

To tackle the above-mentioned challenges, in this chapter, I propose a SemCom
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system for SAT networks, i.e., SemCom SEC. In our proposed method, I split the

SemCom service into in-maintenance (i.e., semantic coders need updating) and

in-service (i.e., trained semantic coders are utilised for computation offloading)

scenarios. For the in-maintenance scenario, I investigate real-time updating of

deployed semantic coders in SemCom-SEC. A PSFed approach is then proposed to

update semantic coders considering offloading QoS while privacy-preserving. For the

in-service scenario, I study the computational task processing challenge of terrestrial

users in the new SemCom paradigm. I then propose a new CTPS mechanism based

on the Rubinstein bargaining game to minimise the users’ processing delay and

energy consumption while preserving users’ privacy.

5.2 System model

In this section, the system model of the proposed SemCom-SEC is introduced. I

then provide the computing, communication, path loss and semantic coder training

model.

5.2.1 System description

Consider the SemCom-SEC (Figure 5.1), where terrestrial users are located in areas

without having access to terrestrial edge service. Users can offload computation-

intensive tasks to LEO satellite-borne edge facilities. In practice, an LEO satellite

constellation is similar to a cellular network operating above the ground [66].

whereas the space cellular network is on the move, while ground users are relatively

stationary.

I consider both types of approaches for users to access the SEC for computation

offloading [36]. Users can communicate with LEO satellites directly through a C-

band user-satellite radio link. Furthermore, they are also allowed to indirectly access

the SEC through a TST via a C-band link to TST, and a Ka-band link between

TST and SEC. The terrestrial C-band user-TST link spectrum resources are utilised
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Figure 5.1: The proposed SemCom-SEC framework.

in an orthogonal frequency division multiple access (OFDMA) setting to optimise

the utilisation of radio resources [38].

To improve the spectrum efficiency and QoS of SEC networks, semantic coders

are deployed on the TSTs and LEO satellites for transmitting offloaded tasks over

Ka-band. This is due to the mobility of the users and the fact that the offloading

content is often variable and thus goal-oriented semantic coders need continuous

updating. TSTs are primarily responsible for transmitting significant amounts

of tasks to satellites and require extremely high spectral efficiency. Furthermore,

their service area is fixed and the content to assist in task offloading (e.g., image

recognition) only minimally varies. I consider factors such as utilisation, and

reliability, for which goal-oriented SemCom is most appropriate for the TST-satellite
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link in SEC networks.

Moreover, due to the dynamic nature of the system and the limited storage

resources of LEO satellites, it is not viable to store semantic decoders for all TSTs

on the route. The semantic coders are therefore stored on the TST. Similarly, for

economic and satellite storage resources considerations, at least the trained decoder

of TSTs should be the same for the same transmission task. The TST delivers the

related semantic decoders to the corresponding satellite when it needs to perform

SemCom. Furthermore, LEO satellites can alternatively connect to the cloud servers

on the terrestrial network via Ka-band backhaul links to provide cloud service for

users.

In this model, a user may process indivisible computational tasks in either of the

following five scenarios: 1) computing locally; 2) offloading the tasks to SEC over

the user-satellite link; 3) offloading the tasks to the SEC via TST; 4) offloading the

tasks to terrestrial cloud over the user-satellite link; 5) offloading the tasks to the

terrestrial cloud via TST.

5.2.2 Computing models

Denote the set of LEO satellites as A = 1, 2, ..., a, ..., A and set of TSTs as B =

1, 2, ..., b, ..., B. A TST b is on the terrestrial and provides service to C users within

the coverage as a small cell in which the set of users in TST b’s service range is

denoted by C = 1, 2, ..., c, ..., C. I consider each terrestrial user c to have indivisible

computational sensitive tasks with the size in bits of mc ∈ m1,m2, ...,mc, ...,mC ,

and the CPU cycles needed to execute one bit of tasks is δ. The local computation

task latency of the user c can be given by

tLCc =
δmc

fc
, (5.1)

where fc is user c’s CPU-cycle frequency with the unit cycles/s. The energy required

to calculate locally is hence expressed as:

ELC
c = pLCc tLCc = εf 3

c

δmc

fc
= εδmcf

2
c , (5.2)

66



5.2. System model

where pLCc = εf 3
c is the power needed to be computing locally and ε is the energy

factor related to the electronics [45].

Similarly, if user c chooses to offload the tasks to SEC or the terrestrial cloud,

the computational latency can be obtained by

tSEC
c =

δmc

fa
, (5.3)

tCloud
c =

δmc

fCloud

, (5.4)

where fa and fCloud are the CPU-cycle frequency of the LEO satellite a being

offloaded to and terrestrial cloud, respectively. Similar to [39] and [67], I assume

that all LEO satellites have similar computing capabilities.

5.2.3 Communication models

There are two options for each user to access LEO satellites, i.e., directly access the

LEO satellite or via a semantic encoder deployed on the TST. The total bandwidth

of the C-band user-TST link is divided into D0 orthogonal sub-carriers based on

OFDMA manner. I have the transmission rate of the user c to the TST b on the

subcarrier d0 is

Rcb
c,d = Bcb

d0
log2(1 +

pcbc,d0g
cb
c,d0

σ2
0

), (5.5)

where Bcb
d0
, pcbc,d0 and gcbc,d0 are bandwidth, transmission power and the channel gain

on sub-carrier d0 in the user-TST link, separately. Further, in (5), σ2
0 is the noise

power in this link. Hence, the transmission delay from user c to TST b is

tcbc = mc/

D0∑
d0=1

xcbd0r
cb
c,d0
, (5.6)

where xcbd0 ∈ 0, 1 is the allocation indicator of user-TST over the C-band. In the

case of a sub-carrier d0 in C-band is allocated to user c to offload the tasks, xcbd0 = 1;

otherwise, xcbd0 = 0. Therefore, the transmission energy is

Ecb
c = tcbc

D0∑
d0=1

xcbd0p
cb
c,d0
. (5.7)
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If user c chooses to access satellite a directly, due to the ultra-long propagation

distance, the propagation delay is not negligible and the round-trip propagation

delay is

tproac =
2h

cl
, (5.8)

where h is the distance between user c and satellite a, cl is the speed of light. I

assume the users in the same TST, this TST and terrestrial cloud have the same

distance to the satellite a.

