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Abstract— Vehicular services aim to provide smart and timely
services (e.g., collision warning) by taking the advantage of recent
advances in artificial intelligence and employing task offloading
techniques in mobile edge computing. In practice, the volume of
vehicles in the Internet of Vehicles (IoV) often surges at a single
location and renders the edge servers (ESs) severely overloaded,
resulting in a very high delay in delivering the services. Therefore,
it is of practical importance and urgency to coordinate the
resources of ESs with bandwidth allocation for mitigating the
occurrence of a spike traffic flow. For this challenge, existing work
sought the periodicities of traffic flow by analyzing historical
traffic data. However, the changes in traffic flow caused by sudden
traffic conditions cannot be obtained from these periodicities.
In this paper, we propose a distributed traffic flow forecasting
and task offloading approach named TFFTO to optimize the
execution time and power consumption in service processing.
Specifically, graph attention networks (GATs) are leveraged to
forecast future traffic flow in short-term and the traffic volume
is utilized to estimate the number of services offloaded to the ESs
in the subsequent period. With the estimate, the current load of
the ESs is adjusted to ensure that the services can be handled in
a timely manner. Potential game theory is adopted to determine
the optimal service offloading strategy. Extensive experiments are
conducted to evaluate our approach and the results validate our
robust performance.
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I. INTRODUCTION

IN MODERN metropolis, due to the high density of
population and the increase in car ownership, urban traf-

fic problems (e.g., traffic block) are becoming increasingly
prominent. With the increasing development of wireless com-
munication as well as artificial intelligence, Internet of vehicles
(IoV) are capable of providing innovative services such
as automatic driving and collision warning, thus alleviat-
ing the current traffic pressure, which significantly improves
users’ travel experience. Nevertheless, the limited computation
resources make the vehicles fail to satisfy the high require-
ments for real-time service processing, posing a series of traffic
security risks [1]. In addition, in the case of increasingly
expensive fuel resources, the energy consumption generated
by vehicular equipments will also increase the additional cost
of users, resulting in the users’ economic burden.

To tackle the contradiction of the resource-limited vehicles
and the high requirements for real-time monitoring, a promis-
ing approach is to offload the vehicular services to the remote
cloud [2]. By leveraging mighty computation power of the
cloud, the computing capacity of the vehicles is extended.
Thus the service processing speed is optimized to some extent
[3]. Nevertheless, due to the extreme delay sensitiveness of the
vehicular services, the unacceptable drawbacks of high latency
and unstable connection between the vehicular users and the
cloud center cannot be dismissed [4].

Mobile edge computing (MEC) has been widely practiced
recently as the complement to cloud computing to address the
issues of high latency and the unstable connection [5], [6]. The
MEC provides approximative cloud computation power with
the superiority of proximity to the users [7]. With lightweight
data transmission, MEC can cut down the offloading delay
significantly [8], [9]. Currently, a wide range of investigations
on offloading decisions and resource provisioning in MEC has
been studied, aiming at improving the quality of experience
(QoE) of the end-users [10], [11]. Benefiting from MEC, the
vehicle services are able to acquire the resources for execution
in real time. Nevertheless, facing the increasing volumes of
the vehicles and the high demands for real-time monitoring
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and data analysis, the resource-constrained edge servers (ESs)
fail to execute all the services of IoV simultaneously [12],
[13]. As the supplementary of the ESs, centralized cloud
provides these services with strict cloud processing capability.
Furthermore, the connection reliability and the transmission
latency have been significantly improved by the common
usage of passive optical networks (PONs) [14]. Hence, it is
particularly vital to take full advantage of the resources on the
centralized cloud. The reasonable combination of MEC and
cloud computing largely enhances users’ experience and the
QoS of the auxiliary services in driving [15].

Under the collaborative cloud-edge architecture, the users
ought to select offloading destinations among the local device,
ES and cloud server (CS). However, considering the mobility
of the vehicles as well as the fixation of the ESs, interruptions
caused by transitions of wireless connections occur in service
offloading with great probability, which induces the high
transmission delay. Moreover, the paroxysmal explosion of
the traffic flow at a certain time point may cause ESs to be
overloaded, making the services suffer from extremely high
latency [16].

