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Abstract

The first part of this work has been motivated by a multivariate space weather dataset.

When the Sun releases high-energy particles into space due to a solar explosion, we

experience magnetic storms, that once reaching Earth can last hours or days. Although

solar flares emmited by the Sun cannot cause any harm to humans on Earth, if they

are too severe they can damage machinery and techonology, such as satellites and radio

communication. Thus, the modelling of extreme solar activity is important so we can be

prepared for undesireable extreme events. Extreme value analysis can help professionals

to understand the risks that severe geomagnetic field fluctuations can pose to Earth. For

example, we can characterise the tail of the distribution of geomagnetic disturbances and

the probability of extreme events. Hence, we perform a pairwise analysis for modelling

the extremes of multiple bivariate processes of geomagnetic activity considering two

copula models. The aim is to model the joint extremal probability and depict the

pairwise extremal dependence structure between pairs of sites in two regions in Europe.

The results show that the dependence structure differs in Northern and Southern Europe

and that the dependence weakens as the distance increases.

The second part of this work proposes a control chart for detecting small shifts in

the mean of a double-bounded process, such as fractions or proportions, in the presence

of control variables. For this purpose, we consider the cumulative sum control chart

applied to different residuals of the beta regression model. We conduct an extensive

Monte Carlo simulation study to evaluate and compare the performance of the proposed
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control chart with two other control charts in the literature in terms of run length

analysis. The numerical results show that the proposed control chart is more sensitive

to changes in the process than its competitors and that the quantile residual is the most

suitable residual to be used in our proposal. Finally, based on the quantile residual, we

present and discuss applications to real and simulated data to show the applicability of

the proposed control chart.
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Chapter 1

Statistical modelling of space

weather extremes

1.1 Introduction

Space weather can be described as the result of interactions between the behaviour of

the sun and the Earth’s magnetic field and atmosphere. During periods of high solar

activity, large quantities of energised particles are released from the sun into Earth’s

magneto- and ionospheres at high speeds, causing instability in these parts of the atmo-

sphere. These solar storms can miss Earth completely, for example, Baker et al. (2013)

states that the powerful solar storm that occurred on 23rd July 2012 would have had

devastating consequences if it was Earth-directed (Ngwira et al., 2013). However, when

they do strike Earth in a direct hit, they have the potential to affect conditions in the

Earth’s atmosphere, and sometimes, on the Earth’s surface. As Earth’s magnetic field

redirects the particles towards the polar caps, the astonishing phenomenon known as

auroras (Northern and Southern lights) starts to form. The red, green, and pink lights

flying on the sky at high or low latitudes are the most well-known and visible effect

of intense solar disturbances, and although it fascinates skywatchers, the effects of ex-
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treme space weather can be threatening to infrastructure, technology, communications

systems, railway signalling systems, pipelines, and personal health (Boteler et al., 1998;

Trichtchenko and Boteler, 2001; Wik et al., 2009; Eroshenko et al., 2010; Roy and Paul,

2013; Thaduri et al., 2020; Boteler, 2021).

The study of the sun-Earth interaction has gained attention in the last few decades

due to a series of events that took place in the past. The largest known solar-induced

disturbance that affected Earth directly was the solar storm of September 1859 (Green

and Boardsen, 2006; Cliver, 2006). This event was first observed by Carrington (1859)

and Hodgson (1859) and 17 hours later the Earth experienced a huge, red auroral display

from a coronal mass ejection, which was visible from within 23◦ of the geomagnetic

equator in both Northern and Southern hemispheres (Kimball, 1960).

The aurora of 1859 is known to be the first observation of a solar flare (Cliver and

Svalgaard, 2004). Other massive solar storms happened on August 4th , 1972 (Anderson

et al., 1974) and March 13th , 1989 (Allen et al., 1989; Czech et al., 1992; Bolduc, 2002).

The major geomagnetic disturbance in 1972 caused an outage of a communication

cable system on the Plano, Illinois, to Cascade, Iowa, and geomagnetically induced

currents (GIC) from the extreme solar event in 1989 caused the failure of the Hydro-

Quebec power system and a blackout in the Quebec Province that lasted up to nine

hours. Besides millions of people going without energy power that morning, many

other consequences on and near-Earth were reported, including out-of-control satellites

for several hours worldwide and difficulties in high-frequency radio communication.

Geomagnetic disturbances like the ones that happened in 1972 and 1989 are rare, so

learning about space weather is vital to prepare us for the next large geomagnetic storm

when it arrives.

As the impacts caused by GIC only occur when there are extreme changes in the

electromagnetic field, extreme value models can help to characterise the behaviour of

extreme space weather events and also describe the extremal dependence structure
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between measurements from ground-based magnetometers.

Among the several ways to measure changes in the geomagnetic field, we shall study

the absolute change in time of the horizontal component in the Earth’s geomagnetic

field, known as | dBH/dt |. This work explains the extremal dependence structure of

daily maximum absolute one-minute changes in dBH/dt through a pairwise approach.

This type of analysis is useful because we can estimate the probability of joint events for

two given locations and obtain a partial summary of the spatial extremal dependence,

which is not possible to do marginally. However, at the same time that a pairwise

approach is simple, yet powerful, it does not allow for global dependence inference and

interpolation, which would require a full spatial model applied to all sites together.

To the best of our knowledge, there is no work in the literature aimed to describe the

pairwise extremal behaviour of geomagnetic activity. In this regard, the chief contribu-

tion of this work is to measure the tendency for large geomagnetic field fluctuations at

separate locations to occur simultaneously and the strength of extremal dependence in

the joint upper tail as the geodesic distance between sites is increased.

1.2 Space weather data

Data on space weather events is currently available through the SuperMAG initiative, a

project led by Johns Hopkins University (Gjerloev, 2009), which consists of a collection

of organisations and national agencies that work together to provide data on Earth’s

geomagnetic field to study the behaviour of the ionospheric and magnetospheric current

systems. The project currently operates more than 300 ground-based magnetometers

worldwide and full details on the extreme value theory (EVT) data processing can be

found in Gjerloev (2012).

In this work, we shall study the extreme behaviour of geomagnetic field fluctuation

measurements from the stations in Figure 1.2.1 (information on the derivation of the
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Figure 1.2.1: Location of the SuperMAG sites considered in this work; blue dots rep-
resent the Northern dataset and black dots the Southern dataset.

measurements can be found in Rogers et al. (2020)). Table 1.2.1 gives the International

Association of Geomagnetism and Aeronomy (IAGA) code of the observatories, location

and geographic coordinates. This region comprises sites in Northern and Southern

Europe, totaling 20 observatories covering a range of latitudes. Blue dots represent the

Northern dataset, where we have stations in the auroral ring (65◦N− 70◦N) and north

pole (70◦N− 90◦N) zones. In contrast, the Southern dataset (black dots) has stations

in the subauroral zone (60◦N− 65◦N) and lower latitudes (39◦N− 60◦N).

To illustrate the nature of the space weather data we studied in this work, Fig-

ures 1.2.2 and 1.2.3 provide some plots of the original data for select observatories in

the Northern and Southern datasets. We observe some gaps in the data when consid-

ering the whole span period, and the extent of missingness varies across the datasets.

This variability can lead to biased estimates of extreme events, making it difficult to

predict the impact of future space weather rare events.
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Table 1.2.1: IAGA code, location and geographic coordinates of the 20 sites considered
in this work.

IAGA code Location Latitude Longitude

ABK Abisko, Sweden 68.35 18.82
AND Andenes, Norway 69.30 16.03
BJN Bjørnøya, Svalbard 74.50 19.20
CLF Chambon-la-forêt, France 48.02 2.27
DMH Danmarkshavn, Greenland 76.77 −18.63
DOU Dourbes, Belgium 50.10 4.60
ESK Eskdalemuir, Scotland 55.32 −3.20
HAD Hartland, England 50.98 −4.48
HRN Hornsund, Svalbard 77.00 15.60
LER Lerwick, Scotland 60.13 −1.18
LRV Leirvogur, Iceland 64.18 −21.70
LYR Longyearbyen, Svalbard 78.20 15.83
MAB Manhay, Belgium 50.30 5.68
NAL Ny Ålesund, Svalbard 78.92 11.95
SCO Ittoqqortoormiit, Greenland 70.48 −21.97
SOD Sodankylä, Finland 67.37 26.63
SOR Sørøya, Norway 70.54 22.22
SPT San Pablo Toledo, Spain 39.55 −4.35
TRO Tromsø, Norway 69.66 18.94
VAL Valentia, Ireland 51.93 −10.25
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Figure 1.2.2: Daily maxima geomagnetic field fluctuation measurements from 1969 to
2016 at stations ABK, AND, BJN, and DMH from the Northern dataset.

1.3 On the literature review of space weather ex-

tremes modelling

In the literature, there is limited work regarding extreme value analysis of the Super-

MAG data and those available only apply univariate modelling approaches. The first

attempts to apply extreme value analysis to geomagnetic data used datasets comprising

geomagnetic indices, rather than raw activity measurements. Tsubouchi and Omura

(2007) and Silrergleit (1996) modelled the absolute value of the disturbance storm time

(Dst) index proposed by Sugiura (1964). Such an index gives information on the ge-

omagnetic activity at four stations near Earth’s equator, and is used to analyse the

strength and duration of geomagnetic storms. Values less than −50 nanotesla suggests

high geomagnetic activity. Siscoe (1976) analysed the average ”half-daily” aa index

compiled by Mayaud (1973), which represents the geomagnetic activity level at an in-
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Figure 1.2.3: Daily maxima geomagnetic field fluctuation measurements from 1969 to
2016 at stations CLF, DOU, ESK, and HAD from the Southern dataset.

variant latitude of about 50 degrees. Silrergleit (1999) studied the maximum average

24–hour global disturbance AA∗ index, derived from the aa index, to predict when the

next large geomagnetic storms could occur. Koons (2001) studied the annual maxima

of the magnetic index Ap, which is a measure of the geomagnetic activity level over the

world for a given day. Although these indices were designed to measure geomagnetic

activity of the Earth’s ionized environment field caused by irregular current systems,

they usually underestimate large geomagnetic storms because of the inadequate distri-

bution of the stations or insufficient observatories to compute the indices (Kozyreva

et al., 2018). Thus, analysing geomagnetic activity directly can give more realiable

estimates of the probability of occurence of large geomagnetic field variations and is

more relevant to the assessment of space weather hazard to Earth and technology.

The first attempt to use EVT to analyse geomagnetic measurements was by Thom-

son et al. (2011). They analysed geomagnetic activity from 28 European sites, across
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a range of latitudes, by fitting the generalised Pareto (GP) distribution to one-minute

geomagnetic time series of the horizontal field and declination. A reasonable threshold

chosen by the authors was the 99.97th quantile for each station and they also used a

declustering method to separate clustered extremes before fitting the distributions. Us-

ing the fitted distributions, they predicted return levels for each site for return periods

as long as 200 years. In conclusion, both measured and extrapolated extreme values

generally increase with latitude.

Wintoft et al. (2016) also considered a subset of European sites, analysing extremes

of geomagnetic activity by fitting a generalised extreme value (GEV) distribution to

the annual maxima. Their results showed that at higher latitudes, stations present

higher probability of large values of geomagnetic perturbances compared to stations in

lower latitudes. In addition, they also found that the tail distribution of observatories

in high latitudes decays to zero more quickly and that this transition occurres around

59◦N− 61◦N latitudes.

More recently, Rogers et al. (2020) used univariate EVT to model the probability

of occurrences of | dBH/dt | from 125 sites across the globe. The authors fitted the

GP distribution to observations exceeding the 99.97th quantile, presented distribution-

based predictions of return levels for return periods ranging from 5 to 500 years, and

examined the probability of large values of geomagnetic field fluctuation as a function of

month, magnetic local time (MLT), and the direction of the fluctuation. The authors

findings state that the occurrence of large geomagnetic field fluctuations is strongly

dependent on latitude and MLT. For example, sites in the auroral zone are more likely

to experience extreme values at 0300-1100 MLT. The use of MLT in distributions of the

occurrence probability of extreme geomagnetic measurements is useful to refine return

levels of estimates of | dBH/dt | for operations limited to certain times of the day.

In addition, Rogers et al. (2021) studied extreme geomagnetic fluctuations over a

range of periods in a smaller timescale, from 1 to 60 minutes, to understand the causes
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and impacts of GIC on these fluctuations. The authors described the variations in the

geomagnetic field with geomagnetic latitude and MLT. The GP tail distribution was

fitted to the data above the 99.97th quantile and return levels were predicted for both

the ramp changes and the root-mean-square of fluctuations over the periods.

1.4 Pairwise modelling of space weather extremes

EVT is widely used in many environmental and geophysical contexts where the interest

is in the tails of the distribution rather than in the body. However, events occurring in

the tails are, by nature, rare, often leading to a characterisation of the tail behaviour

based on a few data points. EVT provides asymptotic distributions so we are able to

extrapolate beyond the largest observations and predict extreme events. Univariate

EVT describes the tail behaviour of univariate distributions and motivates a statistical

distributions for a single response, for example, analysing extremes of geomagnetic

activity from a single site in a particular location as in Rogers et al. (2020). Multivariate

EVT involves the analysis of the joint tail behaviour of two or more random variables,

such as analysing the joint distribution of geomagnetic field fluctuations from two or

more observatories in different locations.

Before undertaking a full spatial analysis, a pairwise analysis of each pair of sites

in a pre-determined region can help to obtain a general summary of the dependence

structures that exist in that area. This information helps to understand in more detail

the underlying process, such as spatial non-stationarity and the degree of dependence

between sites in different latitudes, so that appropriate spatial models can be identified

and extrapolation is more reliable. Thus, in this work, we shall focus on the special

case of a bivariate model fitted to the pairwise extremes of geomagnetic field fluctu-

ations in Europe for several pairs of sites. In this section, we introduce the copula

function, the extremal dependence measure often applied in exploratory bivariate ex-
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treme analyses, and two copula models - the bivariate Gaussian copula and the bivariate

Huser-Wadsworth (HW) copula (Huser and Wadsworth, 2019). The copula models are

outlined in Section 1.4.2.

1.4.1 Extremal dependence

Modelling the extremal dependence structure between random variables in a mul-

tivariate analysis is made complex when the variables do not have common marginal

distributions. One useful and well-known method that can be used to depict such

structures is the copula function, which places all variables on common margins.