Moreover, path loss should be considered when transmitting over long distances.

I are not concentrating on the path loss in the user-TST link because they

communicate in a small cell range and haven’t got a significant impact on the

transmission delay. The transmission rate from the user c to satellite a thus can

be denoted by

Rca
c = Bca

c log2(1 +
pcac g

ca
c

σ2
0PL

ca
c

), (5.9)

where Bca
c , PLca

c , pcac , and gcac are bandwidth, path loss, transmission power and the

channel gain from the user c to satellite a, separately. Normally, the path loss PL for

the satellite channels mainly consists of free-space path loss PLf and atmospheric

(rainfall) loss PLr [68]. Hence, I assume the total path loss PL = PLf +PLr. I will

specify these losses later. I then have the transmission delay and energy consumption

when user c accesses the SEC a directly, which are given by

tcac =
mc

Rca
c

, (5.10)

Eca
c = tcac p

ca
c . (5.11)

In contrast to users, the transmission process from TST b to satellite a integrates

SemCom. It thus increases the computing delay while significantly decreasing the

data required to be transmitted. The transmission rate of TST can be expressed as:

Rba
b = Bba

b log2(1 +
pbab g

ba
b

σ2
0PL

ba
b

), (5.12)
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where Bba
b , PLba

b , P ba
b and gbab are bandwidth, path loss, transmission power and the

channel gain in TST b-satellite a link, respectively. In addition, since antennas of

TSTs have good directivity, they can communicate with multiple LEO satellites via

Ka-band and the corresponding interference can be ignored 10, 22, 23. Therefore,

the transmission delay of all users’ tasks are transmitted from TST b to satellite a

is

tbac =

∑F
j=1 ψmj

Rba
b

+

∑F
j=1mj

Rba
SemCom

, (5.13)

where F is the number of users allocated to offloading the task to satellite a and F ∈

C. Furthermore, ψ is the compression ratio and the Rba
SemCom is the rate of semantic

extraction and semantic parsing, i.e., computing delay during data transmission.

Since the computation task calculation result is often much smaller than the

offloaded data. I thus ignore the backhaul transmission delay links similar to [69]

and [70]. Moreover, estimating the number of subcarriers provided by satellite a

to user c is difficult due to a large number of satellite service users. I assume that

the satellite transmits user data to the ground cloud with a constant transmission

rate Ra
c similar to [36]. The transmission delay between satellite and cloud tCloud

a

thus equals mc/R
a
c . The propagation delay where user c chooses to offload to the

terrestrial cloud is

tproCc =
4h

cl
. (5.14)

5.2.4 Path loss model

As mentioned previously, the path loss for the terrestrial-satellite channel is mainly

free-space path loss PLf and atmospheric (rainfall) loss PLr. Free-space path loss

is a basic power loss that increases depending on the communication distance. With

the unit as dB, PLf can be denoted by [71]

PLf (dB) = 92.44 + 20lg(h) + 20lg(f), (5.15)

where h is the communication distance unit in km, and f is the operating frequency

with the unit of GHz.
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Atmospheric loss is a type of signal absorption and scattering due to meteoro-

logical causes, i.e., mainly related to rainfall. The rain attenuation is described by

[72]

PLr(dB) = ξLE, (5.16)

where ξ is the frequency-dependent parameter unit in dB/km and LE is the effective

path length unit in km. I first introduce the calculation method of ξ as:

ξ = k(R0.001)
v, (5.17)

where R0.001 is the rainfall rate, unit in mm/h. Further, k and v are coefficients

given as:

k = [kH + kV + (kH − kV )cos2(ω)cos(2τ)]/2, (5.18)

v = [kHvH + kV vV + (kHvH − kV vV )cos2(ω)cos(2τ)]/2, (5.19)

where τ = π/4 for circular polarization and ω is the elevation angle between

terrestrial transmitter and satellite. Moreover, kH , kV , vH , and vV are coefficients

related to operating frequency f and can be found out the specific value from [73]

LE, is therefore

LE = LRv0.001, (5.20)

where LR is the distance parameter related to rainfall height and v0.001 is the

adjustment factor. I have

v0.001 =
1

1 +
√
sin(ω)(31(1−e

−( ω
1+χ )

)
√
LRξ

f2 − 0.45)
, (5.21)

where χ equals 36-—latitude— in the case of latitude less than 36o, or equals 0. In

most scenarios

LR =
hR − hs
sin(ω)

(5.22)

where hR is the rain height relative to the mean sea level and hs is the altitude of

the terrestrial transmitter, all units in km.
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5.2.5 Semantic coder training model

In generally distributed learning frameworks based on FedAvg [30], the goal is to

collaboratively train a global coder model among multiple TSTs while keeping TSTs’

local data private. I set the Xb = {xbin}
sb
b=1 as the data set of the TST b, where xbin

is the in-th input sample and sb is the size of the data set. The objective of FedAvg

can be denoted by

argmin
Θ

1

B

B∑
b=1

Lb(θb), (5.23)

where θb is the coder model parameter of the TST b and Θ = θ1, θ2, ..., θb. Further,

Lb(θb) is the loss function of the TST b trained by Xb. I utilise the mean squared

error (MSE) loss as the loss function in this chapter. I have

Lb(θb) =
1

sb

sb∑
in=1

LMSE(θb;xb,in, x̂b,in), (5.24)

where x̂b,in is the fitting output and LMSE is the MSE loss.

