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Abstract—This paper investigates the radio-frequency-energy-harvesting-powered (RF-EH-powered) wireless Industrial Internet of
Things (IIoT) networks, where multiple sensor nodes (SNs) are first powered by a wireless power station (WPS), and then collect
status updates from the industrial environment and finally transmit the collected data to the monitor with their harvested energy. To
enhance the timeliness of data, age of information (AoI) is used as a metric to optimize the system. Particularly, an expected sum AoI
(ESA) minimization problem is formulated by optimizing the power adjustment policy for the SNs under multiple practical constraints,
including the EH, the minimal signal-to-noise-plus-interference ratio (SINR) and the battery capacity constraints. To solve the
non-convex problem with no explicit AoI expression, we transform it into a Markov decision problem (MDP) with continuous state space
and action space. Then, inspired by the Soft Actor-Critic (SAC) framework in deep reinforcement learning, a SAC-based age-aware
power adjustment (SAPA) method is proposed by modeling the power adjustment as a stochastic strategy. Furthermore, to reduce the
communication overhead of SAPA, a multi-agent version of SAPA, i.e., MSAPA, is proposed, with which each SN is able to adjust its
transmit power based on its local observations. The communication overhead of SAPA and MSAPA is also analyzed theoretically.
Simulation results show that the proposed SAPA and MSAPA converge well with different numbers of SNs. It is also shown that the
ESA achieved by the proposed SAPA and MSAPA is lower than that achieved by the baseline methods.

Index Terms—Energy Harvesting (EH), power adjustment, Age of Information (AoI), Soft actor critic (SAC), multiple agent.
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1 INTRODUCTION

1.1 Background

W ITH its strong capacity in terms of sensing and trans-
mission, the industrial Internet of Things (IIoT) is

regarded as the key technology to facilitate Industry 4.0 [1],
[2], [3], where numerous sensors, controllers, execution units
and monitors are interconnected to establish smart systems
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for monitoring, collecting, exchanging and analyzing data
for intelligent control. Conventionally, network latency and
throughput were adopted as important performance indices
to design IIoT systems for applications. Recently, informa-
tion timeliness has become a novel and very critical metric
for the newly emerged status update applications, including
hazard monitoring, autonomous driving, and AR services,
because outdated information may result in serious impacts,
such as production accidents and economic loss or even
casualties. In order to enhance the information timeliness
for IIoT, age of information (AoI), which is defined as the
time interval from the time a data packet is generated to
the current time, has been presented and widely studied in
various systems network scenarios [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15].

Meanwhile, in many IIoT systems, to effectively monitor
environmental indicators, including temperature, humidity,
and hazardous substance content, massive sensor nodes
(SNs) equipped with small batteries are deployed. Since
powering the SNs by wire or batteries often requires a
relatively high deployment and maintenance cost, wireless
energy harvesting (EH), which enables SNs to harvest en-
ergy from radio frequency (RF) signals, has been widely
regarded as a promising solution to power low-power SNs
wirelessly, due to its advantages in controllability [16], [17],
[18], [19].

1.2 Related work
In order to simultaneously release the energy supply is-
sue and also meet the information timeless demands, AoI-
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oriented RF-EH-powered wireless network design has at-
tracted increasing attention [20], [21], [22], [23], [24], [25],
[26], [27], where RF-EH is employed to wirelessly charge
the low-power wireless sensors and the AoI is adopted
as a performance metric for deigning the IIoT. In [20], the
average AoI of the RF-EH network was analyzed and mini-
mized by optimizing the capacitor’s size of SNs. In [21], the
age-energy region and age-energy function were explored,
where the average AoI of the single-SN RF-EH network was
minimized. In [22], the urgency-aware AoI was minimized
by optimizing transmission policy under the constraint of
energy causality. In [23], the long-term average AoI was
minimized by optimizing the online sampling policy. In [24],
the average AoI and the peak AoI (PAoI) of the RF-EH-
powered network were analyzed, where the relay and SN
transmit in a cooperative way. In [25], the AoI-energy utility
of the hybrid access point IoT device pair was maximized in
RF-EH networks. In [26], the bounds of the average AoI of
a multi-user cognitive radio RF-EH-powered network were
analyzed. In [27], the average AoI was minimized in the
unmanned aerial vehicle (UAV)-assisted multi-SN wireless
powered IoT system.

It is noticed that all aforementioned works optimized
the system’s AoI performance by using traditional mathe-
matical methods such as convex optimization theory, game
theory, and heuristic algorithms. Since in most network op-
timization problems, multiple variables are mathematically
coupled together, making the problems non-convex and dif-
ficult to solve, traditional convex optimization methods thus
cannot be used directly to get good optimized solutions.
Another challenge is that the explicit expressions of AoI are
usually hard to model, which further enhances the difficulty
of solving the optimization problem.

Therefore, recently, reinforcement learning (RL), as
sparking instances of artificial intelligence, has been intro-
duced to optimally design AoI-oriented RF-EH-power IoT
networks, see e.g., [28], [29], [30], [31], [32]. In [28], the
long-term on-demand AoI on SNs in a cache-enabled RF-
EH-powered network was minimized by optimizing the
caching and transmitting policy based on a Q-learning
method. In [29], the average AoI of SNs in a UAV-assisted
RF-EH-powered network was minimized by optimizing the
trajectory of the UAV and the scheduling of SNs based on
a deep Q-network (DQN) method. In [30], the average AoI
of SNs and energy consumption of the UAV-assisted RF-EH-
powered network were jointly minimized by optimizing the
trajectory of multiple UAVs with a multi-agent DQN-based
method. In [31], the long-term average weighted sum of AoI
in a multiple-SN RF-EH-powered network was minimized
by optimizing the scheduling policy with a DQN-based
method. In [32], the average AoI in a multiple-SN RF-
EH-powered network was minimized via optimizing the
SNs’ selection by a distributed Q-Learning method without
knowing the battery and channel state of SNs.

