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ABSTRACT In light of the growing prevalence of distributed energy resources, energy storage systems 

(ESs), and electric vehicles (EVs) at the residential scale, home energy management (HEM) systems have 

become instrumental in amplifying economic advantages for consumers. These systems traditionally 

prioritize curtailing active power consumption, often at an expense of overlooking reactive power. A 

significant imbalance between active and reactive power can detrimentally impact the power factor in the 

home-to-grid interface. This research presents an innovative strategy designed to optimize the performance 

of HEM systems, ensuring they not only meet financial and operational goals but also enhance the power 

factor. The approach involves the strategic operation of flexible loads, meticulous control of thermostatic 

load in line with user preferences, and precise determination of active and reactive power values for both ES 

and EV. This optimizes cost savings and augments the power factor. Recognizing the uncertainties in user 

behaviors, renewable energy generations, and external temperature fluctuations, our model employs a 

Markov decision process for depiction. Moreover, the research advances a model-free HEM system grounded 

in deep reinforcement learning, thereby offering a notable proficiency in handling the multifaceted nature of 

smart home settings and ensuring real-time optimal load scheduling. Comprehensive assessments using real-

world datasets validate our approach. Notably, the proposed methodology can elevate the power factor from 

0.44 to 0.9 and achieve a significant 31.5% reduction in electricity bills, while upholding consumer 

satisfaction. 

INDEX TERMS Power factor correction, home energy management, appliances scheduling, smart homes, 

reactive power compensation, deep reinforcement learning 

I. INTRODUCTION 

A. MOTIVATION 

In today's energy research landscape, the residential sector 

emerges as a focal point of transformation, characterized by 

its accelerated melding with technological advancements, a 

renewed emphasis on sustainability, and an ever-growing 

network of interconnected systems. As detailed by seminal 

work in [1], three primary drivers are at the helm of this 

evolution: the incursion of smart control technologies, the 

adoption of distributed renewable resources, and the 

electrification of transportation via electric vehicles (EVs). 

   Renewable energy has always been appealing for its 

sustainable attributes [2]; however, it comes with a set of 

challenges. Due to its inherent reliance on climatic 

conditions, renewable energy exhibits both stochasticity and 

intermittency. Such unpredictable characteristics can 

compromise the stability of the electrical grid [3]. 

Concurrently, the integration of EVs introduces an additional 

demand, potentially establishing a new peak load. This surge 

might further challenge the long-term reliability and 

operational efficacy of the grid [4]. 

   Energy storage (ES) solutions and flexible household 

appliances have garnered significant attention from both 

researchers and power companies, largely due to their 

potential in reshaping end-user consumption behaviors and 

overall grid dynamics based on electricity pricing [5]. With 

significant advancements in advanced metering 

infrastructure (AMI), cutting-edge sensors, and bidirectional 

communication channels, home energy management (HEM) 

systems are poised to empower consumers with proactive 

load monitoring and control. These systems also facilitate 
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real-time adjustments in consumption, on-site generation, 

and home ES operations contingent upon electricity prices. 

Such capabilities not only cater to cost efficiency by 

reducing electricity bills, but also fortify grid resilience, 

enhancing both its reliability and flexibility during critical 

periods [6]. 

   Designing an effective HEM system presents a significant 

challenge due to the myriad uncertainties associated with 

end-user behaviors. These uncertainties stem not only from 

the inherent unpredictability of renewable energy sources but 

also from the dynamic nature of consumer behavior [7]. 

Precise forecasting of the operational duration and start time 

of electrical appliances for consumers remains elusive. 

Crafting an optimal load control strategy that satisfies both 

consumer preferences and network operator requirements is 

intricate, given the high-dimensional optimization problems 

being involved. Real-time response becomes even more 

critical when we consider that electricity, as a commodity, 

must be utilized immediately upon production. Hence, any 

household appliance scheduling that is not executed in real-

time essentially renders the planning moot [8]. 

B. LITERATURE REVIEW 

In the domain of HEM researches, a clear dichotomy 

emerges, differentiating approaches into two primary 

classifications: model-based HEM and model-free HEM. 

This delineation serves as a cornerstone for the formulation 

of subsequent energy management tactics [9].  

   Model-based HEM stands out as a core methodology. This 

can be further divided into deterministic and stochastic 

approaches. The deterministic model-based HEM, as 

referenced in sources [10-13], primarily focuses on 

deterministic energy cost minimization. Its main objective is 

the creation and subsequent resolution of optimization 

problems designed to determine the optimal day-ahead 

schedule for a variety of end-user appliances. While this 

method offers a strong theoretical framework, it necessitates 

an in-depth understanding of both operational models and 

detailed appliance parameters. Central to its success is the 

accuracy of forecasts for several external variables. 

Foremost among these variables are the fluctuations in utility 

pricing and the unpredictability of weather conditions, which 

significantly influence photovoltaic (PV) generation. 

Achieving precision in these forecasts, especially in real-

time, is challenging, often leading to skepticism regarding 

the practical viability of this approach [14]. 

   To address these prevailing uncertainties, the research 

community has increasingly turned to the use of probabilistic 

forecasting models as preferred predictors. These models, 

built upon extensive historical data and deduced parameters, 

aim to provide a degree of predictability within a 

fundamentally stochastic environment. Subsequent to the 

estimation process, the primary challenge emerges in the 

realm of control, typically addressed by employing advanced 

scheduling optimizers. A prominent theme in current 

literature is the widespread application of model predictive 

control (MPC) within the model-based paradigm, as 

highlighted in [15 - 17]. Central to the MPC algorithm is its 

capacity for iterative optimization, leveraging a predictive 

model over a dynamic time horizon. 

   However, the success of such model-based methodologies 

significantly depends on specialized knowledge. It remains 

incumbent upon experts to carefully design models that 

accurately mirror real-world dynamics, while maintaining 

the integrity of appliance parameters. This precision 

becomes even more critical when working with probabilistic 

predictors. Despite their potential, these predictors confront 

issues like determining the exact probability distribution of 

variable parameters, and more pressingly, computational 

constraints that could hinder real-time implementation [18]. 

   A marked shift in HEM is observed towards model-free 

methodologies, with a particular emphasis on deep 

reinforcement learning (DRL) approaches [19]. The 

foundational strength of DRL lies in its ability to harness 

deep neural networks (DNN) as reliable function 

approximators. These DNNs, sophisticated in design and 

function, possess the unparalleled capability to comprehend 

continuous state-action transitions even when operating 

under ambiguous and uncertain environments [20]. 

   When delving deeper into the intricacies of these neural 

architectures, it becomes evident that they are adept at 

accommodating and processing continuous, high-

dimensional state spaces. This adaptability ensures that they 

are capable of discerning and extracting concealed or 

otherwise non-obvious attributes embedded within these 

state spaces. As a result, the DRL agent emerges as a robust 

entity, armed with the requisite capabilities to effectively 

address and navigate the twin challenges of environmental 

uncertainty and partial observability [21]. The era of the 

internet of things (IoT) and pervasive sensing has ushered in 

a data-rich landscape [22]. DRL agents, with their inherent 

design advantages, are ideally positioned to leverage this 

avalanche of data. Especially with the proliferation of 

intelligent sensors, these agents can consistently collect, 

analyze, and understand extensive datasets. This iterative 

and instantaneous data processing leads to the development 

and refinement of HEM strategies. After numerous data-

driven iterations, these strategies are distinguished by their 

adaptability, resilience, and a remarkable capacity to succeed 

in fluctuating environmental conditions, especially when 

informed by real-time data [23]. Leveraging DRL's 

adaptability and learning capabilities overcomes the 

limitations of the traditional model-based methods, 

outperforming them in dynamic, uncertain environments to 

efficiently and effectively address HEM challenges. 

   The deep Q network (DQN) method stands out as a 

predominant approach in model-free HEM. Due to its 

robustness, DQN finds extensive applications across various 

domains including demand response management for 

flexible household appliances [24-25], EVs [26-27], ES 

systems [28-29], and heating, ventilation and air 

conditioning (HVAC) systems [30-31]. This is a method 

characterized by its proficiency in grappling with multi-

dimensional continuous state spaces. However, every 
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technology has its limits, and DQN is no exception. It 

grapples with inefficiencies when deployed in continuous 

action domains, largely because the inherent design of the 

DNN is skewed towards generating discrete Q-value 

estimates, rendering it sub-optimal for continuous action 

outputs [32].  

   Recognizing the limitations inherent to DQN, the research 

community has redoubled efforts, igniting a renaissance in 

DRL research focused on continuous control. This 

resurgence has seen the advent of innovative methods, 

notably the deep deterministic policy gradient (DDPG), twin 

delayed deep deterministic policy gradient (TD3), and the 

advantage actor-critic (A2C). These methodologies, rigorous 

in design and application, have been judiciously applied 

across diverse platforms, from appliance scheduling and EVs 

to ES systems and HVAC systems [33-36]. Preliminary 

results, compared against traditional DQN methodologies, 

underscore their superior performance, offering promising 

avenues for future exploration in the HEM domain. 

   There is also a predominant focus on active power control 

in the HEM research, especially in the context of appliance 

and ES unit scheduling within residential environments. This 

has emerged as a dominant trend, largely due to the billing 

practices of most utility companies. To break it down, 

homeowners are predominantly billed based on their active 

energy consumption, with reactive power, an equally 

significant component of power management, often being 

sidelined [37]. Such a trend is not arbitrary. It is influenced 

by a confluence of factors, including the embryonic stage of 

the market for smart appliances and converters. Further, the 

relatively slow proliferation of HEM compounds the issue, 

indicating that the infrastructure and market incentives might 

not yet align with the growing needs of modern energy 

consumption [38]. 

   The current data on energy frameworks indicates that 

reactive power accounts for approximately 15% to over 40% 

of a household's total energy consumption [39-40]. With the 

increasing adoption of renewable energy sources, ES 

systems, and EVs, this scenario presents a notable challenge. 

However, most of existing technologies are designed 

primarily to address active power demands, which directly 

influence monthly electricity bills, resulting in a significant 

decrease in active power consumption in households that 

utilize them. Without a corresponding reduction in reactive 

power consumption, a significant imbalance occurs. This 

imbalance can lead to an alarmingly low power factor at the 

interface between the home and the electrical grid, with 

values reaching as low as zero in some cases [41]. 