5.3 Semantic coders: updating

Employing general FL frameworks for SemComs, TSTs need to upload encoder

and decoder models to the SEC to implement federated aggregation after one

communication round of training. The federated model then be sent back to TSTs

for the next communication round of training. However, uploading and downloading

all coder models by TSTs would cause long-term interruptions of the offloading-

assisted service, significant energy consumption and lead to privacy leakage of entire

coder models. I can express the general privacy leakage metric by [62]

Θb(θb) = χ log2(1 + e
1−Nb+1

nb ), (5.25)

where χ is the weight parameter, Nb is the total parameter number of the encoder

model and nb is the number of parameters transmitted. Since more training rounds

and the more important parameters should have higher privacy sensitivity, I denoted

the privacy leakage for TST b’s encoder training by
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Θb(θb) =
R∑

r=1

Wrχ log2(1 + e
1−

∑Nb
i

Iinb,i+1∑Nb
i

Iinb,i ), (5.26)

where r is the communication rounds and R is the total rounds. Thus, Wr is

the model importance weight of training round r. Further, Ii is the parameter

importance weight of transmitted parameter i.

Figure 5.2: Framework of the proposed PSFed in one communication round.

In the proposed PSFed (Figure 5.2), the goal is to collaboratively train semantic

coder models among multiple TSTs while reducing network service interruptions,

and energy consumption, and decreasing the degree of privacy leakage. First,

due to the high mobility of satellites, all TSTs are not always within the same

satellite service area. TSTs are required to select the most appropriate satellite
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for each model aggregation round from the multiple satellites based on real-time

circumstances. Taking into account training delay and energy consumption jointly,

the selection algorithm can be denoted by

min
xa

A∑
a=1

xa(αmax {Mb,r

Rba
b

+
2hba

cl
|b ∈ B}+

B∑
b=1

βpbab
Mb,r

Rba
b

), (5.27a)

s.t.

A∑
a=1

xa = 1,∀b (5.27b)

xa = {0, 1}, (5.27c)

R∑
r=1

Mb,r

Rba
b

≤ t
′

b,∀b (5.27d)

max {Mb,r

Rba
b

+
2hba

cl
|b ∈ B} < t

′

a,∀a (5.27e)

where max {Mb,r

Rba
b

+ 2hba

cl
|b ∈ B} is the training transmission and propagation delay,

identified by the TST with the longest transmission and propagation time. Here,

A is the number of accessible satellites of all TSTs, and hba is the distance between

TST b and satellite a. Further,
∑B

b=1 βp
ba
b

Mb,r

Rba
b

is the total energy consumption of

transmission from TSTs to a satellite. In (5.27a), α and β are weight parameters to

balance the importance and unit of latency and energy consumption. Furthermore,

pbab is the transmission power of TST b to satellite a, and xa is the federated decision

for all TSTs. Constraint (5.27d) ensures that the transmission time of the TST

for training the semantic model remains less than the maximum tolerable service

interruption time. Also, Mb,r is the coder model size in communication round r, t
′

b

is the maximum tolerable service interruption time and t
′
a is the maximum service

time of the satellite a in this region. The optimization problem in (5.27) is a simple

0,1 linear programming and hence can be easily solved.

During training in each communication round, I split the coder model into an

encoder and a decoder. Only the decoder model needs entire federated aggregation.

This is due to LEO satellites having limited storage capacity, it is not practical to use

individual decoder models for each task of each TST. For economic considerations, I

argue that TSTs require a shared decoder model to be used. I then encourage TSTs
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to assess the importance of the encoder parameters during the local training phase.

Inspired by continual learning [74], changes in parameters with different importance

have a different impact on the output results. I thus evaluate parameter importance

according to the implications of parameter changes on the loss function. I express

the change in the loss by

Lb(θb + δ)− Lb(θb) ≈
sb∑
i=1

gb,iδb,i, (5.1)

where gi is the gradient and δi is the update of parameter i during this parameter

assessment period of the TST b. Setting gi = ∂Lb

∂θb,i
during online training, the

parameter importance weight is

Ii = −
∂Lb

∂θb,i
δb,i. (5.2)

Subsequently, to reduce the training communication cost, I prune the encoder

models uploaded by TSTs according to parameter importance. Parameters with

high importance contain most of the valid information [75] and therefore can provide

further valid information to the aggregated model than lower-important parameters.

The lower-importance parameters are thus encouraged to be pruned. The pruning

here differs from the conventional ML studies. It is not the deletion of the training

model parameters, but the non-transmission of the pruned parameters for federated

aggregation. The corresponding SEC generates a global encoder model and a

global decoder model based on the federated aggregation of the number of the

received parameters. Once TST receives the global decoder model and personalised

pruned global encoder model, it merely substitutes the local decoder and substitutes

important parameters of the local encoder. It trains the individual local coder again

based on the personal encoder model and the global decoder model in the next

communication round of training.

Furthermore, the closer to the completion of the training, the higher the

importance of the parameters. To further reduce the privacy leakage degree, our

proposed PSFed progressively increases the pruning ratio according to the number

74



5.4. Semantic coders: in service

of communication rounds. This is until the coder model is split and only the decoder

model is federated aggregated. The more important privacy training models are thus

kept local.

The objective of PSFed during training thus is denoted by

arg min
Θ,Y

B∑
b=1

Lb(y
1
bθb,1, y

2
bθb,2, ..., y

n
b θb,Nb

), (5.3a)

s.t.

