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Extensive efforts have been undertaken to combine superconductivity and the quantum Hall 
effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions 
is mediated by one-dimensional (1D) edge states1–6. This interest has been motivated by prospects 
of finding new physics, including topologically-protected quasiparticles7–9, but also extends into 
metrology and device applications10–13. So far it has proven challenging to achieve detectable 
supercurrents through quantum Hall conductors2,3,6. Here we show that domain walls in 
minimally twisted bilayer graphene14–18 support exceptionally robust proximity 
superconductivity in the quantum Hall regime, allowing Josephson junctions operational in fields 
close to the upper critical field of superconducting electrodes. The critical current is found to be 
non-oscillatory, practically unchanging over the entire range of quantizing fields, with its value 
being limited by the quantum conductance of ballistic strictly-1D electronic channels residing 
within the domain walls. The described system is unique in its ability to support Andreev bound 
states in high fields and offers many interesting directions for further exploration. 

Proximity superconductivity based on quasi-1D conductors acting as weak links have attracted 
considerable interest from both fundamental and applied perspectives. This includes phenomena 
involving magnetic flux tunneling10,19 and the associated prospect of the ampere standard based on 
quantum phase slips11–13. In terms of applications, the critical current 𝐼! in JJs is normally suppressed 
by very weak perpendicular magnetic fields B because of Fraunhofer-type interference between Cooper 
pairs propagating along different trajectories20. If proximity superconductivity were provided by 
strictly-1D states, the suppression could be avoided, allowing superconducting quantum interference 
devices operational in high B. Of particular interest is the use of the quantum Hall (QH) conductors as 
weak links because not only this allows control of the mediating 1D states by gate voltage but also can 
lead to the realization of topologically-protected many-body quasiparticles (see, e.g., refs. 8,9). Despite 
the long-term interest in JJs incorporating QH conductors, the experimental progress has so far been 
limited mainly to the observation of influence of superconducting electrodes on normal-state transport 
and studies of so-called chiral Andreev edge states (CAES) that appear at superconductor-QH conductor 
interfaces1–6,21,22. Recently, proximity superconductivity in the QH regime was also reported for 
graphene-based JJs2,6,22. Supercurrents supported by QH edge states were found to be extremely fragile 
(𝐼! of ∼ 1 nA at mK temperatures2,6,22,23) so that often the proximity could not be reproduced even for 
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devices of conceptually similar designs20,24,25. Below, we describe an alternative route for achieving 
superconducting coupling deep in the QH regime. This utilizes boundaries between AB and BA 
domains in Bernal-stacked bilayer graphene14–18,26–30 which are found to serve as ballistic strictly-1D 
wires connecting superconducting electrodes in quantizing B where the graphene bulk becomes 
completely insulating for Cooper pairs. 

The studied devices were made from minimally twisted graphene bilayers (MTBs) as detailed in 
Methods. In brief, monolayer graphene was cut into two pieces that were then placed on top of each 
other using the parallel transfer accompanied by rotation at an angle of < 0.1° (see ‘Device fabrication’ 
in Methods). Such an assembly is known to undergo lattice reconstruction that results in formation of 
relatively large regions of Bernal-stacked bilayer graphene, which are separated by narrow AB/BA 
domain walls (DWs) with the width 𝑤 ≈10 nm14,15. The resulting domain structures could be visualized 
by piezo-force microscopy (Extended Data Fig. 1a) and, for MTBs fully encapsulated in hexagonal 
boron nitride (see Methods), by photocurrent scanning microscopy (Extended Data Figs. 1b,c). 
Electron-beam lithography, dry etching and thin-film deposition were employed to make 
superconductor–normal metal–superconductors (SNS) junctions with MTBs playing a role of the 
normal metal between superconducting (NbTi) electrodes separated by distances 𝐿 of ∼100–200 nm 
(Methods). The electrodes exhibited the critical temperature 𝑇! ≈ 7.0 K and the upper critical field 
𝐻!" ≈ 9.5 T. In total 8 devices were studied, each containing 3 to 7 SNS junctions (Fig. 1a, Extended 
Data Figs. 1d,e). The junctions’ width 𝑊 was between 0.5 and 4 µm, and they incorporated different 
numbers 𝑁#$ of DWs to act as weak links between the NbTi electrodes (Fig. 1a). JJs were made in two 
geometries that we refer to as edged and edgeless, where graphene was either etched away everywhere, 
except for a narrow slit between the electrodes, or extended well beyond it, respectively (cf. schematics 
of Fig. 1a and Extended Data Fig. 1f). Comparison between the two geometries allowed us to assess 
the role played by graphene edges. As a reference, we also made similar JJs but without DWs 
(𝑁#$ =0), as well as JJs incorporating extended defects (slits and wrinkles) connecting the NbTi 
electrodes [see ‘Josephson junctions without domain walls’ in Methods].  

In addition to the imaging, we employed normal-state electron transport to evaluate 𝑁#$ within the 
examined JJs. To this end, two-probe conductance was measured at the neutrality point (NP) in high 𝐵 
(filling factor 𝜈 = 0). For JJs without DWs, their NP conductance approached zero, indicating that the 
MTB bulk became insulating at 𝜈 = 0 (Extended Data Fig. 2). In contrast, devices with DWs exhibited 
a finite zero-𝜈 conductance with values weakly dependent on 𝑇 and close to 4𝑒"/ℎ per domain wall, 
where 𝑒 is the electron charge and ℎ the Planck constant (Extended Data Fig. 2d). This observation 
agrees with the theoretical expectation that, at the NP, AB/BA walls should support chiral spin-
degenerate edge states17,18,29,30. Good correlation was found between 𝑁#$ estimated from our imaging 
and zero-𝜈 measurements (Extended Data Fig. 2b). Because DWs could shift and even disappear from 
JJs during fabrication (Methods) and their number was difficult to identify from the images if DWs 
were close to each other, below we label JJs according to the 𝑁#$ values found from the transport 
measurements.  
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Fig. 1| Josephson junctions incorporating domain walls in minimally twisted bilayers. (a) Device 
schematic showing a DW acting as a weak link in the QH regime. Regions with AB and BA stacking 
are illustrated by the circular insets. The carrier density was varied by applying gate voltage to a Si 
wafer shown in dark blue (Methods). Top inset: False-color electron micrograph of a typical device 
containing edgeless JJs in series. MTB is shown in green; NbTi in yellow. (b) Differential resistance as 
a function of 𝐼%! in small 𝐵 for a junction with a single DW. Strong deviations from the Fraunhofer 
pattern (white curve) emerge above 10 mT. (c) Examples of 𝑑𝑉/𝑑𝐼 curves in the QH regime for the 
same junction. (d) Full map measured up to 7 T in steps of 10 mT. The red curve shows 𝐼! defined as 
peak positions in 𝑑𝑉/𝑑𝐼 (𝐼%!). The white curve marks zero-resistance state’ boundary where a finite 𝑉 
emerged above the noise level. Data in panels b-d are for the same edged junction; 𝑊 ≈ 3 µm, 𝐿 ≈ 
200 nm, 𝑛 ≈ 2 × 10&" cm'", 50 mK, 𝐼(! = 3 nA.  