   With the emergence of technological advancements such 

as smart meters, utility companies now have the capability to 

scrutinize both active and reactive power consumption of 

homeowners in greater detail. This not only provides them 

with enriched data but also raises the specter of financial 

repercussions. Specifically, homeowners demonstrating 

consistently low power factors might be subjected to 

financial penalties [42]. However, despite these progressive 

monitoring capabilities, a conspicuous gap persists in the 

scholarly examination of reactive power within residential 

settings. 

   There is a paucity of research focusing on reactive power 

within residential settings. While the current gap is 

substantial, it is anticipated to narrow progressively as HEMs 

become more prevalent. In studies [41], [43], a two-levels 

model-based optimization was implemented for the 

proficient management of smart converters in both ES units 

and EVs. The primary phase of optimization sought to 

minimize electricity costs, while the subsequent phase aimed 

to enhance the power factor. However, the practical 

application of this approach faces challenges. It is 

noteworthy that the studies incorporated a synthetic 

constraint by presuming the pre-availability of knowledge 

regarding consumer behavior and weather conditions. 

Furthermore, the bifurcated optimization process can 

potentially yield infeasible outcomes, given that solutions 

derived from the initial phase may not always align with the 

requirements of the second phase [44]. 

   The current body of research focusing on addressing 

optimal HEM problems can be categorized into two distinct 

classifications. Table 1 presents a comprehensive overview 

of their respective contributions, optimization methods, 

reactive power control strategies, as well as their inherent 

limitations. Notably, an analysis of the table reveals a notable 

gap in the literature: to date, there has been no study that 

simultaneously optimizes both active and reactive power in 

smart homes in a real-time context. 

C. CONTRIBUTION AND PAPER ORGANIZATION 

In addressing the challenges encountered in conventional 

HEM approaches, this paper presents a novel technique 

grounded in DRL for a stochastic model-free HEM. This 

innovative methodology aims to offer an effective solution 

to the inefficiencies observed in existing HEM paradigms. 

To the best of our knowledge, this work marks the inaugural 

application of a real-time, model-free technique tailored for 

the optimal active and reactive power management in HEM 

contexts. The design principles guiding this approach stem 

from a dual objective: firstly, the mitigation of electricity 

expenses and dissatisfaction costs, and secondly, the 

augmentation of the home power factor. 

   In illustrating the efficacy and applicability of the proposed 

HEM system, comprehensive case studies employing 

genuine system data have been undertaken. The distinctive 

contributions of this work can be encapsulated into three 

primary areas: 

   1) Development of an integrated optimization framework 

formulated as a Markov Decision Process (MDP): The study 

will introduce a comprehensive optimization  
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Ref Category Contributions Optimiz-

ation 

Method 

Reactive 

power 

control 
strategies 

Limitations 

[10]  Model-

based 

Developed a mixed integer linear programming (MILP) model for 

hybrid HEM, integrating distributed generation, ESs, and EVs with 

vehicle-to-home  capabilities, and assessed various demand response 
strategies like dynamic pricing and peak power limiting for smart 

household energy and cost management. 

MILP x 

Uncertainty of the load and PV 

are not considered. 

[13]  Model-
based 

Designed an innovative HEM system featuring a smart thermostat that 
dynamically enhances air conditioning efficiency and comfort by 

adapting to variables such as electricity costs, solar exposure, and 

occupancy levels. 

MILP x 

The approach presumes prior 
knowledge of user preferences, 

neglecting the uncertainty in 

load considerations. 

[15]  Model-
based 

A HEM system, designed for optimizing residential energy usage, 
seamlessly incorporates PV arrays, heat pumps, and plug-in EVs. 

Functioning in real-time, it harmonizes electricity expenses, ES 

longevity, and user comfort through sophisticated predictive models, 
thus achieving precise energy management. 

MPC  x 

The system struggles with 
forecasting errors from 

mismatched predictions and 

actual data, along with 
heightened computational 

complexity, especially due to 

stochastic variables in plug-in 
EVs, potentially impacting 

optimal solution finding. 

[17]  
 

Model-
based 

The paper presents a new HEM system for optimal scheduling of home 
energy resources in high rooftop PV environments. It encompasses three 

stages: forecasting with an ANN for variables like solar radiation and 

temperature, day-ahead scheduling to minimize operation costs and 
manage consumption peaks, and an actual operation stage using MPC 

for real-time adjustments. 

ANN-

MPC 
x 

The model's complexity and 
computational intensity are 

significant, and its 

effectiveness hinges on the 
precision of the forecasting 

stage. 

[41]  Model-
based 

A study introduces an optimal two-stage HEM strategy, effectively 
linearized into a practical format, demonstrating significant economic 

and technical benefits, including cost reduction and improved power 

factor, with innovative use of EV and ES systems for energy 

management and reactive power compensation. 

MILP ✓ 

Presupposes advance 
knowledge of both the load 

uncertainty and the PV system. 

[43]  Model-

based 

A smart HEM system is employed for integrating and coordinating 

various home equipment and PV system, optimally scheduling 

appliances, and EV, and ES systems, focusing on resident convenience, 
and enabling power trading. This system optimally manages both cost 

and power factor, while also considering load factor through the 

application of demand response constraints. 

MILP ✓ 
The model does not take into 

account the uncertainty 

associated with the load and 
the PV generation 

[23] Model-

free 

The paper leverages a data-driven DQN approach to enhance energy 

efficiency in residential settings. The system incorporates a 

comprehensive reward function that simultaneously considers electricity 
cost, the discomfort of residents, and the life loss of transformers, aiming 

to balance power profiles and maximize transformer utilization without 

compromising user comfort. The proposed model simplifies the control 
mechanism by employing a single agent to manage various household 

appliances and load types 

DQN x 
The approach to modeling air 

conditioning is marked by its 

simplicity, while the 
optimization method is not 

capable of processing 

continuous actions. 

[25]  Model-

free 

A novel learning system is developed, aiming to shift loads and 

minimize peak aggregate load. A DQN agent is designed to 
simultaneously reduce consumer electricity bills and system peak load 

demand, with the model analyzed using loads from five residential 
consumers. 

DQN x 

Renewable energy sources and 

ES are not integrated into the 
current model. 

[26]  Model-

free 

An advanced HEM system is introduced, utilizing DRL to schedule 

home appliances and integrate customer satisfaction, employing 

frameworks like the Kano model for EVs and precise temperature 
control for air conditioners. This approach demonstrates improvements 

in reducing electricity costs and enhancing customer satisfaction 

compared to previous methods. 

DQN x 

The model does not 

incorporate renewable energy 

sources and ES systems. 

[27]  Model-

free 

Solar power is prioritized in residential EV charging, using indices to 

measure clean energy use and user charging preferences. The approach 

employs DRL and real time-of-use tariffs to optimize EV charging 
during high solar generation periods. 

DQN x 

Load management is not 

addressed in this paper. 

[34]  Model-

free 

An integrated HEM system is explored, which is engaged in a demand-

side management (DSM) program and controls smart home computing 

tasks using a Smart Home Operation Platform. The aim is to optimize 
the user's total expected reward by balancing various factors such as 

energy costs, execution delays, and DSM compliance. 

DDPG x 

Renewable energy sources are 

not included in the 

consideration. 

[35]  Model-
free 

The demand response management problem for residential households 
is formulated as an MDP, considering uncertainties from sources like PV, 

demand, and EV. Concurrently, a model-free, data-driven DRL-based 

TD3 x 

The modeling approach for wet 
appliances is characterized by 

its simplicity. 
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strategy is developed for managing this problem, independent of precise 

mathematical modeling of HEM and their uncertainties. 

[36]  Model-

free 

In the paper, a novel home energy recommender system was developed 

using DRL and MDP, with direct human feedback and resident activity 
data being incorporated to optimize electricity consumption and 

minimize resident discomfort. 

A2C x 

Renewable energy source and 

ES are not considered 

framework that considers both active and reactive power 

management in smart homes, uniquely employing the 

principles of MDP. This integrated approach is novel in the 

field of HEM, where most existing studies focus only on 

active power.    

    2) Real-time, model-free optimization with DRL: 

leveraging advanced DRL techniques, specifically the 

proximal policy optimization (PPO) algorithm, the research 

will develop a model that can dynamically and efficiently 

manage energy consumption in real-time. This includes 

adapting to changing conditions such as energy demand, 

supply patterns, and consumer behavior, without prior 

knowledge of these variables. 

    3) Enhancement of power factor and energy efficiency: by 

optimizing reactive power alongside active power, the 

framework aims to improve the power factor at the home-to-

grid interface. This will not only enhance energy efficiency 

but also prevent potential financial penalties associated with 

low power factors. 

 

   The structure of the paper is organized as follows: section 

II introduces the HEM model, accompanied by a detailed 

problem formulation. Section III presents an innovative 

approach by transforming the problem into an MDP and 

proposing DRL-based algorithms to derive an optimal policy 

for the HEM. Section IV features case studies that utilize 

real-world residential data to validate the effectiveness of the 

proposed model and methodology. Section V concludes the 

paper and outlines potential directions for future research. 

II. HEM MODEL AND PROBLEM FORMULATION 

Fig. 1 depicts a smart home integrated with a HEM. This 

residence is connected to a low-voltage grid through a smart 

meter. The home is outfitted with a renewable energy source 

(PV), complemented by an ES unit that provides additional 

electricity to the household. In instances of renewable energy 

surplus, the HEM can choose to either store the energy in the 

ES system or sell it directly to the grid operator. 

   The residence's architecture has three layers: physical, 

informational, and control. The physical includes PV panels, 

ES units, electrical loads, and an EV. The informational layer 

has a smart meter for two-way communication and data 

exchange, like ES capacity and PV output. The control layer, 

led by the HEM, directs operations for the ES, EV, and 

electrical loads. 

   The electrical loads in the system are divided into three 

groups. The first type includes fixed loads like refrigerators 

and lights, which cannot be controlled by the HEM system. 

