This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

These aren’t the PLCs you’re looking for:
Obfuscating PLCs to mimic Honeypots

Sam Maesschalck, Member, IEEE, Will Fantom, Vasileios Giotsas, Nicholas Race, Member, IEEE

Abstract—Industry 4.0 and the trend of connecting legacy In-
dustrial Control Systems (ICSs) to public networks have exposed
these systems to various online threats. To combat these threats,
honeypots have been widely used to provide proactive monitoring,
detection and deception security capabilities. However, skilled
attackers are now adept at fingerprinting and avoiding honeypots.
Therefore, we take a fundamentally different approach in this
paper. Instead of the honeypot representing a real system, we
deploy it as a deterrent. Through obfuscation, the aim is to make
an attacker believe the real system is a honeypot and collect threat
intelligence data on the attacker. To achieve this, we introduce
a new obfuscation technique that allows real ICSs to present
themselves as honeypots. By taking advantage of honeypot
fingerprinting techniques, we are able to deter attackers from
interacting with the real Programmable Logic Controller (PLC)
within the industrial network. The approach is implemented
and evaluated using different penetration testing tools and an
expert evaluation highlighting the benefits of obfuscation in that
potential adversaries would be misled into assuming the PLC is
a honeypot.

Index Terms—Industrial Control Systems, ICS, Programmable
Logic Controllers, PLC, Honeypots, Security, Software-Defined
Networking.

I. INTRODUCTION

VER the past decades, adversaries targeting industrial
control systems (ICSs) have changed from mainly in-
sider attacks to also include a significant amount of nation-
state attacks that leverage the interconnection of IT and OT
environments [42, 32]. State-sponsored attacks are often highly
sophisticated and meticulous [43], meaning that ICS security
capabilities need to be improved in terms of intrusion detection
and in terms of preventing exploitation of vulnerabilities. As
nation-states have significant resources to attack a system, the
focus has to be on identifying compromise before damage has
been done. Security solutions must be deployed within the
organisational network environment to achieve this.
Honeypots are an essential resource to obtain threat in-
telligence and identify anomalies within the network. These
systems, deployed to attract adversaries, can provide valuable
information to security operators [30] and have successfully
detected exploitation attempts of zero-day vulnerabilities [37].
Nonetheless, attackers can use anti-honeypot techniques to
identify the presence of honeypots and circumvent interacting
with them [22, 48]. Therefore, the conventional use of honey-
pots may not suffice to defend from skilled attackers. We take

S. Maesschalck is with RHEA Group, Belgium and the School
of Computing and Communications, Lancaster University, United King-
dom. W. Fantom, V. Giotsas and N. Race are with the School of
Computing and Communications, Lancaster University, United King-
dom. (e-mail: s.maesschalck@rheagroup.com, w.fantom@]Iancaster.ac.uk,
v.giotsas @lancaster.ac.uk, n.race @lancaster.ac.uk

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

a fundamentally different approach to honeypots, and instead
of investing time to make them behave like a real system, we
aim to benefit from the honeypot characteristics.

This paper explores the notion of security by obfuscation
and misdirection by making operational Programmable Logic
Controllers (PLCs) mimic mimicking honeypot characteristics,
similar to how attackers try to obfuscate malicious code during
an attack [35]. Obfuscation has been shown to be effective
and used as a security measure on a regular basis [51]. For
instance, Tor or VPN tunnels are successful in helping users
avoid tracking of their traffic and circumvent geoblocking and
IP blocklisting [28, 21]. Our system focuses on hiding the
PLC by pretending it is a honeypot, and does not interact
with the system itself. This means that the proposed technique
does not interfere with any operations of the PLC but rather
provides a facade of honeypot-like characteristics in front
of the PLC, making an adversary who uses anti-honeypot
techniques believe the system is a honeypot. Our proposed
system does not aim to substitute other security systems but
rather to complement them by trying to direct the adversaries’
attention away from critical systems.

Due to the critical nature of the devices we are focusing
on [13], their limited resources [9], and the impact on safety
they can have, our system achieves those goals without in-
terrupting operations. To achieve this, we leverage Software-
Defined Networking (SDN) to dynamically route traffic to
other devices, isolate devices and virtually move network
interfaces within the network. SDN also allows us to monitor
all traffic in the network and obtain a broader look at network
activity to identify suspicious traffic.

In summary, this paper presents the following contributions:

o Presentation of a new security architecture to obfuscate
PLCs as honeypots

o The implementation of our architecture within an ICS and
SDN environment

« Evaluation of our proposed obfuscator system

After this introduction, Section 2 provides the necessary
background information on software-defined networking and
honeypots. Section 3 introduces the theoretical basis on which
we have based our obfuscator system. Afterwards, Section 4
discusses the architecture of our proposed obfuscator, and a
model of the system follows in Section 5. The next section,
Section 6, presents a practical evaluation of the obfusca-
tor within a real environment. Section 7 provides practical
considerations when deploying an obfuscator within an ICS
environment. Finally, Section 8 presents the conclusion of the
paper and future work.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Enterprise Network Level 5
Enlerprise i
Zone
Site Business Planning and Logistics Network
Demilitarized
Zone
Manufaciuring ‘ : i Level 3
Zone Site Manufacturing Operations and Control vel
‘Area Supervisory Conirel Level 2
CelliArea Basic Control
Zone
Process Level 0
Safety —Criti =
Zone Safety-Critical 3
2]

Fig. 1. Purdue Model [8]

II. BACKGROUND
A. Industrial Control Systems

ICS generally perform control and automation tasks within
critical infrastructure, such as the nuclear, water, oil, gas and
electricity industries [13, 31]. ICSs are generally deployed to
conform to the Purdue Model (Figure 1), which describes the
different layers within the Operational Technology (OT) envi-
ronment. This paper mainly focuses on levels 1 and 2, where
human-machine interaction (HMI) devices and programmable
logic controllers (PLC) are deployed.

Connecting ICS devices to the Internet enables more so-
phisticated and flexible processes [26] but introduces ICS to
various online threats that these devices were not designed to
face [1]. Attacks such as PCaaD [15], show how these devices
can be exploited to obtain operational data or enable command
and control back channels. Current ICS security solutions are
designed to ensure the systems’ availability by protecting the
IT infrastructure connected to the OT environment [25], partly
because any added latency or interference can adversely affect
ICS operations [20]. Therefore, ICS security mechanisms need
to guarantee minimal operational interference.

B. Software-Defined Networking (SDN)

SDN has enabled the design of programmable and recon-
figurable networks, minimising the need for physical changes
in cabling and topology. Although SDN has not yet been
propagated throughout ICS networks, there are many oppor-
tunities for the OT environment to benefit from it. The ability
to amalgamate a copy of all traffic on the network and route
it to an Intrusion Detection System can significantly improve
security within the OT network [24]. Additionally, SDN can
allow automatic evaluation of network security policies, which
can be both time-consuming and disruptive in a non-SDN
environment [38]. However, the presence of SDN controllers
may pose a single point of failure, which, if compromised,
can provide adversaries with full control of the networks,
particularly with the weak security of industrial protocols [11].

C. Honeypots

The approach taken by honeypots to improve security in the
network differs from traditional security systems. Their value

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

generally lies in being exploited [44] and using the adversary’s
actions against them instead of keeping the adversary at bay.
However, the way they are deployed impacts the value of
data obtained through them [29]. Previous research into the
applicability of ICS honeypots for OT security [30] has shown
that honeypots can address the requirements for critical infras-
tructure security, which range from technical requirements, i.e.
detection of intrusion attempts, to regulatory and compliance
requirements related to frameworks such as the UK Cyber
Assessment Framework and the NIST Cybersecurity Frame-
work. Other recent work has proposed semi-virtual honeypots
for ICS to reduce the cost of honeypot deployments [53]. Or
the development of a honeypot with the capability to support
a wide variety of vendors, simulating a plethora of protocols
to an advanced level [27]. However, a recent study [30] has
shown that the current ICS honeypot deployments within
the research literature are not always convincing and are
constantly aiming to be more like a real system.

D. Previous Work on SDN Honeypots

There has been previous work in the area of honeypots and
SDN. However, to our knowledge, we are the first ones to
develop an obfuscator-type honeypot.