Currently, several methods have been studied to address
the channel allocation and offloading decision problems in
the service offloading process, aiming to optimize the over-
all transmission delay through different offloading schemes.
Fan et al. [17] proposed a method that minimizes the total
task processing delay for all vehicles by considering ser-
vice scheduling, channel allocation, and computation resource
allocation for vehicles and RSUs. On the other hand, other
methods have focused on the resource allocation problem
on edge servers, reducing the overall computation delay by
allocating computing resources to users at a fine granularity.
Tuyen et al. [18] employed convex optimization techniques
to optimize the resource allocation in the service offloading
process, thereby maximizing the offloading benefits for users.
Existing methods for service offloading and resource allocation
mainly address the optimization of service performance in
quasi-static scenarios, where the total number of users and
their distribution remain stable over a period of time. However,
in reality, users exhibit strong mobility, and the number of
users within the coverage area of different edge services
changes in real-time. Furthermore, the distribution of users
has temporal correlation. For example, during the rush hour,
the total number of users at transportation hubs is much larger
than in remote areas. Therefore, in scenarios where the user
distribution dynamically changes, the load on edge servers
becomes severely imbalanced. Idle servers at a particular
moment result in resource wastage, while overloaded servers
lead to excessive user waiting time, thereby affecting the
overall service quality. Hence, to optimize the execution time
(ET) and transmission time of each service, a reasonable
service offloading strategy is required. Meanwhile, the edge
server should maintain dynamic load balancing when facing
the distribution shift of traffic flow [19].

With these observations, a distributed traffic flow forecasting
and task offloading approach named TFFTO is designed to
optimize the execution time and power consumption in service
processing. In TFFTO, we combine potential game and graph

attention networks to optimize the service offloading process.
Potential game allows participants to optimize their strategies
based on the actions of their opponents during the game.
Such flexibility enables participants to better cope with uncer-
tainty and environmental changes, thereby achieving improved
results when the distribution of user quantities changes in real-
time. Graph attention networks have the ability to integrate
node information and possess a transductive property, enabling
accurate prediction of large-scale traffic flows. The prime
contributions of the paper are as follows.

• Construct a flow driven distributed computation offload-
ing framework with collaborative cloud-edge computing
in IoV for a dynamic service offloading scenario where
the distribution of user quantities changes in real-time.

• Adopt the graph attention network (GAT) to improve
the accuracy of traffic flow prediction. The prediction
results are used to adjust the current load of ES, which
significantly reduces the average service processing time.

• Design a potential game theory based distributed com-
putation offloading algorithm to minimize the energy
consumption of the vehicles and the service processing
time.

• Conduct comparative experiments and the convergence
analysis to demonstrate the validity of the proposed
algorithm.

The remainder of this paper is organized as follows.
In Section II, the recent researches related to our work are
introduced. The system model and the optimization problem
are presented in Section III. GAT is adopted for traffic flow
prediction in Section IV, followed by the game formulation
in Section V. The performance of the method is analyzed
and the numerical results are provided in Section VI. Finally,
Section VII summarizes this paper.

II. RELATED WORK

The birth of IoV has promoted the development of a
series of vehicular services such as collision warning and
driverless driving [20]. These services not only provide great
convenience for people’s travel, but also need to consume vast
computing resources to ensure low latency. The computing
resources equipped with vehicles often fail to meet the delay
requirements of vehicular services. Therefore, more powerful
computing equipment is needed to support the operation of
vehicular services. Since edge computing perfectly meets the
needs of users in IoV for low-latency services, the applica-
tions of edge computing in IoV have been attracted great
attention and extensively researched by scholars in recent
years. As the storage and computing resources of edge servers
are also limited, channels and computing resources must be
allocated properly. otherwise, edge servers are likely to be
overloaded [21].

