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Abstract

Abstract.
In recent years, there has been a rigorous effort to make proton radiotherapy a more

viable and accessible source of cancer treatment. Due to the dose deposition rate of protons,
there are an array of advantages of using protons over conventional x-rays. In order to
treat deep seated tumours in all body sizes, protons of energy 250 MeV are required. As
hospitals and treatment centers often have limited space, and budgets, proton machines
must be compact and as affordable as possible. This thesis discusses a conceptual design
of an S-band rf cavity for proton radiotherapy. The energy range is 150 - 250 MeV. The
work is completed in conjunction with AVO and the Cockcroft Institute, in addition to
Lancaster University. As the accelerator is the last stage of an all-linac machine, the beam
emittance is relatively low, expanding the possible design space of solutions. For a limit on the
cavity aperture of 2.5 mm, multiple cavity designs are explored, with respect to constraints
such as cavity length, available rf power, and risk of rf breakdown. Firstly, a single cell is
designed with the cell shape defined by splines, allowing for lossless increase in rf efficiency.
The optimisation is completed using using multi-objective genetic algorithms and various
visualisation techniques are explored to best represent the design space. The transverse
beam dynamics are explored utilising a novel technique, and two newly developed focusing
schemes are explored analytically. The schemes are solved such that the maximum cavity
length for a given beam emittance is obtained. In order to quickly assess the performance of
a cavity with respect to a given input power, a novel fast tracking algorithm is developed.
The algorithm uses the on-axis electric field to approximate the energy gain of a particle over
one rf cell assuming constant particle velocity. The tracking code is expanded to incorporate
6D phase space tracking, and is bench-marked relative to well-known tracking codes. With
the limit on the cavity length, both Standing and Traveling Wave structures are explored
with respect to input rf power. Cavity types are compared with respect to important design
parameters, such as required power and fill time. The conceptual design is completed with
the addition of matching cells and fine tuning of the structure, to allow for efficient power
coupling. Finally, an approximation of the transmission is obtained using the fast tracking
algorithm - confirming the high transmission required for linear proton machines.
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Chapter 1

Introduction

1.1 Cancer Treatment with Radiation

1.1.1 Cancer Rates

In 2019, 18% of all deaths worldwide were attributed to cancer, with a total of 10 million
deaths [1]. In approximately 50% of all cancer cases, radiotherapy will be used during the
course of treatment [2]. Whilst high-income countries can provide radiotherapy treatment
for all patients, low-income countries can offer the treatment to only 10% of patients [3],
and the treatment is often palliative, as opposed to curative. Developments in Proton Beam
Therapy (PBT) have been observed over the last 60 years due to the more advantageous
dose deposition relative to conventional radiotherapy [4]. As the PBT technology improves,
facilities can become more accessible to all patients worldwide, and provide patients with
life-saving treatments.

1.1.2 Radiation to Treat Cancerous Cells

The X-ray was discovered by German scientist Wilhelm Conrad Röntgen in 1895 [5]. Soon
after, doctors started using radiation to treat skin abnormalities due to disease such as
lupus [6]. The first used of X-rays to treat cancer was in 1896, by French physician Victor
Despeignes [7]. At the time, cancer was believed to be a parasitic infection, and ionising
radiation could kill the bacteria causing the infection. Shortly after the discovery of radium
in 1898 by Marie and Pierre Curie [8] the field of radium therapy was created [9].

Different radiation effects give rise to different death patterns for a given cell, there is
no singular mechanism [10]. For example, apoptosis is a form of programmed cell death
that can be initiated during radiotherapy. Ionising radiation induces water radiolysis which
create reactive oxygen species and free radicals. Excessive free radicals result in apoptotic
signaling pathways, due to IR radiation causing DNA double-strand breaks. As a result the
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cell experiences extensive genomic instability which can lead to cell death. Other methods
of cell death, for example necrosis, occurs due to the destruction of intracellular components
directly, such as DNA. Fundamentally, all death mechanisms are a result of ionising radiation
causing changes to cell DNA, and therefore non-cancerous cells are also affected.

As many different cell death mechanisms exist due to radiation, different cancerous cells
are more resistant to certain mechanisms. In addition, a cells radiosensitivity is a function of
the phase of the cell cycle. A cells resistance to radiation is described by its radiosensitivity
[11]. Cancers like leukemia and lymphomas can die when exposed to low radiation doses.
Other cancers, such as melanomas, require very large radiation doses, and are often treated
with other methods. For some cancers, the cell death mechanism and molecular target are
known, whilst for others the molecular target is unclear [11].

Radiotherapy is a localised treatment, unlike treatments that are exposed to the entire
body, such as Chemotherapy. Radiotherapy can be split into three branches, external,
internal, and systemic radiation.

Today, the field of treatment with radiation is termed radiation therapy, with different
branches, such as external beam radiotherapy. Particle therapy (or hadron therapy) is an
area of external beam radiotherapy, that delivers energy using massive particles, as opposed
to X-rays (conventional radiotherapy).

1.1.3 Proton Radiotherapy

Particles traversing matter deposit energy due to interactions. At different particle energies,
different interactions occur more frequently, resulting in different loss mechanisms. In
addition, the type of matter being traversed heavily influences the frequency of interactions
that can take place. The stopping power is described as the retarding force that a particle
experiences through a medium [12]. Protons, and other heavy ions, deposit energy as
described by the Bethe-Bloch formula, which gives the rate at which a particle loses energy as
a function of distance traversed. The formula is as follows, for a particle of velocity, v = βc,
and electric charge z (in units of electron electric charge e)

−dE
dx

=
4π

mec2
nz

β2

(
e2

4πε0

)2 [
ln

(
2mec

2β2

I(1− β2)

)
− β2

]
. (1.1)

Where me is the electron rest mass, c is the speed of light, n is the electron number density,
ε0 is the permittivity of free space, and I is the mean excitation energy (of the atoms in
the medium). The energy loss mechanisms described with equation 1.1 are purely due to
electronic (Coulomb) scattering. Correcting terms are often used to accurately describe the
stopping power at lower energy levels, due to elastic scattering with atomic nuclei and electron
capturing. The loss in particle energy as a function of depth, can be shown graphically with
a Bragg curve, and describes the deposited dose as a function of depth into medium. A
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common unit of dose is the Gray (Gy). One Gy is defined as 1 J deposited into 1 kg of
material.

For protons at the minimum therapeutic energies (∼ 70 MeV), β2 ∼ 0.1, and from
Eqn. 1.1, 1/β2 is of the order 10. As the proton loses further kinetic energy, β approaches 0,
creating a rapidly growing term in 1/β2, creating a Bragg peak [13]. Therefore for protons
and other heavy ions, the Bragg peak occurs immediately before the particle comes to rest.
At this depth, large amounts of energy is deposited into the medium. This demonstrates the
advantage of PBT over conventional X-ray radiotherapy.

Figure 1.1 (a) shows the Bragg curve for different types of ionising radiation, including
X-rays, single energy protons, and varied energy protons. The effect of combining protons of
different energies (called range straggling [14]) produces a wider Bragg peak, called the spread
out Bragg peak [15]. For a deep seated tumour, X-rays will deposit ionising radiation into
healthy tissue both before and after the tumour. However, a proton beam will limit the dose
to healthy tissue and maximise dose to the cancerous tumour, as shown in Fig. 1.1 (b). The
position of the Bragg peak is a function of proton energy, and therefore must be tuned such
that the peak occurs at the tumour site. Within a patient, metal implants and anatomical
changes can lead to inaccuracies in the calculated position of the Bragg peak [16]. As the
proton Bragg peak is very steep, a large dose can be deposited into potentially healthy tissue.
This issue is not as damaging for conventional X-ray radiotherapy, due to the relatively flat
Bragg curve at larger depths.

(a) (b)

Figure 1.1: (a) Bragg curve as a function of depth. The standard medium used is water [17].
(b) The stopping effect of PBT on a brain tumor relative to conventional radiotherapy [18].

Proton radiotherapy treatment requires protons energies to be in the range 70 - 250 MeV.
This energy range is required in order to treat the entire range of potential tumours; from
superifical tumours, to deep seated tumours - which are generally at depths of around
30 cm [14]. In order to produce protons of these energies, particle accelerators are used.
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A brief history of particle accelerators is described below.

1.2 Short History of Particle Accelerators

In 1911 Rutherford published his theory on the structure of the atom, and in 1919 he induces
a nuclear reaction with naturally occurring alpha particles [19]. The electrostatic machines
that existed at the time could not produce high enough energy for Rutherford’s research to
continue. In 1932 Cockcroft and Walton produce a generator that produces 700 kV. At the
same time, Van de Graaf invented another electrostatic generator, that could reach voltages
of 1.5 MV [20]. The higher potential was reached mainly due to the suppression of sparking
by placing the electrode system into a tank of dry nitrogen. Whilst the potential was higher,
the Cockcroft and Walton generator could produce higher currents.

In 1924, Ising had proposed accelerating particles using time varying fields, called
‘resonant acceleration’, as opposed to static fields that were used at the time. Four years
later, Wideröe used ‘resonant acceleration’ to invent the drift tube linac (DTL) [21].

A circular accelerator is a machine that accelerates particles traveling along curved
trajectories. One type of circular accelerator, called the betatron, was first built in 1940
by Kerst that accelerated electrons [22]. Similar to the cyclotron, the betatron confines
electrons to a circular path, however the radius is fixed. The betatron is composed of a large
electromagnet and a vacuum toroid. An increasing magnetic field will induce an electric field
within the toroid, that accelerates injected electrons. The magnetic field increases at the
same rate as the electron velocity, in order to keep the orbit radius constant. A schematic of
the betatron accelerator is shown in Fig. 1.2 (b).

One year later, Lawrence invented the cyclotron concept, which was later proven by
Livingston, who produced 80 keV protons [23]. By 1939, the University of California had
produced a cyclotron capable of accelerating protons to 20 MeV. The cyclotron accelerates
particles using a time varying voltage excited between electrodes. The particles travel in
circular paths of increasing radius due to a constant transverse magnetic field. A schematic
of the cyclotron accelerator is shown in Fig. 1.2 (a).

Whilst cyclotrons offer a compact and effective method to accelerate charged particles, the
orbital frequency is assumed constant. The cyclotron frequency, fcyc, in the non-relativistic
limit is determined by equating the centripetal and Lorentz force,

fcyc =
eB

2πm
. (1.2)

Where B is the magnitude of the magnetic flux density perpendicular to the plane of particle
motion, and m is the particle rest mass. Particles complete full rotations with a fixed
frequency, provided the magnetic field is constant. When relativistic effects are incorporated,
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(a) (b)

Figure 1.2: (a) Cyclotron accelerator Schematic [19]. (b) Betatron accelerator Schematic [24].
1) guide magnetic field, 2) design orbit, 3) electromagnetic yoke and average magnetic field,
4) vacuum toroid.

Eqn. 1.2 changes to accommodate the Lorentz factor, γr,

fcyc =
eB

2πγrm
. (1.3)

The cyclotron frequency is thus inversely proportional to γr, and particles complete rotations
more slowly as they increase in energy. As a result, particles are not continuously accelerated
due to the constant frequency of the electric field between electrodes.

In order to overcome the Radio-frequency (rf) phase limitations of the cyclotron, the
synchrocyclotron was invented, by Veksler and McMillan independently [25] [26]. The new
invention provided phase stability by decreasing the frequency of the voltage source, so that
the rf phase of the accelerating mechanism would remain synchronous with the beam. It can
be shown that the change in frequency, for particles accelerated from γr0 → γr1, is as follows;

f1 = f0 +
eB

2πm
ln

(
γr0
γr1

)
. (1.4)

As a result, particles become accelerated as bunches. Another method that solves the phase
limitation of a cyclotron is the isochronous cyclotron [27]. The isochronous cyclotron varies
the magnetic field strength such that the cyclotron frequency is constant. The increase in
magnetic field strength goes as

B1 = B0
γr1
γr0

. (1.5)

As the isochronous cyclotron is capable of accelerating higher beam currents, it is generally
favoured over the synchrocyclotron.

One problem still remained, as there was no efficient way to focus the beam transversely,
as only weak focusing was used. As a result, limits were placed on the size and energy
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output of the machines. This problem was solved in 1952 by Courant, Livingston and
Snyder, who proposed strong focusing [28]. This invention allowed synchrotron accelerators
to become the dominant particle accelerator machine. Synchrotrons keep the beam confined
to a circular orbit using dipole magnets, the beam is kept focused using strong focusing
from quadrupole magnets. Higher order magnets, such as sextupoles are also used to correct
chromatic aberrations [29]. Particles in synchrotrons lose energy via synchrotron radiation.
The lost energy can be compensated with accelerating cavities, this is a feature of a storage
ring. A synchrotron schematic is shown in Fig. 1.3 (a), and the UK Diamond Light Source
is shown in Fig. 1.3 (b). The storage ring allowed for vast improvements in the available
centre-of-mass energy of colliders [30].

(a) (b)

Figure 1.3: Schematic of a simple synchrotron comprised of focusing magnets, bending
magnets and rf cavities (a) [31]. Diamond Light Source, UK (b) [32].

Linear accelerators in the 1930s were limited by the increasing length of the drift spaces
in order to keep the rf field synchronous with the beam. During world war II, research into
radar provided higher frequency technology which allowed for linear machines to become
more compact. The Alvarez accelerator, a DTL was built in 1946, which could produce
protons at 32 MeV [33]. A schematic of the DTL is shown in Fig. 1.4 (a). In the same year,
developments were made in linac technology for the acceleration of electrons [34]. The radio-
frequency quadrupole (RFQ) was invented in 1970. It was increasingly used as in injector,
over the commonly used Cockcroft-Walton injector. The RFQ provides both focusing and
acceleration simultaneously, making it a highly desired accelerator at lower energies [35].
The accelerator has four electrodes (or ‘vanes’), that when applied with a voltage, produce
electric field lines that start and terminate on vanes of alternating polarity. If the shape
of the vanes becomes sinusoidal with respect to the longitudinal dimension, a component
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of the electric field acts along the direction of particle motion. As the polarity alternates
the transverse focusing alternates between focusing/defocusing in the x/y transverse planes.
The longitudinal component of the electric field will therefore also alternate between an
accelerating and decelerating field. For a given rf phase and wavelength of longitudinal
modulation, net acceleration can be achieved. A schematic of the RFQ electrodes is shown
in Fig. 1.4 (b).

(a) (b)

Figure 1.4: Schematic of a DTL (a) [36] and the electrodes in a RFQ (b) [37].

Whilst RFQ and DTL are still used today for ion acceleration, the effective shunt
impedance (rf efficiency) drops as a function of ion velocity. The modern rf linear accelerator
is comprised of a set of coupled oscillators (or cells), that are excited in a particular normal
mode and particular cavity mode (and are therefore called resonant structures). The cavity
mode describes which field pattern is excited in a given cell. From Maxwells equations, only
certain discrete electromagnetic field profiles can exist, called cavity modes. Each cavity
mode can be excited in its own set of normal modes, describing the phase of cavity mode
excitation relative to neighbouring cells. These accelerators are further divided into Standing
Wave and Traveling Wave structures. Standing Wave accelerators are operated in the π mode
(or the π/2 mode, see later) and the length of a cell is defined such that a particle observes
a continuously accelerating field. In a Traveling Wave accelerator, the particle velocity is
matched to the phase velocity, such that the observed field is continuously accelerating. An
electron coupled cavity linac is shown in Fig. 1.5, the accelerator is a Standing Wave cavity
operated in the π/2 mode. As an electron beam passes through the structure, it will absorb
the electromagnetic energy that is stored in the individual cells. Normal conducting cavities
are often machined out of a copper alloy, due to the high conductivity. The driving frequency
of these resonant structures is an important design choice that effects nearly all aspects of
the accelerator. For medical linacs, the most common frequency choices are around 3 and

20



5.7 GHz, which are known as S- and C-band structures, respectively. Radio-frequency cavities
can also be made from niobium alloys (or more recently, niobium can be used as a thin-film
coating), and at superconducting temperatures, these cavities have very low losses and thus
high rf efficiency [38]. Superconductivity was introduced into the accelerating physics field
in the 1960s.

Figure 1.5: A coupled cavity electron linac excited in the π/2 standing wave mode.
Electromagnetic energy is imported via the rf coupler [39].

1.3 Recent developments of Proton Medical Machines

In recent years, many proton accelerates have been designed for proton radiotherapy. The
main limiting factor facing normal conducting cavities is the gradient achievable. As the
accelerating gradient increases, the probability of rf breakdown increases (see Chapter 3).
During breakdown, the cavity surface can be irreversibly damaged. After many events, an rf
cavity may no longer be able to sustain electromagnetic field due to changes in the resonant
frequency.

In 1991 a linac proposal for proton radiotherapy was developed [40]. The TERA
foundation, together with CERN and INFN developed the first prototype of a 3 GHz proton
linac in 1999 [41], called LIBO (LInac BOoster). In 2001, further tests were completed on
the design [42]. LIBO was the linear accelerator for a cyclinac design (a cyclinac uses both
cyclotron and linac accelerators in the same system), which used a cyclotron to accelerate
protons to 62 MeV, before LIBO would further accelerate the protons to 74 MeV. TERA
later began research into a single room facility called TULIP (TUrning LInac for Proton
therapy) [43], another cyclinac design. In this machine, protons would be accelerated to 24
MeV with a cyclotron, with the remaining energy (24 - 230 MeV) coming from a 3 GHz
side-coupled linac [44].
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The first all-linac solution for a proton machine began with the ENEA group, in Italy.
The lower energy levels would be accelerated using an RFQ into a DTL [45]. In 2014 CERN
produced an efficient RFQ designed at accelerating protons to 5 MeV in 2 m [46]. This
designed removed the requirement of cyclotron acceleration at the lower energy levels. The
CERN spin-off company, A.D.A.M (Application of Detector and Accelerators to Medicine),
began the design of a commercial all-linac solution, producing protons up to 250 MeV. In
addition to protons machines, developments have been made towards a carbon ion linear
accelerator [47, 44].

In the UK, there are currently two centres offering higher energy PBT. One centre is
at the University College London Hospital (UCLH) in London, and the second is at the
Christie NHS Foundation Trust, in Manchester. These centres were produced due to a
government imitative, costing £250 M. Each centre has three treatment rooms, thus each
treatment room costs approximately £40 M. Proton acceleration is achieved with the Varian
ProBeam accelerator, an isochronous superconducting cyclotron [48]. Figure 1.6 shows the
superconducting isochronous cyclotron capable of producing protons at 250 MeV (a) and a
UCLH treatment room (b). There are lower energy PBT services available, such as the low
energy proton machine (used to treat some eye cancers) in Clatterbridge, Liverpool.

Recently, Lancaster University, Manchester University, the Cockcroft Institute and the
Christie hospital collaborated on a project that explored a linear booster concept for
accelerating protons to 350 MeV. This project, called ProBE [51], developed a booster
capable of accelerating protons from ∼ 250 MeV (from the cyclotron) to 350 MeV, for medical
imaging. The linac design was a high gradient S-band side-coupled SW cavity. A prototype
has since been developed and tested at CERN.

Phase two of the ProBE project saw a collaboration with Advanced Oncotherapy (AVO), a
specialist company that designed the LIGHT proton therapy system [52]. The LIGHT system
is an all-linac solution, which has benefits over current systems due to the lower construction
costs of the bunker system. As a result, the aim is to provide better accessibility to PBT.

This project specifically looks to design a high energy proton booster for the 150 - 250 MeV
energy range. The lower energy levels (up to 5 MeV) will be completed by the 750 MHz RFQ
designed and built at CERN [46]. The next acceleration stage will be completed with a side-
coupled DTL, producing protons at 37.5 MeV. From 37.5 MeV to 250 MeV, the acceleration
will be completed using a coupled cavity linac (CCL). For the CCL designed in this project,
the minimum aperture limit was set to 2.5 mm. As the system is an all-linac solution, the
beam emittance is kept small, relative to cyc-linac systems, and thus provides the ability to
realise smaller apertures. The cavity is to be operated in S-band, at 2.9985 GHz. Initially,
the cavity is expected to be a SW π/2 structure, however TW structures are also explored,
due to developments in the work.
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(a)

(b)

Figure 1.6: (a) Varian ProBeam superconducting cyclotron [49]. (b) Proton beam therapy
treatment room at UCLH [50]
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1.4 Thesis outline

Chapter 2 describes the theory of rf acceleration, including transverse and longitudinal beam
dynamics. The aim of the chapter is to provide a basic understanding of the core concepts,
such that a given reader can understand latter sections of the document.

Chapter 3 describes the design procedure of the single cell. This chapter discusses the
optimisation methods implemented, such as Multi-Objective Genetic Algorithms, for solving
Multi-Objective problems. A novel method was used to select a single cell geometry design,
that utilised different visualisation techniques to best portray the design space of the single
cell. Once a single cell was selected, the Standing Wave side-coupled cells and Traveling
Wave coupling slots were designed, with respect to various objectives.

Chapter 4 introduces a novel self-consistent framework that incorporates longitudinal
acceleration into transverse beam dynamics. Two new focusing schemes are analytically
explored, the FODO-like focusing scheme, and the Minimum Aperture Scheme (MAS). The
FODO-like scheme is solved analytically, such that the maximum beam size is minimised at
the cavity entrance and exit. For a given beam emittance, the maximum cavity length is
thus determinable. The MAS considers the focusing scheme by which the acceptance ellipse
of the cavity is matched to the beam ellipse, providing the maximum cavity length feasible
for a given beam emittance.

Chapter 5 describes a novel Fast Cell to Cell Tracking (FC2CT) algorithm. The
developed algorithm tracks the 6D phase space of a particle beam by analytically solving
for the momentum change once per rf cell, in order to reduce computation time. The
method approximates constant particle velocity over the integration region and requires the
cell longitudinal electric field component, Ez, determined by electromagnetic solver codes.
FC2CT is developed for tracking through both Standing and Traveling Wave structures.

Chapter 6 uses FC2CT, in addition to results from Chapter 3, to approximate the energy
gain for a given cavity type, with both the input power and cavity length being variable.
This allows the exploration and comparison of potential linac solutions for the 150 - 250 MeV
proton booster.

Lastly, Chapter 7 discusses the final electromagnetic design of the chosen cavity, including
the matching cell coupler design. The chapter also displays results obtained from tracking
(with FC2CT) a realistic beam through the chosen linac design. The initial beam ellipse is
determined analytically, from results obtained in Chapters 4 and 6.
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Chapter 2

Theory of Particle Acceleration

2.1 Solving Maxwell’s Equations in a Cylindrical Pill-

box

(a)

Figure 2.1: Pillbox cavity and relationship between cylindrical and cartesian coordinates [53].

Cylindrical pillbox are used as vessels for electromagnetic energy that produce longitudinal
acceleration of a charged particle, due to the properties of the first principal mode, TM010.
The wave equation [54] in cylindrical coordinates (see Fig. 2.1) is as follows,

1

c2
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
. (2.1)

Where u is a scalar wave function. The first step to solving Eqn. 2.1 is to separate u into
multiple functions of one variable,

u(r, θ, z, t) = R(r)Θ(θ)Z(z)T (t), (2.2)
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substituting Eqn. 2.2 into Eqn. 2.1 and dividing by u before simplifying produces the
following;

1

c2
T ′′

T
=

(
R′′ +

R′

r

)
1

R
+

1

r2
Θ′′

Θ
+
Z ′′

Z
, (2.3)

where ∂2X
∂x2

= X ′′. Firstly, it can be noted that the terms 1
c2
T ′′

T
and Z′′

Z
are purely functions of

one variable, and therefore are constants with respect to changes in other variables. Defining

1

c2
T ′′

T
= −ω

2

c2
= −k2, (2.4)

and
Z ′′

Z
= −k2z . (2.5)

Multiplying Eqn. 2.3 by r2, the term 1
r2

Θ′′

Θ
becomes independant of other variables and is

also a constant,
Θ′′

Θ
= −α2. (2.6)

Substituting the constant terms into Eqn. 2.3 and simplifying,

0 =

(
R′′ +

R′

r

)
r2

R
− α2 − k2zr

2 = −k2r2. (2.7)

Defining k2−k2z = k2r and multiplying by R produces the final form of the differential equation

r2R′′ + rR′ + (k2r − α2)R = 0. (2.8)

Equation 2.8 is called the Bessel’s differential equation and the solutions are the Bessel
functions of the first kind [55]. Bessel functions of the second kind Yα, are also solutions to
Bessel’s equation, however are valid for singularities at r = 0, which is not the case here.
Bessel functions of the first kind can be described as follows

Jα(r) =
∞∑
m=0

(−1)m

m!Γ(m+ α + 1)

(
r

2

)2m+α

. (2.9)

Where Γ is the Gamma function. The solution in Eqn. 2.9 for α = 0 describes the longitudinal
electric field, Ez, as a function of radial displacement, r. This mode is called a Transverse-
Magnetic (TM) mode, as there is no longitudinal magnetic field component. The fundamental
mode has azimuthal symmetry and is called the TM010 mode. The general result for TM
modes are described with TMmnp (and similarly transverse electric modes are TEmnp). The
subscriptm describes the number of full wave variations around theta, n describes the number
of half wave variations along the diameter and p describes the number of half wave variations
along the longitudinal direction. Only a discrete set of solutions can be produced within a
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cylindrical pillbox, each described with different values ofm,n and p. Each mode is a different
cavity mode. For the TM010 mode, the only other non-zero field component is Bθ, describing
the component of the magnetic field azimuthally. The scalar field can be determined from
Ez using Ampere’s law,

∇⃗ × B⃗ = µ0J⃗ +
1

c2
∂E⃗

∂t
, (2.10)

where µ0 is the permeability of free space and J is the current density (not to be confused
with the Bessel Function, Jα). The fields are as follows;

Ez = E0J0(krr) cos(ωt), (2.11)

Bθ = −E0

c
J1(krr) sin(ωt). (2.12)

Where E0 is the maximum longitudinal electrical field. The field profiles for the TM010 mode
are shown in Fig. 2.2.

Figure 2.2: First order Bessel functions describing field components Ez (J0) and cBθ (J1).

The boundary condition states a perfect conductor can not have a tangential electric
field component or a normal magnetic field component at the surface. Therefore, Ez must
terminate on the circumference of the cylindrical pillbox, occurring at r ≈ 2.405ω

c
. Therefore,

for a cylindrical pillbox of radius Rcyl, the frequency of the mode, ω010, is
2.405c
Rcyl

. The stored

energy in the cavity mode is

U =
πε0lcylRcyl

2
E2

0J
2
1 (2.405), (2.13)

where ε0 is the vacuum permeability and lcyl is the length of the cylinder.
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Note the above discussion has assumed a perfectly cylindrical pillbox, in which Ez is
constant with longitudinal variable, z. In reality, an aperture is required, on-axis, in order
to excite the cavity mode in addition to providing a path for particle to traverse. With
the addition of the aperture, Ez is no longer a constant with z. This effect also produces a
non-zero Er component for the TM010 mode, due to Gauss’ Law,

1

r

∂(rEr)

∂r
+

1

r

∂Eθ
∂θ

+
∂Ez
∂z

=
ρ

ε0
. (2.14)

Where ρ is the charge density and is zero in the absence of free charges. This effect is discussed
more rigorously in Section 5.2 when deriving the field components of a TM010 mode given
the Ez(r, z) field map.

In general, solving Maxwell’s equations analytically for single cell geometries is not
possible. As a result, computer codes (such as CST [56]) are used to solve Maxwells equations
using the Maxwell’s Grid Equations [57] using finite difference techniques.

Slater’s Perturbation Theory

A cavity mode operating at resonant frequency will observe the stored energy oscillating
between the electric and magnetic field evenly, U = UE,max = UH,max. For a small change
in the geometry of the cylindrical waveguide, the electric and magnetic field lines will shift
until the maximum stored energy in both fields is equal, changing in the resonant frequency.
The change in the frequency can be approximated using Slater’s Perturbation theory, which
states for a volume change ∆V ,

∆ω0

ω0

=
∆UH −∆UE

U
=

1

4U

∫
∆V

(µ0H
2 − ε0E

2)dV. (2.15)

UH and UE describe the (time averaged) energy removed due to the change ∆V . This can be
visualised as follows. Suppose removing a concentric shell from a cylindrical pillbox excited
in the TM010 mode, so that the resulting pillbox has a smaller radius. As Ez is close to zero
in the removed region (and Er = Eθ = 0), UE ≈ 0. As Bθ is non-zero in this region, a portion
of magnetic field energy has been removed (UH > 0), thus from Eqn. 2.15, ∆ω0 is positive
and the resonant frequency increases, as expected.

2.2 RF Cell Figures of Merit

When designing rf accelerator structures a single cell is often designed before multiple cells
are coupled together to produce coupled cavity structures. The are multiple figure of merits
for a single cell and will be defined now. The first figure of merit is the quality factor, Q.
Defined as

Q =
ωU

P
, (2.16)
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Table 2.1: Frequency scaling of multiple cavity parameters.

Cavity Parameter Normal Conducting Super Conducting

Surface Resistance, Rs f 1/2 f 2

Power Loss, P f−1/2 f
Shunt Impedance, Z f 1/2 f−1

Quality Factor, Q f−1/2 f−2

Z/Q f f

where ω is 2πf , U is the stored energy and P is the power loss. The Q factor describes the
ratio of the stored energy to the energy dissipated in one oscillation for the described system.

The efficiency of particle acceleration over a single cell can be described with the shunt
impedance, R,

R =
V 2
0

P
. (2.17)

Where V0 is the voltage gain over the cell, and is given

V0 =

∫ L

0

Ez(z)dz. (2.18)

It is convenient to normalise the shunt impedance to one cell length to give the shunt
impedance per unit length, R′,

R′ =
V 2
0

LcellP
. (2.19)

In practice, the accelerating axial field varies with time as the particle traverses the cell
(Ez(z) → Ez(z, t)) and the voltage gain is modulated by the transit time factor, T , to
account for the varying field. The effective shunt impedance per unit length is given;

Z =
(V0T )

2

LcellP
. (2.20)

Henceforth, any reference to the shunt impedance is a reference to the effective shunt
impedance per unit length. Dividing the shunt impedance by the quality factor cancels
the power loss and is independent of material properties

Z

Q
=

(V0T )
2P

LcellPωU
=

(V0T )
2

ωULcell
. (2.21)

The peak field values are also vital figures of merit for single cell design.
Table 2.1 describes the frequency dependence of various cavity parameters. The shunt

impedance increases as f 1/2 for normal conducting cavities. One may think that the higher
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the design frequency the better, as the rf efficiency improves. However the Q-factor decreases
with the same dependence. In the next section it is shown that higher Q suppresses the power
flow droop and power flow phase shift.

2.3 Dispersion Relation and Coupled Oscillators

A smooth uniform waveguide excited in the TM010 mode will have a dispersion relation, that
relates the frequency of the normal mode oscillations to the wave-vector, k, [35]

ω2 = ω2
c + (kc)2. (2.22)

Where ωc is the cutoff frequency, and is a function of the waveguide geometry. k = 2π
λG

for
guide wavelength λG. The phase velocity is

vphase =
ω

k
=

c√
1− ω2

c/ω
2
> c, (2.23)

and greater than c. A particle can not be efficiently accelerated as the synchronicity condition
is not met. Inserting conducting walls at periodic positions (with period p) along the
waveguide (often called ‘disk loaded’) is a method used to slow down the wave phase velocity.
The act of inserting periodic conducting walls introduces modulation to the longitudinal
electric field magnitude with the same period as the walls. The axial electric field now takes
the form

Ez(r, z, t) = Ep(r, z)e
i(ωt±kz). (2.24)

Where Ep(r, z) is periodic over the distance p. Ez(r, z, t) obeys Floquet theorem, which
requires the field value at any two points separated by an integer number of periods must
differ by a complex number. This is the same as;

Ep(r, z + np) = Ep(r, z)e
±inkp. (2.25)

as Ep(r, z) is periodic over some distance p it can be represented by a Fourier series;

Ep(r, z) =
∞∑

n=−∞

cn(r)e
−i2nπ z

p . (2.26)

Inserting Eqns. 2.24 and 2.26 into the wave equation in cylindrical coordinates;

∂2Ez(r, z, t)

∂r2
+

1

r

∂Ez(r, z, t)

∂r
+
∂2Ez(r, z, t)

∂z2
− 1

c2
∂2Ez(r, z, t)

∂t2
= 0. (2.27)

Thus;

c′′n(r) +
1

r
c′n(r) +K2

ncn(r) = 0, (2.28)
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where a prime refers to a partial derivative with respect to r, and

K2
n =

ω2

c2
− k2n, (2.29)

where kn = k + 2nπ
p
. For real values of Kn the solution for the propagating axial field is

Ez(r, z, t) =
∞∑

n=−∞

EnJ0(Knr)e
i(ωt−knz). (2.30)

Where J0(knr) is the zeroth order Bessel function of the first kind, and describes the radial
effect on Ez(r).

Equation 2.30 demonstrates the axial electric field can be described as an infinite sum
of traveling waves called spatial harmonics. Each spatial harmonic travels at its own phase
velocity

vph,n =
ω

knc
=

vph,0
1 + (nvph,0λ/p)

, (2.31)

where vph,0 is the phase velocity of the principal spatial harmonic, with n = 0. Selecting a
spatial harmonic of high enough index will produce a phase velocity that is suitable for particle
acceleration. It can be shown the effect of all other spatial harmonics on a particle energy
cancel, leaving only the contribution from the chosen harmonic. An infinite disk/iris loaded
waveguide can also be described as a set of identical coupled oscillators. For a given cavity
mode, like the TM010 mode, there exists an infinite number of normal modes of oscillations.

Figure 2.3: Normal modes excited in a periodic chain of oscillators.

For a given normal mode, each cell oscillates at the same frequency, given by the dispersion
relation. From one cell to the next there exists a phase advance, from Floquet’s theorem.
The phase advance per cell defines which normal mode is being excited, as shown in Fig. 2.3.
For a finite set of coupled oscillators, the number of normal modes is equal to the number of
oscillators. As a result, the dispersion relation goes from a continuous to a discrete curve, with
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each point representing a normal mode of oscillation. The π mode describes the normal mode
by which each cell oscillates π radians out of phase. One can visualise a particle traveling at
such a velocity (v) that it only observes a positive Ez field as it traverses multiple cells. This
would require the particle crosses one cell in the time it takes the field to oscillate by half a
period, T/2,

Lcell
v

=
T

2
=
π

ω
. (2.32)

An arbitrary dispersion curve is shown in Fig. 2.4 for an infinite set of oscillators (so that
the curve is continuous). As the field is comprised of an infinite number of spatial harmonics
of increasing kn, the curve is indefinitely periodic. The π mode is displayed, showing phase
velocity of each spatial harmonic. Due to the periodicity, a dispersion curve is shown with
only one branch. Thus, a given dispersion curve is actually demonstrating whichever spatial
harmonic provides the correct phase velocity for the application. Due to the periodicity, the
group velocity - calculated as the gradient of the tangent to a given normal mode - is constant
for all spatial harmonics of the same normal mode.

Figure 2.4: Dispersion Relation for an arbitrary cavity mode. n describes the spatial harmonic
index. π-mode is shown. The phase velocity of each spatial harmonic is the gradient of the
red line.

2.3.1 Equivalent Circuits

Equivalent circuits are often used to gain an understanding of the characteristics of periodic
structures [35]. Considering an infinite number of coupled cells as shown in Fig. 2.5. The
series impedance and shunt admittance are denoted Z and Y , respectively.

In order to calculate a useful result when considering equivalent circuits, a general circuit
of n identical cells is considered. The nth cell has voltage Vn and current In. From Kirchhoff’s
law,

In−1 = In + Y Vn, (2.33)

32



Figure 2.5: Schematic of periodic chain of circuit oscillators.

In = In+1 + Y Vn+1. (2.34)

The voltage drop from one cell to the next is the product of the cell current and shunt
impedance, from Ohm’s law,

Vn − Vn+1 = ZIn. (2.35)

Eliminating the voltage and using Floquet theorem to relate the currents in adjacent cells
produces the following result [35],

cos(ϕ) = 1 +
Y Z

2
. (2.36)

Equation 2.36 describes the general result for finding the phase advance per cell for a given
shunt admittance and series impedance. Two examples of equivalent circuits that describe
coupled cavity accelerators are the electrically and magnetically coupled circuits.

Electrically Coupled Circuit

The electrically coupled circuit has a series impedance, Ls and series capacitance, Cs. As
the circuit is electrically coupled the shunt mechanism (parallel) is a capacitor of capacitance
Cp. The series impedance and shunt admittance of a cell are given;

Z = iωLs +
1

iωCs
= iωLs

(
1− ω2

0

ω2

)
, (2.37)

Y = iωCp. (2.38)

Where ω2
0 = 1

LsCs
is a constant. Using the values of Z and Y with 2.36 and re-arranging for

the resonant frequency;

ω = ω0

√
2Cs
Cp

(1− cos(ϕ)) + 1. (2.39)

The above equations provides the dispersion relation for the electrically coupled circuit.
The resonant frequency is clearly a function of phase advance per cell. The 0−mode is the
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normal mode when ϕ = 0, and thus ω = ω0. The π−mode frequency can be shown to be
approximately ω = ω0(1 +

2Cs

Cp
) for Cs ≪ Cp. In this regime the frequency of the π−mode is

higher in frequency than the 0−mode. This circuit is equivalent to an iris loaded waveguide
that couples electromagnetic energy from one cell to the next through the iris, or aperture.
For normal modes that may be used for acceleration, such as the 2π

3
mode, the dispersion

curve has a positive gradient. Therefore ∂ω
∂ϕ
> 0 and the group velocity is positive.

Magnetically Coupled Circuit

The magnetically coupled circuit likewise has a series impedance and capacitance, however
couples cells with an inductor of impedance Lp. Using 2.36 and solving for ω as in the
previous case;

ω =
ω0√

2Lp

Ls
(1− cos(ϕ)) + 1

. (2.40)

Again, the 0-mode has frequency ω = ω0. However, for Lp ≪ Ls, the π−mode frequency goes

as ω0(1− 2Lp

Ls
), and has a frequency lower than the 0−mode. Thus, a 2π

3
normal mode has a

negative group velocity and hence is called a backward-wave mode. Figure 2.6 displays the
dispersion curve for both an electrically and magnetically coupled array of periodic oscillators.
The group velocity is the gradient of the curve at a given phase advance.

Figure 2.6: Dispersion relation of both electrically and magnetically coupled periodic circuit.

For both circuit examples, the idea of an inter-cell coupling value can be initiated.
Calculating the frequency of the π

2
−mode is often used to normalise the resonant frequency.

The normalised frequency for each circuit are given;

ω2
e = ω2

π/2,e(1− ke cos(ϕ)), (2.41)
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ω2
m =

ω2
π/2,m

(1− km cos(ϕ))
. (2.42)

Where the inter-cell coupling constants are given;

ke =
2Cs

Cp + 2Cs
, (2.43)

km =
2Lp

Ls + 2Lp
. (2.44)

The width of the pass band is an important characteristic of the dispersion relation. The
width is given as the difference in frequency between the 0 and π−mode. For the electrically
coupled circuit,

ωπ − ω0 = ω0(1 +
2Cs
Cp

− 1) = ω0
2Cs
Cp

. (2.45)

Dividing the width with the frequency of the π/2−mode produces the fractional bandwidth

ωπ − ω0

ωπ/2
=

2Csω0

Cpω0

√
1 + 2Cs

Cp

≈ 2Csω0

Cpω0(1 +
Cs

Cp
)
=

2Cs
Cp + Cs

. (2.46)

Where it was used Cs ≪ Cp. In this limit,

ke ≈
ωπ − ω0

ωπ/2
, (2.47)

and so the fractional bandwidth is the same as the coupling constant. A large coupling
constant produces a larger fractional bandwidth and the normal modes on the dispersion
curve span a large range of resonant frequencies. Small coupling constants suggest the
coupling from one cell to the next is smaller and the allowed values of resonant frequencies
spans a much smaller range. For the magnetically coupled circuit, the fractional bandwidth
is

ωπ − ω0

ωπ/2
=
ω0(−2Lp

Ls
)

ω0

√
1 +

2Lp
Ls

≈ −2Lp
Ls

(
1 +

Lp
Ls

)
=

−2Lp

Ls

(
1− Lp

Ls

) =
−2Lp
Ls − Lp

, (2.48)

and

km ≈ ωπ − ω0

ωπ/2
. (2.49)

Thus, the inter-cell coupling constant can be described purely by the frequencies of the 0, π/2
and π normal modes.
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Figure 2.7: Dispersion curve of periodic array of oscillators with both inductive and capacitive
admittance. Multiple solutions are shown for different values of ω2.

