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Capturing details of objects beyond the focal plane is challenging due to the limited Depth-of-Field (DoF) of optical
systems. Here, we report a Computational Refocusing Ghost Imaging (CRGI) method to extend the DoF of computa-
tional ghost imaging (CGI) systems. An ultra-fast and in-situ Point Spread Function (PSF) estimation method is put
forward utilizing the optical characterization of the system and compressive sensing (CS) modulation. The PSF distri-
bution is measured with in-situ compressive sensing algorithm according to reciprocity property using the same CGI
system. The convolution of PSFs of various depths with modulation patterns is reshaped into measurement matrices
to computationally refocus objects at different depths. From one measurement, CRGI can rebuild distinct and well-
focused images of multiple objects at different depths. According to experiments, CRGI can nearly quadruple the DoF
of typical CGI methods. CRGI represents a significant advancement in CGI domain by computationally surpassing
the optical DoF limitations. This discovery enables recording object features beyond the focus plane using Extended
Depth-of-Field (EDoF).

Achieving accurate object details beyond the focal plane is
challenging due to DoF limitations in optical imaging. Con-
ventional cameras typically achieve EDoF by capturing multi-
ple images at different focal lengths and then fusing them into
a full-focus image1. In contrast, computational ghost imag-
ing (CGI)2–4 uses structured illumination and a non-spatially
resolved single-point detector (SPD) to collect reflected light
signals and create an image. Since CGI does not rely on ar-
rayed sensors, it excels in non-visible wavelengths5–8 and ex-
treme conditions9–11, making it adaptable to a variety of sce-
narios such as microscopic imaging12, liveness detection13,
and 3D imaging14–16. However, the imaging DoF of CGI
is also constrained to the projection lens because it uses
projector-focused structural illumination. The focal length
of the projection lens must be adjusted multiple times and
a large number of illumination patterns projected to merge
multi-focus images at different depths for CGI, which is time-
consuming and cumbersome.

To enable sharp imaging in areas beyond the focal length
of the projection lens, Xu et al.17 proposed a projector defo-
cus correction method for Fourier single-pixel imaging. How-
ever, it relies on prior knowledge of the focus location and
uses an additional camera to obtain focus patterns. Rizvi et
al.18 introduced a deep learning neural network-based tech-
nique for defocus compensation, but it necessitates extensive
data preparation and training, particularly when modulation
changes. Toninelli et al.19 validated the use of caustic patterns
as the basis for single-pixel imaging of objects at distances
ranging from 3 cm to 15 cm. Qi et al.20 presented an active
autofocusing solution for projectors that eliminates manual
focusing, but it fails to overcome the DoF constraint. More-
over, these methods can only refocus a non-focal plane in a
single measurement, making the acquisition of a collection of

multi-focus images equally time-consuming.
In this letter, we present a Computational Refocusing Ghost

Imaging (CRGI) method for EDoF of CGI systems via in-situ
PSF measurements. The process involves PSFs convolution
with original modulation patterns across a range of depths.
To obtain the PSF, we present a quick, in-situ PSF measure-
ment method for the CGI system. PSF calibration is done only
once, and then we can refocus on targets at varied depths and
positions allowing sharp imaging of multi-focus objects.

Point Spread Function is an optical system’s impulse re-
sponse to a point light source. However, it’s a surface il-
lumination from a projector for the CGI setup. According
to the theory of light propagation, although the PSF of an
optical system can be obtained through computational meth-
ods such as mathematical modeling and software simulation,
accurately calculating the PSF through these methods poses
challenges due to various factors like noise, aberrations from
imperfect lenses, and the need for prior knowledge. Devia-
tions between the simulated PSF and the system can result
in failed recovery. Additionally, obtaining the PSF through
calculation is difficult for certain devices used in practice.
It has been demonstrated that PSF of an optical system can
be measured based on the idea of ghost imaging. Li et al.21

proposed to obtain the PSF of the diffuser by calculating the
spatial correlation between the results of two cameras, with
which imaging beyond a single memory effect range can be
achieved, through scattering layers. This approach can eas-
ily and efficiently acquire PSFs with spatial variations. How-
ever, for CGI systems, using SPD that are not spatially re-
solved to acquire PSF gives them an advantage in the non-
visible wavelength band. So in accordance with reciprocity
between CGI systems and conventional cameras, we propose
a method to measure the PSF of a specific CGI imaging sys-
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FIG. 1. Illustration of the proposed CRGI method. (a) Schematic diagram of the experimental setup. The object is placed in a non-focal
position. The fiber end face is located at the same position as the object for PSF estimation. Blurred image reconstructed by inverse Hadamard
transforms (IHT). (b) The reconstruction process of the proposed CRGI method.