A. Task Offloading and Resource Allocation in Quasi-Static
Scenarios

Task offloading algorithm is a hot research topic in edge
computing. By optimizing task offloading schemes, com-
putational resources are allocated more effectively, leading
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to a significant improvement in the resource utilization of
edge servers and enhancing the overall user service experi-
ence. Currently, the optimization of task offloading strategies
primarily depends on factors such as channel occupancy,
server load status, and the maximum acceptable latency of
the service itself. Some authors also perform fine-grained
scheduling of computational resources on servers while task
offloading, thereby further optimizing resource allocation.
Feng et al. [22] proposed a distributed task offloading and
data caching method to reduce the service latency and improve
the storage utilization of edge servers. This method greatly
reduces the network overhead by using dynamic programming.
Tang and Wong [23] proposed a distributed task offloading
algorithm based on the deep Q-network. The algorithm applied
the model-free method, which ensured the users to make
task offloading decisions without other users’ information.
However, offloading the whole task will lead to the waste of
local computing resources, so a reasonable model segmen-
tation method is needed to make the task more reasonably
distributed. Gao et al. [24] proposed a model segmentation and
task offloading scheme based on deep neural network. Through
task partitioning, each sub-task can be processed on different
devices, which enhances the flexibility of task scheduling and
the utilization of computing resources.

B. The Application of Game Theory in Edge Computing

In task offloading, the relationship between users and
servers can be one-to-many, many-to-one, or many-to-many.
Additionally, each user has the autonomy to make offload-
ing decisions independently or be centrally scheduled by a
central server. Therefore, optimizing task offloading deci-
sions becomes an exponentially complex problem, which also
exhibits game-like characteristics. As a result, many studies
employ game theory to address this problem. Mitsis et al. [25]
adopted Stackelberg game and established a multi-leader
multi-follower model between servers and users to determine
the optimal pricing strategy for servers and the optimal data
offloading strategy for users. Teng et al. [26] employed
non-cooperative game theory and combined it with a greedy
approach to address the time complexity issue in the allo-
cation and scheduling of multiple tasks to multiple servers.
Chen et al. [27] defined the problem as a multi-user unloading
decision game, and proposed a game-based decentralized task
unloading method to maximize user QoE under resource
constraints. In general, game theory can effectively reduce
time complexity and accelerate decision convergence when
dealing with large-scale decision-making problems

C. Task Offloading Under Real-Time Traffic Flow Variations

Optimizing the task offloading algorithm alone cannot com-
pletely improve the utilization of the computing resources on
edge servers. The unbalanced temporal and spatial distribution
of vehicle-mounted users leads to the load disproportion of
edge servers, which are prone to overload in traffic rush
hours and empty in flat peak hours. To rationally utilize the
computing resources of each edge server, it is necessary to

TABLE I
NOTATIONS AND DESCRIPTION

obtain the traffic distribution of each place before task offload-
ing. Fang et al. [28] proposed a fine-grained task offloading
method based on traffic flow prediction. In this method deep
spatiotemporal residual network is leveraged to estimate the
traffic volume in each region. With the periodic results based
on traffic flow forecasts, genetic algorithm is used to select a
reasonable task offloading strategy. Chen et al. [29] proposed
a hybrid traffic flow forecast method by sparse auto-encoder
to address the over-fitting and manual intervention problems
of traffic flow forecast. By feature engineering, this method
makes the periodic prediction of traffic flow more accurate
and provides an effective reference for the placement of edge
servers.

However, most studies to our knowledge do not take into
account the scale of all edge servers and users in the IoV. These
studies only consider the periodic flow prediction and load
balancing of a single node. In fact, the number distribution
of users is often instantaneous, and has both temporal and
spatial correlation. Therefore, accurate traffic prediction should
combine the feature information and location information of
multiple nodes to make a global judgment. Moreover, the
traffic flow prediction of the above studies only focuses on the
periodic results and does not consider the sudden conditions
such as traffic surge, so it is unable to deal with the scene of
real-time traffic flow change. When there is a large demand
for user services or a large number of edge servers, it is easy
to cause high dimensions of state space and action space,
resulting in the insufferable training time of the algorithm
model. In order to solve the above problems, we propose a
short-term traffic flow prediction scheme based on GAT to
adjust the load of edge servers in time. Additionally, we model
the service offloading process as a potential game to avoid the
dimension explosion caused by the large decision space and
state space of users.