Electrically and Magnetically Coupled Circuit

As a final example, the shunt mechanism is treated as both capacitive and inductive. There
are both series components, Ls and Cs, and shunt components, Lp and Cp. Let ω

2
1 = 1/(LsCs)

and ω2
2 = 1/(LpCp). Using Eqn. 2.36, the resonant frequency is quadratic in nature and

has two solutions, describing the upper and lower pass bands, as there exists two methods
for coupling to take place between cells. At some special case (a certain set of values for
Cp, Lp, Cs, Ls and ω1 = ω2), the two pass bands meet, removing the stop band - this is called
confluence. At confluence the slope of one (previously separate) pass band continues into the
other pass band. This means the group velocity slope does not tend to 0 as the turning point
becomes a point of maximum gradient, leading to improved rf stability. Figure 2.7 displays the
dispersion curve of a periodic array of oscillators with both inductive and capacitive shunt
mechanisms. By changing the value of Lp or Cp, ω2 can be tuned equal to ω1, achieving
confluence. For ω2 > ω1, the upper pass band moves too high in frequency for confluence to
occur. As ω2 is too large, LpCp is too small. For ω2 < ω1, LpCp is too large.

2.3.2 Coupled Oscillators

In order to gain a deeper understanding of the physics of coupled oscillators the case of three
coupled oscillators is outlined [35]. The system is comprised of two end cell oscillators, with
capacitance 2C0 and coupled to the central cell with inductance L0, as shown in Fig. 2.8.
The resonant frequencies of the end cells is therefore ω0 =

1√
2C0L0

, this is the same resonant
frequency as the central cell, which has capacitance C0 however double the total inductance.
Kirchhoff’s Voltage Law says the sum of voltage in a closed loop is zero. Applying Kirchhoff’s
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Figure 2.8: Schematic showing three coupled oscillators.

Law to each closed loop produces a set of three equations that can be solved as an eigenvalue
problem (see [35]). Each normal mode is described by an eigenvector, I, representing the
current in each cell. The eigenvalue represents the frequency of each normal mode.

ω0-mode =
ω0√
1 + k

, I⃗ =

1
1
1

 (2.50)

ωπ/2-mode = ω0, I⃗ =

 1
0
−1

 (2.51)

ωπ-mode =
ω0√
1− k

, I⃗ =

 1
−1
1

 (2.52)

k represents the coupling constant, and is given as the ratio of the mutual inductance to the
central inductance, L0.

The general result for N + 1 coupled oscillators have the following eigenvector elements
[35];

vq,n = cos
(πqn
N

)
eiωqt, (2.53)

the indices q and n refer to the mode and cell respectively. The eigen-frequencies of mode q
are

ωq =
ω0√

1 + k cos(πq
N
)
. (2.54)

Checking the above equations with N = 2 produces the correct current eigenvector and
eigenvalues for a 3-cell system. The bandwidth of the dispersion relation for a general N +1
coupled oscillators is (for small k);

ωπ−mode − ω0−mode = ω0

(
1√
1− k

− 1√
1 + k

)
≈ ω0(1 + k/2− 1 + k/2) = ω0k, (2.55)
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and independant of N . This result is important; the number of normal modes increases
linearly with N , however the bandwidth is fixed. Thus, coupled oscillator systems with more
cells have smaller mode spacing. From Eqn. 2.54, the value of k can be calculated as the
following;

k =
ωπ − ω0

ωπ/2
. (2.56)

Effects of individual frequency errors

The above description provides the perfect case of N + 1 oscillators. In reality, cells can not
be manufactured ideally and cells will have frequency errors. The effect of frequency errors
causes perturbations to the normal mode eigenvectors and eigenvalues. The analytical result
is obtained using Perturbation Theory [35]. The first order approximation for the current
eigenvector for mode q is given,

v⃗pert,q = v⃗q +
∑
r ̸=q

aqrv⃗r. (2.57)

Where v⃗r is the unperturbed eigenvector for mode r and aqr is some assumed small parameter
given via the following

aqr =
[v⃗qPv⃗r]
1
ω2
r
− 1

ω2
q

, (2.58)

and P is the Perturbation matrix.
Carrying out the above calculation produces the following result for the perturbed eigen-

frequencies and eigenvectors. Denoting the unperturbed frequency as ω0.

ωq=0 =
ω0

√
1 + k

√
1 + δωc

ω0

(2.59)

v⃗q=0 =


1 + 1+k

2k

(
δωc

ω0
− 4 δωe

ω0

)
1− 1+k

2k
δωc

ω0

1 + 1+k
2k

(
δωc

ω0
+ 4 δωe

ω0

)
 (2.60)

ωq=1 =
ω0√

1− 4(δωe/ω0)2
(2.61)

v⃗q=1 =


1 + 4/k2 δωcδωe

ω2
0

− 2/k2
(
δωe

ω0

)2
−2
k
δωe

ω0

−1− 4/k2 δωcδωe

ω2
0

+ 2/k2
(
δωe

ω0

)2
 (2.62)
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ωq=2 =
ω0

√
1− k

√
1 + δωc

ω0

(2.63)

v⃗q=2 =


1− 1−k

2k

(
δωc

ω0
− 4 δωe

ω0

)
−1− 1−k

2k
δωc

ω0

1− 1−k
2k

(
δωc

ω0
+ 4 δωe

ω0

)
 . (2.64)

The introduction of individual cell frequency errors produces some interesting insights to
the three coupled oscillator system. Note the π/2− mode results shows the second order
perturbation theory correction. The two end cell magnitudes vary only with frequency errors
squared. This result is not true of the 0 and π− mode, which have first order frequency error
contributions. This result shows a benefit of the π/2−mode.

Effects of power losses

For lossy systems, energy is lost in each oscillator from Ohmic (or power) dissipation. To
best describe a coupled cavity system in steady-state a power generator is needed to account
for losses. Power is coupled into a drive cell and distributes power along the chain. The
voltage sum in the drive cell is the same as the non-lossy case with an additional drive term
[35]. The eigenvector solutions for the three modes take the form

v⃗q=0 =

 1

e−i
3
√
1+k

kQ

e−i
4
√
1+k

kQ

 (2.65)

v⃗q=1 =

 1
1
kQ
ei

π
2

−1 + 2
k2Q2

 (2.66)

v⃗q=2 =

 1

−ei
3
√
1−k

kQ

ei
4
√
1−k

kQ

 . (2.67)

Thus the magnitude of the 0 and π mode fields remains 1 to first order, however have a
shifted phase in the centre and end cell, called the power flow phase shift. The centre and
end cell in the π/2−mode do not experience a power flow phase shift. The end cell (to second
order) observes a power flow droop, a real effect that decreases the magnitude of the field in
cells further from the drive cell. This phenomenon decreases with both the coupling constant
and Q factor.

The equivalent circuit model has been useful for gaining understanding of the nature of
coupled oscillators. The above discussion apply to coupled cavity accelerators. It has been
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shown that individual cell frequency errors and Ohmic losses cause unattractive features in
the 0 and π− normal modes, in that the cell fields reduce in magnitude and experience power
flow phase shifts. As a result, these modes are less tolerant to manufacturing errors. This
effect can be visualised by picturing the shape of the dispersion relation. Modes that reside
closer in frequency observe larger perturbative effects. The π/2− mode lies on the dispersion
relation where the gradient is largest and therefore mode spacing is maximised. Figure 2.9
displays the dispersion curve of a 9-cell coupled oscillator chain, the π/2 mode is shown with
a larger point size. A given normal mode has a natural spacing ∆ω = ω

Q
thus higher Q will

reduce the likelihood of exciting multiple normal modes.

Figure 2.9: Dispersion curve of a 9-cell chain of coupled oscillators, coupled both electrically
and magnetically.

The π/2−mode can be altered such that the nominally unexcited cells can be made
physically short in the longitudinal dimension (the requirement for the correct frequency will
change the radius of the cell). This is called a bi-periodic structure and provides the increased
tolerance to frequency errors and power losses whilst the high shunt impedance of a π mode.
The unexcited cells can also be moved physically off axis which are coupled to excited cells
via magnetic coupling. This type of structure is called side-coupled, which is beneficial for
the same reasons as the bi-periodic structure. Nevertheless, increasing the coupling constant
of a chain of oscillators requires increased modulation of the magnetic field, which reduces
the shunt impedance. As a result, accelerator design faces a conflict between increasing
the coupling constant (to improve cavity tolerance to frequency errors and power losses) and
maximising the shunt impedance for efficient transfer of energy to a particle beam. If a cavity
is too long, the number of cells increases, increasing the required coupling and dropping the
shunt impedance.

When designing a side-coupled π/2 structure, the non-excited cells are off-axis, and are
geometrically different from the accelerating cells. In order to realise the structure, the π/2
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resonant frequency of the accelerating and side-coupled cells must be equal. For non-zero
differences in frequency, the power flow phase shift reappears, which was characteristically
suppressed in the π/2 normal mode. The power flow droop still persists and therefore both
effects require minimising. The field in an accelerating cell of a side-coupled structure is
displayed in section 6.2.2.

2.4 Power Coupling

In the previous section, the lossy system required a generator attached to the drive cell. For
a cavity system, power coupling can be achieved in a variety of ways, such as a magnetic-
coupling loop on a coaxial transmission line, which induces a magnetic field when current
flows. For higher power coupling, rf power is fed into the cavity via a waveguide.

A rf generator produces a current that flows through a waveguide to the cavity through a
power coupler. Reflected power is dumped into a matched load via a circulator. The external
Q factor is the Q of the external load, Qex and is given

Qex =
ω0U

Pex
(2.68)

Where U is the total energy in the system. The total power loss is the sum of the external
power loss from reflections and the power lost in the cavity, Pc, Pt = Pex + Pc. The total
power has an associated Q factor called the loaded Q,

QL =
ω0U

Pt
=

ω0U

Pex + Pc
. (2.69)

Thus,
1

QL

=
1

Qex

+
1

Q0

. (2.70)

Defining Pex

Pc
to be the waveguide to cavity coupling strength;

Pex
Pc

=
Q0

Qex

= β. (2.71)

It can be shown using an equivalent circuit that for a generator driven at the resonant
frequency, the waveguide loaded impedance is related to the cavity load impedance by the
factor β, ZL = βZc. The reflection coefficient is given;

Γ =
ZL − Zc
ZL + Zc

=
1− β

1 + β
. (2.72)

Γ = 0 requires β = 1, this is called critically coupled and produces a matched state.
Impedance matching also maximises the power flow into the cavity. The reflected power
for a given input power is

Pref = PinΓ
2. (2.73)
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Energy conservation requires

Ein = Eref + Ec → Pin = Pref + Pc, (2.74)

therefore;

Pc = Pin − Pref = Pin
(
1− Γ2

)
= Pin

(
1− 1− β

1 + β

1− β

1 + β

)
= Pin

4β

(1 + β)2
, (2.75)

which is maximum for β = 1. The above assumes a constant reflection coefficient during
steady state. In reality, the power inside the cavity must fill up to the maximum value
during the transient period. The cavity time constant is given as τ = 2QL

ω0
. The transient

reflection coefficient is;

Γ(t) = (1− e(−t/τ))
2β

1 + β
− 1, (2.76)

the power in the cavity is therefore;

Pc(t) = Pin(1− Γ(t)2) = Pin

(
1−

(
(1− e(−t/τ))

2β

1 + β
− 1

)2
)
. (2.77)

For β = 1;
Pc(t) = Pin

(
1− e(−2t/τ)

)
. (2.78)

For different values of β, different cavity reflections are observed with time. When β << 1,

Γ(t) = (1− e(−t/τ))
2β

1 + β
− 1 ≈ (1− e(−t/τ))2β − 1 → |Γ(t→ ∞)| = |2β − 1|. (2.79)

For β >> 1;
|Γ(t)| ≈ |1− 2e(−t/τ)|. (2.80)

Indeed for β = 1;
|Γ(t)| = e(−t/τ) → |Γ(t→ ∞)| = 0, (2.81)

as expected. Figure 2.10 displays the reflection coefficient when power coupling to a Standing
Wave cavity during the transient period for different coupling coefficient, β. (b) displays
the response for β close to 1. For β errors of ≈ 10%, the cavity will still experience
reflections ≈ 5%.

2.4.1 Traveling and Standing Wave Operation

Standing Wave (SW) cavities are resonant structures that are driven in either the π or
π/2 normal modes. Power is coupled into the input coupler and the field builds up as
the reflection coefficient tends to 0 over multiple time constants. This can be visualised
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(a) (b)

Figure 2.10: Reflection coefficient during transient filling period of Standing Wave cavity for
different coupling constant, β. Different values of β are shown in (a) and (b).

as multiple reflections within the cavity building the field evenly throughout the structure.
Power emitted from the cavity destructively interferes with the reflected power until the stead
state solution is reached. In Traveling Wave (TW) operation, there still exists a dispersion
relation, and a particular mode is excited. However, power flows from the drive cell to the
next cell, sequentially, depositing electromagnetic energy proportional to the group velocity of
the wave. There are two main methods of particle acceleration using a traveling wave cavity,
constant impedance and constant gradient. Constant impedance structures have identical
cells at each period. Ohmic power loss per unit length is

dPw
dz

= −ωU
Q
. (2.82)

The shunt impedance per unit length is

Z =
E2
l

−dPw

dz

, (2.83)

where El is the magnitude of the longitudinal field. The wave energy travels at the group
velocity, vg = Pw/U . It is possible to show that;

1

Pw

dPw
dz

= − ω

Qvg
, (2.84)

which has solutions;

Pw(z) = P0e
− ω

Qvg
z
, (2.85)
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and describes the wave power exponentially decreasing with z. Hence, α0 is the attenuation
per unit length and is defined

α0 =
ω

2Qvg
. (2.86)

The longitudinal field amplitude also varies exponentially with z, indeed,

E2
l =

ωZPw
Qvg

(2.87)

thus;

El =

√
ωZP0

Qvg
e−α0z = E0e

−α0z, (2.88)

and the longitudinal field magnitude decreases exponentially with z similar to the wave power.
The energy deposited in each cell available for particle acceleration is

U(z) =
Pw(z)

vg
, (2.89)

and decreases along the structure. The total attenuation over a cavity of length Lcav, τ0 =
α0Lcav. The time taken for the cavity to fill with energy is tfill =

Lcav

vg
= τ0

2Q
ω
. It is possible

to create a system by which the wave power and group velocity decrease at the same rate,
so as to keep U(z) constant with z, and each cell provides the same gradient. The only way
this is possible is to make vg dependant on z;

Pw(z) = Uvg(z). (2.90)

Writing Pw(z) and vg(z) as power series in z and absorbing the constant U ,

a0 + a1z + a2z + ...+ anz
n = b0 + b1z + b2z

2 + ...+ bnz
n. (2.91)

Therefore, the wave power and group velocity behave identically with z. The attenuation
per unit length is therefore a function of z, α0(z) =

ω
2Qvg(z)

.

dPw
dz

= −2α0(z)Pw(z), (2.92)

dPw
Pw(z)

= −2
ω

2Qvg(z)
dz = −2

ωU

2QPw(z)
dz. (2.93)

Thus,
dPw
dz

= −ωU
Q

= constant, (2.94)
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as U is treated constant. The wave power and group velocity are therefore linearly dependant
on z. This assumes the Q factor is constant with z. Thus;

Pw(z) = P0 + (P1 − P0)
z

Lcav
, (2.95)

vg(z) = vg,0 + (vg,1 − vg,0)
z

Lcav
. (2.96)

For final power P1 and final group velocity, vg,1. This requires the attenuation per unit length
to also vary along the structure,

α0(z) =
ω

2Qvg,0(1 + (vg,1
vg,0

− 1) z
Lcav

)
=

ω

2Qvg,0

[
1− (

vg,1
vg,0

− 1)
z

Lcav
+

(
(
vg,1
vg,0

− 1)
z

Lcav

)2
]
,

(2.97)
where a binomial expansion was taken. As the wave power and group velocity reduce along
the structure, the quantity vg,1

vg,0
− 1 is negative, and each term in square brackets is positive.

Therefore it is clear the attenuation increases with z. This is often referred to as tapering the
group velocity. The above describes a constant gradient structure. Tapering is achieved by
reducing the cell aperture or coupling slots along the structure. Reducing the real forward
power flow reduces the group velocity, as the power flow is the integral of the Poynting vector
perpendicular to the cross sectional area between cells. The fill time for a constant gradient
cavity is

tfill =

∫ Lcav

0

z

vg,0 + (vg,1 − vg,0)
z

Lcav

dz ≈ 2Lcav
vg,0 + vg,1

, (2.98)

and therefore has longer fill times than a constant impedance cavity of the same length and
starting group velocity. Typical group velocities are in the range of a few percent of the speed
of light, however is an important quantity to be optimised for a given design.

SW cavities fill with a time dependant reflection coefficient, as discussed. The transient
stage observes initially 100% reflection of the wave power which reduces to near 0 over
multiple time constants, 2Q

ω
(a 95% filled cavity takes around three time constants). TW

cavities have generally a shorter fill time. As a result, a TW cavity can accept a beam sooner
than a SW cavity, resulting in more particles being accelerated per unit time.

The above description of cavity filling in both standing and TW cavities allows a simplified
visualisation of how field builds up in both cases. Standing wave structures see field growing
equally in all cell simultaneously. TW structures see field build in each cell subsequently.
Hence, it is often referred that SW structures fill in time, whilst TW structures fill in space. As
previously suggested, long standing wave structures are not viable, as the increased number
of cells reduces the shunt impedance and therefore rf efficiency. This issue is not observed
for TW structures. As power flows from the input guide to the output load, increasing the
number of cells does not have any effect on the upstream cells, the downstream cells receive
less power and therefore less stored energy - however - the wave power can be modulated
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by changing the group velocity profile along the cavity. This freedom is not possible in a
standing wave cavity, without suffering large power flow droop and power flow phase shift.

RF Network Quantities

Given the previous sections on basic rf acceleration, it is important to introduce various rf
system parameters that define how often and the duration at which rf power is coupled into
a cavity via an rf network. RF systems can operate with either continuous wave, (CW),
or pulsed signals. Pulsed systems may use pulse compressors to increase peak power and
shorten a pulse from a power source, such as a Klystron. The advantage of pulsed systems
over continuous systems is the ability to run at a lower average power whilst producing
large peak power signals. The pulse length, tp, describes the duration of the rf pulse. The
repetition rate, (RR), describes the frequency of pulses, and is defined as the number of
pulses per second. Using the pulse length and repetition rate, the duty cycle (DC) is defined
as;

DC = RR× tp (2.99)

and defines the fraction of time the rf signal is ‘on’. For the proton radiotherapy linac
discussed in this project, the value of the pulse length is 5 µs and the RR is 200 Hz (thus
there is a pulse every 1

200
= 0.005 s). The DC is therefore 5× 10−6 × 200 = 0.001, or 0.1%.

Average and Pulsed Heating

The average power, Pavg, is defined as

Pavg = Ppeak ×DC, (2.100)

where Ppeak describes the peak power of the rf pulse. By limiting the average power a cavity
experiences, there is less pulsed heating due to Ohmic losses. If the cavity becomes too
hot, surface cracking and deformation occur which will result in a resonant frequency shift,
this is termed average heating. By using cooling channels, flowing with water, heat can be
extracted from the system to avoid temperature rises in the conducting material. A common
figure of merit is the average power deposited per unit length, Pavg

Lcav
. Where Lcav is the length

of the cavity in which the average power is being deposited. For normal conducting copper
structures, a conservative value for the average power per unit length for an S-band cavity
is 4.5 kW/m [51].

If the pulse has a peak power that is too high, pulsed heating becomes a limiting factor.
Pulse heating is the instantaneous rise in the material surface temperature - that has not yet
diffused into the bulk of the material - and is confined to a small volume within the skin depth
of the material. The time scale of pulsed heating is of the order 10 µ s. An approximate limit
on the surface temperature rise is ∼ 40 K for normal conducting cavities. The temperature
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gain can be calculated using the following

∆T =
2Pd

√
tp√

πρκce
, (2.101)

where ρ is the material density, κ is the thermal conductivity and ce is the specific heat
capacity of the material. Pd is the deposited power and is given

Pd =
RsH

2
peak

2
. (2.102)

For peak magnetic field, Hpeak and surface resistance Rs. The surface resistance is a function
of the frequency of the rf power, ω, and skin depth, σ;

Rs =

√
µ0

ω
2σ, (2.103)

where µ0 is the vacuum magnetic permeability. In fact, surface resistance is also a function
of temperature change. For high power operation, the effect of increased temperature causes
an increased rate of power loss, however is only of the order of several percent, [58].

Hence whilst it is important to limit the average power, to reduce average heating, one
can not simply reduce the DC for the same peak power, as pulsed heating is a function of
the peak power and must not exceed ∼ 40 K [59].

2.5 Introduction to Beam Dynamics

The content discussed in this section are very well documented in the following book, [29].
So far, core concepts regarding rf particle acceleration have been briefly discussed. A major
component of particle acceleration considers the effect of the electromagnetic fields on the
particle dynamics.

In this section, transverse and longitudinal beam dynamics will be briefly introduced.

2.5.1 Transverse Beam Dynamics

When an electrically charged particle traverses some element that produces an electromag-
netic field (e.g. an rf single cell that is excited in the TM010 mode), or a dipole magnet, the
electromagnetic fields will interact with the particle, from Lorentz equation;

F⃗ = q(E⃗ + v⃗ × B⃗). (2.104)

In order to keep a particle along a required path, magnets may be used to bend (e.g. dipole)
or focus the particle trajectory (e.g. dipole and quadrupole) as needed. Consider a simple
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accelerating system, with only dipole and quadrupole magnets, drift lengths, and rf cavities.
The particle trajectory may make a circular shape, as in the case of storage rings or circular
colliders. Alternatively, the trajectory may be in a linear line, and the system is refered to as
a linear accelerator, or a linac (where dipoles are not required, as there is no beam bending).

In general, a particle trajectory is designed (called a design orbit) so that particles are
focused when the beam size (horizontal displacement) is large, in order to keep particles
confined. In general, the particle trajectory is defined by the beam line lattice, a periodic
collection of elements, that define how a particle bunch is transported along an accelerator.
As a result, particle trajectories are systems that following simple harmonic motion, with
particles being focused when the horizontal displacement is too large. The equation of motion
describing the transverse particle position, x, is called Hill’s equation [29],

d2x

ds2
= −k(s)x, (2.105)

where s is the longitudinal variable and k(s) is the focusing strength. The solution to Hill’s
equation is the following;

x(s) =
√

2Jxβx(s) cos(ϕx(s)), (2.106)

where βx(s) is called the beta function, and is a periodic function with the same periodicity
as k(s). The variables Jx and ϕx are known as the action-angle variables and are called
the betatron amplitude and phase, respectively. The betatron amplitude is a constant of
integration. Therefore, every particle has an invariant betatron amplitude at all positions
along a lattice.

A particle also has a divergence, given x′ = dx/ds. Together, x, x′ make the phase space
coordinates of a particle trajectory. The divergence can be calculated by differentiating
Eqn. 2.106,

dx

ds
=
√

2Jx
dβx(s)

ds

1

2
βx(s)

−1/2 cos(ϕx)−
√
2Jxβx(s) sin(ϕx)

dϕx(s)

ds
. (2.107)

The alpha function is defined as;

αx(s) = −1

2

dβx(s)

ds
. (2.108)

Therefore the divergence becomes

x′ = −

√
2Jx
βx(s)

αx(s) cos(ϕx)−

√
2Jx
βx(s)

sin(ϕx) = −

√
2Jx
βx(s)

(αx(s) cos(ϕx)+sin(ϕx)). (2.109)

The gamma function is defined as;

γx(s) =
1 + αx(s)

2

βx(s)
. (2.110)
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Together, βx(s), αx(s), γx(s) are the Twiss (or Courant-Snyder) parameters, and are strictly
functions of the lattice.

So far, everything discussed has been relative to a single particle. It is required to extend
to discussions to a beam of particles by using the average value of the square of the phase
space coordinates, ⟨x2⟩, ⟨x′2⟩, ⟨xx′⟩. Using the fact ⟨cos(x)2⟩ = ⟨sin(x)2⟩ = 1

2
,

⟨x2⟩ = βx⟨Jx⟩, ⟨x′2⟩ = γx⟨Jx⟩, ⟨xx′⟩ = −αx⟨Jx⟩. (2.111)

As each particle has an independant value of Jx, which is constant with position along the
beam line (provided the lattice is comprised of symplectic transforms, see later), then the
value ⟨Jx⟩ is also constant, and is called the geometric beam emittance, εg;

εg =
√

⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2. (2.112)

The phase space coordinates can be combined to produce the equation for an ellipse, of
constant area, πεg, as shown in Fig. 2.11,

γxx
2 + 2αxxx

′ + βxx
′2 = εg. (2.113)

(a)

Figure 2.11: Transverse beam ellipse described by Twiss parameters [60].

For an arbitrary point along the beam line lattice, the values of the Twiss parameters
produces a rotated ellipse of area πεg.

Transfer Maps

Transfer maps are linear transformations that describe how the phase space evolves when
transported through a given lattice, from point s to s+L. For a 1D phase space, the transfer
map, R, acts on the initial phase space (x0, x

′
0) to produce the output phase space (x1, x

′
1).
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The new coordinates can be written as a function of the old coordinates using a Taylor
expansion,

x1 =
∂x1
∂x0

x0 +
∂x1
∂x′0

x′0, (2.114)

x′1 =
∂x′1
∂x0

x0 +
∂x′1
∂x′0

x′0. (2.115)

The above mappings can be written in matrix form;(
x1
x′1

)
=

(
∂x1
∂x0

∂x1
∂x′0

∂x′1
∂x0

∂x′1
∂x′0

)(
x0
x′0

)
=

(
R11 R12

R21 R22

)(
x0
x′0

)
. (2.116)

The mapping in Eqn. 2.116 is a linear transformation from one coordinate system, (x0, x
′
0)

to new coordinate system (x1, x
′
1). The matrix constructed from partial derivatives is the

Jacobian matrix [61]. For a change of variables (mathematically equivalent to transforming
from old to new coordinates), an area element is scaled by a factor given by the Jacobian
determinant, J ,

δx0δx
′
0 = Jδx1δx

′
1. (2.117)

When J = 1, the area of a phase space element is conversed. Hence, a particle bunch occupies
the same phase space area before and after the transformation, and the geometric emittance
is conserved.

As the Jacobian matrix is comprised of first order partial derivatives only, it is the best
linear approximation that can be made. A transformation is symplectic if it obeys the
following criteria;

RTΩR = Ω, (2.118)

where Ω is a non-singular, skew-symmetric matrix and is often taken to be the block matrix;

Ω =

(
0 In

−In 0

)
. (2.119)

In is the n×n identity matrix. All Symplectic matrices have determinant +1 [62] and hence
the geometric emittance is conserved under the transformation. This is called Liouville’s
theorem, the area of a phase space distribution is constant with respect to s.

In general, the geometric emittance is not Lorentz invariant, and so the normalised
emittance, εn, is defined;

εn = εgγrβr. (2.120)

Where γr is the Lorentz factor and βr is the normalised particle velocity. The normalised
emittance is a Lorentz invariant quantity. For some transformation that does not have unit
determinant, the geometric emittance will change. The Jacobian determinant is therefore;

J =
εg1
εg0

=
γr0βr0
γr1βr1

. (2.121)
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As an example, consider a transformation that increases the value of γrβr. From Eqn. 2.121,
the Jacobian determinant is less than one, and the phase space area reduces, this is adiabatic
damping.

Equation 2.116 introduced the linear transfer map. Relevant common lattice element
transfer maps are shown below [29].

Drift Space =

(
1 Ldrift
0 1

)
(2.122)

Focussing Quadrupole =

(
cos(

√
klq)

1√
k
sin(

√
klq)

−
√
k sin(

√
klq) cos(

√
klq)

)
(2.123)

Defocusing Quadrupole =

(
cosh(

√
klq)

1√
k
sinh(

√
klq)√

k sinh(
√
klq) cosh(

√
klq)

)
(2.124)

Where lq is the quadrupole length and k is the quadrupole k-strength, and is a normalised

quantity with definition k = q
p0

∂By

∂x
. Where the momentum p0 and vertical magnetic field, By

are used. The quadrupole field is shown in Fig. 2.12.

(a)

Figure 2.12: Quadrupole Magnetic field profile [63].

The quadrupole field strength increases linearly with transverse distance, and focuses in
either x or y, not both. For a quadrupole that focuses in x, it will defocus in y. This can
be seen in Eqn. 2.124, as the focussing quadrupole is comprised of trigonometric functions
(the element has positive k(s) in Eqn. 2.105) whilst the defocussing quadrupole is comprised
of hyperbolic functions (the element has negative k(s) in Eqn. 2.105). Beam line lattice are
often compiled of alternating polarity quadrupoles to keep a beam focused in both transverse
planes simultaneously. For a very short quadrupole length, the term

√
klq << 1 and the
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trigonometric/hyperbolic terms may be approximated, this method is utilised is described in
depth in Section 4.

Betatron Phase Advance

Consider a circular beam line lattice, comprised of dipoles, quadrupoles, drift spaces and rf
cavities. As the Twiss parameters are functions of the lattice, they are constant with respect
to integer revolutions on the lattice. Suppose the Twiss parameters are measured at point
s0. Plotting the (x, x′) phase space coordinates of a particle at point s0 for many turns
will produce an ellipse of area 2πJx. Whilst Jx is conserved under transformation R, the
betatron phase, ϕx, increases. The amount it advances is given by µx, the phase advance
(µx(s0, s1) = ϕx(s1)− ϕx(s0)), and is calculated as follows;

µx(s0, s1) =

∫ s1

s0

ds

βx(s)
. (2.125)

A transfer map can be equivalently described as a function of the Twiss parameters and
phase advance,

R =

 √
βx1
βx0

(cos(µx) + αx0 sin(µx))
√
βx0βx1 sin(µx)

αx0−αx1√
βx0βx1

cos(µx)− 1+αx0αx1√
βx0βx1

sin(µx)
√

βx0
βx1

(cos(µx)− αx1 sin(µx))

 . (2.126)

For one complete turn, the transfer map reduces to the following form

RT =

(
cos(µx,T ) + αx sin(µx,T ) βx sin(µx,T )

−γx sin(µx,T ) cos(µx,T )− αx sin(µx,T )

)
, (2.127)

where γx = 1+α2
x

βx
and µx,T is the phase advance over one turn, and is related to the tune,

Qx =
µx,T
2π

. The tune describes in number of betatron oscillations per turn. Let M denote
the one turn map, RiRi−1 · · ·R2R1R0 = M for i individual transfer maps. Over one period,
the trace of Eqn. 2.126 is

Tr(M) = 2 cos(µx,T ). (2.128)

A stable system is one in which Tr(M) ≤ 2 and −1 ≤ cos(µx,T ) ≤ 1. Visualisation of the
phase advance can be done with the use of the normalising matrix,

Nx =

(
1√
βx

0
αx√
βx

√
βx

)
. (2.129)

Acting the normalising matrix on the phase space coordinates to produce the normalised
phase space coordinates;

xN =
x√
βx
, (2.130)
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px,N =
αx√
βx
x+

√
βxx

′. (2.131)

Combining xN and px,N in the following way,

x2N + p2x,N = γxx
2 + 2αxxx

′ + βxx
′2 = εg,x (2.132)

recovers Eqn. 2.113. Thus, the normalised phase space (xN , px,n) produces a circle with area
πεg. Consider the transformation from point s0 → s1,

Rx⃗0 = x⃗1. (2.133)

The normalising matrices transform as the following,

Nx,0x⃗0 = ⃗xN,0, Nx,1x⃗1 = ⃗xN,1. (2.134)

Therefore,
x⃗0 = N−1

x,0 ⃗xN,0, x⃗1 = N−1
x,1 ⃗xN,1. (2.135)

Substituting Eqn. 2.135 into Eqn. 2.133,

RN−1
x,0 ⃗xN,0 = N−1

x,1 ⃗xN,1. (2.136)

Acting on the left with Nx(s1);

Nx,1RN
−1
x,0 ⃗xN,0 = ⃗xN,1. (2.137)

Where Nx,1RN
−1
x,0 is calculated by combining Eqns. 2.126 and 2.129,

Nx,1RN
−1
x,0 =

(
cos(µx) sin(µx)
− sin(µx) cos(µx)

)
. (2.138)

Thus, the phase advance is the rotation angle due to the transfer map, R, in normalised phase
space. Whilst much of what has been described was motivated by considering a circular
machine, everything discussed is valid for a linear lattice, provided there is periodicity.

2.5.2 Longitudinal Beam Dynamics

RF particle acceleration relies on a particle continuously observing an accelerating field.
Types of accelerating structure were briefly discussed in Chapter 1.

The longitudinal beam dynamics (LBD) equivalence of Betatron motion in transverse
beam dynamics (TBD) is called Synchrotron motion, and particles perform synchrotron
oscillations. The motion considers how the longitudinal variables, (z, pz) vary as a function
of position along a lattice. Similarly to TBD, there is a longitudinal tune, which is the number
of synchrotron oscillations per lattice period. Synchrotron oscillations arise when considering
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circular machines, and depict how particles move ahead of, and behind the synchronous
particle, due to factors like the circumference of the orbit, and particle energy.

When considering motion in a linear system, there are no synchrontron oscillations due to
changes in path length. However, particles will still oscillate about the synchronous particle,
as described below.

The energy gain of a particle when traversing a single cell of length, L, is calculated as
follows;

∆E = qV0 = q

∫ L/2

−L/2
Ez(z, t) cos

(
ωz

βz(z)c
+ ϕ

)
dz, (2.139)

where Ez(z, t) is the longitudinal electric field, ω is the frequency of the field, βzc is the
velocity in the longitudinal direction and ϕ is the phase of the field. If the cavity is operating
in a π-mode, the particle must cross an rf cell in half an rf period, P/2. This is called
the synchronicity condition. For a general phase advance of ψ, the synchronicity condition
requires the cell length to be

L =
ψβc

ω
. (2.140)

The Transit Time Factor, T, is the factor that accounts for a time varying electric field as
the particle traverses the gap;

T =

∫ L/2
−L/2Ez(z, t) cos(

ωz
βz(z)c

+ ϕ)dz∫ L/2
−L/2Ez(z, t)dz

. (2.141)

The transit time factor is shown as a function of cell length in Fig. 2.13. When the cell length
is equal to an integer value of L/βγ, the particle observes all phases. As a result, total energy
gain is zero, T = 0. The general result for the energy gain is therefore

(a)

Figure 2.13: Transit time factor as a function of cell length.

∆E = qV0T cos(ϕ). (2.142)
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Electrons in accelerators reach β ≈ 1 after a few cells. The initial cell lengths change from
one cell to the next, to ensure synchronicity. However, after β ≈ 1, the cell length is constant,
and all particles travel at roughly the same velocity. In this regime, particles do not oscillate
about a synchronous particle. The beam dynamics are different to proton accelerators, due
to the difference in particle mass (protons are ∼ 2000× more massive than electrons). As
a result, the change in velocity for a proton over an rf cell is small. Longitudinal beam
dynamics for small amounts acceleration is described below.

By considering a series of accelerating cells, coupled differential equations (with respect
to longitudinal distance, s) can be constructed describing both the phase and energy gain
deviation between an arbitrary particle and the synchronous particle [35];

γ3sβ
3
s

d(ϕ− ϕs)

ds
= −2π

(E − Es)

mc2λ
, (2.143)

d(E − Es)

ds
= qE0T (cos(ϕ)− cos(ϕs)). (2.144)

Where γs and βs are the Lorentz factor and normalised velocity of the synchronous particle.
m is the mass of the particle and λ is the wavelength. As the acceleration rate of protons is
small, the values of E0T , ϕs and γsβs are assumed constant.

By denoting the following;

w =
E − Es
mc2

, A =
2π

γ3sβ
3
sλ
, B =

qEoT

mc2
, (2.145)

eqns. 2.143 and 2.144 become;

ϕ′ =
dϕ

ds
= −Aw (2.146)

and,

w′ =
dw

ds
= B(cos(ϕ)− cos(ϕs)) (2.147)

respectively. Where dϕ
ds

= ϕ−ϕs
ds

, and dw
ds

= (E−Es)
ds

. Differentiating Eqn. 2.146,

dϕ′

ds
= −Aw′ = −AB(cos(ϕ)− cos(ϕs)). (2.148)

Integrating with the substitution ds = dϕ/ϕ′;

dϕ′ϕ′ = −AB(cos(ϕ)− cos(ϕs))dϕ, (2.149)

which can be written,
Aw2

2
+B(sin(ϕ)− ϕ cos(ϕs)) = Hϕ. (2.150)
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Hϕ is the constant of integration and the Hamiltonian of the system. The first term of
Eqn. 2.150 is the kinetic energy term, and the second is the potential energy term. The
longitudinal canonical coordinates w, ϕ describe the evolution of the physical system with
respect to s. The observed electric field, potential energy, and phase space are shown
in Fig. 2.14.

(a)

Figure 2.14: The observed longitudinal electric field, potential energy, and phase space
separatrix of a system describing the longitudinal phase space (separatrix) of particles in
an accelerating scheme [35].

The separatrix describes the area of phase space in which particle longitudinal motion
is stable, about the synchronous particle. The area of stability is often refered to as
the ‘bucket’. From this treatment, particles within the ‘bucket’ will oscillate about the
synchronous particle, as the particle energy shifts from being dominated by the kinetic or
potential term. The phase range of ϕ defining the region of stable trajectories is a function
of ϕs. The width is a maximum for ϕs = −π/2, as this produces no net acceleration.

When acceleration is taken into account, and the Lorentz factor is not constant, the
separatrix changes from a ‘fish’ to a ‘golf club’. The production of the ‘golf club’ shape is
discussed in Chapter 5.
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Chapter 3

3 GHz RF Cavity Cell Design

3.1 RF Breakdown and Peak Surface Fields

One of the most important aspects of rf cavity design is the optimisation of the single rf cell.
This concerns the geometry of a single cell, such that multiple objectives are simultaneously
maximised and minimised. Section 2.2 describes multiple figures of merit (or objectives) for
an rf cell, such as the shunt impedance, Z, which measures the rf efficiency of a single cell.
Section 2.2 also describes the effect of pulsed heating, the instantaneous heating that occurs
in the skin-depth of the conducting wall. The maximum pulsed heating is a constraint that
must not exceed ∼ 40 K [59], and thus is a function of the peak surface magnetic field, Hpeak.
The maximum surface magnetic flux density is related via Bpeak = µ0Hpeak, where µ0 is the
vacuum permeability. The value of Bpeak is calculated using computational microwave solvers,
and is a function of the single cell geometry and accelerating gradient. The normalised peak
magnetic flux density is used,

Bpeak

Eacc
, as the microwave solver normalises 1 J of energy for

a given simulation. Hence, the peak magnetic flux density is a cell objective that requires
minimising. Another objective on normal conducting cavities is the peak surface electric
field,

Epeak

Eacc
. This objective relates to the risk of rf breakdown [64].