SDN has been proposed for many purposes, such as creating
larger honeypot systems or honeynets, managing multiple
honeypots centrally, or redirecting traffic within a network.
For example, in [50], the authors propose an architecture
using SDN in combination with a hybrid honeypot system to
simulate the network topology and achieve attack traffic mi-
gration. The attack traffic migration focuses on the redirection
of attacks based on their level of sophistication. Honeypots
and SDN have also been used to defend against botnets [19],
reducing the infection rate within a network by using SDN to
forward traffic to the honeypots and block loaders. Another
paper [23] describes using SDN to monitor internal network
traffic between different honeypots. Allowing for multiple
different honeypots to be centrally managed by HoneyProxy
and transfer attacks to the relevant honeypots. The authors
of [5] proposed using SDN to enable freedom in implementing
their proposed honeypot, which simulates several industrial
processes in its Mime Plant module. SDN has also been men-
tioned as a tool to extend honeypot functionalities to enable
better data analytics, packet inspection, and detection[4]. A
paper [10] related to our work focused on using honeypots
in an SDN environment to defend against DDoS attacks and
investigate an anti-honeypot attack that can identify honeypots
in the network. The anti-honeypot technique focuses on the
attacker recognising the existence of honeypots in the network
and, subsequently, the types of honeypots. This is of interest
to us as we rely on the attacker identifying the honeypot to
protect the real system.

We take this one step further by utilising SDN to redirect
traffic and turn a honeypot and real PLC into a singular system
from a network perspective. Allowing operational traffic to
flow freely to the target system and presenting more protocols
and features to an attacker. Using the honeypot as a type
of scarecrow where the scarecrow is also the crop, warning

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

adversaries that they might be interacting with a defensive
system that monitors their activity when, in fact, they have
identified a real system. Luring them away from the actual
PLC.

III. OBFUSCATING INDUSTRIAL CONTROL SYSTEMS

This paper focuses on a component of ICSs, namely PLCs.
These controllers control other devices within the industrial
environment, such as a manufacturing process and output
signals that change the state of physical devices, such as
valves. What we aim to do with these systems is implement a
different approach to using honeypots within the environment.
Rather than deploying honeypots and making them look like
a real system, we are making PLCs look like honeypots. This
is what we define as obfuscation within this paper, obscuring
the PLC by making it pretend to be a honeypot. Deploying a
honeypot without any signatures, such as no active connections
going to it and no actual data being on the system can be
challenging. Instead of making everything look like a real
system, why don’t we go the other way and make real things
look like honeypots?

Fake honeypots have been described in research [40] and
present an interesting approach to secure the system and
circumvent the issues in deploying realistic honeypots. These
systems fulfil both defence and threat intelligence goals. This
dual-purpose system has several essential characteristics of
itself when looking into deployment. We must ask what is
needed to make an adversary believe the system is a honeypot
effectively and ensure the *obfuscator’ system does not hinder
the system. Especially within industrial control system envi-
ronments, this is an important aspect that must be considered.
Availability is one of the primary focuses of these systems, as
they can operate critical processes within a facility such as a
nuclear power station.

A. Honeypot Characteristics

Contrary to asking what characteristics real systems have,
we have to ask what a honeypot looks like. In our previous
survey of ICS honeypots [30], many characteristics were found
that could lead to a worse capability to fool adversaries into
attacking the deployed honeypot. These ranged from deploying
a PLC on Amazon’s AWS to deploying the basic configuration
of a honeypot tool such as Conpot. Low-interaction honeypot
tools such as Conpot have many common signatures them-
selves when they are not properly deployed, which can lead
to a difference in traffic to the system [29]. Another important
indication a system might be a honeypot is when no traffic
or suspicious traffic is going to the system. For example, a
series of messages that keeps repeating itself. Many of these
characteristics can be found in the initial state of the Cyber
Kill Chain [52], reconnaissance when an attacker does asset
discovery.

When evaluating the characteristics of honeypots, it must
be noted that many differences between deployments exist.
Broadly, these can be linked to their level of interaction (low-,
medium- and high-interaction) [30], which are an indication
of how much the system responds to the actions an adversary

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

makes. The obfuscator honeypot itself could be viewed as
a hybrid-interaction honeypot, with the services running on
the obfuscator being low- to medium-interaction and the PLC
behind not being an actual honeypot but providing similar
functionality to a high-interaction PLC honeypot.

B. Ensuring Availability

As stated previously, availability is one of the most impor-
tant characteristics of industrial control systems. Therefore,
this has to be at the forefront of implementation when consid-
ering the use of an obfuscator. When using an obfuscator, the
main concern is what would happen when the system went
offline. This can happen for many reasons, such as the OS
running into an error due to an adversary that gained access
to the system or a general issue with the device hardware.
Therefore, when implementing an obfuscator, we aim to ensure
availability to the PLC in any case. For this, we have leveraged
software-defined networking (SDN) to allow us to deploy the
obfuscator physically detached from the PLC, but from a
network perspective, they will still pose as the same device.

C. Increasing Security

This system’s main goal must be to increase the security of
the industrial control systems deployed within the network. To
achieve this, there is no one solution. We expect the obfuscator
to be deployed alongside other security measures and for it to
be seen as an extension to those systems. The use of firewalls,
secure programming practices and other good security prac-
tices has to remain. Especially within critical environments, a
wealth of standards and guidelines need to be followed, and
honeypots can fit into [30]. Due to the obfuscator behaving
similarly to a honeypot, it can also fit within these, although
the aim is to discourage adversaries from interacting with the
system aside from basic reconnaissance. We aim to divert the
attacker’s attention from the industrial protocol to the honeypot
services by deploying the honeypot around the real PLC. If
an adversary were to interact with the obfuscator, there should
be a link to other security systems, such as an IDS and alert
the SOC.

IV. OBFUSCATOR ARCHITECTURE

As we are working in ICS, we have to keep the Purdue
Model (Figure 1) in mind. This model describes how the OT
environment is structured and how the interaction between
devices situated on different layers happens. Within this paper,
we assume we have a setup that conforms to the model
and only focuses on the OT environment, specifically level
2 and level 1. This allows us to focus more on the concept,
implementation and working of the obfuscator.

Within this section, we introduce the architecture of our
obfuscator, followed by how the obfuscator would be viewed
on the network. Finally, we describe how the obfuscator can
be implemented within an SDN environment.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

A. Obfuscator

The goal of the obfuscator is to have the system resemble
itself as a honeypot effectively; in other words, it should make
the system look less like an actual PLC. With this, we want
to ensure that the system looks more like a honeypot during
the asset discovery or reconnaissance phase. We can do this
by looking at some existing ICS honeypots, such as Conpot
and mimicking their configuration. This means our obfuscator
can run services like HTTP, SSH and FTP. However, there is
no limit to the services the obfuscator can run. In addition
to this, there has to be a system connected to these services
that interacts with these services in a suspicious manner. For
example, a repeated series of the same messages will have
an adversary question if the traffic is real or simulated. For
every PLC, a forwarder also needs to be configured so that all
communications aside from the industrial control port traffic
get sent to the obfuscator instead of the PLC. Industrial traffic
can happen at several ports, such as 502 for MODBUS or 102
for Siemens S7comm. Therefore, the obfuscator is twofold.
One part is the honeypot, and the other part is the forwarder
that enables the honeypot and the obfuscated system to present
as one system.

The obfuscator services themselves can be deployed very
flexibly. They can range from basic implementations deployed
by importing libraries in a small script, such as seen on a low-
interaction honeypot, to actual deployments of the services,
such as seen with a high-interaction honeypot. However, as
these systems are deployed to make attackers believe they
are on a honeypot, they should be limited to how extensively
these are implemented. The obfuscator should be a clearly
worse deployed honeypot than the actual honeypots deployed
within the environment. Additionally, all traffic captured by
the obfuscator should be logged and sent to a device that
is connected to the SIEM (Security Information and Event
Management) and SOC (Security Operations Centre).