R∑
r=1

Mb,r

Rba
≤ t

′

b,∀b (5.3b)

R∑
r=1

Wrχ log2(1 + e
1−

∑Nb
i

Iinb,i+1∑Nb
i

Iinb,i ) ≤ Θ
′

b,∀b (5.3c)

where ynb ∈ [0, 1) is the aggregation weight vector of parameter i in TST b and

Y = y1, y2, ..., yb. Further, Mb,r is the coder model size in r communication round

and t
′

b and Θ
′

b are the maximum tolerable service interruption time and privacy

leakage, respectively. The procedure of the PSFed is demonstrated in Algorithm

5.1.

5.4 Semantic coders: in service

In this section, the problem of users’ computational task processing schedule for

SemCom-SEC is presented first. I then detail the proposed CTPS.

5.4.1 Problem for computational task processing

In service offloading decision-making, I consider the SemCom-SEC with C users

severed by one TST b in A satellite coverage. Each user has five task processing

choices, 1) local computing; 2) offloading the tasks to SEC directly; 3) offloading the

tasks to SEC via the TST; 4) offloading the tasks to the terrestrial cloud directly;

5) offloading the tasks to the terrestrial cloud via the TST. I firstly list the user c’s

cost functions in terms of processing delay and energy consumption for each option
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Algorithm 5.1 PSFed

Input: dataset {X1, X2, ..., Xb}, model size {M1,M2,...,Mb} and total communica-

tion rounds R

Output: trained coder models {θ1, θ2, ..., θb}

Initialize: the TSTs’ model parameters and the importance weight of parameters

SECs:

1: for each communication round r ∈ R ::

2: Y r+1
b , θr+1

b ←− TST update(θrb)

3: Update {θb,1, θb,2, ..., θb,Nb
} according to Y r+1

b and θr+1
b

4: end for

TSTs:

1: TST b receives θb from the SEC

2: TSTs choose the optimal SEC for federated aggregation

3: for each TST in parallel:

4: for each local training epoch:

5: Loss ←− = 1
sb

∑sb
in=1 LMSE(θb;xb,in, x̂b,in)

6: end for

7: foreach encoder parameter i:

8: Ii = − ∂Lb

∂θb,i
δb,i

9: end for

10: Splitting coder model and pruning encoder model based on Ii in the case of

satisfying:
∑R

r=1
Mb,r

Rba +
Mb,r

Rab ≤ t
′

b

Θb(θ
r
b) ≤ Θ

′

b

11: Obtain θrb to be shared

12: return: θrb

13: end for
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in order as follows based on section 2:

Φc1 = αtLCc + βELC
c , (5.1)

Φc2 = α(tproac + tcac + tSEC
c ) + βEca

c , (5.2)

Φc3 = α(tproac + tcbc + tbac + tSEC
c ) + βEcb

c , (5.3)

Φc4 = α(tproac + tcac + tCloud
c + tCloud

a ) + βEca
c , (5.4)

Φc5 = α(tproCc + tcbc + tbac + tCloud
c + tCloud

a ) + βEcb
c , (5.5)

where Φc is the actual processing cost when the user c sizing a task. It is related to

user task processing decisions, the transmission power, and the number of subcarriers

allocated. In the above, tCloud
a is the transmission delay between satellite and cloud

as mentioned in Section II-C. We also utilise γic = {0, 1} to represent the offloading

decision of user c and γic ∈ {γ1c, γ2c, γ3c, γ4c}. If user c chooses one processing

strategy, the indicator for the corresponding strategy equals 1, otherwise equals

0. We argue that the optimal decision for a user is to minimise the latency and

energy consumption of the processing tasks. Mathematically, the optimisation task

processing strategy problem of user c thus can be formulated as a MINLP problem:
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min
γc,fc,pcbc,d0

,mc,d0
,pcac

A∑
a=1

Φc = (1− γ1c − γ2c − γ3c − γ4c)Φ1

+ γ1cΦc2 + γ2cΦc3 + γ3cΦc4 + γ4cΦc5, (5.6a)

s.t. fcloud ≥ fa ≥ fc,max ≥ 0, (5.6b)

γ1c, γ2c, γ3c, γ4c ∈ {0, 1}, (5.6c)

γ1c + γ2c + γ3c + γ4c ≤ 1, (5.6d)

D0∑
d0=1

xcbd0x
cb
c,d0
≤ Pc,max, (5.6e)

P ca
c ≤ Pc,max, (5.6f)

xcbd0 ∈ {0, 1}, (5.6g)

D0∑
d0=1

xcbd0 ≤ D0. (5.6h)

The constraint (5.36b) guarantees that edge and cloud have strong computing

capability that is not less than users’ maximum computing capability fc,max.

Constraints (5.36c) and (5.36d) show the relationship between γ1c, γ2c, γ3cand γ4c.

In constraints (5.36e) and (5.36f), Pc,max is the maximum available transmission

power of user c to TSTs or satellites. The constraint (5.36g) denotes the subcarrier

allocation indicator. The constraint (5.36h) means that the number of allocated

subcarriers should not exceed the total number of sub-carriers.

However, this is an MINLP problem with incomplete information due to privacy

concerns. This is because users need the allocation of subcarriers to make decisions.

Nevertheless, such information is relevant to decisions and privacy information (local

computing capability and transmission power etc.) from other users. This MINLP

problem thus is computationally complex and hard to be solved.
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5.4.2 CTPS

In this chapter, I propose a CTPS mechanism (Figure 5.3) to minimise the delay

and energy consumption of users to process computational tasks, while privacy-

preserving and equitable. It is divided into two steps. Firstly, it converts the

optimisation task processing strategy problem with privacy considerations into

a complete information problem based on the Rubinstein bargaining model [76]

equitably. Subsequently, users develop the optimisation task processing strategies

by solving the complete information MINLP problem of Eq. (5.36). I detail our

CTPS mechanism as follows.