RF breakdown is a phenomenon in which transmitted rf power drops to low levels over
a time frame of the order 100 ns, due to the production of plasma spots on the surface of
the cavity [65]. The rf breakdown phenomenon behaves differently in both TW structures to
SW structures. In SW structures, incident power may be reflected towards the source which
adds risk to the rf circuit. In TW cavities, input power may be absorbed by the breakdown.
Multiple events can lead to surface deformation and subsequent detuning of individual cells
[51], leading to shorter life times of structures. The breakdown rate quantifies the rate of
breakdown events during operation and is given;

BDR =
Nevents

NpLcav
. (3.1)

Where Np is the number of rf pulses and Lcav is the cavity length. The unit of BDR often
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used is breakdowns per pulse per meter (bpp/m). Whilst the cause of rf breakdown is not
well understood, surface imperfections have a direct impact on the rate of events. Surface
imperfections cause the local electric field to enhance by a factor called the field enhancement
factor. Large local electric field can cause electrons in the surface to be emitted from the bulk,
called field emission [66]. Electrons can be subsequently accelerated by electromagnetic fields,
causing dark current. The Defect model [67] is a theoretical model that suggests breakdown
effects are caused by electric fields inducing charge on the structure surface, leading to tensile
stress. The BDR is shown to go as;

BDR ∝ eε0E
2∆V/kBT , (3.2)

where ε0 is the dielectric constant of a vacuum, E is the electric field, ∆V is the relaxation
volume of the defect, kB is the Boltzmann constant and T is the temperature. Another
study found a power law relationship between the BDR, accelerating gradient, Eacc, and
pulse length, tp [68], [69],

BDR ∝ E30
acct

5
p. (3.3)

However, the power law relationships are a function of frequency. Another study calculated
for an S-band cavity (∼3 GHz), that BDR goes as E16

acct
3
p [70]. For a pulse length of 5 µs,

the S-band power law implies an accelerating gradient limit of ∼ 42 MeV/m for a BDR of
1 ×10−6 bpp/m, which is an acceptable limit for medical linacs [71]. Both Eqns. 3.2 and 3.3
imply the peak surface electric field is an objective the requires minimising. Standard peak
surface electric field are in the range of 160 - 240 MV/m [51], however the limit of 240 MV/m
is highly aggressive. Other studies suggest a more conservative value of 170 MV/m should
not be exceeded [70]. In addition, the peak magnetic flux density must also be minimised in
order to suppress the probability of breakdown events. The first quantitative limit of the peak
surface electric field was proposed by W.D. Kilpatrick and is called the Kilpatrick Criterion
[35], however is not often used as an indication of how resistant a cavity is to breakdown in
the present day.

Another objective that relates to the BDR is the Modified Poynting Vector (Sc) (first
proposed in 2009,[68]). Sc describes the power flow density over the structure walls and is
given;

Sc = Re[S⃗] + gcIm[S⃗], (3.4)

where S⃗ is the Poynting vector, and is equal to E ×H. The real and imaginary components
of S describe the active and reactive power flow along a structure. gs is a factor that relates
the magnitude of the contribution of the reactive power flow to Sc, and is a function (however
fairly insensitive) of the local electric field value. The reason for the introduction of Sc as an
objective is due to the field emission power flow, a quantity that describes the power that
feeds the process of field emission. As the active power flow is in phase with the field emission
power flow, the coefficient to Re[S⃗] is 1. As the reactive power flow is π/2 out of phase (and
thus is zero when power flow field emission is maximum), the coefficient gc is smaller. For
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this study, gc = 1/6. As the Modified Poynting vector (MPV) is the cross product of both

the electric and magnetic field, the normalised quantity is given
√
Sc

Eacc
. Experimental work

completed suggests there is also a scaling law for the BDR as a function of Sc,

BDR ∝ S15
c t

5
p. (3.5)

A value of Sc = 4-5 W/(µm)2 is an often used [68] as a constraint for a BDR of 1 × 10−6

bpp/m for a pulse length of 200 ns. Thus for a pulse length of 5 µs, Sc should not exceed the
limits∼ 1.4-1.7 W/(µm)2. Similarly to the MPV, the ratio of power flow to iris circumference,
P/C, which has been shown to better predict breakdown rates relative to the peak surface
electric field [72]. Whilst there can be limits placed on the peak surface electric, magnetic
and MPV fields, breakdown events still occur, due to the statistical nature of rf breakdown.

3.2 Multi-Objective Problems

In this work, there are four objectives used to determine the calibre of a single cell geometry;

Objectives =

[
Z,
Bpeak

Eacc
,
Epeak
Eacc

,

√
Sc

Eacc

]
. (3.6)

The shunt impedance requires maximising and the peak surface fields require minimising,
and the objectives are conflicting. As there are multiple objectives, multi-objective genetic
algorithms were used.

Design problems often have the requirement of optimising multiple conflicting objectives
[73]. Multi-objective (MO) problems can be tackled with the use of a weight function, F ,
which can be solved as a single objective problem,

F =
N∑
n=1

wnOn. (3.7)

Where wn are the individual objective weightings, that are often pre-defined scalars, and are
often affected by personal influence [74]. Due to compressing multiple objectives into one
single objective, information on individual objective values are not known for a given value
of F .

Another method to solve MO problems is the use of genetic algorithms [75]. Genetic
algorithms solve MO problems by simulating natural selection, and is therefore based on
survival of the fittest [76]. Multi-objective genetic algorithms (MOGAs) produce a set of
non-dominated, or Pareto optimal, solutions. However, MOGA still have the option to
define objective weightings, which can effect the outcome of the converged Pareto front.

A non-dominated solution is a given point in decision space in which one objective
can not be improved without another objective becoming less optimal. If a point in
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Figure 3.1: Schematic showing two objectives that require maximising, and the region of
non-dominated and dominated points [77].

objective space can be improved in one objective and all other objectives remain the same
or improve, the point is dominated, see Fig. 3.1. The set of non-dominated solutions
produce the Pareto optimal front. The set of inputs is the decision/input space, which
maps to the output/objective space. The input space has dimensionality equal to the
number of input parameters and the objective space is an N-dimensional space (for N
objectives). A strength of MOGAs is that they maintain diversity in Pareto optimal solutions.
Figure 3.2 demonstrates the mapping from the decision space to the objective space, and the
construction of the Pareto front. MOGAs have been used previously in the accelerating field
to aid with multi-objective problems, such as in dc photoinjectors [78] and beam dynamics
[79].

3.2.1 Introduction to MOGAs

Multi-objective genetic algorithms take an initial population from the decision space, once
the output space is received, the best solutions are selected. Crossover concerns the mixing
of individual solution traits, after which, mutation occurs. This set of events creates the next
generation offspring, and the process is repeated, a work flow is shown in Fig. 3.3. Choices
affecting the selection process, cross-over rate and mutation rate vastly effect the performance
of MOGAs. Multiple MOGAs have been developed over the years [81]. In this work, two
algorithms are used. Firstly, the fast non-dominated sorting genetic algorithm (NSGA-II).
This MOGA has low computational requirements [82] relative to other elitist algorithms and
thus allows for faster convergence to the Pareto front. The second MOGA used is the archive-
based micro genetic algorithm (AMGA) [83]. The AMGA uses a small population size and
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Figure 3.2: Pareto front [80].

keeps an archive of diverse Pareto optimal solutions to maintain its search history.

3.2.2 Applying MOGAs to Normal Conducting Single Cells

In this work, the input space is the rf single cell geometry components. The output space is
created from the objectives shown in 3.6, and is therefore four dimensional. Producing the
output space from a set of input parameters requires the use of a Microwave solver code,
such as CST [56].

Conventionally, single cell geometry is constructed using circles and straight lines, as
shown in Fig. 3.4. Often, single cells are optimised by sweeping parameters (e.g. Outer Nose
Radius) whilst keeping other parameters constant to produce parameter curves. Multiple
parameter curves are then compared to arrive at a final solution. Alternatively, single
weight functions can be constructed from multiple objectives and subsequently optimised,
[84]. Recently, work was completed that defined the single cell geometry using non-uniform
rational basis B-spline (NURBS) [85], allowing for much more complex geometry shapes. In
the same work, a single objective function was defined,

Optimisation Function =
Z

Max(
Epeak

Eacc
, 2)

, (3.8)

that was optimised using a differential-evolution algorithm. The results suggested an
achievable shunt impedance that was 10% better than the shunt impedance obtained using
conventional circles.

The input space in this work is a set NURBS points, shown in Fig. 3.5, for a half cell. The
position of each spline point is defined by an x and y coordinate. Spline points are bound by
the position of surrounding spline points, so that unrealistic cavity shapes are not created.
For example, the coordinates of spline points describing the geometry of the nose-cone are
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Figure 3.3: MOGA work flow [80].

Figure 3.4: Conventional nose cone geometry
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Figure 3.5: Conventional and NURBS single cell geometry.

bound such that the nose-cone is a convex shape. Single cell parameters are still defined at
the initialisation of the single cell, such as t, the septum thickness, and cg/2, the minimum
gap. Within the defined region, the spline can create complex shapes that create the decision
space. A realistic spline geometry is shown in Fig. 3.6.

Extensive work was completed by another Lancaster student, Sam Smith, who compared
both MOGAs, in addition to constructing a method to handle frequency errors [80, 86].
With the conclusions of this work, an S-band single cell was optimised using NCGA-II, the
simulation parameters are shown in Fig. 3.8. The choice of objective weight factors changes
the region of convergence for the MOGA, good results were obtained using the weights
displayed. A larger weighting for Z was used in order to pull the Pareto front towards
solutions with better rf efficiency.

Bpeak

Eacc
was given a slightly smaller weighting than the other

peak surface fields. The magnetic field is lower in the region occupied by the nose cones,
and therefore

Bpeak

Eacc
remains relatively small and is less sensitive to changes to the single cell

geometry.
Bpeak

Eacc
becomes a larger issue when designing side-coupled cells and coupling slots.

Both the surface electric and MPV fields are maximum on the nose cone of a single cell, and
thus have equal weighting. Figure 3.7 displays the peak surface fields on a single cell.

The electromagnetic simulations were completed in CST Studio Suite [56], and the design
process was completed with the Isight software [87]. In order to ensure reliable results, a
mesh convergence study was undertaken. This study swept the number of mesh-cells per unit
wavelength in CST. The calculated frequency changed as a function of number of mesh-cells
until convergence was achieved. The number of mesh-cells used is a compromise between
computation time and numerical accuracy. A high mesh density was used in order to ensure
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Figure 3.6: Example of a single cell geometry constructed with a NURBS.

(a) (b)

Figure 3.7: Peak Surface Electric and MPV fields.
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(a)

(b)

Figure 3.8: Isight Software showing (a) NCGA-II Initialising parameters, (b) Objective
parameters

reliable results.
Once an initial run has been completed, the Pareto optimal points in the results can be

used to seed a second simulation, increasing the probability of convergence.
Table 3.1 displays the single cell constant parameters. AVO placed a lower limit on

the cavity aperture of 2.5 mm. In order to maximise Z, this minimum aperture value was
chosen for the design. The septum thickness was chosen to be 2.5 mm. Septum thickness’
of 2 mm have been realised previously for S-band single cells, [88]. Work completed in [51]
demonstrates the maximum accelerating gradient is achieved for minimum septum thickness.
However, if the septum becomes too thin, thermal effects can cause issues as there is less
copper bulk to extract heat. As a result, 2.5 mm was initially chosen as a compromise
between both effects.

Table 3.1: 3 GHz Single Cell π-mode constant parameters. Distances in (mm).

frequency, f (GHz) Lcell septum, t minimum gap, cg aperture, a

2.9985 25.7 2.5 Lcell

4
2.5

3.2.3 Visualisation of Single Cell Objective Space

Once the MOGA has run, a set of Pareto optimal solutions are obtained. In order to select
a suitable single cell candidate, solutions must be graphically represented such that the
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Figure 3.9: Methods to visualise multi-dimensional solutions

relationship between objectives can be understood. For two solutions, a simple scatter plot
shows the trade-off between objectives. However as the number of objectives increases,
visualising the Pareto front becomes more difficult.

Visualising a multi-dimensional set of solutions can be done in many ways, as described
by Fig. 3.9. When designing a single cell, the Pareto space is a single set of points, and each
solution must be visualised independently, to keep solutions separate. Each solution can be
shown with original objective values (red square in Fig. 3.9) or with transformed objective
values (red dashed square in Fig. 3.9). Transformed objective values is not an ideal method,
as each objective of a single cell must be determinable from a given visualisation method.
This is illustrated with Fig. 3.10, which shows the 3D-RadVis method [89] for the Pareto-
optimal solution space. The 3D-RadVis is an example of a transforming objective values.
The method places objective nodes on the circumference of a unit circle, at even intervals
(e.g. for four objectives, nodes are placed every 90◦). Each solution is placed within the
unit circle, with a ‘spring’ connecting the solution to each objective. The spring constant
strength is proportional to the objective value. Thus, solutions with a high objective value
will be dragged closer to that objective node. Figure 3.10 shows three objective nodes, for
each peak surface field, and a colour dimension showing Z.

The visualisation method shows that solutions with low
Bpk

Eacc
have high Z. However,

the individual values of the peak surface fields are not determinable. The information
provided simply shows how ‘good’ or ‘bad’ a solution is in a particular objective. As a
result, this visualisation method is not appropriate, whilst it does provide insight into the
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Figure 3.10: 3D-RadVis method for Pareto-optimal solutions.

relationship between objectives. As a result, further visualisation methods must show original
objective values in order to aid the selection process. Figure 3.11 (a) shows a decision map
of Pareto-optimal solutions. Decision maps bin solutions into discrete sets and displays the
information as 2D scatter plots with a color and line style dimension. In Fig. 3.11 (a) the

binned objectives are
Bpk

Eacc
and Z. This method allows the comparison between multiple

objectives. For example, solutions with maximum Z also are maximum in
Epk

Eacc
and S

1/2
c

Eacc
.

However, decision maps do not allow for comparisons between objective values within a
given Pareto front, as only the bin range is shown. As a result, solutions in the same bin can
have differences in Z up to 3 MΩ/m and

Bpk

Eacc
∼ 1.5 mT/MV/m.

Figure 3.11 (b) displays a 3D bubble plot, with three spatial dimensions for each peak
surface field and a color dimension showing Z. The bubble plot shows all solutions as
a singular point on the graph, which is a benefit over previously discussed visualisation
methods. However, the plot is portrayed on a 2D plane, and therefore the actual objective
value is difficult to ascertain due to parallax error.

Figure 3.12 displays the (a) Parallel Coordinate Plot (PCP) and the (b) Radar Chart
(RC). Note, the objective nodes show the reciprocal of peak surface field, so that all objectives
require maximising. Both method plot each solution as a line that crosses an objective
axis at the objective value. Both methods are essentially the same, however the PCP
separates objective nodes horizontally whilst the RC separates objective nodes with different
orientation. The PCP has benefits over the RC, as the physical space on which solutions are
displayed is larger than the RC plot, for the same number of pixels. This means there is less
white-space for a PCP plot, relative to the RC. For many Pareto optimal solutions, PCP
and RC become very populated, and it is difficult to accurately compare many solutions.
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(a) (b)

Figure 3.11: Original objective preserving visualisation methods. (a) displays the decision
map and (b) displays a bubble plot.

(a) (b)

Figure 3.12: Original objective preserving visualisation methods. (a) displays the Parallel
Coordinate Plot and (b) displays a Radar Plot.
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In addition, the order in which solutions are plotted affects how a PCP/RC appear. For
example, Fig. 3.12 plots solutions in an order that decreases Z. Thus, high Z solutions become
hidden. RC plots have benefits when considering the general trade-off between objectives.
From Fig. 3.12(b), solutions from Eacc

Epk
to Z create a concave shape, implying solutions can

not be high in both objectives simultaneously. Solutions from Eacc

S
1/2
c

to Eacc

Bpk
create a straight

line, suggesting solutions can be maximum in both objectives simultaneously.
In order to reduce the noise from the PCP plot, solutions were clustered into groups of

similar objective values. Clusters are then plotted as a PCP with each objective value being
the mean value of the objective within the cluster. Figure. 3.13 displays PCP for 30 and 50
clusters. The plots become easier to interpret, and clusters can be compared with each other.
As the number of clusters decreases, the relative error of the cluster increases, as individual
solutions must fit into fewer clusters.

(a) (b)

Figure 3.13: PCP showing 30 (a) and 50 (b) clustered solutions.

Clustering of solutions is similar to creating bins, as was shown in the decision map.
However, the decision map displayed previously had six bins for the entire range of Z. For
30 clusters, the range of objective values within a cluster is far less. In reality, for an entire
Z range of 62.8 - 81.9 MΩ/m, 30 clusters results in ∼ 0.6 MΩ/m maximum deviation in
Z. Clustering solutions has provided a method to produce a more readable PCP, in which a
solution can be selected whilst observing the entire Pareto-optimal space. A selection process
is described in the following section.
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3.2.4 Single Cell Candidate Selection

The previous section described many visualisation methods to observe the entire Pareto
optimal space. Visualisation methods must keep original objective values, so that each
solution can have determinable objectives. Clustering similar solutions together provides
a method to reduce the noise of a PCP whilst preserving the core findings of the MOGA.
The clustering was achieved using a K-means clustering algorithm [90].

The next step requires selecting a candidate single cell geometry. From Fig. 3.13 (a),
solutions that perform maximally in one objective tend to perform as a minimum in other
objectives. When selecting a final solution, the choice is influenced by the type of cavity being
designed, e.g. collider accelerator or a medical linac. In addition, human bias will inevitably
play a roll in the selection. Figure 3.14(a) shows the selected cluster to be expanded.
The reason for this cluster selection are as follows. Firstly, the cluster has high Z whilst
simultaneously having high Eacc

S
1/2
c

. All solutions with higher values of Eacc

S
1/2
c

have lower Z and
Eacc

Bpk
. Whilst the solution is just under the average value for Eacc

Epk
, all other objectives are

comfortably over the respective average objective value. Figure 3.14(b) shows the chosen
cluster expanded into individual solutions. The solution depicted with the black arrow was
selected. This choice was made as the relative increase in Eacc

Epk
was larger than the relative

increase in Z, and Z is already greater than the mean value, for all solutions.

(a) (b)

Figure 3.14: PCP showing selected cluster (a) and expanded cluster (b) into individual
solutions.

Table 3.2 displays the objective values of the chosen single cell. Figure 3.15 displays
the pulsed heating temperature rise and peak surface field limit for the chosen single cell
design. The conservative limits (for a pulse length of 5 µs and RR of 200 Hz) of Sc ∼
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1.4 W/(µm)2 and Epk ∼ 170 MV/m are shown. The gradient is limited by the MPV and is
approximately 40 MeV/m.

Table 3.2: Chosen single cell parameters for π/2 mode structure.

Z (MΩ/m) 75.6
Bpk/Eacc (mT/MV/m) 3.5√

Sc/Eacc (A/V)
1/2 0.028

Epk/Eacc 3.5
Septum thickness (mm) 2.5

Cell length (mm) 25.7
Aperture radius (mm) 2.5

Frequency (GHz) 2.9985

(a) (b) (c)

Figure 3.15: Pulsed heating temperature rise and peak field limits as a function of accelerating
gradient for chosen single cell design.

3.3 Side-Coupled Cell Design

Recall from Section 2.3.1, a coupled oscillator system can have both electric and magnetic
shunt admittance elements, producing two separated pass bands, that generally have a stop
band between them. The term confluence describes the condition when the two pass bands
meet, creating a single continuous pass-band. Section 2.3.2 described, using Perturbation
theory, the effect of individual oscillator frequency errors on the normal modes of oscillation.
Frequency errors effect the π/2 normal mode magnitudes only in second order, showing
the stability of the mode. Operating a resonant structure in a π/2 mode and moving the
unexcited cells off-axis, creating a side-coupled structure, allows the high shunt impedance
of a π mode with the stability of the π/2 mode. The side-coupled cells must oscillate at the

71



Figure 3.16: Geometry of side-coupled cell.

correct frequency such that confluence is reached, whilst maintaining the required inter-cell
coupling constant, k. Side-coupled cells must also ensure low surface magnetic fields, and
maximise the shunt impedance.

The first step required designing of the coupled cell to oscillate at the correct frequency.
Figure 3.16 shows the side-coupled cell geometry. As the side-coupled cell must be the same
frequency of the accelerating cell, one would expect a side-coupled cell to be a similar radius
to the accelerating cell. This is not ideal, as it increases the transverse size of the cavity,
requiring more space and copper material. In order to reduce the size of the side-coupled cell,
the capacitance can be increased (recall ω0 = 1√

LC
). The nose parameter is an important

parameter as it strongly effects the capacitance of the side-coupled cell. However, as the nose
gap decreases, the capacitance increases, and the electric field increases between the noses.
Hence, small machining errors in the side-coupled cell nose may produce large changes to the
resonant frequency, from Slater’s perturbation theory (discussed in Chapter 2). The side-
coupled cell must be optimised such that the two π/2 modes are excited at the same frequency,
and at the design frequency of 2.9985 GHz. The band gap is given by the percentage difference
between the two mode frequencies.

The optimisation was completed in CST microwave solver, using the Trust region
framework optimiser. The simulated model consists of two accelerating cells, and two side-
coupled cells. However one side-coupled cell is split into two half cells. This allows a boundary
condition to force a phase advance of 2π, ensuring periodicity. As a result, both π/2 modes
can be calculated per simulation. The coupling constant is a quantity that changes as a
function of the expected cavity length (described in a latter Chapter 6). The optimised side-
coupled cell geometry is shown in Fig. 3.17, in addition to the longitudinal electric fields of
both π/2 modes.

The next stage of the design considered the geometry of the coupling slot between the side-
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(a) (b)

Figure 3.17: π/2 mode excited in both accelerating and side-coupled cell.

coupled cell and accelerating cell, as the dimensions effect the inter-cell coupling constant,
shunt impedance and Bpk/Eacc. The slot width refers to the shorter edge of the slot, whilst
the slot length refers to the longer edge of the slot, see Fig. 3.18. As the cavity length was
not known, the value of the required k is not a singular value to optimise towards. However,
different slot geometries provide different relationships between the shunt impedance, k,
and Bpk/Eacc. The slot design therefore considers the relationships between the objectives.
Each slot must produce confluence for both π/2 modes. The slot geometries are shown in
Fig. 3.18. All slot geometries have two degrees of freedom, the slot width and the the slot
length. The slot width is a bounded parameter, as the slot can not encroaches the edge
of the accelerating cell. The slot length is limited to the diameter of the coupling cell, see
Fig. 3.18. Recall the required coupling is calculated in Section 2.3.1. The slot widths and
lengths are independently swept for each geometry, the relationships between k, Z and

Bpk

Eacc

are shown in Fig. 3.19. The results suggest that all slot geometries behave similarly, and that
larger k results in lower shunt impedance. For larger coupling, the peak surface magnetic
field also increases. The shunt impedance and coupling constant are expected to behave in
this way. As the slot area increases, the larger the inductance due to the magnetic field,
increasing the inter-cell coupling. As the magnetic field perturbation increases, the Ohmic
power losses increase and the shunt impedance drops. In addition, highly perturbed magnetic
field increases the peak surface magnetic field. From Fig. 3.19, the rectangle slot provides
a larger shunt impedance for the same value of k. The elliptical and rectangular slots seem
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: Side-Coupled Cell slot geometries, including the birds-eye view of the slot.
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to perform similarly well, however the peak surface magnetic field is slightly larger for the
elliptical slot. As the rectangular slot is easier to machine than an elliptical join it was chosen
as the final slot geometry.

(a)

Figure 3.19: Inter-cell coupling as a function of shunt impedance and surface peak magnetic
field for three different coupling slot geometries.

The rectangular slot is further explored by completing nested parameter sweeps of the slot
width and length. the results are shown in Fig. 3.20. Figure 3.20 (a) displays the inter-cell
coupling as a function of the shunt impedance and slot length whilst Fig. 3.20 (b) shows the
slot width with the colour dimension. For each slot length, the slot width is swept between
the achievable bounds. It can be seen that for a given slot width or length, sweeping the
other parameter produces a straight line of relatively fixed gradient. The magnitude of the
gradient when sweeping the slot width is larger than the gradient when sweeping the slot
length. Thus, a change in the slot width produces a greater increase in k for a given reduction
in Z than changing the slot length. In addition, from Fig. 3.20 (c), slots of the same length

and different width have very similar values for
Bpk

Eacc
. When the slot length is increased,

the value of
Bpk

Eacc
jumps to an increased value. This is an intuitive result, as the magnetic

field peaks on the coupling slot, increasing the slot width will not change the value of the
peak magnetic field further. However, increasing the slot length will change the location of
the slot edge with respect to the magnetic field, producing a different value of

Bpk

Eacc
. The

above discussion implies the optimum slot geometry occurs when the width is at a maximum
achievable value, with any additional coupling being achieved by increasing the slot length.

The final step of the slot design requires ensuring confluence is achieved. When the
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(a) (b) (c)

Figure 3.20: Inter-cell coupling as a function of shunt impedance, slot dimension and surface
peak magnetic field for the rectangular slot geometry.

nested parameter sweep was completed, the frequency of both π/2 modes shift. In order
to reach confluence for a given choice of the slot width and length, changes are made to
the accelerating cell radius, and the coupling cell nose. Scaling the accelerating cell simply
moves the coupling cell radially outward or inward, leaving the fields within unchanged.
This results in no change to resonant frequency, from Slater’s Perturbation theory. Similarly,
changing the nose parameter of coupling cell will not effect the electric or magnetic field
lines in the π/2 accelerating cell mode, allowing for tuning of the the coupling cell π/2 mode
whilst keeping the π/2 accelerating cell mode frequency constant. This allows each mode to
be brought back onto the design frequency independently. Figure 3.21 shows the effect of
changing the nose parameter and accelerating cell parameter on the respective π/2 resonant

frequencies. Further, the value of k, Z and
Bpk

Eacc
does not change when confluence is again

obtained. Thus, sweeping the slot parameters to explore the effect on k, Z and
Bpk

Eacc
, whilst

ignoring the frequency values is a valid approach.
Once the side-coupled cell has been optimised for confluence, it is completed. If the design

cavity is expected to be shorter or longer, the slot geometry can be altered as discussed
previously to meet the required coupling constant, ensuring the width is maximised before
increasing the length of the slot. Confluence can then be reached again efficiently by changing
the coupling cell nose parameter and accelerating cell radius.

3.4 Traveling Wave Cell Coupling Slot Design

Results from transverse beam dynamics studies, which are presented in Chapter 4, show that
a TW structure could also be a viable option for the cavity design, as the cavity lengths could
reach lengths ∼ 1 m. In this region, TW structures generally dominate SW structures.

The first stage required designing TW single cells with phase advances of 2π/3 and 4π/5,
respectively. As the TW single cells have different cell lengths, it was not initially known if
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(a) (b)

Figure 3.21: Resonant frequency of both π/2 modes as a function of cell nose parameter and
accelerating cell radius. Design frequency of 2.9985 GHz is shown.

single cell optimisation was required. As the NURBS is a function of cell length (via cg),
the solution chosen for the SW cell is also a strong candidate for both TW single cells. In
order to ensure a non-dominated solution, the NCGA-II was seeded with the SW solution
and ran on the 4π/5 single cell. A TW single cell is simulated differently to a SW cell. The
cell is split into two half cells, with the aperture in the centre, as shown in Fig. 3.22. This
is required so that periodic boundary conditions can enforce the correct phase advance per
cell. Table 3.3 shows the chosen single cell objectives for the TW single cell candidates.

Table 3.3: Objective values of chosen candidate solutions for 4π/5 and 2π/3 mode TW single
cells.

Phase Advance Z (MΩ/m) Bpk/Eacc (mT/MV/m)
√
Sc/Eacc (A/V)

1/2 Epk/Eacc
2π/3 68 2 0.025 3.4
4π/5 78 2 0.028 3.9

The coupling slot design is an important aspect of TW cell design. The objectives are
the achievable group velocity, Z, and Bpk/Eacc, as the magnetic field peaks on the coupling
slots. The shape of the coupling slot can have an effect on the objectives described. Previous
work [51] has compared multiple slot designs, with different slot shapes being slightly better
for different phase advances per cell. The circular slot was found to work well for many cell
types, and has benefits over other shapes due to the ease of machining. For this reason, the
circular slot was used as the slot shape for the TW single cell. The remaining design choices
are the number of slots, and the slot position.
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Figure 3.22: TW cell design with coupling slots.

Number of Circular Coupling Slot Study

The number of coupling slots is a relatively straightforward design parameter. In this work,
the number of slots was largely governed by the highest achievable shunt impedance for a
given group velocity, and by the temperature rise in the cell wall due to Ohmic heating. As
the number of coupling slots increases, the volume of bulk copper in the cell wall is reduced,
and the temperature rise due to Ohmic heating is larger. This is because heat must diffuse
through the copper wall outwards, towards cooling channels that are placed off-axis.

The group velocity has a power law relationship with respect to coupling slot radius, as

(a) (b)

Figure 3.23: Steady state temperature rise of TW single cell with four cooling channels for
both four and six coupling slots. Both cells have vg = 1% of c.
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(a) (b)

Figure 3.24: Z (a) and
Bpeak

Eacc
(b) as a function of number of slots for two different group

velocities.

shown in Fig. 3.25. One might expect the temperature rise in the copper wall will be related
to the volume of wall, which will decrease with increasing number of slots and increasing
slot radius. Figure 3.23 shows the steady state temperature rise from for a single cell with
four cooling channels, each cooling channel was operated at a flow rate of 2 litres/min at a
temperature of 308 K. Both single cells have been optimised for a group velocity of 1% of c.
The temperature rise from four slots is ∼ 8 K, whilst the rise is 12 K for six slots. One reason
for this may be the increased spacing in the copper bulk for heat to diffuse in the four slot
single cell. The shunt impedance as a function of number of slots is shown in Fig. 3.24(a).
The shunt impedance values are shown for two different values of group velocity, 0.5 and
0.8 % of c, values that are likely to be used for the conceptual linac design. Low values of
the group velocity were simulated because a main design criteria for the design is high rf
power efficiency, which is achieved by running at lower group velocities. Results show that
fewer slots increase the shunt impedance. This may be because increasing the number of
slots increases power losses, as the magnetic field is perturbed in multiple locations.

Bpeak

Eacc
as

a function of number of slots is shown in Fig. 3.24(b). The general trend is that Bpeak/Eacc
increases for fewer slots, with the exception of 8 slots. One reason for the increased peak
magnetic field for 8 slots may be due to the increased number of perturbations to the field,
causing localised concentration of the field.

Four coupling slots was chosen for the TW cell design. This choice was motivated as
four slots maintains higher shunt impedance than six slots, and the value of

Bpeak

Eacc
was not

much greater than for six slots. In addition, a six slot single cell produced higher average
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Figure 3.25: Group velocity of a TW cell as a function of slot displacement and radius.

temperatures than four slots. Two slots was omitted due to the large
Bpeak

Eacc
, which was

around 7 mT/MV/m. As previously discussed, increased peak surface fields contribute to rf
breakdown, even when below a supposed safe limit. Whilst four slots still provided a good
shunt impedance, the increased shunt impedance achieved with two slots was not worth the
vast increase in Bpeak/Eacc.

Circular Coupling Slot Position Study

The position of the coupling slot is an important design choice as it effect the shunt impedance
for a given group velocity, in addition to Bpeak/Eacc. Limiting the peak magnetic field whilst
maximising the shunt impedance for a given group velocity are the main objectives considered
in the study.

The position of the slot relative to the centre of the cell is called the displacement, and
is denoted R. The radius of a given coupling slot is r. The displacement was swept from
15 mm to 25 mm, and for each displacement the slot radius was swept from 3 mm to 8 mm.
These limits were bound, as the minimum displacement of 15 mm could not realise a slot or
radius larger than 8 mm as it would start to intrude on the nose cone.

Figure 3.25 displays the group velocity as a function of slot displacement and radius.
Results imply that for the same slot radius, larger displacements produce higher group
velocity. For a slot displacement of 15 mm, the maximum achievable group velocity is 0.8 %
of c. This value roughly doubles for a slot displacement of 25 mm. As a principal design
criteria is high rf efficiency, coupling slots that allow group velocities over ∼ 1.5 % of c
were not ideal, due to the reduction in rf efficiency (increased power for a given accelerating
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(a) (b)

Figure 3.26: Z and
Bpeak

Eacc
as a function of slot displacement and radius for a TW cell.

gradient). Figure 3.26 displays Z and
Bpeak

Eacc
as a function of slot displacement and radius. The

relationship between shunt impedance and slot displacement and radius is interesting. For
displacements less than ∼ 19, the shunt impedance reduces with decreasing slot radius. This
result is not expected. Generally larger slots have increased losses and therefore smaller Z, as
the accelerating voltage is unaffected. One possible reason for this result is the following. For
small slot displacement, as the slot radius increases, the more the nose-cone is encroached
upon, and therefore losses due to the magnetic field on the nose cone are reduced, as less
nose cone exists. One the displacement is greater than the nose cone height, this effect is no
longer possible, and the shunt impedance decreases with increasing radius, as expected. For
increasing displacement, the relationship between Z and slot radius becomes linear, and the
slope decreases (as the slope is negative) as a faster rate with increasing slot displacement.
As a result, larger slot displacement become much less efficient than slots with smaller
displacement. The reason for this is because the magnetic field increases with radius, thus
higher displacement slots occupy higher magnetic field regions, and losses are increased. As
for the peak magnetic field, increasing slot radius increases the peak field value fairly linearly.
TW cells with smaller slot displacement generally had smaller

Bpeak

Eacc
, as the magnetic field

is smaller in these regions. The coupling slot radius has a larger effect on the peak surface
magnetic field, and is relatively linear.

Figure 3.27 shows the achievable group velocity as a function of shunt impedance and
slot displacement for a TW cell. The figure suggests, for a given group velocity, smaller slot
displacement provides the largest shunt impedance. From the previous discussions, all slot
displacements have benefits. Whilst larger slot displacements have lower shunt impedance,
the group velocity is largest for a given coupling slot radius. As a result, should BpeakEacc be
the principal objective, the value can be minimised by having smaller slot radii, and higher
group velocities can be achieved by having larger slot displacement. If the shunt impedance is
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Figure 3.27: Group velocity of a TW cell as a function of shunt impedance and slot
displacement.

more important in a given design, smaller slot displacements provide larger shunt impedance,
with the trade-off being larger Bpeak/Eacc for a given group velocity. In order to maintain
higher shunt impedance and have the ability to realise larger group velocity, if required, a
displacement of 19 mm was chosen.

Single Cells of Different Length

Sometimes, the exact length of an rf cell may not be know, as the number of cells has not
been established, therefore the synchronous beta may be slightly different to the simulated
value. The amount by which objective values change due to a small change in cell length are
shown in Table 3.4. The synchronous beta was swept from 0.51 to 0.52 in multiple steps, the
objectives were calculated as each step and the maximum deviation from the initial objective
value was taken. A change in βs of 0.01 is equivalent to a change in cell length of ∼ 0.5 mm.
This relates to a change in structure output energy (150 MeV input energy) of ∼ 155 MeV
to ∼ 170 MeV. For a gradient of 35 MeV/m (with transit time factor of 0.5, this is a valid
approximation, see Chapter 5), this is equivalent to a change in cavity length of ∼ 0.3 m
to 1.2 m, or a change in number of cells per structure of 11 to 47. The results suggest that
small perturbations in cell length change the objectives by small amounts, specifically in the
peak field values. The largest change is the change in Z, however a change of 1.7 (%) is still
a small deviation. As a result, single cell solutions for a particular βs are also good solutions
for single cells of slightly different βs. This allows a large time saving, as single cells do not
need to be re-optimised for small changes in βs. However, for protons at lower energy (or
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indeed electrons), changes in cavity length impact changes in βs by larger amounts than for
protons at 150 MeV.

Table 3.4: The change in single cell objectives due to a change in cell length.

∆ βs — ∆ Bpk/Eacc (%) ∆ Epk/Eacc (%) ∆
√
Sc/Eacc (%) ∆ Z (%)

0.01 0.25 0.9 1 1.7

3.5 Conclusion of Single Cell Design

This chapter discussed the design process of a single cell, and the side-coupled cells and
coupling slots for SW and TW cells, respectively. The single cell design is optimised for
maximum shunt impedance whilst minimising the peak surface fields. The optimisation was
completed using MOGA with the cell geometry being described with NURBS to increase the
complexity of possible geometries and push the objectives to limits that are not achievable
with conventional nose cone design techniques. The side-coupled cells are designed to achieve
maximum inter-cell coupling for a given shunt impedance whilst keeping the peak surface
magnetic field small. In order to keep the coupling constant a fluid variable (due to the
unknown length of the cavity) the relationship between coupling and shunt impedance was
ascertained. The TW coupling slot design was motivated with similar objectives - maximising
the group velocity whilst keeping the shunt impedance high and peak surface fields low. The
next step will discuss the beam dynamics of the linac system, and explore any constraint
that may be placed upon cavity length and aid the choice of a SW or TW cavity.
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Chapter 4

Transverse Beam Dynamics Studies

4.1 Twiss Parameters with Acceleration

When designing an rf linear accelerator, the transverse and longitudinal beam dynamics of
the beam are important aspects. Transversely, if the beam size is too large at any point within
the cavity, particles will collide with the cavity walls and less current is accelerated to the
end target. For proton radiotherapy, the beam current is small (∼1 nA) and ideally 100%
transmission is realised. As a result, the beam size must constrained at particular points
along the linac in order reduce the risk of beam loss. In this section, two potential focusing
schemes are discussed, the FODO-like scheme, and the minimum aperture scheme (MAS).
The FODO-like scheme places quadrupoles of alternating polarity between every rf cavity.
The MAS matches the acceptance ellipse of a cavity to the beam ellipse at the cavity entrance,
in order to minimise the cavity aperture for a given cavity length. In order to construct
a more accurate description of the transverse beam dynamics, longitudinal acceleration is
incorporated by producing a transfer map for an rf cavity. Within the new framework,
important transverse beam dynamic quantities, such as the Twiss parameters and betatron
phase advance, must be generalised to incorporate acceleration.

Recall the geometric emittance of a particle beam describes the area of the particle
distribution in 2D phase space (coordinates, x, x′ or y, y′), and is an invariant of motion
if only symplectic transformations are considered, as shown by Liouville’s Theorem [29].
Recall (from Eqn. 2.113) the phase space coordinates are related to the geometric emittance,
εg,x, and Twiss parameters as follows.

εg,x = βxx
′2 + 2αxxx

′ + γxx
2

Where βx is related to the physical transverse beam size of the beam, αx is the related to
the rate of change of βx with longitudinal displacement, and γx is related to the physical
transverse velocity of the beam in the x plane. Together the parameters βx, αx, γx are called
the Twiss (or Courant-Snyder) parameters [29]. Recall β is related to the physical beam size,

84



σ =
√
εβ, α is proportional to the beam divergence, α = −1

2
dβ
ds
, and γ = 1+α2

β
. Equation 2.113

also has a form for the y, y′ coordinate phase space, with a separate set of Twiss parameters
and geometric emittance (that need not be equal to the emittance in x).

It is required to use the normalised emittance defined as εn = εgγrβr where βr is the
particle beta and γr is the Lorentz factor. Suppose a particle in phase space has coordinates
(x0, x

′
0), and traverses an element that can be described with transfer matrix, R. The new

coordinates are (x1, x
′
1). As the Twiss parameters are a function of a lattice, they also

transform βx0 → βx1. In general, the Lorentz factor will also change γr0 → γr1 and βr0 → βr1,(
x1
x′1

)
=

(
R11 R12

R21 R22

)(
x0
x′0

)
. (4.1)

The normalised emittance is invariant with respect to energy gain, therefore from Eqn. 2.113,

γr1βr1(βx1x
′2
1 + 2αx1x1x

′
1 + γx1x

2
1) =

γr0βr0(βx0x
′2
0 + 2αx0x0x

′
0 + γx0x

2
0).