In terms of the implementation of the forwarder, we would
recommend this to be done on the network infrastructure itself,
such as through SDN, rather than on the obfuscator honeypot.
This is mainly to ensure that if the obfuscator goes down,
the PLC still receives all the industrial port traffic. This is
important as we do not want to interfere with the device’s
actual operation. Additionally, the obfuscator’s goal is not
to prohibit any attacks on the PLC but to make adversaries
less likely to carry them out. Therefore, the system does
not prohibit an attacker or an engineer from performing any
action on the OT protocols running on the PLC and must be
accessible; this system needs to be deployed alongside other
security measures. When deploying the forwarder, it is crucial
that this goes both ways, and the traffic going back to the
client/attacker is structured as if it comes from the actual
PLC. The obfuscator honeypot should not interfere with the
operation of the PLC and preferably be deployed separately
to ensure the PLC remains operational when the honeypot is
unresponsive.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Obfuscator

Pump

(<->))

HMI forsnnnnnnny PLC Sensor
@— ‘ Oblus‘cator Gr
HMI PLC Robot
= i §—o T 4%'
HMI PLC Actuator

LI
N
Historian

Remote Access
Server

Fake Traffic

Server
Enterprise Network

Organisational Network

Fig. 2. Obfuscator OT Network Perspective. The dotted line represents data
obtained on the obfuscator honeypot that feeds back into the network’s SOC
or other security measures.

B. Obfuscator from a network perspective

From a network perspective, the obfuscator has to be
indistinguishable from the actual PLC. There should be no
difference between the response of the obfuscator and the
PLC. Therefore, from an attacker’s perspective, it has to
look like they are interacting with the PLC even though the
obfuscator honeypot responds (Figure 2). This links in with
asset discovery and reconnaissance, and an attacker at this
stage should believe the system is more likely to be a honeypot
and not see that services are running on a separate system.
Any data obtained by the honeypot should feed back into the
security systems within the network.

The network is a standard OT network, deployed according
to the Purdue model we discussed previously. In our example
network overview, we have several HMIs that are each con-
figured to communicate with one of the PLCs. Both devices
represent level 1 and level 2 of the Purdue model. We have
included a historian and remote access server to represent level
3 of the model. Level 4 and level 5 are incorporated into the
Enterprise Network. When we add some level O devices such
as a pump, sensor, robot and actuator, we complete the Purdue
model. This is an essential high-level representation of an OT
environment within an organisation.

C. SDN Enabled Obfuscator

Leveraging SDN within this environment enables many
more functionalities than when the obfuscator is deployed
within a traditional network and also allows the forwarding
of traffic across the network. This means that the issue related
to the availability of the device we discussed earlier in the
paper, as the forwarding of traffic to and from the obfuscator,
can be handled on the network infrastructure/SDN controller
itself.

Implementing SDN within the underlying architecture does
not change the adversary’s perspective but allows for more
flexibility within the existing network architecture in terms of
resilience and traffic engineering, such as forwarding traffic
streams to an IDS [24] or as a flexible security feature [46]. An

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Integration with security systems
NTTITR ssH] [1Par]

[~ Required protocols for operation
- Obfuscator

Honeypot
pLC v

All other communication to PLCs

SDN Enabled
Network Je= === == ccm e e e - e - 5
LiLLL :
3 n]] 3 l

Required protocols for operation

3

LLLLLE
Fakse Traffic Obfsucator
erver SDN Controller

OT Network

Fig. 3. Example of SDN Enabled Obfuscator Architecture. The SDN
controller determines traffic flow to the PLC based on the loaded flow rules
or redirects them to the honeypot.

overview of an SDN-enabled architecture for the deployment
of the obfuscator can be seen in Figure 3. Within the example
architecture, OpenFlow is leveraged in combination with Ryu
to provide the capabilities needed within the environment.
Instead of these, SDN can also be implemented with solutions
such as P4, Cisco ACI, and ONOS. The controller determines
the traffic flow to the PLCs and to the obfuscator honeypot.
Both PLCs are obfuscated by the honeypot and, therefore,
receive traffic directed to both PLCs, but the SDN controller
shows the traffic originating from the respective PLC instead
of the honeypot, which can assist with network monitoring.
On the network itself, this would not be noticeable. Similar
to the non-SDN environment, the fake traffic server is on the
network, providing traffic to the obfuscator honeypot to allow
passive network scans to pick up the services.

V. OBFUSCATOR MODEL

We have constructed a Hidden Markov chain model to
obtain a theoretical evaluation of the obfuscator. Within this
model, we assume the obfuscation successfully makes the ob-
fuscator honeypot and the real PLC present as one system. In
a real environment, this would depend on the implementation
of the obfuscator forwarder. We evaluate our implementation
of the forwarder later in the paper. This model represents
one instance of the obfuscator and allows for flexibility in
deploying multiple services. Due to the nature of the system,
the model represents different states of which the next states
depend on the states already visited. A service (S| — Sh)
that looks more similar to one that might be deployed on
a (poorly) deployed honeypot would result in the adversary
estimating a higher probability (belief) that the system is a
honeypot [30, 34, 17].If the adversary engages in multiple
honeypot-like services, the total belief weight increases more
significantly than the total belief weight that the system is a
real system. The exact belief weight an adversary believes a
system is a honeypot (h) or not (r) depends significantly on
the type and configuration of the service deployed. Both belief
weights have to be between 0 and 1, with the sum of both
equating to 1. The adversary’s probability of moving across
services is random, as the attacker can move freely within
the system. However, suppose the belief that the system is a
honeypot and that the system is a real system is similar or low.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

Honeypot Real system

Fig. 4. Generic model of the obfuscator system. Depicts n services which
each give the attack a belief the system is a honeypot or real system.

In that case, an adversary is more likely to move to another
service or return to the service to continue investigating, as
can be seen with different honeypot deployments [29]. When
this confidence is high, an adversary could leave the system if
they determine it to be a honeypot, as they do not want to risk
being exposed [17, 3], and might be likely to investigate the
actual OT protocol more if they determine it is a real system.
However, they would not be likely to move to another service
if they believe the system is a honeypot and might not be a
valuable target or if the risk of exposure is too great [34, 6].
The sum of the belief weights has to remain between 0 and
the number of services the attacker has visited, as we assume
the attacker has no belief before interacting with the system.

In order to calculate the probability of an adversary deciding
whether the system is a honeypot or a real system, we need
to use a formula that can encompass the adversary visiting
multiple services (X). For each service visited, the attacker
obtains a belief that the system is a honeypot (h) and a belief
that the system is not a honeypot (r). For each extra service
the attacker visits, the beliefs get added to the current belief
the attacker has. The value of this at the end is the total belief
that the attacker thinks the system is a real system (R) or a
honeypot (H). To calculate if the attacker believes the system
is more likely to be a honeypot (E[H]), we use the total belief
weight that it is a honeypot (H) and divide this by the number
of services the attacker visited (n(X)). Dividing H by the
number of services visited normalises the value within a range
of 0 to 1. This gives us the probability that the attacker believes
the system is a honeypot. Subtracting this value (E[H]) from 1
gives us the probability that an attacker believes the system is
a real system (E[RS]). This is also obtainable by replacing H
with R in the formula used to calculate E[H]. If this value is
greater than 0, the attacker believes the system is a honeypot
rather than a real system. This has to be calculated when the
attacker reaches the ’done’ state of the model based on all
the services they have visited. The following formulas can,
therefore be derived:

H=> h(Sy)

neX

R=">"r(S)

neX

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Service | HP Belief Weight RS Belief Weight
Sl hl T1
S ha T2
Sn hn Tn

TABLE I
GENERIC MATRIX OF HONEYPOT AND REAL SYSTEM BELIEFS

Service HP Belief Weight RS Belief Weight
HTTP 0.95 0.05
FTP 0.91 0.09
MODBUS 0.08 0.92
TABLE II

EXAMPLE MATRIX OF HONEYPOT AND REAL SYSTEM BELIEFS

H
FH| =
[H] n(X)
R
E[RS] =
[RS] 2(X)
Which can also be written as
;X h(Sn) %IX r(Sn)