The second group consists of price-responsive loads such as 

dryers; their use can be delayed for lower energy costs but 

must operate within set time frames and cannot be stopped 

once started. The third category includes thermostatically 

controlled loads, which are flexible and can be adjusted by 

the HEM for optimal comfort. The EV is considered an 

interruptible load with adjustable power use, also serving as 

a potential energy storage asset. 

   The HEM operates in 15-minute intervals throughout a 

day, totaling 96 time steps. It collects data from various 

sources like sensors, PV, EV and ES, temperature, and 

electricity rates. The HEM then controls charging and 

discharging of ES and EV, manages price-responsive and 

thermostatically controlled loads based on tariffs. Its main 

goals are to reduce electricity costs, maintain optimal indoor 

conditions, time price-responsive load operations, and 

improve the residence's power factor. This strategy enhances 

energy efficiency, cost savings, and system performance. 

 

FIGURE 1.  The proposed smart home architecture 

 

A. ENERGY STORAGE UNITS 

The ES unit in smart homes is key to minimizing daily 

electricity costs. It charges during periods of low electricity 

prices and discharges when prices peak. Depending on 

whether it's charging or discharging, the ES can act as either 

a stable energy source or a flexible load. Additionally, it is 

equipped with an advanced converter capable of producing 

reactive power, allowing it to operate in inductive or 

capacitive modes for effective power factor correction. 

However, the converter's limited capacity means that 

generating reactive power impacts the active power output of 

the ES unit, leading to a potential increase in electricity costs 

due to reduced active power production. 

   Given this dynamic, it becomes paramount to pinpoint the 

optimal balance of active and reactive power outputs from 

these converters. Striking this balance is pivotal for 

achieving dual objectives: cost efficiency on electricity bills 
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and proficient power factor correction. The task of managing 

this equilibrium rests with the HEM. Within our proposed 

energy management framework, the ES unit is 

mathematically conceptualized as follows: 

𝑆𝑂𝐸𝑡+1
ES = 𝑆𝑂𝐸𝑡

ES + 𝑢𝑡
ESch𝜂𝐸𝑆𝑐ℎ𝑃𝑡

ESchΔ𝑡 −  

𝑢𝑡
ESdi𝑃𝑡

ESdiΔ𝑡

𝜂𝐸𝑆𝑑𝑖
, ∀𝑡  (1) 

𝑢𝑡
ESch + 𝑢𝑡

ESdi ≤ 1, ∀𝑡                            (2) 

𝑃𝑡
ES = 𝑢𝑡

ESch𝑃𝑡
ESch + 𝑢𝑡

ESdi𝑃𝑡
ESdi , ∀𝑡 (3) 

 

𝑆𝑂𝐸𝑚𝑖𝑛,𝐸𝑆 ≤ 𝑆𝑂𝐸𝑡
ES ≤ 𝑆𝑂𝐸𝑚𝑎𝑥,𝐸𝑆, ∀𝑡         (4) 

𝑃𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑃𝑡
ES ≤ 𝑃𝐸𝑆,𝑚𝑎𝑥 , ∀𝑡                          (5) 

𝑄𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑄𝑡
ES ≤ 𝑄𝐸𝑆,𝑚𝑎𝑥 , ∀𝑡                          (6) 

𝑆𝑡
ES ≤ 𝑆𝐸𝑆,𝑚𝑎𝑥  , ∀𝑡                                                 (7) 

𝑃𝑡
ES2

+ 𝑄𝑡
ES2

= 𝑆𝑡
ES2

 , ∀𝑡                                    (8) 

   Equation (1) delineates the dynamic characteristics of the 

ES, wherein 𝑆𝑂𝐸𝑡+1
ES  signifies the forthcoming state of 

energy (SOE). 𝑃𝑡
ESch  and 𝑃𝑡

ESdi  correspond to the power 

during the charging and discharging phases, respectively. 

The efficiency metrics for these cycles are captured by 𝜂𝐸𝑆𝑐ℎ 

and 𝜂𝐸𝑆𝑑𝑖 . To ensure the ES does not concurrently charge 

and discharge during a singular time step, binary constraints 

in (2), symbolized by 𝑢𝑡
ESch and 𝑢𝑡

ESdi, have been instituted, 

where a value of 0 indicates off and 1 denotes on. These 

coefficients represent the charging and discharging states, 

respectively. The cumulative active power involved in the 

charging and discharging operations of the ES is articulated 

in (3). Equations 4 and 5 denote the upper and lower bounds 

for the SOE and the active power during both charging and 

discharging processes. As previously highlighted, the ES 

converter is also equipped to engage in reactive power (𝑄𝑡
ES) 

exchanges with the smart home. Consequently, the reactive 

power should remain within acceptable limits as defined by 

(6), and the apparent power (𝑆𝑡
ES)  must not surpass the 

converter's rated capacity as stipulated in (7-8). 

B. ELECTRIC VEHICLE  

An EV serves as a versatile load, modifiable and manageable 

through a HEM system. The control mechanism for the 

charging/discharging process of the EV is a key part of this 

integration. The HEM system strategically manages the EV's 

battery charging and discharging based on real-time data, 

including energy demands of the household and grid 

conditions. This ensures optimal use of the EV's energy 

storage capability. The EV also offers the capability to serve 

as an energy source through vehicle-to-grid (V2G) or 

vehicle-to-home (V2H) mechanisms, thereby offering 

homeowners potential savings by intelligently discharging 

stored energy when it is most beneficial, such as during peak 

energy demand periods or when grid electricity prices are 

high. Additionally, the EV is integrated with a smart 

converter, adept at generating reactive power to enhance the 

power factor. While the EV bears resemblance to previously 

modelled ES systems, it exhibits additional operational 

constraints and functionalities, specifically in its interactive 

role with the HEM, where it acts not just as a load, but also 

as an active source participant in home energy management 

and grid support. For our modelling purposes, we have 

presupposed a singular arrival and departure time for the EV 

within the scheduling framework, designated as arrival time 

( 𝑇𝑠𝑡𝑎𝑟𝑡
EV ) and departure time ( 𝑇𝑒𝑛𝑑

EV ). The mathematical 

equations representing the EV's functionality are detailed 

below: 

𝑆𝑂𝐸𝑡+1
EV = 𝑆𝑂𝐸𝑡

EV + 𝑢𝑡
EVch𝜂EV𝑐ℎ𝑃𝑡

EVchΔ𝑡 −  

𝑢𝑡
EVdi𝑃𝑡

EVdiΔ𝑡

𝜂EV𝑑𝑖
, ∀𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡

EV , 𝑇𝑒𝑛𝑑 
EV ]  (9) 

𝑢𝑡
EVch + 𝑢𝑡

EVdi ≤ 1, ∀𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡
EV , 𝑇𝑒𝑛𝑑

EV ]                      (10) 

 

𝑃𝑡
EV = 𝑢𝑡

EVch𝑃𝑡
EVch + 𝑢𝑡

EVdi𝑃𝑡
EVdi , ∀𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡

EV , 𝑇𝑒𝑛𝑑
EV ]   (11) 

 

𝑆𝑂𝐸𝑚𝑖𝑛,𝐸𝑉 ≤ 𝑆𝑂𝐸𝑡
EV ≤ 𝑆𝑂𝐸𝑚𝑎𝑥,𝐸𝑉 , ∀𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡

EV , 𝑇𝑒𝑛𝑑
EV ] (12) 

 

𝑃𝐸𝑉,𝑚𝑖𝑛 ≤ 𝑃𝑡
EV ≤ 𝑃𝐸𝑉,𝑚𝑎𝑥 , ∀𝑡 ∈  [𝑇𝑠𝑡𝑎𝑟𝑡

EV , 𝑇𝑒𝑛𝑑
EV ]     (13) 

 

𝑄𝐸𝑉,𝑚𝑖𝑛 ≤ 𝑄𝑡
EV ≤ 𝑄𝐸𝑉,𝑚𝑎𝑥 , ∀𝑡 ∈  [𝑇𝑠𝑡𝑎𝑟𝑡

EV , 𝑇𝑒𝑛𝑑
EV ]   (14) 

 

𝑃𝑡
EV2

+ 𝑄𝑡
EV2

= 𝑆𝑡
EV2

 , ∀𝑡 ∈  [𝑇𝑠𝑡𝑎𝑟𝑡
EV , 𝑇𝑒𝑛𝑑

EV ]   (15) 

            

𝑆𝑡
EV ≤ 𝑆𝐸𝑉,𝑚𝑎𝑥  , ∀𝑡 ∈  [𝑇𝑠𝑡𝑎𝑟𝑡

EV , 𝑇𝑒𝑛𝑑
EV ]                 (16) 

𝑆𝑂𝐶𝑡
EV ≥ 𝑆𝑂𝐶𝑡𝑟

EV, 𝑡 = 𝑇𝑒𝑛𝑑
EV                         (17) 

where 𝑆𝑂𝐸𝑡+1
EV  denotes the SOE of the EV. 𝑃𝑡

EVch and 𝑃𝑡
EVdi 

symbolize the active power for charging and discharging, 

respectively. The efficiencies associated with these 

processes are represented by 𝜂𝐸𝑉𝑐ℎ  and 𝜂𝐸𝑉𝑑𝑖  for charging 

and discharging, respectively. For effective management of 

the charging and discharging cycles, 𝑢𝑡
EVch  and 𝑢𝑡

EVdi  are 

introduced as binary variables indicating the respective 

states. 𝑃𝑡
EV , 𝑄𝑡

EV , and 𝑆𝑡
EV  collectively represent the total 

active, reactive, and apparent power, respectively. Equation 

(17) ensures that the EV maintains a sufficient charge at 

departure to satisfy the user's commuting needs, where 

𝑆𝑂𝐶𝑡𝑟
EV represents the percentage of energy required for the 

EV's travel purposes. The modeling of the EV and the ES 

was conducted based on the equations outlined in [35]. 

Additional constraints were integrated into these models to 

align them with the more comprehensive objectives of the 

paper, ensuring compatibility and relevance to the study's 

broader goals. 