1.3 Motivations and Contributions

In this paper, we study the AoI-aware RF-EH-powered
networks with multiple SNs to simultaneously release the
transmission and timeliness issues for IIoT, where multiple
SNs are first powered by a WPS, then collect status updates

from the industrial environment and finally transmit the
collected data to the monitor with their harvested energy
from the RF signals. Different from previous works [28],
[29], [30], [31], [32], which mainly studied the optimization
of the scheduling of SNs, this paper focuses on improving
the AoI performance of the system via power adjustment
of SNs because in practical industrial monitoring scenarios,
scheduling SNs in the time domain requires high synchro-
nization among SNs, which is hard to realize [33]. Therefore,
in this paper, all SNs are allowed to share the same spec-
trum resource and transmit their collected status updates
simultaneously rather than in a TDMA manner. By doing so,
strict synchronization requirement among SNs is avoided,
but the interference among SNs cannot be neglected. Thus,
in order to make the simultaneous transmission of SNs
more efficient, we optimize the power adjustment of SNs
to coordinate the interference among SNs and enable them
to utilize their harvested energy more efficiently. As a result,
the system AoI performance is further improved. The main
contributions of this paper are summarized as follows.

1) In order to improve the freshness of information in
an RF-EH-powered network with multiple SNs, the
expected sum AoI (ESA) of the system is analyzed
and modeled, and then an optimization problem is
formulated to minimize the ESA via optimizing the
power adjustment at SNs, where the EH, the minimal
signal-to-noise-plus-interference ratio (SINR) and the
battery constraints are jointly taken into account.
Since all SNs share the same spectrum resource to
transmit status updates simultaneously, the interfer-
ence among SNs is also taken into account.

2) Due to no explicit expression of the ESA and the
formulated problem being non-convex, we transform
it into a Markov Decision Process (MDP) problem.
Moreover, as the formulated power adjustment prob-
lem is with continuous action space, we develop
a Soft Actor-Critic (SAC) based Age-aware power
adjustment (SAPA) method to optimize the power
adjustment policy.

3) To reduce the communication overhead of the net-
work, we further design a multi-agent version of
SAPA (MSAPA), where SNs adjust the transmitting
power according to the local observation. The com-
munication overheads of SAPA and MSAPA are also
analyzed theoretically. It shows that MSAPA is with
no interaction overhead when deployed.

4) Simulation results demonstrate the convergence of
the proposed SAPA and MSAPA. It also shows that
the ESA achieved by SAPA and MSAPA is lower
than that achieved by conventional DRL methods.
Additionally, the effects of the sensing probability
of SNs and the SINR threshold on the system ESA
are also discussed, which indicates that MSAPA is
more suitable for the network with a higher SINR
threshold to achieve a better AoI performance.

The rest of the paper is organized as follows. Section
II describes the network model and the ESA minimization
problem is formulated. In Section III, the problem is trans-
formed into an MDP. In Section IV, SAPA is proposed. In
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Section V, the multi-agent version of SAPA, i.e., MSAPA,
is designed. Section VI provides the simulation results and
Section VII summarizes the paper.

2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

2.1 Network Model
We consider an RF-EH-powered monitoring system for IIoT,
as shown in Fig. 1, which consists of a WPS, a monitor, and
a set of SNs denoted as M = {1, 2, . . . ,M}. In order to
reduce the cost of manual battery replacement in industrial
scenarios, the WPS is deployed to charge the SNs wirelessly
by transmitting RF signals. The SNs are equipped with EH
circuit modules, so they are capable of harvesting energy
from the received RF signals and then use the harvested
energy to upload the time-sensitive data collected from
the industrial environment to the monitor. Without loss of
generality, the time is discretized into small blocks with a
small duration of τ . The block fading channel model is
considered, so the channel gain is regarded unchanged in
each τ , but it may change from one block to the next. Let
hi(t) and gi(t) denote the downlink channel gain of the link
from the WPS to SN i and the uplink channel gain of the link
from SN i to the monitor in block t, respectively. As the links
are spatially separated, their channel gains are regarded to
be independent and identically distributed (i.i.d.).

To realize intelligent industrial monitoring, the monitor
is integrated with a computing server, so it not only moni-
tors the industrial environment but is also able to enhance
the monitoring through its intelligent computing unit. Each
SN is equipped with a battery with a capacity ofBmax joules
and it has an energy-receiving antenna and an information-
transmitting antenna. In order to avoid interference be-
tween the power signals and information signals, the energy
transfer and the information transfer are performed over
orthogonal frequency bands.Moreover, all SNs are allowed
to transmit status update packets to the monitor over the
same frequency band at the same time. Thus, the inter-
user interference cannot be neglected. To enhance the trans-
mission of data, power adjustment among SNs should be
employed. For clarity, the time frame structure is illustrated
in Fig. 2, where each SN is able to harvest energy from
WPS and transmit the sensed data to the monitor via the
uplink in the same block. Each time interval is divided
into two parts. The first part takes up a relatively very
short time and is used for all SNs to send the feedback on
their local state information in sequence for determining the
power adjustment. The second part takes up a relatively
much longer time and is used for SNs to transmit sensed
data. More specifically, in the first part, time is divided into
many tiny fixed time slots based on the number of SNs,
with only one SN transmitting its state information per time
slot. Due to the orthogonal channels, state information can
be transmitted correctly without interference. In the second
part, the power adjustment methods proposed in this paper
are adopted to enhance the SN’s transmission of the sensed
data1.