We have adapted the generic model of the obfuscator to rep-
resent and evaluate one possible configuration (Figure 5). This
example represents a deployment of the obfuscator where three
services are accessible: an emulated HTTP and FTP service
and the real Modbus service running on the actual PLC. We
assume the attacker has free choice to start with either service,
and at the end state of the model, the attacker has assumed the
system is either a honeypot or a real system. Beliefs within
this model (Table II) are discussed and agreed on by 5, which
should give us a confidence interval of 93.75% [18], ICS
and/or penetration testing experts. We asked the experts the
likelihood they would believe the system is real or a honeypot
based on the services seen. We have used a Conpot honeypot
(running HTTP and FTP) and an Allen-Bradley PLC (running
MODBUS) as an example system. These numbers are specific
to our deployment and configuration of these services. How
these services are deployed, e.g. a dummy FTP service with
no interaction or an HTTP service with a different website
will impact the values. Therefore, these should be taken as an
example for our system and might not necessarily be the same
in another deployment. Mapping these beliefs to the previously
described functions shows that an attacker is significantly more
likely to believe the system is a honeypot rather than a real
system. We have mapped these for three scenarios which the
attacker could follow.

e Scenario 1: The attacker initially investigates the FTP
service; from this, they move on to the Modbus service,
which then leads to the HTTP service. The honeypot
belief weight the attacker has is 1.94 (honeypot belief of
FTP + Modbus + HTTP) compared to 1.06 (real system
belief of FTP + Modbus + HTTP) it is a real system when
they reach the final state. When we (calculate E[H]),
the result is 0.647 and the expectation that the system is

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

MODBUS

Honeypot Real system

Fig. 5. Example model of the obfuscator system. It depicts three services,
HTTP, FTP and MODBUS, which each give the attack a belief the system is
a honeypot or real system.

a real system (E[RS]) is 0.353. Therefore, the attacker
determines there is a greater probability that the system
is a honeypot than a real system.

e Scenario 2: The attacker initially investigates the HTTP
service; from this, they leave the system. The probability
the attacker thinks the system is a honeypot is 0.95
(honeypot belief of HTTP) compared to 0.05 (real system
belief of HTTP) it is a real system when they reach
the final state. When we (calculate E[H]), the result is
0.95 and the expectation that the system is a real system
(E[RS]) is 0.05. Therefore, the attacker determines there
is a greater probability that the system is a honeypot than
a real system.

e Scenario 3: The Attacker initially investigates the Modbus
service; from this, they move on to the HTTP service.
Afterwards, they leave the system. The probability the
attacker thinks the system is a honeypot is 1.03 (honeypot
belief of Modbus + HTTP) compared to 0.97 (real system
belief of Modbus + HTTP) it is a real system when
they reach the final state. When we (calculate E[H]),
the result is 0.515 and the expectation that the system is
a real system (E[RS]) is 0.485. Therefore, the attacker
determines there is a greater probability that the system
is a honeypot than a real system.

e Scenario 4: The attacker initially investigates the Modbus
service; afterwards, they leave the system. The probability
the attacker thinks the system is a honeypot is 0.08
(honeypot belief of Modbus) compared to 0.92 (real
system belief of Modbus) it is a real system when they
reach the final state. When we (calculate E[H]), the result
is 0.08 and the expectation that the system is a real system
(E[RS]) is 0.92. Therefore the attacker determines there
is a greater probability that the system is a real system
than a honeypot.

From this, we can see that because the Modbus protocol
is part of the real system, it reduces the chance an adversary
would view the system as a honeypot compared to the other
services. However, if we consider a more appropriate path
for an attacker, investigating multiple parts of the system, the
chance an attacker determines the system is a honeypot is sig-
nificantly higher. It is improbable that an attacker would only

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

focus on one protocol running on the system. Additionally,
once an attacker has interacted with services on the system,
aside from the real service, they should have been noticed by
the SOC as the honeypot aspect of the system should be linked
in with other security systems.

VI. EVALUATION
A. Setup

The evaluation setup focuses on the obfuscator [36] rather
than the network around it. For this, we deploy one PLC
with one Conpot obfuscator honeypot and a Ryu-based [45]
obfuscator controller within our test network (Figure 8), which
will be running within our ICS lab deployed according to the
testbed proposed by Green et al. [14] and uses IPv4 as IPv6
has only recently been supported by Siemens PLCs [41]. The
PLC deployed is a Siemens Simatic ET 200S and is connected
to the obfuscator and attacker system through a Pica8 P-3297
switch deployed in OVS mode. The obfuscator is configured
to redirect traffic to a Conpot honeypot (Ubuntu 20.04 LTS,
15-8265U, 8GB) which is set up in a default configuration
emulating a Siemens Simatic ET 200S PLC. As this template
also includes an S7Comm emulation, we have disabled this
as the Siemens PLC provides this service. With this setup,
the obfuscator presents itself as a Siemens Simatic ET 200S
PLC, as the real device it is connected to, and it has all the
default Conpot signatures. The obfuscator controller [Github],
running on Raspberry Pi4, is designed to obfuscate traffic
by redirecting traffic to the Conpot honeypot if any protocol
other than S7TComm or SNMP is used. The honeypot itself is
obfuscated as all packets directed to its IP address that are not
redirected from the obfuscated PLC IP are dropped. We have
also deployed a system providing fake traffic to the honeypot
on a regular basis. This system connects to the Modbus, HTTP,
Bacnet, IPMI, FTP and TFTP services by sending a basic
request to those services sequentially on a rolling basis.

To establish a baseline for our obfuscation, we also run the
tests on the same PLC. We do this by bypassing the SDN
environment by directly connecting the PLC to the system we
use as the attacker.

Conpot is running the following built-in protocols which
are part of its Siemens S7-200 emulator: Modbus on TCP
port 502, HTTP on PCP port 80, Bacnet on UDP port 47808,
IMPI on UDP port 623, FTP on TCP port 21 and TFTP on
UDP port 69.

The obfuscator itself uses the Ryu framework for OpenFlow
controllers, where it acts as a firewall, a layer 2 learning
switch, and an obfuscator. The functionality of this controller
is split across five flow tables, as shown in figure 7, where all
static logic is populated based on a provided configuration. The
configuration 6 consists of a set of hidden nodes representing
PLCs within the network and a set of obfuscation rules,
in which a set of header values are provided along with a
honeypot node that should handle any traffic of that type.
From this, the controller ensures that all incoming traffic to the
network destined for a node used as a honeypot is dropped by
the firewall table. The controller then installs flow entries in
the static obfuscation table to identify any traffic that should

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

16 #bypass the cbfuscator
[[86£2486273020021 . bypass]] #port 102
048

ip_proto = 6
tep_dst = 102

24 ip_proto = 17
25 udp_dst = 16l

27 #Redirect any IP traffic heading to any of the protected nodes redirect te the honevpot
#Higher priority comes first {e.g. 2 then 1)

€7302002f.rule]] #A11 IP traffic from PLC to honeypot

le.honeypot]
a:9b:53:¢5:17"

Fig. 6. Example of obfuscator Flow Rules. Shows two bypass rules for traffic
that goes to the PLC, a redirection rule from the PLC to the honeypot for
HTTP and a redirection rule for all other IP traffic destined for the PLC to
the honeypot.

be obfuscated, associating any packet in messages with a
unique cookie per obfuscation rule. Then any future packet
that matches with a static obfuscation rule will trigger the
controller to install the appropriate bi-directional dynamic rule.
The result of this is that any packet addressed to a protected
node of a traffic type specified in an obfuscation rule will
have its destination MAC and IPv4 addresses rewritten with
that of a honeypot, and any returned packets will have their
source MAC and IPv4 rewritten to that of the original packet’s
destination.

B. Methodology

To evaluate the success of the obfuscator in presenting PLCs
as a honeypot within the test environment (figure 8, we have
run several penetration testing and network evaluation tools to
evaluate how the system presents itself to adversaries running
these tools. An overview of the tools we have used within the
environment can be found in Table III.

Tools such as Nmap and Wireshark are used for asset dis-
covery, and Wireshark can also be used for passive discovery
of devices on the network. We understand that adversaries
do not commonly use Nmap within these environments due to
the noise it generates on the network. However, our evaluation
shows us how our system would behave when scanned. The
tools we use in this evaluation generally fit with the MITRE
ATT&CK for ICS Matrix [33, 2] discovery tactic and can
be used for network sniffing, network connection enumeration
and other techniques listed under this tactic. Our evaluation
focuses on the reconnaissance stage of the cyber kill chain.