(4.2)

Where the invariance of the normalised emittance with respect to changes in energy has been
used. Inverting the transformation in Eqn. 4.1,(

x0
x′0

)
=

1

det(R)

(
R22 −R12

−R21 R11

)(
x1
x′1

)
. (4.3)

Substituting x0 and x′0 from Eqn. 4.3 into Eqn. 4.2 and comparing coefficients produces the
Twiss transfer matrix. The Twiss transfer matrix relates the Twiss parameters at one point
on the lattice to another point, and is a function of the phase space transfer map elements,
R,

βx1αx1
γx1

 =
1

det(R)2
γr0βr0
γr1βr1

 R2
11 −2R11R12 R2

12

−R11R21 R11R22 +R12R21 −R12R22

R2
21 −2R21R22 R2

22

 βx0αx0
γx0

 . (4.4)

4.2 RF Cavity Transfer Map

In order to more effectively track a particle distribution though a cavity, a transfer map
must be defined. Analytical transfer maps for rf cavities have been produced before, in
the relativistic case [91]. A less rigorous method is outlined below, assuming a π-mode rf
cavity (however the results hold true for all cavity types), with cell length Lcell and particle
synchronous phase ϕ0. The derivation assumes the on-axis electric field profile goes as sin(x).
In general, the field profile can be described with a Fourier series, however the important
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result can be achieved using the first harmonic only. The field oscillates at the resonant
angular frequency, ω,

Ez = sin

(
πz

Lcell

)
sin (ωt+ ϕ0) . (4.5)

The first order expansion of the non-zero transverse field components are given below (see
Chapter 5 for the derivation),

Er = −r
2

dEz
dz

, Bθ =
ωr

2c2
Ez. (4.6)

From the Lorentz force, the momentum gain in the x plane, for constant particle velocity is
as follows;

∆px = q cos (θ)

(
1

βzc

∫
Erdz +

∫
Bθdz

)
, (4.7)

where θ is the azimuthal angle of a particle in the rf cavity. Substituting the non-zero fields
from Eqns. 4.5 and 4.6 into Eqn. 4.7 produces an integral equation in terms of dEz

dz
which is

known from Eqn. 4.5. In order to simplify the integral whilst still gaining the relevant result
it is assumed the particle beta, βz, is equal to the synchronous particle beta, βs, and it is
constant.

∆px = q cos(θ)
r

2c

∫ Lcav

0

π

βsLcell
cos

(
πz

Lcell

)
sin (ωt+ ϕ0) +

ωβs
c

sin

(
πz

Lcell

)
cos (ωt+ ϕ0) dz.

(4.8)
The temporal term for Bθ becomes cos(ωt + ϕ0) as the magnetic field lags the electric field
by π/2. Performing a change of variable t = z

βsc
and assuming a π-mode structure, the

synchronicity condition is used π
Lcell

= ω
βsc

.

∆px = q cos(θ)
r

2c

[
− 1

βs

Nπ sin(ϕ0)

2
+
ωβs
c

NLcell sin(ϕ0)

2

]
(4.9)

Where Lcav = NLcell and N is the number of cells. Simplifying the above, noting that
r cos(θ) = x0.

∆px =
qx0
4c
Nπ

(
βs −

1

βs

)
sin(ϕ0) (4.10)

The above describes a focusing/defocusing term, depending on ϕ0. The longitudinal
momentum gain, ∆pz can be computed with the same method as described above, the result
is shown below;

∆pz =
q

βsc

∫ Lcav

0

Ezdz =

∫ Lcav

0

sin

(
ωz

βsc

)
sin

(
ωz

βsc
+ ϕ0

)
dz =

q

βsc

NLcell
2

cos(ϕ0). (4.11)
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(a) Minimal Defocusing (b) Defocusing (c) Fields of (a).

Figure 4.1: Plots (a) and (b) show the cumulative field observed by a particle through an
rf cavity due to different input rf phases. (c) Field components inside a single cell at three
separate Z positions (vertical black lines) as observed by a particle with velocity equal to the
design beta at a minimal defocusing phase.

The momentum gain in the transverse and longitudinal dimensions, as described by
Eqns. 4.10 and 4.11, depend on sin(ϕ0) and cos(ϕ0), respectively. Hence maximally
longitudinally accelerated beams are minimally transversely defocused. Figure 4.1 displays
the cumulative field observed by a particle traveling at a minimal defocusing (a) and
defocusing (b) phase. The field components observed by a synchronous particle traversing
a single cell at a minimal defocusing phase are shown in Fig. 4.1 (c), for three separate
longitudinal positions.

From Eqn. 4.10 the cavity map elements can be derived. Using s to denote longitudinal
displacement and that x′ = px

pz
= dx

ds
.

∆px = px1 − px0 = x′1pz1 − x′0pz0 (4.12)

x′1 =
∆px + x′0pz0

pz1
(4.13)

Inserting the form for ∆px from Eqn. 4.10 into Eqn. 4.13 and simplifying using natural units
gives the following

x′1 =
Nπ

4pz1

(
βz0 −

1

βz0

)
sin(ϕ0)x0 +

pz0
pz1

x′0 = R21x0 +R22x
′
0. (4.14)

In order to find R11 and R12 Eqn. 4.14 is integrated with respect to s, and with pz1 → pz(s)
to introduce an explicit s dependence on the final longitudinal momentum,∫ Lcav

0

x′(s) =

∫ Lcav

0

dx(s) =
Nπ

4

(
βz0 −

1

βz0

)
sin(ϕ0)x0

∫ Lcav

0

1

pz(s)
ds+pz0x

′
0

∫ Lcav

0

1

pz(s)
ds.

(4.15)
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pz(s) can be written in a form that is convenient for integration;

pz(s) = γrsβrsmc = γrs

√
1− 1

γ2rs
mc =

√
γ2rs − 1mc. (4.16)

Thus, ∫ Lcav

0

1

pz(s)
ds =

1

mc

∫ Lcav

0

1√
γ2rs − 1

ds = L′. (4.17)

A functional form for γrs must account for the rf phase and is assumed to increase/decrease
linearly to the final value. In reality, the Lorentz factor will behave similar to a staircase
function, due to the gaps between accelerating cells,

γrs = γr0 + cos(ϕ0)∆γ
s

Lcav
. (4.18)

Where ∆γ is the maximum achievable gain, γr1 − γr0. The rf phase dependence goes as
cos(ϕ0), due to the ∆pz dependence. In order to proceed, a common hyperbolic identity is
used;

d

da
cosh−1(a) =

1√
a2 − 1

a > 1. (4.19)

As γrs is greater than 1 by definition, there is no issue with the requirement of a > 1. In
order to use Eqn. 4.19 a substitution must be implemented;

a = γrs = γr0 +∆γ cos(ϕ0)
s

Lcav
, (4.20)

ds =
Lcav

∆γ cos(ϕ0)
da. (4.21)

The integral in Eqn. 4.17 becomes

Lcav
∆γ cos(ϕ0)

∫ γr0+∆γ cos(ϕ0)

γr0

da√
a2 − 1

=

Lcav
∆γ cos(ϕ0)

(
cosh−1(γr0 +∆γ cos(ϕ0))− cosh−1(γr0)

)
, (4.22)

therefore,

L′ =
Lcav

∆γ cos(ϕ0)mc

(
cosh−1(γr0 +∆γ cos(ϕ0))− cosh−1(γr0)

)
. (4.23)

Substituting L′ into Eqn.4.15 and using
∫ Lcav

0
x′(s) = x1 − x0;

x1 = x0 +
Nπ

4

(
βz0 −

1

βz0

)
sin(ϕ0)L

′x0 + pz0L
′x′0 = R11x0 +R12x

′
0. (4.24)
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Figure 4.2: Cavity Map element values as a function of rf phase.

Providing the the remaining map elements, R11 and R12. The full result for the phase
dependent rf cavity map is shown below.

(
x1
x′1

)
=

1 + Nπ
4

(
βz0 − 1

βz0

)
sin(ϕ0)L

′ γr0βz0mcL
′

Nπ
4γrsβzsmc

(
βz0 − 1

βz0

)
sin(ϕ0)

γr0βz0
γrsβzs

(x0
x′0

)
(4.25)

The determinant of Eqn. 4.25 is calculated to be

det(R) =
γr0βz0
γrsβzs

(4.26)

as expected for a system undergoing adiabatic damping. Figure 4.2 shows the values of the
cavity map elements as a function of rf phase. The synchronous phase, ϕ0, is often selected
such that the total energy gain is dpz is maximum over the cavity, however is also selected
to balance transverse and longitudinal focusing. From Eqn. 4.11, ϕ0 = 0 (shown by the
two vertical lines in Fig. 4.2) minimises the defocusing term and simultaneously maximises
longitudinal acceleration. In reality, the phase is often shifted to produce a larger region of
longitudinal and transverse stability.

For ϕ0 = 0, the cavity map in Eqn. 4.25 reduces to a simpler form, with R11 = 1 and
R21 = 0. Using the following identity,

cosh−1(x) = ln(x+
√
x2 − 1), (4.27)
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a simplified form for L′ in R12 is determined;

L′(ϕ0 = 0) =
Lcav
∆γmc

(
ln(γr0 +∆γ +

√
(γr0 +∆γ)2 − 1)− ln(γr0 +

√
γ2r0 − 1)

)
. (4.28)

The resulting transfer matrix is as follows;(
x1
x′1

)
=

(
1 Lcav

γr0βz0
γr1−γr0 ln

(
γr1βz1+γr1
γr0βz0+γr0

)
0 γr0βz0

γr1βz1

)(
x0
x′0

)
. (4.29)

Similar to the phase dependant cavity map, Eqn. 4.29 has determinant γr0βz0
γr1βz1

. Thus, a particle
bunch will occupy a smaller area in phase space after acceleration. Whilst the cavity map
shown in Eqn. 4.29 is highly simplified, it approximates a cavity map better than a drift
space, and will be used for cavity elements moving forward.

4.2.1 Betatron Phase Advance With Acceleration

The betatron phase advance (not to be confused with the rf phase) of a beam element, µ,
represents the increase in the action angle variable of a particle [29] over that element. It was
shown in Chapter 2 that the phase advance describes the rotation angle of normalised phase
space (a circle as opposed to a rotated ellipse) due to some transformation. The natural next
step is to determine how linear acceleration alters the phase advance, which can be determined
using µ =

∫ s1
s0

1
β(s)

ds. The determinant of the rf independant cavity matrix, shown above, is
γr0βz0
γr1βz1

. The coefficient of the matrix that transforms Twiss parameters (shown in Eqn. 4.4) is
1

det(R)2
γr0βz0
γr1βz1

, which becomes γr1βz1
γr0βz0

for an rf cavity with ϕ0 = 0. For non-zero acceleration, the
coefficient of the Twiss parameter transformation matrix is therefore greater than one and
the β function will grow relative to zero acceleration. Thus, the integral

∫
1
β
will decrease.

The phase advance will therefore evolve more slowly in an accelerating system.

(
x1
x′1

)
=
γr0βr0
γr1βr1

√βx1
βx0

(cos(µx) + αx0sin(µx))
√
βx0βx1

(αx0−αx1)cos(µx)−(1+αx0αx1)√
βx0βx1

√
βx0
βx1

(cos(µx)− αx1sin(µx))

 (
x0
x′0

)
(4.30)

4.3 The FODO-like Focusing scheme

Recall the FODO scheme is a periodic focusing scheme comprised of drift spaces separated by
quadrupoles of alternating polarity. When designing a linac beam-line, the drift spaces may
be replaced with rf cavities to accelerate the beam. In order to gain insight into this scheme
analytically, the periodicity of the scheme is exploited, and the focusing quadrupole is split
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in half. In order to gain an analytical understanding of the scheme, the cell is split into two
half-FODO cells (see Fig. 4.3). Short drift lengths are incorporated between lattice elements
to account for real world applications. The Twiss parameters tracked through a half-FODO
cell will not return to the original values, as only half of a period has been traversed. The
beta function is no longer perfectly periodic (as it increases with γrβr), but it is seen later
that the beam size is kept periodic. As a result, the scheme is called the FODO-like scheme.

The aim of solving the FODO-like scheme analytically, is to provide the quadrupole
magnet k-strength, k, for a given quadrupole of length, lq, such that the maximum beam
size, σ, is minimised at the rf cavity entrance and exit; providing the smallest beam aperture
possible for a given cavity length within the FODO-like scheme. Fundamentally, this
requires minimising the Twiss β function at the cavity entrance and exit. Recall the Twiss
transformation matrix from Eqn. 4.4 describes how the Twiss parameters transform due to a
transfer map, R, which in general can be a product of multiple transfer maps, R = ABC. It
can be shown that detR = detA detB detC. As quadrupoles and drift length transfer maps
have unit determinant, only the cavity map determinant contributes to detR. As a result,
for a lattice comprised of quadrupoles, drift spaces and rf cavities, the determinant is γr0βr0

γr1βr1
.

The coefficient of the Twiss transformation matrix is therefore;

1

det(R)2
γr0βr0
γr1βr1

=
γr1βr1
γr0βr0

, (4.31)

and the beta function transforms as follows;

β1 =
γr1βr1
γr0βr0

(R2
11β0 − 2R11R12α0 +R2

12γ0). (4.32)

The input Twiss parameters (with subscript 0) are the values at some point in the lattice,
which are free to choose. In this work, the input Twiss parameters are defined at some point
within a quadrupole, such that α0, the beam divergence, is zero. For zero acceleration, the
start point is exactly half way through the quadrupole, however this is not true for non-zero
acceleration. As α = −1

2
dβ
ds
, the input Twiss parameters are also defined at the point where

β0 is at an extreme. Recall, there are associated Twiss parameters for both the x and y
transverse planes. In this work, βx is at maximum when βy is at a minimum, however these
boundary conditions are not always true. In the following derivation, βx is at a maximum
when the input Twiss parameters are defined, however the choice is arbitrary,

βx0 = Max, βy0 = Min, αx0 = αy0 = 0. (4.33)

To solve the problem analytically, transfer maps for quadrupoles, drift lengths and rf cavities
must be known. Recall the transfer maps for quadrupoles and drift lengths;

Rfq =

(
cos(

√
klq)

1
k
sin(

√
klq)

−k sin(
√
klq) cos(

√
klq)

)
(4.34)
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Rdq =

(
cosh(

√
klq)

1
k
sinh(

√
klq)

k sinh(
√
klq) cosh(

√
klq)

)
(4.35)

Lgap =

(
1 ld
0 1

)
. (4.36)

Quadrupole elements R12, R21 have a dependence on the the k-strength (the quantity to be
solved for) both inside and outside of trigonometric/hyperbolic functions, and thus becomes
transcendental and impossible to solve analytically. Therefore, the trigonometric/hyperbolic
functions are expanded to second order, henceforth called the semi-thin lens approximation;

cos(
√
k1lq1) ≈ 1− k1l

2
q1/2

sin(
√
k1lq1) ≈

√
k1lq1

cosh(
√
k1lq1) ≈ 1 + k1l

2
q1/2

sinh(
√
k1lq1) ≈

√
k1lq1.

The semi-thin lens approximation retains all terms up to and including the order knln+2
q (for

arbitrarily high n). Second order expansions were chosen as it will provide greater accuracy
and is still soluble. Recall, trigonometric/hyperbolic functions expanded to first order is the
well-known thin lens approximation.

Figure 4.3: Schematic of the FODO-like focusing scheme with two RF cavities and
quadrupoles showing how the β function changes.

The method requires transforming the Twiss parameters through a half-FODO cell (see
Fig. 4.3); from some point within a quadrupole, to some point in the next quadrupole, at
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which point,
βx0 = Min, βy0 = Max, αx0 = αy0 = 0. (4.37)

The 2 × 2 transfer map for this transformation (in x) is denoted Rhalf,x. In general, the
transverse transfer map is 4 × 4 as it transforms both the x and y phase space, with the x
transfer map being top left 2× 2 section. The transfer map in x for a half-FODO cell is,(

Rhalf,11 Rhalf,12

Rhalf,21 Rhalf,22

)
=

(
1 +

k2l2q2
2

lq2

k2lq2 1 +
k2l2q2
2

)(
1 Leff
0 γr0βr0

γr1βr1

)(
1− k1l2q1

2
lq1

k1lq1 1− k1l2q1
2

)
, (4.38)

where k1 and k2 define the k-strengths of the focusing and defocusing quadrupoles,
respectively (recall x is initially focused). lq1 and lq2 define some section length of the focusing
and defocusing quadrupoles, respectively, and are defined such that α (in both x and y) is 0
and the end of the half-FODO cell. Going forward, the quadrupole section lengths, lq1, lq2, are
simply refered to as quadrupole lengths. The center matrix of Eqn. 4.38 is the multiplication
[drift][cavity][drift] and has been computed already. The cavity matrix used is shown in
Eqn. 4.29. Leff is the R12 element of the [drift][cavity][drift] transfer map and is given by;

Leff = lgap

(
γr0βr0
γr1βr1

+ 1

)
+ Lcav

γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

)
(4.39)

and is identical to R34 (the equivalent R12 element for the y transverse plane) as acceleration
and drift lengths are azimuthally symmetric. The Twiss parameters transformed to the end
point of a half-FODO are denoted with subscript 1. The Twiss α function in both the x and
y planes are, from Eqn. 4.32;

αx1 =
γr1βr1
γr0βr0

(
−Rhalf,11Rhalf,21βx0 −

Rhalf,12Rhalf,22

βx0

)
(4.40)

αy1 =
γr1βr1
γr0βr0

(
−Rhalf,33Rhalf,43βy0 −

Rhalf,34Rhalf,44

βy0

)
. (4.41)

Recall αx0 = αy0 = 0 and therefore γ(x/y)0 =
1

β(x/y)0
. In addition, det(Rhalf,x) = det(Rhalf,y) =

det(Rhalf). The matrix Rhalf provides the necessary information to transform the Twiss
parameters to a point in the lattice where the beam divergence returns to 0 for some set of
quadrupole, cavity, and drift length parameters. Solving Eqns. 4.40 and 4.41 for both βx0
and βy0 before taking the positive definite solution;

βx0 =

√
−Rhalf,12Rhalf,22

Rhalf,11Rhalf,21

, βy0 =

√
−Rhalf,34Rhalf,44

Rhalf,33Rhalf,43

. (4.42)

Enforcing the condition of the FODO system that the beam size in x at the start of the
half-FODO is equal to the beam size in y at the end of the half-FODO;

σx0 = σy1, σx1 = σy0. (4.43)
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The beam size in x at any point along the lattice is given

σx =

√
εnβx
βrγr

. (4.44)

Using Eqns 4.43 and 4.44 the relation between the Twiss β, separated by a half-FODO cell,
are as follows;

γr1βr1
γr0βr0

βx0 = βy1,
γr1βr1
γr0βr0

βy0 = βx1 (4.45)

βx0βx1 = βy0βy1. (4.46)

It is useful to define the aspect ratio of the transverse beam sizes at the each end of a
half-FODO, denoted r;

βx0
βy0

=
βy1
βx1

= r. (4.47)

Translating the β functions to the end of a half-FODO cell gives the following;

βx1 =
γr1βr1
γr0βr0

(
R2

half,11βx0 +
R2

half,12

βx0

)
(4.48)

βy1 =
γr1βr1
γr0βr0

(
R2

half,33βy0 +
R2

half,34

βy0

)
. (4.49)

Translating the Twiss γ provides another set of equations;

γx1 =
1

βx1
=
γr1βr1
γr0βr0

(
R2

half,21βx0 +
R2

half,22

βx0

)
(4.50)

γy1 =
1

βy1
=
γr1βr1
γr0βr0

(
R2

half,43βy0 +
R2

half,44

βy0

)
. (4.51)

Using Eqns. 4.49 and 4.51 the product of the β function before and after the half-FODO are
given;

βx0βx1 =
βx0
γx1

=
βx0

γr1βr1
γr0βr0

(
R2

half,21βx0 +
R2

half,22

βx0

) , (4.52)

βy0βy1 =
βy0
γy1

=
βy0

γr1βr1
γr0βr0

(
R2

half,43βy0 +
R2

half,44

βy0

) . (4.53)

From Eqn. 4.46, the above products are equal, providing the following requirement;

R2
half,21 +

R2
half,22

β2
x0

= R2
half,43 +

R2
half,44

β2
y0

. (4.54)
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Inserting βx0 and βy0 from Eqn. 4.42

R2
half,21 −

R2
half,22

Rhalf,12Rhalf,22

Rhalf,11Rhalf,21

= R2
half,43 −

R2
half,44

Rhalf,34Rhalf,44

Rhalf,33Rhalf,43

. (4.55)

Simplifying the above produces the following;

Rhalf,21

(
Rhalf,21 −

Rhalf,22Rhalf,11

Rhalf,12

)
= Rhalf,43

(
Rhalf,43 −

Rhalf,44Rhalf,33

Rhalf,34

)
. (4.56)

Multiplying Eqn. 4.56 with both Rhalf,12 and Rhalf,34 separately to gain two separate equations;

Rhalf,21 det(Rhalf) = Rhalf,43

(
Rhalf,43Rhalf,12 −Rhalf,44Rhalf,33

Rhalf,12

Rhalf,34

)
(4.57)

Rhalf,21

(
Rhalf,21Rhalf,34 −Rhalf,22Rhalf,11

Rhalf,34

Rhalf,12

)
= Rhalf,43 det(Rhalf). (4.58)

Solving Eqns. 4.57 and 4.58 for det(Rhalf) and equating;

Rhalf,43

Rhalf,21

(
Rhalf,43Rhalf,12 −Rhalf,44Rhalf,33

Rhalf,12

Rhalf,34

)
=

Rhalf,21

Rhalf,43

(
Rhalf,21Rhalf,34 −Rhalf,22Rhalf,11

Rhalf,34

Rhalf,12

)
(4.59)

R2
half,43

R2
half,21

=
Rhalf,21Rhalf,34 −Rhalf,22Rhalf,11

Rhalf,34

Rhalf,12

Rhalf,43Rhalf,12 −Rhalf,44Rhalf,33
Rhalf,12

Rhalf,34

. (4.60)

The above requirement must be met to ensure constant maximum beam size. The
requirement used to arrive at the above constraint, βx0βx1 = βy0βy1 can be solved using
information unused thus far;

βx0βx1 =
1

det(Rhalf)2
γr1βr1
γr0βr0

(
R2

half,11β
2
x0 +R2

half,12

)
(4.61)

βy0βy1 =
1

det(Rhalf)2
γr1βr1
γr0βr0

(
R2

half,33β
2
y0 +R2

half,34

)
. (4.62)

Similarly, the two expressions are equal. Substituting the forms for βx0, βy0 as functions of
matrix elements (Eqn. 4.42);

−Rhalf,11Rhalf,12Rhalf,22

Rhalf,21

+R2
half,12 = −Rhalf,33Rhalf,34Rhalf,44

Rhalf,43

+R2
half,34. (4.63)
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Dividing by Rhalf,12Rhalf,34

−Rhalf,11Rhalf,22

Rhalf,21Rhalf,34

+
Rhalf,12

Rhalf,34

= −Rhalf,33Rhalf,44

Rhalf,43Rhalf,12

+
Rhalf,34

Rhalf,12

. (4.64)

Introducing terms to have like-denominators

−Rhalf,11Rhalf,22 +Rhalf,12Rhalf,21

Rhalf,21Rhalf,34

=
−Rhalf,33Rhalf,44 +Rhalf,34Rhalf,43

Rhalf,43Rhalf,12

(4.65)

which, using detRhalf,x = detRhalf,y, provides the result following result;

Rhalf,12

Rhalf,34

=
Rhalf,21

Rhalf,43

. (4.66)

Substituting the constraint shown in Eqn. 4.66 into the constraint from Eqn. 4.60,

R2
half,43

R2
half,21

=
Rhalf,21Rhalf,34 −Rhalf,22Rhalf,11

Rhalf,34

Rhalf,12

Rhalf,43Rhalf,12 −Rhalf,44Rhalf,33
Rhalf,12

Rhalf,34

=

Rhalf,21Rhalf,12
Rhalf,43

Rhalf,21
−Rhalf,22Rhalf,11

Rhalf,34

Rhalf,12

Rhalf,43Rhalf,34
Rhalf,21

Rhalf,43
−Rhalf,44Rhalf,33

Rhalf,12

Rhalf,34

=
det(Rhalf)

det(Rhalf)
, (4.67)

and therefore;
R2

half,43

R2
half,21

= 1. (4.68)

The final constraint for the individual transfer map elements are therefore;

Rhalf,21 = Rhalf,43, Rhalf,12 = Rhalf,34 (4.69)

Rhalf,11Rhalf,22 = Rhalf,33Rhalf,44. (4.70)

Where the positive solution is taken when solving Eqn. 4.68, as the negative solution is not
wanted. Relationships between quadrupole parameter values, k1, lq1, k2, lq1 can be calculated
using the constraints in Eqn. 4.69. Semi-thin lens approximations of Rhalf,12 and Rhalf,34, are
found by expanding Eqn. 4.38. Equating the map elements produces the following(√

k1lq1√
k1

+ Leff

(
1−

k1l
2
q1

2

))(
1 +

k2l
2
q2

2

)
+

√
k2lq2√
k2

γr0βr0
γr1βr1

(
1−

k1l
2
q1

2

)
=(√

k1lq1√
k1

+ Leff

(
1 +

k1l
2
q1

2

))(
1−

k2l
2
q2

2

)
+

√
k2lq2√
k2

γr0βr0
γr1βr1

(
1 +

k1l
2
q1

2

)
(4.71)
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expanding and simplifying, ignoring all higher order terms that are not included in the semi-
thin lens approximation;

Leff
(
k2l

2
q2 − k1l

2
q1

)
=
γr0βr0
γr1βr1

k1l
2
q1lq2 − k2l

2
q2lq1. (4.72)

The remaining constraint,
Rhalf,21 = Rhalf,43, (4.73)

yields the following result

k2lq2 = k1lq1
γr0βr0
γr1βr1

. (4.74)

Using the constraint from Eqn. 4.74 and inserting into Eqn. 4.72

Leff
(
k2l

2
q2 − k1l

2
q1

)
=
γr0βr0
γr1βr1

k1l
2
q1lq2 −

γr0βr0
γr1βr1

k1l
2
q1lq2 = 0. (4.75)

Taking the non-trivial solution (for Leff ̸= 0);

k1l
2
q1 = k2l

2
q2. (4.76)

Using Eqns. 4.74 and 4.76 produces relationships between consecutive quadrupole k-strengths
and lengths;

lq1 =
γr0βr0
γr1βr1

lq2, (4.77)

k1 =
k2

(γr0βr0
γr1βr1

)2
. (4.78)

It can be shown Eqns. 4.74 and 4.78 are always solutions by inserting the results into
Eqn. 4.69 for the thick lens case.

Recall, the quadrupole lengths discussed above, lq1 and lq2, are the lengths of the
quadrupole sections, which are some proportion of the entire quadrupole. The length of
the other section of the quadrupole is explored later in this section. For zero acceleration,
the quadrupole is split exactly in half and the real quadrupole would have length 2lq1. It
is required to produce function forms of βx0, βy0 and the aspect ratio, r, as functions of
quadrupole, drift length and cavity parameters (lattice parameters).

Firstly, dividing βy1 by βx1;

βy1
βx1

=
R2

half,33βy0 +
R2

half,34

βy0

R2
half,11βx0 +

R2
half,12

βx0

= r, (4.79)
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before multiplying by βy0
βx0

(equivalent to dividing by r);

βy1βy0
βx1βx0

=
R2

half,33β
2
y0 +R2

half,34

R2
half,11β

2
x0 +R2

half,12

= 1, (4.80)

thus,

R2
half,33β

2
y0 +R2

half,34 = R2
half,11β

2
x0 +R2

half,12 →
R2

half,33

R2
half,11

= r2. (4.81)

Where the fact Rhalf,12 = Rhalf,34 has been used. As r is positive definite, the positive
solution is taken when the final equality above is square rooted. Producing semi-thin lens
approximations for Rhalf,11 and Rhalf,33 produces an approximation for r;

r =
Rhalf,33

Rhalf,11

≈
1 + Leffk1lq1 + k1l

2
q1 −

Leffk
2
1l

3
q1

2

1− Leffk1lq1 − k1l2q1 −
Leffk

2
1l

3
q1

2

. (4.82)

Another form that gives the ratio of beam sizes, r, is the following;

γx1
γy1

=
βy1
βx1

= r. (4.83)

Inserting approximations for γx1, γy1 from Eqn. 4.51 into the above equation yields;

Rhalf,22

Rhalf,44

= r =
Rhalf,33

Rhalf,11

. (4.84)

The input Twiss parameters, βx0 and βy0 can be determined as functions of lattice parameters
and r, by inserting the semi-thin lens approximations for elements of Rhalf into Eqn. 4.42;

βx0 =

√
r

k1lq1

√
1 +

lq1
Leff

, (4.85)

βy0 =
1√
rk1lq1

√
1 +

lq1
Leff

. (4.86)

Recall the aim of the method is to produce the lattice elements such that the maximum
beam size is minimised at the cavity entrance and exit. The Twiss β (in x) at the cavity
entrance, βxc0, is determined using Eqn. 4.4 where the transfer map is comprised of the
focusing quadrupole (of strength k1 and length lq1) and a drift space of length lg1. The
transfer matrix will be referred to as Rentrance,

Rentrance =

(
1 lg1
0 1

)(
1− k1l2q1

2
lq1

k1lq1 1− k1l2q1
2

)
=1− k1l2q1

2
+ k1lq1lg1 lq1 + lg1

(
1− k1l2q1

2

)
k1lq1 1− k1l2q1

2

 . (4.87)
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Using the Twiss parameter mapping matrix, βxc0 is defined as follows;

βxc0 = R2
entrance,11βx0 +

R2
entrance,12

βx0
, (4.88)

and is minimised by differentiating Eqn. 4.88 with respect to the quadrupole k-strength, k1
(although it would be just as valid to minimise with respect to the lq1) and setting to zero.
As the beam size in x at the start of the half-FODO cell is equal to the beam size in y at
the end of the cell, minimising the beam at the cavity entrance will also minimise the beam
size in y at the cavity exit. The total derivative is given;

dβxc0
dk1

= 2R11
dR11

dk1
βx0 +R2

11

dβx0
dk1

+ 2R12
dR12

dk1

1

βx0
−R2

12

1

β2
x0

dβ0
dk1

= 0. (4.89)

Terms like dRentrance,11

dk1
can be calculated straightforwardly, using Eqn. 4.87,

dRentrance,11

dk1
= −

l2q1
2

+ lq1lg1 (4.90)

dRentrance,12

dk1
= −

l3q1
2
. (4.91)

It is convenient to expand the derivative of βx0 as a function of r. Differentiating βx0 with
respect to k1 is completed by using the semi-thin lens approximation for βx0 from Eqn. 4.85;

dβx0
dk1

=

√
1

l2q1
+

1

lq1Leff

d

dk1

(√
r

k1

)
=

√
1

l2q1
+

1

lq1Leff

(
1

2r
1
2k1

dr

dk1
− r

1
2

k21

)
. (4.92)

This can be written in a more useful form by taking out a factor of βx0 as defined in Eqn. 4.85;

dβx0
dk1

= βx0

(
1

2r

dr

dk1
− 1

k1

)
. (4.93)

Rearranging Eqn. 4.89 for βx0
dk1

, equating to the above equality and dividing by βx0, with
Rentrance = R;

1

2r

dr

dk1
− 1

k1
=

−2R11
dR11

dk1
− 2R12β

−2
x0

dR12

dk1

R2
11 −R2

12β
−2
x0

(4.94)(
1

2r

dr

dk1
− 1

k1

)(
R2

11 −R2
12β

−2
x0

)
= −2R11

dR11

dk1
− 2R12

β2
x0

dR12

dk1
. (4.95)

Multiplying by r produces;

R2
11

2

dr

dk1
− R2

12

2β2
x0

dr

dk1
− rR2

11

k1
+
rR2

12

k1β2
x0

= −2rR11
dR11

dk1
− 2rR12

β2
x0

dR12

dk1
. (4.96)
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The derivative of r with respect to k1 must now be computed;

dr

dk1
=
l4q1L

2
eff (Leff + lq1)k

2
1 + 2lq1(Leff + lq1)(

1− Leffk1lq1 − k1l2q1 −
Leffk

2
1l

3
q1

2

)2 . (4.97)

However, the semi-thin lens approximation ignores terms of order knln+2
q , for any positive

integer n. As Leff is the same order of magnitude as the physical cavity length, it will be of
the order 1. As a result, Eqn. 4.97 reduces to the following;

dr

dk1
=

2lq1Leff(
1− Leffk1lq1 − k1l2q1 −

Leffk
2
1l

3
q1

2

)2 . (4.98)

The final step requires inserting the analytical forms for βx0 (Eqn. 4.85), r (Eqn. 4.82), R11,
R12 (Eqn. 4.87), dR11

dk1
, dR12

dk1
(Eqn. 4.91) into Eqn. 4.96 and simplifying omitting and terms

that are beyond second order. A cubic in k1 is produced.

−
l4q1L

2
eff

2
k31 + l2q1(2lgLeff − 2lq1Leff − L2

eff )k
2
1 − lq1(Leff + lq1)k1 + 1 = 0 (4.99)

Many methods exist to solve a cubic equation, however here the cubic is written as a depressed
cubic [92] and a formula demonstrated by Francois Viete is implemented. A general cubic
has the form;

ax3 + bx2 + cx+ d = 0. (4.100)

Solving the cubic can be done by writing the cubic as a depressed cubic. The first step is to
change variables;

x = t− b

3a
(4.101)

dividing the remaining cubic with a leaves the depressed cubic;

t3 + pt+ q = 0 (4.102)

where p(a, b, c) and q(a, b, c, d) are functions of the original cubic coefficients,

p =
3ac− b2

3a2
(4.103)

q =
2b3 − 9abc+ 27a2d

27a3
. (4.104)

The roots are calculated using the following;

tm = 2

√
−p
3

cos

[
1

3
cos−1

(
3q

2p

√
−3

p

)
− 2πθm

3

]
. (4.105)
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The term inside the square root(s) of Eqn. 4.105 may be negative, as p may be less than
0. As a result, tk is treated as complex. It is useful to display the complex number in the
form Reiθ and take the cube root. This gives one solution to the cubic with the largest real
component. The remaining two solutions can be found by rotating the complex numbers by
one third of a full period;

θm =
2πm

3
, m = (0, 1, 2) (4.106)

therefore,

k1 = 2

√
−p
3
cos

(
1

3
cos−1

(
3q

2p

√
−3

p

)
− θm

)
− b

3a
(4.107)

where

p =
3ac− b2

3a2
, q =

2b3 − 9abc+ 27a2d

27a3
(4.108)

and

a =
−L2

eff l
4
q1

2
(4.109)

b = l2q1(−2Leff lq1 − L2
eff + 2lgLeff ) (4.110)

c = −lq1(Leff + lq1) (4.111)

d = 1. (4.112)

The cubic can be simplified to first order by keeping terms of the order k1lq1 only. Producing
an equation for k1 that is more straightforward to solve;

k1lq1 =

√
5− 1

2Leff
. (4.113)

The above equation is the thin lens approximation for k1, and whilst much easier to solve, is
highly inferior to the semi-thin lens approximation for the optimised value of k1 (see later).

Equation 4.107 provides an analytical form for calculating first quadrupole k-strength in
order to minimise the maximum beam size at the cavity entrance. As a result, the optimal
beam size at the cavity entrance can be calculated as a function of lattice parameters, as
the equation for β at the cavity entrance, βxc0, was derived and shown in Eqn. 4.88. This
method therefore allows a self-contained analytical method to determine the minimum beam
size at the cavity entrance as function of cavity length. The performance of the method will
be analysed in Section 4.6.
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4.4 Concatenating Multiple half-FODO Cells

As there is nothing special about the first half-FODO cell that allowed the derivation of the
half-FODO constraints, the constraints must hold true for subsequent half-FODO cells. The
next step is to derive a set of telescoping equations. Firstly, quadrupole lengths must be
re-defined to incorporate a second index that describes if it is the first or second section of a
complete quadrupole, that is;

lq1 = lq1,2, lq2 = lq2,1, (4.114)

where the second index describes which section of the quadrupole the length describes (first
or second), as shown in Fig. 4.4. The parameter Leff also adopts a subscript, indicating
the half-FODO cell index, Leff,1 is the first half-FODO cell value of Leff . Recall Leff,1 is a
function of the cavity gradient, cavity length, and drift length;

Leff,1 = lg1(1 +
γr0βr0
γr1βr1

) + Lcav1
γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

)
. (4.115)

Figure 4.4: Schematic of the FODO-like focusing scheme with two RF cavities. Lattice
parameters are labelled to aid with nomenclature.

For a set of N half-FODO cells, there exists N focusing quadrupole sections and N
defocusing quadrupole sections, a total of 2N quadrupole sections (N complete quadrupoles).
The k-strength are related via the following relationship, as described by Eqn. 4.78;

k1 =
k2(

γr0βr0
γr1βr1

)2 =
k3(

γr0βr0
γr1βr1

)2 =
k4(

γr0βr0
γr1βr1

)2 (
γr1βr1
γr2βr2

)2 = · · · = k2N∏N−1
i=0

(
γriβri

γr(i+1)βr(i+1)

)2 . (4.116)
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Where k2 = k3 as they are sections of the same quadrupole, separated into two separate
half-FODO cells (see Fig. 4.4). The relationship between quadrupole lengths in the nth and
(n+ 1)th half-FODO cells are determined using Eqn. 4.77,

lqn,2 =
γr(n−1)βr(n−1)

γrnβrn
lq(n+1),1. (4.117)

Instead of assuming a value for lqn,2 (as was required for lq1,2), it is later shown, using
Eqn. 4.122, how the quantity can be derived.

Equation 4.45 determines how the Twiss β must evolve along a lattice of half-FODO cells
for a given acceleration. Equations 4.85 and 4.86 determine the Twiss β as functions of the
aspect ratio, r, quadrupole k-strength, quadrupole length, and Leff . In order that Twiss β
transform correctly from one half-FODO cell to the next, Eqns. 4.45 and 4.85, are used. The
result places a constraint on consecutive values of Leff ;

Leff,2 =
Leff,1
γr0βr0
γr1βr1

. (4.118)

Generally, the iterative form for Leff,(n+1) is given;

Leff,(n+1) =
Leff,1
γr0βr0

γr(n)βr(n)

. (4.119)

The requirement of Eqn. 4.119 demonstrates that downstream values of Leff are
constrained by the values of Leff,1 and the change in Lorentz factor. Cavity lengths have
discrete lengths as they are comprised of an integer number of single cells (which must be a
length that allows the synchronicity condition to bet met). The calculation of Leff is also a
function that depends on the acceleration from an rf cavity (change in Lorentz factor). In
order to satisfy Eqn. 4.119, either the gap length, lg,n, or the cavity length, Lcav,n, can be
altered (indeed both can be altered simultaneously). Below, the case is shown for changing
lg,n, which solves the case for when a cavity is already designed, and alteration to the length
is not possible. If a value of the first drift length, lg,1, is defined, subsequent values can
be calculated such that the constraint on consecutive Leff is fulfilled for any cavity length
and change in Lorentz factor. In order to produce the set of telescoping equations for lg,n,
firstly lg,2 is determined. This is completed by rearranging Leff,2 (from the equivalent form
in Eqn. 4.115) for lg,2 and enforcing Eqn. 4.118. lg,2, is given by

lg,2 =

Leff,1
γr0βr0
γr1βr1

− lcav,2
γr1βr1
γr2−γr1 ln

(
γr2βr2+γr2
γr1βr1+γr1

)
γr1βr1
γ2βr2

+ 1
. (4.120)

The general form for the nth half-FODO cell is

lg,n =
Leff,n − lcav,n

γr(n−1)βr(n−1)

γrn−γr(n−1)
ln
(

γrnβrn+γrn
γr(n−1)βr(n−1)+γr(n−1)

)
γr(n−1)βr(n−1)

γrnβrn
+ 1

. (4.121)
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This result shows that provided the cavity lengths and Lorentz factors are known along the
lattice, the subsequent gap lengths can be determined such that the constraint on consecutive
values of Leff is met (Eqn. 4.119).