1. Since the first part of time used for local states feedback by SNs
is much smaller than the second part of time used for sensed data
transmission, the second part is roughly approximated by τ .

Similar to [34], packets arrive at SNs according to the
Bernoulli distribution with probability p, based on the moni-
tored industrial environment. More specifically, for each SN,
a state update packet is arrived with a probability p at the
beginning of each block. The packets are buffered, so the old
one in the buffer will be replaced with the new one once a
new packet is arrived.

To charge the SNs, the WPS broadcasts RF signals to
them continuously. To be practical, the piecewise non-linear
EH model in [25] is adopted to characterize the EH opera-
tion. Denoting the transmit power of the WPS as PW, the
energy harvested by SN i in block t is given by

EEH
i (t) = min{ητPWhi(t), E

EH
max}, (1)

where η ∈ (0, 1) is the EH efficiency coefficient and EEH
max is

the maximum energy harvested in one block based on the
EH circuit of SNs. hi(t) is given by hi(t) = |ϕi(t)|2LDL

i ,
where ϕi(t) is the small-scale fading gain and LDL

i =dW,i
−α

is the path-loss coefficient between the WPS and SN i with
dW,i being the distance between the WPS and SN i and α
being the pass-loss factor.

Denoting xi as the signal transmitted by SN i with xi
being an i.i.d. random variable with zero mean and unit
variance, the signal received by the monitor in block t is
expressed as y =

∑M
i=1

√
gi(t)Pi(t)xi + n, where Pi(t) is

the real transmission power at SN i in block t and n is the
additive white Gaussian noise (AWGN) at the monitor with
variance σ2. gi(t) is given by gi(t) = |υi(t)|2LUL

i , where
υi(t) is the small-scale fading gain and LUL

i = di,M
−α is the

path-loss coefficient between SN i and the monitor. Thus,
the received SINR at the monitor is

γi =
gi(t)Pi(t)∑

j 6=i gj(t)Pj(t) + σ2
. (2)

To successfully decode xi at the monitor, it should satisfy
that

γi ≥ γth, (3)

where γth is the minimal required received SINR for suc-
cessfully decoding the data at the monitor.

Denote the battery level of SN i in block t as Bi(t), and
SN’s maximum permitted transmit power as Pmax. The real
average transmit power of SN i in block t, i.e., Pi(t), satisfies
that

Pi(t) ≤ min{Bi(t)/τ, Pmax}. (4)

Denoting EC
i (t) as the energy comsumed in block t, we

have that EC
i (t) = τPi(t). Since the SN i is equipped with

a battery of limited capacity Bmax, after the EH operation
and the data transmission in block t, the remaining energy
in the battery at SN i at the beginning of block (t+ 1) is

Bi(t+ 1) = min{Bi(t) + EEH
i (t)− EC

i (t), Bmax}. (5)

2.2 AoI Model
In industrial applications, once the system AoI reaches the
maximum tolerant value, it means that no new data has
been received for a long time and the measurement associ-
ated with the monitoring becomes stale, so further collecting
and counting make no difference [28], [29], [31]. Therefore,
denoting the maximum tolerant value of the AoI with Amax,
the AoI at the SNs and that at the monitor is discussed as
follows.
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Fig. 1: The network model of the RF-EH-powered IIoT system.
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Fig. 2: The illustration of the time frame structure of the
system.

2.2.1 AoI at SNs

In block t, the AoI of SN i will be reset to 1 if a new data
packet arrives at SN; otherwise, it will be increased by one
unit. Denoting ASi (t) as the AoI of SN i in block t, one have
that

ASi (t) =

{
1, if ri(t) = 1,
min(ASi (t− 1) + 1, Amax), otherwise,

(6)

with ri(t) ∈ {0, 1} being the data arriving indicator, where
ri(t) = 1 means that a new data packet arrives at SN i and
ri(t) = 0 means that it doesn’t.

2.2.2 AoI at the monitor

In block t, if SN i successfully transmits data to the monitor,
the AoI of the data associated with SN i at the monitor will
be decreased to be the value of the AoI of the newly received
one. Otherwise, the AoI of the data associated with SN i at
the monitor will be increased by one unit. At the end of
block t, if the monitor successfully receives data from SNs,
it will instantly broadcast an acknowledge (ACK) feedback
message to all SNs. Denoting ADi (t) as the AoI of SN i at the
monitor in block t, SN i can easily acquire its ADi (t) from
the feedback message by a simple counting. Therefore, one
have that

ADi (t) =

{
ASi (t), if acki(t) = 1,
min(ADi (t− 1) + 1, Amax), otherwise,

(7)

红色置底

AoI演变

( )D
iA t

( )S
iA tAoI

t
0 1 2 3 4 5 6 7 8 9 10 11

Monitor successfully 
decodes the transmitted 

data from SN i
Data is collected

at SN i

Fig. 3: AoI evolution of SN i.

with acki(t) ∈ {0, 1} being the feedback ACK indicator,
where acki(t) = 1 means that the SN i successfully trans-
mits the data packet to the monitor and constraint (3) is
satisfied and acki(t) = 0 means that it doesn’t.