As availability is one of the most important aspects of
critical infrastructure/OT environments, we have also deployed
a test to evaluate the performance of our system compared to
the PLC by itself to ensure the obfuscator does not prohibit
its functions.

We have run each of these tools on both the obfuscated
PLC and the non-obfuscated PLC IP address. This has been
done to understand the impact the obfuscator has on network

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

matched with bypass rule

- o~ Lol
% Firewall Rules % Obfuscator % Obfu.scator
K K] Bypass Rules s Dynamic Rules

matched with obfuscation rule L

Obfuscator
Static Rules

Layer 2

. —> to destination
Learning Rules

—

Table 4
Table 5

drop

l

to controller
[installs dynamic rules]

Fig. 7. Flow Tables used by the OpenFlow Obfuscator. Depicting how bypass and obfuscator rules are handled by the controller and how the traffic not

matching any rule is handled.

E‘ OOBM Fake Traffic %O

Server

Ryu Controller Honeypot

Obfuscator System

il

Siemens Simatic
ET 200S

LLLLLI

A

Attacker

Evaluation Envrionment

Fig. 8. Diagram of the evaluation scenario where the attacker attempts to
perform an asset discovery on the network looking for PLCs. The dotted line
to the Siemens PLC represents the baseline evaluation scenario. The dotted
line to the controller represents the control plane connection.

Penetration testing | Networking
Nmap Wireshark
Nessus Snap7
PLCScan Ping
S7Scan httping
hping3
TABLE III

PENETRATION TESTING AND NETWORKING TOOLS USED IN THE
EVALUATION OF THE OBFUSCATOR EFFICACY

performance, how well the obfuscator is able to hide from
being a separate system and most importantly, the capability
to obfuscate the PLC as a honeypot from an attacker’s per-
spective.

1) Obfuscation: To evaluate the obfuscation capabilities,
we have deployed several tools on both the obfuscated and
non-obfuscated PLC. In terms of penetration testing tools,
we have deployed all tools listed within Table III. Nmap has
been used to evaluate how the obfuscator responds to network
scanners commonly used within penetration tests. This allows
us to verify if the scanners reveal that the S7 protocol
does not run on the same system as the services run by
Conpot. Nessus, PLCScan and S7Scan focus on vulnerability
scanning. Running these tools indicates which vulnerabilities
can be found through the obfuscation, which cannot be found
on the PLC. In addition to these penetration testing tools,
we ran Wireshark, Ping, HTTPing and Snap7. The Snap7
script used runs the following commands: plc.get_connected,
plc.get_cpu_info, plc.get_plc_datetime, plc.ab_read(1,5), and
plc.upload(1). These commands try to connect to the PLC and

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

perform several tasks, such as enquiring what CPU is running
and downloading data from the device (upload).

Wireshark provides an overview of activity on the network
and if network traffic to the obfuscated IP differs from the
traffic sent to the non-obfuscated PLC. To further evaluate the
network-level obfuscation, we deploy Ping to evaluate if there
is any difference in delay between the host and the services
running on Conpot and the host and S7Comm on the PLC.
Finally, Snap7 is used to evaluate the response to S7comm
requests through the obfuscated and the non-obfuscated PLC.

We have further evaluated the obfuscation capabilities by
inviting two experts and tasking them with investigating the
network. For the first test, we let them into the network with no
prior knowledge and asked them to identify all systems on the
network and evaluate if they were honeypots or real systems.
Afterwards, we introduced them to the obfuscator and asked
them to evaluate the system by investigating if they could spot
that there are two devices behind the one IP address.

2) Performance: To evaluate the performance of the ob-
fuscator, we have deployed three networking tools within
our evaluation environment. We used Ping and HTTPing to
evaluate the delay between the host, the obfuscated services
and the S7comm service running on the PLC through the
obfuscator. In addition to Ping, we have used a script to
evaluate the amount of traffic our Ryu obfuscator controller
and the non-obfuscated PLC can handle. The script leverages
HPing3 to flood the environment with data and Ping to
evaluate the performance of the network at the same time,
starting at two packets per second (0.13 KBps) and increasing
to 1 000 000 packets per second (64 MBps).

C. Results

1) Without Obfuscation: When running Nmap scans on the
non-obfuscated PLC, Nmap detects only port 161/udp, which
runs SNMP and port 102/tcp, running iso-tsap, which is the
S7comm service. Running the Nmap built-in S7-info script,
Nmap returns port 102/tcp as open and gives the correct
information about the PLC (e.g. System name, MAC address
and Serial Number). Nmap fails to detect the OS running
on the machine (on all scans) and guesses it to be devices
such as BorderGuard firewall, Xerox printer and Motorola
wireless bridge. PLCScan and S7Scan both return the expected
information of the PLC. Nessus returns one high-risk SNMP
vulnerability. All Snap7 commands return the expected values

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

100001 — avg RTT (ms)
—— max RTT (ms)
T 7500 A
E
5000
E
2500
0 S S
10! 10? 10° 10* 10° 10°

100 {
60

40 4

packet loss (%)

204

T T T T T T
10! 10? 10 104 10° 108
Data Throughput (packets per second)

Fig. 9. PLC performance evaluation graph showing the packet loss and RTT
during the stress test. The drop in RTT is a result of the high packet loss.

and do not return any errors. Wireshark does not show any
odd behaviour, and all packets show to be sent from and
to the correct machines. Ping returns an average RTT of
Sms, a maximum RTT of 9ms, and a minimum RTT of 3ms
for 50 pings. The PLC starts to drop packets (;10%) when
sending 10,200 packets per second (0.65 MBps) (9) and starts
to significantly drop packets (24%) at 10,600 packets (0.68
MBps). The highest packet loss (100%) is first reached at
55,500 packets per second (3.55 MBps). The maximum RTT
(11,483 ms) observed during the test is at around 52,500
packets per second (3.36 MBps), the average RTT maximum
throughout the test is 689 ms, and the average of the average
RTT is 119 ms.

2) With Obfuscation: Running Nmap on the obfuscated
PLC returns a wealth of information. Scanning TCP ports,
Nmap returns FTP running on port 21, HTTP on port 80,
iso-tsap (S7comm) on port 102 and mbap on port 502
(MODBUS). The s7-info script returns port 102/tcp as open
and shows the correct information about the PLC. The five
highest guesses Nmap made for the OS are Linux 2.6.32 -
3.10 (93%), Synology DiskStation Manager 5.2-5644 (92%),
Linux 3.1 (91%), and Linux 3.2 (91%). Scanning UDP ports
on Nmap only shows port 161/snmp being open, with the
other services running (TFTP, IPMI (reported as asf-rmcp),
and Bacnet) being reported as opened—filtered. Aggressive
OS guesses are widely different and include Citrix Access
Gateway VPN gateway (95%), Linksys WRT610Nv3 WAP
(95%), and 3Com OfficeConnect 3CRWER100-75 wireless
broadband router (94%). Both TCP and UDP scans return the
MAC address as belonging to Siemens AG.

PLCScan and S7Scan show the expected information about
the PLC, which is to be expected as these are only scanning the
S7 protocol. Nessus reported no vulnerabilities on the device.
When we ran our Snap7 script, it resulted in the expected
return values from the PLC. Wireshark does not show any
communication with the honeypot as the source, and the Ryu
obfuscator successfully obfuscated the packets as if they were
sent from the obfuscated PLC.

Ping returns an average RTT of 3ms, a maximum RTT of

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

—— avg RTT (ms)

40009 ok RTT (ms)

W 3000
E

2000 4
E

1000 4

10! 10? 10° 10* 10° 108

@
o
L

s
=]
L

packet loss (%)

]
o
L

L

o
L

T T T T T T
10! 10? 10° 104 10° 108
Data Throughput (packets per second)

Fig. 10. Obfuscator system performance evaluation graph showing the packet
loss and RTT during the stress test. The drop in RTT is a result of the high
packet loss.