C. PRICE-RESPONSIVE LOADS 

Price-responsive loads 𝑖  (shiftable) operate according to 

user-set completion times. The HEM system schedules them 
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within their operating windows [𝑇𝑠𝑡𝑎𝑟𝑡
shift , 𝑇𝑒𝑛𝑑

shift], considering 

electricity costs and user convenience. While flexible in 

scheduling, these loads, once started, must run uninterrupted, 

hence termed "shiftable and uninterruptible loads". 

Examples include washing machines (WM), dryers (DM), 

and dishwashers (DW). 

𝑢𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

∈  {0,1}, ∀𝑡 ∈  [𝑇𝑠𝑡𝑎𝑟𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

, 𝑇𝑒𝑛𝑑
𝑠ℎ𝑖𝑓𝑡,𝑖

] (18)           

𝑃𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

= 𝑢𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

𝑈𝑠ℎ𝑖𝑓𝑡,𝑖  , ∀𝑡                    (19) 

𝑃𝑡
shift denotes the energy consumption of flexible loads at 

each timestep. 𝑢𝑡
shift,i

 represents a binary decision variable 

that determines the operation status of the appliance. Ushift,i 

corresponds to the rated active power. Given the assumption 

of uninterruptibility, additional operational constraints apply 

to the decision variable. 

𝑢𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

= 1, 𝑖𝑓   𝑡 ∈ [  𝑇𝑠𝑡𝑎𝑟𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

, 𝑇𝑒𝑛𝑑
𝑠ℎ𝑖𝑓𝑡,𝑖

− 𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒
𝑠ℎ𝑖𝑓𝑡,𝑖

]  (20𝑎) 

𝑢𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

= 1, 𝑖𝑓  ∑ 𝑢𝜏
𝑠ℎ𝑖𝑓𝑡,𝑖

≤ 

𝑡

𝜏=𝑇𝑠𝑡𝑎𝑟𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒
𝑠ℎ𝑖𝑓𝑡,𝑖

     (20𝑏) 

𝑇require
shift,i

 represents the time slots needed to fulfill the energy 

demand of the shiftable appliance i. Equation (20a) ensures 

the energy demand is met within the designated operating 

window, while (20b) guarantees uninterrupted operation of 

the shiftable appliance. 

D. FIXED LOADS 

Appliances like refrigerators and cooking devices are 

classified as fixed load (nonshift). Their operation is 

inflexible, prohibiting any scheduling adjustments. The 

cumulative power consumption for these appliances j can be 

represented as: 

𝑢𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

∈  {0,1},

∀𝑡 ∈  [𝑇𝑠𝑡𝑎𝑟𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

, 𝑇𝑠𝑡𝑎𝑟𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

+ 𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

]       (21)
       

𝑃𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

= 𝑢𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

𝑈𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗, ∀𝑡   (22) 

   Equation (21) delineates the binary operational status of 

these specific loads 𝑢𝑡
nonshift,j

, with a value of 0 signifying 

an inactive state and 1 representing an active state. The 

operation period for these loads, as determined by the 

homeowner, commences at an arbitrary time point 𝑇𝑠𝑡𝑎𝑟𝑡
nonshift,j

 

and extends over  𝑇duration
nonshift,j

 time steps. Equation (22) 

quantifies the power of the fixed load 𝑃𝑡
nonshift,j

 

consumption of the load for each respective time interval. 

E. THERMOSTATICALLY CONTROLLED LOADS 

Thermostatically controlled loads like the air conditioning 

(AC) are classified as elastic loads due to their inherent 

capacity for thermal energy conservation. Their functionality 

is influenced by a combination of the customer's preferences, 

external temperatures (𝑇𝑒𝑚𝑝𝑡
out) , and current electricity 

prices. These loads operate to ensure that the indoor 

temperature (𝑇𝑒𝑚𝑝𝑡
in) aligns with the user's desired comfort 

level, though they may cease operation once the desired 

temperature range is achieved. The calculation for the indoor 

temperature employs a linear equation [45], which factors in 

the heat exchange between the building's interior and the 

external environment. 

𝑃𝐴𝐶,𝑚𝑖𝑛 ≤ 𝑃𝑡
AC ≤ 𝑃𝐴𝐶,𝑚𝑎𝑥 , ∀𝑡   (23) 

𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑖𝑛 ≤ 𝑇𝑒𝑚𝑝𝑡
in ≤ 𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑎𝑥 , ∀𝑡   (24) 

 

𝑇𝑒𝑚𝑝𝑡+1
in = 𝑇𝑒𝑚𝑝𝑡

in −                                                  

 
(𝑇𝑒𝑚𝑝𝑡

in − 𝑇𝑒𝑚𝑝𝑡
out + 𝜂𝐴𝐶𝑅𝐴𝐶𝑃𝑡

AC)Δ𝑡

𝐶𝐴𝐶𝑅𝐴𝐶
   (25) 

 

   Equation (23) delineates the upper and lower bounds of 

energy consumption by the AC, denoted as 𝑃𝑡
AC. Equation 

(24) articulates the maximum and minimum thresholds for 

optimal internal temperature. Equation (25) defines the 

linear relationship governing internal temperature 

fluctuations, where 𝐶𝐴𝐶 , 𝑅𝐴𝐶 , and 𝜂𝐴𝐶  represent the thermal 

capacity, thermal resistance, and efficiency of the AC, 

respectively. 

F. OPTIMAL DAILY ENERGY CONSUMPTION 
Minimizing daily electricity expenses is a primary objective 

facilitated by the utilization of energy management 

systems. 

 

𝑙𝑡 = 𝑃𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡

+ 𝑃𝑡
𝑠ℎ𝑖𝑓𝑡

+ 𝑃𝑡
𝐴𝐶 + 𝑃𝑡

𝐸𝑉 + 𝑃𝑡
𝐸𝑆 − 𝑃𝑡

𝑃𝑉   (26) 

𝑚𝑖𝑛 ∑ 𝜆𝑡  𝑙𝑡
𝑇
𝑡=1  𝛥𝑡 (27)      

   The 𝑙𝑡  in (26) has two potential values: positive, 

representing net demand, indicating that the smart home is 

buying power from the grid, and negative, signifying 

generation, which enables the home to sell surplus power 

back to the grid.  𝜆𝑡 also encompasses two distinct values: 

one corresponding to the procurement cost of electricity 

from the grid when 𝑙𝑡 is positive, and another denoting the 

sale price of electricity to the grid when 𝑙𝑡 is negative. 

III. DEEP REINFORCEMENT LEARNING-BASED 
SOLUTION 

In this section, the optimization problem discussed in the 

previous section is initially converted into an MDP, and 

subsequently, it is addressed using a DRL algorithm. 

A. MARKOV DECISION PROCESS  

The decision-making framework for real-time HEM is 

intrinsically dependent on historical states and task 

assignment choices. This framework can be efficiently 

modeled as an MDP with an infinite temporal horizon. An 

MDP is defined by a three-tuple structure (𝑺, 𝑨, 𝑹(𝒔, 𝒂)), 

where 𝑺 represents the set of all possible states, 𝑨 denotes 

the set of actions, and 𝑹(𝒔, 𝒂) corresponds to the immediate 

rewards. The formulation details for this MDP are presented 

below. 
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1) STATE SPACE  

For each time step denoted as 𝑡, the state space consolidates 

the data used by the agent for strategic decision-making. This 

state is partitioned into controllable, exogenous, and 

temporal segments, as described in (28) and (29). The 

controllable component encompasses all environmental 

variables directly influenced by the agent, such as the SOE 

of ES and SOC of EV, denoted as 𝑆𝑂𝐸𝑡
ES and 𝑆𝑂𝐶𝑡

EV, the 

internal temperature of the home, its power factor (𝑃𝐹𝑡), and 

the percentage of the energy demand 𝐵𝑡
i  met by shiftable 

appliances. The exogenous data comprises variables that are 

beyond the agent's control, including external temperature, 

PV generation (𝑃𝑡
PV), and electricity selling and purchasing 

rates (𝜆𝑡
− and 𝜆𝑡

+). The time-related element represents the 

environment's temporal behavioral patterns, including the 

current time-step and the initiation of operating windows for 

each shiftable load and total fixed load demand 𝑃𝑡
nonshift. 

 

𝑆𝑡 =

[
 
 
 
 𝑡, 𝑇𝑠𝑡𝑎𝑟𝑡

shift,WM, 𝑇𝑠𝑡𝑎𝑟𝑡
shift,DW, 𝑇𝑠𝑡𝑎𝑟𝑡

shift,DM,

𝑇𝑒𝑚𝑝𝑡
in, 𝑇𝑒𝑚𝑝𝑡

out, 𝑃𝑡
𝑃𝑉 , 𝑆𝑂𝐸𝑡

ES,

𝑆𝑂𝐶𝑡
EV, 𝐵𝑡

WM , 𝐵𝑡
DM, 𝐵𝑡

DW,

𝑃𝑡
nonshift, 𝜆𝑡

+, 𝜆𝑡
−, 𝑃𝐹𝑡 ]

 
 
 
 

 (28) 

𝐵𝑡
i = ∑

𝑢𝑡
shift,i

𝑇require
shift,i

𝑇

𝑡=1

 (29) 

2) ACTION SPACE 

At the specified time step based on the system's state, the 

action of the agent is to precisely evaluate the active and 

reactive power flows for charging and discharging the ES 

and EV. Simultaneously, the agent activates the operation of 

the shiftable appliances, denoted as 𝑎𝑡
shift,i

 and assesses the 

input power of the AC, 𝑎𝑡
AC, in proportion to its rated power, 

𝑃𝐴𝐶,𝑚𝑎𝑥 , as described in (30). 

𝑎𝑡 = [
𝑎𝑡

shift,WM, 𝑎𝑡
shift,DW, 𝑎𝑡

shift,DM, 𝑎𝑡
ES,W, 𝑎𝑡

ES,Var,

𝑎𝑡
EV,W, 𝑎𝑡

EV,Var, 𝑎𝑡
AC

] (30) 

where 𝑎𝑡
ES,W

 and 𝑎𝑡
EV,W

 denote the magnitudes of charging 

(positive) and discharging (negative) active power for the 

EV and ES, respectively. Meanwhile, 𝑎𝑡
ES,Var

 and 𝑎𝑡
EV,Var

 

signify the provision of reactive power (positive) and the 

absorption of reactive power (negative) by the converters of 

the EV and ES.  