Indeed, the cavity length in consecutive half-FODO cells can be altered in order to satisfy
Eqn. 4.119, or a combination of both lg and Lcav. It is shown later, that changing lg only is
not an ideal solution, as the real estate gradient drops.

The last constraint to be satisfied requires a constant aspect ratio, r. From Eqn. 4.82;

r1 =
1 + Leff,1k1lq1,2 + k1l

2
q1,2 −

Leff,1k
2
1l

3
q1,2

2

1− Leff,1k1lq1,2 − k1l2q1,2 −
Leff,1k

2
1l

3
q1,2

2

= r2 =
1 + Leff,2k2lq2,2 + k2l

2
q2,2 −

Leff,2k
2
2l

3
q2,2

2

1− Leff,2k2lq2,2 − k2l2q2,2 −
Leff,2k

2
2l

3
q2,2

2

.

(4.122)

One method to satisfy the constraints in Eqn. 4.122 is the following;

lq2,2 =
lq1,2
γr0βr0
γr1βr1

. (4.123)

Which provides a solution for Eqn. 4.117, the quadrupole length in the next half-FODO cell.
By satisfying the constraints outlined in this section, the Twiss β functions transforms as
described by Eqn. 4.45, and increase linearly with γrβr. In addition, the beam size and aspect
ratio return to the same constant value, at the boundary of each half-FODO cell.

In this section, the FODO-like scheme was analytically solved whilst incorporating
longitudinal acceleration from RF cavities. Provided with the first quadrupole length, lq1, first
drift length, lg1, cavity lengths, lcav,n and change in particle Lorentz factors, γrn, optimised
FODO cell lattice elements can be determined along the entire lattice. The values calculated
are such that the beam size is minimised at the cavity entrance/exit in order to maximise
transverse beam capture for a given cavity length. A script was written in Python [93] that
determined the complete set of optimised quadrupole parameters and drift lengths (k, lq, lg),
as a function of cavity lengths and the Lorentz factors at each cavity. The Twiss parameters
and phase advance are also calculated along the lattice.

4.5 FODO-like Lattice Analytical Results

The Twiss βx and αx functions are shown in Fig. 4.5. βx alternates between a maximum and
minimum at the end of each subsequent half-FODO cell. For zero acceleration, βx returns
to the same maximum and minimum. When acceleration is considered, the maximum βx
increases along the lattice, as the Lorentz factor increases after each rf cavity. Another point
of interest is that the FODO cell period is not constant along the lattice. Horizontal lines
show the placement of lattice elements (for the accelerating case). Figure 4.5 (b) displays
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(a) (b)

Figure 4.5: Plot displaying calculated values of βx (a) and αx (b) along a FODO-like lattice
comprised of 4 FODO cells in both an accelerating and non accelerating scheme.

the Twiss αx function over the lattice, however is only calculated at a boundary between
lattice elements, and extrapolated between with a straight line. αx tends to zero at the end
of each half-FODO cell, at a distance lqn,1 into each quadrupole, as expected. The physical
beam size in both transverse planes is shown in Fig. 4.6 (a). The maximum beam size is
constant along the lattice, as constrained. At the first cavity entrance, the beam size in x
is bigger than y. At the end of the cavity, the y beam size is bigger. The maximum beam
size (in x or y) is the same at both cavity ends. Figure 4.6 (b) shows the betatron phase
advance (in x) along the lattice. At a given point along the lattice, the phase advance in the
non-accelerating case is larger than the accelerating case. Hence, the phase advance per unit
length is smaller when acceleration is non-zero.

Figure 4.7 shows the value of β as calculated using two methods. The first methods
calculates the expected β by the Lorentz propagation Eqns. 4.45. The second method
propagates β along the lattice using the Twiss transformation matrix (Eqn. 4.49) with lattice
parameters calculated using the iterating Eqns. 4.116, 4.117, 4.121and 4.123. Both methods
calculate the same value for β along the lattice, showing the self-consistent nature of the
method.

Figure 4.8(a) shows the beam size at the end of each half-FODO cell, for two different
lattice schemes. The two schemes displayed are the theoretical scheme/FODO-like, and
the constant lattice parameter/standard FODO scheme. The FODO-like scheme provides
a constant beam size at the end of each half-FODO, as defined in the derivation of lattice
elements. The standard FODO scheme uses the value of k1 (calculated using Eqn. 4.107),
lq1 and lg1 for all half-FODO cells. From Fig. 4.8(a), the beam size in the standard FODO
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(a) (b)

Figure 4.6: Plot displaying calculated values of σx (a) and µx (b) along a FODO-like lattice
comprised of 4 FODO cells in an accelerating scheme.

Figure 4.7: Twiss β function calculated with two methods (Eqns. 4.45 and 4.49). The starting
lattice parameters are shown.
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(a) (b)

Figure 4.8: Beam size as a function of (a) half-FODO number and displacement (b) for
constrained/theoretical lattice and constant lattice parameters.

scheme is not constant at the boundary between half-FODO cells. The increasing Lorentz
factor is not counteracted by an increasing βx and thus the beam size shrinks along the lattice.
Figure 4.8(b) displays the beam size for both schemes as a function of longitudinal distance,
s. The beam size in the standard FODO scheme does not return to the same constant value
at the end of every half-FODO cell, but decreases along the lattice as the Lorentz factor
increases. From Eqns. 4.77 and 4.123, consecutive values of quadrupole length and Leff
increase with Lorentz factor in the FODO-like scheme. As a result, consecutive half-FODO
cell lengths increase gradually. This does not occur in the standard FODO scheme. The
increase in period length is a function of the γrβr, and as acceleration tends to 0, the lattice
parameters tend to the standard FODO scheme values, as expected. This implies the role of
acceleration in a FODO scheme is to stretch the lattice longitudinally.

Figure 4.9 (a) displays the ratio of beam sizes (r) at the end of each half-FODO cell
(bigger transverse beam size divided by smaller transverse beam size). The FODO-like
lattice produces the constant beam ratio, as expected. For the standard FODO scheme, the
ratio is not constant, showing the beam is either over or under focused due to a miss-match
in lattice parameters. This is because oscillations in the Twiss parameters are not coinciding
with the end of consecutive half-FODO cells; the phase space ellipse does not return to the
initial distribution after one period, it will be slightly misaligned. The misalign continues
to grow with more periods (half-FODO cells). The FODO-like scheme is designed around
maintaining this exact requirement. This result is again observed in Fig. 4.9 (b), which shows
αx at the end of every half-FODO cell. αx in the FODO-like lattice returns to 0 at each half-
FODO cell boundary, as required. The standard FODO scheme does constrain αx to be 0
at each half-FODO boundary. As the value is consistently greater than 0, this suggests βx
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(a) β ratio at each half-FODO cell for
constrained/theoretical lattice and constant
lattice parameters

(b) αx at each half-FODO cell for con-
strained/theoretical lattice and constant
lattice parameters

Figure 4.9: The constrained FODO parameters at each half-FODO cell, r and αx as calculated
by the theoretical/constrained lattice and constant parameter lattice.

is decreasing to a minimum is has not yet reached, or decreasing after a maximum it has
already passed. Whilst the scheme is relatively stable over the lattice, it is not periodic, as
in the constrained system.

It was shown previously the transverse beam size was minimised with respect to the
quadruple k-strength, as opposed to the quadrupole length. The reason for this is the
insensitivity of βxc0 with respect to changes in lq1. Figure 4.10 (a) shows the optimal
minimised βxc0 as a function of cavity length, Lcav, and quadrupole length, lq1. Each point
has been optimised with respect to k1. For large changes in lq1, the optimum value of βxc0 is
essentially unchanged. Thus, optimising βxc0 with respect the lq1 is not efficient. In fact, the
optimal value of lq1 to minimise βxc0 for a given k1 was ∼1 m, with a very broad minimum.

The main motivation behind the analytical FODO-like method was to determine the
lattice parameters such that the maximum beam size at the cavity entrance/exit was
minimised for a given cavity length. Figure 4.10 (b) shows the minimum beam size at the rf
cavity entrance for different cavity lengths in the FODO-like focusing scheme. The limit on
the rf single cell aperture is 2.5 mm. The normalised transverse rms beam emittance is 0.032 π
mm mrad [94]. Once cavity lengths reach ∼1 m long, the 5σ transverse maximum beam size
becomes greater than the 2.5 mm aperture. The study concludes that cavity lengths up to
1 m in length can be used until transverse losses become too great. This allows the option
of exploring longer TW structures in addition to the previously assumed SW structure. The
reason for this is the optimal performance of TW structures over SW structures as the cavity
length increases. However, for lengths up to ∼1 m, either type could perform better. The
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(a) (b)

Figure 4.10: (a) Beta function at the cavity entrance as a function of cavity length and lq1
with constant k-strength. (b) Maximum beam size as a function of cavity length using the
FODO-like focusing scheme.

next Chapter 6, describes the performance comparison between both accelerator types using
a detailed analytical method.

As the analytical FODO-like method also calculates the Twiss parameters along the
lattice, the phase space beam ellipse is known at any point. Consider a lattice comprised of
three FODO cells, with each cell comprised of two rf cavities. The quadrupole and drift space
parameters are determined using the FODO-like scheme, and the quadrupole k-strengths has
been calculated such that the maximum beam size is minimised at the entrance of the cavity.
Each cavity length is ∼1 m. Figure 4.11 (a) displays the 5σ phase space (x) beam ellipse at
the entrance and exit of the sixth rf cavity. Figure 4.10 (b) demonstrated that cavity lengths
∼1 m will produce a 5σ beam size at the cavity entrance/exit, this is confirmed as the output
phase space ellipse (red ellipse) fits within the beam aperture at the exit. The rf cavity map
acts on the input ellipse to produce the output ellipse. If the cavity length had been longer,
the beam ellipse will have defocused beyond the aperture limit and particles will have been
lost on the cavity walls.

Figure 4.11 (b) shows the phase space (x) of a particle beam at the start and end of the
fifth half-FODO cell. At the entrance of the half-FODO cell (black ellipse) βx is maximum
and αx = 0. The red ellipse describe the phase space ellipse at the end of the half-FODO
system, at this point in the lattice βx is minimum, and again αx = 0. As the constraints are
enforced the lattice parameters evolve with the Lorentz factor, and at the boundary between
half-FODO cells the aspect ratio and beam sizes return to the constant value.

Figure 4.12 shows the input and output beam ellipse over a half-FODO cell in standard
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(a) (b)

Figure 4.11: 5σ phase space of beam ellipse at defined position in beam lattice. The system
is described using the FODO-like scheme.

FODO scheme (constant lattice parameters). Whilst the phase space ellipse at the start exit
of the half-FODO cell does not exactly coincide with minimum βx and αx = 0, the error
is small. Whilst the exact constraints to ensure periodicity between half-FODO cells is not
met, the solution is stable over many cavities. The benefit of the standard FODO scheme is
clear when considering the longitudinal acceptance. As the lattice parameters do not grow in
length with the Lorentz factor, the longitudinal beam spread is smaller than the FODO-like
system.

For linac systems with short cavities, the FODO-like system does not increase in length
considerably, whilst retaining constant aspect ratio between FODO cells. This is because
the increase in FODO cell length is most influenced by the increase in lg,n. In the FODO-
like treatment, the gap length absorbs any difference in required cavity length such that
Eqn. 4.119 holds true. As the cavity length increases, the correction to consecutive lg,n
increases. For cavity lengths ∼1 m, (and gradient 50 MeV/m) the gap length increases
by ∼ 30% per FODO cell. For cavity lengths ∼ 0.3 m the gap length increases by ∼ 5%
per cell. For drift spaces ∼ 0.1 m, a 5% increase in drift length is small. As a result, the
FODO-like system (with constant cavity length) is more appropriate for linacs with shorter
structures, as the classic FODO results are retained, and the real estate gradient does not
decrease. For longer cavity lengths, the decrease in real estate gradient, due to the increasing
gap length, does not justify the retainment of classic FODO requirements, such as constant
aspect ratio. As discussed previously, other methods can be used to satisfy Eqn. 4.119,
such as altering the cavity length. Figure 4.13 (a) displays the beam size as the boundary
between half-FODO cells for the standard FODO and FODO-like schemes. In order to satisfy
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Figure 4.12: 5 σ Phase Space of beam ellipse at entrance and exit of fifth half-FODO cell
using the semi-thin lens approximation. Lattice parameters are kept constant for each FODO
cell.

Eqn. 4.119, the cavity length is increased, as opposed to the drift length. The FODO-like
scheme produces constant beam size at each boundary, as required. The FODO scheme
becomes unstable after multiple FODO cells. As all lattice parameters are constant, there is
no correction for the increasing cavity length, and the standard FODO scheme breaks down.
This is unlike the case of constant cavity length, where the standard FODO schemes performs
well and remains stable. By definition, the FODO-like scheme is stable for all methods of
satisfying Eqn. 4.119. Figure 4.13 (b) displays the length of lg and Lcav along a lattice for
three different methods for satisfying Eqn. 4.119. As expected, increasing the cavity length
with constant drift length provides the maximum real estate gradient (the real estate here is
defined as the ratio of accelerating length to total length). It can be shown that the case of
constant drift length has a higher real estate than the standard FODO scheme, as consecutive
cavity lengths increase faster than consecutive quadrupole lengths. Keeping the cavity length
constant produces the lowest real estate gradient as the drift length increases most rapidly.
The solution in blue shows a case where the constraint on Leff,n is met by changing lg,n and
Lcav,n simultaneously.

In reality, cavity lengths may be difficult to design to a particular length. In this case, a
simultaneous correction to lg and Lcav can be employed.

111



(a) (b)

Figure 4.13: 5σ phase space of beam ellipse at defined position in beam lattice. The system
is described using the FODO-like scheme.

4.6 Comparison between the Semi-thin and Thick Lens

FODO-like Scheme

In order to determine the accuracy of the semi-thin lens (analytical) approximation, it was
compared to the thick lens regime. The thick lens regime was solved using computational
methods for the optimum k-strength such that the beam size at the cavity entrance was
minimised.

Figure 4.14 (a) displays the percentage difference between the k-strength that minimises
the maximum beam size at the cavity entrance as calculated by the thin, semi-thin, and thick
lens regime. The percentage difference is relative to the thick lens regime. The semi-thin lens
regime calculates a k-strength value that is very close to the thick lens regime, with errors
under 1% for all considered cavity lengths. As the cavity length increases, the semi-thin lens
approximation tends to a vanishing error, demonstrating the accuracy of the method. The
thin lens regime shows high inaccuracy at short cavity lengths, and performs better with
increasing cavity length, as expected. For the same value of Lcav/lq1, the error of the thin
and semi-thin lens regimes increase as lq1 increases.

Figure 4.14 (b) shows the three calculated k-strength values that minimise the beam size
at the cavity entrance in a FODO-like scheme, as a function of cavity length, for a constant
quadrupole length. As the cavity length increases, the optimised value of k1 decreases. At
very short cavity lengths, both the semi-thin and thick lens regimes calculate very similar
vales for the k-strength. As the cavity length increases, the thin lens approximation tends
toward the thick lens calculation. The semi-thin lens approximation for k1 is almost exact,
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Figure 4.14: (a) The percentage difference between optimal value of k1 as calculated by thick
lens and the thin and semi-thin regimes, as a function of Lcav/lq1, for constant lq1 = 0.05
m, lg= 0.05 m. (b) Optimal value of k1 as calculated by the thick, semi-thin, and thin lens
regime, as a function of cavity length.

even for cavity lengths around 20 cm.

4.7 Minimum Aperture Scheme with Acceleration

In the previous section, a FODO-like scheme was discussed within a framework that allowed
for acceleration. Another potential focusing scheme for the linac is the Minimum Aperture
Scheme (MAS), which is also considered. The MAS uses short matching sections between
cavities such that the beam ellipse at the cavity entrance is identical to the acceptance ellipse
of the cavity. This results in an input beam that is simultaneously focusing in both the x and
y planes. For zero acceleration, the beam size is minimised (beam waist) at the centre of the
cavity. Figure 4.15 shows a schematic of the MAS focusing scheme alongside the expected
input/output transverse phase space ellipse. The maximum beam size at the cavity entrance
and exit is equal to the aperture of the cavity, thus motivating the name ‘minimum aperture’.
For a given beam emittance, the MAS allows the longest achievable cavity length.

When acceleration is considered, the location of the beam waist moves into the first half
of the cavity. This is because as the beam is accelerated (as defined by the simple cavity map,
with no defocusing terms), adiabatic damping takes place and the beam divergence reduces
along the cavity. Thus, for a given step in longitudinal displacement, s, the maximum beam
divergence, is reduced (recall x′ = px

pz
). In order to reach the maximum beam size at the
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cavity exit, the beam must have minimised before the mid-point, as additional longitudinal
distance is required for a given amount of divergence.

(a) (b)

Figure 4.15: (a) Schematic of the MAS. The maximum beam size in both transverse planes
occurs at the start and end of the cavity. The waist occurs at some point within the cavity.
(b) The phase space ellipse at the entrance (input) and exit (out) of the cavity.

Recall the FODO-like scheme, which produced the smallest beam size possible after
traversing a single quadrupole and drift space. In the MAS, the matching section is not
constrained in this way, and can therefore produce a beam ellipse that matches the acceptance
ellipse of a cavity. The MAS does, however, place a limit on the cavity length, due to finite
value of the geometric emittance, and therefore finite value of beam divergence.

Recall the simple cavity transfer map, R (from Eqn. 4.29),(
x1
x′1

)
=

(
1 Lcav

γr0βz0
γr1−γr0 ln

(
γr1βz1+γr1
γr0βz0+γr0

)
0 γr0βz0

γr1βz1

)(
x0
x′0

)
.

The following discussion calculates the maximum cavity length in the MAS. It is assumed
the beam has already traversed the matching section and is at the cavity entrance. The MAS
requires the beam size at the cavity entrance and exit to be equal. This is equivalent to√

βxc0εn
γr0βr0

=

√
βxc1εn
γr1βr1

. (4.124)

For a given normalised emittance, εn, input/output Lorentz factor γr0/γr1, input/output
relativistic beta, βr0/βr1, and input/output Twiss β, βxc0/βxc1. This evaluates to the
following;

βxc0 =
γr0βr0
γr1βr1

βxc1. (4.125)
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Recall that the Twiss parameters can be translated from one point in the lattice to another
using the Twiss transfer matrix (Eqn. 4.4) provided the mapping elements are known. The
Twiss β will transform as the following;

βxc1 =
γr1βr1
γr0βr0

(R2
11βxc0 − 2R11R12αxc0 +R2

12γxc0). (4.126)

Where R is the simple cavity transfer map. Substituting elements;

βxc0
γr1βr1
γr0βr0

=
γr1βr1
γr0βr0

(
βxc0 − 2Lcav

γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

)
αxc0+(

Lcav
γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

))2

γxc0

)
. (4.127)

Using that γx =
1+α2

x

βx
and solving for a quadratic in αxc0,

0 = −2αxc0βxc0 + Lcav
γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

)
(1 + α2

xc0). (4.128)

However, βxc0 is known, as the geometric emittance and cavity aperture (beam size) are
defined variables. Solving the quadratic in Eqn. 4.128 provides a solution for αxc0;

αxc0 =

βxc0 ±

√
β2
xc0 −

(
Lcav

γr0βr0
γr1−γr0 ln

(
γr1βr1+γr1
γr0βr0+γr0

))2

Lcav
γr0βr0
γr1−γr0 ln

(
γr1βr1+γr1
γr0βr0+γr0

) . (4.129)

There exists only one solution such that the beam is focusing at the cavity entrance and
defocusing at the exit, with a minimum at some point along the cavity. In order to have only
one solution, the radical term in Eqn. 4.129 must be 0, thus;

βxc0 = Lcav
γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

)
. (4.130)

The value for αxc0 is given;
αxc0 = 1, (4.131)

and

γxc0 =
2

Lcav
γr0βr0
γr1−γr0 ln

(
γr1βr1+γr1
γr0βr0+γr0

) . (4.132)

The value of αxc0 is expected to be positive, recall αx = −1
2
dβx
ds

thus a focusing beam will

have dβx
ds

< 0 and αx > 0. The values of αxc1 and γxc1 are found using the Twiss transfer
matrix,

αxc1 =
γr1βr1
γr0βr0

(
−R11R21βxc0 + (R11R22 +R12R21)αxc0 −R12R22γxc0

)
. (4.133)
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Substituting the simple cavity map elements;

αxc1 =
γr1βr1
γr0βr0

(
γr0βr0
γr1βr1

αxc0 − Lcav
γr0βr0
γr1 − γr0

ln

(
γr1βr1 + γr1
γr0βr0 + γr0

)
γr0βr0
γr1βr1

γxc0

)
(4.134)

before simplifying,
αxc1 = αxc0 − 2 = −1. (4.135)

Lastly, for γxc1,

γxc1 =
γr0βr0
γr1βr1

γxc0. (4.136)

The MAS provides the required values of the Twiss parameters at the cavity entrance such
that the cavity can be as long as possible, for a given cavity aperture. A matching section is
required in order to match the correct values of the Twiss parameters in both x and y. As
the matching sections may be comprised of multiple quadrupoles and drift spaces, they will
be longer than the focusing section in a FODO cell focusing. The number of quadrupoles
increases directly proportionally to the number of cavities in the FODO-like scheme.

Consider a linac comprised of 10 cavities. Suppose the focusing scheme used is the FODO-
like scheme. There would be a total of 10 quadrupoles and 20 drift lengths. Suppose the beam
emittance allowed a 10 m long cavity in the MAS. In this case, the MAS matching section
may be comprised of fewer than 10 quadrupoles and 20 drift lengths. In this case, the MAS
may provide a higher real estate gradient. Thus, each linac system must accurately compare
both schemes. In practise, the power requirements of very long rf structures becomes a
limiting factor, and must be taken into account. Chapter 6 discusses the power requirements
of different types of rf accelerating structure in detail.

It was shown previously that the FODO-like scheme could produce a stable solution for
cavity lengths ∼1 m (for a given beam emittance and cavity aperture, and 5σ beam size). The
maximum cavity lengths using MAS are calculated by re-arranging for Lcav in Eqn. 4.130,
for a defined value of βxc0;

Lcav =
βxc0

ln

(√
γ2r1−1+γr1√
γ2r0−1+γr0

) ( γr1 − γr0√
γ2r0 − 1

)
. (4.137)

Where γrβr =
√
γ2r − 1. Substituting γr1 = γr0 + δγr and assuming δγr << γr0 allows

simplifications to be made.

Lcav =
βxc0

ln

(
1 + δγr√

γ2r0−1

) ( δγr√
γ2r0 − 1

)
, (4.138)

for small x, ln(1 + x) = x and the final solution is

Lcav = βxc0. (4.139)
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The above result is a good approximation for δγ2 << γr0, which is likely for proton
accelerators, as δγr would have to be of the order 1 GeV. In low energy electron linacs
this assumption may not be accurate, as δγr may be of a similar order to γr0.

Recall, the normalised emittance is taken to be ≈ 0.032 × 10 −6 πm rad, [94]. For
protons at 150 MeV the value of βrγr is ∼ 0.58. The designed cavity has an aperture of
2.5 mm, which is treated as the 5σ beam size. The maximum βxc0 is therefore

βxc0|5σ =

√
σ2βrγr
εn

≈
√

(2.5× 10−3)2 × 0.58

0.032× 10−6
= 10.6 m ∼ Lcav|max. (4.140)

Hence, the MAS can realise cavity lengths up to ∼ 10 m. This is around 10 × longer than
cavities in the FODO-like scheme. As both scheme can allow long structures, TW cavities
were subsequently explored. As TW cavities can be highly efficient at lengths of around 1 m,
there may be little to gain in producing longer structures. In addition, longer structures
require higher input power, which can raise issues at the input port. The cost of higher
peak power increases exponentially and thus longer structures that produce high real estate
gradients (due to the short matching sections relative to active length) may come with a very
high cost.

4.8 Conclusion of Transverse Beam Dynamics

In this chapter, the transverse beam dynamics with non-zero acceleration was explored with
respect to two focusing schemes, the FODO-like scheme and the MAS. An rf cavity transfer
map was constructed that increased the longitudinal momentum of a particle beam. This
was incorporated into an analytical description of the two focusing schemes, in which various
important results were found. In the FODO-like scheme, the results provided the lattice
parameters (quadrupole k-strength, quadrupole length, drift length) such that the maximum
beam size was minimised at the cavity entrance. For both schemes, the maximum cavity
length was established, such that the beam was transmitted at near 100% for a 5σ beam
size. Given the normalised transverse emittance of the beam (∼0.032 × 10 −6 πm rad),
the FODO-like scheme could realise cavity lengths around 1 m, whilst the MAS could realise
lengths around 10 m. These values assume a cavity aperture of 2.5 mm. Cavity lengths
over 1 m long are generally more difficult to construct, due to the higher input power and
physical manufacturing of structures with many cells. In addition, the FODO-like scheme
is a simpler scheme, as it does not require complicated matching sections. The quadrupole
k-strengths and lengths have also been determined analytically for the FODO-like scheme,
with high accuracy, due to the semi-thin lens approximation.

The next step in the design will establish the optimum, if any, cavity length for the final
cavity design, as a function of input power. This essentially compares the optimum SW
and TW cavity designs. Generally, shorter structures are more efficient as SW, and longer
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structures are more efficient as TW. There are many factors that influence the choice of both
cavity types, such as the fill time, total required power and real estate gradient. In order to
complete this step, an analytical model was created that approximates the energy gain of a
structure as function of input power, for both Standing and TW structures.

118



Chapter 5

Fast Cell to Cell Tracking Function

5.1 1D Single Cell Energy gain Function

A particle traversing an rf single cell excited in a TM010 cavity mode will gain or lose energy
depending on the phase of the rf field as the particle enters the cell. For one cell, half of all
available phases with produce net acceleration, and the other half will decelerate a particle.
The synchronicity condition provides the cell length such that a particle traverses a cell
in the time it takes for the field to advance by ψ, where ψ is the phase advance per cell.
When the synchronicity condition is met, a particle traveling at the synchronous beta, βs,
will continue to see accelerating field in each subsequent cell. In reality, a particle’s velocity
increases as the energy increases, and the particle will move further from the synchronous
beta. rf acceleration is appropriate for protons with β ∼ 0.3 [95] or greater (the coupled cavity
structure will start accelerating protons at 37.5 MeV in the medical linac) due to the effective
shunt impedance per unit length and achievable gradient being superior to other acceleration
methods, such as the RFQ and drift tube linac. Common practise for determining particle
energy and position through rf structures is the use of time-stepping particle tracking codes,
such as ASTRA [96], OPAL [97] and RF-Track [98]. In order to accurately simulate particle
coordinates, the time steps are often short and tracking large numbers of particles through
many rf cells becomes computationally expensive. As rf single cells have an energy gain that
is of the order 1 MeV, protons at ∼ 40 MeV will experience slow changes in relativistic beta.
This can not be said for electrons, which become relativistic after a few rf cells, changing
velocity rapidly, due to electrons being ∼ 2000 times less massive. The small gain in proton
relativistic beta over an rf cell allows them to be approximated at constant velocity over a
given rf cell, which allows an analytical calculation for the energy gain of a proton over a
single cell in one computation, allowing for fast tracking simulations.

Consider a single cell on-axis longitudinal electric field, Ez(s), and s is the longitudinal
displacement through the rf cell. A SW rf field will vary as cos(ϕ0 + ωt). Assuming the
proton velocity is constant over a single cell allows a change of variable from t to s using

119



t = s
βc
. Therefore, the energy gain (technically, the voltage gain) of a particle as it travels

over a single cell is given by;

Eout = Ein +

∫ Lcell

0

Ez(s)cos

(
ϕ0 +

ωs

βc

)
ds. (5.1)

Where Ein is the input energy, and the particle phase, ϕ0, is defined as the phase when the
particle is at the entrance of the cell. In general, the on-axis Ez can be written as a Fourier
series, as the field in a coupled cavity linac is considered periodic for this work.

Ez(s) = E0

(
a0
2

+
∞∑
n=1

an cos

(
2nπs

P

)
+ bn sin

(
2nπs

P

))
(5.2)

Where E0 is the maximum on-axis field gradient. For a π−mode structure, the field
periodicity is two cells. Using a parity argument, it can be understood the on-axis Ez
component over one wavelength does not differentiate between +z and −z directions, thus
a0 = 0. As the field is odd about s = 0, all an terms are zero, and only bn terms survive
when constructing the Fourier series coefficients. The integration region is [0, Lcell] (however
the bounds can be any distance) and therefore only the first half of a Fourier series period
(Lcell =

λ
2
) for SW is ever used. The reason for constructing a two-cell Fourier series is because

a single cell Fourier series describing Ez(s) would repeat every cell, and would require a0,
an, bn terms. For structures with different phase advance per cell, the Fourier series will
require both an and bn terms, and is shown later in the case of TW accelerators. Figure 5.1
shows the first half period of a Fourier series description of the on-axis Ez(s) component, and
the corresponding Fourier terms. Keeping only bn terms for the Fourier series description of
Ez(s).

Ez(s) = E0

∞∑
n=1

bn sin

(
2πns

2Lcell

)
. (5.3)

Inserting Eqn. 5.3 into Eqn. 5.1 and using the synchronicity condition for a π phase advance
requires π = ωLcell

βsc
.

Eout = Ein +

∫ Lcell

0

E0

∞∑
n=1

bn sin

(
nωs

βsc

)
cos

(
ϕ0 +

ωs

βc

)
ds (5.4)

As the integral is over independant variable, s, the summation commutes with the integral
and can be moved outside. The integral can be computed by using the trigonometric formula;

sin(a)cos(b) =
1

2
(sin(a− b) + sin(a+ b)). (5.5)

The integral now takes the form;

Eout = Ein +
E0

2

∞∑
n=1

∫ Lcell

0

bn

(
sin

(
nωs

βsc
− ϕ0 −

ωs

βc

)
+ sin

(
nωs

βsc
+ ϕ0 +

ωs

βc

))
ds (5.6)
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Figure 5.1: First half period of on-axis Ez profile, G(s), for a single cell with an aperture.
The individual Fourier terms are also shown.

integrating the above produces;

Eout = Ein +
E0

2

∞∑
n=1

bn

[
cos(s( ω

βc
− nω

βsc
) + ϕ0)

( ω
βc

− nω
βsc

)
−

cos(s( ω
βc

+ nω
βsc

) + ϕ0)

( ω
βc

+ nω
βsc

)

]Lcell

0

. (5.7)

Taking out a factor of Lcell and using the synchronicity condition, πβsc
ω

= Lcell to simplify
produces the following

Eout = Ein+
E0Lcell
2π

∞∑
n=1

bn

[
cos(βs

β
π − nπ + ϕ0)− cos(ϕ0)

(βs
β
− n)

−
cos(βs

β
π + nπ + ϕ0)− cos(ϕ0)

(βs
β
+ n)

]
.

(5.8)

The energy gain is thus a function of βs
β
, the phase when the particle enters the cell, ϕ0,

and the Fourier series coefficients, bn. The effective transit time factor (different to the
classic transit time factor in literature) is defined here as the term that multiplies E0Lcell,
and describes the phase dependence of the energy gain over one cell, in addition to the time
variation of the field as the particle traverses the cell. It can be seen the phase can not
be separated from the effective transit time factor. Figure 5.2 shows the effective transit
time factor for protons near 40 MeV accelerated over one cell, as a function of rf phase.
Changes in proton energy (and therefore proton beta) do not have a huge effect on the shape
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of the effective transit time factor, other than a slight horizontal and magnitude shift, as
different proton beta will achieve maximum energy gain at a slightly different input phase,
ϕ0. The largest value of the effective transit time factor from the plot is approximately 0.5.
This suggests the effective gradient of an rf cell for protons at this energy is roughly half
that of the maximum gradient. Indeed it is possible to define a different integration region

Figure 5.2: The Effective Transit Time Factor for protons around 40 MeV as a function of
phase.

and determine energy gain over different length scales. However, as the relativistic beta
is assumed constant over the integration region the accuracy of the analytical model will
decrease with increasing integration region, as a particle will have gained/lost more energy.
It is just as feasible to integrate less than a single cell length in one iteration, however this
would increase the number of computations relative to the single cell iteration.

A particle traversing a cell at a different beta to the synchronous beta will not arrive at
the following cell at the same phase, due to phase slippage. Phase slippage is the term used
to describe the mismatch between relativistic beta and synchronous beta culminating in a
different phase at the subsequent cell. This can be visualised as follows: consider a particle
traversing a cell at a relativistic beta less than the synchronous beta. The phase advances
such that the synchronous particle arrives at the next cell at the exact same phase, hence
ϕ0 = constant. The slower particle will arrive late relative to the phase, and the phase will
have evolved an additional amount, due to the delay in the slow particle traversing the cell
more slowly. As a result, the value of a particle’s phase, ϕ0, will need to be updated after
each iteration, to account for any phase slippage. In order to calculate the phase at the start
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of the subsequent cell;
ϕ0,n+1 = ϕ0,n +∆ϕn, (5.9)

where ϕ0,n+1 and ϕ0,n are the particle phase at the start of the (n + 1)th and nth cell. The
phase slippage is defined as;

∆ϕn = ω∆tn = ω

(
Lcell
βnc

− Lcell
βsc

)
. (5.10)

∆tn is the time difference between a synchronous particle and a particle of velocity βnc
traversing an rf cell of length Lcell. Therefore the phase slip of a particle over an rf cell is
given by;

∆ϕn =
ωLcell
cβs

(
βs
βn

− 1

)
. (5.11)

The term outside the bracket is the phase advance per cell, ψ,

∆ϕ = −ψ
(
1− βs

β

)
. (5.12)

Thus,

ϕ0,n+1 = ϕ0,n − ψ

(
1− βs

β

)
. (5.13)

A particle with βn < βs translates to −ψ
(
1− βs

β

)
> 0 and the phase at the next cell

has evolved, ϕ0,n+1 > ϕ0,n. There is an implicit approximation when calculating the phase
slippage from one cell to the next. It is assumed each cell is oscillating out of phase by the
phase advance per cell exactly. For cavity models in EM solver software, the phase advance
is often exactly correct due to enforcing symmetry conditions. Generally structures may
have slightly different phase advances from one cell to the next (even after tuning the phase
advance in the latter stages of the design). This problem can be combated by calculating
the phase advance from one cell to the next using EM solvers and using that value when
updating the phase at each cell.

Figure 5.3 shows how the phase of a particle slips over the course of a cavity for protons in
the 40 MeV range. Maximum acceleration occurs when the phase of a particle returns to the
original value upon cavity exit. As a particle enters at a velocity less than the synchronous
beta, the observed phase starts to grow as it evolves faster than a particle traverses an rf
gap. As the particle increases in velocity, the rate at which the phase evolves reduces until
the particle is faster than the synchronous particle and the observed phase begins to reduce
until the original phase is observed, at the cavity exit. The off phase particle has a starting
phase slightly too high, as it is slower than βs, the phase grows as the particle slips until
β = βs. At this point, the particle travels more quickly than βs and the particle phase starts
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Figure 5.3: phase of an ideal (on phase) and not ideal (off phase) particle traversing an rf
cavity.

to reduce. As the initial gain is too great, the particle slips too far before the end of the rf
cavity.

The equations outlined in this section calculate the energy gain of a particle of velocity,
βc, traversing a single cell of length Lcell. The particle enters the cell at an phase of ϕ0. The
cell length and synchronous beta are related by the previously described relationship ψ =
ωLcell

βsc
. This derivation was calculated in 1D, where the value of E0 is the maximum of the

on-axis field Ez(s), with units of MeV/m. The 1D equation shows very strong agreement
with the well bench-marked tracking code ASTRA [96]. Figure 5.4 displays the longitudinal
phase space as calculated by both ASTRA and the single cell function. There is a high level of
agreement between the two methods and confirms the approximation of constant relativistic
beta over an rf cell is valid. The method described can be expanded to a 3D model, tracking
the 6D phase space of a particle, x, px, y, py, z, pz. Moving forward, the single cell function
will be refered to as FC2CT (Fast Cell-to-Cell Tracking).

5.2 Non-zero Field Components in a TM010 Mode

The previous section described the method used to obtain an analytical function that
calculates the energy gain of a particle over a single rf cell for a given relativistic beta,
phase, and cell length. The on-axis longitudinal electric field was described with a Fourier
series.
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Figure 5.4: 1D phase space plot showing energy of proton beam tracked through 30 cell
structure as calculated by ASTRA and single cell function. On-axis field profile was taken
from π-mode single cell model in CST.

In order to extend FC2CT to calculate the 6D phase space of a particle, all non-zero field
components must be taken into account, Er(s) and Bθ(s). For all TM monopole modes, Bz is

zero, using ∇.B⃗ = 0 and as Bθ has azimuthal symmetry, Br = 0. Recall Er is related to dEz

dz
,

and is zero in a pillbox cavity. When an aperture is introduced, Ez(s) becomes a function of

s and Er(s) is non-zero. The only zero electric field component is Eθ, from ∇ × B⃗ = 1
c2
dE⃗
dt

in a vacuum. The fields Er(r, θ, s) and Bθ(r, θ, s) are first expanded as Taylor series about
r = 0, in the small r limit. From the results obtained previously, the field values take on the
forms of the Bessel functions of the first kind. The radial profile for Ez is a 0th order Bessel
function, whereas Er and Bθ are 1

st order Bessel functions. As Ez is an even function about
r = 0, only even powers of r will exist in the expansion. Er and Bθ are odd in r, and only
odd powers exist. For Ez it is convenient to expand in Cartesian coordinates, x and y, in
order to make the derivation simpler.

Ez(x, y, z) = Ez(0, 0, z) +
1

2!

∂2Ez(0, 0, z)

∂x2
x2 +

1

2!

∂2Ez(0, 0, z)

∂y2
y2 (5.14)

Er(r, z) =
∂Er(0, z)

∂r
r +

1

3!

∂3Er(0, z)

∂r3
r3 (5.15)

Bθ(r, z) =
∂Bθ(0, z)

∂r
r +

1

3!

∂3Bθ(0, z)

∂r3
r3. (5.16)
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Using the wave equation;

∇2E⃗ − 1

c2
∂2

∂t2
E⃗ = 0. (5.17)

Separating the time variable from the spatial variables in Eqn. 5.17 and taking the z
component;

∂2Ez(0, 0, z)

∂x2
+
∂2Ez(0, 0, z)

∂y2
+
∂2Ez(0, 0, z)

∂z2
= −ω

2

c2
Ez(0, 0, z). (5.18)

As the rf single cell has azimuthal symmetry (all field derivatives with respect to θ are 0);

∂2Ez(0, 0, z)

∂x2
=
∂2Ez(0, 0, z)

∂y2
, (5.19)

therefore,
∂2Ez(0, 0, z)

∂x2
= −1

2

(
ω2

c2
Ez(0, 0, z)−

∂2Ez(0, 0, z)

∂z2

)
. (5.20)

From Eqn. 5.14,

Ez(x, y, z) = Ez(0, 0, z) +
1

2!