4ms and a minimum RTT of 2ms after 50 pings (which are
redirected to the honeypot). HTTPing returns a higher average
RTT of 235ms, with a maximum response time of 358ms.
Looking at the packet loss in our evaluation setup 10 we reach
a maximum of 72% packet loss at around 330,000 packets per
second during our test (up to 1,000,000 packets per second),
which results in 21.3 MBps. Any significant packet loss (25%)
starts at 125,000 packets per second (8 MBps). The first packet
loss we see higher than 10% is at around 52,000 packets (12%)
or 3.37 MBps. The maximum RTT (4718 ms) observed during
the test was at 19607 packets per second (1.25 MBps), the
average RTT maximum throughout the test was 276 ms, and
the average of the average RTTs was 30 ms.

D. Expert Evaluation

As stated previously, we have invited two experts to evaluate
the obfuscator system in the same evaluation environment
as used previously without the PLC bypass. One expert we
invited is a penetration tester holding an OSCP certification,
an expert in OT security, and has been involved with ICS-
specific penetration testing. The other expert has more than
a decade of penetration testing experience and is currently
a security engineer within an OT environment. As with the
previous test, to make the test more realistic, we simulated
basic traffic within the environment going to the PLC and the
honeypot through the fake traffic server; the PLC is connected
to a water tank on which we open and close several valves
during the test. We provided both experts with IP addresses
of systems that were not part of the evaluation, as they were
used to emulate traffic.

Our first expert cautiously approached the system due to
the warning that a honeypot could be running within the
network. They started by running Wireshark in promiscuous
mode to enable them to see all the network traffic without
actively scanning the network. With this, they identified one
system running on the network; the system was identified to
be running HTTP, FTP, Modbus and S7Comm. The expert
identified this as being odd and was reluctant to investigate the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

system further, believing the system was potentially a honey-
pot. When probed to investigate further, they investigated some
of the HTTP traffic, through which they identified the default
Conpot website. At this point, they told us they believed the
system to be a honeypot. After we explained the system and
its goal, they explored the network more aggressively. Tools
being used include NMAP (including the s7-info script and
a custom script), S7Scan, Wireshark and a custom-developed
tool. Using these tools, the expert aimed to find evidence of
the honeypot and PLC being two systems hidden behind the
same [P address. After a thorough examination, the expert
reported no evidence of this, as all the data indicated this
looked like it was one system. The expert also did not discover
the IP address that was obfuscated. One note made was that the
S7Comm implementation could be seen as too developed, and
there seemed to be a disparity between the quality of emulation
of this service (acknowledging this was a real service running
on a real PLC) and the honeypot services. However, they
believed this would not pose a problem as an adversary would
be reluctant if there were any indication of the system being
a honeypot.

The second expert also approached the system without us
telling them there might be honeypots on the network. When
probed, the expert indicated knowing of honeypots and told us
they were always wary of honeypots within an environment.
After the initial passive scan of the network, they indicated
that they identified one system on the network. Contrary to
the first expert, they investigated the Wireshark traces more
in-depth from the start and told us they believed the system
was a Conpot honeypot. This indicates that the expert has
previous experience with this type of honeypot. At this point,
we introduced the system to the expert and asked them to
break the obfuscation. For this, the expert used tools like
Nmap (including the Modbus-discover and s7-info script),
Wireshark, S7Scan, PLCScan, OpenVAS, and Lansweeper.
These tools investigated the IP address discovered earlier and
actively scanned the network. The expert reported seeing no
indication that the S7Comm service was hosted on a separate
system from the other services, nor did they discover the
obfuscated system’s IP address. However, similar to the first
expert, they noticed the S7Comm service was very advanced
for a honeypot but noted that an adversary within the network
would be very concerned with being stealthy and probably
would not interact with this system.

E. Discussion

Even if the obfuscation ultimately failed, due to the attacker
identifying the system as real, they would have interacted
with the honeypot services. which would result in the SOC
being alerted of activity on the honeypot, and actions could
be taken. If this device was Internet-connected, Shodan would
have identified the Conpot default signatures

Our previous work [29], where we evaluated the perfor-
mance of several honeypot deployments on the Internet, has
shown that the deployed Internet-facing ICS honeypots re-
ceived a very low level of traffic on protocols such as S7Comm
and Modbus. And they saw most traffic on IT protocols such

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

as HTTP and FTP, protocols such as BACnet that are also used
outside of industrial environments such as smart homes [49],
and the Common Industrial Protocol [7]which is used to
integrate with enterprise-level Ethernet networks. Furthermore,
the study saw a lot of Internet scanners or sources that do
not provide much information on the adversary targeting the
system, such as Digital Ocean. During the first and second
periods, 24% and 21%, respectively, of IP addresses seen
belonged to Censys, and 26% and 20%, respectively, belonged
to Digital Ocean. Therefore this evaluation focuses on how
the system would be perceived by the adversary, which is
why we constructed the evaluation around the behaviour of
tools, a practical evaluation and an expert evaluation. Through
the expert evaluation, we aimed to understand how expert
penetration testers would approach and view the system.

We can see a positive outcome when looking at and com-
paring the results of the non-obfuscated and obfuscated PLC.
Based on the data, there is no indication that our obfuscator
impairs any of the functions of the PLC. This is very important
in an ICS environment as availability is of utmost importance.
The average RTT between the devices is nearly identical with
only a 2ms difference, in favour of the obfuscated PLC,
which we can consider a similar result. Further, the stress
test shows that our SDN testing environment does not impact
the PLC performance as our evaluation setup first sees any
noteworthy packet loss (25%) at 125 000 packets per second (8
MBps), which is significantly higher than the first considerable
packet loss (24%) we have observed on the PLC at around
10 600 packets per second (0.68 MBps). We also saw a nearly
identical average RTT during the ping test, showing that the
SDN environment does not add an extra delay but performs
similarly or even better. During the stress test, the average and
maximum RTT were also lower than the RTT when connected
to the PLC.

Looking at the obfuscation capabilities, we can observe that
both systems present as one from a network perspective, and
all communication going to the attacker originates from one
IP address (from the attacker’s perspective). However, in our
tests, it is important to note that the MAC address reports as
belonging to a Siemens AG device. This could be mitigated by
using the IP address of the honeypot as the target IP address
and obfuscating the IP of the PLC. Further, we can see that
all S7Comme-related scanners and communication reports are
the same on both the obfuscated and non-obfuscated PLC.
Therefore, the obfuscation does not impact the PLC’s expected
performance.

The OS guesses from Nmap show differences when scan-
ning the TCP or UDP protocols. Scanning the TCP ports on
the obfuscated PLC reports a high probability of the system
being a Linux-based system, which is what the honeypot is
running. When scanning all UDP ports, only SNMP returns
as being open, and the OS guesses are similar to the guesses
on the non-obfuscated PLC. One odd result can be seen on the
Nessus scan. For the obfuscated PLC, Nessus does not report
any vulnerability. In contrast, the non-obfuscated PLC returns
one high vulnerability on the SNMP service, which bypasses
the honeypot on the obfuscated PLC.

Our two expert evaluations also show that the obfuscator

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

behaves as expected and successfully makes the honeypot and
PLC present themselves as the same system under one IP ad-
dress. It was interesting that both of the experts indicated they
saw a discrepancy between the real service and the honeypot
services. However, they did state that given the priority of
adversaries within these environments is to remain undetected,
which aligns with research [3], an adversary would be wary
of anything that might uncover their existence. Both experts
also state that they believe a system like this could work in
a real environment and thought our usage of honeypots was
interesting. Given both experts work within the OT domain and
have significant penetration experience, we deem this a success
of our obfuscator system as we have successfully convinced
two knowledgeable attackers to halt interactions with the real
system. This expert evaluation enabled us to better understand
the thought process behind the attacker by directly interacting
with them, which would not be possible with other evaluation
mechanisms.

Based on these results, we can conclude that the goal of the
obfuscator has been achieved, as both systems show as one
from a network perspective. As none of the tools we ran on
the system indicated that two different systems are responding
to the attacker, the average attacker would not notice this.
However, a highly sophisticated attacker could potentially have
specific tools they might have developed that could indicate
that these are two separate systems. We deem this a possibility
with every security measure, as there can always be ways
highly knowledgeable attackers can circumvent a security
measure. Furthermore, from running the tools, the attacker
would see multiple services running on the device and spot
the Conpot signatures, which can be found on the website.
Because we are not using Conpot’s S7Comm service, not
all signatures can be seen on the system. Looking back, if
the attacker ran Nmap on the PLC, it is highly likely they
would have interacted with the honeypot services, which If an
attacker were to interact with the honeypot, this would result in
the SOC being notified of unusual activity, which is beneficial
to the security of the PLC.