tem by coupling an SPD to a fiber and calculating the in-situ
distribution of the PSF with a well-developed SPI technique
such as Hadamard Single-pixel Imaging (HSI)22. Basically,
the method doesn’t need to alter between the imaging mode
and the PSF measuring mode, hence the in-situ nomenclature.
After obtaining the PSF, the actual illumination paradigm due
to defocus at varying object distances can be estimated by ap-
plying the PSF as a convolutional kernel to the original illu-
mination patterns. Eventually, a sharp focused imaging result
can be obtained by correlation between the refined patterns
and SPD measurements.

As shown in Fig.1(a), CGI typically comprises an object
modulation and image reconstruction process. When the ob-
ject is situated out of DoF during the modulation process, the
measured SPD data is distorted due to defocusing. Directly
applying conventional reconstruction approaches (such as In-
verse Hadamard Transform) will result in blurring of the re-
built image. CS23 is an alternate reconstruction technique that
could fix the defocusing flaw. Generally, the CS takes correla-
tion between the modulation patterns (which are reshaped into
a measurement matrix) and the measurement data for image
reconstruction. However, when modulations are out-of-focus,
directly applying standard CS algorithm still results in blurred
images.

In this contribution, to achieve computational refocusing
for objects beyond the focal plane, CRGI was developed to re-
trieve the best estimation of the defocused modulation patterns
via convolution. This estimation is then reshaped as refined
measurement matrix inputs to coincide with the actual pro-
jected defocused patterns for image reconstruction, as shown
in Fig. 1(b). Specifically, the setup shown in Fig. 1(a) is used
to acquire PSFs at different depths. In conventional imaging
systems, the camera acquires PSF by directly photographing

a point light source. According to Helmholtz reciprocity24,
the projector and SPD are equivalent to the camera and light
source, respectively. Therefore, the PSF can be obtained di-
rectly with standard CGI procedures. However, the SPD is
not equivalent to a point light source due to its bulky light-
sensitive area. So, we couple the SPD with an optical fiber
so that its sensing area is only the size of the fiber’s end face
and is equivalent to a point light source. In the experiments,
we used a multimode fiber with an operating band from 200
nm to 1200 nm, a core diameter of 300 µm, and a length of
about 1 meter. The end face of the fiber can be considered
as a pinhole through which light is transmitted to the SPD. In
addition, the PSF distribution is rather condensed and tends
to have a very small size. Low-resolution modulation patterns
(e.g., Hadamard basis patterns with a 16 × 16-pixel resolu-
tion and a quantity of 16× 16× 2.) are sufficient for a fairly
good PSF estimation (see Supplementary Material for more
details). This allows us to efficiently estimate the PSFs at dif-
ferent depths in the CGI system. Although PSFs must be cali-
brated at various depths, this process takes an extremely short
time and only needs to be done once. The acquired PSFs can
be reused without re-calibration.

The CRGI approach is very scalable and compatible with
many illumination patterns, such as random2, Fourier25 and
Hadamard22 (see Supplementary Material for results using
random and Fourier patterns). In this work, Hadamard ba-
sis patterns were adopted without losing generality, taking
into consideration their orthogonality and binary character.
The Hadamard basis patterns P(x,y) are derived from the
Hadamard matrix22. As depicted in Fig.1(a), defocusing oc-
curs when patterns are projected onto an object distant from
the focal plane. The PSF of the optical device can be mod-
eled as a circular Gaussian filter, as shown in Fig.1(b). Thus
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FIG. 2. Comparison of simulation results with defocus modulations. Partial enlargements and AG values are also given together. (a)-(c) Ground
truth. (d)-(f) Reconstructed images with HSI. (g)-(i) Reconstructed images with TVAL3. (j)-(l) Reconstructed images with the proposed CRGI
method.