To characterize JJs in the superconducting state, we measured their IV characteristics using small ac 
currents 𝐼(! of typically 2–5 nA and varying dc bias 𝐼%! (’Characterization of MTB junctions’ in 
Methods). First, we focus on JJs’ behavior at high gate-induced electron densities (positive 𝑛 >
10&" cm'") which provided a low-resistance NS interface between MTBs and NbTi electrodes (∼10 Ω 
µm). In low 𝐵 ≲ 50 mT, all our devices exhibited similar characteristics, independent of 𝑁#$ and their 
design (including the reference JJs). Examples are provided in Fig. 1b and Extended Data Fig. 3a that 
show differential resistance 𝑑𝑉/𝑑𝐼 maps around zero 𝐵. They are dominated by the interference 
(Fraunhofer) oscillations, although deviations from the standard dependence (white curves) are also 
notable. Such behavior is typical for graphene JJs20,25 (Methods). In the intermediate 𝐵 (before entering 
the QH regime), 𝐼!(𝐵) did not decay ∝ 1/𝐵, as expected for the conventional SNS junctions, but instead 
exhibited giant fluctuations with numerous pockets of the zero-resistance state, which persisted up to a 
few T in our shortest junctions (Fig. 1d, Extended Data Fig. 5). This ‘mesoscopic’ behavior is 
characteristic of ballistic JJs20 and, again, was observed for all our devices. Both low- and intermediate- 
𝐵 regimes were discussed in detail previously20,25 and are briefly reviewed in Methods. Accordingly, 
our emphasis below is on the proximity superconductivity that emerged in the QH regime and was 
exclusive to JJs containing DWs. 
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From the semiclassical perspective, ballistic junctions enter the QH regime if the cyclotron diameter 
2𝑟! becomes smaller than 𝐿 so that only skipping orbits along edges (or DWs) connect the 
superconducting electrodes directly. In the normal state, the onset of the QH regime was evident as a 
rapid increase of the two-probe resistance and the concurrent appearance of Shubnikov-de Haas (SdH) 
oscillations (Extended Data Figs. 2a,6,11a). In this regime, no supercurrent could be discerned in any 
of JJs without DWs, neither for the edged nor edgeless geometry, nor in reference devices (Fig. 2a, 
Extended Data Fig. 6), even in JJs incorporating the narrow (< 10 nm) slits that supported closely-
spaced counterpropagating edge states (see Extended Data Fig. 6c and ’Josephson junctions without 
domain walls’ in Methods). This agrees with the previous reports20,23–25, especially taking into account 
our highly transparent NS interfaces such that CAES are expected to decohere at short distances6. In 
stark contrast, every JJ with DWs exhibited proximity superconductivity that extended deep into the 
QH regime (Figs. 1c,d, Extended Data Fig. 3b) and could approach 𝐻!" within ~1 T (Extended Data 
Fig. 5b). This shows that DWs provide an exceptionally robust channel for Cooper-pair transport. 
Comparing JJs with different 𝑁#$, we found that each DW could typically carry a supercurrent of ∼ 
10 nA (Extended Data Figs. 4,9). To emphasize robustness and reproducibility of the DW-supported 
proximity, we also studied the inverse ac Josephson effect (Shapiro steps) in the QH regime and found 
good agreement between the experiment and theory (Extended Data Fig. 10). 

Looking into more detail, for JJs with a single DW, the proximity superconductivity not only persisted 
deep into the QH regime but also exhibited a qualitative change in behavior such that, counterintuitively, 
supercurrents appeared to be stabilized by quantizing fields. Indeed, giant fluctuations in 𝐼!(𝐵), 
characteristic of intermediate 𝐵, were suppressed for 2𝑟! ≲ 𝐿 where 𝐼! remained constant over extended 
field intervals of ∼ 0.1 T (Fig. 2b, Extended Data Figs. 7b,c). This is in contrast to the case of 2𝑟! > 𝐿, 
where the superconductivity was confined to mT-scale pockets (Fig. 1d, ref. 20). Furthermore, 𝐼! varied 
relatively little over the entire interval of quantizing 𝐵 (despite strong and oscillating changes in the 
normal-state resistance) and disappeared only on approach to 𝐻!". On top of this gradual variation, we 
observed numerous abrupt changes, mostly small but occasionally substantial in magnitude (Fig. 1d, 
Extended Data Fig. 8). They were irreproducible for different sweeps of 𝐵 and different sweep 
directions (Extended Data Fig. 8) and attributed to jumps of pinned vortices in the electrodes. This is 
generally expected because Andreev bound states responsible for the Josephson coupling should depend 
on the superconducting order parameter in the vicinity of DWs and, hence, local vortex 
configurations5,21.  

For JJs with multiple DWs, the behavior could also be understood from the same perspective. For two 
DWs, the supercurrent was approximately twice as high as for one DW and showed oscillations nearly 
periodic in 𝐵 (Fig. 2c), as expected for interference between constant supercurrents carried by two 
channels. The observed periodicity in 𝐵 was a few times longer than that for the Fraunhofer oscillations 
near zero 𝐵, which yielded that, in the QH regime, the characteristic area per flux quantum 𝜙) = ℎ/2𝑒 
was smaller than the total JJ area 𝐿 ×𝑊, in agreement with two supercurrent channels being present 
within the junction. For many DWs, the oscillating pattern became aperiodic and was interrupted more 
frequently by vortex jumps (Fig. 2d, Extended Data Fig. 5b). This agrees with the presence of multiple 
supercurrent channels, which should result in a convoluted interference pattern that is further 
complicated by vortices intervening at many locations. 
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Fig. 2| Supercurrent in the QH regime for different numbers of domain walls. Differential 
resistance maps for JJs without DWs (a) and with one DW (b), two DWs (c) and 14±4 DWs (d). All 
the devices were electron doped with 𝑛 ≈ 2 − 3 × 10&" cm'". 𝐵 varied in steps of ∼ 50 µT, 𝑇 ≈ 50 mK, 
𝐼(! = 5 nA. Color scales in Ω. (a-c) measured at 𝐵 = 3 T, (d) at 5 T. 

The most revealing feature of the behavior observed for single-DW junctions is minimal variations in 
𝐼! over a wide range of 𝐵. If the supercurrent were due to Andreev bound states arising from QH states 
counterpropagating at the opposite sides of the DW, one would expect Aharonov-Bohm oscillations 
with the periodicity 𝛥𝐵 ≈ 𝜙)/(𝑤 + 2𝑟!)𝐿 <0.1 T where 2𝑟! accounts approximately for the extent of 
QH edge states into the graphene bulk (see ‘Steady supercurrent along a single domain wall’ in 
Methods). No sign of such oscillatory behavior was observed in our JJs (Figs. 1d,2b, Extended Data 
Figs. 7,8). Even including vortex jumps, 𝐼!(𝐵) in the QH regime varied by less than a third over intervals 
> 3 T (Fig. 2d), which ruled out any underlying oscillations with 𝛥𝐵 < 10 T. The latter value translates 
into a spatial scale 𝜙)/𝛥𝐵𝐿 ≲1 nm, much less than even the superconducting coherence length in NbTi. 
This means that QH edge states could not be responsible for the observed proximity. This is also 
consistent with the fact that our slits with the width of < 10 nm supported no supercurrent in the QH 
regime despite the nearby counterpropagating edge states. To explain 𝐼!(𝐵) that remained steady over 
several Tesla, we refer to recent calculations that suggested the presence of 1D channels inside DWs29, 
which differ from the well-known 1D states that appear if an energy gap is opened in the graphene 
bulk17,18,26–28. These internal channels are valley degenerate so that Andreev bound states involving the 
1D electrons do not encircle any magnetic flux. This explains constant 𝐼!(𝐵) such as shown in Fig. 2b, 
Extended Data Figs. 7b,c. The remaining variations in supercurrent over larger 𝐵 intervals can be 
attributed to a gradual suppression of the order parameter as vortices jump and pack up at the NS 
interface. 

The magnitude of the supercurrents observed in the QH regime (up to 20 nA per DW) is also revealing. 
In zero 𝐵, the 𝐼!(𝑇) dependence (Extended Data Fig. 9a) was exponential with the characteristic energy 
𝛿𝐸 ≈ 0.2 meV (for details, see Methods). This suggests that our ballistic JJs were in the long-junction 
regime where the supercurrent was limited by decoherence of Andreev bound states rather than the 
superconducting gap, in agreement with the previous conclusions for ballistic 2D junctions20,31,32. The 
value of 𝐼! in zero 𝐵 is well described by 𝛿𝐸/𝑒𝑅* where 𝑅* is the normal-state resistance of the JJs. 
This is again in agreement with the results of refs.20,31. It is reasonable to expect that the decoherence 
should be equally important for our 1D channels of the same length 𝐿 and, therefore, approximately the 
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same 𝛿𝐸 limited the critical current along DWs. This reasoning is consistent with the 𝑇 dependence 
observed in the QH regime (Extended Data Fig. 9c). Although 𝑅* for the discussed range of high 𝐵 and 
𝑛 was, typically, ∼ 0.5 kΩ (Fig. 2), this value arises mostly due to bulk carriers20. The supercurrent itself 
was provided by DWs and should then be limited by their resistance, that is, by ℎ/4𝑒" (only one 1D 
sub-band is expected to be occupied29, Extended Data Fig. 2d). Accordingly, we expect 𝐼! ≈
(𝛿𝐸/𝑒)/(ℎ/4𝑒") ≈ 30 nA. This agrees well with the experiment, especially considering an additional 
contact resistance at the 1D-3D interface between the DW and NbTi electrodes, which should reduce 
𝐼!.  