The copula function

Let FY1 and FY2 be the cumulative distribution functions (CDFs) of two random vari-

ables Y1 and Y2, respectively. By the probability integral transform (PIT), the random

variables U1 = FY1(Y1) and U2 = FY2(Y2) each follow a uniform distribution on the

unit interval [0, 1]. Given (u1, u2) ∈ [0, 1]2, the copula function is defined as the joint

distribution of U1 and U2, i.e.

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2)

= P (FY1(Y1) ≤ u1, FY2(Y2) ≤ u2) .

The definition above motivates the following theorem.

Theorem 1.4.1 (Sklar’s theorem (Sklar, 1959)). Consider a two-dimensional joint

distribution function F , with marginal distributions FY1 and FY2, where F (y1, y2) =

P (Y1 ≤ y1, Y2 ≤ y2). Then, there exists a copula C such that

F (y1, y2) = C(FY1(y1), FY2(y2)). (1.4.1)
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If FY1 and FY2 are continuous, then the copula C is unique. Conversely, if we have a

copula C : [0, 1]2 → [0, 1] and marginals FY1(y1) = F (y1,∞) and FY2(y2) = F (∞, y2),

then F (y1, y2) in (1.4.1) is a bivariate CDF with marginals FY1 and FY2.

It is noteworthy that the copula function can be extended to d-dimensional distri-

butions. For independent random variables, we have C(u1, u2) = u1u2, whilst if the

random vector (Y1, Y2) is perfectly dependent, we have C(u1, u2) = min(u1, u2). Fur-

ther details about copula theory and multivariate models can be found in Nelsen (2007)

and Joe (1997).

As a simple example, in Figure 1.4.1(a), geomagnetic field fluctuations from sites

CLF (2.27◦W, 48.02◦N) and DOU (4.60◦W, 50.10◦N) are plotted on the original scale.

In Figures 1.4.1(b), 1.4.1(c), and 1.4.1(d), the data have been transformed to three dif-

ferent marginal distributions, namely uniform, Frechét, and exponential, respectively.

In order to transform the original data to uniform margins we used the peaks-over-

threshold (POT) approach described in (1.4.7) to model exceedances above a 95th quan-

tile for each margin, and the marginal empirical distribution below this threshold. From

the uniform margins we can then transform to any marginal distribution using the PIT.

Certain choices of margins can be helpful for visualising the extremal dependence, e.g.

Frechét and exponential.

Tail correlation

In EVT, the tails of the distributions are of most interest, and analysing their joint

dependence structures is one important step that must be considered in multivariate

extremes. Suppose we have two random variables, Y1 and Y2, and we want to know

whether they are dependent in the tails. In the case of Y1 and Y2 being non-identically

distributed, we first transform (Y1, Y2) to common standard uniform margins using the

PIT. One possibility is then to study P (U2 > u | U1 > u) for large u.
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Figure 1.4.1: Daily maxima geomagnetic field fluctuation measurements from 1995 to
2015 at stations CLF in France (2.27◦W, 48.02◦N) and DOU in Belgium (4.60◦W,
50.10◦N). Original data (a), transformed to uniform (b), Fréchet (c), and exponential
(d) margins using the PIT method.

More generally, considering a large value of u, we define

χ = lim
u→1

P (U2 > u | U1 > u) , (1.4.2)

where 0 ≤ χ ≤ 1 is called the tail correlation. The quantity χ represents the probability

of one variable being extreme given that the other is extreme. We now define a sub-

asymptotic version of (1.4.2) as

χ(u) = P (U2 > u | U1 > u)

=
P (U1 > u,U2 > u)

P (U1 > u)

=
C̄(u, u)

1− u
, (1.4.3)



CHAPTER 1. MODELLING SPACE WEATHER EXTREMES 13

for 0 ≤ u ≤ 1, where C̄(·, ·) is the joint survivor function of U1 and U2. It follows that

χ = lim
u→1

χ(u).

When χ > 0, we say the variables are asymptotically dependent (AD) in the ex-

tremes, whereas χ = 0 defines variables that are asymptotically independent (AI). The

advantage of using χ is that it provides the relative strength of dependence for AD

variables, with higher values of χ corresponding to stronger dependence in the joint ex-

tremes. The limitation of χ is that it does not discriminate between different strengths

of extremal dependence for AI data (χ = 0).

The limit in (1.4.2) cannot be estimated exactly from a finite sample size, so es-

timation of χ consists of examining the behaviour of χ(u) as u → 1. The simplest

estimation method uses the empirical distribution of (Yi1, Yi2), i = 1, . . . , n, for which

we obtain the empirical estimate of (1.4.3) as

χ̂(u) =

n∑
i=1

1(F̃Y2(Yi2) > u, F̃Y1(Yi1) > u)

n∑
i=1

1(F̃Y1(Yi1) > u)
,

where

F̃Y1(y1) =
n∑
i=1

1(Yi1 ≤ y1)

n+ 1
, and F̃Y2(y2) =

n∑
i=1

1(Yi2 ≤ y2)

n+ 1
.

When the focus is on the modelling of the dependence between the response at

two or more spatial locations, we can also estimate χ(u) as a function of a distance.

We define this as χh(u), where h is the distance between two locations s1 and s2, i.e.

h = |s1 − s2|. In this spatial setting, the conditional probability distribution of U1 and

U2 varies as a function of the distance h, and as well as analysing the behaviour of

χ(u) for u → 1, we are now also interested in examining the behaviour of χh(u) as h

increases. Because we expect observations recorded farther apart to exhibit a weaker

dependence, we usually observe χh(u) decreasing with h for a given u. By analysing
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multiple pairs of sites in a region, the pairwise estimates viewed as a function of distance

can be used to understand how the extremal dependence changes with distance.

1.4.2 Copula models

The extremal dependence measure χh(u) defined in Section 1.4.1 provides a description

of the extremal dependence but does not give a basis for prediction or extrapolation. In

a spatial context, such a measure helps us understand the dependence structure across

a range of locations. However, for more complete inference on the extremal dependence

we need to fit some models to the data. In this section, we introduce the bivariate

Gaussian and the bivariate HW copula models which will subsequently be fitted to

the extremes of the geomagnetic field fluctuations. One advantage of the bivariate HW

model is that it can capture both asymptotic dependence and asymptotic independence,

in contrast with the Gaussian copula which only captures asymptotic independence.

The justification for using these models is that the Gaussian copula is nested in the

HW copula, thus aiming to verify whether a more complex but flexible model is needed.

Bivariate Gaussian copula

In spatial applications, multivariate Gaussian distributions form the basic building

block of many spatial models due to their attractive properties and mathematical

tractability. The bivariate Gaussian distribution summarizes joint dependence be-

haviour through a correlation parameter. The study of how estimates of these correla-

tion parameters evolve over space provides insights into a spatial dependence structure.

Although often viewed as providing a good fit to the body of the data rather than the

tails, we can still use a Gaussian model to explore extremal dependence by adapting it

appropriately to focus only on those parts of the distribution where at least one variable

is extreme, as in Bortot et al. (2000).

Let (Z1, Z2) be a pair of random variables following a standard bivariate Gaussian
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distribution. The probability density function of (Z1, Z2) is

φZ1,Z2(z1, z2) =
1

2π
√

1− ρ2
exp

{
−z

2
1 − 2ρz1z2 + z22

2 (1− ρ2)

}
, (1.4.4)

where ρ is the correlation parameter and −1 ≤ ρ ≤ 1. The bivariate Gaussian copula

is given by:

C(u1, u2) = ΦZ1,Z2

[
Φ−1(u1),Φ

−1(u2); Σ
]
, (1.4.5)

where Φ−1 is the Gaussian quantile function and ΦZ1,Z2 is the joint bivariate distribution

function of a Gaussian random variable with mean vector zero and correlation matrix

Σ =

1 ρ

ρ 1

 . (1.4.6)

In order to estimate the correlation ρ of the bivariate Gaussian copula to the ex-

tremes of geomagnetic field fluctuations, we adopt the censored likelihood approach used

by Huser and Wadsworth (2019) and several earlier articles on extremal dependence

modelling, which considers the full contribution of the values higher than a threshold

only.

We assume that our data comprise n independent observations of a pair of random

variables (Y1, Y2) that come from two different locations. The ith observation at the jth

location is denoted by Yij, i = 1 . . . , n, j = 1, 2. As the marginal distributions might

not be the same and to ensure that they have the required exponential upper tails,

we use a semi-parametric approach proposed by Keef et al. (2013) to transform the

replicates at each station sj, j = 1, 2. This procedure uses the GP distribution function

for values above a high threshold u, and the empirical distribution function, which we

denote F̃ (·), otherwise. Thus, let Yj be the geomagnetic fluctuations at station sj, the
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distribution function is given by

F (yj) =


1− λuj

{
1 +

ξj(yj − uj)
σuj

}−1/ξj
+

yj ≥ u,

F̃ (yj) yj < u,

(1.4.7)

where λuj = 1−F (uj), σuj > 0, and y+ = max(y, 0). Herein, uj is a high, user-selected

quantile of the data. Then, we can transform each random variable to uniform margins

by doing Uij = F̂sj(Yij).

After transformation of the variables to uniform margins, the correlation needs to

be estimated. The censored log-likelihood of the Gaussian copula model based on n

independent observations from a pair of random variables (Y1, Y2) is given by:

` (ψ) =
n∑
i=1

logL (ψ)i , (1.4.8)

where ψ = ρ. For chosen high quantiles u?1 and u?2 on the unit interval (0, 1), the

contributions of the likelihood are defined as

L (ψ)i =



C1,2(u
?
1, u

?
2;ψ) Ui1 < u?1, Ui2 < u?2,

c1,2(Ui1, Ui2;ψ) Ui1 > u?1, Ui2 > u?2,

C1(Ui1, u
?
2;ψ) Ui1 > u?1, Ui2 < u?2,

C2(u
?
1, Ui2;ψ) Ui1 < u?1, Ui2 > u?2.

(1.4.9)

The cases above correspond to an exceedance at none, both, at site 1 but not site 2,

and at site 2 but not site 1, respectively. The contribution of the censored observations

(both measurements below the threshold) C1,2(u
?
1, u

?
2;ψ) in (1.4.9) is given by (1.4.5),
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and for the remaining it follows that

c1,2(u1, u2;ψ) = φZ1,Z2

[
Φ−1(u1),Φ

−1(u2); Σ
] {
φ
[
Φ−1(u1)

]}−1 {
φ
[
Φ−1(u2)

]}−1
,

C1(u1, u2;ψ) = Φ

[
Φ−1(u2)− ρΦ−1(u1)√

1− ρ2

]
,

C2(u1, u2;ψ) = Φ

[
Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

]
,

where φZ1,Z2 is the bivariate Gaussian density function in (1.4.4), with correlation ma-

trix (1.4.6) and mean vector zero, and φ is the marginal Gaussian density. Likeli-

hood (1.4.8) is maximised to give a maximum likelihood estimate ψ̂.

Bivariate Huser-Wadsworth copula

In some environmental applications, the dependence weakens as we increase the distance

between random variables but χ(u) does not reach zero (asymptotic independence). It

can be difficult to determine whether data are fully AD or AI at finite levels, but most

models only exhibit one type of dependence or the other. Huser and Wadsworth (2019)

introduced a model for bivariate or spatial data that covers both cases.

Let (W1,W2) be a random vector with Gaussian copula and standard Pareto mar-

gins, and R an independent standard Pareto random variable. The authors define the

dependence model through the following construction:

(X1, X2) = Rδ(W1,W2)
1−δ, δ ∈ [0, 1]. (1.4.10)

When δ > 1/2, (X1, X2) exhibits asymptotic dependence, and when δ ≤ 1/2 it exhibits

asymptotic independence. The case δ = 0 corresponds to the Gaussian copula, and

δ = 1 to perfect dependence. The parameter that describes the relationship between

W1 and W2 is θ. The copula defined by construction (1.4.10) can be fitted to data as

described below.
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The parameter estimation method for the bivariate HW copula follows the same

approach used for the bivariate Gaussian copula. Let ψ = (δ, θ)> be the parameter

vector. The censored log-likelihood based on n independent observations from the

copula of (1.4.10) is given by (1.4.8) and (1.4.9), where each component of the likelihood

is given by:

C1,2(u1, u2;ψ) = FX1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
]
,

c1,2(u1, u2;ψ) = fX1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
] {
fX1

[
F−1X1

(u1)
]}−1 {

fX2

[
F−1X2

(u2)
]}−1

,

C1(u1, u2;ψ) = F
[1]
X1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
] {
fX1

[
F−1X1

(u1)
]}−1

,

C2(u1, u2;ψ) = F
[2]
X1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
] {
fX2

[
F−1X2

(u1)
]}−1

,

where FX1,X2 and fX1,X2 are the joint distribution function and density, re-

spectively, of the process (X1, X2), FX1 , FX2 and fX1 , fX2 are the marginal

distribution functions and densities of the same underlying process, respec-

tively, F
[1]
X1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
]

= ∂FX1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
]
/∂F−1X1

(u1), and

F
[2]
X1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
]

= ∂FX1,X2

[
F−1X1

(u1), F
−1
X2

(u2)
]
/∂F−1X2

(u2). More details on

the model and expressions for these quantities can be found in Huser and Wadsworth

(2019). Again, we maximise likelihood (1.4.8) to obtain ψ̂ = (δ̂, θ̂)>.

When accounting for uncertainty, either for maximum likelihood estimators (MLEs)

ψ̂ or empirical estimate of χ(u), the measures were obtained through the stationary

bootstrap resampling method of Politis and Romano (1994) for both models. This ap-

proach is based on resampling blocks where the length of each block follows a geometric

distribution, thus keeping any temporal dependence structure among observations.

1.4.3 Results and discussion

In this section, we shall report the results of the bivariate extreme value analysis we

conducted for multiple pairs of sites in each of the two regions shown in Figure 1.2.1.
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The data in each site present a significant amount of missing values due to quality

concerns or magnetometers not being active for the whole span period. The percentage

of missingness for each site as well as the cross-site average for each dataset are shown

in Table 1.4.1. On average, both datasets are missing almost half of their data. To

overcome the problem of incomplete data and be able to fit the bivariate Gaussian

and HW copula models, we ignored all days for which there was a missing value at

at least one location. Thus, for the Northern dataset (blue dots in Figure 1.2.1),

the total final number of observations is 4340, which corresponds to daily events (not

always consecutive) from 11 sites from 1996 to 2015. The missing data for this dataset

accounts for 75.25% of the measurement period. For the Southern dataset (black dots in

Figure 1.2.1), we have a final sample size of 5089 daily events (not always consecutive)

from 9 sites from 1997 to 2012, with missing data accounting for 70.97%. Despite

having to discard the majority of the observations, we still have a sufficient sample size

to conduct the pairwise analysis.