For clarity, take the AoI evolution of SN i as an example,
which is illustrated in Fig. 3. For the infinite horizon obser-
vation, denoting ∆̄ as the long-term ESA of the system, one
have that

∆̄ = E
[

lim
T→∞

1

T

∑T

t=1

∑M

i=1
ωiA

D
i (t)

∣∣∣AD(0)

]
, (8)

where and E[·] denotes the symbol that takes the expec-
tation, AD(0) = (AD0 (0), AD1 (0), . . . , ADM (0)) is the vector
representing the initial AoI at the monitor, and ωi denotes
the weight factor of SN i. The larger the value of ωi, the
more important the timeliness of SN i in the network.

2.3 Problem Formulation

One can observe in Fig. 3 that the AoI is decreased when
new data is transmitted successfully. That is, the ESA is able
to be reduced by efficient data transmission. However, due
to the interference among SNs and the uncertainty of battery
level, it is difficult to successfully transmit all data from SNs
in one block. Therefore, to make the data transmission more
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efficient and further enhance data timeliness, an efficient
power adjustment policy is required. As a result, we for-
mulate the corresponding optimization problem OP , which
is expressed by

OP : min
π

∆̄

s.t. (1), (3), (4), (5), (6) and (7),

π = (P(1),P(2), . . . ,P(T )),

(9)

where π is the power adjustment policy and P(t) =
(P0(t), P1(t), . . . , PM (t)) is the power adjustment vector of
SNs in block t.

Nevertheless, it is difficult to directly solve problemOP :
first, the objective function is neither convex nor concave
w.r.t. π; second, there is no explicit expression of the ESA
w.r.t. π; third, the monitor and SNs do not know the prior
information about the channel quality and cannot know the
future channel state, so it is hard to obtain the smallest
ESA through the single-block power adjustment. Therefore,
benefiting from DRL’s powerful ability on solving complex
non-convex problems, we develop a DRL-based method to
solve OP efficiently.

3 MDP FORMULATION

Before solving problem OP with DRL, we first reformulate
OP as an MDP with the goal of minimizing the long-
term average cost, which is regarded as the system’s ESA.
Furthermore, the MDP is composed of five components and
is defined as follows.

State space: To effectively characterize the RF-EH-
powered monitoring system, we take the set containing
all SN states as the system state. We denote S, s(t) and
si(t) as the system state space, the system state and the
state of SN i in block t. Therefore, we have s(t) =
(s1(t), s2(t), . . . , sM (t)). For the real-time monitoring, we
use the AoI of SN i at the monitor, the battery level, and
the channel gain between SN i and the monitor as the state
of SN i. That is, the state of SN i in block t can be expressed
as si(t) = (ADi (t), Bi(t), gi(t)). It should be noted that the
state space S = S1 × S2 × . . .× SM is infinite because Bi(t)
and gi(t) are continuous variables.

Action space: To solve OP , let the SNs’ transmit power
be the action of SN i. Therefore, let a(t) denote the joint
action, which consists of the actions of all SNs, i.e., a(t) =
(P1(t), P2(t), . . . , PM (t)). Let Ai be the action space of SN i,
so the joint action space is given by A = A1×A2× . . .×AM .
It should also be noticed that the action space is infinite
since the transmit power of SN is continuous. Besides, in
order to satisfy the constraint (4), the transmit power of
SNs should satisfy that Pi(t) = min(Bi(t)/τ, ai(t)),∀i. For
implementation, SN i will not send data packets to the
monitor in block t if Pi(t) = 0. Otherwise, SN i will send
status update with power Pi(t).

Transition Probability: The system transition proba-
bility is defined as the probability of transition from state
s(t) to s(t + 1) after taking joint action a(t), which is
P(s(t+ 1) |s(t),a(t) ).

Cost function: To minimized the long-term ∆̄, we use
the sum AoI of SNs in block t obtained by taking action a(t)

from state s(t) to state s(t+ 1) as the cost function, which is
expressed by

C(t) = C(s(t+ 1), s(t),a(t)) =
∑M

i=1
ωiA

D
i (t+ 1). (10)

Discount factor: Let’s denote γ ∈ (0, 1) as the discount
factor and s(0) as the initial state, the long-term discounted
cost can be expressed as

Vπ(s(0)) = Eπ[
∑

t
γt−1C(s(t+ 1), s(t),a(t)) |s(0) ], (11)

where Eπ[·] is the expectation of the state under the power
adjustment policy π.

The optimal power adjustment policy can be expressed
as

π∗ = arg min
π
Vπ(s(0)). (12)

4 THE PROPOSED SAC-BASED AGE-AWARE
POWER ADJUSTMENT METHOD

DRL can be used to solve problems with multi-dimensional
continuous state space. However, for the problems with con-
tinuous high-dimensional action space, value-based DRL
methods such as DQN are intractable. Although some con-
ventional policy-based DRL methods such as DDPG can
generate multidimensional continuous actions, they lack
action exploration, resulting in insufficient policy perfor-
mance. In view of the fact that SAC [35], [36] is capable
of solving the problem with high-dimensional continuous
action space by modeling and optimizing a stochastic policy
and can enhance exploration by maximizing the entropy of
the policy, SAPA is designed to solve problem OP in this
section.