 
Fig. 3| Fabry-Pérot oscillations in supercurrent due to a single DW. (a and b) Differential resistance 
as a function of doping and dc bias in zero field and the QH regime, respectively. In panel b, 𝐵 = 3 T 
corresponds to 2𝑟! < 𝐿 for all 𝑛. Positive and negative 𝑛 correspond to electron and hole doping, 
respectively. Same JJ as in Fig. 1, 𝑇 ≈ 50 mK, 𝐼(! =5 nA. White arrows in b indicate minima in 𝐼!. (c) 
Observed minima’s positions in 𝑛 (symbols) compared with the expected FP resonances for 1D 
electrons inside a 10-nm-wide domain wall with 𝐿 = 160 nm (solid curve). For details, see Methods. 
Horizontal error bars: uncertainty is determining the minima’s positions (Extended Data Fig. 11).  

Finally, we discuss how the 1D proximity superconductivity was affected by 𝑛. In low 𝐵, the 𝑛 
dependences were similar for all our JJs, with or without DWs (Fig. 3a). In comparison to the previous 
reports using JJs made from monolayer graphene20,25, the only notable difference was the near absence 
of Fabry-Pérot (FP) oscillations in our devices. Such oscillations require a limited transparency of the 
NS interface to allow standing waves and were previously observed for hole doping where interfacial 
pn junctions provided suitable conditions20,25. The 2D-3D interface for our bilayer JJs was quite 
transparent even for hole doping and caused only weak FP oscillations near zero 𝐵 (Fig. 3a). In the QH 
regime, the NS interface changed its character into 1D-3D and no supercurrent could be detected for 
hole doping because of high resistance of the interfacial pn junctions (Fig. 3b). On the other hand, 
pronounced oscillations in 𝐼!(𝑛) were observed for electron doping where the 1D-3D interface was 
more transparent. These oscillating are attributed to FP resonances that occur each time an integer 
number of half the 1D Fermi wavelength matches the domain wall length 𝐿 (Fig. 3b, Extended Data 
Fig. 11). A surprising feature of the observed FP oscillations was that their period changed little with 
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decreasing 𝑛, even approaching the NP (Figs. 3b,c). This behavior described in more detail in Methods 
seems difficult to reconcile with the fact that the electron wavelength generally diverges at zero carrier 
density. Nonetheless, the observed periodicity is in good, quantitative agreement with the one expected 
for our specific 1D channels (Fig. 3c) where electrons inside the DWs retain a finite density even in the 
case of charge-neutral bilayers29 (Methods).  

To conclude, AB/BA domain walls are unique in their ability to support Andreev bound states in the 
QH regime. The walls allow high critical currents, nearing the theoretical limit, which are practically 
independent of 𝐵 due to the strictly-1D nature of electronic states inside the walls. This ballistic system 
offers many interesting directions for further exploration. For example, if the energy gap is opened in 
the bilayer graphene bulk by biasing the two layers17, the 1D states inside AB/BA domain walls acquire 
topological protection29 and should allow chiral supercurrents3–6, which is an essential albeit not 
sufficient condition for the realization of non-abelian anyons5,33. It would also be interesting to find how 
the observed proximity superconductivity is affected if the spin or valley degeneracy is lifted by 
exchange interactions, which may, e.g., allow tunable p junctions. Furthermore, because the 1D 
Andreev bound states are tunnel-coupled to the graphene bulk, there is an intriguing possibility to 
explore interaction of the supercurrents with fractional and, especially, even-denominator QH states 
that were observed in encapsulated bilayer graphene and suggested to contain non-abelian 
quasiparticles8. Finally, AB/BA domain walls provide interesting venues not only within the physics of 
low-D superconductivity, but also in terms of normal-state transport due to their unusually long, wire-
like geometry while preserving ballistic properties. Such 1D systems are exceptionally rare and could 
be used to address a number of phenomena in 1D including Luttinger liquids.  
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Extended Data Figures 

 

 

Extended Data Fig. 1| Josephson junctions with AB/BA domain walls. (a) Piezo-force micrograph 
showing domains in an MTB before its encapsulation in hBN. The blue and green triangles indicate two 
neighboring regions with AB and BA stacking. (b) Photocurrent map for one of our fully encapsulated 
MTB stacks that was used to make the studied JJs (photoexcitation energy of 188 meV, 𝑛 ≈ 10&"cm'"). 
Negative photocurrents are shown in blue, positive in red, and the white stripes in between reveal 
domain walls34. (c) Photocurrent map of a chosen DW with an overlaid design for superconducting 
electrodes, which is shown by the shaded red areas. (d) Optical micrograph of the same region as in 
panel c after depositing the electrodes. (e) Atomic-force microscopy (AFM) image of one of the studied 
JJs. The darker areas correspond to superconducting electrodes. (f) Schematic of our ‘edgeless’ devices 
where MTBs extended beyond the width 𝑊 of JJs to avoid the presence of graphene edges in between 
the electrodes (compare with our ‘edged’ devices in Fig. 1a of the main text). The greenish triangles 
represent different AB and BA domains.  
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Extended Data Fig. 2| Normal-state transport. (a) Typical Landau fan diagram for our MTB devices. 
This particular junction contained a single DW and had 𝐿 ≈ 150 nm. The filling factors 𝜈 indicated by 
the dashed lines were calculated using the known capacitance to the back gate; 𝑇 = 10 K. (b) Two-probe 
conductance at the neutrality point as a function of 𝐵 for different 𝑁+,. For all the plotted junctions, 𝐿 
was between 150 and 200 nm; 𝑇 = 10 K. (c) Resistance as a function of gate-induced 𝑛 at different 𝑇 
for two representative junctions with 0 and 1 DWs at 14 T (𝐿 ≈ 200 and 150 nm, respectively). Both 
JJs were ‘edged’. (d) Corresponding conductance at 𝜈 = 0 (after subtracting relatively small contact 
resistances).  

 

  

Extended Data Fig. 3| Josephson junctions with many domain walls. (a) Fraunhofer pattern typical 
for such JJs. The shown junction was edgeless and contained 15 ± 3 DWs. Measurements were done 
using steps in 𝐵 of 60 µT. White curve: standard Fraunhofer dependence 𝐼!(𝐵) calculated using the 
critical current at zero 𝐵 and the apparent period for the first few oscillations. The deviations from the 
standard behavior are caused by ballistic transport of electrons and holes forming Andreev bound 
states20,25. (b) Differential resistance of the same junction in quantizing fields. Both panels: 𝑇 ≈ 50 mK, 
𝑛 ≈ 2 × 10&" cm'", 𝐼(! = 5 nA.  
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Extended Data Fig. 4| Supercurrent carried by AB/BA domain walls in the QH regime. (a) Critical 
current for different 𝑁#$ (𝐵 = 3 T, electron doping of ≈ 3 × 10&" cm'", 𝑇 ≈ 50 mK in all cases). Blue 
symbols, edged junctions; orange, edgeless ones. The dashed line is the best linear fit. The horizontal 
error bars are caused by uncertainty in estimating the number of DWs within the JJs. The vertical bars 
appear because 𝐼! rapidly fluctuated with changing 𝐵 and oscillated with 𝑛 (Extended Data Figs. 5,8; 
Fig. 3b of the main text) so that we plotted its rms values. (b) Same as in panel a but normalized by the 
number of DWs.  