5.4.3 First step of the CTPS mechanism

I enable users to communicate/bargain with TST several times so that subcarriers

are allocated fairly without privacy leakage based on the Rubinstein bargaining

game. TST acts as the bidder and the user has the option to continue the game or

leave the game.

The gaming process is limited to two periods. In the first period, the users

send the offloading request to the TST. Upon receiving users’ offloading requests,

without loss of generality and fairness, TST allocates the number of C-band sub-

carriers based on the size of the tasks offloaded by users. Further, the transmission

delay of the TST to the satellite and semantic extraction delay are also notified via

this communication. To achieve the game-perfect equilibrium, the cost function for

user c to assess to continue participating in the game can be denoted by

µ
′

c = ϵιΦ
′

c, Φ
′

c = {Φc3,Φc5}, (5.1)

where ι ∈ (0, 1) is the bargaining discount factor that represents the revenue loss

value for the second-period communication due to the bargaining process being

time and energy-consuming. Further, ϵ ≥ 1 is the weight parameter to evaluate the

further possible benefit by applying offloading again via the TST b, i.e., remaining
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engaged in the game. This is attributable to some users abandoning their requests

for TST offloading due to not being allocated a satisfactory number of C-band

subcarriers. The actual number of subscribers should eventually be greater than or

equal to this allocation.

Simultaneously, the strategies of various users also affect the user-satellite link

interference for different users. In order to estimate the influence of interference,

pricing is a frequently utilised method in the game theory employed studies [77]. I

hence rewrite the part of the cost function for user c considering interference pricing

as:

µ
′′

c = Φ
′′

c + αϱmcϖ, Φ
′′

c = {Φc2,Φc4}, (5.2)

where ϱ is the factor for the interference related to user number, transmission power

and channel gain etc. Further, ϖ ∈ [0, 1] is the proportion to denote the anticipation

rate of not performing local computing users, thus predicting the interference time

suffered.

Finally, the incomplete information MINLP problem is converted to a complete

information MINLP problem. Users thus could develop the optimal processing

decision based on allocated subcarriers and the calculation frequency or transmitting

power in the second step.

5.4.4 Second step of the CTPS mechanism

In the second step, users make the decision based on the complete information

MINLP problem of Eq. (5.36) to minimise the latency and energy consumption of

the processing tasks. As the maximum number of satellites expected to be accessible

at the same time is extremely limited [78], the decision problem Eq. (5.36) can be

considered as 5 · A independent subproblems. In case of the local computing, the

best user c’s CPU-cycle frequency fc is only related to local computing costs. I thus
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Figure 5.3: Proposed CTPS mechanism.

can express the fc optimisation subproblem as:

min
fc

Φc1 = α
δmc

fc
+ βεδmcf

2
c , (5.3a)

s.t. (36b). (5.3b)

The above subproblem (5.39) has convex objective functions and constraints.

Therefore, subproblem (5.39) can be solved by standard convex optimisation

approaches promptly. In addition, in case the user needs to employ TSTs, the user

needs to derive the optimal subcarrier task allocation strategy mc,d0 and subcarrier

transmission power pcbc,d0 . To model and optimise the transmission power, in CTPS,

I assume each subcarrier in the same link accomplishes the transmission tasks at

the same time for fully using spectrum resources in a synchronous manner based on

previous studies [69], [79]. As the allocated subcarrier for user c is known, I set η to
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denote the number of allocated subcarriers. I can simplify the optimisation problem

associated with TST as:

min
mc,d0

,pcbc,d0

D0∑
d0=1

(
αxcbd0mc,d0

ηrcbc,d0
+
βpcbc,d0x

cb
d0
mc,d0

rcbc,d0
), (5.1a)

s.t. (36e), (36g), (36h), (5.1b)

D0∑
d0=1

xcbd0mc,d0 = mc. (5.1c)

I only need to consider the situation that xcbd0 = 1. By relaxing constraints, I

have the Lagrangian function for Eq. (5.40a) as:

L =

D0∑
d0=1

xcbd0(
αmc,d0

ηrcbc,d0
+
βpcbc,d0mc,d0

rcbc,d0
)

+ φ(

D0∑
d0=1

xcbd0p
cb
c,d0
− Pc,max) + λ(mc −

D0∑
d0=1

xcbd0mc,d0), (5.1)

where φ and λ are the Lagrangian multipliers. The dual function thus is

minmc,d0
,pcbc,d0

L. Then, I can observe that Eq. (5.41) can be further decomposed

into D0 independent subproblems, and the actual objective function in each d0

subproblem can be denoted by

min
mc,d0

,pcbc,d0

Ld0 =
αmc,d0

ηrcbc,d0
+
βpcbc,d0mc,d0

rcbc,d0
+ φpcbc,d0 + λmc,d0 . (5.2)

For simplicity, I define

Hd0 =
α

ηrcbc,d0
+
βpcbc,d0
rcbc,d0

. (5.3)

According to Karush-Kuhn-Tucker conditions, taking the partial derivatives of Ld0

with respect to pcbc,d0 and mc,d0 , respectively. I have
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∂Ld0

∂pcbc,d0
= mc,d0

∂Hd0

∂pcbc,d0
+ φ = 0 (5.4a)

∂Ld0

∂mc,d0

= Hd0 − λ = 0 (5.4b)

φ(

D0∑
d0=1

xcbd0p
cb
c,d0
− Pc,max) = 0. (5.4c)

Thus, I have


φ = 0,

D0∑
d0=1

xcbd0p
cb
c,d0
≤ Pc,max, (5.1a)

φ > 0,

D0∑
d0=1

xcbd0p
cb
c,d0

= Pc,max. (5.1b)

In case of Eq. (5.45a), the pcbc,d0 can be directly solved by Eq. (5.44)

causing mc,d0 ̸= 0. After deriving the optimal pcbc,d0 , mc,d0 can be easily solved

as all subcarriers have the same subcarrier completion time. Only if the solution∑D0

d0=1 p
cb
c,d0

= Pc,max, I need to consider Eq. (5.45b). In that case, the Lagrangian

multipliers can be obtained by the sub-gradient method and further achieve the

optimal pcbc,d0 , mc,d0 . Moreover, as I utilise the Lagrangian dual decomposition

method, the solution may exist a duality gap. However, this gap should approach

zero and can be ignored in practical systems as the number of subcarriers D0 is large

enough [38].