4.1 The framework of SAC
The goal of SAC is to minimize the entropy-regularized
cumulative cost, which is expressed as

π∗ = arg min
π

[
∑

t
γt−1(C(s(t),a(t))

− αH(π(·|s(t))) |s(0)) ],
(13)

where α is the regularization coefficient and H(π(·|s(t))) is
the entropy of the action at s(t) under policy π. The soft
Q-function and the soft value function of SAC are given by


Qsoft(s(t),a(t)) =Eπ[

∑
t
(V t

− αγt−1H(π(· | s(t))))],
Vsoft(s(t)) =Ea(t)∼π(·|s(t))[Q(s(t),a(t))

+ α logπ(a(t) | s(t))],

(14)

where V t =
∑
k γ

t(C(t)) is the accumulated cost and
Q(s(t),a(t)) = C(t) + γE [V (s(t+ 1))] is the Q-function.

Then, the policy is improved by minimizing the
Kullback-Leibler (KL) divergence [35], i.e.,

πnew = arg min
π′∈π

DKL

(
π′(· | s(t))‖

exp
(
1
αQ(s(t)), ·)

)
Z(s(t)))

)
,

(15)
where πnew is the improved policy, DKL (·‖·) is the
KL divergence, π′ is the old policy, and Z(s(t))) =∑

a exp(Q(s(t)), ·)) is the normalization variable.
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4.2 The presented SAPA

Based on the framework of SAC, SAPA has 5 networks,
including a stochastic policy network πθ , 2 soft Q-
networks {Qφ1, Qφ2} and their corresponding target net-
works {Qφ1′ , Qφ2′}, constructed by artificial neural net-
works (ANN) with the parameters of θ, {φ1,φ2}, and
{φ1′,φ2′}, respectively. The double Q-learning mechanism
and target network mechanism are adopted to improve the
stability of training. In order to increase the training effi-
ciency, the experience reply mechanism is adopted, where
the memory replay buffer D is built to store historical
experience tuples < s(t),a(t), C(t), s(t+ 1) >. Moreover, in
order to make the soft Q-value networks estimate accurately,
the loss function JQ(φ) of the soft Bellman residual should
be minimized, i.e.,

JQ(φ) =Ek∈I[
1

2
(Qφ(s(k),a(k))− C(k)

−γVφ′(s(k + 1)))2],
(16)

where I is the mini-batch I sampled from D,
Qφ(s(k),a(k)) = max(Qφ1((s(k),a(k)), Qφ2((s(k),a(k)))
and Vφ′(s(k+ 1)) = max

j∈{1,2}
Ea(k+1)∼πθ

[Qφ′
j
(s(k+ 1),a(k+

1) − α logπθ(a(k + 1) | s(k + 1))]. The policy network is
improved according to (15), which is

Jπ(θ) =Ek∈I[Ea∼πθ
[α logπθ(a | s(k))

+Qφ(s(k),a)]].
(17)

Thus, the policy network and soft Q-network are up-
dated by

{
φi ← φi − λC∇φi

J(φi), i ∈ {1, 2}, (18a)
θ ← θ − λA∇θJ(θ), (18b)

where λC and λA are the update step size of the online soft
Q-networks and policy network. Additionally, SAPA also
updates the regularization coefficient α by minimizing the
loss function, which is given by

J(α) = Ek∈I[Ea∼πθ
[− α logπθ(a | s(k))− αK]]. (19)

where K is the target desired entropy.
The update of the target soft Q-network Qφi

′ adopt the
soft update method, i.e.,

φ′i ← τCφi + (1− τC)φ′i, i ∈ {1, 2}, (20)

where 0 < τA � 1 and 0 < τC � 1 are the mixing weights
of the online network and the target network, respectively.

For clarity, the proposed SAPA is summarized in Algo-
rithm 1, whose framework is illustrated in Fig. 4. SAPA’s
training is deployed in the monitor, where it aggregates
the local states from SNs, and then broadcasts the action
to each SN. Denoting LS bits as the data size of local
state of each SN, LA as the data size of transmitting
power, Ttotal = MAX_EPISODE∗MAX_STEP as the total
training time step, the total communication overhead of
SAPA in the training stage is Ttotal(MLS + LA) bits. In
the implementation stage, the communication overhead of
SAPA remains unchanged.
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Fig. 4: The framework of the proposed SAPA.

Algorithm 1: The Pseudocode of SAPA

1 Initialize policy network and 2 soft Q-networks.
2 Initialize target soft Q-networks.
3 Initialize the replay memory D, the update step size
λC and λA, the mixing weights τA and τC , the
maximum episodes MAX_EPISODE, the
maximum steps in each episode MAX_STEP, and
the target network update interval TInterval.

4 for episode = 1 to MAX_EPISODE do
5 for step t = 1 to MAX_STEP do
6 The monitor selects action

a(t)=µ(s(t) |θ ) +Nt according to the joint
state s(t) and exploration noise and
broadcasts it to SNs. Each SN adopts
transmit power according to a(t) and
Pi(t) = min(Bi(t)/τ, ai(t)),∀i. Each SN
obtains the C(t) and next state s(t+ 1)
through the interaction of SNs and the
monitor. Store tuple
< s(t),a(t), C(t), s(t+ 1) > in the replay
buffer D.

7 Randomly sample a mini-batch I from the
replay buffer D.

8 Calculate the MSE loss of the soft Q-network
by (16) and update its weights by (18a).

9 Calculate the policy gradient by (17) and
update its weight parameters by (18b) to
update.

10 Update the target networks every TInterval
steps according to (20).

11 end
12 end

5 MULTI-AGENT VERSION OF SAPA

The presented SAPA is able to enhance the system’s AoI
performance if the RL model is well-trained. Nevertheless,
SAPA always requires the monitor to collect all SNs’ states,
which causes communication overhead in IIoT. To reduce
the communication overhead, we design a multi-agent ver-
sion of SAPA (MSAPA) by treating each SN as an agent,
where each SN is able to adjust the power based on its local
state without information interaction required after training.