 

 

 

Extended Data Fig. 5| Superconductivity in JJs with multiple domain walls. (a and b) Differential 
resistance for JJs with a few (estimated as 2 or 3) and many (16 ± 3) DWs, respectively. 𝐼(! = 5 and 
2 nA; 𝑛 ≈ 2 and 3 × 10&" cm'", respectively. 𝑇 ≈ 50 mK. Both JJs were edgeless. The white curves in 
the bottom halves mark the boundaries of the zero-resistance state. Red curves in the top halves, the 
critical current. The step size in 𝐵 was 10 mT.  
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Extended Data Fig. 6| No supercurrent in the QH regime in reference devices. Left column, 
schematics of JJs. Right column, corresponding differential resistance maps at high electron doping 
𝑛 ≈ 3 × 10&" cm'" and 𝐿 ≈ 200  nm for all the panels. Red curves, critical current. (a) Junction made 
from Bernal bilayer graphene. 𝑊 ≈ 1 µm, 𝐼(! = 5 nA, 𝑇 ≈ 50 mK, 𝛥𝐼%! = 1 nA. (b) Junction with a 
wrinkle formed in monolayer graphene. The wrinkle’s full width was ≲ 100 nm as measured by AFM. 
𝑊 ≈ 1 µm, 𝐼(! = 7 nA, 𝑇 ≈ 50 mK, 𝛥𝐼%! = 15 nA. (c) Monolayer graphene with a very narrow slit. Its 
width estimated by AFM was < 10 nm. 𝑊 ≈ 4 µm, 𝐼(! = 5 nA, 𝑇 ≈ 1 K, 𝛥𝐼%! = 1 nA.   

 

 

Extended Data Fig. 7| Differential resistance maps for another junction with a single domain wall. 
(a) Map over a large interval of 𝐵 (composed of two parts where the white gap indicates no data taken). 
Shown is an edged junction with 𝐿 ≈ 150 nm and 𝑊 ≈ 0.5 µm. Red curve, critical current. The digital 
noise is caused by finite steps in current: 𝛥𝐼%! = 3.3 and 1.3 nA below and above 3 T, respectively. Step 
size in 𝐵, 5 mT. (b and c) Detailed maps around 3 and 5 T, respectively. Step size in 𝐵, 0.5 mT. 𝛥𝐼%! = 
0.6 and 0.3 nA for panels b and c, respectively. For all the panels, 𝑇 ≈ 50 mK, 𝑛 ≈ 1.7 × 10&" cm'", 
𝐼(! = 2 nA. Same color scales for panels a and b.  
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Extended Data Fig. 8| Vortices affect the critical current in the quantum Hall regime. Differential 
resistance maps for increasing (a) and decreasing (b) magnetic field in steps of 10 mT. Same device as 
in Fig. 1 of the main text. 𝑇 ≈ 50 mK, 𝑛 ≈ 2.1 × 10&" cm'", 𝐼(! = 5 nA. Same color scale as in Fig. 1d 
of the main text.  

 

 

 

 

Extended Data Fig. 9| Temperature dependence of proximity superconductivity in zero and 
quantizing fields (a and c) Differential resistance maps 𝑑𝑉/𝑑𝐼(𝐼%!, 𝑇) at 0 and 3 T, respectively. (b 
and d) Examples of 𝑑𝑉/𝑑𝐼 for selected temperatures (cross-sections from the corresponding maps). 
White dashed curve in panel a: fit to eq. S1 above 2 K. Data are for a JJ with a single DW, 𝐿 ≈ 200 nm, 
𝑛 ≈ 2 × 10&" cm'", 𝐼(! = 5 nA.  
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Extended Data Fig. 10| Shapiro steps in the QH regime. (a) Voltage vs current characteristics as a 
function of RF power. For clarity, the curves are shifted horizontally by 10 nA each. The power 𝑃 was 
increased in steps that corresponded to 𝑉-. increasing from 0 to 26 µV. Shown is the same one-DW 
junction as in Fig. 1 of the main text; 𝑓/0 = 3.3 GHz, 𝐵 = 3 T, no 𝐼(! applied; 𝑛 ≈ 1.8 × 10&" cm'" 
which corresponds to a maximum in 𝐼! (Fig. 3b of the main text). Inset: 𝛥𝑉 as a function of the RF 
frequency. Green line: 𝛥𝑉 = 𝜙)𝑓/0 as per eq. S2. (b) 𝑑𝑉/𝑑𝐼(𝐼%!) with varying 𝑉/0. The same JJ and 
conditions as for panel a; 𝐼(! = 5 nA. Color scale: indigo to yellow is 0 to 480 𝛺. (c) Same as in panel 
b but for 𝑛 ≈ 1.7 × 10&" cm'" which corresponds to a minimum in 𝐼!(𝑛); 𝑓/0 = 3.52 GHz. Color scale: 
indigo to yellow is 70 to 440 𝛺. (d) Similar map for a JJ with many DWs at 𝐵 = 5 T. 𝑁#$ = 9±2, 𝐿 ≈ 
200 nm, 𝑊 ≈ 3.5 µm, 𝑛 ≈ 2.7 × 10&" cm'", 𝑓/0 = 3.0 GHz, 𝐼(! = 2 nA. Color scale: indigo to yellow 
is 0 to 70 𝛺. (e) Width of Shapiro steps extracted from the map of panel d. The pink curves in panels b-
d and the black curves in panel e are the fits by the corresponding Bessel functions as per eq. S3. For 
all panels, 𝑇 ≈ 50 mK.   
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Extended Data Fig. 11| Fabry-Pérot oscillations in the supercurrent provided by 1D states inside 
DWs. (a and b) Differential resistance maps at high and low dc biases, respectively. In both cases, 𝐼(! = 
5 nA. The white dashed lines indicate the filling factors 𝜈 = 4, 8, 12, ... expected for Bernal bilayer 
graphene. The dotted curve in panel b indicates the QH regime boundary, 2𝑟! = 𝐿. (c) Oscillations in 
the critical current. Values of 𝐼! are obtained from IV curves that were recorded in small steps of ∼
3 × 10&) cm'" in electron density and steps in 𝐵 of 0.5 T. All the measurements were carried out at 
𝑇 ≈ 50 mK using JJ with a single DW and 𝐿 ≈ 200 nm.  
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Extended Data Fig. 12| Electronic spectra of AB/BA domain walls. (a) Local distortions associated 
with DWs lying in the armchair direction, which were used in our calculations of the electronic 
spectra29. The insets illustrate relative positions of atoms in top and bottom graphene layers. (b) 
Electronic states associated with AB/BA domain walls (black dots). The blue parabolas denote the bulk 
spectrum, away from the DW. (c-e) Calculated spectra in finite b (blue curves). 𝐵 = 1 T for panel c and 
3 T for panels d and e. A gap of 20 meV is opened in the bulk spectrum of panel e. The flat parts 
correspond to non-dispersive LL states in bulk bilayer graphene. The orange curves connect points of 
the steepest dispersion and correspond to mixing of LLs with 1D states, which gives rise to the 
dispersive features. The 1D states are centered at zero 𝑘1, which corresponds to the DW’s center, 𝑋 =
ℏ𝑘2/𝑒𝐵 = 0. The black-dot curves in panels c and d are taken from zero-𝐵 calculations to show that 
the features originate from the same 1D DW-bound states29. In the absence of interlayer bias, ±𝐾 
valleys are represented by the same (blue) curves. The valley degeneracy is lifted in panel E by 
interlayer bias, where the solid blue and dotted green curves represent ±𝐾 valleys. (f) Dependence of 
𝑘23(𝑛) for the 1D states. The blue dotted curve was found using 𝜀U𝑘2V at zero 𝐵 and the solid curve 
using the dispersion represented by the orange solid curve in panel c.  
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Methods 
Device fabrication 
Minimally twisted graphene bilayers (MTBs) were prepared using the ‘cut and stack’ method35,36 with 
rotation by an angle of < 0.1°. Such stacks of graphene monolayers are known to form relatively large 
domains of bilayer graphene with the Bernal (AB and BA) stacking order which are separated by narrow 
(∼ 10 nm) domain walls14–16,26–28,37. After the assembly, where MTBs were placed on top of hexagonal 
boron nitride (hBN) crystals, the domain structure could be visualized by piezo-force microscopy38 as 
shown in Extended Data Fig. 1a. We made several JJ devices using DWs visualized by this technique. 
However, neither of them exhibited proximity superconductivity in the quantum Hall (QH) regime. We 
attribute this to further structural changes such that DWs slipped away from the proximity regions after 
fabrication of closely-spaced superconducting contacts. The electronic quality of the resulting 
Josephson junctions was also poor.   