the defocused modulation pattern P
′
(x,y) can be expressed as

the convolution of original pattern P(x,y) with the PSF kernel
G(x,y;σ):

P
′
(x,y) = P(x,y)⊗G(x,y;σ) (1)

G(x,y;σ) =
1

2πσ2 exp(− x2+y2

2σ2 ) (2)

In practice, G(x,y;σ) is measured by in-situ CGI method. ⊗
denotes the convolution operation. σ is the standard devia-
tion used to adjust the ambiguity distribution, and (x,y) is the
spatial coordinate.

When the object is placed at the non-focal plane, N mod-
ulation patterns are P

′
=

{
P

′
1,P

′
2,P

′
3, . . . ,P

′
N

}
. Then the SPD

detection intensity Bn corresponding to the n-th modulation
pattern is

Bn =
N−1

∑
x=0

N−1

∑
y=0

P
′
n(x,y) · I(x,y) (3)

where I(x,y) is the distribution function of the object. For the
CGI with CS reconstruction, the vector form of Eq. 3 can be
expressed as

B = A
′
I (4)

where B and I are the vectorized representations of a series
of Bn and I(x,y), respectively. A′

is a measurement matrix
consisting of all of the defocused modulation patterns P

′
, and

the n-th row of A′
is the vectorized form of P

′
n.

Numerous optimization techniques have been developed
to rebuild image I from incomplete observations B, among
which the TVAL326 is widely used for its excellent solving

performance and was adopted as the reconstruction method
for the proposed CRGI method in this paper. Although
TVAL3 is usually used for compressed sampling reconstruc-
tion, compressed sampling usually results in blurring of the
reconstructed image. To avoid the effect of compressive sam-
pling, the sampling rate was set at 1 in all simulations and
experiments.

Figure 2 depicts a comparison of simulation results when
defocusing modulations are present. According to Eq.(1) and
Eq.(2), a Gaussian filter of size 3×3 and σ = 1.5 was used as
the defocusing blur kernel (i.e. PSF). The convolution results
of the original Hadamard basis patterns with the PSF kernel
were then used as the projected patterns to emulate the defo-
cusing of the modulation patterns. To objectively evaluate the
sharpness of the simulation results, we use the sharpness eval-
uation metric Average Gradient (AG)27 to quantify the sharp-

FIG. 3. Experimentally acquired PSF. (a) The normalized PSF of 16
× 16-pixel resolution by CRGI. (b) The PSF of 5 × 5-pixel resolution
is derived by clipping the region centered around the maximum pixel
values in (a).
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FIG. 4. Comparison of experimental results. (a)-(c) Reference. (d)-(f) Reconstructed images of out-of-focus objects with HSI. (g)-(i) Recon-
structed images of out-of-focus objects with TVAL3. (j)-(l) Reconstructed images of out-of-focus objects with proposed CRGI method

ness,

AG =
1

M×N

M

∑
i=1

N

∑
j=1

√
( ∂ I(x,y)

∂x )2 +( ∂ I(x,y)
∂y )2

2
(5)

where M×N is the resolution of the image I(x,y). ∂ I(x,y)
∂x and

∂ I(x,y)
∂y denote the gradient in the horizontal and vertical direc-

tions of the image, respectively. Higher AG values indicate
higher image sharpness.

Cameraman, Parrot, and Butterfly images with 128× 128-
pixel resolution are used as targets. The first column of Fig.2
presents the ground truth. The second column gives HSI
reconstruction outcomes using IHT directly. The third col-
umn shows reconstructed images by directly applying TVAL3
with original Hadamard patterns as the measurement matrix.
Due to defocusing, both the SPD measurements and measure-
ment matrix are corrupted, causing apparent image blur in
Fig.2(d)–(i). The last column shows the reconstructed images
with the proposed CRGI method. It produces sharp images
that are almost identical to the ground truths. The results in
Fig. 2 were further quantitatively evaluated with AG values,
which also indicate that CRGI reconstructs images better than
HSI and TVAL3.