Therefore, users can make the decision based on the computation cost of various

alternatives, without compromising privacy. Throughout the CTPS, the user is only

communicated externally about the size of the tasks being processed. It also needs

to be known by TST during the offloading process. Hence the CTPS protect the

privacy of computing power, transmit power, etc. The CTPS and offloading decision

process is summarised as Algorithm 5.2.
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Algorithm 5.2 CTPS

Input: Tasks mc generation

Output: The computation offloading and resource allocation result

γc, fC , p
cb
c,d0
,mc,d0 , x

cb
d0

1: Initialize the optimal TST transmission power pbab

2: Obtain necessary information xcbd0 after first period game

3: Obtain the necessary information xcbd0 after first period game

4: Calculate optimally fc

5: Relax Eq. (5.40)

6: if φ = 0:

7: pcbc,d0 ←−
∂Hd0

∂pcbc,d0

8: mc,d0 =
mcpcbc,d0∑D0

d0=1 x
cb
d0

pcbc,d0

9: else:

10: pcbc,d0 ←− Eq. (5.44)

11: mc,d0 =
mcpcbc,d0
Pc,max

12: end if

13: Find the maximum Φc and derive γc

14: if γc3 + γc5 = 1:

15: Obtain the necessary information xcbd0 after the second period game

16: Obtain updated pcbc,d0 and mcb
c,d0

17: end if

18: Find the maximum Φc and derive γc

5.5 Simulation results

5.5.1 Simulation setting

In this section, I evaluate the performance of the present PSFed and CTPS. In the

simulations, if not specifically mentioned, I set the parameters as follows. The LEO
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satellites’ coverage radius is 280 km and the vertical altitude is 780km based on the

Iridium satellite system [80]. The frequencies of the C-band and the Ka-band are 4.5

GHz and 30 GHz separately based on 3GPP specifications [81]. I assume the number

of C-band subcarriers is 128, the maximum transmission power of users is 23 dBm

and the transmit power of each TST is 30 dBm [38]. The offloading task is assumed

an image recognition task and the semantic coder is considered an autoencoder

based on the convolutional autoencoder (CAE) similar to [17]. Communication

rounds for the proposed PSFed to aggregate the semantic encoder are 20 rounds.

The coder settings are listed in Table 5.1. Furthermore, I set the number of CPU

cycles for computing one bit δ as 120 cycles/bit, which is from the real applications

[45]. I assume all users have the same CPU frequency fc, and set it as 0.5 × 109

cycles/s. The computation capabilities of SEC on satellite a and the cloud server are

3× 109 cycles/s and 10× 109 cycles/s, respectively [39]. Moreover, I assume weight

parameters of latency and energy consumption are set as α = 0.5 and β = 0.5, and

weight parameters in bargain process ι and ϵ are all considered as 1. In addition,

the atmospheric loss is adopted, and the related coefficients are shown in Table 5.2

[73]. The simulation parameters are also listed in Table 5.3.

Table 5.1: The setting of the CAE

Encoder Neuron num Decoder Neuron num

Conv+ReLU 512 transConv+ReLU 10

Conv+ReLU 256 transConv+ReLU 32

Conv+ReLU 128 transConv+ReLU 64

Conv+ReLU 64 transConv+ReLU 128

Conv+ReLU 32 transConv+ReLU 256

Conv+Sigmod 10 transConv+Sigmod 512
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Table 5.2: Rainfall coefficients

C-band Value Ka-band Value

kH 0.0001340 kH 0.2403

kV 0.0002347 kV 0.2291

vH 1.6948 vH 0.9485

vV 1.3987 vV 0.9129

Table 5.3: Simulation parameters

Parameters Default values

The coverage radius of LEO satellites 280 km

Ka-band carrier frequency 30 GHZ

C-band carrier frequency 4.5GHZ

Number of C-band subcarriers 128

The maximum transmit power of each user 23dBm

Transmit power of TST 30 dBm

h 780km

δ 120

ε 10−26

fc 0.5× 109 cycles/s

fa 3× 109 cycles/s

fCloud 10× 109 cycles/s

α, β 0.5

ι, ϵ 1

5.5.2 Performance evaluation of the proposed PSFed

Figure 5.4 illustrates the convergence speed of the different frameworks under

different transmission tasks. The TSTs’ images are from CIFAR 10 [54], CIFAR

100 [54] and MNIST [82] image datasets and TSTs perform federated aggregation

86



5.5. Simulation results

after every five local epochs. Based on the feasibility in SEC networks, I compare

the proposed PSFed with the generalised learning approach for SemCom [11], [12],

i.e., FL frameworks based on the FedAvg [30]. Further, based on the existing FL

methods that are potentially for SEC SemCom, the federated decoder-only method,

i.e., FL based on FedRep [83], is also compared to demonstrate the effectiveness of

our PSFed. Moreover, I set the training sample to 5000 images per TST to reflect

the differences between the frameworks more effectively. It can be observed that our

PSFed achieves similar convergence rates to the FedAvg and is much better than the

FedRep, regardless of the dataset. This is because our method aggregates important

weights in the early stages of training and therefore accelerates convergence similarly

to the FedAvg with all parameters aggregated.