To preserve graphene’s quality, we made MTB structures fully encapsulated in hBN. Unfortunately, 
the piezo-force microscopy could not be used after an insulating hBN layer was placed on top of 
MTBs38. To overcome these problems, we tried different methods to visualize DWs within encapsulated 
MTBs and converged on scanning photocurrent microscopy34. This dedicated technique is described in 
detail in ref. 34. Briefly, it utilizes scanning near-field optical microscopy (SNOM) to focus an infrared 
laser onto a region of interest and measures the induced photovoltage between two nearby electrodes. 
The resulting signal provided micrographs such as the one shown in Extended Data Figs. 1b,c where 
DWs appeared as blurred white stripes between red and blue regions representing neighboring AB and 
BA domains34. Note that other SNOM-based approaches were used previously to visualize DWs in 
twisted bilayers, revealing the characteristic triangular pattern17,39,40. However, for hBN-encapsulated 
MTBs and in the absence of such a pattern at minimal twist angles, we found those approaches 
insufficient to distinguish isolated DWs from other inhomogeneities. 

Using the imaged domain structures, we designed JJs trying to align DWs along the shortest distance 
between the superconducting electrodes (Extended Data Fig. 1c) and made devices incorporating 
different numbers 𝑁#$ of domain walls. Electron-beam lithography and dry etching were then 
employed to embed the superconducting electrodes at the chosen positions (Extended Data Figs. 1c,d). 
As the superconductor, we used 60 nm of NbTi (atomic ratio: 55 to 45%) with a 3 nm thick adhesion 
layer of Ta. Additional 3 nm of Ta followed by 5 nm of Pt were deposited on top of NbTi to protect it 
from oxidation. The 4-layer film was deposited by RF sputtering at a rate of 6 nm per min under a 
controlled argon pressure of ∼ 104 bar. The NbTi electrodes were found to exhibit 𝑇! ≈ 7.0 K and 
𝐻!" ≈ 9.5 T. They were separated by the distance 𝐿 of 100 to 200 nm and had the width 𝑊 between 0.5 
and 4 µm (Extended Data Fig. 1e). The devices were assembled and fabricated on top of an oxidized Si 
wafer that also served as a back gate to vary the carrier concentration 𝑛 in MTBs. 

Characterization of MTB junctions 
Electrical measurements were carried out in an Oxford Instruments Triton dilution refrigerator. The 
standard low-frequency (< 150 Hz) lock-in technique was employed using ac currents 𝐼(! within a few 
nA range. For measurements of nonlinear IV characteristics, 𝐼(! was superimposed on top of dc currents 
𝐼%! ranging from nA to µA. Both ac and dc currents were sourced directly from Zurich Instruments 
lock-in amplifiers. With decreasing 𝐼(!, differential resistance curves such as shown in, e.g., Fig. 1c of 
the main text and Extended Data Figs. 9b,d stopped evolving below 2 nA (i.e., they did not get sharper 
with decreasing 𝐼(!), which indicated the level of electronic noise affecting our devices. The noise also 
limited the lowest electronic temperature (𝑇) achievable for our devices to ∼ 50 mK. Most 
measurements were done using 𝐼(! between 2 and 5 nA which represented a compromise between 
keeping 𝐼(! as low as possible and avoiding noise on 𝑑𝑉/𝑑𝐼 curves, given the chosen (rather long) time 
constant of 1 s. Depending on the desired range for IV characteristics, 𝐼%! was applied in small steps 
𝛥𝐼%! varied from < 1 nA to ∼ 50 nA. 
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We first characterized each of the studied JJs in the normal state by measuring its two-probe resistance 
𝑅"5 as a function of 𝐵 and 𝑛 at temperatures above 𝑇!, typically at 10 K. In the absence of gate voltage, 
all our devices were found to be slightly doped, typically by ∼ 5 × 10&& cm'". An example of the 
obtained maps 𝑅"5(𝑛, 𝐵) is shown in Extended Data Fig. 2a for an MTB junction with a single domain 
wall connecting NbTi electrodes. All the devices, independent of their design and 𝑁#$, exhibited 
pronounced SdH oscillations that followed the sequence of filling factors 𝜈 = 0, 4, 8, 12, ..., as expected 
for Bernal-stacked bilayer graphene. Quantum Hall plateaus were neither expected41 nor observed for 
this two-probe geometry.  

By comparing junctions with different numbers of DWs, we noticed a clear correlation between 𝑁#$ 
and 𝑅"5 at 𝜈 = 0 (neutrality point) such that magnetoresistance monotonically decreased with 
increasing 𝑁#$. The correlations are illustrated in Extended Data Fig. 2b that plots the NP conductance 
𝐺67) = 1/𝑅"5(𝜈 = 0) as a function of 𝐵 for junctions with different 𝑁#$. In fields above 6 T, all the 
two-probe curves exhibited slowly saturating 𝐵 dependences. For junctions without domain walls 
(𝑁#$ = 0), 𝐺67) saturated to small values that varied from junction to junction but were always <
4𝑒"/ℎ (note that 𝑊/𝐿 ≫ 1 so that graphene’s resistivity was > 100 kΩ per square at liquid-helium 𝑇), 
in agreement with the presence of a small gap at 𝜈 = 0, which is expected because of both finite doping 
and exchange interactions42. Furthermore, Extended Data Fig. 2c compares devices with and without 
domain walls at a fixed 𝐵 = 14 T over a wider range of 𝑇. The latter device (𝑁#$ = 0) exhibited a 
thermally activated behavior at the NP, consistent again with a small gap being present. In stark contrast, 
the device with a single DW showed 𝑅"5(𝜈 = 0) that remained practically constant over the entire 𝑇 
range (Extended Data Fig. 2c) suggesting an additional conducting channel provided by the DW. 

To quantify this channel’s conductance, we employed two complementary approaches. Using the curves 
such as in Extended Data Fig. 2b, we calculated the excess conductance, 

𝛿 = 𝐺67)(𝑁#$)– 𝐺67)(𝑁#$ = 0) 

for JJs with DWs. The particular junction with one DW in Extended Data Fig. 2b exhibited 𝛿 ≈
0.8 × 4𝑒"/ℎ at 10 T. The junction with two DWs showed the excess conductance twice higher (within 
±10%) than that of the one-DW junction for all 𝐵 > 6 T. Alternatively, assuming that the contact 
resistance between DWs and superconducting electrodes is close to the 𝑅"5 value reached in the limit 
of high electron doping where 𝑅"5(𝑛) curves saturated (Extended Data Fig. 2c), we subtracted this 
value as contact resistance from 𝑅"5(𝜈 = 0) and obtain the DW resistance itself. The corresponding 
𝐺67) is plotted in Extended Data Fig. 2d, which again yielded that a single DW provided the 
conductance of ∼ 4𝑒"/ℎ. This value is also consistent with the known electronic structure of AB/BA 
domain walls. Indeed, in the presence of a gap at the NP, the DWs are known to support 
counterpropagating (chiral) edge states which contribute the conductance quantum 𝑒"/ℎ each and the 
factor of 4 comes from the spin and valley degeneracy16,26. Based on these observations, we used the 
saturation value of 𝐺67) to estimate 𝑁#$ for the studied MTB junctions and compared it with the 
number of DWs seen using photocurrent scanning microscopy. Good agreement between the two values 
was found. The estimate for 𝑁#$ using JJs’ conductance at 𝜈 = 0 was particularly helpful for the 
devices with many DWs where it was difficult to resolve individual walls by photocurrent microscopy. 
Further support for the described estimation was found by comparing critical currents 𝐼! in junctions 
with different 𝑁#$ (next section and Extended Data Fig. 4).  