 

3) REWARD FUNCTION  

The agent's primary objective is to coordinate the operation 

of shiftable appliances, ES, EV, and AC to chiefly reduce the 

daily electricity expenses for users. This involves shifting 

energy demand from peak pricing intervals to times with 

lower electricity rates. Nonetheless, such scheduling might 

result in user discontent, as the timing may not align with 

their preferences or the requisite energy demand. Moreover, 

this scheduling approach can adversely affect the residence's 

power factor, a scenario typically undesirable for network 

providers. Hence, from the user's viewpoint, the total reward 

function comprises three segments, 𝑟𝑡: 

𝑟𝑡 = ω𝑡
cost𝑓𝑡 + ω𝑡

com𝑔𝑡 + ω𝑡
PFℎ𝑡  (31) 

ω𝑡
cost + ω𝑡

com + ω𝑡
PF = ω𝑇𝑜𝑡𝑎𝑙  (32) 

𝑓𝑡 = −𝜆𝑡  𝑙𝑡  (33) 

𝑔𝑡 = 𝑔𝑡
shiftable + 𝑔𝑡

AC + 𝑔𝑡
EV (34) 

𝑔𝑡
shiftable = 𝐵𝑡

WM + 𝐵𝑡
DM + 𝐵𝑡

DW − 3, 𝑖𝑓 𝑡 >  𝑇𝑒𝑛𝑑
shift,i  (35) 

𝑔𝑡
AC =                                                                                           

{

−(𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑖𝑛 − 𝑇𝑒𝑚𝑝𝑡
in)

2
, 𝑖𝑓  𝑇𝑒𝑚𝑝𝑡

in < 𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑖𝑛

−(𝑇𝑒𝑚𝑝𝑡
in − 𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑎𝑥)

2
, 𝑖𝑓   𝑇𝑒𝑚𝑝𝑡

in > 𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑎𝑥

0 ,                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (36) 

𝑔𝑡
EV =                                                                                              

{
−( 𝑆𝑂𝐶𝑡𝑟

EV − 𝑆𝑂𝐶𝑡
EV)3, 𝑖𝑓  𝑆𝑂𝐶𝑡

EV < 𝑆𝑂𝐶𝑡𝑟
EV 𝑎𝑛𝑑 𝑡 = 𝑇𝑒𝑛𝑑

EV

0 ,                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(37)

 

ℎ𝑡 = {
−(𝑃𝐹𝑚𝑖𝑛 − 𝑃𝐹𝑡)

2,   𝑖𝑓  𝑃𝐹𝑡 < 𝑃𝐹𝑚𝑖𝑛

0 ,                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠
  (38) 

where 𝑓𝑡 signifies the electrical expenditure associated with 

load energy consumption, while 𝑔𝑡 stands for the cost related 

to user dissatisfaction. ℎ𝑡 denotes the penalty due to power 

factor deviations. Meanwhile, ω𝑇𝑜𝑡𝑎𝑙 = 1  embodies the 

residential user's prioritization, capturing the intended 

equilibrium among electrical costs, dissatisfaction 

implications, and power factor penalties. A penalty is applied 

when the power factor at the home-to-grid interface falls 

below the minimum threshold, 𝑃𝐹𝑚𝑖𝑛 , set by the network 

operator. Fig. 2 presents the schematic representation of the 

MDP. 

 
FIGURE 2.  The architecture of the MDP 

B. PROXIMAL POLICY OPTIMIZATION BASED 
SOLUTIONS 

DRL represents a sophisticated approach to control where an 

agent operates within an MDP framework to learn and 

optimize policies in managing a smart home's energy system. 

This method enables the HEM system to effectively align 

with consumer goals by dynamically adjusting to changing 

conditions and uncertainties inherent in household 

operations. As shown in Fig. 3, the process involves the DRL 

agent constantly evaluating key home metrics, such as 
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electricity prices over the day and ES capacity, at each time 

step. Based on this evaluation, the agent makes informed 

decisions, receives rewards, and iteratively refines its 

strategies to achieve optimal energy management outcomes. 

Through the synergistic integration of MDP and DRL, the 

HEM system is thus equipped to enhance its decision-

making capabilities, ensuring that household operations 

adapt efficiently to both the consumer's needs and the 

fluctuating nature of renewable energy. 

   The proposed energy management system is designed 

around PPO [51], addressing the complexities inherent in the 

MDP as previously detailed. Employing a model-free DRL 

technique, PPO functions within an actor-critic architecture, 

adeptly managing both continuous and discrete action 

spaces. Within the architecture of the PPO agent, as depicted 

in Fig. 3, there are two pivotal networks: the policy network 

(actor) and the value network (critic), each characterized by 

parameters, θ and α, respectively. Parameters θ and α play 

crucial roles in the learning process. The actor, characterized 

by parameters θ, is instrumental in determining the actions 

to be executed, mapping environmental states to respective 

actions. The θ parameters are integral in fine-tuning this 

policy to generate actions that maximize expected future 

rewards. Conversely, the critic, governed by parameters α, 

evaluates the taken actions by estimating the value of each 

state, providing a critique that aids in the optimization of the 

actor’s policy. Both networks process the environmental 

state as input. The critic extrapolates this to yield a state 

value output, instrumental in fine-tuning the actor’s 

parameters, ensuring alignment with the objective of 

optimizing actions. The actor, guided by this revised policy, 

orchestrates actions, both discrete and continuous, 

effectively interacting with and manipulating the 

environment to fulfill the desired objectives. Thus, θ and α 

are foundational in navigating and optimizing the decision-

making process, ensuring the agent's actions are both 

purposeful and proficient. The actor’s probability 

distribution is approximated by 
𝝅𝜽(𝒂𝒕|𝒔𝒕) =

{
𝜷(𝒑𝒅(𝒔𝒕))  𝒊𝒇 𝒂𝒕 ∈  {𝒂𝒕

𝒔𝒉𝒊𝒇𝒕,𝑾𝑴
, 𝒂𝒕

𝒔𝒉𝒊𝒇𝒕,𝑫𝑴
, 𝒂𝒕

𝒔𝒉𝒊𝒇𝒕,𝑫𝑾
}

𝑵 (𝝁𝜿(𝒔𝒕), 𝝈
𝟐)                                             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (𝟑𝟗)
 

 

   In cases where the action is discrete, the approximation 

strategy follows a Bernoulli distribution 𝜷(𝒑𝒅(𝒔𝒕)) . For 

continuous actions, the approximation employs a normal 

distribution 𝑵 (𝝁𝜿(𝒔𝒕), 𝝈
𝟐) , with 𝝁𝜿(𝒔𝒕) and 𝝈𝟐  being the 

mean and standard deviation of this distribution. A neural 

network is employed to learn these specific parameters. 

Based on the policy gradient technique and the gradient 

boosting approach, the actor's parameters, denoted as θ, are 

adjusted by  

𝝅𝜽𝒏𝒆𝒘
= 𝝅𝜽𝒐𝒍𝒅

+ 𝜶𝒍𝛁𝝅𝜽𝒐𝒍𝒅
 𝑱(𝝅𝜽𝒐𝒍𝒅

) (𝟒𝟎) 

where 𝜶𝒍  represents the learning rate, 𝑱(𝝅𝜽) serves as the 

objective function for the actor, and 𝛁𝝅𝜽 𝑱(𝝅𝜽) is the policy 

gradient. The policy gradient 𝑱(𝝅𝜽) is calculated using an 

alternative objective, referred to as 𝐋𝐂𝐋𝐈𝐏(𝜽). This surrogate 

objective 𝐋𝐂𝐋𝐈𝐏(𝜽) is determined by: 

𝑳𝑪𝑳𝑰𝑷(𝜽) =

 𝔼𝒕[𝒎𝒊𝒏(𝛅𝐭(𝛉)Â𝒕, 𝒄𝒍𝒊𝒑(𝛅𝐭(𝛉), 𝟏 − 𝜺, 𝟏 + 𝜺)Â𝒕)]  (𝟒𝟏)
 

δt(θ) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡) 

 (42) 

where Â𝒕  functions as the advantage function, while 𝜺  is 

designated as a hyperparameter and falls within the interval 

(0, 1). The clip function serves to truncate, setting boundaries 

on the variation between the prior and updated policies. 

Specifically, the lower and upper boundaries are 𝟏 − 𝜺 and 

𝟏 + 𝜺 , respectively. The advantage function can be 

calculated by 

Â𝒕 = 𝔼𝒕[𝒓 + 𝜸 𝑽(𝒔𝒕+𝟏) − 𝑽(𝒔𝒕)]    (𝟒𝟑) 

 

𝑽(𝒔𝒕) = 𝔼𝝅 [∑𝜸𝒍𝒓𝒕+𝒍

𝑻

𝒍=𝟎

] (𝟒𝟒) 

where 𝒓  denotes the instant reward, 𝜸  is the discounting 

factor, and 𝑽(𝒔𝒕)  refers to the state value function. This 

function is estimated through the critic's neural network. The 

loss function of the state value function is defined as: 

𝑳𝝅 (𝜽) =  𝔼𝒕 [−𝑳𝑪𝑳𝑰𝑷(𝜽) − 𝒄𝟏𝑯
𝝅𝜽  (𝒔𝒕)] (𝟒𝟓) 

    

               𝐇𝛑𝛉(𝐬𝐭) = 𝔼𝒂𝒕=𝛑𝛉 [𝝅𝜽(𝒂𝒕|𝒔𝒕) 𝐥𝐨𝐠 𝝅𝜽(𝒂𝒕|𝒔𝒕)] (𝟒𝟔) 

 

where 𝐜𝟏 ∈  [𝟎, 𝟏]  is a coefficient. 𝐇𝛑𝛉(𝐬𝐭) represents the 

policy's entropy. Enhancing the entropy can boost the 

exploration capability of the PPO algorithm. For the sake of 

training stability, the parameters for both the actor network 

and the critic network are set to be shared. 