In Figure 5.5, I compare the total communication cost of PSFed, FedRep and

FedAvg during training. I assume that each neuron transmitted consumes the

same amount of communication resources. The communication cost is therefore

defined as the number of neurons transmitted during communication. It is seen

that the PSFed expenses are approximately the same communication cost as the

FedAvg in the early stages of training. The growth then gradually slows down and

increases at the same magnitude as the FedAvg after round 20. This is because

the PSFed gradually decreases the number of weights aggregated by the encoder

model. In round 20, the number of aggregated weights for the encoder model is

0, the same as the FedRep, only the decoder model is aggregated. Therefore, the

PSFed only consumes additional communication resources for the importance weight

aggregation than the FedRep. Considering that the FedRep converges much more

slowly than the proposed PSFed, the total communication resource consumption

can be considered to be similar. However, in comparison to the FedAvg, the

communication consumption of our PSFed decreases by 40.50% in round 50.

I evaluate the total model privacy leakage during training in Figure 5.6 according

to Eq. (5.26). I assume that the model in each communication round has the same

importance and that each neuron is of equal importance. It can be observed that
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(a) CIFAR 10 dataset

(b) CIFAR 100 dataset

(c) MNIST dataset

Figure 5.4: Convergence speed of various learning algorithms with different datasets.
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Figure 5.5: Communication cost of various learning approaches.

PSFed is initially similar to FedAvg leakage and subsequently follows the same

growth trend as FedRep. This is equally due to the number of PSFed decreasing

importance weight aggregations. After training, both the PSFed and the FedRep

encoder models are saved locally. It is foreseeable that if the importance of each

round of communication changes, the PSFed would be extremely close to the FedRep

in terms of total privacy leakage. In addition, the privacy leakage of PSFed should

widen the gap with FedAvg, even though the privacy leakage of our PSFed already

decreases by 51.43% in round 50 in comparison to FedAvg in the same importance.

In Figure 5.7, the accuracy of the different frameworks under different transmis-

sion tasks is shown. I evaluate the accuracy utilising Peak Signal-to-Noise Ratio

(PSNR), a general metric for evaluating image transmission in SemCom [17]. I have

PSNR = 10lg
MAX2

MSE
(dB), (5.1)

where MAX is the maximum value for a pixel and MSE is the mean squared

deviation. Since different datasets have different MAX, I assume that the learning

method with the smaller MSE has a higher accuracy. It is seen that the FedRep
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is significantly the least accurate with different datasets trained. The accuracy of

PSFed is similar to FedAvg but slightly higher. Because encoder models of both

PSFed and FedRep are kept at the TST that are not aggregated when training

is completed. Some aggregation information thus is lacking. However, the average

training accuracy of the PSfed decreased by only 0.33% relative to the FedAvg due to

the important weight aggregation acting as pre-training. Compared to the FedAvg,

the accuracy loss of the PSfed deems acceptable given the significant communication

cost and privacy concerns of the former.

Figure 5.6: Accuracy of various learning algorithms with different datasets.

5.5.3 Performance evaluation of the proposed CTPS

Figure 5.8 illustrates the impact of users in one TST coverage on the total cost.

As users are not always able to offload tasks via the TST, the proposed CTPS

is compared with the local computing, offloading to the SEC directly, offloading

to the cloud directly and CTPS without the game. The task size for each user

is randomly generated over a range of 5 kb-300kb and subjected to 50 times
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replications of the simulation. From the figure, the total cost grows with the number

of users. This is because raising the number of users increases the corresponding

number of computing tasks and thus the total cost of users. Moreover, the total

cost of the proposed CTPS always keeps the total cost to the minimum and the

advantage increases as the number of users increases. Because the reallocation

of resources through our design game scheme increases the efficiency of network

resource utilisation.

In Figure 5.9, I show the offloading and computing cost of a single user versus

the size of generating tasks. It is observed that the cost increases with the data size

for all schemes. Our proposed mechanism always has a lower cost compared to the

other three approaches. In case of the data size is small (10 kb), our CPTS choose

local computing as the optimal option. As the data size grows, the local computing

latency and energy consumption increase, and CTPS chooses other minimum cost

strategies, i.e., offload tasks to the SEC via the TST. After 250kb, the optimal value

of our mechanism fluctuates. This is due to the data size being large enough, and

the best strategy changes to offload tasks to the cloud via a TST. Therefore, the

processing of the single-user tasks can be performed efficiently via our proposed

processing strategy.

Figure 5.10 demonstrated the importance of integrating SemCom into SEC

networks in future communication environments. I set the user and the TST

to maintain the same status to transmit to LEO satellites in different rainfall

environments. It can be observed that as the rainfall probability increases, the

task transmission cost of TST without SemCom is exhibiting a significant increase.

Because the Ka-band frequency is extremely high and is strongly influenced by

rainfall-induced path loss. In contrast, the processing costs for users transmitting

via C-band are only slightly increasing. Since the C-band frequency is smaller

than the Ka-band frequency and thus tolerates less path loss. Nevertheless, the

TST configuration with the semantic encoder spends the least processing cost.

Furthermore, the processing cost did not increase significantly with the increase
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Figure 5.7: Privacy leakage of various learning approaches.

Figure 5.8: The processing cost of the varying number of users.
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in rainfall rate. This is because the latency of semantic extraction is not affected

by the environment. The improved spectrum efficiency also reduces the impact of

rainfall-induced path loss. Therefore, the integration of SemCom in SEC networks

is necessary.