In the bivariate Gaussian model we estimate the correlation parameter ρ between

the response observed at two locations whilst in the bivariate HW model we estimate

the extremal dependence through δ and θ. Before fitting the models, the data are

transformed to uniform margins using (1.4.7) and a 95% site-specific threshold. For

the copula model fitting, the selected threshold also corresponds to the 95th quantile of

the data in each site. The distance considered in this work was the geodesic distance,

which is the distance between two sites across the curved surface of the world. Every

distance unit in this work is equivalent to 100 kilometers.

By taking a first look at the empirical values of χh(u) for a range of thresholds u in

Figure 1.4.2, we observe that the rate at which the dependence decreases with distance

in the Northern region is faster for higher thresholds. The dependence for sites that are

closer is stronger than for those sites that are far away, but it still decreases for extreme

levels. For both sites in the auroral ring zone, the extremal dependence goes from strong
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to moderate as we increase the threshold. Thus, if a large geomagnetic disturbance at

a particular station in this zone is observed, it is very likely that other stations will

also experience an extreme value. When we look in more details for u = 0.90, the sites

(ABK, AND, SOD, TRO) in the auroral ring zone are clustered and very close to each

other (h ∈ {1.20, 4.05}), suggesting that the strong to moderate dependence relates to

the distance between sites. When both observatories are in the north pole zone, the

dependence is stronger for sites that are closer and decreases for higher thresholds. For

u = 0.90, we have χ ∈ {0.37, 0.77} and h ∈ {1.17, 16.09}, a wide range of dependence

values and distance units. Now considering three pairs of sites that have the same

distance approximately, we note three different levels of dependence. Both sites in

Greenland (pair 31 - DMH and SOR) present h = 7.09 and χ = 0.50, one site in

Greenland and one site in Svalbard (pair 30 - DMH and NAL) present h = 7.48 and

χ = 0.59, one site in Svalbard and one site in Norway (pair 39 - HRN and SOR) present

h = 7.48 and χ = 0.38. It’s worth noting that pairs 30 and 39 have the same distance

between sites but very different dependence levels, the sites in pair 30 are somewhat

close in latitude but are far apart in terms of longitude. In contrast, sites in pair 39

are closer in longitude and far apart in latitude. The fact that the level of dependence

changes for pairs of sites with same distance in the same zone suggests that latitude

plays an important role when accounting for dependence. Finally, when stations are in

different zones, one in the north pole and the other in the auroral ring, the dependence

structure is similar to cases where both sites are in the north pole zone.

Table 1.4.2 gives the MLEs, standard deviations (SDs), and 95% confidence intervals

(CIs) of ρ, θ, and δ for each of the 55 pairs in the Northern dataset. The block size

used in the bootstrap method to obtain the uncertainty measures was six days, chosen

after inspection of autocorrelation functions for a variety of sites. The MLEs and

corresponding bootstrap CIs in Table 1.4.2 are plotted against distance between sites

in Figure 1.4.3. We note that the MLEs of ρ for the Gaussian model (red dots) decrease
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as the distance units increase, but does not reach zero, suggesting that the dependence

of extremes weakens for stations far apart but does not reach independence. For the

HW model, the MLEs of δ suggest asymptotic independence (δ̂ < 0.5), except for pair

10 (δ̂ = 0.52). The MLEs of θ follow the trend of the MLEs of ρ, decreasing as the

distance increases. Although pair 10 is AD as δ̂ > 0.5, the 95% bootstrap CI for δ̂ for

this pair includes both extremal dependence regimes, thus firm conclusions about the

true dependence structure are difficult to draw. The CIs for δ̂ for pairs 1, 16, 19, 20 and

33 also include both types of asymptotic dependence, although δ̂ < 0.5, which suggests

asymptotic independence.

To assess the fit of the bivariate models across various thresholds, Figures 1.4.4,

1.4.5, and 1.4.6 show the model-based χh(u) estimates for u ∈ {0.90, 0.95, 0.99}, re-

spectively, over a range of distances h. For higher thresholds, we observe that the

dependence decays faster as the distance increases, and uncertainty in the estimates

increases with threshold due to the small sample size at higher quantiles. Further, es-

timates from the Gaussian copula have wider CIs than estimates from the HW model.

To check the fit of some pairs, Figure 1.4.7 shows both empirical and model-based

estimates of χ(u) for a range of different thresholds. Both models were fitted using

u = 0.95. For u > 0.95, they present similar fit to all pairs, and for u < 0.95 they are

not expected to perform well as they were not tailored to this region.

Moving onto the analysis of the Southern dataset, the empirical pairwise extremal

dependence structure is illustrated in Figure 1.4.8. The dependence for both sites in

the subauroral zone decreases as we increase the threshold but it is unclear if it is the

increased distance or the relative locations of the two sites that better accounts for the

weaker dependence. For pairs where both sites are in lower latitudes, the dependence is

strong across all quantiles for a wide range of distances, that is, even for sites that are

far away the dependence is still strong, suggesting that the location of the sites accounts

more for the strong dependence than the distance between them. Finally, for sites in
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different zones we observe that the dependence decreases as we increase the threshold

and distance between sites. Looking in more details for u = 0.90, we note that in all

cases where sites are in different zones, at least one of the sites in the subauroral zone

(LER and LRV) is present, with minimum and maximum distances of approximately 5

and 29 units, respectively. This might be an indicative that for any pair of sites that has

a site in the subauroral zone, the weaker dependence as u→ 1 depends more strongly

on the location than the distance between sites.

Table 1.4.3 presents the MLEs, SDs, and 95% CIs of ρ, θ, and δ for each of the 36

pairs in the Southern dataset. We again use a block of length six days to obtain the

uncertainty measures. The MLEs and CIs in Table 1.4.3 are plotted against distance

between sites in Figure 1.4.9. For this dataset, where the stations are located at lower

latitudes but with a wide range of latitudes in relation to the Northern dataset, we

observe spatial non-stationarity, that is, the dependence is not constant across the study

region. The MLEs of ρ for the Gaussian model are close to one for pairs of stations that

are separated by no more than ten geodesic distance units. Strong correlation is also

seen for pairs of sites separated by more than ten geodesic distance units, with extremal

dependence decreasing when we increase the threshold but not reaching asymptotic

independence. Regarding the MLEs of δ, we have δ̂ ↘ 0 with distance, meaning that

the dependence structure of the W process is recovered for longer distances, in this case,

the Gaussian copula. For short distances, some pairs display asymptotic dependence

with MLEs of δ around or greater than 0.8, and wide bootstrap CIs for θ̂. According

to Huser and Wadsworth (2019), δ̂ > 0.8 may cause some numerical difficulties when

fitting the model which might explain the large uncertainty on the parameter estimates.

Pairs 1, 10, 13, 15, 24, and 34 present δ̂ > 0.5, indicating asymptotic dependence.

Firm conclusions about pair 15 are difficult to draw as the 95% CI for this particular

bivariate process includes both types of dependence. For pairs 3, 8, 14, 21, and 35

we have δ̂ < 0.5 (asymptotic independence), however, their bootstrap CIs include the
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case of asymptotic dependence, thus concrete conclusions about them cannot be made

either.

Figures 1.4.10, 1.4.11, and 1.4.12 show the model-based χh(u) estimates and their

corresponding 95% CIs for u ∈ {0.90, 0.95, 0.99}, respectively, across a range of h for the

Southern dataset. For this dataset, we observe a decreasing linear structure as distance

increases, compared to the exponential decay observed in Figures 1.4.4, 1.4.5, and 1.4.6.

Also, the uncertainty increases as we increase the threshold, with again wider CIs for

the estimates from the Gaussian copula than the HW copula. Figure 1.4.13 shows the

estimated values of χ from the fitted bivariate models across a range of quantiles for

some pairs. For short distances such as Figures 1.4.13(a) and 1.4.13(b), the dependence

is constant across the range of thresholds. In this scenario, the HW model outperforms

the Gaussian model for u > 0.95.

Overall, the pairwise extremal spatial dependence structure differs in the two re-

gions. Pairs of sites in Northern Europe tend to be AI with extremal dependence de-

caying faster with distance and high thresholds, and pairs in Southern Europe present

strong dependence across all thresholds, and persists for longer distances when both

sites are in lower latitudes. This corroborates with Thomson et al. (2011), who point

out that the most extreme geomagnetic field fluctuations are observed in the subauroral

zone due to an enhanced auroral electrojet that travels south with the help of strong

solar wind. This may also explain why observatories in Northern Europe display weaker

dependence.

The statistical results from our analysis align with the expectations of the physicists.

The combination of auroral and polar cap current systems in the Northern dataset is

susceptible to moderate geomagnetic substorms, but less prone to experiencing the most

extreme substorm current systems found further south, near Scotland. Additionally, the

Northern dataset covers a wide range of longitudes, including the two Greenland sites.

This geographic diversity suggests that surges of substorm currents or brief bursts of
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ultralow frequency wave activity at one site may not extend across a broad longitudinal

area. Consequently, this explains the observed lack of strong asymptotic dependence

within this dataset.

On the other hand, the Southern dataset primarily includes sites located to the

south of Scotland, indicating a subauroral region. In this context, extreme events are

more likely to take the form of sudden commencements that can affect all latitudes.

This explains the observed strong dependence within the Southern dataset.

These variations in asymptotic dependence provide valuable insights into the com-

plex relationship between space weather phenomena and Earth’s magnetic field. Ulti-

mately, they enhance our understanding of how extreme events are distributed in space

and their potential impacts on technological systems at different latitudes.

For the two bivariate extreme value models primarily discussed in this work, es-

timating the MLEs was somewhat computationally intensive. The complexity of the

models, the size of the datasets and the convergence behaviour all influenced the com-

putational effort required. For this, we implemented parallelization in the code and

ran the experiments using high-performance computing resources. The HW model, in

particular, posed some challenges related to convergence due to the latent variables and

complex dependencies among extreme values. To address the issue of convergence, we

applied multiple random starts with different initial values to ensure that the maximum

likelihood estimation converged. For the Northern dataset (11 sites modelled in pairs),

the MLEs of the Gaussian copula model were obtained in 58 minutes and for the HW

model they were obtained in six hours. For the Southern dataset (9 sites modelled

in pairs), the maximum likelihood estimation of the Gaussian copula model took 54

minutes and for the HW model it took 19 hours.

In terms of missingness, it can be particularly challenging because it might not

always occur randomly. In some cases, the absence of data can be informative itself,

indicating unusual conditions or instrument failures during specific time periods. This
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Table 1.4.1: Percentage of missing values for each site and dataset.

Northern Europe Southern Europe

Site Missing values (%) Site Missing values (%)

ABK 23.16 CLF 27.29
AND 58.56 DOU 60.15
BJN 41.48 ESK 29.21
DMH 56.08 HAD 29.26
HRN 50.10 LER 29.18
LYR 59.79 LRV 53.82
NAL 58.61 MAB 60.15
SCO 54.16 SPT 58.42
SOD 23.17 VAL 47.80
SOR 59.48 - -
TRO 45.90 - -

Average 48.23 Average 43.92

informative missingness can introduce bias in the analysis, as it may be related to the

very extreme events we want to study. When some observations are missing, it can

lead to underestimation or overestimation of rare events, resulting in inaccurate risk

assessments and decision-making in space weather forecasting.

1.5 Concluding remarks

In this work, we focused on understanding the pairwise extremal dependence of geomag-

netic field fluctuations in Europe, considering measurements from 20 observatories. We

fitted two bivariate copula models to the data, the Gaussian copula and a model pro-

posed by Huser and Wadsworth (2019). Our results showed that the pairwise extremal

dependence structure differs for Northern and Southern Europe. For the Northern re-

gion, the extremal dependence between measurements of two sites decays faster as we

increase the threshold and distance, whilst for the Southern region such dependence

is strong for observatories up to ten geodesic distance units away, which corresponds

to about 1000 kilometers in the great circle. Also, for pairs where both sites are in
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Figure 1.4.2: Empirical χh(u) colour-coded by geodesic distance units, h. The solid
line means that both sites are in the auroral ring zone (65◦N − 70◦N), the dash–dot
line both sites are in the north pole zone (70◦N− 90◦N), and the dotted line represents
pairs where sites are in different zones. Results for Northern Europe.
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and HW models fitted to the data in Northern Europe.



CHAPTER 1. MODELLING SPACE WEATHER EXTREMES 27

Table 1.4.2: MLEs, SDs of bootstrap resampling, and 95% bootstrap CIs for parameters
of the bivariate Gaussian (ρ) and HW (δ, θ) models for each pair; Northern dataset.