III. SYSTEM MODEL

In this section, we define the system model of this paper,
including communication model and computation model.

A. The Framework of Task Offloading

As shown in Fig. 1, a framework composed of Y roadside
units (RSUs), a base station (BS) equipped with the compu-
tation power PB (total CPU revolutions in a second), cloud
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Fig. 1. A framework of collaborative services offloading in mobile edge
computing.

computing servers and W vehicles are considered. The RSUs
which are uniformly located along the highway possess the
identical wireless signal coverage range R and the computation
power PR . Hence, the road can be divided into Y segments
with all the vehicles randomly distributed in the researched
highway. Additionally, the RSUs are connected with the BS
and CSs by means of fiber optic cables. The vehicles either
select to process the services independently or offload the
services to the ESs/CSs. To obtain the useful insights and
ensure tractable analysis, a quasi-static scenario is applied in
which the speed of each vehicle in set W = {1, 2, 3, . . . , S}

keeps invariable during the period of data transmission (e.g.,
several milliseconds). In addition, Code Division Multiple
Access (CDMA) is adopted in this paper for communication
and data transmission between devices. CDMA is a technology
that encodes data using different spreading codes, allowing
multiple users or devices to communicate simultaneously on
the same frequency band. CDMA technology separates the
data of specific users or devices from the interference of
other users or devices by using the corresponding spreading
code at the receiving end. The models of communication
and computing in MEC are introduced respectively in the
following parts. The meaning of some major symbols is listed
in Table I.

B. Communication Model

The vehicle can either select the local computing, or choose
the ES (e.g., RSU and BS)/the CS to execute the service. The
computation offloading strategy of each vehicle is denoted as
dw ∈

{
dw,W , dw,R, dw,B, dw,C

}
where w ∈ W .

di, j ∈

{
{0, 1} , if j ∈ {W, B, C} ,

{0, 1, 2, . . . , Y } , otherwise,
(1)

where τ = {W, B, C} denotes the offloading decision set,
which is composed of the vehicles (W), the BS (B) and the CS
(C). Specifically, di, j > 0 if the vehicle w chooses to offload
the services to j ∈ {R, B, C} and dw,W > 0 if the vehicle w

selects the local processsing method. For the vehicle w, there
is only one parameter greater than zero among the decision set

{
dw,W , dw,R, dw,B, dw,C

}
, others are all equal to zero, which

means the service cannot be split and ought to be processed on
one equipment. Provided the decision set d = {d1, d2, . . . , dW }

of all the vehicles, the uplink data rate of the vehicle w which
unloads the service to the RSU, the BS or the CS via a wireless
channel can be formulated as

9w,y(d) = qlog2

(
1 +

℧
δ + ℵ

)
, (2)

where ℧ = kw Dy
w and ℵ =

∑
i !=w 4(i ∈ W )4(di, j =

dw, j )ki Dy
w. 4(h) is a judgement function. If h is true,

4(h) = 1. Otherwise, 4(h) = 0. Additionally, q is the
channel bandwidth and kw is the transmission power of the
vehicle w. Moreover, Dy

w expresses the channel gain between
the vehicle w and the edge device y, and δy represents
the background noise power. In this work, the computation
offloading is investigated with wireless interference, where
the average summation throughput of users in the cellular
communication scenario can be well captured.

From the communication model above, it is shown that if
excessive vehicles select services offloading through the iden-
tical wireless channel concurrently, the transmitting procedure
tends to suffer from severe interference which induces low
data transmission rates.