∂2Ez(0, 0, z)

∂x2
(x2 + y2). (5.21)

Combining Eqns. 5.20 and 5.21 before simplifying;

Ez(x, y, z) = Ez(0, 0, z)−
x2 + y2

4

(
ω2

c2
Ez(0, 0, z)−

∂2Ez(0, 0, z)

∂z2

)
. (5.22)

Converting to cylindrical coordinates and introducing back the temporal term the Ez
expansion is given;

Ez(r, z, t) =

[
Ez(0, z)−

r2

4

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, z)

)]
cos (ϕ0 + ωt) . (5.23)

For expansions of Er and Bθ the following Maxwell’s equation is used;

∇⃗.E⃗ = 0. (5.24)

Expanded in cylindrical coordinates;

1

r

∂(rEr(r, z))

∂r
+
∂Ez(r, z)

∂z
= 0, (5.25)

where the term 1
r
∂Eθ(r,z)

∂θ
is zero from azimuthal symmetry. Substituting Eqn. 5.15 and 5.23

into Eqn. 5.25;

1

r

∂(r
(
∂Er(0,z)

∂r
r + 1

3!
∂3Er(0,z)

∂r3
r3
)

∂r
+
∂
([
Ez(0, z)− r2

4

(
∂2Ez

∂z2
+ ω2

c2
Ez(0, z)

)])
∂z

= 0. (5.26)
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Omitting all terms of the form ∂nEr(0,z)
∂rn

for even n when differentiating.

∂Er(0, z)

∂r
+

1

3!

∂3Er(0, z)

∂r3
r2 +

∂Er(0, z)

∂r
+

3

3!

∂3Er(0, z)

∂r3
r2

= −∂Ez(0, z)
∂z

+
r2

4

(
∂3Ez
∂z3

+
ω2

c2
∂Ez(0, z)

∂z

)
(5.27)

Comparing coefficients of r;
∂Er(0, z)

∂r
= −1

2

∂Ez(0, z)

∂z
(5.28)

∂3Er(0, z)

∂r3
=

6

16

(
∂3Ez
∂z3

+
ω2

c2
∂Ez(0, z)

∂z

)
. (5.29)

Substituting the terms in Eqn. 5.28 and Eqn. 5.29 into Eqn. 5.15 and simplifying

Er(r, z) =

[
−r
2

∂Ez(0, z)

∂z
+
r3

16

(
∂3Ez
∂z3

+
ω2

c2
∂Ez(0, z)

∂z

)]
cos(ϕ0 + ωt). (5.30)

Finally, the following Maxwell’s equation is used for the radial expansion of Bθ

∇⃗ × B⃗ =
1

c2
∂E⃗

∂t
. (5.31)

As Bθ is the only non-zero field component for the magnetic field in an rf cavity Eqn. 5.31
simplifies,

1

r

(
∂ (rBθ(r, z))

∂r

)
=

1

c2
∂Ez(r, z, t)

∂t
. (5.32)

However, the magnetic field and the electric field differ by π/2, and hence a temporal
term for the magnetic field will be of the form sin(ϕ0 + ωt) (due to the initialisation of Ez
having cos(ϕ0 + ωt)). As a result, differentiating Eqn. 5.23 with respect to time provides
a sin term, and both temporal terms will cancel. Substituting the Taylor expansion from
Eqn. 5.16 and using Eqn. 5.23 the derivation continues.

1

r

∂
(
∂Bθ(0,z)

∂r
r2 + 1

3!
∂3Bθ(0,z)

∂r3
r4
)

∂r

 =
ω

c2

[
Ez(0, z)−

r2

4

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, z)

)]
(5.33)

Again, all terms of the form ∂nBθ(0,z)
∂rn

for even n are zero as the function is odd. Hence,
computing the partial derivatives and comparing coefficients of r;

∂Bθ(0, z)

∂r
=

ω

2c2
Ez(0, z) (5.34)
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∂3Bθ(0, z)

∂r3
= − 6ω

16c2

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, z)

)
. (5.35)

Substituting the terms in Eqns. 5.34 and 5.35 into Eqn. 5.16 and simplifying;

Bθ(r, t) =
ω

c2

[
r

2
Ez(0, z)−

r3

16

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, z)

)]
sin (ϕ0 + ωt) . (5.36)

5.3 Derivation of FC2CT in 3D

Recall that Ez can be written as a Fourier series,

Ez(s) = E0

∞∑
n=0

bnsin
(nπs
L

)
. (5.37)

The field must be differentiated up to three times, as higher order derivatives appear in
Eqns. 5.23, 5.30 and 5.36.

∂Ez(s)

∂z
=
E0π

L

∞∑
n=0

bnn cos
(nπs
L

)
= E ′

z(s) (5.38)

E ′′
z (s) = −E0π

2

L2

∞∑
n=0

bnn
2 sin

(nπs
L

)
(5.39)

E ′′′
z (s) = −E0π

3

L3

∞∑
n=0

bnn
3 cos

(nπs
L

)
(5.40)

Derivatives of Ez are simply Fourier series with different Fourier coefficients. Equation 5.8 is
the integrated version of Eqn. 5.4 and can be used to create a standard result for the integral
of a Fourier series multiplied by a trigonometric function over the bounds [0, L]. Recall the
result; ∫ L

0

E0

∞∑
n=1

bn sin

(
nωs

βsc

)
cos

(
ϕ0 +

ωs

βc

)
ds =

E0L

2π

∞∑
n=1

bn

[
cos(βs

β
π − nπ + ϕ0)− cos(ϕ0)

(βs
β
− n)

−
cos(βs

β
π + nπ + ϕ0)− cos(ϕ0)

(βs
β
+ n)

]

=
E0L

2π
F (bn, βs/β, ϕ0).

(5.41)

Where F (bn, βs/β, ϕ0) is a function containing the summation. The momentum gain in each
of the three planes is given by the Lorentz force.

dp⃗ = qE⃗dt+ qv⃗ × B⃗dt (5.42)
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Changing variables and expanding;

dpx =
q

vz
Ex(s)ds+

q

vz
(vyBz − vzBy(s))ds ≈

q

vz
Ex(s)ds−

q

vz
(vzBy(s))ds (5.43)

dpy =
q

vz
Ey(s)ds−

q

vz
(vxBz − vzBx(s))ds ≈

q

vz
Ey(s)ds+

q

vz
(vzBx(s))ds (5.44)

dpz =
q

vz
Ez(s)ds−

q

vz
(vxBy(s)− vyBx)ds ≈

q

vz
Ez(s)ds. (5.45)

It is convenient to project all particles into the first quadrant of the imaginary plane by taking

Figure 5.5: Particle as observed looking down the beam line of an rf single cell.

the magnitude of the x and y position. In this quadrant, for an accelerating field (where Bθ

is clockwise, in this case, see Fig. 5.5), the component By is negative for all particles in
the quadrant, which allows a simplification in the derivation. Note the same argument can
be made for anti-clockwise Bθ, however the assumption must be carried through the entire
derivation. The only transverse component of the electric field is Er, and from Eqn. 5.5,
Ex = Ercos(θ) and Ey = Ersin(θ). Inserting a periodic time dependence and making the
position the independant variable;

dpx = q sign(x) cos(θ)

∫ L

0

(
Er(s)

vz
cos

(
ϕ0 +

ωs

βc

)
+Bθ(s)cos

(
ϕB,0 +

ωs

βc

))
ds (5.46)

dpy = q sign(y) sin(θ)

∫ L

0

(
Er(s)

vz
cos

(
ϕ0 +

ωs

βc

)
+Bθ(s)cos

(
ϕB,0 +

ωs

βc

))
ds (5.47)

where ϕB,0 = ϕ0 − π
2

(due to the phase difference between magnetic and electric field
components) and the simplification;

−By = Bθ cos(θ) (5.48)
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has been used as a particle position is defined in the first quadrant of the imaginary plane,
with a clockwise Bθ. This does not reduce the number of computations, however means the
functional form of the momentum gain is constant for any particle position. sign(x) signifies
the numerical sign of the particle coordinate.

θ = tan−1
(∣∣y
x

∣∣) (5.49)

Using the functional form for Ez that is consistent with off-axis particles, from Eqn. 5.23 and
the Lorentz force for dpz, the integral for longitudinal momentum gain becomes

dpz =
q

vz

∫ L

0

[
Ez(0, z)−

r2

4

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, z)

)]
cos

(
ϕ0 +

ωs

βc

)
ds. (5.50)

Inserting Ez and the derivatives of Ez as Fourier series;

dpz =
q

vz

∫ L

0

E0

∞∑
n=0

bnsin

(
nπs

lcell

)
cos

(
ϕ0 +

ωs

βc

)
ds

− q

vz

r2

4

∫ L

0

(
−E0π

2

l2cell

∞∑
n=0

bnn
2 sin

(
nπs

lcell

)
+
ω2

c2
E0

∞∑
n=0

bnsin

(
nπs

lcell

))
cos

(
ϕ0 +

ωs

βc

)
ds.

(5.51)

Collecting like Fourier series;

dpz =
qE0

vz

(
1− ω2

c2
r2

4

)∫ L

0

∞∑
n=0

bnsin

(
nπs

lcell

)
cos

(
ϕ0 +

ωs

βc

)
ds

+
qE0

vz

π2

l2cell

r2

4

∫ L

0

∞∑
n=0

bnn
2 sin

(
nπs

lcell

)
cos

(
ϕ0 +

ωs

βc

)
ds.

(5.52)

From Eqn. 5.41 the above is integral can be evaluated. For ease, the notation bnn
i = bn,i is

introduced,

dpz =
qE0

vz

(
1− ω2

c2
r2

4

)
L

2π
F (bn,0, βs, β, ϕ0) +

qE0

vz

π2

l2cell

r2

4

L

2π
F (bn,2, βs, β, ϕ0). (5.53)

Where again F (bn,i, βs, β, ϕ0) is given by

F (bn,i, βs, β, ϕ0) =
∞∑
n=1

bnn
i

[
cos(βs

β
π − nπ + ϕ0)− cos(ϕ0)

(βs
β
− n)

−
cos(βs

β
π + nπ + ϕ0)− cos(ϕ0)

(βs
β
+ n)

]
.

(5.54)
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The same process is completed for dpx and dpy. A complexity arises when integrating Er.
From Eqn. 5.30, the radial electric field has odd order derivatives of Ez. This means the
Fourier series of Er has only an coefficients (differentiating sin(x) and odd number of times
leaves cos(x)).

Er(s, r) = −r
2

E0π

L

∞∑
n=0

bnn cos
(nπs
L

)
+
r3

16

(
−E0π

3

L3

∞∑
n=0

bnn
3 cos

(nπs
L

)
+
ω2

c2
E0π

L

∞∑
n=0

bnn cos
(nπs
L

))
(5.55)

Integrating Er with the separable time dependence, cos
(
ωs
βc

+ ϕ0

)
over the cell length is

different to the previous case, as the Fourier series for Er is comprised of cos(nπs
L
), and so

the result in Eqn. 5.41 no longer holds. The integral is now comprised of two cos(x) terms;∫ L

0

E0

∞∑
n=1

bn cos

(
nωs

βsc

)
cos

(
ϕ0 +

ωs

βc

)
ds. (5.56)

The result is similar to the previous case with sin(x) → cos(x) and the second term in the
square brackets being negated.∫ L

0

E0

∞∑
n=1

bn cos

(
nωs

βsc

)
cos

(
ϕ0 +

ωs

βc

)
ds =

E0L

2π

∞∑
n=1

bn

[
sin(βs

β
π − nπ + ϕ0)− sin(ϕ0)

(βs
β
− n)

+
sin(βs

β
π + nπ + ϕ0)− sin(ϕ0)

(βs
β
+ n)

]

=
E0L

2π
H(bn, βs/β, ϕ0). (5.57)

Integrating the contribution from Er(s) using the result from Eqn. 5.57.

1

vz

∫ L

0

Er(s)cos

(
ϕ0 +

ωs

βc

)
ds =

−r
2

E0π

L

L

2π
H(bn,1, βs/β, ϕ0)+

r3

16

(
−E0π

3

L3
H(bn,3, βs/β, ϕ0) +

ω2

c2
E0π

L
H(bn,1, βs/β, ϕ0)

)
.

(5.58)

Lastly, integrating the contribution from Bθ;

Bθ(s) =
ωE0

c2

[
r

2

∞∑
n=0

bnsin
(nπs
L

)
− r3

16

(
−π

2

L2

∞∑
n=0

bnn
2 sin

(nπs
L

)
+
ω2

c2

∞∑
n=0

bnsin
(nπs
L

))]
(5.59)
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which can be completed using the result in Eqn. 5.41, produces the following;∫ L

0

Bθ(s)cos

(
ϕB,0 +

ωs

βc

)
ds =

ωE0

c2
r

2
F (bn, βs/β, ϕB,0)

−ωE0

c2
r3

16

(
−π2

L2
F (bn,2, βs/β, ϕB,0) +

ω2

c2
F (bn, βs/β, ϕB,0)

)
.

(5.60)

Recall, the magnetic field lags the electric field by π
2
, and therefore the value of ϕ0 is replaced

with ϕB,0 when integrating momentum contributions due to the magnetic field. One could
simply keep one term defining the phase, ϕ0, however will need to subtract π

2
when the

magnetic field is concerned. Putting together Eqns. 5.46, 5.58 and 5.60 gives an expression
for the momentum change in x,

dpx = −qsign(x) cos(θ)
rE0

4

(
H(bn,1, βs/β, ϕ0)−

2ω

c2
F (bn, βs/β, ϕB,0)

)
+ qsign(x) cos(θ)

r3E0

16

(
ω2

c2
π

L
H(bn,1, βs, β, ϕ0)−

π3

L3
H(bn,3, βs/β, ϕ0)

)
+
ω3

c4
F (bn, βs/β, ϕB,0)−

(
ω

c2
π2

L2
F (bn,2, βs/β, ϕB,0)

)
. (5.61)

In y the result is as follows;

dpy = −qsign(y)sin(θ)
rE0

4

(
H(bn,1, βs/β, ϕ0)−

2ω

c2
F (bn, βs/β, ϕB,0)

)
+ qsign(y)sin(θ)

r3E0

16

(
ω2

c2
π

L
H(bn,1, βs/β, ϕ0)−

π3

L3
H(bn,3, βs/β, ϕ0)

)
+
ω3

c4
F (bn, βs/β, ϕB,0)−

(
ω

c2
π2

L2
F (bn,2, βs/β, ϕB,0)

)
. (5.62)

Where, recall;

F (bn,i, βs/β, ϕ0) =
∞∑
n=1

bnn
i

[
cos(βs

β
π − nπ + ϕ0)− cos(ϕ0)

(βs
β
− n)

−
cos(βs

β
π + nπ + ϕ0)− cos(ϕ0)

(βs
β
+ n)

]
,

(5.63)
and

H(bn,i, βs/β, ϕ0) =
∞∑
n=1

bnn
i

[
sin(βs

β
π − nπ + ϕ0)− sin(ϕ0)

(βs
β
− n)

+
sin(βs

β
π + nπ + ϕ0)− sin(ϕ0)

(βs
β
+ n)

]
.

(5.64)
For the special case of a single spatial harmonic (bn = b1) for a particle with βs = β. The
apparent momentum gain in all three axis is zero. In order to solve this special case, the
trigonometric terms can be expanded simplified for the limit βs/β approaching 1. As the
result is not physical, the result is not shown here.
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5.4 FC2CT Applied to Traveling Wave Structures

The function used to analytically calculate momentum gain in 3D relies on the particle seeing
a SW structure, with the Ez component symmetric about the center of the cell. If a particle
is accelerated in a TW structure, the on-axis electric field is not in general symmetric about
the centre of the cell. Whilst the difference for a TW single cell is subtle, the momentum
gain can be approximated analytically.

Similar to the SW case, the real component of the on-axis Ez component using a Fourier
series must be used. Technically, the periodicity of the Fourier series is a function of the
chosen phase advance per cell of the given structure; the Ez component in a TW structure
with a phase advance of 2π

3
is periodic every three cells, and therefore the Fourier series

describing it will have a periodicity of three cells.
The method to find the real component is as follows. Generally, a TW field can be

described by a complex field with the on-axis Ez given as;

Ez(z, t) =M(z)ei(ωt−kz+ϕ0). (5.65)

Where M(z) is some magnitude that is a function of z. The real part of the complex field is
thus

Ez(z, t)|observed = Re [Ez(z, t)] (5.66)

at t = 0,
Ez(z, 0) =M(z)ei(−kz+ϕ0) (5.67)

hence,
Ez(z, t) = Ez(z, 0)e

iωt = Ez(z, 0) cos(ωt) + iEz(z, 0) sin(ωt). (5.68)

As Ez(z, 0) is a complex field, it can be written as the sum of the real and imaginary
components;

Ez(z, 0) = A(z) + iB(z). (5.69)

Inserting Eqn. 5.69 into Eqn. 5.68 and taking the real component.

Re [Ez(z, t)] = A(z) cos(ωt+ ϕ0)−B(z) sin(ωt+ ϕ0) (5.70)

Where A(z) and B(z) (not to be confused with the azimuthal magnetic field component, Bθ)
are the real and imaginary field components of Ez(z, t) taken from CST at any time, t, and
can be described as Fourier series.

A(z) =
N∑
n=1

an(real) cos

(
2nπz

P

)
+ bn(real) sin

(
2nπz

P

)
(5.71)

B(z) =
N∑
n=1

an(imag) cos

(
2nπz

P

)
+ bn(imag) sin

(
2nπz

P

)
(5.72)
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Where P is the period of the real/imaginary field, and is a function of the phase advance per
cell as previously discussed.

In order to find the longitudinal momentum gain over one rf cell Re[Ez(z, t)] must be
integrated. Again, a change of variables t = z

βc
is performed, assuming constant particle

velocity over the integration region,

∫ Lcell

0

Re[Ez(z, t)]dz =∫ Lcell

0

[
N∑
n=1

an(real) cos

(
2nπz

P

)
cos

(
ωz

βc
+ ϕ0

)
+ bn(real) sin

(
2nπz

P

)
cos

(
ωz

βc
+ ϕ0

)
−

N∑
n=1

an(imag) cos

(
2nπz

P

)
sin

(
ωz

βc
+ ϕ0

)
+ bn(imag) sin

(
2nπz

P

)
sin

(
ωz

βc
+ ϕ0

)]
dz.

(5.73)

In order to make the analytical computing of this integral more straight forward, a standard
calculated integral form is determined, similar to the SW case, and is described in detail
below.

5.4.1 Standard Integrals for TW FC2CT method

The four terms in Eqn. 5.73 to be integrated are simply the integral of two trigonometric
functions multiplied together. As a result, the standard result shown in the SW derivation
is possible. However, this method is still fairly long, and so a different method is shown for
the TW case.

Firstly, it can be seen from Eqn. 5.70 that the real component of Ez is the sum of
two terms, where both terms are Fourier series multiplied by a time varying trigonometric
function. It has been previously shown how components from Er and Bθ can be described by
the on-axis Re[Ez] field and the derivatives. As a result, any calculation will fundamentally
require integrating Re[Ez] or a derivative. The ith derivative of Re[Ez] is as follows;

di

dzi
Re[Ez] =

diA(z)

dzi
cos(ωt+ ϕ0)−

diB(z)

dzi
sin(ωt+ ϕ0). (5.74)

Where diA(z)
dzi

and diB(z)
dzi

are simply Fourier series. As the real component of Ez is comprised
of Fourier series multiplied by trigonometric functions, it will be prudent to find the standard
integral of a Fourier series (FS) multiplied by a cos(x) function, as this will be some term,
X, that is required to be calculated;

X =

∫ z1

z0

FS(s, re/im, i) cos

(
ωs

βc
+ ϕ0 + U

)
ds. (5.75)
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Where FS(s, re/im, i) is a Fourier series representing the real/imag Ez component (A(z) or
B(z)) differentiated i times with respect to z. U is some factor such that the trigonometric
function is cos(x) and not sin(x), as sin(x) = cos(x − π

2
). Each Fourier series is written as

the following:

FS(z, re/im, i) =

(
2π

P

)i N∑
n=1

ni
[
saan(im) cos

(
2nπz

P
+M

)
+ sbbn(im) cos

(
2nπz

P
+N

)]
.

(5.76)
Where, again, all sin(x) terms have been converted to cos(x) with the use of variables,M and
N (that is, M and N are chosen such that the trigonometric functions are cos(x)). Table 5.1
displays the values of sa, sb, M and N for different i. The maximum number of derivatives
required is three. This results in all integrals being of the following form

Table 5.1: Variable values for different differentiation index, i

i sa sb M N
0 1 1 0 -π

2

1 -1 1 -π
2

0
2 -1 -1 0 -π

2

3 1 -1 -π
2

0

K

∫ z1

z0

cos(as+ b) cos(cs+ d)ds =

K

2

1

a2 − c2

(
(a+ c)[sin((a− c)z1 + b− d)− sin((a− c)z0 + b− d)]+

(a− c)[sin((a+ c)z1 + b+ d)− sin((a+ c)z0 + b+ d)]

)
=
K

2
I(a, b, c, d). (5.77)

Where the values of a, b, c, d will be known. Substituting Eqn. 5.76 into Eqn. 5.75 and
expanding;

X =

∫ z1

z0

(
2π

P

)i N∑
n=1

ni
[
saan(im) cos

(
2nπs

P
+M

)
cos

(
ωs

βc
+ ϕ0 + U

)
+

sbbn(im) cos

(
2nπs

P
+N

)
cos

(
ωs

βc
+ ϕ0 + U

)]
ds. (5.78)
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Using the commutativity of the integral and summation,

X =

(
2π

P

)i N∑
n=1

ni
[
saan(im)

∫ z1

z0

cos

(
2nπs

P
+M

)
cos

(
ωs

βc
+ ϕ0 + U

)
ds+

sbbn(im)

∫ z1

z0

cos

(
2nπs

P
+N

)
cos

(
ωs

βc
+ ϕ0 + U

)
ds

]
. (5.79)

Inserting the standard integral result from Eqn. 5.77;(
2π

P

)i N∑
n=1

ni

2

[
saan(im)I

(
2nπz

P
,M,

ωs

βc
, ϕ0 + U

)
+ sbbn(im)I

(
2nπs

P
,N,

ωs

βc
, ϕ0 + U

)]
= Q(im/re, i, ϕ0 + U) = X. (5.80)

Where the integral is standardised as a function of i, Fourier coefficients describing the real
or imaginary Ez component, and U . This is possible as inputs a and c from Eqn. 5.77 will
be constant for any integral problem, and all sa, sb,M,N are defined for a given i.

Finally, the standard integral of a Fourier series multiplied by a cosine term is written as
the result Q(im/re, i, ϕ0 + U).∫ z1

z0

FS(s, re/im, i) cos

(
ωs

βc
+ ϕ0 + U

)
ds = Q(im/re, i, ϕ0 + U) (5.81)

The method is reiterated as follows: from Lorentz force, momentum gain is calculated
by integrating a given field component over the cell length. As each field component can
be written as the real component of the on-axis Ez component and its derivatives, any
integral will integrate Re[Ez] or a derivative. Re[Ez] (and derivatives) can be written as a
sum of independant terms, where each term is a Fourier series multiplied by a time-varying
trigonometric function. Any trigonometric term can be converted from sin(x) → cos(x) and
thus any integral will be of the form

∫
cos(xs) cos(ys)ds. Each Fourier series term is comprised

of a sum of two terms each of the form cos(xs) cos(ys). Integrating a Fourier series multiplied
by a trigonometric term can thus be written as a standard result, as shown in Eqn. 5.81. The
standard result reached here is clearer by seeing an example worked through in the following
section, where the momentum gain is calculated along each axis.

5.5 Derivation of FC2CT for TW Cavities

It was shown previously how Ez(r, z) can be described as a function of the on axis field
Ez(0, z) at some radial displacement, r, see Eqn. 5.23. The result is provided again for ease;

Ez(r, z) =

[
Ez(0, z)−

r2

4

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, z)

)]
. (5.82)
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It was shown previously the real component of the field in a TW cavity is a combination
of both the real and imaginary Ez components that independently oscillate out of phase
with a fixed phase relation. Substituting the real component of the complex Ez component,
Eqn. 5.70 into the above expansion for Ez(r, z) to produce the observed Ez component off
axis;

Ez(r, z, t) =

[
A(z) cos(ωt+ ϕ0)−B(z) sin(ωt+ ϕ0)

− r2

4

(
∂2

∂z2
[A(z) cos(ωt+ ϕ0)−B(z) sin(ωt+ ϕ0)] +

ω2

c2
(
A(z) cos(ωt+ ϕ0)−B(z) sin(ωt+ ϕ0)

))]
. (5.83)

Recall from the Lorentz force equation

dpz ≈
q

βzc
Ez(s)ds. (5.84)

Substituting the form for Ez(r, z, t) from Eqn. 5.83 with a change of variables, t → s;

dpz =

∫ z1

z0

A(s) cos

(
ωs

βzc
+ ϕ0

)
ds−

∫ z1

z0

B(s) cos

(
ωs

βzc
+ ϕ0 − π/2

)
ds

−
∫ z1

z0

r2

4
A′′(s) cos

(
ωs

βzc
+ ϕ0

)
ds+

∫ z1

z0

r2

4
B(s)′′ cos

(
ωs

βzc
+ ϕ0 − π/2

)
ds

−
∫ z1

z0

ω2r2

4c2
A(s) cos

(
ωs

βzc
+ ϕ0

)
ds+

∫ z1

z0

ω2r2

4c2
B(s) cos

(
ωs

βzc
+ ϕ0 − π/2

)
ds. (5.85)

Where A(z)′′ denotes the double derivative of Fourier series A(z), and B(z)′′ denotes the
double derivative of Fourier series B(z) with respect to z. These terms can also be written
in the defined form;

A(z)′′ = FS(z, re, 2), B(z)′′ = FS(z, im, 2). (5.86)

As A(z) represents the real field component of Ez and has been differentiated twice, i = 2
and B(z) refers to the imaginary field component. Inserting all Fourier series in Eqn. 5.85
as the defined notation and simplifying;

dpz =

(
1− ω2r2

4c2

)
×
[∫ z1

z0

FS(s, re, 0) cos

(
ωs

βzc
+ ϕ0

)
ds−

∫ z1

z0

FS(s, im, 0) cos

(
ωs

βzc
+ ϕ0 − π/2

)
ds

]
− r2

4

[∫ z1

z0

FS(s, re, 2) cos

(
ωs

βzc
+ ϕ0

)
ds−

∫ z1

z0

FS(s, im, 2) cos

(
ωs

βzc
+ ϕ0 − π/2

)
ds

]
.

(5.87)
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Inserting the standard integrals as defined in Eqn. 5.81;

dpz =

(
1− ω2r2

4c2

)
×
[
Q(re, 0, ϕ0)−Q(im, 0, ϕ0 − π/2)

]
− r2

4

[
Q(re, 2, ϕ0)−Q(im, 2, ϕ0 − π/2)

]
. (5.88)

Where Q(im/re, i, ϕ0 +U) is defined in Eqn. 5.80. Recall the transverse momentum is given
as follows;

dpx = sign(x) cos(θ)

(
Er(s)

vz
ds+Bθ(s)ds

)
(5.89)

dpy = sign(y) sin(θ)

(
Er(s)

vz
ds+Bθ(s)ds

)
. (5.90)

The same process is thus completed for px, py which will be outlined here. Only one
calculation is required for both the transverse planes, as the term in brackets is identical
for the calculation of both dpx and dpy. The forms of Er(r, z) and Bθ(r, z) displayed as
functions of Ez(r = 0, z) and the derivatives are shown in Eqns. 5.30 and 5.36 respectively.
Integrating Er with respect to s,∫ z1

z0

Er(r, s, t)ds =

∫ z1

z0

[
−r
2

∂Ez
∂z

+
r3

16

(
∂3Ez
∂z3

+
ω2

c2
∂Ez
∂z

)]
ds. (5.91)

Where ∂iEz

∂zi
are implicitly functions of s and t and are substituted using Eqn. 5.74,∫ z1

z0

Er(r, s, t)ds =∫ z1

z0

(
−r
2
+
r3

16

ω2

c2

)[
A(s)′ cos

(
ωs

βzc
+ ϕ0

)
−B(s)′ cos

(
ωs

βzc
+ ϕ0 −

π

2

)]
ds

+

∫ z1

z0

r3

16

[
A(s)′′′ cos

(
ωs

βzc
+ ϕ0

)
−B(s)′′′ cos

(
ωs

βzc
+ ϕ0 −

π

2

)]
ds.

Converting the Fourier series for the real and imaginary fields, A and B, into the defined
form (this is a purely aesthetic change in order to aid the production of Q(re/im, i, ϕ0 +U))∫ z1

z0

Er(r, s, t)ds =∫ z1

z0

(
−r
2
+
r3

16

ω2

c2

)[
FS(s, re, 1) cos

(
ωs

βzc
+ ϕ0

)
− FS(s, im, 1) cos

(
ωz

βzc
+ ϕ0 −

π

2

)]
ds+∫ z1

z0

r3

16

[
FS(s, re, 3) cos

(
ωz

βzc
+ ϕ0

)
− FS(s, im, 3) cos

(
ωs

βzc
+ ϕ0 −

π

2

)]
ds.
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Using the standard integral solution in Eqn. 5.81;∫ z1

z0

Er(r, s, t)ds =(
−r
2
+
r3

16

ω2

c2

)[
Q(re, 1, ϕ0)−Q(im, 1, ϕ0 −

π

2
)

]
+

r3

16

[
Q(re, 3, ϕ0)−Q(im, 3, ϕ0 −

π

2
)

]
. (5.92)

It is important to note the above result is a purely solved equation. It provides an
analytic approximation (up to some factors that provide the correct units) for the transverse
momentum change due to the Er field acting on a particle as it traverses a single cell.
Similarly, the magnetic field effect on a particle is calculated by first inserting the field as Ez
and the derivatives;

∫ z1

z0

Bθ(r, s, t)ds =

∫ z1

z0

ω

c2

[
r

2
Ez(0, s, t)−

r3

16

(
∂2Ez
∂z2

+
ω2

c2
Ez(0, s, t)

)]
ds. (5.93)

For convenience, the result is stated;∫ z1

z0

Bθ(r, s, t)ds =
ω

c2

(
r

2
− r3

16

ω2

c2

)[
Q(re, 0, ϕB,0)−Q(im, 0, ϕB,0 −

π

2
)

]
−

ω

c2
r3

16

[
Q(re, 2, ϕB,0)−Q(im, 2, ϕB,0 −

π

2
)

]
. (5.94)

Where the following result was used,∫ z1

z0

∂n

∂sn
Ez(r, s, t)ds = Q(re, n, ϕ0)−Q(im, n, ϕ0 −

π

2
), (5.95)

which is derived by combining Eqns. 5.74 and 5.81.
Using the results from Eqns. 5.92 and 5.94, the momentum change in the transverse planes

are computed,

dpx/y =

[
1

βzc

(
−r
2
+
r3

16

ω2

c2

)[
Q(re, 1, ϕ0)−Q(im, 1, ϕ0 −

π

2
)

]
+

1

βzc

r3

16

[
Q(re, 3, ϕ0)−Q(im, 3, ϕ0 −

π

2
)

]
+

+
ω

c2

(
r

2
− r3

16

ω2

c2

)[
Q(re, 0, ϕB,0)−Q(im, 0, ϕB,0 −

π

2
)

]
−

ω

c2
r3

16

[
Q(re, 2, ϕB,0)−Q(im, 2, ϕB,0 −

π

2
)

]]
× cos(θ)/ sin(θ). (5.96)

139



Similar to the SW case, ϕ0 slips each cell due to the constant beta approximation and must
be updated each cell via the following relation,

ϕn+1,0 = ϕn,0 −
2πLcell
λ

+
ωLcell
βavgc

, (5.97)

where βavg is the relativistic beta of the mean particle energy over the cell and λ is the design
wavelength and is related to the phase advance per cell.

This method allows an accurate method of tracking a particle beam once the real and
imaginary field maps are known. However, due to the large number of terms required per
iteration, the application of the method are limited. A script was written in python designed
to implement FC2CT for TW structures. When particle simulations were conducted the
speed of the method was slower than the SW FC2CT. As the method requires both an
and bn Fourier coefficients in addition to both the real and imaginary Ez components. For
calculations of the transverse momentum change in the SW FC2CT method, six summations
are computed, however this value increases to 16 for the TW FC2CTmethod. A simplification
of a true TW cavity can be approximated by treating the Ez component as symmetric about
the centre of the rf cell. For a SW cavity there are no traveling components. As a result,
the field builds evenly in each cell. In a TW cell, the field has a small traveling term which
causes the field to build non-uniformly. Only when the cell is fully excited, does the field
appear symmetric about the centre of the cell, see Fig. 5.6.

Figure 5.6: Real component of Ez component in a TW single cell at two different excitation
levels.
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By treating a TW cell as a SW cell with a different value for the phase advance per cell, the
TW structure can be modelled as if it was a SW structure. This approximation thus treats
each TW cell as identical, and excites uniformly within the cell. This approximation is only
valid for small apertures, when Ez goes to zero between accelerating cells. For structures with
a large aperture, Ez may not tend to zero between cells, and the field can not be accurately
treated as a standing wave.

Figure 5.7: On-axis Ez component seen by a particle traversing a 4π
5

phase advance TW
cavity.

Figure 5.7 shows the on-axis field seen by a particle at a certain phase traversing a TW
cavity such that the energy gain is maximised. However, as the particle is at the entrance/exit
of the single cell at this point, the field is small in this region, and will be similar to the field as
calculated by the SW approximation. For a π-mode structure, maximum energy gain occurs
when the field is unexcited and increasing when the particle enters the cell. For structures
with phase advance per cell less than π, the ideal energy gain occurs when the field is already
excited and increasing. This is because the particle traverses the cell in less time than the
field takes to advance by π.

5.6 Comparison of FC2CT to known Tracking Codes

The previous sections outline the calculation of the 6D phase space for both Standing and
TW cavities.
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Figure 5.8: Phase Space plot showing transverse X phase space calculated in ASTRA and
single cell method. Proton beam simulated at 150 MeV tracked through 50 π-mode cells
with a gradient of 50 MeV/m.

5.6.1 Comparison of FC2CT and ASTRA for SW Cavities

The tracking code ASTRA [96] was used to benchmark the performance of the SW single cell
functions. The 1D field map was extracted from CST microwave solver (for an S-band rf cell
at 2.9985 GHz) and used for both the FC2CT and ASTRA simulations. The input particle
beam was generated using the ASTRA generator application with a momentum spread in
each dimension. The following phase space plots had different input beam phase spaces, so
as to not compare the same input beam with every simulation.

Figure 5.8 shows the transverse phase space of a proton beam at an initial energy of 150
MeV after traversing a 50 cell SW structure as tracked by ASTRA and FC2CT. In order
to compare accurately, the ASTRA simulation was initiated with the on-axis Ez component
profile only; it was not run with 3D field maps. The two output distributions agree very
strongly, with particle to particle deviation generally increasing with increasing x and Px.
The FC2CT method completed the simulation in a similar duration to ASTRA, in addition to
being written in a non-optimised interpretative code, which are generally slower for simulation
jobs.
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Figure 5.9: Phase Space plot showing longitudinal phase space calculated in ASTRA and
single cell method. Proton beam simulated at 150 MeV tracked through 50 π-mode cells.

Figure 5.9 shows the longitudinal phase space of a proton beam starting at 150 MeV (Pz
≈ 550 MeV/c) through 50 SW cells at a gradient of 50 MeV/m. The initial distribution
(which is the same as for Fig. 5.8) has a length of three rf periods and hence three periodic
separatrix distributions are created. The distributions highly agree, notably at the ‘head’
of the separatrix, which is often the area of interest for particle tracking simulations. This
makes intuitive sense, as the particles in the ‘head’ see an accelerating field for the majority
of the single cell, and the constant beta approximation is accurate. Particles falling down
the ‘neck’ have the highest discrepancy between the ASTRA and FC2CT calculations.
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Figure 5.10: Phase space plot showing proton longitudinal momentum as a function of phase,
at six different rf cells. The arrows show the discontinuity between particles moving up and
down the ‘neck’. Colour dimension shows ∆Pz of the previous rf cell.

The ‘neck’ particles start at an accelerating phase and gain momentum in the early cells,
as they travel slower than βsc initially, the phase slippage is positive. At some point, the
phase slips to a phase where the particle observes equal parts of a positive and negative Ez
component whilst traversing the cell. Particles can be on either edge of an phase ‘knife-edge’,
where the particle observes marginally more accelerating or decelerating phase over the next
few rf cells. Particles on one side will slowly gain momentum and move towards the ‘head’
whilst the particles on the other side of the ‘knife-edge’ slowly lose momentum. This causes
the ‘neck’ section to form, where particles on one side are pulled up the ‘neck’, towards the
‘head’, and the other particles are pulled further down the ‘neck’ leaving a sparsely occupied
area of phase space where momentum gain cancels in each cell. As the momentum gain in
this region is small, minuscule changes in relativistic beta may have large effects on whether
a particle observes more acceleration or decelerating field and thus the constant relativistic
beta approximation is less accurate in this region. This description is more easily visualised
with the aid of a diagram, which is shown in Fig. 5.10. Particles in the ‘neck’ region have
very low values of ∆Pz, with particles pulled up the ‘neck’ having slightly positive values
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and particles pulled down, slightly negative values. In a time-stepping code, the particle
velocity is updated multiple times per rf cell and the true value for ∆Pz is more accurately
represented.

Figure 5.11: Phase Space plot showing transverse Y phase space calculated in ASTRA and
single cell method. Proton beam simulated at 150 MeV tracked through 80 π-mode cells
with a gradient of 50 MeV/m.

Figure 5.11 demonstrates the accuracy of FC2CT for longer rf structures. The result
shows the y, Py phase space distribution of two particle beams as tracked by ASTRA and
FC2CT through 80 rf π-mode cells for protons starting at 150 MeV. Thus, the cavity is
approximately 2m long. The figure shows the FC2CT method sustains the accuracy for
longer structures, and any initial errors do not propagate to large errors by the end of a
simulation. The initial distribution is different to that of Figures 5.8 and 5.9 in order to
explore the agreement between ASTRA and FC2CT for a different set of input parameters.
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Figure 5.12: Phase Space plot showing transverse Y phase space calculated in ASTRA and
single cell method. Proton beam simulated at 37.5 MeV tracked through 20 π-mode cells
with a gradient of 50 MeV/m.

Figure 5.13: Phase Space plot showing longitudinal Z phase space calculated in ASTRA and
single cell method. Proton beam simulated at 37.5 MeV tracked through 20 π-mode cells
with a gradient of 50 MeV/m.
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Protons at 150 MeV have relativistic beta ∼ 0.5. The energy gain over an rf cell is of the
order 1 MeV, the gain over one cell will not largely change beta. For lower energy protons,
a gain of 1 MeV will have a larger impact on the fractional change in relativistic beta ( δβ

β
)

over an rf cell, and will reduce the accuracy of the constant beta approximation. To further
qualitatively test the accuracy of FC2CT relative to ASTRA, a lower energy proton beam
was simulated. Figures 5.12 and 5.13 show the transverse and longitudinal phase space plots
respectively for a proton beam at 37.5 MeV tracked through 20 rf cells at a gradient of
50 MeV/m. The two distributions again show strong agreement at the lower proton energy.
Again, the particles on the ‘neck’ in Fig. 5.13 have the most deviation from the distribution
as simulated with ASTRA. Nevertheless, the two phase space plots show that even protons
at 37.5 MeV can be modelled accurately using FC2CT. The FC2CT method iterates over
each cell, thus for lower energy particles, the cell length is shorter and FC2CT iterates over
a smaller longitudinal distance relative to particles of higher energy. This means FC2CT
applied to a 37.5 MeV proton beam will require more iterations per unit length than protons
at 150 MeV.