Pair ρ̂ SDρ̂ 95% CI δ̂ SDδ̂ 95% CI θ̂ SDθ̂ 95% CI

1 0.934 0.007 (0.919, 0.945) 0.462 0.088 (0.256, 0.669) 0.888 0.178 (0.023, 0.937)
2 0.625 0.033 (0.548, 0.679) 0.278 0.075 (0.103, 0.387) 0.598 0.059 (0.439, 0.666)
3 0.576 0.036 (0.498, 0.635) 0.390 0.061 (0.223, 0.456) 0.410 0.141 (0.107, 0.589)
4 0.548 0.041 (0.471, 0.629) 0.267 0.089 (0.082, 0.431) 0.519 0.148 (0.257, 0.619)
5 0.562 0.036 (0.483, 0.626) 0.317 0.094 (0.066, 0.428) 0.502 0.104 (0.233, 0.605)
6 0.537 0.040 (0.456, 0.612) 0.412 0.050 (0.262, 0.463) 0.282 0.138 (0.009, 0.497)
7 0.595 0.032 (0.526, 0.651) 0.281 0.087 (0.077, 0.426) 0.563 0.072 (0.347, 0.626)
8 0.922 0.008 (0.907, 0.936) 0.337 0.146 (0.030, 0.446) 0.912 0.116 (0.876, 0.932)
9 0.882 0.013 (0.854, 0.904) 0.052 0.054 (0.034, 0.272) 0.882 0.013 (0.852, 0.903)
10 0.935 0.008 (0.920, 0.947) 0.522 0.083 (0.284, 0.692) 0.837 0.284 (−0.412, 0.933)
11 0.632 0.032 (0.558, 0.677) 0.234 0.086 (0.063, 0.386) 0.618 0.060 (0.470, 0.669)
12 0.579 0.037 (0.512, 0.648) 0.365 0.085 (0.120, 0.459) 0.465 0.153 (0.029, 0.621)
13 0.550 0.043 (0.472, 0.630) 0.180 0.107 (0.072, 0.469) 0.543 0.146 (−0.016, 0.618)
14 0.569 0.034 (0.503, 0.623) 0.354 0.079 (0.136, 0.473) 0.468 0.144 (−0.041, 0.592)
15 0.580 0.038 (0.503, 0.645) 0.394 0.055 (0.236, 0.460) 0.408 0.150 (0.014, 0.590)
16 0.621 0.030 (0.551, 0.672) 0.427 0.081 (0.148, 0.517) 0.384 0.264 (−0.415, 0.626)
17 0.866 0.012 (0.843, 0.888) 0.250 0.096 (0.032, 0.387) 0.861 0.022 (0.810, 0.885)
18 0.904 0.010 (0.885, 0.924) 0.052 0.066 (0.033, 0.327) 0.904 0.012 (0.879, 0.924)
19 0.958 0.005 (0.947, 0.970) 0.474 0.052 (0.330, 0.554) 0.929 0.025 (0.869, 0.964)
20 0.667 0.026 (0.615, 0.716) 0.180 0.133 (0.043, 0.500) 0.663 0.161 (0.116, 0.712)
21 0.780 0.019 (0.745, 0.819) 0.216 0.097 (0.044, 0.385) 0.774 0.028 (0.702, 0.816)
22 0.755 0.022 (0.714, 0.798) 0.345 0.089 (0.069, 0.419) 0.714 0.039 (0.632, 0.785)
23 0.708 0.024 (0.667, 0.755) 0.257 0.094 (0.055, 0.382) 0.693 0.038 (0.606, 0.753)
24 0.678 0.031 (0.610, 0.731) 0.280 0.083 (0.072, 0.404) 0.654 0.047 (0.534, 0.716)
25 0.645 0.033 (0.581, 0.703) 0.274 0.068 (0.094, 0.371) 0.620 0.049 (0.496, 0.684)
26 0.669 0.029 (0.605, 0.714) 0.237 0.086 (0.071, 0.401) 0.656 0.055 (0.504, 0.716)
27 0.635 0.029 (0.575, 0.693) 0.323 0.068 (0.122, 0.401) 0.584 0.060 (0.467, 0.669)
28 0.766 0.020 (0.717, 0.799) 0.104 0.069 (0.033, 0.346) 0.765 0.023 (0.709, 0.799)
29 0.755 0.018 (0.715, 0.789) 0.104 0.053 (0.034, 0.255) 0.755 0.018 (0.712, 0.788)
30 0.798 0.019 (0.760, 0.831) 0.250 0.099 (0.038, 0.394) 0.789 0.031 (0.722, 0.825)
31 0.690 0.025 (0.634, 0.736) 0.309 0.071 (0.172, 0.408) 0.656 0.053 (0.516, 0.717)
32 0.567 0.036 (0.488, 0.634) 0.320 0.069 (0.165, 0.421) 0.505 0.088 (0.305, 0.610)
33 0.555 0.038 (0.483, 0.624) 0.438 0.047 (0.337, 0.507) 0.194 0.227 (−0.467, 0.503)
34 0.575 0.037 (0.508, 0.642) 0.271 0.084 (0.095, 0.426) 0.546 0.101 (0.216, 0.630)
35 0.891 0.010 (0.871, 0.908) 0.318 0.112 (0.052, 0.475) 0.880 0.034 (0.793, 0.903)
36 0.847 0.015 (0.817, 0.875) 0.361 0.090 (0.091, 0.458) 0.817 0.032 (0.742, 0.865)
37 0.656 0.029 (0.597, 0.709) 0.052 0.029 (0.050, 0.114) 0.656 0.030 (0.590, 0.705)
38 0.551 0.041 (0.475, 0.633) 0.257 0.077 (0.060, 0.369) 0.526 0.061 (0.381, 0.619)
39 0.531 0.040 (0.461, 0.600) 0.104 0.039 (0.053, 0.171) 0.529 0.043 (0.450, 0.596)
40 0.542 0.039 (0.463, 0.615) 0.219 0.077 (0.063, 0.373) 0.528 0.087 (0.333, 0.599)
41 0.902 0.012 (0.878, 0.924) 0.412 0.051 (0.280, 0.469) 0.869 0.024 (0.815, 0.909)
42 0.678 0.030 (0.615, 0.732) 0.389 0.068 (0.193, 0.476) 0.566 0.120 (0.287, 0.672)
43 0.547 0.039 (0.469, 0.616) 0.346 0.075 (0.134, 0.419) 0.451 0.089 (0.232, 0.572)
44 0.531 0.040 (0.441, 0.601) 0.227 0.080 (0.079, 0.374) 0.514 0.056 (0.372, 0.576)
45 0.566 0.033 (0.498, 0.627) 0.303 0.070 (0.130, 0.431) 0.517 0.084 (0.278, 0.604)
46 0.671 0.030 (0.599, 0.727) 0.375 0.053 (0.224, 0.438) 0.577 0.064 (0.452, 0.674)
47 0.508 0.045 (0.409, 0.586) 0.394 0.049 (0.244, 0.441) 0.294 0.119 (0.034, 0.513)
48 0.553 0.040 (0.475, 0.624) 0.354 0.074 (0.143, 0.435) 0.446 0.108 (0.206, 0.587)
49 0.561 0.038 (0.486, 0.626) 0.417 0.031 (0.346, 0.463) 0.310 0.140 (0.041, 0.504)
50 0.615 0.033 (0.548, 0.674) 0.404 0.048 (0.287, 0.475) 0.442 0.168 (0.078, 0.588)
51 0.648 0.028 (0.584, 0.693) 0.304 0.060 (0.165, 0.399) 0.611 0.055 (0.477, 0.680)
52 0.612 0.032 (0.545, 0.665) 0.357 0.082 (0.144, 0.478) 0.521 0.165 (0.119, 0.637)
53 0.845 0.013 (0.814, 0.865) 0.052 0.032 (0.030, 0.130) 0.845 0.014 (0.819, 0.870)
54 0.867 0.013 (0.838, 0.890) 0.052 0.089 (0.052, 0.358) 0.866 0.014 (0.840, 0.887)
55 0.921 0.008 (0.903, 0.936) 0.052 0.032 (0.032, 0.131) 0.921 0.008 (0.906, 0.938)
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Figure 1.4.4: Model-based χh(u) estimates and corresponding 95% bootstrap CIs as a
function of geodesic distance units for u = 0.90; Northern dataset. Red line: smooth
curve of the estimates from the Gaussian model; blue line: smooth curve of the estimates
from the HW model.
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Figure 1.4.5: Model-based χh(u) estimates and corresponding 95% bootstrap CIs as a
function of geodesic distance units for u = 0.95; Northern dataset. Red line: smooth
curve of the estimates from the Gaussian model; blue line: smooth curve of the estimates
from the HW model.
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Table 1.4.3: MLEs, SDs of bootstrap resampling, and 95% bootstrap CIs for parameters
of the bivariate Gaussian (ρ) and HW (δ, θ) models for each pair; Southern dataset.

Pair ρ̂ SDρ̂ 95% CI δ̂ SDδ̂ 95% CI θ̂ SDθ̂ 95% CI

1 0.986 0.002 (0.982, 0.990) 0.739 0.032 (0.698, 0.813) 0.677 0.181 (0.125, 0.797)
2 0.965 0.004 (0.958, 0.972) 0.395 0.036 (0.308, 0.445) 0.957 0.006 (0.947, 0.969)
3 0.986 0.002 (0.981, 0.990) 0.464 0.078 (0.258, 0.546) 0.977 0.008 (0.959, 0.988)
4 0.861 0.011 (0.840, 0.882) 0.104 0.069 (0.022, 0.350) 0.861 0.012 (0.833, 0.881)
5 0.710 0.022 (0.664, 0.749) 0.052 0.040 (0.034, 0.150) 0.710 0.029 (0.659, 0.750)
6 0.985 0.003 (0.979, 0.991) 0.785 0.035 (0.719, 0.849) 0.277 0.430 (−0.868, 0.690)
7 0.987 0.002 (0.983, 0.989) 0.314 0.118 (0.054, 0.459) 0.986 0.003 (0.978, 0.989)
8 0.971 0.004 (0.964, 0.978) 0.465 0.031 (0.394, 0.513) 0.954 0.010 (0.933, 0.970)
9 0.965 0.004 (0.957, 0.973) 0.431 0.036 (0.342, 0.479) 0.952 0.009 (0.932, 0.967)
10 0.980 0.002 (0.975, 0.984) 0.794 0.027 (0.720, 0.820) −0.443 0.384 (−0.973, 0.546)
11 0.870 0.011 (0.850, 0.891) 0.052 0.022 (0.020, 0.103) 0.870 0.011 (0.849, 0.892)
12 0.732 0.021 (0.693, 0.773) 0.328 0.106 (0.087, 0.482) 0.693 0.117 (0.421, 0.754)
13 0.980 0.004 (0.972, 0.986) 0.768 0.036 (0.690, 0.828) 0.150 0.387 (−0.91, 0.683)
14 0.973 0.004 (0.965, 0.979) 0.447 0.075 (0.310, 0.569) 0.960 0.124 (0.891, 0.977)
15 0.969 0.004 (0.959, 0.975) 0.500 0.058 (0.412, 0.605) 0.938 0.171 (0.802, 0.967)
16 0.979 0.003 (0.974, 0.985) 0.438 0.041 (0.342, 0.495) 0.971 0.006 (0.957, 0.983)
17 0.913 0.007 (0.896, 0.925) 0.052 0.023 (0.022, 0.104) 0.913 0.008 (0.896, 0.925)
18 0.746 0.019 (0.710, 0.781) 0.314 0.081 (0.092, 0.427) 0.716 0.047 (0.580, 0.771)
19 0.965 0.004 (0.956, 0.974) 0.438 0.036 (0.357, 0.484) 0.950 0.009 (0.932, 0.969)
20 0.948 0.005 (0.939, 0.958) 0.377 0.053 (0.241, 0.436) 0.938 0.009 (0.920, 0.953)
21 0.982 0.002 (0.978, 0.987) 0.451 0.050 (0.315, 0.512) 0.974 0.007 (0.959, 0.984)
22 0.879 0.010 (0.857, 0.899) 0.104 0.056 (0.021, 0.271) 0.878 0.011 (0.856, 0.898)
23 0.730 0.021 (0.684, 0.764) 0.245 0.095 (0.057, 0.397) 0.718 0.044 (0.627, 0.754)
24 0.987 0.003 (0.981, 0.992) 0.791 0.034 (0.726, 0.855) 0.315 0.343 (−0.645, 0.715)
25 0.977 0.003 (0.971, 0.983) 0.340 0.112 (0.053, 0.484) 0.975 0.013 (0.953, 0.983)
26 0.984 0.002 (0.980, 0.987) 0.368 0.066 (0.192, 0.453) 0.981 0.003 (0.973, 0.986)
27 0.816 0.013 (0.792, 0.843) 0.324 0.091 (0.071, 0.420) 0.793 0.028 (0.728, 0.830)
28 0.859 0.011 (0.840, 0.878) 0.104 0.036 (0.021, 0.154) 0.859 0.011 (0.837, 0.878)
29 0.837 0.014 (0.808, 0.863) 0.052 0.027 (0.031, 0.136) 0.836 0.015 (0.808, 0.862)
30 0.906 0.007 (0.892, 0.919) 0.022 0.053 (0.021, 0.238) 0.906 0.007 (0.892, 0.919)
31 0.710 0.023 (0.659, 0.753) 0.052 0.026 (0.025, 0.125) 0.709 0.023 (0.656, 0.751)
32 0.686 0.025 (0.632, 0.720) 0.020 0.025 (0.020, 0.101) 0.686 0.025 (0.633, 0.721)
33 0.747 0.019 (0.704, 0.781) 0.356 0.071 (0.163, 0.450) 0.695 0.056 (0.542, 0.756)
34 0.981 0.003 (0.974, 0.987) 0.810 0.019 (0.763, 0.837) −0.684 0.314 (−0.995, 0.109)
35 0.970 0.004 (0.963, 0.977) 0.438 0.074 (0.243, 0.535) 0.957 0.016 (0.915, 0.974)
36 0.958 0.006 (0.946, 0.968) 0.393 0.095 (0.122, 0.498) 0.948 0.018 (0.905, 0.967)
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Figure 1.4.6: Model-based χh(u) estimates and corresponding 95% bootstrap CIs as a
function of geodesic distance units for u = 0.99; Northern dataset. Red line: smooth
curve of the estimates from the Gaussian model; blue line: smooth curve of the estimates
from the HW model.

lower latitudes, the extremal dependence is strong for a range of distances and across

all quantiles. Although the Gaussian copula was tailored to only the extreme events,

it cannot capture both asymptotic dependence regimes for extreme quantiles. This is

potentially problematic for pairs of sites in Southern Europe, where many dependence

types exist. The results from our analysis showed that the HW model, which allows for

both asymptotic dependence and asymptotic independence, better captures the varying

dependence structures seen in Southern Europe.

The findings of this work have to be seen in light of some limitations. First, the

pairwise analysis only is not sufficient to describe the global dependence structure and

cannot provide spatial interpolation. Second, we have looked only at two small regions

on one part of the globe, and higher dimensions might result in different conclusions

as we incorporate other features of the process. Finally, it is unclear from the present

analysis what drives the spatial non-stationarity in Southern Europe.
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Figure 1.4.7: Estimates of χ(u) for the bivariate geomagnetic field fluctuation data in
Northern Europe. Central black dots are the empirical estimates of χ(u), dashed lines
are 95% bootstrap CIs based on block bootstrap resampling, solid red line is the fit
from the bivariate Gaussian model and solid blue line is the fit from the bivariate HW
model. Plots are ordered by ascending geodesic distance units between sites.