C. Computation Model

Each vehicle has a computation service denoted as ϕw =

{Qw, Gw}, where Qw refers to the input data size and Gw

is the necessary computation resources (CPU revolutions in
all) of the accomplishment of the service ϕw. Afterward, the
system-wide overhead of the vehicle with a single task in
terms of consumed energy and executed time under various
computing models will be discussed.

1) Service Execution at Local Equipment: For the local
execution model, the service ϕw of the vehicle w is executed
on the local equipment. The computation power (total CPU
revolutions in a second) of the vehicle w is denoted as pL

w. It is
supposed that various vehicles possess distinct computation
powers. The time executing the service ϕw is expressed as

σw,W (d) = Gw ×
1

pL
w

. (3)

The consumed energy during the service processing is
formulated as

�w,W (d) = βwGw, (4)

where βw is the coefficient of the vehicle w denoting the
consumed energy per one CPU revolution. On the basis of (3)
and (4), the overhead induced by computing locally in terms
of consumed energy and executed time can be computed as

xw,W = λt
wσw,W (d) + λe

w�w,W (d) , (5)

where λe
w and λt

w ∈ {0, 1} express the weight coefficients of
consumed energy and executed time for the decision making
of vehicle w. When the battery is at a low state, the vehicle
set λe

w = 1 and λt
w = 0. Similarly, when the service is

sensitive to delay, the vehicle set λt
w = 1 and λe

w = 0 in
the process of decision making. In other scenarios, proper
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weighting parameters of the vehicle are resolved by employing
the approach of multi-attribute utility.

2) Service Execution at RSUs: The computation task ϕw of
the vehicle w is offloaded to the nearest RSU y. Additional
overhead in the aspects of consumed energy and time is
produced by conveying the input data to the RSU. On account
of the communication model, the time caused by conveying
data and the consumed energy of the vehicle w are formulated
as

ϱw,y (d) = Qw ×
1

9w,y (d)
, (6)

and

�w,y (d) = kw Qw ×
1

9w,y (d)
. (7)

Remarkably, the output data size is quite micro compared
with the input data, so the time of transmission can be
neglected. The RSU y will execute the service ϕw after the
data transmission process. The computation power allocated to
the vehicle w by the RSU y is denoted as py

w. Since the RSU
has limited computation power, the resource allocated to the
vehicles must satisfy

∑W
i=1 py

i ≤ PR . As a result, the service
execution time of the vehicle y increases with more vehicles
offloading their services to the RSU y, which conforms to the
practical situation. The service ET of the vehicle w on the
RSU y can be given as

σw,y (d) = Gw ×
1

py
w

. (8)

Additionally, the time of vehicle w leaving the linking RSU
y can be expressed as

T y
w,lev =

Ry − ςw

vw

, (9)

where ςw is the location of vehicle w and y denotes vehicle
w running within the mth segment. In (9), y =

⌈ ςw

R

⌉
, ⌈.⌉ is

the ceiling function and vw represents for the average velocity
of the vehicle w. To ensure the service is accomplished before
the vehicle w transfers from the RSU y of the current wireless
connection to another adjacent unit, it must be satisfied that

ϱw,y (d) + σw,y (d) ≤ T y
w,lev. (10)

According to (6), (7) and (8) the overhead induced by
executing the service on the RSU in the aspects of consumed
energy and time can be computed as

xw,y = λt
wϱw,y (d) + λt

wσw,y (d) + λe
w�w,y (d) . (11)

3) Service Execution on the BS: Compared to the RSU, the
BS possesses more powerful computation capacity. Neverthe-
less, there are fewer BS than RSUs in the researched segment,
so it is more likely to be overloaded by users than the RSU.
Additional overhead in the aspects of consumed energy and
time is produced by conveying the input data to the BS. Since
the BS is also closely located from the vehicles, the transmis-
sion time of output data can be dismissed. On account of the
communication model, the time caused by data transmission
and the consumed energy of the vehicle w are formulated as

ϱw,B (d) = Qw ×
1

9w,y (d)
, (12)

and

�w,B (d) = kw Qw ×
1

9w,y (d)
. (13)