(a) (b)

Figure 5.14: (a) Pz as a function of difference in Pz as calculated by ASTRA and FC2CT
(b) Longitudinal phase space of distribution after 20 rf cells.

In order to quantitatively access the accuracy of FC2CT to ASTRA, the difference
between phase space coordinates is calculated and discussed below. Figure 5.14 shows
the difference in calculated Pz from ASTRA and FC2CT. The input proton distribution
had a longitudinal length of three rf cycles and had a nominal energy of 150 MeV, the
gradient is 50 MeV/m. The phase space distribution is also shown for ease of understanding.
Particles with high and low longitudinal momentum have small errors in calculated Pz. As the
momentum value tends to the mean value, ∼ 555 MeV/c, the error in Pz increases. Particles
not on the tail or head of a bunch appear on one of two necks. Particles on each neck have
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larger discrepancies in calculated Pz, which was discussed previously. The distribution in
Fig. 5.14 (a) forms a closed loop, as particles in difference rf bunches appear at the same
position in the error distribution plot. If the error distribution of the distribution in Fig. 5.14
(a) was visualised in 3D, it would appear similar to a saddle shape.

(a) (b)

Figure 5.15: (a) Pz as a function of difference in Pz as calculated by ASTRA and FC2CT
(b) Longitudinal phase space of distribution after 30 rf cells.

Figure 5.15 shows the discrepancy in calculated Pz after 30 SW cells, for the same initial
distribution. Again, the longitudinal phase space is shown. In (a), the closed loop shape is
again achieved. However, particles on the thinner neck with higher error in Pz from Fig. 5.14
continue to produce larger errors in Pz as more cells are traversed. The maximum Pz error
increases from ∼0.2 MeV/c to ∼ 0.5 MeV/c after 10 more cells are traversed. The particles on
the other, thicker, neck appear to remain in a region of Pz error ∼ 0.15 MeV/c. This causes
the saddle shape to stretch as the error in Pz for particles in the neck continues to grow.
Nevertheless, the maximum error in Pz (relative to ASTRA accuracy) is approximately 0.1%.
As the number of cells traversed increases, particles at the tail and head of the bunch continue
to have very small Pz discrepancy, demonstrating that errors do not propagate aggressively
for particles in these regions. Additionally, the previous figures discussed suggest the error
in Pz is always positive. As ∆Pz was calculated as Pz(ASTRA)−Pz(FC2CT ), The FC2CT
method underestimates the longitudinal momentum, for (nearly) all particles in a bunch.

148



(a) (b)

Figure 5.16: (a) Difference in Pz as calculated by ASTRA and FC2CT as a function of
difference in X as calculated by ASTRA and FC2CT (b) Difference in Px as calculated by
ASTRA and FC2CT as a function of Pz. 40 rf cells.

Figure 5.16 (a) shows the error in Pz as a function of error in X, from tracking through
40 rf cells. Figure (a) shows the error in transverse position increases for a particular error
in Pz, between 0 and 0.2 MeV/c. For particles with increased error in Pz, the error in X
appears fairly uniform. The maximum position error in X is approximately 0.1 mm. As
the iris aperture is 2.5 mm, this error is small, albeit larger than longitudinal errors. (b)
shows the error in Px as a function of Pz. This plot demonstrates a fairly uniform error
in Px as a function of Pz. This implies the FC2CT transverse momentum gain calculation
introduces a relatively constant level of inaccuracy, independant of particle position within
a bunch. There appears a slight increase in Px error for higher Pz particles however is not
substantial enough to draw any meaningful conclusions about. The maximum error in Px
is approximately 0.06 MeV/c. As the maximum value of Px is 1 MeV/c, the error in Px is
approximately 6 %. This value increases to approximately 8% after 50 cells.
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(a) (b)

Figure 5.17: (a) Difference in Pz as a function of difference in Z after 20 (a) and 30 (b) rf
cells.

(a) (b)

Figure 5.18: (a) Difference in Pz as a function of difference in Z after 40 (a) and 50 (b) rf
cells.

Figure 5.18 displays the error in Z as a function of the error in Pz for the same initial
distribution tracked through 20, 30, 40, and 50 rf cells. The 3D distribution in Fig. 5.18 (a)
shows the saddle shape that has been discussed previously, forming a closed loop. Particles
at the tail and head of a bunch have low error in both Pz and Z. Particles with larger
error in Pz, occurring on the neck of the longitudinal phase space plot, also experiencing the
maximum error in longitudinal position. This is an expected result. If the momentum gain
is incorrect, the phase slippage calculated after an iteration will be incorrect, and propagate
the error. This leads to incorrect momentum gain calculation in subsequent cells, and a
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feedback loop is created. From the figure, particles have both positive and negative values
for ∆Z, thus FC2CT both over and underestimates average particle velocity over a structure,
however the results imply the underestimation is greater in magnitude. a minimum in ∆Pz
occurs near ∆Z = 0.

As the number of rf cells increases, the error distribution tends to a linear plot, with
a positive orientation starting at (0, 0). Generally, the error in both Pz and Z becomes
a positive value, again implying FC2CT underestimates both Pz gain and average particle
velocity. For particles with larger errors in Pz and Z, the distribution tends to an expanding
region that locally blows up. These particles appear on the neck of the longitudinal phase
space distribution and become difficult to accurately track in this region, as discussed
previously. After 40 rf cells, the maximum error in Pz is roughly 0.2%, relative to ASTRA,
and a position error or roughly 0.4 mm (∼ 1/60 of a cell length for protons at this energy
in a SW structure). After 50 rf cells, the maximum error in Pz is approximately 0.3%. The
error in position is approximately 1.2 mm, which is ∼ 1/20th of a cell length. This error is
small, and demonstrates the ability of FC2CT for protons accelerated through SW cavities.

Figure 5.19: Plot displaying the longitudinal phase space calculated in both RF-Track and
FC2CT. Proton beam simulated at 150 MeV tracked through 45 TW cells.

5.6.2 Comparison of FC2CT and RF-Track for TW Cavities

So far, it has been shown the FC2CT method is highly effective at approximation the phase
space of a proton beam at varying energies. In order to test how accurate the TW version
of FC2CT, another reliable tracking code was used, RF-Track [98]. The input distribution
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for the comparison between RF-Track and FC2CT had a Gaussian momentum spread in
x, Px, y, Py, however Pz was constant for all particles, at the design input momentum.
This choice was made to infer the deviation between the output longitudinal phase space
distributions, see later. The TW cavity was comprised of 45 cells with a phase advance per
cell of 4π

5
. The gradient was 33.5 MeV/m and the cavity length was ≈ 1 m. Each simulation

was ran using the same on-axis Ez component profile, taken from CST Microwave Solver.
Figure 5.19 displays the longitudinal phase space of both distributions as simulated by

RF-Track and FC2CT. Two methods for the TW FC2CT simulation are shown, labelled
slow and fast. The slow method uses both the real and imaginary Ez component defined
over an rf period, as described previously. The fast method utilises the SW approximation
for the TW cavity, by assuming a field profile that is symmetric about the centre of the rf
cell at all times. The field can be created using only bn terms in the Fourier series of the field
profile and thus runs more quickly. It can be seen the distributions are very similar for all
three methods with very slight deviation, particularly at the head of the separatrix. As the
distribution was initialised with a fixed Pz, the shape of the output phase space distributions
can be compared exactly. For particles with Pz < 550 MeV/c, the distribution shapes slightly
differ. Thus, the rotation of the phase space as calculated by RF-Track is different to that
of the FC2CT method.

Figure 5.20: Phase Space plot showing transverse (X) phase space calculated in RF-Track
and both FC2CT fast and slow methods.

Figure 5.20 displays a subset of the x, Px phase space distribution as tracked by the three
methods. The distributions highly agree for the RF-Track and FC2CT methods. The fast
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FC2CT method appears to function as well as the slow method, however the slow method
took ∼ 2 − 3 times longer than the fast method. The increase in accuracy of the fast method
is not clear, and does not justify the use of the method.

Figure 5.21: Difference in Px as a function of Pz from calculations using FC2CT (fast) and
RF-Track.

Figure 5.21 describes the error in Px due to the FC2CT fast method. Similar to Fig. 5.16
(b), there is no clear structure, with particles of all momentum experiencing a relatively
constant error in Px. However, for low momentum particles, there are some fairly large
discrepancies, with ∆Px reaching 0.08 MeV/c.

The results suggest the TW FC2CT method can accurately track particle through TW
structures. However, the slow method requires many more calculations per iteration, and is
likely not viable over conventional tracking methods. Whilst the fast method removes this
issue, a true TW is not being simulated, and the accuracy is inferior. Only one simulation was
compared with RF-Track, due to time constraints. Future work comparing the effectiveness
of FC2CT relative to RF-Track would be a beneficial area to explore.
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5.7 The Constant Beta Approximation and Accuracy

Improvements to FC2CT

Figure 5.22: Plot showing change in relativistic beta divided by relativistic beta over a single
cell for a gradient of 50 MeV/m for both electrons and protons at different energy. Color
dimension shows how higher energy particles require fewer single cell calculations per unit
longitudinal distance.

As shown with phase space plot comparisons, protons at 37.5 and 150 MeV can be accurately
tracked using the FC2CT. Figure 5.22 shows the fractional change in relativistic beta per cell
as a function of particle energy, for both electrons and protons. The gain per cell is calculated
as 50Lcell, and the starting particle energy is 2.5 MeV. The two vertical lines at 37.5 and 150
MeV show this value is much higher for protons than for electrons at the same energy. This
is because at these energies, electrons are highly relativistic and changing the energy further
will not have an effect on the relativistic beta. Protons can be simulated using FC2CT at
a vast range of energies, however rf coupled cavity machines will not be used for low energy
protons as the effective shunt impedance is greater with RFQs and drift tube linacs. δβ

β
is

used as an indication of the validity of the constant beta function. δβ alone can not be used
as an indication. Protons initially at 1 MeV have β ∼ 0.046. If the proton gains 1 MeV
over an rf cell, the value of β becomes 0.065. Thus δβ ∼ 0.02. The value of δβ

β
however is

0.4. Results shown in this section show strong agreement between FC2CT and ASTRA have
δβ
β
< 0.01.
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Accuracy Improvements to FC2CT

Up to now, FC2CT only considers one iteration per rf cell. However, the method can be
altered to compute multiple iterations per cell. One potential method to improve FC2CT
considers running an iteration over a single cell multiple times, updating the value of the
constant beta used in subsequent iterations. As a result, the particle does not travel at the
input beta through the cell, but a value that closer resembles the average particle beta over
the cell.

Another improvement requires reducing the integration region, so that a single iteration
integrates some section of a single cell. Recall the energy gain in 1D for a SW cavity from
z0 to z1 for an arbitrary phase advance per cell is given,

E(z1) = E(z0) +
E0

2

∞∑
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[
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. (5.98)

Expanding the integral bounds;
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Instead of integrating over the cell length, the bounds z1 and z0 are over some section.
Defining the number of iterations per cell length as I, then z1 = (i+1)Lcell

I
, z0 = iLcell

I
, where

i is the section integer, i = 0, 1, ..., I−1. Each cell then requires I iterations to be completed.
The phase, ϕ0,i and relativistic beta, βi, must be updated each section. In general, the 1D
energy gain for a phase advance per cell, ψ, over one cell split into I calculations is

E(Lcell) = E0 +
G0Lcell
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. (5.100)

Depending on the accuracy required and particle energy of a given simulation, the choice
of I can be chosen to trade-off between accuracy and computing time. As this approach
requires multiple calculations per cell, it loses the speed benefit of the FC2CT method, and
essentially behave similarly to a conventional tracking code.
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Figure 5.23 shows the percentage difference between initial FC2CT calculation (blue line)
of particle energy and other calculations of varying computational duration, for a proton
at 150 MeV over a single rf cell of gradient 50 MeV/m. The ‘number of iterations’ index
refers to running the FC2CT method multiple times and updating the constant relativistic
beta used in the subsequent calculations. For example, ‘number of iterations’ = 2, refers to
running FC2CT twice, with the second calculation of the cell energy gain using the average
value of β over the cell as calculated by the first iteration. ‘Integration length’ refers to the
fraction of a single cell completed per iteration. For example ‘integration length’ = 0.5 refers
to an iteration being half a cell length, thus requiring two iterations per cell length and I = 2.
Hence, the orange and green lines in Fig. 5.23 require the same number of iterations (2) per
cell. It can be seen that updating the relativistic beta by iterating over a single cell twice has
a much smaller effect than integrating over half a cell twice. The figure also shows results
from creating 4, 100 and 200 sections within a single cell. By 100 iterations per cell the
value for particle energy converges, as computing 200 iterations per cell does not change the
percentage difference from initial calculation from 100 iterations per cell. It is also interesting
to note that the percentage difference due to using an average relativistic beta changes the
value different to changing the iteration length.

Figure 5.23: Percentage change from an initial FC2CT calculation of particle energy to
calculations made with increasing computational time. Results are shown as a function of
phase for protons at 150 MeV.

For certain rf phases, decreasing the integration length has larger effects on the calculated
value of particle energy, relative to other phases. The maximum percentage difference
occurs at different rf phases for different integration length, however the shift is minor. The
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maximum percentage error from changing the number of iterations does not coincide with
changing the integration length. The maximum percentage error is approximately 0.002 %,
which is equivalent to the proton energy calculating being incorrect by ∼ 3 keV. By reducing
the integration length to half an rf cell, the energy gain calculation changes by approximately
1.5 keV. For large simulations with many particles, the small change in calculated phase
space is not worth the investment in additional computation time, as a result developing
FC2CT with reduced integration length is likely not viable over conventional tracking codes.
The methods outlined to potentially improve the accuracy of FC2CT do not improve the
calculated phase space by any meaningful amount, however increase computation time. In
order to test the true accuracy of the methods, a higher order integrator would be required,
such as an RK12 integrator.

5.8 Conclusion of FC2CT

Whilst it has not been completed, and would be an interesting next step for this work, it is
likely a FC2CT script written in a compiled language code could produce highly accurate
results that vastly reduce computation time relative to time stepping codes for approximate
particle tracking simulations. In addition, further work comparing the validity of the FC2CT
TW method relative to RF-Track would be an interesting development. Such comparisons
include lower energy range protons, and cavities of varying length. Nevertheless, results show
a strong agreement between RF-Track and FC2CT qualitatively, as shown by the similar
distributions in phase space in Figs. 5.19 and 5.20. An important feature that FC2CT omits
is space charge effects, and thus is most accurate when considering protons beams of low
beam current. However, an interesting improvement could assess a method to introduce
space charge into FC2CT.

Thus far, FC2CT determines the 6D phase space of particles traversing periodic field
maps. In reality, rf cavities exert small transverse forces on particles at the structure
entrance/exit. An additional future study could approximate the effect of these fringe fields
on particle motion, allowing FC2CT to accurately track particles through more realistic
structures.

In this chapter, an analytical method was created and implemented that allows for the
calculations of the 6D phase space for a particle traversing an rf cavity comprised of multiple rf
cells. The method, FC2CT, can be applied to both SW and TW cavities. Both methods were
compared to reliable tracking codes, ASTRA and RF-Track, and shown strong agreement
for both comparisons. The TW method losses the computational benefit achieved with
the simpler SW method, and thus an approximation of the TW cavity was implemented,
showing strong agreement with RF-Track. Due to the fast nature of the model, and the
easy implementation of different rf cell gradients, the method will be utilised in the following
section - concerning the comparison between SW and TW cavities for the final cavity design.
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Chapter 6

RF Power Requirements

6.1 Power Distribution in Traveling and StandingWave

Structures

Chapter 4 explored two potential focusing schemes for the linac lattice, factoring in
longitudinal acceleration. The results show a FODO focusing scheme can incorporate cavity
lengths of the order 1 m whilst accepting a 5σ beam size at the cavity entrance/exit. This
allowed the possibility of longer TW structures, in addition to SW structures. In order to
fully compare SW and TW cavities (only constant gradient structures are considered), the
electrical power required to obtain a 100 MeV gain (from 150 to 250 MeV) is an important
figure merit in the linac design. The required power relates to both the initial cost and
running cost of the machine over the course of its life. In recent years, there has been a
global shift towards fostering environmental sustainability within the engineering industry.
As a result, the environmental impact of a linac system should be one of the most important
design objectives during the design. Other important objectives for the linac design include
the total linac length (inc. focusing), and the filling time (ability to accelerate more protons
per rf pulse), which both require minimising.

Table 6.1: Inputs and outputs for conceptual linac design. Objectives are shown with *.
Constraints are shown with †.

Inputs Outputs
Total Power*† Total Linac Length (inc. focusing)*

Number of Structures† Fill Time*
Ncells per Structure

† Average Power Loss†

Input Group Velocity (TW)† Output Group Velocity (TW)†

Cell Phase Advance (TW)† Gradient†
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Table 6.1 displays the inputs and outputs for comparisons between linac candidates. Linac
objectives are labelled with *, and linac constraints are labelled with †. Linac objectives
describe outcomes that are to be maximised or minimised, whilst constrained values are
limited to a range, or have an upper limit. For example, the gradient has an upper limit
constraint of 40 MeV/m. For a given number of structures in a linac candidate, each structure
must meet the required energy output, such that the total gain is achieved. The total linac
length is calculated by summing all structures lengths within a linac candidate, with an
additional length taking into account focusing length (see later). Results from the constrained
comparison are shown in Section 6.3.2.

The energy gain calculation was performed using FC2CT, discussed in Chapter 5. FC2CT
requires the on-axis Ez field (real and imaginary), and the magnitude of the on axis Ez field,
E0. Therefore to accurately compare SW and TW structures, the value of E0 must be
determinable for a given RF structure and input total power. SW and constant gradient TW
structures distribute power differently, an accurate approximation of the power in a given
cell is vital for the comparison. The electromagnetic solver CST, provides the value of E0

for a simulated structure with 1 J total energy (1 W of input power for TW structures).
In order to calculate the value of E0 for a single cell with a different total energy, a scaling
relation between the CST cell and real cell must be determined. Recall, from Chapter 3, the
MPV places an upper limit on the gradient of ∼ 40 MeV/m. As the single cell Ez(z) field
profile is exported from CST, the Fourier coefficients are known, and the field profile can be
reconstructed after small changes in cell length.

In order to accurately approximate the performance of a structure, optimised single cells
must have been simulated and designed, for both SW and TW structures. This was discussed
in Chapter 3. The following sections describe the Python script methods used to determine
various candidate outputs, such as the cavity gradient, cavity energy gain, and group velocity
(in the case of TW).

6.1.1 Gradient as a function of rf Power

As previously described, in order to determine the energy gain of a structure using FC2CT,
the gradient (E0) is required. The method used to calculate E0 as a function of input power
is now described.

The power in an rf cell can be calculated as follows,

Pcell =
V 2
cell

ZcellLcell
. (6.1)

Where Zcell is the shunt impedance per unit length. As the cell voltage is the integral of
the electric field over the length, Vcell =

∫ Lcell

0
Ez(z)dz = ηE0Lcell. Here, E0 is the on-axis

maximum gradient, and η is some scaling factor that accounts for the shape of Ez(z), and is
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constant. Inserting the cell voltage into Eqn. 6.1

Pcell =
η2G2

cellLcell
Zcell

. (6.2)

The power in the cell is also related to the quality factor;

Pcell =
ωUcell
Qcell

. (6.3)

Where Qcell is the intrinsic Q-factor. The power of the cell as calculated by CST is therefore,
from Eqns. 6.2 and 6.3;

PCST =
η2G2

CSTLcell,CST
ZCST

(6.4)

PCST =
ωUCST
QCST

. (6.5)

Where the value Lcell,CST is not necessarily equal to Lcell, as the cell length varies as βs
changes. As η is constant, the shape of the on-axis Ez field is assumed to be the same
for both the CST cell and real cell, just with different magnitudes. Rearranging the above
expressions and solving for η yields;

η2 =
ωZCSTUCST

QCSTG2
CSTLcell,CST

. (6.6)

The maximum on-axis gradient for the real cell is thus

G2
cell = G2

CST

Lcell,CST
Lcell

Zcell
ZCST

QCSTPcell
ωUCST

. (6.7)

As CST provides values for all values with subscript ‘CST’, the remaining unknowns are the
cell power, Pcell, cell shunt impedance per unit length, Zcell, and cell length, Lcell. Whilst
Zcell and Lcell will be similar to the CST values, Zcell and Lcell will change with geometric
parameters such as the coupling slot radius (for TW structures) and βs, respectively. Hence
must be treated as variables. However as the changes to the geometry are small, η is assumed
constant. Figure 6.1 shows the Ez field profile as calculated by CST for βs = 0.52. The Fourier
series approximation of Ez was calculated for the same βs, however the Fourier coefficients
were determined from a field map with βs = 0.515. The strong agreement between both
profiles implies small changes to βs are valid, and η is constant.

6.1.2 vg Calculation in a Traveling Wave Structure

The power in a SW cell is calculated as Pcell =
Ptot

Ncells
, as each cell is treated identical, and

only one power coupler is used. A constant gradient structure shares the power unevenly
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Figure 6.1: Ez field profile as calculated by CST and Fourier series for βs of 0.52. Fourier
series coefficients were calculated based of βs = 0.515.

along the structure, to operate each cell at a constant gradient. This is done by tapering the
group velocity along the cavity, as discussed previously. The attenuation per unit length at
the nth cell is denoted αn. The group velocity in the nth cell is given;

vg,n =
ω

2Qnαn
. (6.8)

The power in the first cell is simply the total power from the input coupler;

P1 = Ptot. (6.9)

The power in the second cell will be less than the first cell due to power attenuation,

Pn = Pn−1e
−2Lcellαn−1 . (6.10)

The group velocity is tapered from cell to cell such that the energy deposited in each cell
(and thus the gradient) is constant,

Uconstant = Pnvg,n. (6.11)

Therefore,
vg,n
vg,n−1

=
Pn
Pn−1

. (6.12)

The gradient in the nth cell, from Eqn. 6.7, is

Gcell = GCST

√
Lcell,CSTQCST

ZCSTUCSTω

√
PcellZcell
Lcell

. (6.13)
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The group velocity must be known for a single cell, and is calculated in CST using two
methods. The first method uses the fact;

vg =
δω

δk
. (6.14)

Introducing a small change to the phase advance per cell produces a (linear) change to ω.
The wave-vector, k, is related to the phase advance per cell via ϕ

Lcell
= k. Thus,

vg =
δω

δϕ
Lcell. (6.15)

The second method integrates the Poynting vector over the cell aperture and coupling slots.
Recall the design of the coupling slots was shown in Chapter 3,

Pz =

∫
area

E⃗ × H⃗|zdA =

∫
area

[ErHθ − EθHr]dA = vgU. (6.16)

Where EθHr is zero for a TM010 mode. The group velocity is therefore;

vg =

∫
aperture

ErHθdA+

∫
coupling slots

ErHθdA. (6.17)

In order to slow down the group velocity along the structure, the radius of the coupling
slots was used. However, the coupling slot radius also effects important single cell parameters,
namely Q, Z and frequency, f . As the cell must oscillate at the correct frequency, the cell
radius is used to correct f after changes in the coupling slot radius. As Eqn. 6.7 requires Q
and Z, these values must be known accurately, and thus must be determinable for different
slot and cell radius.

The coupling slot and cell radius were swept and the cell parameters, including vg are
calculated, as shown in Figs. 6.2 and 6.3. By applying a least squares fit to the results,
polynomial expressions can be obtained and the cell parameters are determinable for different
cell geometries. The correct frequency and group velocity can be determined by creating a
weight function that sums the frequency and group velocity errors (assuming a value for the
wanted vg). Using gradient descent, the weight function tends to zero, optimising the values
of coupling slot radius and cell radius. Finally, the values of Q and Z are determined from
the respective polynomials.

Effects of changing cell length on effective gradient

The cavity synchronous beta must be optimised to maximise the energy gain for a given
number of cells. This was achieved by sweeping βs and calculating the effective gradient as
a function of number of cells using FC2CT.
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(a) vg as a function of cell coupling slot
radius and cell radius.

(b) Q as a function of cell coupling slot
radius and cell radius.

Figure 6.2: Cell vg and Q as a function of single cell coupling slot radius and cell radius.

(a) Z as a function of cell coupling slot
radius and cell radius.

(b) f as a function of cell coupling slot
radius and cell radius.

Figure 6.3: Cell shunt impedance and frequency as a function of single cell coupling slot
radius and cell radius.
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Figure 6.4: Effective gradient as a function of number of cells in a structure for changing cell
length along structure. Cavity type is a 4π

5
TW structure at a gradient of 50 MeV/m for

protons at 150 MeV.

Figure 6.4 displays the effective gradient of a cavity (4π/5 TW structure) as a function
of number of rf cells, for protons at 150 MeV. Four cavity types are displayed, three cavity
solutions have a change in the cell length at some defined point within the cavity. The
other cavity shown has constant cell length. The effective gradient is calculated using the
FC2CT method, and the gradient is 50 MeV/m. The value of βs is swept for each cavity
(or twice if two cell lengths are considered within the same cavity) and the optimal effective
gradient is taken. Cavities with a change in the cell length are expected to perform better
(have higher effective gradient) as the total rf phase slippage is smaller. Thus allowing for
the synchronicity condition to be continuously met for cavities with large energy gain (large
change in relativistic β). The results suggest cavities with constant cell length perform as
well as cavities with changing cavity length for structures with approximately 40 cells or
fewer, this is equivalent to structure lengths ∼ 80 cm. The vertical mark is shown for a
cavity of 48 cells, with length ∼ 1 m. Cavities of this length, with constant cell length have
a marginally lower effective gradient, approximately 0.4 MeV/m, over cavities comprised of
two cell lengths. Cavities of constant cell length over 1 m, see an aggressive drop in the
effective gradient. Due to the increased cost of machining two different cell lengths for a
marginal gain, cavities up to ∼ 1 m are comprised of one cell length. The cavity gradient
in this project is aimed to be between 30 - 40 MeV/m, due to constraints on the MPV (see
Chapter 3), thermal heat load (see later), and the aim to operate at high rf efficiency. As a
result, a cavity comprised of one cell length will perform just as well as cavities of two cell
lengths up to ∼ 40 ×50

40
≈ 50 rf cells (1 m long). This is because the rf phase slippage is

effected by the energy gain, and thus the cavity length, not the number of cells.
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At 60 cells, the effective gradient of cavities with constant cell length drop by
approximately 4%, relative to the other cavity types. The plot also displays cases where
the cell length changes at different point along the structure. When cavities are comprised
of 40 - 70 cells, changing the cell length at 40% of the cavity length provides the optimal
effective gradient. For cavities comprised of 70+ cells, changing the cell length at the centre
becomes the optimum. For shorter structures, the relativistic beta changes more in the first
few cells than the last few cells, due to relationship between relativistic beta and energy (a
gain of 1 MeV for a proton at 150 MeV will change β by a greater amount than a 1 MeV
gain at 160 MeV). Thus, changing the cell length before the mid-point will allow for a more
optimal averaged cell length. However, this effect is very minor, and after ∼ 70 cells changing
the cell length at mid-point becomes optimal. For protons at higher energy, cavities of one
cell length will perform as well as cavities with two cell lengths for longer structures (> 1 m),
as the value of β changes less for a given energy gain. Conversely, for lower energy protons,
cavities comprised of one cell length will become inferior at short cavity lengths < 1 m).

6.2 Structure Energy Gain Calculation

(a) (b)

Figure 6.5: Energy gain method for TW (a) and SW(b) cavity types for a predefined input
power.

Figure 6.5 displays the method of calculating the total energy gain for a given input power
for both TW and SW cavity types. The method discussed was repeated for multiple values
of input power.
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6.2.1 Traveling Wave Structure Calculation

The TWmethod considers both the number of cells and the group velocity as the independant
parameters that must be swept. For each value of Ncells, the optimal βs is found, using
FC2CT. For each value of Ncells, the starting vg is swept. For a given vg, the simulation
iterates over consecutive cells until either the gradient exceeds the cavity limit (40 MeV/m),
the required energy gain is met, or vg becomes too low (< 0.1 % of c). For each cell, the
coupling slot radius and cell radius are calculated such that the frequency and vg are correct.
The cell Q, Z are determined using the polynomial relationships and the attenuation, α, is
determined using Eqn. 6.8. The FC2CT method is used to calculate the energy gain over
each cell using the on-axis gradient, E0, calculated using Eqn. 6.7. Once the simulation is
completed, all solutions that provide the required energy gain are kept. For each solution,
the cell parameters, input group velocity, βs and input power are known.

Figure 6.6 displays the cell parameters as a function of cell number for a TW simulation.
As the TW was simulated as constant gradient, the group velocity falls linearly. In order to
taper the group velocity as described, the coupling slot decreases with cell number. The cell Q
and Z both increase slowly to the final value, however the value do not change substantially.
Figure 6.6 (b) shows that, in order to keep the cell frequency constant, the cell radius must
increase slightly along the structure to balance the frequency shift due to the decreasing
coupling slot radii.

(a) Original (b) Zoomed in

Figure 6.6: Cell parameters as a function of cell number along the cavity. Group velocity
tapers from 0.8 % of c to 0.15 % of c.

6.2.2 Standing Wave Structure Calculation

The method for approximating the performance of a SW cavity is similar to the TW method.
However for the SW method, one factor that must be considered is the effect of cavity length
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on the shunt impedance per unit length.
From Fig. 6.6, a TW structure observes a slight increase in Z along the structure. However

in a SW cavity, as the number of cells increases, the inter-cell coupling constant must
increase, to ensure the same end cell phase shift and power flow droop, as discussed in
Chapter 2. Increasing the inter-cell coupling can be achieved by increasing the aperture
radius. Increasing the aperture radius moves the nose-cone into a region of higher magnetic
field, which increasing magnetic losses. In addition, an increasing aperture will reduce the
concentration of axial electric field lines. Both effects reduce the shunt impedance. Another
other method to increase coupling is by introducing off-axis coupling slots, as previously
discussed.

The effect of the coupling constant on the end cell field magnitude and phase can
be understood from perturbation theory for a chain of coupled oscillators. Consider
a side-coupled structure, comprised of accelerating cells and side-coupled coupling cells.
Accelerating cells are conventionally labelled 2n, and thus coupling cells are labelled 2n+ 1.
The Q factors for each type of cell are Qa and Qc respectively. The number of coupling cells
is one fewer than the number of accelerating cells and so the total number of cells is odd. The
stop-band is the region between the lower and upper pass-bands of the dispersion curve and
has a magnitude equal to the difference in frequency between the accelerating and coupling
cells, δω = ωc − ωa. From perturbation theory, the second order approximation of the field
in an accelerating cell is given [35];

X2n ≈ (−1)n−mX2m

[
1− 2(m2 − n2)

k2QaQc

]
e
i
4(m2−n2)

k2Qa

δω
ωa . (6.18)

Where X2m is the field in the drive cell, and k is the coupling constant between accelerating
and coupling cells. The value of n determines the accelerating cell the field is calculated in,
and can take values n = 0, ...,m. The value of m depends on the total number of cells as
m = Ntotal−1

4
. The second term in the square brackets of Eqn. 6.18 describes the power-flow

droop. The complex term describes the power-flow phase shift. The power-flow phase shift
vanishes when the resonant frequency of the accelerating and coupling cells are equal, at
confluence.

The ratio of the end cell field magnitude to the drive cell magnitude and the end cell phase
shift are two important values for cavity design that require maximising (to a magnitude of
one) and minimising, respectively. Both objectives are functions of the coupling constant.

The ratio of the end cell field magnitude to the drive cell (maximum power flow droop)
is given

| Xend

Xdrive

| = 1− (Ntotal − 1)2

8k2QaQc

, (6.19)

hence for increasing k the closer the ratio of field magnitudes is to unity. As the number of
cells increases, the gradient in the end cell reduces relative to the drive cell. The maximum

167



(a) (b)

Figure 6.7: (a) Shunt impedance as a function of number of cells and required coupling
constant (for fixed end cell phase shift and end cell field flatness) for a side-coupled SW
cavity. (b) Required coupling constant as a function of number of cells and end cell phase
shift and field flatness, for a side-coupled SW cavity.

power flow phase shift at the end cell is given

ϕshift =
(Ntotal − 1)2

4k2Qa

ωc − ωa
ωa

, (6.20)

which increases with Ntotal and decreases with inter-cell coupling, k. The power flow phase
shift is also a function of difference in frequency between accelerating and coupling cells. This
shows the important of tuning a side-coupled structure to reach confluence. The field in the
coupling cells is

X2n+1 = (−1)n−mX2m

[
2n+ 1

kQa

]
ei

π
2 . (6.21)

Note the magnitude of the field in a coupling cell is largest for cells closest to the drive cell
(n = m) and smallest for n = 0.

Figure 6.7 (a) displays the shunt impedance as a function of number of cells in a side-
coupled SW cavity. The SW cavity simulated is the one described in Section 3, and has been
optimised. A cavity length of 1 m would be comprised of approximately 40 cells for a π/2
mode side-coupled structure. Thus, for a SW cavity of realistic cavity length range (0.1 m
- 1 m) the shunt impedance range is approximately 69 - 75 MΩ/m. From Fig. 6.3 (a), the
4π/5 TW cell shunt impedance is in the region of 66 - 76 MΩ/m. Thus, both optimised
structures have similar ranges for the shunt impedance. The total power (for both TW and
SW) requirement was modulated by a factor to account for losses in the rf network, 20%
losses is often assumed, and is the value used here.
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6.3 Simulation Results

6.3.1 Unconstrained Scan Results

Firstly, a major deep scan of the parameter space was completed, ignoring any constraints
as described in table 6.1. The only constraint was that the total energy gain must exceed
100 MeV. The motivation for this scan was to explore the entire parameter space of possible
solutions for the cavity design. As cavity length was not constrained, both the FODO-like
and MAS focusing schemes may be required (recall Chapter 4 discussed two focusing schemes
which allowed for two values of maximum achievable cavity length), and therefore the total
linac length included additional length due to focusing elements. Linac solutions using the
MAS are assumed to have three quadruples and three drift lengths per cavity, whilst solutions
that use the FODO-like scheme (cavity lengths under 1 m) have one quadrupole and two
drift lengths per cavity. From Chapter 4, the quadrupole length and drift length are assumed
to be 0.1 m.

Figure 6.8 displays the design space for an unconstrained linac system. The plot displays
the total power required (power per cavity × number of cavities in linac) as a function of total
linac length, including focusing (sum of cavity lengths plus additional length for focusing).
Each point is a linac solution, not a single cavity. The minimum and maximum number of
cavities per linac was two and eight, respectively.

The objective space creates a Pareto front with respect to the total power and total length
objectives. For very high power systems, (shown in Fig 6.8(a)) SW solutions become optimal
over TW solutions. This is because shorter cavity lengths (roughly, less than 0.5 m) are more
efficient at distributing the rf power, due to reduced losses, and increased shunt impedance
per unit length as a result of fewer cells. At this area in objective space, TW solutions can
not compete with the SW design. The SW linac solution comprised of three structures is not
optimal, as the individual cavity lengths become too long, and the shunt impedance drops.
SW solutions with four, six and eight structures all compete fairly well at high power. Once
the total power is reduced to ∼ 75 MW, four structures becomes a poor solution as the
reduction in power reduces the operating gradient, which increases the length of the four SW
structures (to ∼ 1 m), and forces the use of the MAS over the FODO-like scheme, which
requires additional longitudinal length (relative to FODO) to focus, as discussed in Chapter 4.
At a total power of ∼ 50 MW, the six cavities in the SW solution have lengths approaching
1 m and adopt the MAS, increasing the total linac length considerably.

At ∼ 60 MW total power, TW solutions dominate the Pareto front (shown in Fig 6.8(b)).
At lower input power, the cavity gradients drop, and cavity lengths increase to reach the
required energy gain. Longer cavity lengths are more efficient when operated as TW cavities
over SW cavities, as the shunt impedance does not reduce with increasing number of cells.
The different TW solutions observed have different cavity lengths and different numbers of
cavities per linac solution, all solutions are operated in the 4π/5 mode as constant gradient
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(a) Standing Wave dominated solutions. (b) Traveling wave dominated solutions.

Figure 6.8: Linac total power as a function of total linac length, including focusing from
quadrupoles. Color dimension shows individual cavity length. Solutions are depicted as SW
and TW by ‘S’ and ‘T’, respectively.

structures. The optimal TW solutions have cavity lengths ∼ 1 m and thus use the FODO-like
scheme. One TW solution that performs well is the linac comprised of four TW cavities with
lengths ∼ 1.8 m (yellow solutions). These solutions require the MAS for sufficient focusing,
however due to the higher rf power efficiency obtained with longer TW structures, perform
well with respect to other TW solutions. This because there are fewer cavities comprising the
linac solution. Whilst these solutions show the potential strength of very long TW structures
in the MAS, they are still not optimal to shorter TW structures. The focusing length of
a two cavity linac in the MAS is assumed to be the same as a six cavity solution in the
FODO-like scheme (same total number of quadrupoles (6)). When decreasing the total linac
power, there is a point where the real estate gradient of the MAS becomes superior to the
FODO-like scheme, as the ratio of accelerating to non-accelerating elements shifts towards
MAS solutions. For example, suppose a MAS focused solution existed with one cavity of
length 10 m, requiring only three quadrupoles. The real estate of this solution is very high.
However, the is not viable for this linac design, as the required input power would be too
large. As linac solutions with four or fewer cavities require the MAS scheme (lengths > 1
m), they are inferior to FODO-like linac solutions of six or more cavities.

The general result that SW cavities are superior at short cavity lengths and TW are
superior at longer lengths is an expected result. The fact this result was retained implies the
model is operating as intended. This result can be understood with the following discussion.

SW cavities comprised of fewer cells require smaller coupling for the same power flow
droop and phase shift. Therefore have higher shunt impedance per unit length than longer
SW cavities.
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TW structures dump unused power into a load at the end of the cavity. If the cavity
is run with a high group velocity, power flows through the structure quickly, little power is
absorbed in each cell resulting in a low gradient, and most of the power is dumped into the
load. If the group velocity is lower, each cell will absorb more rf power (due to higher α)
and the (constant) gradient is higher. Hence, the group velocity of a TW structure is an
important design choice.

For a given input power, the group velocity decreases linearly along a constant gradient
TW structure, at a rate that is independant of the input power and the starting group velocity.
The rate at which the power drops along the structure is also linear, however not independent
of the starting group velocity. In order to limit the power dumped into the load, the rate
at which power is used must increase with decreasing TW structure length (the gradient of
Pcell

Pinput
must become more negative). In order to accomplish this, the group velocity must be

very low (more power is deposited per cell). There is, however, a limit to the group velocity
in a TW structure (∼ 0.1 % of c), it can not be made arbitrarily low. This is because low
vg structures have increased risk during operation, as the power may not reach the end of
the structure. Lower group velocity can result in the gradient starting to decay along the
cavity, and the structure is more sensitive to machining errors as vg decreases. Hence, short
TW structures must either accept high amounts of power into the load, or accept the risk of
lower group velocities. Whilst one could use a lower power source, so that the unused power
is less, the gradient will be low. Nevertheless, low group velocity structures have increased
rf efficiency, as more energy is deposited per cell, for a given input power.

As the length of TW structures increases, the rate at which power is deposited can reduce
(technically increase, as the rate is negative). This is because there are more cells to fill with
electromagnetic energy (in addition, the shunt impedance does not decrease with cell number,
unlike SW). Therefore, longer TW structures can operate at higher group velocity, with lower
values of the ratio Pcell/Pin. Therefore there is a trade-off; reducing vg to increase rf efficiency,
or running with higher vg, and dumping more rf power. In the limit the structure length
becomes very long, the group velocity can be initially high whilst dumped power is low. In
reality, structures can not be very long (for beam dynamics and machining reasons) and thus
the decision between operating group velocity and dumped power is a compromise. The
choice of group velocity also effects the fill time. In the context of medical accelerators, the
lower the fill time, the more protons can be accelerated per rf pulse. The fill time is therefore
an important objective.