CHAPTER 1. MODELLING SPACE WEATHER EXTREMES 32

0.0

0.2

0.4

0.6

0.8

1.0

0.80 0.85 0.90 0.95 1.00

u

χ
(u

)

0

10

20

30
h

Figure 1.4.8: Empirical χh(u) as a function of geodesic distance units, h. The solid line
means that both sites are in the subauroral zone (60◦N−65◦N), the dash–dot line both
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Figure 1.4.9: MLEs and corresponding 95% bootstrap CIs for the bivariate Gaussian
and HW models fitted to the data in Southern Europe.
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Figure 1.4.10: Model-based χ(u) estimates and corresponding 95% bootstrap CIs as a
function of geodesic distance units for u = 0.90; Southern dataset. Red line: smooth
curve of the estimates from the Gaussian model; blue line: smooth curve of the estimates
from the HW model.
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Figure 1.4.11: Model-based χ(u) estimates and corresponding 95% bootstrap CIs as a
function of geodesic distance units for u = 0.95; Southern dataset. Red line: smooth
curve of the estimates from the Gaussian model; blue line: smooth curve of the estimates
from the HW model.
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Figure 1.4.12: Model-based χ(u) estimates and corresponding 95% bootstrap CIs as a
function of geodesic distance units for u = 0.99; Southern dataset. Red line: smooth
curve of the estimates from the Gaussian model; blue line: smooth curve of the estimates
from the HW model.

For future work, an alternative is to fit full spatial models to the two current sets

of sites to consider all the sites together and obtain a picture of the global dependence

structure. By expanding the study region, it might also be possible to investigate if

it is the region or distance between sites that best describes the weaker dependence.

Regions where different types of extremal dependence are observed should be better

explored to incorporate drivers for this in the model, such as difference in latitude,

which might be the case for Southern Europe.

Whilst we attempted to explore the above possibilites, the presence of missing data

poses a challenge to extending the analysis into a full spatial framework, where we would

need uniform data availability across all sites over the same time period. Furthermore,

another possible limitation lies in the computational demands and time required for

modelling the data. Given that the HW model already takes a significant amount of

time in bivariate scenarios, modelling data from more than two sites simultaneously



CHAPTER 1. MODELLING SPACE WEATHER EXTREMES 35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 0.803

(a) Pair 13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 2.872

(b) Pair 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 4.905

(c) Pair 16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 5.49

(d) Pair 17

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 6.506

(e) Pair 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 8.954

(f) Pair 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 9.961

(g) Pair 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 10.394

(h) Pair 22

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 11.278

(i) Pair 35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 12.703

(j) Pair 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 13.673

(k) Pair 14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 14.24

(l) Pair 18

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 17.554

(m) Pair 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 22.041

(n) Pair 12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 23.081

(o) Pair 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.80 0.85 0.90 0.95 1.00

u

χ
( u

)

geodesic distance unit: 29.666

(p) Pair 32

Figure 1.4.13: Estimates of χ(u) for the bivariate geomagnetic field fluctuation data in
Southern Europe. Central black dots are the empirical estimates of χ(u), dashed lines
are 95% bootstrap CIs based on block bootstrap resampling, solid red line is the fit
from the bivariate Gaussian model and solid blue line is the fit from the bivariate HW
model. Plots are ordered by ascending geodesic distance units between sites.
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would require a substantial computational effort and time investment. For instance,

the estimation of the MLEs of the full spatial Gaussian copula model for the Northern

dataset (11 sites) took 17 hours, and for the HW model it took over a day and a half.



Chapter 2

Residual-based CUSUM beta

regression control chart for

monitoring double-bounded

processes

2.1 Introduction

Statistical process control (SPC) is a collection of techniques useful for monitoring

and controlling a process (Fournier et al., 2006). Under natural variability, that is, a

common variation that will always exist, the process is in statistical control. However,

when the variability stems from external sources, the process is out of statistical control.

Specialists desire to quickly detect shifts in the process monitoring, thus the control

chart is the simplest and most used tool for this purpose (Montgomery, 2009).

The usual control chart proposed by Shewhart (1931) is widely used to monitor

independent random variables and can detect large shifts in the mean of a process

(Aslam et al., 2014). These charts are also known as memory-less control charts because

37
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they consider observations at a given time. However, not observing and analyzing

previous observations can lead to the poor performance of the control chart. Moreover,

conventional control charts require some assumptions or approximations. Alternatively,

more advanced statistical methods have been proposed in the literature, such as the

cumulative sum (CUSUM) (Page, 1954) and the exponentially weighted moving average

(EWMA) (Roberts, 1959) control charts. CUSUM and EWMA control charts have been

studied by some authors over the years. Some past works can be found in Page (1961);

Ewan (1963); Hawkins (1981); Crowder (1989); Lucas and Saccucci (1990); Gan (1991);

Woodall and Adams (1993), while some recent developments are found in Park and Jun

(2015); Haq (2017); Sanusi et al. (2018); Adegoke et al. (2019); Perry and Wang (2022);

Xue and Qiu (2021); Aytaçoğlu et al. (2022). Such charts quickly detect small shifts

in the mean of a process and use cumulative information from the observations, thus

being called memory-type control charts.

CUSUM control charts can be built using different statistics. Recently, the discus-

sion on residual-based CUSUM control charts has received considerable attention. For

example, Asadzadeh et al. (2013) monitored the Cox-Snell residuals of accelerated fail-

ure time models based on two regression-adjusted control approaches. Chen and Huang

(2014) used a residual-based CUSUM control chart to monitor syndromic data on the

respiratory syndrome in Taiwan. Weiß and Testik (2015) discussed the problem of mon-

itoring autocorrelated, count-type discrete data by investigating the CUSUM control

chart based on three different residuals. Alencar et al. (2017) and Albarracin et al.

(2018) evaluate the performance of the CUSUM control chart using the deviance resid-

ual, and other statistics, in the monitoring of negative binomial and negative binomial

generalized autoregressive moving average processes (Benjamim et al., 2003), respec-

tively. Kim and Lee (2021) introduced the residual-based CUSUM scheme in first-order

Poisson integer-valued autoregressive models where the residuals are computed through

squared difference estimates.
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In practical situations, there is an interest in modeling and monitoring variables

limited to the unit interval (0, 1), such as fractions or proportions. Here, the tradi-

tional Shewhart-type control chart may not be adequate since fractions or proportions

frequently follow a skew distribution, thus not holding the normality assumption. Alter-

natively, control charts for double bounded quality characteristics have been proposed

in the literature. For example, Sant’Anna and ten Caten (2012) proposed the beta

control chart (BCC), where the authors assume that the variable of interest is beta

distributed and the control limits are estimated using the CDF of the beta distribution.

The BCC is more advantageous than the Shewhart control chart as it naturally captures

the asymmetry of the quality characteristic and its control limits range between (0, 1).

Lima-Filho et al. (2019) proposed a new control chart to model the mean of double

bounded processes in the presence of zeros and ones. The control limits of this chart

are based on the inflated beta probability distribution function. As the Kumaraswamy

distribution (Jones, 2009) is a good alternative to the beta distribution, Lima-Filho and

Bayer (2021) introduced a novel control chart based on the Kumaraswamy distribution

to monitor environmental data limited to the unit interval. Nevertheless, production

processes can also be related to external variables. For this purpose, Bayer et al. (2018)

proposed the beta regression control chart (BRCC), where the control limits are de-

fined using the quantile function of the beta distribution, and Lima-Filho et al. (2020)

provided a general framework to a recent control chart based on the inflated beta regres-

sion model to monitor the mean of environmental processes containing zeros and ones.

Recently, Hwang (2021) proposed a novel CUSUM control chart based on the deviance

residual of a beta regression model to monitor the mean of a univariate process.

Although the BCC and BRCC are better alternatives than the conventional charts

for double bounded data, they still are memory-less approaches and a CUSUM control

chart alternative could detect more quickly a shift in the mean of a process. In this

regard, the chief contribution of this paper is to propose and compare the performance of
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the CUSUM beta regression control chart on the residuals of the beta regression model,

named CUSUM-BRCC. The CUSUM-BRCC is useful for monitoring double bounded

processes where the quality characteristic is affected by control variables in which the

process output may represent individual measures (e.g. efficiency score) or a ratio

between continuous numbers (e.g. relative humidity). As there are different residuals

for the beta regression (Espinheira et al., 2008; Pereira, 2019), we explore the CUSUM-

BRCC based on the standardized, two types of standardized weighted, and quantile

residuals. Because (Hwang, 2021) proposed a similar approach using the deviance

residual, we consider the deviance residual in our study in order to compare our proposal

with this new control chart in the literature. It is noteworthy, however, that the deviance

residual cannot be calculated for several observations in beta regression provided that

the contribution of these observations to the deviance is negative. We conduct an

extensive Monte Carlo simulation study to evaluate and compare the performance of the

proposed control chart based on different residuals in terms of run length (RL) analysis.

Our Monte Carlo simulation results show that the quantile residual is the most suitable

residual to be considered when controlling and monitoring processes limited to the unit

interval (0, 1) and in the presence of external variables.

2.2 On the literature review of control charts

Control charts are powerful tools used to monitor a quality characteristic of interest.

A typical control chart is shown in Figure 2.2.1. Usually, this graphical device consists

of a centre line (CL), representing the mean of the quality variable corresponding to

the in-control state, and two other horizontal lines representing the upper control limit

(UCL) and the lower control limit (LCL). When all the sample points fall within the

control limits, the process is in a state of control and no further action is needed. If

an observation exceeds the desired limits (red dot shown in the plot), the process is
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Figure 2.2.1: A typical control chart.

assumed to be out of control and corrections are required to understand the causes and

improve the process.

2.2.1 Shewhart control charts

Amongst the several control charts used to monitor the parameters of a manufacturing

process, the Shewhart control chart is the most well-known in the literature (Shewhart,

1931). The control chart consists of a CL, which is the mean of the quality variable,

and UCL and LCL. For this situation, only one observation is available at a time, thus

the Shewhart control chart is defined for independent random variables (Wardell et al.,

1992).

Given a quality variable with mean µ and standard deviation σ, we obtain CL, LCL,
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and UCL as follows:

LCL = µ+ kσ,

CL = µ,

UCL = µ− kσ,

where k is a constant, expressed in standard deviations, that determines the distance

between the lower and upper control limits to the center line. Shewhart control charts

are commonly used in normally distributed processes. Therefore, when the assumption

of normality is not met, such charts can generate distorted results.

2.2.2 Cumulative Sum (CUSUM) control charts

The CUSUM control chart is a powerful tool able to detect small shifts in the mean of

a process using the cumulative sum of the sample deviations, which is plotted in the

control chart from a target value µ0. Thus, the CUSUM control chart is obtained by

plotting the following quantities (Montgomery, 2009):

Ci =
i∑

j=1

(x̄j − µ0),

where x̄j is the average of the j-th sample, µ0 is the target mean value and Ci is the

cumulative sum up to and including the i-th sample.

The tabular CUSUM, on the other hand, is built by accumulating deviations from

µ0. Deviations above µ0 are accumulated from the statistic C+ and deviations below µ0

from the statistic C−. These statistics are called one-sided upper and lower CUSUMs
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and are defined as (Montgomery, 2009):

C+
t = max[0, xi − (µ0 +K) + C+

t−1], (2.2.1)

C−t = max[0, (µ0 −K)− xi + C−t−1], (2.2.2)

where the starting values are C+
0 = C−0 = 0. Here, K is usually a reference value

representing the magnitude of the shift we want to detect and is expressed in terms

of standard deviations. Note that the control chart accumulates deviations from µ0

that are greater than K, so any negative CUSUM statistic resets to zero. The decision

interval is defined as H, and if either C+
t or C−t exceed H, then the process is out of

control.

2.2.3 Beta regression control charts

In this section, we present the beta distribution, the varying precision beta regression

model, and two control charts in the literature based on the beta distribution and beta

regression model.

Beta distribution

In the monitoring of processes limited to the unit interval (0, 1), such as fractions or

proportions, the beta distribution is frequently used. The beta law is very flexible and

can assume a wide variety of shapes, such as symmetric, asymmetric, J-shaped, inverted

J-shaped, U-shaped, and uniform. Using a parametrization that considers a location

(µ) and a precision (φ) parameter, Ferrari and Cribari-Neto (2004) introduce the beta

density as

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (2.2.3)
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where 0 < µ < 1, φ > 0, and Γ(·) is the gamma function. The mean and variance of y

are E [y] = µ and Var (y) = µ(1− µ)/(1 + φ), respectively.

The CDF of y is given by

F (y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)

y∫
0

yµφ−1(1− y)(1−µ)φ−1dy. (2.2.4)

Therefore, the quantile function of y is expressed as ψ(u, µ, φ) = F−1(u, µ, φ), where u

is the desired quantile.

Varying precision beta regression model

Let y1, y2, . . . , yn be a set of independent random variables where each yt, with t =

1, 2, . . . , n, has probability density function (PDF) and CDF given in (2.2.3) and (2.2.4),

respectively, with mean µt and precision φt. The varying precision beta regression model

is defined as (Simas et al., 2010; Smithson and Verkuilen, 2006):

g(µt) =
r∑
i=1

xtiωi = η1t,

h(φt) =
s∑
j=1

ztjγj = η2t,

where ω = (ω1, . . . , ωr)
> ∈ Rr and γ = (γ1, . . . , γs)

> ∈ Rs are unknown parameters

vectors, x1t, . . . , xrt and z1t, . . . , zst are the known and fixed covariates of the mean

and precision submodels, respectively, η1 = (η11, . . . , η1n)> and η2 = (η21, . . . , η2n)>

being the mean and precision linear predictor vectors, respectively. Here, g(·) and h(·)

denote the link functions that are strictly monotonic and twice differentiable such that

g : (0, 1) 7→ R and h : (0,∞) 7→ R. Thus, the mean and precision of each yt are given,
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respectively, by

µt = g−1(η1t), (2.2.5)

φt = h−1(η2t). (2.2.6)

One can choose the logit, probit, loglog, and cloglog for the mean link function, while

for the precision link function we have the log as a common choice.

Let θ = (ω>,γ>)> be the beta regression parameter vector. The log-likelihood

function of θ is given by

`(θ) =
n∑
t=1

`t(µt, φt), (2.2.7)

where

`t(µt, φt) = log Γ(φt)− log Γ(µtφt)− log Γ((1− µt)φt) + (µtφt − 1) log yt

+ [(1− µt)φt − 1] log(1− yt),

with µt and φt defined in (2.2.5) and (2.2.6), respectively.