The first experiment verified the CRGI method’s practical-
ity. See the experimental scheme in Fig. 1. The DLP projector
(V7001) was used to cast Hadamard patterns onto the objects.
The data acquisition board receives electrical signals from the
SPD (PDA100A2) based on the intensity of the reflected light.
The object was 75 cm away from the projector. Since the pro-
jector lenses were adjusted to a focal length of around 65 cm,
the object is 10 cm out-of-focus. To precisely measure the
PSF, the fiber end faces the projector and is placed in the same
position as the object. Hadamard basis patterns with notably
low resolution of 16×16 pixels are sufficient to illuminate the

fiber end faces to get a fairly accurate estimation of the PSF
through standard HSI algorithm. The PSF measuring setup is
identical to the imaging setup without changing the SPD po-
sition. This configuration characterizes the proposed CRGI
method as an in-situ approach, enabling rapid acquisition of
PSF data.

The experimentally measured PSF is illustrated in Fig. 3(a).
Notably, the values are concentrated in the central zone and
drop sharply outwards. Thus, a 5 × 5-pixel sub-region is
cropped as the PSF kernel, as shown in Fig. 3(b). this kernel
is subsequently convoluted with the original Hadamard basis
patterns to create an amended measurement matrix to facil-
itate the reconstruction of clear images. The measured PSF
was utilized to reconstruct images with the proposed CRGI
method and compared with HSI and TVAL3 methods. The
experimental results are shown in Fig. 4, where we use the
HSI reconstructed images of objects located at the focal plane
as reference. Intuitive perception of the experimental results
shows that the reconstructed images using the CRGI method
are almost identical to the reference images. Compared with
HSI and TVAL3 results, the CRGI reconstructions are sharper
and show more details. The suggested method greatly outper-
forms the other two methods, with an improvement of nearly
50% in terms of AG values. This is consistent with human
intuitive perception.

We further demonstrate the computational refocusing capa-
bility of the proposed CRGI method in multi-depth 3D scenes.
The experimental setup is shown in Fig.5. The focal length of
the projector lenses was set to be 70 cm. Objects 1 and 3 were
situated 60 cm and 85 cm from the projector, respectively. To
achieve computational refocusing imaging of objects at dif-
ferent depths, PSFs at the same multiple depths need to be
measured. The measurement setup is shown in Fig. 5 (b),
where a series of low-resolution Hadamard patterns are pro-
jected onto the fiber end face, the light is transmitted to the
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FIG. 5. EDoF experimental setup. (a) Multi-depth 3D experimental scene. Objects 1 and 3 are in the non-focal plane and object 2 is in the
focal plane. (b) Experimental setup for PSF measurement. Only the PSF measurement at object 1 is shown. (c) Front view of objects 1, 2, and
3 in (a). SPD: single point detector. DAQ: data acquisition board. The system DoF is 2.5 cm. See supplementary material for simultaneous
PSF measurements and imaging, and the spatial resolution of the system.

FIG. 6. PSFs estimation for positions of object 1 and object 3. (a)
PSF at object 1 position. (b) PSF at object 3 position.

SPD2 through fiber to be converted into electrical signals, and
the PSFs are obtained by the HSI algorithm. Fig. 6 shows
the PSFs measured in the experiment located at objects 1 and
3. In the imaging process, the projector cast 128× 128-pixel
Hadamard patterns onto the objects. The reflected light inten-
sity signal was captured by the SPD1 and subsequently sam-

pled using the data acquisition board. Note that only a solitary
data acquisition is performed. This data is utilized to perform
computational refocusing on both objects 1 and 3, separately.

The experimental results of the multi-depth 3D scene are
shown in Fig. 7. Because objects 1 and 3 are located out-
of-focus, they exhibited blurred imaging results with the HSI
method, as is shown in Fig. 7 (a). To extend the DoF of the
system, we conducted computational refocusing on objects 1
and 3 individually. The PSFs in Fig. 6 (a) and (b) were con-
voluted with original Hadamard basis patterns, which were
then reshaped into refined measurement matrices as input for
the computational refocusing using CRGI for objects 1 and 3,
respectively.