 

 FIGURE 3.  The Energy Management Algorithm based on PPO network 

IV. CASE STUDY  
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A. EXPERIMENTAL SETUP 

In this section, we assess the efficacy of the proposed HEM, 

which employs a model-free DRL approach, within a smart 

home setting. The evaluation encompasses seven fixed loads, 

three shiftable appliances, a thermostatic load, an ES, an EV 

and a PV system. The scheduling framework is based on a 

24-hour period, segmented into 96 time steps, with each 

interval lasting 15 minutes. To introduce variability, the 

operating starting time for each fixed and shiftable appliance 

is assumed to fluctuate daily, reflecting the unpredictable 

nature of resident activities. Tables 2 and 3 provide an 

overview of the fixed and shiftable loads, respectively, and 

detail their starting operational hours derived from 

distribution sampling. Table 4 presents the technical 

specifications for both the ES and the EV. We posit that an 

EV user undertakes two journeys daily, each characterized 

by specific departure and arrival times. The EV's home 

connectivity period is anticipated to span from the 

conclusion of its second journey to the commencement of its 

first. To encapsulate the inherent uncertainties associated 

with consumer behavior, certain parameters, such as the EV's 

departure and arrival times, initial energy levels in the EV 

and ES (𝑆𝑂𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙), and the initial indoor temperature of the 

residence have been modelled as random variables using a 

normal distribution, as elaborated in Table 5. The data 

presented in Tables 2, 3, and 4 have been sourced from [43]. 

TABLE 2.  FIXED LOADS 

Fixed Load Power PF 𝑇duration
nonshift,j

 𝑇𝑠𝑡𝑎𝑟𝑡
nonshift,j

 

Refrigerator 1.66 kW 0.65 96 - 

Microwave 1.20 kW 0.93 1 [4-7] 

1 [46-51] 

1 [58-62] 

Oven 2.4 kW 0.95 2 [2-5] 

6 [54-60] 

Kettle 2.0 kW 1 1 [2-5] 

1 [46-51] 

1 [58-62] 

Television 0.28 kW 0.95 20 [48-54] 

Computer 0.2 kW 0.95 12 [58-62] 

Lighting 0.2 kW 0.8 20 [48-54] 

Vacuum 0.6 kW 0.75 2 [44-49] 

Toaster 0.8 kW 0.93 1 [2-7] 

Iron 2.4 kW 0.95 1 [3-6] 

Security 

cameras 

0.2 kW 0.95 96 - 

Water 

pump 

1.2 kW 0.9 3 [69-73] 

 
TABLE 3.  PRICE-RESPONSIVE LOADS 

Shiftable Load Power  PF 𝑇require
shift,i

 𝑇𝑠𝑡𝑎𝑟𝑡
shift,i

 𝑇𝑒𝑛𝑑
shift,i 

Dishwasher 1.32 kW 0.7 4 [64-67] 95 

Washing machine 1.4 kW 0.57 4 [44-48] 72 

Clothes dryer 3.8 kW 1 4 [72-75] 95 

 
TABLE 4.  THE ES AND EV PARAMETERS 

Technical parameter EV  ES 

SOEmax (kWh) 16 kWh 10 kWh 

SOEmin(kWh) 1.6 kWh 1 kWh 

𝑆𝑂𝐶𝑡𝑟
EV (%) 70% - 

SOEinitial (kWh) [4-9] kWh [2-6] kWh 

Smax (kVA) 3.3 kVA 3 kVA 

𝑃𝑡
𝑐ℎ,𝑚𝑎𝑥

 (kW) 3.3 kW 3 kW 

𝑃𝑡
𝑑𝑖,𝑚𝑎𝑥

 (kW) 3.3 kW 3 kW 

𝜂𝑐ℎ , 𝜂𝑑𝑖 0.95 0.95 

𝑇𝑠𝑡𝑎𝑟𝑡
EV  [11-14]  - 

𝑇𝑒𝑛𝑑
EV  [45-50]  - 

Real-world PV generation data, coupled with weather 

forecasting, were utilized to train and evaluate the proposed 

energy management system. The yearly residential PV 

generation data were collected from a real-world, open-

source dataset gathered from households in an Australian 

distribution grid [46], while weather forecasting data was 

obtained from World Weather Online [47]. 

 
TABLE 5.  THE AC PARAMETERS 

Technical parameter AC 

𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑎𝑥 (F) 77 

𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑖𝑛 (F) 68 

𝑇𝑒𝑚𝑝𝑡
in,initi

(F)  [69-73] 

𝐶𝐴𝐶 (kWh/F) 0.33 

𝑅𝐴𝐶 (F/kW) 13.5 

𝜂𝐴𝐶  (kW) 2.2 

𝑃𝐴𝐶,𝑚𝑎𝑥 (kW) 1.75 

 
Appliance simulation parameters were created using real 

data from a 365-day period. 300 of these days had been 

randomly allocated for training, with the remainder set aside 

for testing. It is crucial to note that the test datasets were not 

exposed during the training phase. Fig. 4 depicts the 

electricity pricing from the external grid [48]. Notably, the 

rate for selling electricity back to the grid was set at half the 

purchase price. Fig. 5 showcases a 24-hour power demand 

sample from the fixed loads for a residential user, beginning 

from 06:00 AM and concluding at the 05:45 AM slot on the 

subsequent day. The peak demand reached approximately 2 

kW during the 21:00 time slot. From the training dataset, a 

random sample representing a day's PV generation for an 

Australian residence was selected as delineated in Fig. 6. The 

generation cycle commenced at 06:00 and concluded at 

19:00, with the highest generation observed between 14:00 

and 15:00. This PV system is characterized by a peak 

capacity of 1.6 kW. The PPO algorithm utilized neural 

networks for both its actor and critic structures. For updating 

the network weights, the Adam optimizer was employed, 

with a learning rate set at 10−3  for both structures. The 

optimization incorporates a discount factor, γ, set at 0.99. 

Both actor and critic networks comprise four hidden layers, 

each having 128 neurons. While the policy network's hidden 

layers used the Relu activation function, the critic value 

network incorporated the Tanh function.  The details of the 

PPO algorithm's training process are presented in Algorithm 

1. The DRL agent has been developed using Pytorch-2.0.1 

and Python-3.10.12 on a Windows 11 system with a Core i7-

12700H CPU @ 2.30 GHz × 16 and 16 GB RAM. 
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FIGURE 4.  Electricity price 

B. BENCHMARK METHODS 

1) WITHOUT HEM 

In this configuration, flexible appliances commence 

operation promptly upon task assignment. The EV 

undergoes charging at its peak capacity immediately upon 

home arrival and remains undischarged. The AC system 

functions at its utmost power when (𝑇𝑒𝑚𝑝𝑡
in < 𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑖𝑛) 

and reverts to its minimal power setting when  (𝑇𝑒𝑚𝑝𝑡
in >

𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑎𝑥). 

FIGURE 5.  The consumption power of fixed load 

FIGURE 6.  PV output power 

2) FULL INFORMATION OBSERVABLE METHOD (FIO) 

In this approach, uncertain environmental variables, 

including PV generation and weather data, are treated as 

deterministic and are presumed to be precisely known in 

advance. The optimization problem was systematically 

modeled using the equations detailed in section II, 

specifically by excluding the nonlinear components 

associated with reactive power, while focusing on active 

power. This approach aimed to identify the most effective 

appliance scheduling strategy to reduce daily electricity 

costs. To achieve this, the SCIP optimization toolbox [50], 

known for its efficiency in MILP, was employed. MILP, as 

a highly relevant and representative conventional method, 

has been extensively utilized within HEM systems. While 

this theoretical framework suggests an optimal boundary, it 

often remains unattainable in practical scenarios due to the 

unpredictability of environmental factors, yet it provides a 

critical benchmark for assessing the performance of the 

proposed algorithm. 

3) OTHER DRL APPROACHES 

The proposed PPO technique was compared with two 

prevalent DRL methods, specifically DQN and DDPG. To 

utilize DQN, which is tailored for discrete action spaces, a 

Q-network comprising 6 hidden layers with neuron 

configurations of 128,128,128, 64, 64, and 64 using ReLU 

activation functions is employed to estimate the Q-function. 

Consequently, the action space is divided into 576 distinct 

possibilities. Conversely, for the application of DDPG, 

designed exclusively for continuous action spaces, an actor 

network structured with 4 hidden layers consisting of 

128,128,128, and 64 ReLU neurons is used to pinpoint the 

best action. Given that the control variables associated with 

shiftable loads are binary in nature, the output from the actor 

network must be converted into binary form. If this output 

falls below 0, a binary action of 0 is chosen; otherwise, it 

defaults to 1. A critic network, with an architecture mirroring 

that of the actor, is employed to estimate the optimal value 

function. The implementation of these two algorithms was 

carried out in accordance with the guidelines outlined in [52]. 

Adjustments were made to the number of states, actions, and 

DNN layers to tailor the algorithms specifically for the smart 

home environment proposed in this study. 

 
Algorithm 1: Process for training the PPO agent. 

1: Input: the state of smart home environment 
2: Output: actor network 𝜋θis employed for real-time energy 

management within smart 
3: Initialize parameters θ and α randomly 

4: Initialize old actor parameters: 𝜋θold
← 𝜋θ  

5: For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 =  1, 2, . . . , 𝐸 do: 

6:  Reset the initial state of the environment randomly  

7:  For 𝑡 =  1, 2, . . . , 𝑇 do: 

8:   Observe the state 𝑠𝑡 according to (28) 

9:   Sample action 𝑎𝑡 based on 𝜋θold
 

10:   Calculate reward 𝑟𝑡  and obtain new state 𝑠𝑡+1 

according to (31)  
11:   Store  (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, log 𝜋𝜃(𝑎𝑡|𝑠𝑡) ) in memory buffer 

12:  end for  
13:  for 𝑛 =  1, 2, . . . , 𝑁  do  

14:   Calculate Â𝒕 based on (42) 

15:   Calculate 𝐿𝜋 (𝜃) based on (44) 

16:   Optimize the loss function with respect to θ 

17:  end for  

18: end for   

 

C. EXPERIMENTAL RESULTS 
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1) CONVERGENCE PERFORMANCE AND COST 
REDUCTION 

a: TRAINING PERFORMANCE  

The PPO, DQN, and DDPG methods are trained over 5000 

episodes to learn the optimal strategy for residential energy 

management. Fig. 7 illustrates the progression of cumulative 

rewards throughout the training process. Within the figure, 

solid curves depict the mean cumulative rewards, aggregated 

across five seeds, and shaded areas represent the 

corresponding standard deviation values. As illustrated in the 

figure, in the early stages of learning, average cumulative 

rewards are low since the agents are mainly exploring 

various actions without much direction. However, as training 

advances and the agents gain more experience, the rewards 

increase, peaking for all three methods. Notably, right from 

the onset, PPO's rewards rise more rapidly than those of 

DQN and DDPG. The comparative performance of various 

DRL algorithms, including the proposed one, is delineated in 

Table 6, highlighting their stabilization and convergence to 

near-optimal solutions. Remarkably, the proposed algorithm 

not only requires fewer episodes to converge compared to 

other algorithms but also demonstrates a shorter training 

duration. 