By taking first-order derivatives of (2.2.7) with respect to each element of θ, we

obtain a system of equations called score vector. By setting the score vector equals zero,

we obtain the MLEs of the model parameters. Since the MLEs do not have closed-form

expressions, we maximize the log-likelihood function in (2.2.7) using numerical methods.

It is noteworthy that using the MLE of θ gives us η̂1t and η̂2t, which are used to obtain

µ̂t and φ̂t. These quantities are essential in the construction of the residuals considered

in the present work. More details on inferences in beta regression models can be found

in Ferrari and Cribari-Neto (2004) and Cribari-Neto and Zeileis (2010).
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Beta control chart

The beta control chart was proposed by Sant’Anna and ten Caten (2012) and is based

on the beta distribution in (2.2.3) and (2.2.4). The LCL and UCL of the beta control

chart are given by:

LCL = p̄+ w1

√
s2(p̄), (2.2.8)

UCL = p̄− w2

√
s2(p̄), (2.2.9)

where p̄ and s2(p̄) are the mean and variance of the proportion variable, and w1 and

w2 are constants that specify the width of the control limits. These constants are given

by:

w1 = p̄− ψ([α/2], µ, φ)√
s2(p̄)

, (2.2.10)

w2 =
ψ([1− α/2], µ, φ)√

s2(p̄)
− p̄, (2.2.11)

for a control region 1 − α. By replacing (2.2.10) in (2.2.8) and (2.2.11) in (2.2.9), we

obtain

LCL = ψ([α/2], µ, φ),

UCL = ψ([1− α/2], µ, φ).

Although it seems easy and simple, the beta control chart cannot accomodate situations

where a regression structure is imposed.

Beta regression control chart

For monitoring double bounded processes with covariates, based on the beta regression

model, Bayer et al. (2018) proposed the beta regression control chart, where the control
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limits are based on the quantile function and evaluated under the estimated parameters

in a Shewhart fashion. The limits of the BRCC are defined as:

LCL = ψ([α/2], µt, φt),

UCL = ψ([1− α/2], µt, φt),

where µt and φt are given by (2.2.5) and (2.2.6), respectively, and α is the fixed false

alarm probability. To obtain the MLEs of µ and φ, the log-likelihood function in (2.2.7)

is maximised. The authors show that the BRCC works well for monitoring fractions

and proportions and easily detects changes in the mean of the process.

2.3 Residual-based CUSUM beta regression control

chart

When the interest response variable depends on control variables, one can apply a

conventional control chart to the residuals of the model as they approximately follow

a normal distribution and are independently distributed if the fitted model is well

specified (Montgomery, 2009). However, it is well known that CUSUM control charts

are more sensitive to detect shifts than Shewhart-type charts (Lucas, 1976). In this

way, this section proposes the residual-based CUSUM beta regression control chart to

model the process mean.

As discussed in Espinheira et al. (2008), Pereira (2019) and Ferrari and Cribari-

Neto (2004), there are different residuals for the beta regression model. The residuals

we consider are the standardized and deviance residuals defined by Ferrari and Cribari-

Neto (2004), the standardized weighted 1 and 2 residuals introduced by Espinheira

et al. (2008), and the quantile residual (Dunn and Smyth, 1996) considered in the beta

regression model by Pereira (2019). Although Anholeto et al. (2014) proposed adjusted
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Pearson residuals for beta regressions, we do not consider such residuals because we

restricted the work to residuals which are already implemented within R.

Residuals are usually used to check how well a model can fit the observed data,

meaning that if a residual is close to zero, we can say that the estimated value is

significantly close to the observed value. The standardized residual, for example, is

the simplest residual and measures the strength of the difference between observed and

expected values. The standardized residual is given by

rst =
yt − µ̂t√
V̂ar (yt)

, (2.3.1)

where V̂ar (yt) = µ̂t(1− µ̂t)/(1 + φ̂t) and µ̂t = g−1(η̂1t).

The two types of standardized weighted residuals proposed by Espinheira et al.

(2008) better approximate to the standard normal distribution compared to the stan-

dardized residual, thus being more reliable and adequate. The standardized weighted

1 residual is given by:

rwt =
y∗t − µ̂∗t√

υ̂∗t
, (2.3.2)

where y∗t = log (yt/(1− yt)), µ̂∗t = Ê (y∗t ) = ψ(µ̂tφ̂t) − ψ((1 − µ̂t)φ̂t), υ̂∗t = V̂ar (y∗t ) =

ψ′(µ̂tφ̂t) + ψ′((1 − µ̂t)φ̂t), ψ and ψ′ denoting the digamma and trigamma functions,

respectively. The standardized weighted 2 residual, which also has a distribution that

better approximates to the standard normal distribution than that of the standardized

residual, is the most efficient in identifying large influence on the estimates of the

parameters of the model. This residual is computed by:

rwwt =
y∗t − µ̂∗t√
υ̂∗t (1− vtt)

, (2.3.3)
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where vtt is the t-th element of V = Ŵ 1/2X(X>ŴX)−1X>Ŵ 1/2, X = (x1, . . . , xn)> is

the regressor matrix and Ŵ = diag(ŵ1, . . . , ŵn), with ŵt = φ̂2
t υ̂
∗
t

[
1/ {g′(µ̂t)}2

]
.

The quantile residual is a simple and generic residual and is mostly used in complex

regression models, such as the generalised additive models for location, scale, and shape

(Rigby and Stasinopoulos, 2005). Its distribution better approximates to the standard

normal distribution when compared to the standardized weigthed 1 and 2 residuals. In

Pereira (2019), the results suggest that the quantile residual performs better for large

to moderate sample sizes in diagnostic analysis in beta regression as well as it can be

used for any link function. This residual is defined as

rqt = Φ−1{F (yt; µ̂t, φ̂t)}, (2.3.4)

where Φ(·) denotes the CDF of the standard normal distribution and F (·) is the CDF

of the beta distribution in (2.2.4).

Finally, the deviance residual used in the CUSUM-BRCCHwang and in our study it

is defined as

rdt = sign(yt − µ̂t){2|(`t(µ̃t, φ̂t)− `t(µ̂t, φ̂t))|}1/2.

Here, sign(·) is the signal function, `t(µt, φt) is the contribution of the t-th observation

of the log-likelihood function given in (2.2.7), µ̂t and φ̂t are the MLEs of µt and φt,

respectively, and µ̃t being the estimate of µt in the saturated model (maximum log-

likelihood achievable). It is noted by Ferrari and Cribari-Neto (2004) that for large

values of φ, µ̃t ≈ yt, so we replace `t(µ̃t, φ̂t) by `t(yt, φ̂t). Note that this residual

considers the absolute value of the contribution of each observation to the deviance,

which is not reasonable for defining a residual. Espinheira et al. (2008) also discussed

the drawbacks of the deviance residual and recommended that it is not used in the beta

regression.
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Based on the regression structures defined in (2.2.5) and (2.2.6) and on the residuals

given in (2.3.1), (2.3.2), (2.3.3), and (2.3.4), we propose the CUSUM-BRCC using each

of the residuals mentioned, thus resulting in four new control charts.

The CUSUM-BRCC statistics are similar to the ones in (2.2.1) and (2.2.2). They

are given by:

C+
t = max[0, rt − (m0 +K) + C+

t−1],

C−t = max[0, (m0 −K)− rt + C−t−1],

where rt is the t-th observation of each residual considered, m0 is the target mean

value, that is, the residual mean, K is a reference value, and C+
0 = C−0 = 0 are the

starting values. The reference value is given by K = k × σ, where σ is the standard

deviation of the residual used to build the CUSUM chart, and the choice of k is related

to the magnitude of the change that we want to identify, that is, k = 1
2
×∆, where ∆

is the size of the shift in standard deviation units. Here, the decision interval of the

CUSUM control chart is expressed as H = h×σ where h is estimated for each residual.

Observations of the CUSUM statistics that exceed H show that the process is out of

control.

2.4 Simulation study

In what follows, we shall present the results of a Monte Carlo simulation study we

performed to evaluate and compare the CUSUM-BRCC with the BRCC proposed by

Bayer et al. (2018) and the CUSUM-BRCC proposed by Hwang (2021). We considered

the residuals in (2.3.1), (2.3.2), (2.3.3), and (2.3.4) to be used in the CUSUM-BRCC

proposed in this paper, and n ∈ {100, 200, 500}. For brevity and similarity of results, we

only present numerical evidence for n = 500 based on 5,000 Monte Carlo replications.

All simulations were performed using the R programming language (R Core Team,
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2022).

The performance of control charts is usually measured in terms of RL analysis. The

average run length (ARL) is the average number of observations that must be plotted

until the control chart signals. Thus, for an in-control process, this measure is known

as ARL0, whereas for an out-of-control process it is named ARL1. The latter case

means that the mean has shifted, then a smaller number of samples would allow the

detection of the shift more quickly. In this work, we considered the ARL, median run

length (MRL), and standard deviation run length (SDRL) for a process in control,

where ARL = 1/α, MRL = ln(0.5)/ ln(1 − α), and SDRL =
√

(1− α)/α2 (Lee Ho

et al., 2019; Lima-Filho et al., 2019). Here, α is the false alarm probability, that is, the

probability of a single observation falling outside the control limits when the process is

in control. Therefore, assuming that the process is in control and α = 0.005, we obtain

ARL0 = 200, i.e. we expect an out-of-control signal every 200 samples, on average,

even when the process remains in control. The nominal values of MRL and SDRL for a

process with the same characteristics are 138.3, and 199.5, respectively. In order for the

proposed control charts to present the same target in-control ARL, we first calibrated

them using Algorithm 1 to find the optimal h for each residual. To the best of our

knowledge, this calibration is not needed for the CUSUM-BRCCHwang, therefore we

used the approximation given by Siegmund (1985) to obtain the optimal h for a target

ARL0 = 200.

To evaluate the RL when the process is out of control, we introduced a δ change in

the mean regression structure of the process. In the true data generation process, we

used the following beta regression model:

logit(µt) = δ + ω0 + ω1xt,

log(φt) = γ0 + γ1zt,
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Table 2.4.1: True parameter values for the scenarios considered in the simulation study.

Scenario ω0 ω1 γ0 γ1

1 −3.2 2.0 3.0 1.0
2 −3.2 2.0 4.0 0.5
3 −1.0 2.0 3.0 1.5
4 −1.0 2.0 2.0 2.0
5 1.0 2.4 2.0 3.0
6 1.0 2.4 4.0 2.5

where t = 1, . . . , n, δ ranging from −0.5 to 0.5 by steps of 0.1, ω0, ω1, γ0, and γ1 being

the regression coefficients. Since δ is the induced change in the mean, the process is in

control when δ = 0. The values of xt and zt were obtained from a uniform distribution

in the interval (0, 1) and considered constant through all Monte Carlo replications.

Table 2.4.1 shows six scenarios of the true parameter values with different charac-

teristics considered in the numerical evaluation. In Scenarios 1 and 2, the mean is close

to 0.1, with φ ∈ [20, 54] in Scenario 1 and φ ∈ [55, 90] in Scenario 2. In Scenarios

3 and 4, we have φ ∈ [20, 90] and φ ∈ [7, 54], respectively, and the mean is centered

on the standard unit interval. Finally, in Scenarios 5 and 6, the mean is close to 0.9

with φ ∈ [7, 147] in Scenario 5 and φ ∈ [55, 659] in Scenario 6. Note that we covered

a wide range of scenarios for the mean and precision of the process. The Monte Carlo

simulation study is divided into two procedures and summarized by Algorithms 1 and

2.

Tables 2.4.2 and 2.4.3 present results for ÂRL, M̂RL, and ŜDRL for all scenar-

ios. Notice that the control charts obtained similar performance when the process was

in control (δ = 0) and presented estimates close to their nominal values, except for

CUSUM-BRCCHwang, which presented the worst performance among the control charts

studied. We emphasize that the proposed control chart was calibrated (Algorithm 1)

for each residual in order to have a target ARL0 of 200. We observe in Scenario 1 that,

when considering CUSUM-BRCCrwt
(Equation (2.3.2)), we obtained ÂRL0 = 222.52
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Algorithm 1 : Algorithm for estimating h in forming the proposed control charts.

1. Define the desired probability of false alarm α (herein we used α = 0.005);

2. Generate n observations from a standard uniform distribution (0, 1);

3. Using covariates and parameter values, compute µt and φt;

4. Generate n beta-distributed observations with parameters µt and φt;

5. Fit the beta regression model with varying precision and obtain the residuals in
(2.3.1), (2.3.2), (2.3.3), and (2.3.4);

6. Obtain the CUSUM-BRCC for each residual in step 5 using H as decision interval;

7. Plot each data point rt together with the control limits, for t = 1, . . . , n. The
observation rt that is out of the control limits interval is an out-of-control obser-
vation;

8. Repeat steps 4 to 7 a large number of times, say 5,000;

9. At the end of the replications, the in-control average run length is calculated,

obtaining ÂRL0;

10. Repeat steps 4 to 9 for different values of H;

11. Fit a linear regression where H is the response variable and the logarithm of the
estimated ARL0 is the control variable to obtain the exact value of H that yields
the desired ARL0 (herein we chose ARL0 = 200).
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Algorithm 2: Algorithm for the performance evaluation of the proposed control charts.

1. Use the same probability of false alarm α defined in Algorithm 1;

2. Generate n observations from a standard uniform distribution (0, 1);

3. Using covariates and parameter values, compute µt and φt;

4. Generate n beta-distributed observations with parameters µt and φt;

5. Fit the beta regression model with varying precision and obtain the residuals in
(2.3.1), (2.3.2), (2.3.3), and (2.3.4);

6. Obtain the CUSUM-BRCC for each residual in step 5 using the estimated value
of h obtained from Algorithm 1 as decision interval;

7. Plot each data point rt together with the control limits, for t = 1, . . . , n. The
observation rt that is out of the control limits interval is an out-of-control obser-
vation;

8. Repeat steps 4 to 7 a large number of times, say 5,000;

9. At the end of the replications, the average of each measure is calculated, obtaining

the following Monte Carlo estimates: ÂRL, M̂RL, and ŜDRL;

10. Include a shift (δ) in the linear predictor of the mean after fitting the beta model
in step 5 and repeat steps 6 to 9 for different values of δ.
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when ARL0 = 200 was expected, that is, in the worst scenario, there was a distortion

of 11%.