Supercurrents in junctions with multiple domain walls 
To illustrate how the critical current behavior evolved with the number of DWs, Extended Data Fig. 3 
shows plots for the case of large 𝑁#$ ≈ 15. The plots are provided in the same representation as Figs. 
1b,c of the main text for a single DW. At zero field, low 𝑇 and for strong electron doping 𝑛 >
10&" cm'", the critical current 𝐼! was of the order of a few µA per micrometer width of JJs, and this 
zero-𝐵 value did not show any systematic dependence on 𝑁#$. In low 𝐵, all our JJs also exhibited 
pronounced deviations from the standard Fraunhofer pattern20,25, independently of 𝑁#$ (compare 
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Extended Data Fig. 3a for 𝑁#$ ≈ 15, Fig. 1b of the main text for 𝑁#$ = 1, and Fig. 3a of ref. 20 for 
𝑁#$ = 0). Such deviations are characteristic of ballistic JJs and discussed in detail in ref. 20. In general, 
the observed behavior shows that the presence of AB/BA domain walls has little effect on proximity 
superconductivity in low 𝐵. 

In the QH regime, where the cyclotron diameter 2𝑟! became smaller than the junction length 𝐿 so that 
no ballistic transport could occur through the graphene bulk20, JJs with many DWs exhibited 
consistently higher 𝐼! and wider zero-resistance states than those junctions with small 𝑁#$ (compare 
Extended Data Fig. 3b and Fig. 1c of the main text). Importantly, no supercurrent could be observed in 
the QH regime for any JJs without DWs (Extended Data Fig. 6). These observations are quantified in 
Extended Data Fig. 4a where 𝐼! is seen to increase roughly as ∝ 𝑁#$. This dependence suggests that 
each DW provided an independent Andreev channel capable of carrying a certain amount of 
supercurrent. Away from 𝐻!", the supercurrent was ∼ 10 nA per DW at low 𝑇 as shown in Extended 
Data Fig. 4b. 

To complete the comparison between JJs with different numbers of DWs, Extended Data Fig. 5 shows 
differential resistance maps 𝑑𝑉/𝑑𝐼(𝐵, 𝐼%!) over a very wide range of 𝐵 for junctions containing a few 
and many DWs. These plots should also be compared with the case of a single DW in Fig. 1d of the 
main text. Qualitatively, all the plots look rather similar. Supercurrent in the JJs survived in the QH 
regime up to fields comparable to 𝐻!" in the NbTi contacts, and 𝐼!(𝐵) exhibited pronounced rapid 
fluctuations, independently of the number of DWs involved, if at least one DW was present (see the 
next section). Nonetheless, there were a couple of notable differences. First, in JJs with many DWs, 
finite critical currents persisted into consistently higher B. This is particularly obvious in Extended Data 
Fig. 5b where finite 𝐼! could be observed in fields reaching above 8 T, that is, within < 20% from 𝐻!" 
(compare this figure with Figs. 1c,d of the main text and Extended Data Fig. 5a). The increased 𝐵 range 
of proximity superconductivity for JJs with large 𝑁#$ can be attributed to the simple fact that the 
external noise and finite 𝐼(!, smeared our 𝑑𝑉/𝑑𝐼 curves, so that we could detect induced 
superconductivity only if 𝐼!(𝐵) exceeded a few nA. Accordingly, if many DWs contributed to the 
critical current, our detection threshold was breached in somewhat higher 𝐵. Second, in contrast to the 
case of a single DW, JJs with many DWs did not exhibit a clear transition from fluctuating to non-
fluctuating 𝐼!(𝐵) after entering the QH regime (compare Extended Data Fig. 5b with Fig. 1d of the 
main text). The strongly fluctuating 𝐼!(𝐵) in the QH regime for the case of large 𝑁#$ can be attributed 
to quantum interference between supercurrents carried by different DWs in parallel. Such interference 
oscillations are nearly random because many different areas are involved. The randomness is also 
expected to suppress the absolute value of maximum 𝐼! by a factor of 3-5 with respect to the case of 1 
and 2 DWs. More importantly, vortices entering superconducting contacts in the vicinity of domain 
walls suppress the proximity as seen on our experimental curves. This effect is much more pronounced 
in the multidomain devices (see, e.g. Fig. 1, Extended Data Fig. 5), as discussed in section “Steady 
supercurrent along a single domain wall”. 

 

Josephson junctions without domain walls 
To demonstrate that the robust supercurrents observed in the QH regime were due to DWs rather than 
any other possible mechanism1,2,6,20,22,23,43–45, we studied JJs without DWs between superconducting 
electrodes (Extended Data Fig. 6). Otherwise, they were made using the same design and fabrication 
procedures as described above. The first type of such reference devices was based on AB-stacked 
bilayer graphene. These JJs were made either directly from exfoliated bilayer graphene or utilizing 
regions of MTB stacks which contained no DWs (Extended Data Fig. 6a). The other reference devices 
incorporated either wrinkles that commonly occurred during stacking of van der Waals heterostructures 
(Extended Data Fig. 6b) or nanoscale slits made by high-resolution electron-beam lithography 
(Extended Data Fig. 6c). The general idea is that such defects in graphene can support closely-spaced 
counterpropagating QH edge states1,2,6,20,22,23,43–45. In intermediate magnetic fields (2𝑟! > 𝐿), all three 
types of JJs exhibited similar behavior with large fluctuations in 𝐼!(𝐵) and interspersed pockets of the 
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zero-resistance state (Extended Data Fig. 6). This behavior is similar to that of our JJs with DWs and, 
again, is attributed to ballistic transport of Andreev bound states between the superconducting 
electrodes20,25. Note that the device in panel b was edgeless, which explains the suppression of proximity 
superconductivity in much lower 𝐵 as compared with our edged JJs including those shown in panels a 
and c. Indeed, fluctuations in 𝐼!(𝐵) rely on electron trajectories scattered by sample edges or extended 
defects20 and are expected to be severely suppressed in edgeless JJs with parallel superconducting 
electrodes, in agreement with the experiment. 

Importantly, neither of our many reference devices exhibited any sign of proximity superconductivity 
in the QH regime (2𝑟! < 𝐿). Let us emphasize that no critical current in quantizing 𝐵 could be detected 
even for JJs with the narrowest slits that were less than 10 nm wide (Extended Data Fig. 6c). In this 
case, one can imagine Andreev states formed by QH edge states that counterpropagate along the slit’s 
edges and are proximity-coupled through the superconducting electrodes23. In our slit devices, the gap 
in graphene was close to NbTi’s coherence length 𝜉 ≈ 6 nm, but no supercurrent could be discerned in 
high 𝐵. This observation agrees with recent attempts to implement the same idea using 
counterpropagating QH states that were located either in different graphene layers24 or across somewhat 
wider (≈ 30 nm) slits23. All the evidence – from our experiments and the literature – indicates that 
AB/BA domain walls are unique in their ability to support Andreev bound states in quantizing 𝐵. 

Steady supercurrent along a single domain wall 
In the QH regime, JJs with multiple DWs exhibited pronounced fluctuations in 𝐼!(𝐵) with a 
characteristic period of the order of one flux quantum 𝜙) piercing the junction area 𝑊 × 𝐿 (see the main 
text). Accordingly, these oscillations were attributed to quantum interference loops made of 
supercurrents propagating along different paths2,6,22. No oscillations with either such a short periodicity 
or much longer one could be observed for junctions containing a single DW (Fig. 2 of the main text). 
The absence of quantum interference oscillations in JJs with a single DW is reiterated by Extended Data 
Fig. 7. The figure shows that, similar to the device of Fig. 2b of the main text, the critical current in the 
QH regime was constant over rather large field intervals (Extended Data Fig. 7b,c). The junction in 
Extended Data Fig. 7 exhibited a monotonic decay of 𝐼! with increasing 𝐵, which is somewhat different 
from the steadier behavior for the single-DW device described in the main text (Fig. 1d). Nonetheless, 
the characteristic field interval 𝛥𝐵 over which the critical current changed considerably was at least a 
few T (Extended Data Fig. 7a). This again shows that any possible quantum loop made of either two 
supercurrent paths or counterpropagating electrons and holes forming an Andreev bound state could 
not be wider than 𝑑 ≈ 𝜙)/𝛥𝐵𝐿 ≈ a few nm, that is less than 𝜉. 