VII. DEPLOYMENT CONSIDERATIONS

When implementing an obfuscator within an industrial
network, attention has to be paid to the requirements of the
network. As stated previously, it is vital to keep availability,
reliability and safety in mind. To satisfy this, a risk assessment
can be done on the implementation of the obfuscator and
the impact it can have on the network and system it is
connected with, and on the implementation of SDN if this will
be implemented as well. There is also a need for additional
resources to deploy this system, which does not need to be
significant as one server can be used for multiple PLCs and
has the same cost as other honeypots. The highest cost of the
deployment is that the system uses SDN, which might already
be available or be used for other purposes.

SDN can be used for purposes such as rerouting possible
adversaries that are hitting the obfuscator to a high-interactive
honeypot environment. This can be done by implementing
ML algorithms or other practices, such as the system de-
scribed in [50], that classify interactions with the obfuscator.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Systems for intrusion detection in ICS environments, such as
DEIDS [16] and Hamids [12], have already been developed
that could be implemented in this system. This further has to
be in line with other logging and monitoring systems deployed
and the operational process in the SOC. Implementation of this
has to be evaluated when the system is implemented.

Instead of deploying an actual system to function as an
obfuscator honeypot, the honeypot services can also be virtu-
alised by deploying bespoke Docker containers which can be
extended by dynamically spinning up a Docker instance based
on adversary behaviour. Doing this provides an individual
environment for each adversary within the network and allows
for flexibility in the deployment of the obfuscator. This avenue
also can lower the cost of deployment considerably. When
implementing the forwarder, it is important that an attacker
cannot distinguish between a reply from the obfuscator and a
reply from the actual PLC. Certain characteristics of the net-
work stack might have fingerprintable information regarding
the source system, such as the MAC address which we have
copied in addition to the IP address. This further ties in with
ensuring the obfuscator itself is not directly accessible by an
attacker. Otherwise, they might be able to identify the system
as an obfuscator. These issues can be more complex within an
operational environment compared to the testbed used in our
evaluation.

Within this paper, for evaluation purposes, we have de-
ployed a limited Ryu version of the obfuscator controller in
a bespoke environment combined with a Conpot honeypot.
This has been done to allow us to evaluate the concept of
obfuscating PLCs in a practical setting. Obfuscating a PLC
within a real-world environment would require developing
code specific to this environment and analysing the security
of the obfuscator code before deployment.

Finally, another avenue for deployment would be within
a moving target defence (MTD) environment. Implementing
MTD within an operational network would require more
evaluation and preparation but could be a potential avenue
to improve upon the obfuscator. Depending on what MTD
techniques that are going to be implemented assessments have
to be done if MTD would interfere with the availability or
any other aspect of the operations of the system. This should
include possible delays that are introduced or how techniques
such as IP hopping will be implemented.

VIII. CONCLUSION

This paper has introduced and evaluated the concept of
obfuscation within industrial control system environments. We
have shown that obfuscation is a valid approach to reduce
attackers’ appetite to interact with certain systems, as they
believe the systems are honeypots and that obfuscation can
successfully be deployed within an ICS environment. Our eval-
uation happened within a physical environment using a Pica8
Openflow SDN switch, a Ryu-based OpenFlow controller and
a Siemens S7 ET 200S PLC. We further strengthened this
from a theoretical approach via a Hidden Markov model. Even
if the obfuscation ultimately would fail, due to the attacker
identifying the system is real, they would have interacted

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

with the honeypot services. which would result in the SOC
being alerted of activity on the honeypot and actions could
be taken. If this device was Internet-connected, Shodan would
have identified the Conpot default signatures

During the practical evaluation, we ran several penetration
testing tools and networking tools. Our tests have shown that
our obfuscator successfully presents the deployed honeypot
and the Siemens PLC as the same system in a real envi-
ronment. The tools ran on the system show no differences
between them, and a Nmap scan on the PLC covers both the
PLC and the honeypot. When we investigated the network
traffic on Wireshark, we saw no connection originating from
the honeypot going to the attacker; all packets were sent from
the PLC with the correct MAC address. Both experts also
found no evidence of the second system that we obfuscated.
Furthermore, we have also shown that the obfuscator system
does not interfere with operations on the PLC, as all S7Tcomm
communications still report back as expected. Therefore, the
operations of the PLC itself have not been affected. The
physical environment we evaluated the system in also performs
better than the PLC itself. Any bottleneck would originate
from the PLC rather than the SDN switch, controller or
honeypot. This can change depending on the devices deployed
within the obfuscator system.

We believe that the obfuscator presented is feasible as
an additional security mechanism within a network to both
discourage attackers from interacting with a real PLC and in-
crease the chances of capturing attackers on the network. Even
if an attacker decides to interact with the system because it is a
honeypot, this should feed into the other security mechanisms
that are deployed. The interaction should warn the SOC, which
then can apply the proper mitigation. Consequently, the system
can also be connected with other security mechanisms, as the
data captured by the honeypot can be used in systems such as
an IDS.

Although our evaluation focused on a Conpot honeypot
combined with a Ryu OpenFlow controller, the system can be
deployed in many configurations. Whereas we have leveraged
SDN as a tool to enable traffic redirection, other systems are
equally valid. This also links back to the SDN technology
used, as this system can be deployed within P4, other SDN
environments or intent-based networking as well [39, 47].
Further research within these fields might show new ways of
enabling obfuscation to improve the obfuscator system.

ACKNOWLEDGMENTS

This research was supported by the Next Generation Con-
verged Digital Infrastructure project (EP/R004935/1) funded
by the Engineering and Physical Sciences Research Council
and British Telecommunications. For the purpose of open ac-
cess, the authors have applied a Creative Commons Attribution
(CC BY) license to any Accepted Manuscript version arising.

REFERENCES

[1] Irfan Ahmed et al. “Programmable Logic Controller
Forensics”. In: IEEE Secur Priv 15.6 (2017).

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Otis Alexander, Misha Belisle, and Jacob Steele.
“MITRE ATT&CK for Industrial Control Systems:
Design and Philosophy”. In: MITRE Corporation
(2020).

Adel Alshamrani et al. “A survey on advanced
persistent threats: Techniques, solutions, challenges,
and research opportunities”. In: IEEE Commun. Surv.
Tutor. 21.2 (2019).

Daniele Antonioli, Anand Agrawal, and

Nils Ole Tippenhauer. “Towards high-interaction
virtual ICS honeypots-in-a-box”. In: Proceedings of
the 2nd ACM Workshop on Cyber-Physical Systems
Security and Privacy. 2016, pp. 13-22.

Giuseppe Bernieri, Mauro Conti, and

Federica Pascucci. “Mimepot: a model-based honeypot
for industrial control networks”. In: 2019 ieee
international conference on systems, man and
cybernetics (smc). IEEE. 2019, pp. 433-438.

Ping Chen, Lieven Desmet, and Christophe Huygens.
“A study on advanced persistent threats”. In: IFIP
CMS. Springer. 2014.

Mauro Conti, Denis Donadel, and Federico Turrin. “A
survey on industrial control system testbeds and
datasets for security research”. In: IEEE
Communications Surveys & Tutorials 23.4 (2021),
pp. 2248-2294.

Paul Didier et al. “Converged Plantwide Ethernet
(CPwWE) Design and Implementation Guide”. In:
(2011).

Michael Dodson, Alastair R Beresford, and

Daniel R Thomas. “When will my PLC support
Mirai? The security economics of large-scale attacks
against Internet-connected ICS devices”. In: IEEE
eCrime. 2020.

Miao Du and Kun Wang. “An SDN-enabled
pseudo-honeypot strategy for distributed denial of
service attacks in industrial Internet of Things”. In:
IEEE Transactions on Industrial Informatics 16.1
(2019), pp. 648-657.

Joseph Gardiner et al. “Controller-in-the-Middle:
Attacks on Software Defined Networks in Industrial
Control Systems”. In: CPSIoTSec. 2021.

Hamid Reza Ghaeini and Nils Ole Tippenhauer.
“Hamids: Hierarchical monitoring intrusion detection
system for industrial control systems”. In: CPS-SPC.
2016.