When the process was out of control, the CUSUM-BRCC presented smaller values

of ÂRL1 than the BRCC, evidencing that the proposed control chart is more sensitive

to detect changes in the mean of the variable of interest. For example, in Table 2.4.2 for

Scenario 2 and δ = 0.1, the CUSUM-BRCCrqt
signaled at sample 16, while the BRCC

took on average 163 samples to detect an out-of-control observation. The CUSUM-

BRCCHwang signaled at sample 8, however, this is not an accurate estimate since the

control chart presented a distorted ARL for an in-control process. The exception is for

the CUSUM-BRCCrst
in Scenarios 1 and 5 for δ = −0.1 and δ = 0.1, respectively, which

yielded an ÂRL1 greater than 200. This control chart tend to be ARL-biased in the

sense that some out-of-control ARL values are larger than the in-control ARL (Paulino

et al., 2016).

According to the results obtained, it is important to highlight that all proposed

charts and the BRCC presented a similar performance when the process was in control.

However, the performance of the proposed control chart was far superior when the

process was out of control. For example, in Scenario 3 and δ = −0.1, the BRCC

took on average 131 samples to detect a change in the process while the proposed

CUSUM-BRCC, considering all residuals, took on average 8 samples to detect a change

(approximately 16 times faster). Comparing the CUSUM-BRCC using the quantile

residual with the CUSUM-BRCC using the other residuals when the process shifted, we

note from Tables 2.4.2 and 2.4.3 that the CUSUM-BRCCrqt
outperformed in Scenarios

1, 2 and 4 for δ = 0.1 while in the other scenarios its performance was quite similar to

that of using the other residuals. For a negative shift, the CUSUM-BRCCrqt
presented

better performance in Scenario 5. Although the CUSUM-BRCC using the standardized

residual performed better in some scenarios, the distribution of such residual is not well

approximated by the standard normal distribution Espinheira et al. (2008) compared
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to its weighted competitors, also this control chart can be ARL-biased as mentioned

before.

Note that the variability of the model is directly related to the ability of the control

chart to detect changes in the process. For example, in Scenario 4, where we considered

a low precision (φ ∈ [7, 54]) and δ = −0.1, the CUSUM-BRCCrqt
signaled every 17

samples, on average. On the other hand, when the precision in the process was high

(φ ∈ [55, 659], Scenario 6), the same control chart took on average 3 samples to detect

a change of the same magnitude in the mean.

Finally, the numerical evidence showed that regardless of the value of δ and the

scenario studied, the proposed CUSUM-BRCC presented a better behavior compared

to the other control charts in the literature. As the quantile residual has proved itself to

be a good residual for beta regressions (Pereira, 2019) and our simulation results suggest

it performs better in some scenarios and equally in others, we recommend using such

residual in the proposed CUSUM-BRCC.

2.5 Applications

In this section, we shall present and discuss two applications to show the applicability

of the proposed control chart. As the CUSUM-BRCCHwang presented poor perfomance

under a controlled scenario, we do not consider this control chart in our applications.

We performed the applications using the quantile residual for the CUSUM-BRCC and

compare it with the BRCC. The construction of the control charts follows Algorithms

1 and 2 and ARL0 = 200 (α = 0.005) for both applications.
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Table 2.5.1: Descriptive statistics of the quantitative variables; simulated data.

Variables min Q1/4 median mean Q3/4 max SD

y 0.001 0.073 0.153 0.216 0.306 0.755 0.187
x1 0.001 0.264 0.511 0.509 0.758 0.999 0.288

2.5.1 Application to simulated data

In the first application, we considered simulated data to better illustrate the studied

methodology. We used the following structures for the data generation process:

logit(µt) = −3.2 + 2x1t + 2x2t

log(φt) = 3.0 + z1t + z2t,

where (x1, x2) = (z1, z2). The values of x1 (x2) were obtained from a uniform distri-

bution in the unit interval (Bernoulli distribution with p = 0.3). We generated 1000

observations considering the process in a state of control.

Some descriptive statistics about y and x1 are shown in Table 2.5.1, namely: mini-

mum (min), first quartile (Q1/4), median, mean, third quartile (Q3/4), maximum (max),

and SD. Descriptive statistics for x2 are not presented because it is a binary covariate.

Note that 25% of the response variable (y) does not exceed the value of 0.306, and the

largest value is 0.755. The mean and median are 0.216 and 0.153, respectively. For x1,

we have a minimum of 0.001 and a maximum of 0.999.

The simulated data were split into two groups, Phase I (first 500 observations) and

Phase II (last 500 observations). In Phase I, we estimated the submodels parameters,

and in Phase II we monitored the process. Table 2.5.2 presents the parameter estimates,

standard errors (SEs), and p-values for the models adjusted in Phase I. We note that all

covariates were significant in both models at 5%, as expected. Before determining the

control limits, we performed a diagnostic analysis of the residuals of the model fitted
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Table 2.5.2: MLEs, SEs, and p-values for the fitted beta regression model with varying
precision; simulated data.

Submodel for µ

Estimate SE p-value

Intercept −3.2190 0.0480 < 0.0001
x1 2.0835 0.0591 < 0.0001
x2 2.0026 0.0341 < 0.0001

Submodel for φ

Estimate SE p-value

Intercept 3.2316 0.1306 < 0.0001
z1 0.6345 0.2123 0.0028
z2 0.8498 0.1412 < 0.0001

in Phase I. Figures 2.5.1 and 2.5.2 show the quantile residuals and quantile-quantile

(QQ) plot for the fitted model in Table 2.5.2. Figure 2.5.1 shows that the residuals are

randomly distributed around zero and within three deviations from the mean. Similarly,

Figure 2.5.2 suggests that there is no violation of the model assumptions as the residuals

are in agreement with the 45 degree line. The next step was the calibration of both

control charts to have a target ARL0, then in Phase II (last 500 observations) we

introduced a perturbation in the structure of the mean submodel of magnitude δ = 0.3

to assess the power of the chart in detecting changes within a controlled scenario.

Figures 2.5.3 and 2.5.4 present the BRCC and CUSUM-BRCCrqt
with Phase II data,

respectively. The BRCC indicated only one out-of-control point below the lower limit

and one out-of-control point above the upper limit while the CUSUM-BRCCrqt
indicated

494 out-of-control observations (almost all the data in Phase II). It is noteworthy that

in this phase a disturbance of δ = 0.3 was introduced in the process mean, that is, the

process was out of control.

Figure 2.5.5 presents the performance of the BRCC and CUSUM-BRCCrqt
with

Phase II data. The values were obtained considering the steps of Algorithms 1 and
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Figure 2.5.1: Quantile residuals; simulated data.
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Figure 2.5.2: Quantile-Quantile plot; simulated data.
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Figure 2.5.3: BRCC for simulated data with out-of-control observations highlighted in
red.
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Figure 2.5.4: CUSUM-BRCCrqt
for simulated data with out-of-control observations

highlighted in red.
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Figure 2.5.5: Performance of the BRCC (dashed line) and CUSUM-BRCCrqt
(solid line)

considering ARL0 = 200; simulated data.

2. Lastly, the covariates and parameters described in Table 2.5.2 were used in this

evaluation. We notice that, as evidenced in the simulation study, the CUSUM-BRCCrqt

presented better results than the BRCC (smaller ARL1), proving that the proposed

control chart is more sensitive to detect minor changes in the manufacturing process.

2.5.2 Empirical application

In the second application, the dataset refers to the relative humidity (RH) in Australia

and highlights the relevance of the proposed chart in monitoring double bounded envi-

ronmental data. The RH is a ratio between continuous numbers, being the ratio of the

partial pressure of water to the equilibrium vapor pressure of water, assuming values in

(0, 1). Due to the genesis of the beta regression model, rates and proportions usually

can be well fitted by this model. Additionally, the monitoring of RH is relevant because

it exerts influence on temperature, rain, and thermal sensation (Lima-Filho and Bayer,

2021).
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Table 2.5.3: Description of the variables; relative humidity data.

Variable Description

RelHumid3pm Relative humidity (%) at 3pm
Cloud3pm Fraction of sky obscured by cloud at 3pm.
Evaporation The so-called Class A evaporation pan (mm) in the 24 hours to 9am
MaxTemp The maximum temperature in degrees celsius
MinTemp The minimum temperature in degrees celsius
Pressure3pm Atmospheric pressure reduced to mean sea level at 3pm
Rainfall The amount of rainfall recorded for the day in mm
Sunshine The number of hours of bright sunshine in the day

Table 2.5.4: Descriptive statistics of the quantitative variables; relative humidity data.

Variables min Q1/4 median mean Q3/4 max SD

RelHumid3pm 10.00 43.00 54.00 53.02 63.00 95.00 15.99
Cloud3pm 0.00 1.00 4.00 4.15 7.00 8.00 2.61
Evaporation 0.00 3.20 5.00 5.39 7.20 18.40 2.85
MaxTemp 11.70 20.20 23.30 23.45 26.40 45.80 4.48
MinTemp 5.00 11.30 15.05 15.03 18.90 27.10 4.52
Pressure3pm 994.00 1012.00 1016.00 1016.00 1021.00 1036.00 7.06
Rainfall 0.00 0.00 0.00 2.83 1.00 94.40 8.23
Sunshine 0.00 4.60 8.40 7.40 10.30 13.60 3.75

Table 2.5.3 contains a brief description of the variables used in this analysis. The

quality characteristic monitored was measured daily at 3:00pm, and the other variables

were used to adjust the beta regression model for the µ and/or φ structures. This

dataset is available in the R rattle package (Graham, 2011) from October 2010 to

June 2017 for the Sydney Station in Australia.

Table 2.5.4 includes descriptive statistics of the considered variables. We observe

that 25% of the RH does not exceed 43%, the largest prevalence of RH is 95%, and

the mean and median values for RH are 54% and 53%, respectively. In the analyzed

period, the lowest temperature was 5◦C and the highest was 45.8◦C.

The dataset has a total of 1690 observations. We used the 845 (50%) first observa-
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Table 2.5.5: MLEs, SEs, and p-values for the fitted beta regression model with varying
precision; relative humidity data.

Submodel for µ

Estimates SE p-value

Intercept −20.6930 2.6299 < 0.0001
Cloud3pm 0.0657 0.0062 < 0.0001
Evaporation −0.0509 0.0066 < 0.0001
MaxTemp −0.0729 0.0062 < 0.0001
MinTemp 0.1161 0.0060 < 0.0001
Pressure3pm 0.0204 0.0025 < 0.0001
Rainfall 0.0121 0.0026 < 0.0001

Submodel for φ

Estimates SE p-value

Intercept −60.4090 7.6854 < 0.0001
MinTemp 0.0284 0.0121 0.0190
Sunshine 0.0765 0.0129 < 0.0001
Pressure3pm 0.0615 0.0075 < 0.0001

tions (October 2010 to December 2014) to estimate the submodels parameters (Phase

I). In Phase II, we used the observations from January 2015 to June 2017 to monitor

the relative humidity.

Table 2.5.5 shows the parameter estimates, SEs, and p-values for the fitted beta

regression model with varying precision. We considered the logit and log link functions

in the mean and precision submodels, respectively. Considering the covariates that were

statistically significant at the significance level of 5%, two of them were significant in

both submodels, namely: minimum temperature (MinTemp) and atmospheric pressure

reduced to mean sea level (Pressure3pm).

As in the previous application, we performed a diagnostic analysis of the residuals

to check if the beta model is a good fit to the data. Figures 2.5.6 and 2.5.7 show the

residuals and QQ plot for the model fitted to RH data. In Figure 2.5.6, the residuals

are randomly distributed around zero and within three deviations from the mean. Fig-
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Figure 2.5.6: Quantile residuals; relative humidity data.

ure 2.5.7 displays theoretical quantiles against the empirical quantiles of the residuals.

There is no evidence of violation of the model assumptions as the residuals are mostly

on the 45 degree line, indicating that this model is a good fit to the data.

Figures 2.5.8 and 2.5.9 show the BRCC and CUSUM-BRCCrqt
with Phase II data,

respectively. Considering the BRCC for monitoring relative humidity, the control chart

indicated no more than ten out-of-control points below the lower limit and three points

exceeded the upper limit. Differently, the CUSUM-BRCCrqt
triggered 62 out-of-control

points. These results reinforce the characteristic of the CUSUM control chart’s power

to detect changes in the quality characteristic of interest.

Figure 2.5.10 shows the performance of the BRCC and CUSUM-BRCCrqt
. The

construction of the control charts followed the same steps of the application to simulated

data. The control charts obtained similar performance when the process was in control

(δ = 0); however their performance differed when the process was out of control. The

CUSUM-BRCCrqt
presented smaller values of ÂRL1 than its counterpart, evidencing

that the proposed control chart is more sensitive to trigger a signal in the quality



CHAPTER 2. CUSUM BETA REGRESSION CONTROL CHART 67

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Theoretical quantiles

E
m

p
ir

ic
al

 q
u
an

ti
le

s

Figure 2.5.7: Quantile-Quantile plot; relative humidity data.
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Figure 2.5.8: BRCC for the monitoring of relative humidity in Australia with out-of-
control observations highlighted in red.
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Figure 2.5.9: CUSUM-BRCCrqt
for the monitoring of relative humidity in Australia

with out-of-control observations highlighted in red.
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Figure 2.5.10: Performance of the BRCC (dashed line) and CUSUM-BRCCrqt
(solid

line) considering ARL0 = 200; relative humidity data.
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characteristic. For example, considering δ = 0.1, the BRCC took on average 149

samples to detect a change in the process while the CUSUM-BRCCrqt
took on average

20 samples to detect a change of the same magnitude. In a nutshell, in the presence

of control variables, this analysis shows that the proposed CUSUM-BRCC is useful to

monitor quality characteristics in the interval (0, 1) in practical situations.