Similar to SAPA, MSAPA also includes 5 networks, i.e., a
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Fig. 5: The framework of the proposed MSAPA.

local stochastic policy network πθ , 2 central soft Q-networks
{Qφ1, Qφ2} for double soft Q-learning and their corre-
sponding target networks {Qφ1′ , Qφ2′}, constructed by the
parameters of θ, {φ1,φ2}, and {φ1′,φ2′}, respectively.
Different from SAPA, the local policy network only outputs
the action for one SN and all SNs share the same policy
network but are distinguished by their identity vectors,
i.e., the one-hot vectors determined by their id. Specifically,
the local policy generates the local action ai(t) of SN i by
observing the local state si(t) and the identity vector idi,
where ai(t) = πθ(si(t), idi). The central soft Q network
evaluates the global action-state pair (s(t),a(t)). For the
central soft Q-network, the loss function is

JQ(φ) =Ek∈I[
1

2
(Qφ(s(k),a(k))− C(k)

− γ ∗ min
j∈{1,2}

Qtarg
φ′

j
)2],

(21)

where

Qtarg
φ′

j
=Eai∼πθ

[Qφ′
j
(s(k + 1),a)|a={ai}

− α
∑

i∈M
logπθ(ai | (si(k + 1), idi))].

(22)

For the local stochastic policy network, it can be improved
by

J(θ) =Ek∈I[α
∑

i∈M
Eai∼πθ

[logπ (ai(t) | si(k), idi)

+ max
j∈{1,2}

Qφ′
j

(s(k),a) ]].
(23)

Similarly to (19), the regularization coefficient α of MSAPA
is also updated by minimizing the loss function, which is

J(α) =Ek∈I[− α
∑

i∈M
(Eai∼πθ

[ logπθ(ai | (si(k)), idi)))

− αK]].
(24)

By taking one step update, the local stochastic policy and
the soft Q network are updated in a similar way to (18a)
and (18b) and the target networks are updated similarly to
(20).

For clarity, the proposed SAPA is summarized in Al-
gorithm 2, whose framework is illustrated in Fig. 5. Since
SNs have no stable energy supply, all the agents’ training is
deployed in a monitor similar to SAPA. Therefore, the total
communication overhead of MSAPA in the training stage
is also Ttotal(MLS + LA) bits. In the implement stage, the

Algorithm 2: The Pseudocode of MSAPA

1 Initialize local policy network and 2 central soft-Q
networks.

2 Initialize target soft Q-networks.
3 Initialize the replay memory D, the update step size
λC and λA, the mixing weights τA and τC , the
maximum episodes MAX_EPISODE, the
maximum steps in each episode MAX_STEP, and
the target network update interval TInterval.

4 for eposide = 1 to MAX_EPISODE do
5 for step t = 1 to MAX_STEP do
6 for each ∀i ∈M do
7 Select action ai(t) = µi(si(t), idi|θi ) +Ni

according to the local state si(t) and
exploration noise Ni. SN i takes the
transmit power according to ai(t) with
Pi(t) = min(Bi(t)/τ, ai(t)), and obtains
C(t) and next state si(t+ 1). Store tuple
< si(t),ai(t), C(t), si(t+ 1), idi > in the
replay buffer D.

8 end
9 Randomly sample a mini-batch I from the

replay buffer D.
10 Calculate the loss of the central soft

Q-network by (21) and update the weights
of the central soft Q-network.

11 Calculate the policy gradient by (23), and
update the weight parameters of the local
policy network.

12 Update the target networks every TInterval
steps.

13 end
14 end

monitor broadcasts the local network to all SNs and then
each SNs is able to adjust its power locally. Therefore, the
communication overhead of MSAPA is zero. For compar-
ison, the communication overhead of SAPA and MSAPA
is summarized in TABLE 1. It is seen that both SAPA
and MSAPA have the same communication overhead in
the training stage, but MSAPA has no interaction overhead
when deployed.

TABLE 1: The communication overhead of SAPA and
MSAPA.

Training stage Implement stage
SAPA Ttotal(MLS + LA) Ttotal(MLS + LA)

MSAPA Ttotal(MLS + LA) 0

6 PERFORMANCE EVALUATION
The simulations in this section refer to a smart indus-
trial production scenario, where the monitored area is a
20m × 20m industrial production workshop, with a WPS
and a monitor being located at the coordinates of (0,10)
and (20,10), respectively. In order to achieve comprehensive
monitoring, multiple SNs are deployed in the workshop,
where the locations of SNs follow the uniform distribution.
A topology map is shown in Fig. 6. The system is powered
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by RF-EH technology, where the network configuration is
set based on [19] and [31]. Unless otherwise specified, the
parameters of the network configuration are as follows.
Specifically, the number of SNs is set to 4. The small-scale
fading is set to Rayleigh fading and the path-loss coefficient
α is set to 2. For the EH, the energy transmit power of WPS
Pt is set to 4W, and the EH coefficient of the SNs η is set to
0.8. The battery capacity of the SNBmax is set to 0.4 mjoules.
The sensing probability of SNs p and the SINR threshold
γth are set to 0.2 and 2 dB, respectively. For the uplink data
transmission, the received noise is −41 dBm. The weight
factor of each SN is set to 1 without loss of generality.