The abrupt changes in the critical current with varying 𝐵, which were seen clearly in Fig. 1d of the main 
text, were attributed to superconducting vortices suddenly changing their positions in vicinity of the 
1D-3D contacts between DWs and superconducting electrodes. To corroborate this explanation, 
Extended Data Fig. 8 shows two maps which were measured for the same JJ containing a single DW 
when sweeping the magnetic field up and down. The random nature of the jumps suggests 
rearrangements of vortices that were pinned within the superconducting contacts. 

Temperature dependence of the critical current 
It is instructive to compare temperature dependences of 𝐼! in low and quantizing fields (Extended Data 
Fig. 9). In low 𝐵, where the proximity superconductivity is dominated by 2D Andreev-bound-state 
transport through the bilayer-graphene bulk, we observed a behavior similar to that reported previously 
for ballistic JJs made from monolayer graphene20,31. At 𝑇 > 2 K, the critical current is well described 
by the exponential dependence31,32: 

𝐼!(𝑇) ∝ exp(−𝑘8𝑇/𝛿𝐸),     (S1) 

where 𝑘8 is the Boltzmann constant. This dependence is characteristic of so-called long JJs, in which 
the suppression of 𝐼! is caused by thermally-induced decoherence between energy levels of quantum-
confined Andreev bound states. In ballistic junctions, 𝛿𝐸 is expected to be ∼ ℎ𝑣3/4𝜋"𝐿 31,32, which we 
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estimate as ∼ 0.3 meV for the device in Extended Data Fig. 9, taking into account the density dependent 
Fermi velocity 𝑣3 in bilayer graphene but ignoring the penetration of Andreev bound states into the 
superconducting electrodes32. The latter effectively increases 𝐿 and makes 𝛿𝐸 smaller. The fit in 
Extended Data Fig. 9a yields 𝛿𝐸 ≈ 0.2 meV (white dashed curve), in good agreement with the theory 
estimate. This conclusion about the long-junction regime and the absolute value of 𝛿𝐸 agrees with the 
previous analysis for ballistic JJs made from monolayer graphene20,31. 

At T below 2 K, zero-𝐵 differential resistance curves became hysteretic, exhibiting different 
superconducting boundaries for sweeping the dc current up and down. This is seen in Extended Data 
Figs. 9a,b as notable asymmetry for positive and negative 𝐼%!. The transition between zero- and finite- 
resistance states happened abruptly, which resulted in seemingly diverging 𝑑𝑉/𝑑𝐼 at the transition 
(Extended Data Fig. 9b). The hysteretic behavior is typical of underdamped JJs in which the switching 
current no longer represents the true 𝐼! (ref. 46). 

In quantizing 𝐵, the measured 𝑑𝑉/𝑑𝐼 curves were non-hysteretic and fully symmetric at all 𝑇. This is 
shown in Extended Data Figs. 9c,d for the case of 𝐵 = 3 T, well above the onset of the QH regime but 
sufficiently below 𝐻!". Superficially, the temperature dependence in Extended Data Fig. 9c looks 
different from that in Extended Data Fig. 9a. Accordingly, it is tempting to attribute this change to a 
transition into the short-junction regime at high B, where 𝐼!(𝑇) would no longer decrease exponentially 
with increasing 𝑇 but is expected to vary more gradually (roughly as the superconducting gap)31,47. The 
regime change seems plausible because of the transition from 2D transport through the graphene bulk 
to 1D transport along domain walls. However, note that 𝐼! in the QH regime at high 𝑇 was comparable 
to the probing current 𝐼(! (Extended Data Figs. 9c,d). Accordingly, there could be a tail of small 𝐼! 
extending to higher 𝑇, similar to the case of Extended Data Fig. 9a. Such a tail would be smeared by 
small but finite 𝐼(! and background radiation. Because of the smearing, the behavior in Extended Data 
Fig. 9c is inconclusive but, nonetheless, consistent with the long-junction regime, especially considering 
the fact that supercurrent in the QH regime (Extended Data Fig. 9c) disappeared at 𝑇 ≪ 𝑇! and was 
much smaller than in zero B (Extended Data Fig. 9a). 

Shapiro steps for 1D Josephson junctions 
For completeness, we show that the proximity superconductivity along domain walls in MTBs could 
also be observed as the inverse ac Josephson effect. The latter effect arises from phase locking between 
microwave (RF) radiation and the supercurrent through JJs which leads to so-called Shapiro steps in IV 
characteristics. The steps appear at quantized voltages: 

𝑉9 = 𝑀𝜙)𝑓/0,            (S2) 

where 𝑓/0 is the radiation frequency and 𝑀 is the step index48,49. In our experiments, RF excitation was 
provided by signal generator R&S SMB100A and transmitted through semi-rigid coaxial cables 
thermally anchored to different stages of the dilution refrigerator, with attenuation of ∼ 35 dB. The 
devices were irradiated from the cable’s open end that was positioned at a distance of ≈ 1 mm from the 
studied JJs. 

The Shapiro steps observed in the QH regime for JJs with one and multiple DWs are shown in Extended 
Data Fig. 10. Panel a illustrates how IV characteristics evolved as a function of the RF power 𝑃 at a 
fixed frequency. The steps gradually appeared and disappeared with varying the power, and higher 
order steps were clearly visible. The separation 𝛥𝑉 between steps increased linearly with the radiation 
frequency and was accurately described by eq. S2 (inset of Extended Data Fig. 10a). The width 𝛥𝐼9 of 
the Shapiro steps is expected to follow the equation49: 

𝛥𝐼9 = 𝐼!|𝒥9(𝑉/0/𝛥𝑉)|,     (S3) 

where 𝒥9 is the Bessel function of order 𝑀, and 𝑉/0 is the ac (radiation) voltage applied along a 
Josephson junction. To determine 𝛥𝐼9 experimentally, we measured the differential resistance 
𝑑𝑉/𝑑𝐼(𝐼%!) as a function of the RF power for fixed 𝐵, 𝑛 and 𝑓/0 (Extended Data Figs. 10b-d). Because 
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𝑉/0 = 𝛼𝑃&/", we used the proportionality coefficient 𝛼 as a single fitting parameter to scale the x-axes 
for these plots and obtain the best agreement with eq. S349. The pink curves in panels b-d of Extended 
Data Fig. 10 show examples of the expected boundary positions for the Shapiro steps. Detailed analysis 
of 𝛥𝐼9 for the first 4 steps is provided in Extended Data Fig. 10e. Good agreement between the 
experiment and eq. S3 is found for all our JJs measured under RF radiation and for both maxima and 
minima of supercurrent flowing along DWs (Extended Data Figs. 10b,c). 

Fabry-Pérot oscillations in the critical current in the quantum Hall regime 
As discussed in the main text, our JJs with AB/BA domain walls exhibited pronounced Fabry-Pérot 
(FP) oscillations in the critical current. Those appeared only in the QH regime where MTB’s 
conductance was dominated by electron transport along DWs. An example of these oscillations was 
shown in Fig. 3b of the main text. Further details about the oscillatory behavior are provided in Extended 
Data Fig. 11. It compares the differential resistance maps 𝑑𝑉/𝑑𝐼(𝑛, 𝐵) at zero and high dc biases. In 
the latter case (𝐼%! = 100 nA) and for fields above 1 T, the JJs were pushed into the normal state, in 
which SdH oscillations appeared (see Section 2 above; Extended Data Fig. 11a). For zero bias (𝐼%! = 
0), the resistance maps exhibited strong additional oscillations (Extended Data Fig. 11b). Those clearly 
emerged after the entry into the QH regime (2𝑟! < 𝐿) and, for the case of the JJ in Extended Data Fig. 
11, persisted up to 6 T. The oscillations exhibited small changes in their 𝑛 positions with increasing 𝐵 
which occurred in the direction opposite to that of SdH oscillations (Extended Data Fig. 11b). This 
unequivocally shows that the former oscillations were not related to Landau quantization. Note that the 
FP oscillations shown in Extended Data Fig. 11b do not represent oscillations in the critical current. 
Instead, minima and maxima in 𝑑𝑉/𝑑𝐼(𝑛, 𝐵) reflect contrasting steepness of IV characteristics at 
different positions on the map. Nonetheless, the observed maxima in the resistance maps are expected 
to indicate conditions under which electron transmission through JJs was minimal and, therefore, should 
also correspond to minima in 𝐼!. To corroborate this consideration, we measured full 𝑑𝑉/𝑑𝐼(𝐼%;) 
characteristics for many fields and carrier densities, extracted the critical current values directly and 
plotted them as a function of both 𝑛 and 𝐵. This approach was extremely time-consuming so that we 
had to resort to relatively large steps in magnetic field of 0.5 T (Extended Data Fig. 11c). Nonetheless, 
FP oscillations in the critical current are clearly seen on the latter map, and minima in 𝐼! closely match 
maxima in the resistance oscillations of Extended Data Fig. 11b, as expected. 