BS executes the service ϕw after the data transmission
process. The computation power allocated to the vehicle w

is denoted as pB
w . Due to the fact that the BS has limited

computation power, the resources allocated to the vehicles
must satisfy

∑W
i=1 pB

i ≤ PB . The service ET of vehicle w

on the BS is calculated as

σw,y (d) = Gw ×
1

pB
w

. (14)

According to (12), (13) and (14), the overhead of BS
processing model in the aspects of consumed energy and time
are computed as

xw,B = λt
wϱw,B (d) + λt

wσw,B (d) + λe
w�w,B (d) . (15)

4) Service Execution on the CS: By virtue of the fiber and
core networks, the vehicle w offloads task ϕw to the cloud
located hundreds of kilometers away. Additional overhead in
the aspects of consumed energy and time is produced by deliv-
ering the computation input data to the cloud. Furthermore,
although the output data size is quite smaller, the time for
feeding back the output data from cloud to the vehicle w

should be taken into consideration. The time caused by data
transmission and the consumed energy of the vehicle w are
formulated as,

ϱw,C (d) =
(
Qw + Qo

w

)
×

1
9w,y (d)

+ α, (16)

and

�w,C (d) = kw

((
Qw + Qo

w

)
×

1
9w,y (d)

+ α

)
. (17)

In (16) and (17), Qo
w is the size of output data. The delay

from the vehicle w to the cloud is α. The cloud executes the
task ϕw after the data transmission process. The computation
power which the vehicle w obtains from the cloud is denoted
as pC

w . The computation power of the cloud is powerful
enough to satisfy all the needs of the services, so there are
no constraints and limitations in the resources allocation. The
service ET of the vehicle w on the cloud is formulated as

σw,C (d) = Gw ×
1

pC
w

. (18)

According to (16), (17) and (18), the overhead of the cloud
processing model in the aspects of consumed energy and time
are computed as

xw,C = λt
wϱw,C (d) + λt

wσw,C (d) + λe
w�w,C (d) . (19)

According to the system model above, a game theoretic
approach will be developed to devise an efficient computation
offloading scheme in the following sections.
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Fig. 2. The traffic flow forecasting scheme with graph attention neural networks.

IV. GAT BASED TRAFFIC FLOW FORECASTING

Due to the advantages of GAT in prediction [30], [31], GAT
is adopted in this section to forecast the short-term traffic flow.
According to the prediction results, the current load of the
edge server is adjusted to prepare for the next phase of service
offloading. The design of the traffic flow forecasting scheme
with GAT is shown in Fig. 2.

A. The Construction of Graph Neural Network

Denote the set C = {c1, c2, · · · , cn} as the current load
status of all edge servers in the selected area. To predict
the traffic flow in the future time period, the selected area
is divided into multiple road nodes which serves as hubs
for traffic flow collection and prediction. Each road node is
connected with the neighboring nodes by the different weights
of edges based on the degree of correlation between the two
nodes. Thus, the whole region can be regarded as an undirected
connected graph.

In each time period, the road node collects three indicators
of current traffic, denoted as the set f { f low, speed, occup}.
In set f , f low stands for the total traffic flow. speed is the
current average speed of vehicles and pedestrians. occup is
the average occupancy. The three indicators are the features
of each node.

The set of node eigenvectors is denoted as

h =

{
h⃗1, h⃗2, · · · , h⃗N

}
, h⃗i ∈ RF , (20)

where N is the number of nodes. F is the number of node
features which includes the set f , the geographical location
of nodes and the local information of nodes. The size of the
matrix h is F × N which represents the characteristics of all
nodes. R represents the characteristics of only one node, so the
size is F × 1.

The objective function of traffic flow prediction is denoted
as

h′
=

{
h⃗′1, h⃗′2, · · · , h⃗′N

}
, h⃗i ∈ RF ′

, (21)

where h⃗′i is the prediction result of the eigenvectors in next
time period of node i .

After the traffic flow results for the next time period are
obtained, the current load of edge servers needs to be adjusted.