To test the proposed methods and the benchmarks, we
build an interactive environment based on Python 3.7.13
and use the PyTorch framework to implement the pro-
posed methods and some learning-based benchmarks, with
the version of 1.11 and Cuda 11.3. The related hardware
platform is a desktop with an AMD 3600X CPU and an
NVIDIA 2070 GPU. For clarity, more related parameters in
the simulations are summarized in TABLE 2.

To evaluate the ESA performance of the proposed SAPA
and MSAPA, we simulate and compare the two methods
with several DRL-based benchmark methods, i.e., SDQN-PA
and SDDPG-PA. SDQN-PA is based on the DQN algorithm,
which is policy-based with a Q network, so it is necessary to
discretize the action space to solve the formulated problem
described in Section 2.3. SDDPG-PA is based on the DDPG
algorithm, which is also actor-critic (AC)-based with policy
networks and critic networks. In order to show the effec-
tiveness of the power adjustment, we also simulated RAPA
and the FET. The descriptions of the simulated benchmark
methods are as follows:

• The single-agent-based DQN Power Adjust-
ment Method (SDQN-PA): SDQN-PA is a policy-
based method, where the monitor determines dis-

Fig. 6: An example topology map of the RF-EH-powered
network.

crete transmit power to the SNs via the DQN-
based method with (10) as the cost function. For
each SN, the transmit power is set to Pi(t) ∈
{0, Pmax

D , 2Pmax

D , . . . , Pmax}, where it is discretized
into D levels.

• The single-agent-based DDPG Power Adjustment
(SDDPG-PA) method: SDDPG-PA is an AC-based
method that can generate continuous action, where
the monitor determines transmit power to the SNs
via the DDPG-based method with (10) as the cost
function. At each output step of SDDPG-PA, decode
the action with the maximum Q value and map it to
the actual power.

• The Random Power Adjustment (RAPA) method:
Each SN randomly adopts its transmit power.

• The Full energy transmit (FET) method: Each SN
transmits status updates only if its battery is fully
charged; otherwise, the transmit power is set to 0.

TABLE 2: Parameters of the simulated RL-based methods.

Parameter Value
The learning rate of the policy network 1e-3
The learning rate of the Soft Q-network 2e-3

Batch size 256
Discount factor 0.995

Memory capacity 1000
The update factor of target network 0.005
The policy network scale of SAPA {64,32}
The soft Q-network scale of SAPA {128,32}

The policy network scale of MSAPA {64,32}
The soft Q-network scale of MSAPA {128,32}
The Q-network scale of SDQN-PA {200,200}

The power discrete gears D of the SDQN-PA 5
The policy network scale of SDDPG-PA {64,32}
The critic network scale of SDDPG-PA {128,32}

The learning rate of the policy network of SDDPG-PA 1e-3
The learning rate of the critic network of SDDPG-PA 2e-3

Fig. 7 shows the convergence of behavior of SAPA,
MSAPA, SDQN-PA and SDDPG-PA. It is seen that the
SDDPG-PA, SAPA, and MSAPA achieve lower system cost
than SDQN-PA method because these methods are more
suitable for problems with continuous action space. More-
over, the proposed SAPA and MSAPA converge well with
different numbers of SNs, while SDDPG-PA method os-
cillates in networks with 6, 8 and 10 SNs, because the Q-
value in the SDDPG-PA approximated by the critic network
may gradually be overestimated in training, which leads
to repeated selections of a deterministic action, periodically
causing the policy of SDDPG-PA to fall into local optimal
and thus causing oscillations. The proposed SAPA and
MSAPA are based on the SAC algorithm, learning stochastic
policy, which will not assign a very high probability to any
action so that SAPA and MSAPA maintain stable perfor-
mance. Besides, the proposed SAPA and MSAPA achieve the
lowest cost among the four methods, and their performance
is close.

Fig. 8 depicts the cost with different learning rates. We
conducted multiple sets of experiments at different learning
rates and obtained similar conclusions, so we selected a rep-
resentative set for example. As can be seen from the figure,
the learning rate has a small impact on the performance
of our presented two methods. The cost associated with
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Fig. 7: Comparison of the cost of the four RL-based methods with different number of SNs.

the three different learning rates is roughly the same. For
SAPA, compared to the learning rate being 1e-3 and 1e-4,
the fluctuation is more obvious when the learning rate is
1e-2. Moreover, the learning rate has different effects on the
two methods in terms of convergence speed. Specifically,
for SAPA, the convergence is the fastest when the learning
rate is 1e-3; while for MSAPA, although the convergence is
faster when the learning rate is 1e-4, the arrival performance
is relatively poor. Therefore, comprehensively considering
cost, volatility, and convergence speed, we choose 1e-3 as
the learning rate for SAPA and MSAPA, as shown in TABLE
2.

Fig. 9(a) depicts the ESA with different numbers of SNs.
One can observe that All benchmark methods are able to
achieve low ESA with a smaller number of SNs such as 2
and 4. The ESA increases as the number of SNs increases,
because the interference among SNs increases as the number
of SNs increases, and thus the transmission from SNs to
the monitor is more likely to fail. When the number of that
SN exceeds 4, the ESA of FET, SDQN-PA, RAPA is high.
The reasons are different for the three methods. Particularly,

for FET, the reason is that all power of each SN is used
to transmit and the interference between SNs is very large.
For RAPA, as the number of users increases, random power
adjustment makes it difficult to ensure effective transmis-
sion of status updates. For SDQN-PA, the reason is the
discretization of the action that it is difficult to learn a better
policy to achieve lower ESA. In contrast, SDDPG-PA, SAPA,
and MSAPA are able to maintain the effectiveness of power
adjustment with different numbers of SNs, which shows
that the AC-based method has better performance in solving
MDPs with continuous action spaces. Among them, the ESA
of SDDPG-PA is higher than that of SAPA and MSAPA,
because of the insufficient exploration caused by the use
of deterministic action strategies in DDPG. Moreover, SAPA
and MSAPA achieve the lowest ESA, and when the number
of SNs is greater than 8, MSAPA is slightly better than SAPA.
This may be due to the fact that SAPA treats the system
composed of all SNs as an agent, and the action space
dimension is larger. MSAPA considers each SN as an agent,
where the action space of each agent is relatively smaller,
and it is easier to learn better strategies.
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(b) MSAPA’s cost with different learning rates.