 

FIGURE 7.  Average Reward for the PPO, DQN and DDPG methods 

TABLE 6.  TRAINING PERFORMANCE COMPARISON OF DRL 
ALGORITHMS 

DRL Algorithm Episodes to 

Convergence  

Average 

Reward (𝑟𝑡) 

Training 

Time (min) 

DQN 3562 -29.82 258 

DDPG 4031 -28.29 294 

PPO 994 -28.25 237 

b: TESTING PERFORMANCE IN ELECTRICITY COST 
REDUCTION 

   To evaluate the effectiveness of the PPO algorithm 

specifically in reducing electricity expenses, the PPO 

underwent testing with new datasets that were not used 

during the initial training phase of the agent. For a 

comprehensive quality assessment, the proposed solution 

was benchmarked against four reference strategies, i.e., the 

without HEM policy, the FIO policy, the DQN algorithm, 

and the DDPG algorithm. It is imperative to mention that, 

while the FIO policy represents an optimal performance 

benchmark, its realization in practical scenarios is limited 

due to inherent randomness, such as unpredictable consumer 

behavior and volatile weather conditions. 

   Fig. 8 illustrates a comprehensive analysis of the total costs 

associated with various strategies over a span of 15 testing 

days. The data presented in this figure reveals that our 

proposed method markedly outperforms the Without HEM 

baseline, registering a 31.5% reduction in electricity 

expenses. In a comparative analysis with other DRL 

algorithms such as DQN and DDPG, our proposed method 

also exhibits superior performance. DQN and DDPG 

achieved a reduction in the electricity bill by 18.64% and 

24.77% respectively, falling short of the efficacy 

demonstrated by our approach. The FIO algorithm, notable 

for its proficiency in a non-random environment, attains an 

ideal cost reduction of 39.62%. This is attributed to its 

tailored design that is optimally responsive to predictable, 

structured settings. In contrast, our proposed algorithm is 

engineered to adeptly navigate through random 

environments. Despite the inherent challenges of 

unpredictability and variability, it approximates the 

performance of the FIO algorithm closely. Table 7 presents 

a comprehensive evaluation of the average electricity costs 

incurred utilizing various optimization strategies throughout 

the testing days. Notably, the PPO method demonstrated the 

lowest cost, markedly outperforming methods tailored for 

stochastic environments. Moreover, the results underscore 

the efficiency of the PPO method in attaining a near-optimal 

solution within a markedly brief duration of 0.35 seconds. 

This performance is contrasted with the FIO method, which 

required a substantially longer time of 27 seconds. These 

findings emphasize the PPO method's capability in 

enhancing the management of household loads, promoting 

optimal energy use, and effectively minimizing costs within 

a real-time operational framework. 

 

FIGURE 8.  Average daily cost over 15 days 

TABLE 7.  COMPARATIVE ANALYSIS OF ELECTRICITY COST 
REDUCTION STRATEGIES  

STRATEGY         AVERAGE 
ELECTRICITY COST ($) 

RESPONSE TIME 
(S) 

WITHOUT HEM 43.87 - 

FIO              31.40 27.12 

DQN              37.01 0.45 

DDPG             34.67 0.41 

PPO (Proposed) 33.34 0.35 

2) APPLIANCE SCHEDULING EFFECTIVENESS 
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The efficacy of the proposed algorithm in load scheduling 

was assessed through a meticulous evaluation process. A 

specific day was randomly selected from the testing phase to 

facilitate a comprehensive analysis, the outcomes of which 

are illustrated in Fig. 9. The graphical representations in Fig. 

9(a), (b) and (c) conspicuously demonstrate the algorithm's 

adeptness at scheduling flexible loads within the consumer's 

preferred operational timeframes. A pivotal attribute of the 

algorithm is its proficiency in capitalizing on periods when 

electricity prices are minimal, engendering both economic 

and energy efficiencies. Each subfigure denotes the 

scheduling window of the corresponding appliance, as 

illustrated by the highlighted orange region. A critical 

examination of thermostatic loads, particularly given their 

significant impact on consumer comfort, was also conducted.  

 

(a) 

(b) 

(c) 

(d) 

FIGURE 9. The performance of the proposed method showing the 
appliance scheduling effectiveness, (a) dishwasher, (b) washing 
machine, (c) clothes dryer, and (d) air conditioning unit 

 

The algorithm exhibited a remarkable capability in the 

efficient management of AC systems. Fig. 9(d) underscores 

the algorithm’s effectiveness in maintaining indoor 

temperature fluctuations within the thresholds of comfort, as 

shown in the orange region, ensuring an optimal ambient 

environment. This comprehensive assessment demonstrates 

the robustness and applicability of the proposed algorithm in 

real-world scenarios, showcasing its potential to enhance 

both energy efficiency and consumer comfort significantly. 

3) SCHEDULE OF ES AND EV 

ES and EV have the potential to optimize energy 

consumption through the HEM, specifically by modulating 

their charge and discharge cycles in response to fluctuating 

energy prices. However, identifying the best strategy to meet 

consumer objectives poses significant challenges, given the 

unpredictability in EV usage patterns, external temperature 

variations, and the inconsistent output of PV systems. 

Nevertheless, our proposed algorithm effectively navigates 

these uncertainties, primarily focusing on two outcomes: 

minimizing electricity costs and enhancing user experience. 

As illustrated in Fig. 10, the charge and discharge cycles of 

the active power of the ES are influenced by both electricity 

pricing and the productivity of PV systems. The initial state 

of energy, SOEinitial , for the ES was randomly set at 4 kWh. 

Due to the relatively high electricity prices occurring 

between 6 and 8 a.m., coupled with the minimal PV power 

production during this period, the HEM opted to discharge 

the ES. This approach was preferred to minimize reliance on 

energy from the public network. In contrast, between 8 and 

10 a.m., electricity prices are lower relative to other times. 

Thus, the HEM favored charging the ES during this period, 

with a plan to discharge it subsequently. It is noted that the 

production of PV peaks at 2 p.m. Leveraging this, the HEM 

strategically decided to store this energy, intending to 

discharge it over the remaining part of the day as a measure 

to optimize energy costs effectively. 

 

   Fig. 11 illustrates the varying patterns of charging and 

discharging between an EV battery and an ES. This disparity 

is primarily attributed to the specific constraints placed on 
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the EV battery. A crucial limitation influencing user 

convenience is the necessity for the EV battery to maintain 

ample energy reserves, ensuring the uninterrupted operation 

of the EV. During the early hours, specifically from 6:00 to 

7:30 a.m., when electricity rates are comparatively high, the 

HEM strategically opts for minimal battery charging. This 

approach guarantees that the EV battery receives a sufficient 

charge before departure, aligning with user convenience and 

operational readiness. As electricity costs diminish at 8 a.m., 

becoming more economical than earlier hours, the HEM 

decides to amplify the charging intensity, maximizing the 

battery's energy uptake. Within Fig. 11, the orange segments 

denote periods when the EV is stationed at home, indicating 

availability for charging. It is essential to note that the EV's 

battery should maintain a minimum of 70% charge (𝑆𝑂𝐶𝑡𝑟
EV) 

before departure from a smart home environment, as shown 

in Fig. 12. The HEM system treated the EV as a load before 

departure time, resulting in a distinct operational behavior 

for the EV compared to the ES system during this period. A 

dashed line, in Fig. 12, represents periods where the EV’s 

battery status remains undetermined by the HEM. However, 

on the EV’s return home at 17:30, it was discerned by the 

HEM that the battery retained a 31% charge. The HEM 

regards the EV upon its arrival as an energy source and notes 

that the EV's charging and discharging actions are similar to 

the behavior of the ES throughout this period. Consequently, 

leveraging periods of elevated electricity prices, specifically 

between 19:00 and 23:00, the energy was strategically 

discharged, optimizing cost-efficiency and energy 

utilization. 

 

FIGURE 10.  Charge and discharge cycles of ES 

FIGURE 11.  Charge and discharge cycles of EV 

 
FIGURE 12.  State of charge electric vehicle 

4) REDUCTION OF REACTIVE POWER AND POWER 
FACTOR CORRECTION 

HEM primarily aims to curtail electricity costs by 

minimizing active power consumption from the grid, 

particularly during peak pricing periods. A common 

oversight in many HEMs is the management of reactive 

power. This is largely because reactive power does not have 

a direct impact on cost reduction and involves more intricate 

optimization strategies compared to managing active power 

compensators. Fig. 13 illustrates the extent of reactive power 

extracted from the grid due to the utilization of a HEM based 

on the FIO method that omits reactive power considerations. 

In previous approaches, the FIO method was employed to 

coordinate ES and EV converter schedules for active power 

reductions. However, these converters were not tasked with 

compensating for the reactive power essential for both 

flexible and fixed loads. Leveraging the advanced 

capabilities of the proposed method, which adeptly addresses 

high-dimensional optimization problems, the proposed DRL 

agent was trained. Its objective was to minimize the reactive 

power import from the grid by effectively managing ES and 

EV converters. As depicted in Fig. 13, the proposed 

algorithm adeptly controls the converters, ensuring they 

compensate for the reactive power at their connection point 

to the grid. Table 8 illustrates that the application of the PPO 

algorithm results in an average reduction of reactive power 

drawn from the network and hence the increase of power 

factor. This reduction in reactive power is threefold when 

compared to the FIO algorithm. This significant distinction 

highlights the vital importance of reactive power control in 

smart homes to ensure the stability of the electrical network.  