Figure 5.9: The processing cost of a single user.

In Figure 5.11, the influence of α and β on user strategies are investigated and

the data size is from 5kb to 300kb simulated 50 times. The energy consumption

weight β is always set as 0.5. I list the proportion of users that do not choose

to offload via TST. It can be noticed that as the number of users increases, the

unwillingness to offload increases due to the reduced number of subcarriers being

allocated to them. However, users are always more reluctant to offload via TST in

case the delay is more important (i.e., bigger α). These provide a criterion for the

appropriate α and β to be chosen.
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Figure 5.10: The usefulness of SemCom in the network.

Figure 5.11: Impact of α and β on strategy developing.
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5.6 Summaries

In this chapter, I investigated the integration of SemCom and SEC networks for

terrestrial resource-limited users’ computation offloading. I further proposed a

novel SemCom-SEC framework for computation offloading. In addition, I examined

the challenges that SemCom confronts in the proposed framework. For analysis, I

then considered the challenges in two different scenarios. For the in-maintenance

SemCom service, I proposed PSFed for the semantic coder update challenge. In

the in-service SemCom service, I presented a game theoretical CTPS mechanism

for task processing decision challenges of users. Compared with the general learning

approach for semantic coder updating in SEC networks, simulations studies indicate

that, on average, the proposed PSFed saves 40.50% of communication resources and

further reduces privacy risk by 51.43%. Nevertheless, the training accuracy and

convergence speed of PSFed and the general learning approach almost remain the

same.
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Conclusions and Future Work

6.1 Summary

This thesis mainly focuses on SemCom system design for several potential 6G 3D

wireless networks, i.e., terrestrial vehicular networks, air-terrestrial networks, and

SAT networks. The challenges of SemCom coder updating and updating resource

allocation in VN were investigated first. The SemCom coder updating and resource

consumption in AEN and SEC networks were then studied.

In more detail, the main contribution of this thesis can be summarised as follows:

In Chapter 3, the terrestrial vehicular SemCom system was investigated. A novel

MSFTL framework was proposed based on vehicle task offloading scenarios in this

chapter. To enable adaptation to the complex vehicle semantic communication,

the proposed framework divides the training of the model into four parts and uses

the proposed split-federated learning. To further improve training efficiency, model

accuracy, and the ability to adapt in highly mobile environments, a new learning

approach integrated into the proposed framework based on TL was also presented.

Finally, to incorporate vehicle mobility and training delays, a high-mobility training

energy optimisation mechanism based on a Stackelberg game was designed for

MSFTL. The performance of the proposed schemes was also investigated through

extensive simulations. The results validated the proposed approach and indicate
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its superiority compared to the conventional learning frameworks for semantic

communication in vehicular networks.

In Chapter 4, an air-terrestrial SemCom system for AENs is proposed. The

SemCom energy consumption in such AEN was first investigated mathematically.

An EGTIM was proposed for improving the energy efficiency of the AEN for

SemCom. In addition, for semantic coders updating accurately and efficiently in

the AEN with Non-IID training data, a GEDL framework was presented based

on the renewed EGTIM. The simulation results confirmed the effectiveness of our

proposed EGTIM in improving energy efficiency. In addition, the presented GEDL

achieved outstanding performance in terms of increasing model training accuracy

with Non-IID training data and decreasing training energy consumption.

In Chapter 5, a novel SemCom-SEC framework was proposed for the compu-

tation offloading of resource-limited users in SAT networks. An adaptive PSFed

method for updating the semantic coder in SemCom-SEC was then proposed. The

proposed method guarantees training convergence speed and accuracy. This method

also improves the privacy of the semantic coder while reducing training delay and

energy consumption. In the case of trained semantic coders in service, for the users

processing computational tasks, the main objective is to minimise the users’ delay

and energy consumption, subject to sustaining users’ privacy and fairness amongst

them. This problem was then formulated as an incomplete information MINLP.

A new CTPS mechanism was also proposed based on the Rubinstein bargaining

game. Simulation results demonstrated the proposed PSFed and game theoretical

CTPS mechanism outperforms the baseline solutions reducing delay and energy

consumption while enhancing users’ privacy.

6.2 Future work

Based on the current outcome of this thesis, the existing work and some promising

topic directions can be further expanded in future works, summarised as follows:
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1. Secure SemCom: Secure communication is one of the necessary requirements

for 6G communication. The goal-oriented SemCom coders are required to conduct

cooperative updates in the network in real-time, which raises numerous security

concerns. In Chapter 4 and Chapter 5, the privacy of training data and SemCom

coder were considered. Nevertheless, it is noteworthy that the proposed measures for

privacy considerations are based on reducing the proportion of information exposed

and thus reducing the risk of privacy leakage. It does not guarantee the security of

SemCom. The security schemes to protect the training and transmission of SemCom

transmission data and coders are thus urgently needed.

2. Long-term resource allocation: Emerging SemCom technologies change

the resource consumption balance of traditional communication. Communication

and computation resources need to be rebalanced, as discussed in Chapter 3 -

Chapter 5. However, the provided mechanisms based on game theories for coder

updating resource allocation consider short-term optimal strategies. Long-term

optimal resource allocation strategies for SemCom also deserve elaborate studies

via constructing the Markov decision process and utilising DRL.

3. Life-long learning for SemCom: Different SemCom coders are required

to be updated for different specific transmission content. Adding new semantic

transmission content means adding a new coder model that needs to be stored.

This creates a continuously increasing storage load. In Chapter 2, although the TL

approach was integrated into the proposed framework, a new storage model still be

generated. How to continuously update new SemCom coder content on an identical

SemCom coder without increasing the storage load is still an open challenge.
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