Benjamin Green, Marina Krotofil, and Ali Abbasi.
“On the significance of process comprehension for
conducting targeted ICS attacks”. In: CPS-SPC (2017).
Benjamin Green et al. “{ICS} testbed tetris: Practical
building blocks towards a cyber security resource”. In:
USENIX CSET. 2020.

Benjamin Green et al. “PCaaD: Towards automated
determination and exploitation of industrial systems”.
In: Comput Secur 110 (2021).

Haoran Gu et al. “DEIDS: a novel intrusion detection
system for industrial control systems”. In: Neural.
Comput. Appl. (2022).

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

[17] Thorsten Holz and Frederic Raynal. “Detecting
honeypots and other suspicious environments”. In:
IEEE SMC. 2005.

[18] Douglas W. Hubbard and Richard Seiersen. How To
Measure Anything in Cybersecurity Risk. John Wiley
& Sons, 2016.

[19] Forough Ja’fari et al. “An intelligent botnet blocking
approach in software defined networks using
honeypots”. In: J Ambient Intell Humaniz Comput.
12.2 (2021).

[20] Peng Jie and Liu Li. “Industrial control system
security”. In: IHMSC 2 (2011).

[21] Mohammad Taha Khan et al. “An empirical analysis
of the commercial vpn ecosystem”. In: IMC. 2018.

[22] Neal Krawetz. “Anti-honeypot technology”. In: IEEE
Secur Priv 2.1 (2004).

[23] Sukwha Kyung et al. “HoneyProxy: Design and
implementation of next-generation honeynet via
SDN”. In: IEEE CNS. 2017.

[24] Roberto di Lallo et al. “Leveraging SDN to monitor
critical infrastructure networks in a smarter way”. In:
IFIP/IEEE IM. 1EEE. 2017.

[25] Robert Larkin, Juan Lopez, and Jonathan Butts.
“Evaluation of traditional security solutions in the
SCADA environment.” In: ICIW (2012).

[26] Heiner Lasi et al. “Industry 4.0”. In: Bus. Inf. Syst.
Eng. 6.4 (2014).

[27] Efrén Lépez-Morales et al. “Honeyplc: A
next-generation honeypot for industrial control
systems”. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications
Security. 2020, pp. 279-291.

[28] Peter Loshin. Practical anonymity: Hiding in plain
sight online. Newnes, 2013.

[29] Sam Maesschalck, Vasileios Giotsas, and
Nicholas Race. “World Wide ICS Honeypots: A Study
into the Deployment of Conpot Honeypots™. In: ICSS
Workshop. 2021.

[30] Sam Maesschalck et al. “Don’t get stung, cover your
ICS in honey: How do honeypots fit within industrial
control system security”. In: Comput Secur 114
(2022).

[31] Stephen McLaughlin et al. “The Cybersecurity
Landscape in Industrial Control Systems”. In:
Proceedings of the IEEE 104.5 (2016).

[32] Thomas Miller et al. “Looking back to look forward:
Lessons learnt from cyber-attacks on Industrial Control
Systems”. In: Int. J. Crit. Infrastruct. Prot 35 (2021).

[33] MITRE. ATT&CK for Industrial Control Systems.
2020. URL: https://bit.ly/3MvQbXo.

[34] Nitin Naik et al. “Honeypots that bite back: A fuzzy
technique for identifying and inhibiting fingerprinting
attacks on low interaction honeypots”. In:
FUZZ-IEEE. 2018.

[35] Philip O’Kane, Sakir Sezer, and Kieran McLaughlin.
“Obfuscation: The hidden malware”. In: IEEE Secur
Priv 9.5 (2011).

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13

PLC-Obfuscator. Obfuscator. 2022. URL:
https://gitfront.io/r/user-
2147465/EsugqX3pMaWD/obfsucator/.

Steve Ranger. Security surprise: Four zero-days
spotted in attacks on researchers’ fake networks. 2020.
URL: https://zd.net/3CYBXLC.

Sandeep Gogineni Ravindrababu and Jim Alves-Foss.
“Automated Detection of Configured SDN Security
Policies for ICS Networks”. In: ICSS Workshop. 2020.
Mohammad Riftadi and Fernando Kuipers. “P4i/o:
Intent-based networking with p4”. In: IEEE NetSoft.
IEEE. 2019.

Neil C Rowe, Binh T Duong, and E John Custy.
“Fake honeypots: A defensive tactic for cyberspace”.
In: IEEE IWIA. 2006.

Siemens. IPv6 in automation technology. 2019. URL:
https://sie.ag/3seDO97.

Joseph Slowik. “Evolution of ICS attacks and the
prospects for future disruptive events”. In: Threat
Intelligence Centre Dragos Inc (2019).

George Stergiopoulos, Dimitris A Gritzalis, and
Evangelos Limnaios. “Cyber-attacks on the Oil & Gas
sector: A survey on incident assessment and attack
patterns”. In: IEEE Access 8 (2020).

The Honeynet Project. Know Your Enemy.
Addison-Wesley, 2001.

FUJITA Tomonori. “Introduction to ryu sdn
framework”. In: Open Networking Summit (2013).
Akihiro Tsuchiya et al. “Software defined networking
firewall for industry 4.0 manufacturing systems”. In: J.
Ind. Eng. Manag. 11.2 (2018).

Yoshiharu Tsuzaki and Yasuo Okabe. “Reactive
configuration updating for intent-based networking”.
In: IEEE ICOIN. 2017.

Joni Uitto et al. “A survey on anti-honeypot and
anti-introspection methods”. In: WorldCIST. Springer.
2017.

Nikolaos Vakakis et al. “Cybersecurity in SMEs: The
smart-home/office use case”. In: IEEE CAMAD. 2019.
He Wang and Bin Wu. “SDN-based hybrid honeypot
for attack capture”. In: 2019 IEEE 3rd Information
Technology, Networking, Electronic and Automation
Control Conference (ITNEC). IEEE. 2019,

pp. 1602-1606.

Hui Xu et al. “Layered obfuscation: a taxonomy of
software obfuscation techniques for layered security”.
In: Cybersecurity 3.1 (2020).

Tarun Yadav and Arvind Mallari Rao. “Technical
aspects of cyber kill chain”. In: SSCC. Springer. 2015.
Jianzhou You et al. “Honeyvp: A cost-effective hybrid
honeypot architecture for industrial control systems”.
In: ICC 2021-IEEE International Conference on
Communications. IEEE. 2021, pp. 1-6.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3361915

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

Sam Maesschalck

is currently with RHEA Group where he

is the lead security trainer for the European Space
Agency’s new cybersecurity centre of excellence.
Aside from this role, he is also a researcher

at the Lancaster University School of Computing
and Communications. He has obtained a PhD

in Computer Science from Lancaster University.
His research interests include honeypots,

critical infrastructure protection and education.

Will Fantom is currently undertaking a

PhD in Computer Science at Lancaster University.
His research focuses on the deployment and
management life-cycles of software-driven network
infrastructures. This focus on network DevOps

has resulted in research interests around network
emulation and unikernel-driven telemetry systems.

Vasileios

Giotsas is a lecturer at Lancaster University. He
received his PhD from University College London
(UCL), and he worked as a postdoctoral researcher
at UCSD Center for Advanced Internet Data
Analysis (CAIDA) and TU Berlin. His research
focuses on network measurements, the analysis

of the routing system, and the development

of novel risk assessment and mitigation techniques.

Nicholas Race is Professor of Networked Systems
at Lancaster University. His research focuses on
developing future networking services built upon
Software Defined Networks and Network Functions
Virtualisation. This includes new techniques

to enhance the detection and remediation of
network anomalies. He leads the EPSRC Prosperity
Partnership “Next-Generation Converged Digital
Infrastructure” (NG-CDI) with BT, developing

a future network that is “autonomic”, with the
capability to react and reconfigure infrastructure
accordingly with minimal human intervention. He is also the lead at
Lancaster of the EPSRC Prosperity Partnership “Future Personalised
Object-Based Media Experiences Delivered at Scale Anywhere” with the
BBC, which is building an intelligent network compute platform enabling
the efficient utilisation of network compute and delivery resources at scale.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