6.3.2 Constrained Scan Results

From the results obtained in Fig. 6.8, the linac solution could proceed as either SW or TW
design, as both solutions thrive in different areas of objective space.

As a result, a decision was made with the industrial partners, AVO, to constrain the
design space and complete a less general comparison of all structure types. The input power
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became a constrained value, with peak powers of 3.75 and 5.5 MW. Each klystron can power
one or two cavities (by being split once). These values came from known klystrons that are
commercially available [99]. The number of cavities was limited to six or eight. Any fewer
than six requires TW structures that become very long and require the MAS, which from
Fig. 6.8, do not outperform shorter TW structures, as previously discussed. Whilst eight
or more cavities is possible, the total power required increases (dropping power efficiency),
leading to higher initial and running costs. The reason five or seven cavities was not explored
is to future proof the design. Should higher power klystrons be used (over 5.5 MW), they can
be split between two cavities, which requires an even number of structures. Cavity lengths
longer than 1 m are omitted, as the MAS increases the real estate gradient until very long
cavities are considered. Thus all linac solutions are focused using the FODO-like scheme.

As described in Chapter 3, the peak field values are important figures of merit that require
minimising. Another gradient limiting factor is the average power deposit per unit length,
Pavg

Lcav
. This figure of merit concerns the average heating due to the magnetic field within an rf

cell. The average heating can cause deformation of the cell walls and may result in a shift in
resonant frequency. Average heating is influenced by the repetition rate and pulse length of
the power source. As the cavity is to be used for proton radiotherapy, a conservative choice
for the average power per unit length of 4.5 kW/m was agreed, to heavily reduce the risk of
operational detuning. S-band cavities designed for medical applications have previously been
designed and tested with average power per unit length in the range 4.7 - 8 kW/m, [51], [88]
and [100]. The calculation of average power was calculated assuming a repetition rate of 200
Hz and pulse length of 5 µs.

In order to produce a highly efficient structure, relatively aggressive limits on the
input/output group velocity were chosen as 0.8/0.15% of c. Group velocities in this region
have been achieved before for an S-band linac accelerating protons for medical applications,
see [88], [101].

To produce a more complete design space for the constrained scan, two TW structures
were simulated, with phase advances of 2π

3
and 4π

5
. This required two optimised single cell

models to be created in CST for each phase advance. Each model was comprised of four
off-axis coupling slots as described in Chapter 3. In addition, scans had to be computed for
each single cell model so that polynomial relationships could be determined between the cell
radii, R, coupling slot radii, r, and the cell figures of merit, vg, Q, Z and f .

Figure 6.9 displays the fill time of linac solutions as a function of total cavity length.
Figure 6.9 (a) displays the cavity phase advance per cell with the colour dimension, whilst
Fig. 6.9 (b) displays the total linac power required with the colour dimension. The SW cavity
is shown with a phase advance of π (although it is technically the π/2 normal mode) and
has a constant fill time as a function of cavity length. The SW solutions have a much larger
filling time, however have similar values for linac total length. As a result, SW solutions were
omitted from the solution space, as there was no discernible benefit over TW structures.

The TW solutions can be separated into three branches (shown in Fig. 6.9 (b)). Within
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(a) (b)

Figure 6.9: Cavity fill time as a function of total linac length and (a) Phase advance per cell
or (b) Linac total power.

a given branch of solutions, solutions are separated by phase advance per cell (2π/3 and
4π/5), and different input vg. Shorter linacs operate at higher gradients, and lower group
velocity, thus have longer fill time. Branch 3 displays linac solutions with eight structures,
each powered with 5.5 MW klystrons (44 MW total peak power). These solutions have the
lowest fill time (< 0.5 µs). Due to the thermal load limit, additional power could not be used
to improve the gradient (equivalent to decreasing the ratio Pout/Pin), therefore the higher
total power allowed a higher group velocity for the same gradient, which minimises the fill
time relative to the other branches.

Within branch 3, the 2π/3 structure is superior to the 4π/5 structure, as the fill time
is marginally less for the same linac total length. In addition, only 2π/3 structures could
achieve total linac lengths under ∼ 5.8 m with the given constraints. This implies, for higher
average group velocity, the 2π/3 structure performs better than the 4π/5 structure. Branch
2 consists of solutions with 33 MW total power, with six structures of 5.5 MW peak power
each. The branch has both 2π/3 and 4π/5 structures, however the 4π/5 structures perform
better, as 2π/3 structures can not produce solutions with linac total length less than ∼ 6.2 m.
For these solutions, there is less available power to run at high group velocity for the same
gradient. As a result, the fill time is longer (than branch 3), by a factor of ∼ 2. Branch 1
solutions have 8 cavities each powered with 3.75 MW, for a total power of 30 MW. Branch
1 linacs operate at lower gradient, and have similar average vg to branch 2 solutions, as the
fill times are similar. Whilst branch 3 solutions require 3 MW less total power than branch
2 solutions, the additional total length is substantial. Similar to branch 2, 4π/5 structures
perform better for branch 1 linacs.

The comparison between 2π/3 and 4π/5 structures is considered using the result in
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Figure 6.10

Figure 6.11: Q0 as a function of cell group velocity for both the 2π/3 and 4π/5 TW structures.

Fig. 6.11. 2π/3 structures have lower Q than 4π/5 structures for the same vg. Therefore, 2π/3
structures have higher attenuation for a given vg, from Eqn. 6.8. As described previously,
shorter TW structures can not reduce vg indefinitely in an aim to reduce the rate of Pcell/Pin
(to decrease the dumped power). As 2π/3 structures can attenuate more power per unit
length for the same group velocity, there is less dumped power, relative to the 4π/5 structure,
as more power has been used to excite the individual cells. This is seen in branch 3 of Fig. 6.9,
where 2π/3 structures can operate with higher group velocity for the same gradient, and vice-
versa.

When focusing elements are taken into account, the realistic total linac length is different
for six structure linacs relative to eight structure linacs. For each cavity in a FODO-like
scheme, there is a quadrupole and two drift lengths. The additional length to accommodate
non-accelerating elements must be explored, to give the real estate gradient. Figure 6.12
displays the starting group velocity as a function of total linac length including focusing and
structure type (a) or total power (b). Again, there are three branches of solutions each with
different total power. Low total power solutions (branch 1) have ∼ 1 m of additional linac
length, for starting group velocity > 0.8 % of c. Whilst these solutions require only 30 MW
of total power, the real estate gradient is too low and therefore the solutions are omitted.
For solutions with starting group velocity over 0.8 % of c, branch 2 solutions have higher real
estate gradients relative to branch 3. The solution with the highest real estate gradient from
branch 2 is a 4π/5 structure, whilst the highest real estate for a branch 3 solution is a 2π/3
structure.

When comparing the remaining branches (2 and 3) of solutions, there are distinct benefits
of both designs. From each branch, one solution was put forward to a short-list of solutions,
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(a) (b)

Figure 6.12: Starting group velocity as a function of total linac length including focusing and
(a) Phase advance per cell or (b) Linac total power.

displayed in table 6.2.

Table 6.2: Potential solutions for conceptual linac design for the energy range 150 - 250 MeV.

Solution 1 2 3 4
Total Power (MW) 44 33 44 33

Total Linac Length inc. focusing (m) 8.05 7.78 7.65 7
Cavity Length (m) 0.8 1.1 0.75 0.96

Number of Structures 8 6 8 6
vg (% of c) [start, end] [1, 0.45] [1, 0.31] [0.9, 0.35] [0.82, 0.18]

Phase Advance 2π/3 4π/5 4π/5 4π/5
Fill Time (µs) 0.3 0.6 0.36 0.75

Gradient (MeV/m) 30 29 32 33
Pout/Pin 0.45 0.31 0.38 0.22

Table 6.2 displays four conceptual design choices for the proposed linac, accelerating
protons from 150 - 250 MeV. Solution 1 is the ‘safest’ linac, running at higher average
group velocity, thus benefits from a shorter fill time. Solution 4 is the most ‘aggressive‘
linac, requiring the least rf power, with the highest real estate gradient. Solutions 2 and
3 are in-between the safer and more aggressive solutions. Solutions 2 is comprised of 6
cavities of length 1.1 m. The issue of transverse focusing within the FODO-like scheme
becomes a limiting factor, however the solution is attractive due to the low power requirement.
Solution 3 is a more aggressive version of solution 1; an 8 structure linac running at lower
group velocity, with slightly higher fill time and real estate gradient. Solution 4 is the most
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aggressive linac, requiring the least power and achieving the highest real estate gradient,
however has the longest fill time.

Fundamentally, the choice is whether to stick at 8 structures, using a less aggressive linac
design. Or, to extract higher amounts of energy using lower group velocities and completing
the required energy gain in 6 structures, saving on focusing length and total power. In the
end, solution 4 was chosen, as it requires 25 % less total power, and has the highest real
estate gradient. Solution 4 is still within the average deposited power limit of 4.5 kW/m, as
well as the group velocity limits of [0.8, 0.1] (% of c). Solution 4 also has the lowest amount of
dumped power, 22 %, and has the highest rf efficiency. The increased difficulty of machining
the structures with lower vg was an accepted trade-off, as structures with low vg have been
previously demonstrated.

The simulation results produces the number of cells, the group velocity of each cell, the
cell radii, and coupling slot radii. As the simulation swept over synchronous beta, the cell
length is also known, and kept constant. The first cavity (of six) is comprised of 47 cells, and
is approximately 1 m. The input vg is ∼ 0.82 % of c and the output value is ∼ 0.18 % of c.
The gradient of the cavity is 33 MeV/m. From discussions of Fig. 6.4, the increase in real
estate gradient from changing the cell length for a 1 m long cavity is around 0.5 MeV/m,
for E0 = 50 MeV/m. For a gradient of 33 MeV/m, the benefit would be minor. The above
information for the remaining five structures are also known, and each cavity is ∼ 1 m long,
with the number of cells per structure equal to 47, 46, 45, 43, 42, and 41. The input and
output group velocity are very similar to the values of the first cavity.

6.4 Conclusion of Power Requirements

This chapter outlined a simulation method that calculated the energy gain of a single cell as a
function of input rf power. In order to model the cells as accurately as possible, CST models
were created, which allowed for the direct corresponding Ez magnitude for a given rf power.
This method was used to calculate the optimal synchronous beta, and required power, for a
given energy gain. Both SW and constant gradient TW structures were simulated, allowing
for a deep comparison between all possible structure types. Given a conservative constraint
on the deposited average power per unit length, and the available input power, the entire
parameter space was simulated to find the optimal solutions. The conceptual design will be
a six cavity linac, each powered with a 5.5 MW klystron. Each cavity will be a 4π/5 TW
structure, with lengths ∼ 1 m, allowing the use of the FODO-like focusing scheme. The rf
sources are able to run with a RR of 200 Hz and pulse length of 5 µs, which are standard
values for proton radiotherapy medical linacs. The average power deposition was limited to
a conservative value of ∼ 4.5 kW/m, to reduce the risk of operational detuning. The fill
time is < 0.8 µs. Another solution was considered at the latter stages of the design choice,
however were omitted due to lower rf efficiency and lower real estate gradient. The next
stages require the electromagnetic design of the first cavity of six, including the design of the
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two power couplers.
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Chapter 7

Final Electromagnetic Design

7.1 RF Power Coupler Design

An important aspect of the electromagnetic design involves the rf couplers. As the cavity is
TW, both input and output couplers (also called matching cells) need to designed separately.
The coupler waveguide is attached to the first/last cell via a ‘bottleneck’, with an associated
width, height and length. The length of the waveguide port is equal to the length of the
bottleneck and the first cell length. The waveguide length is tapered such that the width ×
length dimensions match that of a standard waveguide port. The taper can be seen in Fig. 7.1.
The design of a TW coupler must ensure there are zero reflections from the boundary between
the bottleneck and first cell (also refereed to as the drive cell), at the design frequency.

This is achieved by tuning two parameters, the drive cell radius, shown in Fig. 7.1,
and either the bottleneck width or height. Changes to either bottleneck parameter can be
utilised as both effect the cut-off frequency in the same way. However, it should be noted that
increasing the bottleneck height has the opposite effect to increasing the bottleneck width.

The scattering matrix parameters can be found using an electromagnetic solver software,
such as CST, after an input port is defined. Contrary to the method of coupler design for a
SW cavity, a global minimum in S11 at the design frequency is not a valid approach. This is
because reflections within the cavity travel back and destructively interfere with reflections
from the coupler port. This method of global matching ensures no rf power is reflected, and
is therefore inside the cavity. However, a TW coupler is designed to have zero reflections
from the input port. Therefore a method is required to calculate the local reflections inside a
cavity, and to tune the coupler dimensions until the reflections are zero [102]. A coupler cell
is designed with the aim of achieving an S11 (the reflection coefficient) of less than -20 dB
(1 % reflections).

Before the symmetrical method is simulated, a closer approximation can be calculated by
matching the external Q of the coupler to the Q of the matching cell. The Q factor of the
matching cell have two components, the intrinsic Q0 and the Q associated with the flow of
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Figure 7.1: Figure showing the coupler dimensions. The waveguide length is tapered to the
length of the bottleneck (and single cell).

power due to the finite group velocity, termed Qflow.

1

Qext

=
1

Q0

+
1

Qflow

(7.1)

Q0 is the intrinsic Q and is therefore given Q0 =
ωU
Pcell

. Where U is the deposited energy and
Pcell is the deposited power. As Qflow is associated withe the flow of power, it is given as the
energy lost per cycle due to the total power flow, not just the deposited power, Pcell, from
Ohmic losses.

Qflow =
ωU

P0

. (7.2)

The deposited energy is P0Lcell

vg
, therefore;

Qflow =
ωLcell
vg

. (7.3)

Thus, the matching criteria is;

1

Qext

=
PcellLcellvg

ωP0

+
vg

ωLcell
. (7.4)

The second term in Eqn. 7.4 dominates, and therefore

Qext ≈
ωLcell
vg

. (7.5)
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The phase advance per cell is ϕ = ωLcell

βsc
, hence

Qext ≈
ϕβsc

vg
. (7.6)

A simple model can be constructed in CST to calculate the coupler Qext. By changing the
matching cell radius and the coupler width or height, a good initial coupler can be designed.
The following method can then be implemented to fine tune the matching cell dimensions.

The following coupler match stage considers a symmetric simulated structure. The
structure is comprised of a beam pipe section (with length equal to the cell length), the
matching cell, and a certain number of regular cells. The more regular cells, the better the
approximation will be. For a tapered structure, at least four cells are required [103]. The
simulated structure is then mirrored at the fourth cell so that there are eight cells (including
two identical matching cells) and two beam pipes, as shown in Fig. 7.2.

Figure 7.2: Figure showing the simulated structure with eight total cells, two of which are
matching cells, and two beam pipes.

The wave that exists inside the cavity in Fig. 7.1 is a periodic traveling wave, that can be
written as a propagating wave and a reflected wave, with some reflection coefficient, R(z).
The reflection is a function of longitudinal distance, z.

E(z, t) = eikz +R(z)e−ikz (7.7)

Where k is the wave vector. As the field is periodic, Floquets theorem states that the field
at two locations, separated by a one period, differ only by some complex phase, called the
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phase advance. Therefore, the field at a position z + L, where L is the period of E(z, t) is,

E(z + L, t) = eikz+ϕ +R(z)ei(−kz−ϕ). (7.8)

Equivalently, at z − L,
E(z − L, t) = eikz−ϕ +R(z)ei(−kz+ϕ). (7.9)

Summing Eqns. 7.8 and 7.9 and dividing by Eqn. 7.7 gives Σ(z);

Σ(z) =
E(z + L, t) + E(z − L, t)

E(z, t)
. (7.10)

Substituting the field profiles produces the following

Σ(z) =
ei(kz+ϕ) +R(z)ei(−kz−ϕ) + ei(kz−ϕ) +R(z)ei(−kz+ϕ)

eikz +R(z)e−ikz
= 2 cos(ϕ). (7.11)

Therefore,

ϕ(z) = arccos

(
Σ(z)

2

)
. (7.12)

(a) Reflection coefficient

(b) S11

Figure 7.3: Reflection coefficient and S11 for the eight cell model for the output coupler.

Equation 7.12 describes the phase advance of the field as a function of z. Taking the
difference between Eqns. 7.8 and 7.9 and dividing by Eqn. 7.7 gives ∆(z);

∆(z) = 2i sin(ϕ)
eikz −R(z)e−ikz

eikz +R(z)e−ikz
. (7.13)
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Rearranging for the reflection coefficient, R(z),

R(z) =
2 sin(ϕ)− i∆(z)

2 sin(ϕ) + i∆(z)
. (7.14)

Thus, the phase advance, ϕ(z) and local reflection, R(z), can be calculated provided the field
E(z, t) is known at three locations separated by the period L. The fields can be calculated
in CST for the model shown in Fig. 7.1.

(a)

(b)

Figure 7.4: Full 47-cell TW structure.

Figure 7.3 displays the reflection coefficient and S11 for the output coupler structure.
This was achieved by iterating over the matching cell radius and bottleneck height variable
in turn, moving toward the minimum in R. The S11 shows all eight modes overlap into one
continuous spectrum. The S11 at the design frequency of 2.9985 GHz is lower than -20 dB
and is therefore acceptable. The S11 can not be a minimum at 2.9985 GHz due to reflections
at the end coupler destructively interfering, as the reflections are very low along the entire
structure. As the group velocity is low at the output port (≈ 0.2 % of c) the penultimate cell
radius required slight changes to reduce the reflections further. The procedure was repeated
for the input matching cell. If the output matching cell is correctly designed, there are very
low reflections back to the input port.

The full structure is shown in Fig. 7.4. The phase advance per cell is shown in Fig. 7.5 (a).
The phase advance of individual cells must be corrected via small changes to the cell radii.
For large discrepancies in phase advance, individual cells can create small local reflections,
which inhibits field flatness. In order to suppress this effect, the phase advance is tuned to
be within 1◦ of the design value (144◦) for each cell. Figure 7.5 (b) shows the minimised
reflection coefficient along the structure, as required during the design of the output coupler
cell. Figure 7.5 (c) shows the on-axis electric field magnitude along the structure. The field
is relatively flat, with a small diminish towards the end of the structure. There is a slight
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(a) Phase Advance

(b) Reflection coefficient

(c) On-axis electric field

Figure 7.5: Phase advance (a), reflection coefficient (b), and on-axis electric field magnitude
(c) along entire structure.

reflection at the output coupler, as the field magnitude oscillates from the output cell to the
input, with the reflection decreasing towards to the input port. As the magnitude of the
oscillation is small, there was no further optimisation.
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Table 7.1: Final electromagnetic Design Criteria

Number of Cells 47
vg (% of c) [first - last] [0.82 - 0.18]
Cavity Length (m) 0.96

Input Peak Power (MW) (20% losses) 5.5
Pulse Length (µs) 5

Repetition Rate (Hz) 200
Fill time (µs) 0.75

Gradient (MeV/m) 33.5
Pout/Pin 0.22

Phase Advance 4π/5
Z (MΩ/m) [first - last] [77.5 - 79.5]

Epeak/Eacc 3.9√
Sc/Eacc 0.028

Bpeak/Eacc (mT/MV/m) [first - last] [6.2-5]

7.2 Acceptance of Six Cavity Linac using FC2CT

To fully complete the beam dynamics aspect of this project, all 6 TW cavities were simulated
with a realistic input beam.

The lattice parameters for the simulated linac were determined using semi-thin lens
approximation. The quadrupole and drift space lengths had predefined values of 0.05 m.
The cavity lengths used were approximated during the comparison of different cavity types
in Chapter 6, and are ∼ 1 m each. Chapter 6 also determined the operating gradient E0 ∼
33 MeV. The value of k1 was determined such that the maximum beam size is minimised
at the cavity entrance/exit analytically using Eqn. 4.107. The calculated value is 10.9 m−1,
and thus for an appropriate choice of bore aperture, permanent magnet quadrupoles could
be used for the beam line.

Recall, from Chapter 4, the requirement for consecutive Leff,n in Eqn. 4.119 is needed
to ensure constant aspect ratio and beam size at each half FODO boundary (in addition
to other requirements). As Chapter 6 provided similar lengths for all six structures, it was
not possible to satisfy Eqn. 4.119 with increasing cavity length, leaving the alternative of
increasing drift length. As increasing the drift lengths reduces the real estate gradient, the
FODO-like scheme was not implemented, and the standard FODO scheme was used as the
focusing scheme.

As the standard FODO scheme was simulated, all quadrupole strengths and lengths were
constant along the lattice. The value of Twiss β0 was calculated using Eqn. 4.42, which
is a function of known lattice parameters. The determined values were βx0 = 3.75 m and
βy0 = 0.83 m with αx0 = αy0 = 0. Drift lengths and quadrupoles were simulated as linear
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transfer maps, whilst the rf cavities used the TW FC2CT method. Each cavity operated at a
gradient of 33 MeV/m, the cell lengths and number of cells were calculated in Chapter 6. The
rf phase of each cavity was predefined such that energy gain was maximum. This required
running a 1D (to decrease computation time) simulation and fine tuning the rf phase of each
cavity such that the ideal particle of the previous cavity had the maximum energy gain in the
following cavity. This was required as the optimal rf phase of each cavity was not constant
due to relativistic effects. As the protons energy increases, the total rf phase slippage per
cavity reduces. Therefore, the optimal input phase shifts by a small amount for each cavity.
Figure 7.6 shows the electric field magnitude observed by a particle and the cell entrance and
exit along a 40 cell cavity. The optimal rf phase is the value such that the particle returns to
the same phase at the cavity exit, maximising energy gain. The particle in Fig. 7.6 is close
to the ideal phase, as the start and end phases are near equal.

Figure 7.6: Understanding phase slippage.

Figure 7.7 shows the evolution of an initial phase space ellipse with normalised emittance
εN = 0.032 πm rad. A schematic of the lattice design is also shown. The quadrupole k-
strength and length is fixed at 10.9 m−1 and 0.05 m, respectively. The drift lengths are
0.05 m. The cavities are TW with phase advance of 4π

5
and lengths ∼ 1 m. The longitudinal

phase space had an initial rf phase range of 10◦, centered on the optimal phase. Each cavity
was phased independently as discussed above. The output longitudinal phase space is shown
in Fig. 7.8 (a), which shows particles at the final energy of ∼ 250 MeV. The simulation
assumed an initial longitudinal bunch length of 10◦. The majority of particles are located
at the head of the bunch. Few particles have started to slip down the neck of the phase
space distribution, however still have energy > 249 MeV and would not be lost in the energy
selection process.
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Figure 7.7: Schematic of entire linac lattice design with associated phase space plot at discrete
sections. Focusing scheme is the standard FODO with optimised quadrupole k-strength.
30,000 macro-particles.

(a) (b)

Figure 7.8: (a) Particle energy after traversing six TW cavities in standard FODO scheme.
(b) Acceptance ellipse of the 6 TW linac solution. Initial beam ellipse taken from analytical
FODO method.
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Figure 7.8 (b) shows the acceptance ellipse of the 6 cavity lattice. The acceptance is
high, with the linac losing less than 0.2% of the initial beam. Particles were lost if the radial
displacement exceeded the cavity aperture, 2.5 mm. The simulated ellipse was a 5σ beam
ellipse.

7.3 Conclusion to Final Electromagnetic Design

This chapter discussed the design procedure of the two end power coupler cells. The end
cell radii and bottleneck width/height were used as the degrees of freedom. An initial
approximation for the matching cell was achieved by approximating the required Q factor of
the end cells given the rf group velocity. Once an initial matching cell had been designed, a
method that exploits Floquets’ theorem was used to provide a fine tuning of the matching cell
dimensions. The matching cells are tuned to minimise all local reflections and the individual
cells are optimised for the correct phase advance per cell. Lastly, a simulation was completed
using FC2CT to asses the transmission of a realistic beam for a given initial phase space
ellipse. The results of Fig. 7.8 (b) show a 5σ beam can be accepted by the linac with
transmission over 99%. The initial phase space ellipse and the quadrupole k- strength were
both defined analytically from results discussed in Chapter 4. The focusing scheme used is
the standard FODO scheme. The FODO-like scheme could not focus the beam longitudinally,
due to the increasing drift lengths in order to maintain constant aspect ratio and beam size
at the half-FODO cell boundaries. The cavity lengths in this simulation are all ∼ 1 m as
determined in Chapter 6, and therefore the FODO-like scheme is not appropriate. Further
work could explore the FODO-like focusing scheme for a set of short cavity lengths, where
the increase in drift length (in order to satisfy FODO-like conditions) is small, and the real
estate gradient remains unchanged.
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Chapter 8

Conclusions

This project concerned the electromagnetic design of a linear proton booster from 150 MeV
to 250 MeV for proton radiotherapy. The booster section is the final accelerator in an all-
linac solution. Protons are initially accelerated to 5 MeV with an RFQ, from 5 MeV to
37.5 MeV a side-coupled drift tube linac (SCDTL) is used. From 37.5 MeV to 250 MeV a
coupled cavity linac is used. As the entire accelerator is linear, the beam emittance is kept
low, which allowed for small cavity apertures in the CCL. Small cavity apertures produce
high shunt impedance, however can limit the length of structures due to transverse focusing
requirements.

8.1 Summary

Single Cell Geometry

The geometry of the single cell nose cone, alongside the side-coupled cells and coupling slots
was discussed in Chapter 3.

The single cell nose cone optimisation was completed by producing a set of objectives,
that change as a function of inputs. The objectives used are as follows,

Obj = [Z,
Epk
Eacc

,
Bpk

Eacc
,

√
Sc

Eacc
].

The inputs are the relative locations of Non-uniform ration basis spline (NURBS) points,
which define the geometry of the single cell. In order to maximise the objectives with respect
to the inputs variables Objective Genetic Algorithms (MOGAs) were used. MOGAs produce
solutions based on survival of the fittest, inspired by nature. Each generation, or iteration,
produces a number of solutions, and the best are taken based upon the objective values.

The optimal single cell geometries are the set of Pareto optimal solutions. The Pareto
optimal space is defined as the set of solutions that can not be made superior in any one
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objective without making another objective worse. In order to select a final single cell
geometry, the Pareto optimal solutions must be compared visually. This was completed
using MO visualisation techniques, that preserve independent objective values and plot each
solution separately. Preserving independant objective values is vital during the selection
stage as dimensional reduction methods may plot combined objective functions, losing all
information of individual objective values. It was found the Parallel Coordinate Plot (PCP)
and Radar Chart (RC) were highly effective visualisation tools. Each solution is plotted as
a line that crosses an objective axis at a position relating to the objective value.

As MOGAs can produce a very large set of Pareto optimal solutions, the PCP and RC
can become over-crowded, therefore similar solutions are clustered together using a K-means
clustering algorithm. Simulations can be clustered together as the definition of Pareto optimal
allows to solutions being essentially indistinguishable. The number of clusters is defined by
the user, for many clusters, the visualisation plots are still overcrowded. For too few clusters,
the individual clusters become too diverse, and some solutions are represented by a cluster
that is not appropriate. In this work, 30 - 50 clusters achieved a strong compromise between
these conflicting arguments.

A solution can then be accurately chosen by selecting a cluster that best aligns with
the type of cavity being designed, as different accelerators have different uses and therefore
different objective requirements. The benefit of the clustering allows the entire Pareto space
to be observed in one single plot. A candidate was selected that achieved a modest trade-off
between all objectives. The process must be repeated for both SW and TW cavity cells, as
the cell length changes.

The next step required the design of the side-coupled cells for the SW cavity. The side-
coupled cell must be designed such that the resonant frequency is identical to the π/2 normal
mode and confluence is achieved. In order to reduce the transverse size of the cavity, the
radius of the side-coupled cells must be limited, which increases the frequency of the π/2
mode. From Slater’s perturbation theory, the frequency of the side-coupled cell can be
decreased by removing stored electrical energy from the π/2 mode. This is achieved by
increasing the capacitance of the side-coupled cell, by creating larger ‘noses’.

A side-coupled SW cavity experiences end cell phase shift and power flow droop. These
are attributed to the flow of power along the structure (due to the excitation of the drive cell),
and to perturbation effects from frequency errors in individual oscillators. In order to suppress
the phase shift and power droop, the inter-cell coupling constant must be increased. The
coupling constant is related to the width of the passband on the dispersion curve. Increasing
the slot width between the accelerating and side-coupled cell increases the coupling constant,
however reduces the shunt impedance. As the number of cells increases, the required coupling
constant increases for a given end cell phase shift and power flow droop. The geometry of
the coupling slot between the accelerating and side-coupled cell was altered and the effect of
shunt impedance with coupling constant was assessed.

As the cavity aperture was small, the TW cell requires coupling slots in order to produce
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a large enough group velocity, vg. The number and position of coupling slots was determined
with respect to the effect on certain objectives. As the surface electric and modified Poynting
vector fields peak on the nose cone, they are not influenced by the coupling slot geometry.
In order to minimise Bpk/Eacc and maximising the vg for a given Z, four slots was chosen.
However, six slots also produced a good solution.

Analytical Transverse Beam Dynamics

The transverse beam dynamics (TBD) of the CCL was discussed in Chapter 4. The possible
cavity length, as defined by limits in the transverse beam dynamics, is an important design
specification. If longer cavities are possible, TW structures become optimal with respect to rf
efficiency. However, at shorter cavity lengths, SW cavities are superior. The length at which
both structures are equally as efficient is not a defined point, but a fairly broad function of
many variables.

Chapter 4 developed an analytical framework that incorporated longitudinal acceleration
into the TBD. Two focusing schemes were discussed and compared, the FODO-like scheme
(cavities sandwiched between quadrupoles of alternating polarity to produce strong focusing)
and Minimum Aperture Scheme (MAS, the scheme defines the case where the acceptance
ellipse of the cavity matches the beam ellipse, in order to maximise the cavity length for a
given aperture).

The FODO-like scheme incorporated acceleration and was defined such that the aspect
ratio and beam size was constant at the boundary between FODO cells. The scheme was
analytically solved such that the maximum beam size was minimised at the cavity entrance.
It was found that various lattice parameters were functions of the Lorentz factor. In order
to satisfy the constraints on the system, consecutive quadrupole parameters must change as
follows,

lq1 =
γr0βr0
γr1βr1

lq2, k1 =
k2

(γr0βr0
γr1βr1

)2
.

The value of k1 is analytically calculated such that the maximum beam size is minimised by
solving for the minimum of βxc0, the Twiss β at the cavity entrance, with respect to k1. The
calculation was carried out in the semi-thin lens approximation, defined by taking the second
order expansion (with respect to

√
k1lq1) of the Trigonometric and Hyperbolic functions in

the quadrupole transfer map elements. The resultant equation to solve was a cubic in k1
which was solved. This approach was valid due to the insensitivity in βxc0 with respect the
quadrupole length.

In order to concatenate multiple FODO-like cells together, there are further constraints
on consecutive cavity drift lengths. It was shown that for increasing Lorentz factor, either
the cavity or drift lengths must increase. This result shows a limitation for the FODO-like
focusing scheme for cases were the cavity lengths are long (∼ 1 m), as the drift lengths become
long, and the real estate gradient is reduced. In this case, the standard FODO scheme has
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a higher real estate gradient, however the optics are not perfectly periodic. For short cavity
lengths, however, the FODO-like scheme is a highly achievable scheme, that ensures constant
aspect ratio and beam size at FODO cell boundaries.

With the value of the normalise emittance given (defined by the RFQ), 0.032 π m rad,
the FODO-like scheme can focus a 5σ beam for cavity lengths up to ∼ 1 m, for the cavity
aperture of 2.5 mm. This allowed the possibility of considering TW cavities. The MAS was
discussed factoring in longitudinal acceleration. It was shown that for a 2.5 mm aperture, the
normalised emittance allows cavity lengths of ∼ 10 m. For a certain lattice, the real estate
gradient of the MAS can become superior to the FODO-like scheme. However, for cavity
lengths around 10 m, the rf power and manufacturing capabilities become limiting factors.
This chapter therefore produced an upper limit on the cavity lengths possible in different
focusing schemes, allowing for the possibility of longer TW structures.

Fast Tracking Code - FC2CT

In order to accurately track the phase space of a proton beam through a cavity, a fast cell to
cell tracking code was developed, called FC2CT. This was discussed in Chapter 5. FC2CT
uses the on-axis Ez field component to analytically determine the longitudinal momentum
change of a particle over a single rf cell, with the approximation of constant particle velocity.
The Ez field is described analytically by treating the field as a periodic field and calculating
the Fourier series coefficients. The analytical form for the change in energy is intrinsically a
function of the Fourier series coefficients, cell length, phase advance per cell, ratio β/βs, and
the input rf phase.

The 1D result showed strong agreement with well trusted tracking code ASTRA for the
case of a SW field. In addition, there are fewer calculations to be made using FC2CT over
conventional time-step tracking. Thus, a given simulation can be completed more quickly,
whilst still producing accurate results. As a result, the method was adapted to complete
tracking in 3D. The non-zero field components, Bθ, Er were expanded as a Taylor series in r,
up to, and including terms of the order r3. This allowed the field components to be expressed
as a function of the on-axis Ez field, and its derivatives. The 3D result also showed strong
agreement with the ASTRA tracking code, for SW fields.

The Ez field in a TW cavity is different from a SW cavity, as the field is not strictly
symmetric about the centre of the cell at all times. The Ez field can be written as the
real part of a complex field, and is shown to be mathematically identical to the sum of two
standing waves. The standing waves are the real and imaginary component of the TW on-axis
Ez field, and can again be described with a Fourier series. As the Fourier series is defined with
the same periodicity as Ez (defined by the phase advance per cell), the field being constructed
may incorporate many cells (a 4π/3 TW cavity has a periodicity of 5 cells). Therefore, both
an and bn Fourier coefficients are required. This resulted in many more calculations per single
cell, and the advantage of FC2CT over conventional tracking was reduced.
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The well trusted tracking code RF-Track was used to compare the FC2CT method for
TW cavities. The results showed good agreement. A approximate TW tracking method was
implemented that treated the TW field as if it was SW (called the fast TW method). For this
method, the on-axis Ez component was only required in one cell. The field is the following
cell was negated to produce a π-mode with periodicity of two cells (as in the case of the
SW FC2CT method). The Fourier series only requires bn coefficients. The imported field is
maximally excited, and therefore is symmetric about the centre of the cell at all times. The
fast TW FC2CT method showed good agreement with RF-Track, showing good accuracy
whilst retaining the key benefit of short computing time.

Power Requirements

The fast nature of FC2CT allows it to be used to calculate the energy gain of different
structure types (SW versus TW) as a function of cavity length quickly. In Chapter 6 the
energy gain of different cavity structures was calculated as function of input power and
cavity length. The core differences between SW and TW structures was incorporated into
the simulations as required. SW structures require increased coupling as the number of cell
lengths increases for the same end cell phase shift and end cell field magnitude. Input power
is distributed evenly amongst the accelerating cells as the shunt impedance is constant. As
the SW cavity length increases, Z decreases and the rf efficiency drops.

TW structures were simulated as constant gradient structures. As a result, the group
velocity requires tapering along the structure, using the radius of circular coupling slots in
the cell wall. The single cell radius and coupling slot radius were swept and the effect on
cell figures of merit - group velocity, Z, Q and frequency - were determined. Polynomial
functions were fit so that for a given cell and slot radius, the correct cell parameters could be
calculated. For TW structures, the input group velocity was swept and the cell parameters
are calculated for the given vg and correct frequency. For each cell, Z and Q are determined,
which allows for more accurate computations of the cell power and therefore cell gradient.
A large parameter scan of cavity length and input power showed that high power shorter
structures perform better in SW, whilst longer cavities are superior when operated as TW.
The MAS was omitted, as the real estate gradient could not compete with the FODO focusing
scheme, for this project.

After discussions with industrial supervisors, the design parameter space was constrained.
Two klystron sources were considered with 3.5 and 5.5 MW peak power. Cavity lengths under
1 m were considered, as this is the limit for the FODO scheme. The average deposited power
per unit length was limited to 4.5 kW/m, to greatly mitigate the risk of operational detuning.
Normal conducting cavities with average power values exceeding this have been previously
designed and tested. The average power was calculated with a repetition rate of 200 Hz and
pulse length (flat top) of 5 µs. TW structures with phase advances of 2π/3 and 4π/5 were
simulated, in addition to a side-coupled SW structure.
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The results showed that both SW and TW structures produced structures of similar
gradients, however SW cavities have much larger fill times, and therefore were omitted from
the design space. For lower repetition rates, the average power loss is limited, allowing for
higher powers within a given cavity length. In this case, short SW cavities become attractive
solutions. The two TW structure types performed similarly, with higher vg structures being
slightly optimal as 2π/3 and lower vg structures optimal as 4π/5 structures. The design choice
simplified to a decision between an eight structure linac of 5.5 MW power per structure, and
a six structure linac with 5.5 MW power per structure. A short list of four viable solutions
was displayed, varying with respect to total power and operational group velocity. Higher
power solutions offered increased vg, thus are less sensitive to machining errors and have
faster filling times. Lower power solutions operate with lower group velocity, however have
high rf efficiency. All solutions had gradients of ∼ 30 - 33 MeV/m, and were vastly under
the limits placed by the peak surface fields.

A choice was made to select a solution with low group velocity, to maximise rf efficiency
and minimise initial and running costs. In addition, the higher power solution was comprised
of eight structures, and therefore required additional non-accelerating elements, dropping the
real estate gradient. The input/output group velocity is 0.83/0.18 % of c. Structures with
similarly low vg have been previously designed. Individual cavity lengths are ∼ 1 m and the
cavity is operated in the 4π/5 mode. The simulation results provided the cell and coupling
slot radii for all cells in the first cavity, in addition to the synchronous beta. At gradients of
∼ 30 MeV/m, it was shown that changing the cell length at some point along the structure
would have negligibly increased the effective gradient. The total power requirement is 32 MW
peak power, with an assumed power losses of 20% due to the rf network.

Final Electromagnetic Design

The final step required designing the coupling/matching cells for the TW structure. This
process fundamentally requires minimising the reflection at the input/output coupling port.
An additional match was approximated by matching the external Q of the coupler to the Q
associated with the flow of power through the cell, due to the group velocity. The coupler
dimension was subsequently fine tuned using results derived from Floquets theorem, which
allows a calculation of the local reflection at the coupler cell. The full structure was simulated,
and individual cell radii were altered to produce the correct phase advance per cell. Lastly,
FC2CT was used to track a beam through six TW structures in the standard FODO scheme.
The Twiss parameters describing the beam, and the lattice parameters, were calculated
analytically from results obtained in Chapter 4, such as the optimum quadrupole k-strength.
The quadrupole length and drift length were predefined. The rf cavity lengths were taken
from the results obtained in Chapter 6. The results showed high transmission (> 99.5 %)
was possible.
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8.2 Future Work

This project produced a conceptual design for a 3 GHz Linac booster for protons accelerated
from 150 to 250 MeV. As the design is not going to be built, a prototype was not prioritised
in this work. The next steps, however, would construct and test a prototype design. The
testing phase would perform bead-pull tests on the cavity to measure the resonant frequency
and the field levels in individual cells. Whilst the electromagnetic design of the first cavity
has been completed in this work, the following five structures would require the design of
the input/output coupler cells. The cell length changed between structures, to maintain
synchronicity between the beam and accelerating field. Optimisations of the individual single
cells in subsequent structures would require simulating, to ensure the objectives were optimal.

Further future work can explore the conceptual design of a cavity capable of accelerating
protons from 37.5 to 150 MeV. Due to the different relativistic effects for protons lower
energies (37.5 to 150 MeV), the conceptual design may be different to the one designed in
this work. Once this energy stage has been designed, there will be a conceptual design for
the entire all-linac concept.
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