2.6 Concluding remarks

In this paper, we developed a new control chart for monitoring double bounded quality

characteristics in the presence of control variables (covariates). For this purpose, we

proposed the residual-based CUSUM beta regression control chart considering different

residuals of the beta distribution. This control chart has the advantage of accumulating

information from the past as well as being more sensitive to detect changes in the mean

of a process. We conducted a Monte Carlo simulation study to evaluate and compare

the performance of the proposed control chart with two competing control charts in

the literature. The numerical results evidenced the superiority of the proposed control

chart, presenting values of ÂRL0, M̂RL0, and ŜDRL0 close to their nominal values

when the process was in control, and smaller ÂRL1 for an out-of-control process. We

also presented and discussed applications to real and simulated data that showed the

practical importance of our proposal. Finally, we suggest the use of the CUSUM beta

regression control chart with the quantile residual when the objective is to monitor

double bounded quality characteristics in the presence of control variables and detect

small shifts in the mean of the process.



Appendix A

Computational implementation

In this appendix, we present the computer code used to obtain the MLEs and negative

log-likelihood estimates of the Gaussian copula model in Section 1.4.2 considering the

Southern dataset in Figure 1.2.1, and also the code used in the empirical application in

Section 2.5.2. Note that the data used in Section 2.5.2 has been updated so the results

might differ from that of the original paper. The files and datasets are available at

https://github.com/rauberc/thesis-lu.

###################################################################

# PROGRAM: mle-gaussian-copula.R

# USAGE: Computation of the maximum likelihood estimators and

# negative log-likelihood estimates for the bivariate

# Gaussian copula

# AUTHOR: Cristine Rauber Oliveira

###################################################################

# loading the packages

library(extRemes)

70

https://github.com/rauberc/thesis-lu
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library(tidyverse)

library(geodist)

library(foreach)

library(mvnfast)

library(mvtnorm)

#### coordinates and geodesic distance ####

geocoord <- read.csv("coordinates.csv", header = TRUE)

ind_sites <- which(between(geocoord$geolat, 35, 67) &

between(geocoord$geolon, -25, 8))

geocoordinates <- data.frame(geocoord$geolon[ind_sites],

geocoord$geolat[ind_sites])

names(geocoordinates) <- c("lon", "lat")

dist <- geodist(geocoordinates, measure = "geodesic")

dist <- dist/100000

ind_dist <- which(upper.tri(dist, diag = FALSE), arr.ind = TRUE)

geodist <- dist[ind_dist[order(ind_dist[,1]),]]

#### data ####

data <- read.csv("data.csv", header = TRUE)

# obtaining only the nine sites of interest

df_sites <- data[, ind_sites]

# removing rows where there is at least one missing value
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df_final <- df_sites[complete.cases(df_sites),]

# preparing the pairwise datasets

pairlist <- as.list(df_final)

pairwise <- as.list(combn(pairlist, 2))

ind_col_1 <- seq(1, length(pairwise) - 1, by = 2)

ind_col_2 <- ind_col_1 + 1

col_1 <- purrr::map(ind_col_1, ~pairwise[[.x]])

col_2 <- purrr::map(ind_col_2, ~pairwise[[.x]])

length(col_1) == length(col_2)

# function to obtain the dataframes in a pairwise fashion

make_df <- function(col1, col2){

new_data <- data.frame(col1, col2)

return(new_data)

}

# complete dataframes in a list

complete_dfs <- purrr::map2(.x = col_1, .y = col_2, make_df)

#### transforming to uniform margins ####

# function to transform the margins of each dataframe to uniform

unif_margins <- function(data){

data1 <- data[,1]

data2 <- data[,2]
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vec_unif1 <- numeric(length = length(data1))

vec_unif2 <- numeric(length = length(data2))

q <- 0.95

th1 <- quantile(data1, q)

th2 <- quantile(data2, q)

overth1 <- data1 >= th1

underth1 <- data1 < th1

overth2 <- data2 >= th2

underth2 <- data2 < th2

fitgpd1 <- fevd(data1, method = "MLE", type = "GP", threshold = th1)

par1 <- fitgpd1$results$par

fitgpd2 <- fevd(data2, method = "MLE", type = "GP", threshold = th2)

par2 <- fitgpd2$results$par

ranks1 <- rank(data1)/(length(data1)+1)

ranks2 <- rank(data2)/(length(data2)+1)

pgpd_new <- function(data, scale, shape, lambda, threshold){

p <- pmax(1 + (shape*(data - threshold))/scale, 0)

p <- 1 - lambda*p^(-1/shape)

return(p)

}

unifgpd1 <- pgpd_new(data1, scale = par1[1], shape = par1[2],
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lambda = 1 - q, threshold = th1)

unifgpd2 <- pgpd_new(data2, scale = par2[1], shape = par2[2],

lambda = 1 - q, threshold = th2)

vec_unif1[underth1] <- ranks1[underth1]

vec_unif1[overth1] <- unifgpd1[overth1]

vec_unif2[underth2] <- ranks2[underth2]

vec_unif2[overth2] <- unifgpd2[overth2]

unif_mar <- data.frame(vec_unif1, vec_unif2)

return(unif_mar)

}

# applying the function above to the list of dataframes

unif_df <- purrr::map(complete_dfs, unif_margins)

# censored Gaussian negative log-likelihood

nll_Gaussian <- function(rho, datU, thresh){

z <- matrix(sapply(datU, qnorm), ncol = ncol(datU), nrow = nrow(datU))

uz <- qnorm(thresh)

if (length(uz) == 1) {

uz <- rep(uz, dim(z)[2])

}

else if (length(uz) < dim(z)[2]) {

stop("Invalid censoring threshold")

}

if (rho < -0.9999 || rho > 0.9999) {
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return(1e+11)

}

Sig <- matrix(c(1, rho, rho, 1), ncol = 2)

if (!exists(".Random.seed", mode = "numeric", envir = globalenv()))

sample(NA)

oldSeed <- get(".Random.seed", mode = "numeric", envir = globalenv())

ind <- which(apply(z, 1, function(x) {sum(!is.na(x)) == dim(z)[2]}))

z <- z[ind,]

tmp <- apply(z, 1, function(t) {(sum(t > uz))})

ind_part_cens <- c(1:dim(z)[1])[tmp > 0 & tmp < dim(z)[2]]

ind_full_cens <- c(1:dim(z)[1])[tmp == 0]

ind_no_cens <- c(1:dim(z)[1])[tmp == dim(z)[2]]

if(length(ind_no_cens) > 0){

ll1 <- -sum(mvnfast::dmvn(z[ind_no_cens, ],

mu = rep(0, ncol(z)),

sigma = Sig,

log = TRUE)) +

sum(dnorm(z[ind_no_cens,], log = TRUE))

} else{ll1 <- 0}
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ll2 <- foreach::foreach(j = ind_part_cens, .combine = ’c’) %dopar% {

cens <- which(z[j, ] <= uz)

nocens <- which(z[j, ] > uz)

Sig11 <- Sig[cens, cens] - Sig[cens, nocens] %*%

(solve(Sig[nocens, nocens]) %*% Sig[nocens, cens])

Sig11 <- as.matrix(Sig11)

if(!isSymmetric.matrix(Sig11)){

Sig11 <- (Sig11 + t(Sig11))/2

}

mu11 <- c(Sig[cens, nocens] %*%

(solve(Sig[nocens, nocens]) %*%

z[j, nocens]))

set.seed(123)

mvnfast::dmvn(z[j, nocens],

mu = rep(0, length(nocens)),

sigma = as.matrix(Sig[nocens, nocens]),

log = TRUE) +

log(mvtnorm::pmvnorm(upper = uz[cens],

mean = mu11, sigma = Sig11)[1]) -

sum(dnorm(z[j,nocens], log = TRUE))

}

ll2 <- -sum(ll2)

set.seed(123)

ll3 <- -length(ind_full_cens)*log(mvtnorm::pmvnorm(upper = uz,
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sigma = Sig)[1])

assign(".Random.seed", oldSeed, envir = globalenv())

return(ll1 + ll2 + ll3)

}

#### optmisation ####

mle <- matrix(rep(NA, 2), nrow = 1, ncol = 2)

comb <- function(...) {

mapply(’rbind’, ..., SIMPLIFY = FALSE)

}

# loop to obtain the MLEs and negative log-likelihood estimates

# for the Gaussian copula

loop <- foreach::foreach(i = 1:length(unif_df),

.combine = ’comb’,

.multicombine = TRUE) %dopar% {

data <- unif_df[[i]]

data <- as.matrix(data)

fit <- optim(0.6,

nll_Gaussian,

method = "BFGS",

thresh = 0.95,

datU = data)

mle[, 1] <- fit$par
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mle[, 2] <- fit$value

list(mle)

}

mles <- data.frame(loop)

names(mles) <- c("rho", "nll_Gaussian")

# estimates for each model

#> print(mles)

# rho nll_Gaussian

#1 0.9863241 -473.198683

#2 0.9652405 -283.995622

#3 0.9857896 -435.782406

#4 0.8613851 120.186416

#5 0.7097369 312.610705

#6 0.9852277 -425.114979

#7 0.9866764 -430.010106

#8 0.9714839 -303.335174

#9 0.9648448 -276.455859

#10 0.9799662 -366.290839

#11 0.8702448 107.717808

#12 0.7319095 290.910204

#13 0.9795275 -368.535953

#14 0.9728336 -291.429854

#15 0.9687396 -273.059565

#16 0.9794567 -392.146757

#17 0.9131043 9.867028



APPENDIX A. COMPUTATIONAL IMPLEMENTATION 79

#18 0.7461897 273.535119

#19 0.9646458 -275.517008

#20 0.9483830 -154.114057

#21 0.9821864 -395.823026

#22 0.8788641 86.939471

#23 0.7298333 292.799895

#24 0.9866249 -448.133902

#25 0.9772714 -319.506604

#26 0.9836648 -421.980756

#27 0.8159237 185.917185

#28 0.8591979 124.030247

#29 0.8366267 169.222046

#30 0.9059431 9.707709

#31 0.7095187 312.061879

#32 0.6863212 334.474167

#33 0.7474842 272.522087

#34 0.9811539 -345.494980

#35 0.9701906 -281.419806

#36 0.9578660 -191.293670
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###################################################################

# PROGRAM: cusum-betareg-control-chart.R

# USAGE: Computation of the CUSUM beta regression control chart

# using the quantile residual

# AUTHOR: Cristine Rauber Oliveira

###################################################################

# getting the dataset from the rattle package

data(weatherAUS)

head(weatherAUS)

tail(weatherAUS)

# checking the dimension of the dataset

dim(weatherAUS)

#checking the locations available in this dataset

table(weatherAUS$Location)

# obtaining the data for Sydney, which is the city we are interested in

# analysing the relative humidity

df_rh <- na.omit(weatherAUS[weatherAUS$Location == "Sydney",])

attach(df_rh)

# phase I data: we use these observations to fit the model and get

# the parameter estimates

df_rh_p1 <- df_rh[1:845, c(3,4,5,6,7,15,17,19)]
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# phase II data: we monitor these observations after fitting the model to

# the phase I data and getting the parameter estimates

df_rh_p2 <- df_rh[846:1690, c(3,4,5,6,7,15,17,19)]

# feature names

names(df_rh_p1)

# summary of each feature

summary(df_rh_p1)

# transforming the target to a uniform scale (the beta regression model

# only applies to the target in the unit interval (0,1))

df_rh_p1$Humidity3pm <- df_rh_p1$Humidity3pm/100

df_rh_p2$Humidity3pm <- df_rh_p2$Humidity3pm/100

# fitting the beta regression model to the data in phase I

fit <- betareg(Humidity3pm ~ MinTemp + MaxTemp + Rainfall + Evaporation +

Pressure3pm + Cloud3pm | MinTemp + Sunshine +

Pressure3pm, data = df_rh_p1)

summary(fit)

# obtaining the design matrices for both submodels

X_mu <- cbind(1, df_rh_p1[,c(1,2,3,4,7,8)])

X_phi <- cbind(1, df_rh_p1[,c(1,5,7)])

# linear predictor for each submodel
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eta_mu <- as.matrix(X_mu)%*%fit$coefficients$mean

eta_phi <- as.matrix(X_phi)%*%fit$coefficients$precision

shape1 <- exp(eta_mu)/(1+exp(eta_mu))

shape2 <- exp(eta_phi)

# parameters of the beta regression distribution

p <- shape1*shape2

q <- shape2-(shape1*shape2)

rh <- df_rh_p1$Humidity3pm

# quantile residual

residual <- qnorm(pbeta(rh, p, q))

# plot of the residuals

plot(residual, caption = NULL, sub.caption = NULL, ylim = c(-4,4),

ylab = "Quantile residual", xlab = "Index")

abline(h = c(-3,3), lty = 2)

abline(h = 0, col = "red")

# qqplot of the residuals

qqnorm(residual, caption = NULL, main = "", ylab = "Empirical quantiles",

xlab = "Theoretical quantiles")

qqline(residual)

# design matrices for the data in phase II
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X_mu2 <- cbind(1, df_rh_p2[,c(1,2,3,4,7,8)])

X_phi2 <- cbind(1, df_rh_p2[,c(1,5,7)])

# linear predictor for each submodel

eta_mu2 <- as.matrix(X_mu2)%*%fit$coefficients$mean

eta_phi2 <- as.matrix(X_phi2)%*%fit$coefficients$precision

shape1_2 <- exp(eta_mu2)/(1+exp(eta_mu2))

shape2_2 <- exp(eta_phi2)

p2 <- shape1_2*shape2_2

q2 <- shape2_2-(shape1_2*shape2_2)

# rh of phase II data

rh2 <- df_rh_p2$Humidity3pm

set.seed(1)

# residuals for the phase II data

res2 <- qnorm(pbeta(rh2, p2, q2))

# control limits

control_limits <- cusum(res2, center = mean(residual),

std.dev = sd(residual),

decision.interval = 3*1.842887,

se.shift = 1, plot = F)
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DI <- control_limits$decision.interval

cusum_pos <- as.vector(control_limits$pos)

cusum_neg <- as.vector(control_limits$neg)*(-1)

out_model1 <- c(which(cusum_neg > DI))

out_model2 <- c(which(cusum_pos > DI))

obs1 <- cusum_neg[out_model1]

obs2 <- cusum_pos[out_model2]

# red dots are observations out of control

plot(cusum_pos, xaxs = "r", type = "o", lwd = 1, pch = 1,

ylab = expression("Cumulative Sum"),

xlab = expression("Observations"),

ylim = c(-0.4, 15))

points(cusum_neg, type = "o", xaxs = "r", lwd = 1, pch = 1)

abline(h = DI, lwd = 1, lty = 1)

points(out_model1, obs1, pch = 16, col = "red")

points(out_model2, obs2, pch = 16, col = "red")
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