Fig. 8: The cost of the proposed methods with different learning rates.
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Fig. 9: ESA and EAEE achieved by the simulated six methods versus different numbers of SNs.

Since energy efficiency is also an important performance
index for RF-EH-powered networks, we also take the age-
energy efficiency (AEE) newly presented in [37] as a metric
to evaluate the proposed methods. Actually, AEE provides
an insightful measure of the achievable AoI improvement
per unit of energy consumption, which is given by

Φ(t) =

∑M
i=1Amax −ADi (t+ 1)∑M

i=1 τPi(t)
. (25)

Similar to ESA, denote EAEE as the average AEE in time,
which is given by

EAEE =

∑T
t=1 Φ(t)

T
. (26)

Fig. 9(b) depicts the EAEE versus the number of SNs.
Without loss of generality, we normalize the energy to
facilitate comparison by mapping the energy consumed to
be between 0 and 1. As can be seen from the figure, the

AEE achieved by the non-reinforcement learning methods
is relatively low. Although the ESA achieved by the non-
reinforcement learning methods is close to the lowest ESA
when the number of SNs is small, this means that the
non-reinforcement learning methods have relatively high
energy consumption. For SDQN-PA, when the number of
SNs is 2, it has a higher AEE, which means that the policy
learned by SDQN-PA is very effective when the number of
SNs is relatively small. However, when the number of SNs
exceeds 2, the AEE achieved by SDQN-PA drops sharply,
illustrating that SDQN-PA cannot cope with scenarios with
more than 2 SNs. Interestingly, when the SN number is 2,
the AEE achieved by SDDPG-PA is relatively low. However,
as the number of SNs increases, the AEE achieved by
SDDPG-PA experiences an increase, which means that the
policy learned by SDDPG-PA makes power concessions to
reduce ESA. Moreover, as the number of SNs increases,
the decreases in ESA cause decreases in AEE accordingly.
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Fig. 10: ESA versus γth.

The proposed SAPA and MSAPA achieve the highest AEE
among the benchmark methods, indicating that the two
methods can not only effectively reduce ESA, but also learn
the concessions between SNs to save energy consumption,
as well as improve AEE. In addition, when the number of
SNs is greater than 4, the AEE achieved by MSAPA is higher
than SAPA, which means that MSAPA is more suitable for
scenarios with more SNs.

Fig. 11 depicts the ESA of SNs with different packet
arrival probabilities, i.e., p. It is observed that the more fre-
quently the packets arrive with larger p, the lower the ESA
is. The reason is that when the packet arrival probability
is higher, and the transmitted status updates from SNs are
fresher, and the ESA becomes lower. It should be noticed
that when the packet arrival probability is higher than 0.6,
its impact on the ESA becomes small because not all newly
arrived state updates are successfully transmitted in each
block. Besides, with the same p, the proposed SAPA and
MSAPA achieve the lowest ESA, which demonstrates an
effective power adjustment is able to reduce the ESA greatly.

Fig. 10 plots the ESA of SNs with different γth. One
can observe that the ESA increases versus γth, because the
higher SINR threshold means higher data requirements. As
a result, with high data requirements, the status update
transmission of SNs is also likely to fail, so the ESA in-
creases. The proposed SAPA and MSAPA also achieve the
lowest ESA among the benchmark methods. It is noticed
that MSAPA achieves lower ESA than SAPA at higher SNR
thresholds, which inspires us that MSAPA is more suitable
for networks with high data requirements.

Fig. 12 depicts the results of the scalability testing of
the proposed MSAPA, where the red line represents the
ESA performance achieved by MSAPA with the unchanged
positions of SNs compared to the trained network topology
and the blue line represents the performance achieved by
MSAPA with changed positions compared to the trained
network topology. As can be seen from the figure, MSAPA
and MSAPA (with changed positions) have similar perfor-
mance, but as the number of users increases, the perfor-
mance gap between the two gradually widens. This shows
that MSAPA is scalable w.r.t. the location of SNs. Besides, in
networks with more SNs, when the position of SNs changes,
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Fig. 12: ESA achieved by MSAPA with the
unchanged/changed positions of SNs compared to the

trained network topology under different numbers of SNs.

indicating that in this case the network should be retrained
as much as possible.

7 CONCLUSION

This paper studied an RF-EH-powered wireless system and
an optimization problem was formulated to minimize the
ESA by optimizing the power adjustment of SNs under
multiple practical constraints. An MDP problem was first
established and SAPA was proposed to solve the problem.
To further reduce the communication overhead in IIoT, a
multi-agent version of SAPA, i.e., MSAPA, was also de-
signed. Simulation results demonstrated the convergence of
the proposed SAPA and MSAPA and also showed that the
ESA of the system could be greatly reduced compared to
several benchmark methods.
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