Figures 7 (b) and (c) show the images of objects 1 and 3
after computational refocusing, which are well-defined, clear,
and highly detailed compared to FIG. 7 (a). Notably, when
computational refocusing is performed on object 1 (or 3), ob-
ject 3 (or 1) also becomes clear because these two locations
have similar PSFs. Meanwhile, object 3 becomes blurred at
this point, just like when using a camera with manual focus-
ing or autofocusing adjustment. However, the proposed CRGI
method refines a series of images with varying focus points by
computational refocusing with only a single data acquisition
procedure, eliminating the need to capture multiple images,
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FIG. 7. Multi-depth computational refocusing experimental results. (a) Reconstruction result by HSI. (b) Reconstruction result of computa-
tional refocusing for object 1 by CRGI. (c) Reconstruction result of computational refocusing for object 3 by CRGI. (d) A full-focus image by
image fusion of images (a), (b) and (c).

as required by post-imaging processing with a camera. Using
the multi-focus image fusion technique based on variance in
discrete cosine transform domain28, a full-focus image of the
3D scene can be fused in Fig. 7 (d), utilizing in (a) and re-
focused images (b) and (c). In addition, we demonstrate the
depth resolution of the CRGI method, which is detailed in the
Supplementary Material.

Typically, to fuse images captured by a CCD/CMOS cam-
era using image fusion techniques, image alignment29 is nec-
essary to ensure that the scenes and imaging conditions are
consistent. Unfortunately, this can lead to longer process-
ing times and may not always be feasible. On the contrary,
the proposed CRGI approach is trouble free of any alignment
prerequisites. It performs computational refocusing of ob-
jects at different depths all with only one data acquisition.
Therefore, the imaging scenes and conditions of the differ-
ent focus depths are identical without any image alignment.
Our method is well-suited for multi-focus image fusion tech-
niques, and it can effectively extend the Depth-of-Field of
CGI systems.

In this letter, we propose an extended Depth-of-Field CGI
method via in-situ PSF measurement of various depths. The
convolution of PSFs with modulation patterns produces re-
fined modulation patterns, which are then reshaped into mea-
surement matrices for the computational refocusing of objects
at different depths using CS reconstruction algorithms. Al-
though measuring PSFs at varying depths is necessary, the
suggested PSF measurement approach only requires a small
number of modulation patterns with extremely low resolu-
tions. This enables us to obtain the PSFs at different depths
easily and quickly. Furthermore, PSF measurements with
CRGI differ from cameras which rely on capturing images of
a point light source. Instead, the differential operation during
measurements can help to reduce noise, enhance the precision
of PSFs, and be more compatible with CGI systems.

In single object out-of-focus experiment, the CRGI pro-
duces sharper images compared to conventional methods,
both in terms of intuitive perception and AG values. In multi-
depth 3D experimental scenes, CRGI enables computational
refocusing imaging of objects at varying depths, even if they

are at different non-focal planes. This can significantly extend
the DoF of the imaging system. Furthermore, a full-focused
image of the 3D scene via multi-focus image fusion can be
achieved without requiring any image alignment. In 3D mea-
surements, the use of sharper images leads to better measure-
ments and greater DoF for 3D measurements30,31. In CGI-
based 3D measurements16, the CRGI can provide clear imag-
ing and larger DoF, which facilitates the experimentation of
3D measurements with a large DoF.

In conclusion, CRGI effectively achieves EDoF for CGI
systems, seamlessly integrating with diverse modulation pat-
terns and CS reconstruction algorithms. Its straightforward
implementation, efficiency, and adaptability make it a promis-
ing method for computational refocusing, with potential appli-
cations in EDoF optical microscopic imaging and beyond.

See the Supplementary Material for details of PSF estima-
tion, discussion about the depth resolution of CRGI, results
using random and Fourier basis patterns, simultaneous PSF
measurements and imaging experiment, and spatial resolution
of the system.
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