Minima in the critical current for FP oscillations are expected to occur at integer 𝑁 = 𝐿/(𝜆3/2) where 
𝜆3 is the Fermi wavelength. Under these conditions, interference between incident and reflected electron 
waves within the graphene cavity between superconducting contacts leads to standing waves20,25. As 
seen in Fig. 3b of the main text and Extended Data Figs. 11b,c, the observed minima and maxima in 𝐼! 
occurred approximately equidistantly along the 𝑛-axis despite changing 𝑛 by more than an order of 
magnitude. This suggests that 𝜆3 of electrons responsible for the observed FP resonances changed 
relatively little with 𝑛. Such behavior cannot be explained assuming a 2D electronic spectrum, as in the 
case of the low-𝐵 FP oscillations reported previously20,25. Indeed, for any 2D spectrum, 𝜆3 ∝ 𝑛'&/" 
which should lead to a square root dependence 𝑁(𝑛) rather than the roughly-linear one observed 
experimentally (Fig. 3c of the main text). To explain this surprising result, we calculated the electronic 
spectrum for 1D electrons confined within AB/BA domain walls and found 𝜆3 as a function of gate 
doping (next Section). The resulting curve is plotted in Fig. 3c of the main text and shows good 
agreement between experiment and theory. In both cases, the dependences are slightly sublinear and, 
importantly, do not extrapolate to zero 𝑁 in the limit of low densities. The latter observation reflects 
the fact that AB/BA domain walls support a finite electron density within charge-neutral MTBs29. The 
observed small shift of the FP resonances towards lower 𝑛 with increasing 𝐵 remains to be understood 
(Extended Data Figs. 11b,c). Tentatively, we attribute the shift to field-induced changes in electrostatic 
confinement of 1D electrons, which are not accounted for in the model described in ref. 29. 

One-dimensional electrons in AB/BA domain walls 
Although the theory provided in this section was presented in ref. 29, we believe it would be useful to 
briefly review the calculations and somewhat simplify them, focusing on parameters most suitable for 
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our experimental situation and, in particular, the case of DWs with 𝑤 ≈ 10 nm14,18,50. As a model, we 
consider a partial screw dislocation aligned along the armchair direction, that is the most energy 
favorable direction for AB/BA domain walls in MTBs18. Local deformations around such a DW are 
illustrated in Extended Data Fig. 12a where the color scale indicates a relative shift between top and 
bottom graphene lattices. The dislocation’s Burgers vector is U0, 𝑎/√3V, where 𝑥 and 𝑦 axes denote 
zigzag and armchair directions, respectively. The corresponding displacements can be found by solving 
the Frenkel-Kontorova model51 and are given by29,50: 

𝑢l⃗ (𝑥) ≈ n0, "<=√? arctanU𝑒
"@/AVt,         (S4) 

where the interlayer shift is assumed to be zero for AB stacking (large negative 𝑥) and reaches the 
Burgers vector value on the BA side. The effective width 𝑤 of AB/BA walls depends on the interlayer 
adhesion energy and graphene’s elastic constants but may also be affected by the presence of 
encapsulating hBN, DW orientation and strain induced during fabrication. Below we assume 𝑤 = 
10 nm, as estimated in ref. 50 and consistent with experimental images of DWs in MTBs14,18. 

To describe electronic states in the vicinity of DWs, we use a 4×4 hybrid 𝑘 ⋅ 𝑝 – tight-binding 
Hamiltonian29,51,52: 

𝐻w± = x
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with a position-dependent (local) interlayer hopping: 
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Here, �⃗�± = U±𝜎R, 𝜎2V is the ‘vector’ of two Pauli matrices for ±𝐾 valleys, 𝛾& ≈ 380 meV is the 
interlayer hopping parameter, 𝑟) = �0, &

√?
𝑎 + 𝑢� is the lateral interlayer offset counted from AA 

stacking and ±𝐾ll⃗ ),&," are the triads of equivalent Brillion zone corners corresponding to ±𝐾 valleys. 
Note that hopping matrices 𝑇z± are same in the two valleys, and 𝑘l⃗ = −𝑖U∂R, ∂2V −

S
ℏ
(0, 𝐵𝑥) incorporates 

the magnetic vector potential (in the Landau gauge). 

Without magnetic field, the calculated spectra in the vicinity of a DW are shown in Extended Data Fig. 
12b. The black dots represent energies 𝜀U𝑘2V of 1D electronic states propagating along the DW. They 
lie below the nearly-parabolic continuum arising from the bulk bilayer graphene (as indicated in blue) 
and are clearly separated from it. Upon merging into the continuum, the 1D states become quasi-
stationary, that is, they mix with bulk states and acquire a finite lifetime, so that we cannot identify the 
quasi-stationary states among those computed at high 𝑘2 values at zero 𝐵 (in the blue region of Extended 
Data Fig. 12b). 

In quantizing 𝐵, the spectral continuum splits into Landau levels (LLs) shown in Extended Data Figs. 
12c,d. The levels are nondispersive sufficiently away from the DW with wavefunctions being centered 
at distances 𝑋 = ℏ𝑘2/𝑒𝐵 from the middle line 𝑋 = 0. Several sets of dispersive features can also be 
seen in the figures. Some of them evolve with increasing 𝐵, indicating that they originate from skipping 
orbits (QH edge states) induced by DWs. However, there is a special set of dispersive features, which 
closely follows the 1D states computed at 𝐵 = 0 and remains practically unaffected by magnetic field 
(Extended Data Figs. 12c,d). These states are marked by orange lines drawn through the points of 
highest drift velocities ∂𝜀/ ∂𝑘2 found for different LLs. This spectral behavior reveals that quasi-
stationary 1D states associated with the DW get stabilized by the opening of cyclotron gaps and also 



 25 

become mixed perturbatively with LLs, giving the latter the dispersive features highlighted in orange 
in Extended Data Fig. 12. Despite the mixing, the 1D states are expected to propagate long distances 
along DWs before they get affected by the bulk29. The gap induced by interlayer bias (due to doping by 
gate voltage) is found to have little effect on the DW-bound states at higher energies (Extended Data 
Fig. 12e). Importantly, the 1D states are centered at 𝑋 = 0 for both valleys and, within each valley, can 
propagate in both directions along the same trajectory. This means that these DW-bound states are 
nonchiral as they have the same dispersions for both ±𝐾 valleys, in contrast to the well-known valley-
polarized chiral modes14–18,26–28 which appear inside the BLG gap upon symmetry breaking by interlayer 
bias (Extended Data Fig. 12e). 

Using the described calculations, we evaluated the Fermi wavevector 𝑘23 for 1D DW-bound states as a 
function of the global carrier density in bilayer graphene29. To this end, we used the known dependence 
for the Fermi energy 𝐸3 on 𝑛 for the bulk bilayer and then found 𝑘23 from the dependences 𝜀U𝑘23V = 𝐸3 
calculated in Extended Data Figs. 12b,c. The resulting 𝑘23(𝑛) is plotted in Extended Data Fig. 12f and 
was used to fit positions of the FP resonances found experimentally (see Fig. 3c of the main text). Let 
us emphasize that the finite value 𝑘23 ≈ 0.1 nm'& computed for a neutral MTB reflects the fact that the 
1D dispersion in Extended Data Fig. 12b crosses the conduction-valence band edge of the bulk 
dispersion in bilayer graphene. 