FIGURE 13.  Reactive power import from the gird 
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TABLE 8.  REACTIVE POWER REDUCTION AND POWER FACTOR 

CORRECTION IN SMART HOMES  

STRATEGY         REACTIVE POWER 

(kVAR) 

AVERAGE POWER 

FACTOR 

FIO              16.01 0.44 

PPO             5.06 0.901 

FIGURE 14.  Power factor record at the home-to-grid integration point  
 

Fig. 14 contrasts the variation in the power factor when 

employing a FIO against one harnessing PPO method. A 

discernible decline in the power factor is observed when 

employing the PPO method between the time intervals of 

13:45 to 17:45. This decline can be attributed to the 

unavailability of the EV, which typically provides the 

requisite reactive energy to support the household loads. The 

absence of this energy source results in a diminished power 

factor during these intervals. In certain service provisions, it 

is mandated that the power factor for residential properties 

should surpass 0.9 [49]. Non-compliance, evidenced by a 

power factor below this threshold, leads to penalties for the 

property owners. Through the implementation of the 

proposed PPO technique, we achieved an average power 

factor of 0.901 for the household. In contrast, utilizing the 

FIO method resulted in an average power factor of 0.44, a 

value that is not viable for upcoming electrical grid systems. 

V. CONCLUSION 

In the present study, we presented a real-time model-free 

HEM approach grounded on the PPO algorithm. This 

approach is tailored to optimize the scheduling and 

management of a diverse range of loads, including EV and 

ES, within smart homes. To ascertain its efficacy in uncertain 

conditions, we modelled fixed, flexible, and thermostatic 

load, as well as EV and PV generations in a stochastic 

manner. Upon comparison with benchmark methods such as 

DQN, DDPG and FIO, our proposed approach demonstrated 

superior efficiency and effectiveness. When evaluated using 

real-world datasets, it consistently exhibited exceptional 

performance, particularly in the scheduling of flexible and 

thermal loads in alignment with the preferences of the end-

user. A noteworthy outcome was the algorithm's ability to 

proficiently manage the active power of ES and EV. This 

capability significantly contributed to a substantial reduction 

in electricity bills by 31.5%. Moreover, the algorithm is able 

to adeptly control the bidirectional converters linked to both 

the ES and EV, optimizing the injection of necessary reactive 

power. This optimization enhanced the overall power factor 

of the smart home, elevating it to 0.901 from 0.44 resulting 

from the benchmark algorithm. In summary, the adoption of 

our proposed method promises substantial economic and 

operational dividends, benefiting both consumers and 

utilities. Future work will be centered around optimizing the 

power factor within smart homes during the periods when an 

EV is unavailable. 
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NOMENCLATURE 

𝑆𝑂𝐸𝐸𝑆 State of energy of the ES (kWh) 

𝑢𝐸𝑆𝑐ℎ , 𝑢𝐸𝑆𝑑𝑖 Binary variables indicating if the ES is charging / 

discharging process  

𝜂𝐸𝑆𝑐ℎ , 𝜂𝐸𝑆𝑑𝑖 Efficiency of the ES system during charging and 
discharging process 

𝑃𝑡
𝐸𝑆𝑐ℎ , 𝑃𝑡

𝐸𝑆𝑑𝑖 Power related to the ES system charging / 

discharging process (kW) 

𝑆𝑂𝐸𝑚𝑖𝑛,𝐸𝑆 , 𝑆𝑂𝐸𝑚𝑎𝑥,𝐸𝑆 Minimum and maximum allowable state of 
energy for the ES (kWh) 

𝑃𝐸𝑆,𝑚𝑖𝑛 , 𝑃𝐸𝑆,𝑚𝑎𝑥 Minimum and maximum power limits for the ES 

(kW) 

 

𝑄𝐸𝑆,𝑚𝑖𝑛 , 𝑄𝐸𝑆,𝑚𝑎𝑥 Minimum and maximum reactive power limits 

for the ES (kVAR) 

𝑆𝐸𝑆,𝑚𝑎𝑥 Maximum apparent power limit for the ES (kVA) 

𝑡 Time step 

𝛥𝑡 Time interval 

𝑆𝑂𝐸𝐸𝑉 State of energy of the EV (kWh) 

𝑢𝐸𝑉𝑐ℎ , 𝑢𝐸𝑉𝑑𝑖 Binary variables indicating if the EV is charging / 

discharging process  

𝜂𝐸𝑉𝑐ℎ , 𝜂𝐸𝑉𝑑𝑖 Efficiency of the EV system during charging and 

discharging process 

𝑃𝑡
𝐸𝑉𝑐ℎ , 𝑃𝑡

𝐸𝑉𝑑𝑖 Power related to the EV system charging / 

discharging process (kW) 

𝑃𝑡
𝑃𝑉 Power related to the PV system at t (kW) 

𝑆𝑂𝐸𝑚𝑖𝑛,𝐸𝑉 , 𝑆𝑂𝐸𝑚𝑎𝑥,𝐸𝑉 Minimum and maximum allowable state of 

energy for the EV (kWh) 

𝑃𝐸𝑉,𝑚𝑖𝑛 , 𝑃𝐸𝑉,𝑚𝑎𝑥 Minimum and maximum power limits for the EV 

(kW) 

𝑄𝐸𝑉,𝑚𝑖𝑛 , 𝑄𝐸𝑉,𝑚𝑎𝑥 Minimum and maximum reactive power limits 

for the EV (kVAR) 

𝑇𝑠𝑡𝑎𝑟𝑡
𝐸𝑉 , 𝑇𝑒𝑛𝑑

𝐸𝑉  Arrival and departure time 

𝑆𝑂𝐶𝑡
𝐸𝑉 State of charge of an EV at  t (%) 

𝑆𝑂𝐶𝑡𝑟
𝐸𝑉 Minimum state of charge necessary for 

completing a specific trip (%) 

𝑢𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

 Binary variable indicating whether a shiftable 

load i is operating at t 

𝑃𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

 Power related to the shiftable load i (kW) 

𝑈𝑠ℎ𝑖𝑓𝑡,𝑖 Rated power of shiftable load i (kW) 

𝑃𝑡
𝑠ℎ𝑖𝑓𝑡

 Total shiftable load at t (kW) 

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒
𝑠ℎ𝑖𝑓𝑡,𝑖

, 

𝑇𝑠𝑡𝑎𝑟𝑡
𝑠ℎ𝑖𝑓𝑡,𝑖

, 𝑇𝑒𝑛𝑑
𝑠ℎ𝑖𝑓𝑡,𝑖

 

Required operation, start and end, time for 

shiftable load i 

𝑃𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡

 Total fixed load at t (kW) 

𝑢𝑡
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

 Binary variable indicating whether a fixed load j 

is operating at t 

𝑈𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗 Rated power of fixed load j (kW) 
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𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑗

 Operational time period of fixed load j  

𝑃𝑡
𝐴𝐶 Power related to the AC system (kW) 

𝑃𝐴𝐶,𝑚𝑖𝑛 , 𝑃𝐴𝐶,𝑚𝑎𝑥 Minimum and maximum power limits for the AC 
system 

𝑇𝑒𝑚𝑝𝑡
𝑖𝑛 Indoor temperature (°F) 

𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑖𝑛 , 𝑇𝑒𝑚𝑝𝑖𝑛,𝑚𝑎𝑥 Minimum and maximum indoor temperature 

limits (°F) 

𝑇𝑒𝑚𝑝𝑡
𝑜𝑢𝑡 Outdoor temperature (°F) 

𝜂𝐴𝐶  Efficiency of the AC  

𝑅𝐴𝐶 Thermal resistance (F/kW) 

𝐶𝐴𝐶 Thermal capacity of AC (kWh/F) 

𝑙𝑡 Total load at t (kW) 

𝜆𝑡 Electricity price ($) 

𝑆𝑡 State vector 

𝑃𝐹𝑡 Power factor at t  

𝑃𝐹𝑚𝑖𝑛 Minimum Power factor 

𝐵𝑡
𝑊𝑀, 𝐵𝑡

𝐷𝑀, 𝐵𝑡
𝐷𝑊 The percentage of the energy demand met by 

shiftable appliances 

𝑎𝑡 Action vector at time t 

𝑎𝑡
𝑠ℎ𝑖𝑓𝑡,𝑊𝑀

, 𝑎𝑡
𝑠ℎ𝑖𝑓𝑡,𝐷𝑊

, 𝑎𝑡
𝑠ℎ𝑖𝑓𝑡,𝐷𝑀

 Actions related to shiftable loads 

𝑎𝑡
𝐸𝑆,𝑊, 𝑎𝑡

𝐸𝑆,𝑉𝑎𝑟
 Actions related to ES active and reactive power 

𝑎𝑡
𝐸𝑉,𝑊, 𝑎𝑡

𝐸𝑉,𝑉𝑎𝑟
 Actions related to EV active and reactive power 

𝑎𝑡
𝐴𝐶 Action related to AC 

𝑟𝑡  Reward at t 

𝜔𝑡
𝑐𝑜𝑠𝑡, 𝜔𝑡

𝑐𝑜𝑚, 𝜔𝑡
𝑃𝐹 Weights related to electricity cost, user 

dissatisfaction, and PF deviation  

𝑔𝑡 Cost related to user dissatisfaction 

ℎ𝑡 Cost related to PF deviation 

𝜋𝜃(𝑎𝑡|𝑠𝑡) Policy function parameterized by θ 

𝐿𝐶𝐿𝐼𝑃(𝜃) The clipped surrogate objective function 

𝐽(𝜋𝜃) The objective function of PPO 

Â𝑡 Advantage at episode t. 

𝑉(𝑠𝑡) Value function 

𝐿𝜋 (𝜃) Policy loss function 

𝐻𝜋𝜃(𝑠𝑡) Entropy of the policy 𝜋𝜃 at state 𝑠𝑡 

 𝐸  Total number of episodes 

𝑁 Number of iterations for updating the policy 
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