Specifically, if the prediction result shows that the area covered
by the edge server signal will face a surge in traffic flow, then
some of the services on the server will be transferred to the
adjacent servers for achieving the load balance of next phase.
The load measurement function is defined as

Ki = log2

(
1 +

ci hi∑Y
j=1 c j h j

)
, (22)

where hi is the future traffic flow in the signal region of edge
server i . The smaller the value of Ki is, the more favorable
the current load is for the edge server. Meanwhile, the values
of different Ki should be close. When the load of edge server
is adjusted based on the forecast, the output result is the new
load set C ′

=
{
c′

1, c′

2, · · · , c′
n
}
.

B. Real-Time Prediction of Traffic Flow

Due to the typical graph structure of transportation net-
works, graph neural networks (GNN) are capable of effectively
capturing the relationships and interactions between nodes
compared with other neural networks, thereby providing accu-
rate predictions of traffic flow. GNNs integrate information
from both nodes and edge, enabling precise predictions in
large-scale transportation networks. GAT is an improved deep
graph neural network which adds attention mechanism (AM)
into the conventional graph neural network to realize the
aggregation of domain nodes with distinction. AM is a tech-
nique that enables models to focus on critical information and
fully absorb it. The core logic of the AM is to shift from
focusing on the whole to focusing on the key. Thus, AM is
leveraged to measure the correlation between the domain node
and the central node.

The specific process of GAT are divided into three steps.
The first step is to calculate the correlation degree between
nodes, which is formulated as

ei j = α
(

Wh⃗i , Wh⃗ j

)
= a⃗T

[
Wh⃗i∥Wh⃗ j

]
, (23)

where h⃗i ∈ RF is the characteristics of node i , W ∈ RF×F ′

is the learnable linear transformation parameter, α(·) : RF ′

×

RF ′

→ R is the AM. Specifically, ∥ stands for connecting two
vectors sequentially.
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The second step is to leverage softmax function to normalize
the correlation between nodes. The purpose of normalization
is to make it easy for the coefficient of attention between
different nodes to be compared. The normalized function is
defined as

αi j = softmax j
(
ei j
)

=
exp

(
ei j
)∑

k∈Ni
exp (eik)

. (24)

The domain nodes are aggregated with different information
by applying the coefficient of attention to complete the convo-
lution operation in the third step. The polymerization formula
is

h⃗′

i = f

∑
j∈Ni

αi j W h⃗ j

 , (25)

where f (·) is a nonlinear activation function. The convolution
kernel parameter W of GAT is shared by all the nodes in
the domain. The coefficient of attention αi j represents the
closeness of node i and node j . The larger the αi j , the closer
the connection between the two nodes when the information
of the surrounding neighborhood nodes is aggregated.

Based on the GAT, a novel traffic flow forecasting (TFF)
algorithm is proposed. The core of the algorithm is to
introduce the AM in the graph algorithm. By calculating
the “attention coefficient” between the current node and its
neighbors, the “attention coefficient” is weighted when the
neighbors are aggregated. The graph neural network can
pay more attention to the important nodes, so as to reduce
the impact of edge noise. The details of TFF are given in
Algorithm 1. To be specific, from line 1 to line 3, we con-
struct an undirected connected graph of the studied sections
according to the input information. From line 6 to line 10,
correlations between different nodes are calculated. Then,
different information is aggregated to domain nodes through
attention coefficient to realize node updating. Repeating line 6
through 10 until the model has been trained for a predeter-
mined number of times.

V. POTENTIAL GAME BASED SERVICE OFFLOADING

In this section, we fomulate the services offloading process
in IoV as a potential game and prove that the potential game
can achieve Nash equilibrium.

A. Game Formulation

Denote dℓw = (d1, . . . , dw−1, . . . , dw+1, . . . , dW ) as the
service execution decisions by all the other vehicles besides
vehicle w. Given the decisions dℓw of other vehicles, vehicle
w will choose a proper offloading decision to obtain the
minimum of the overhead function, i.e.,

min
dw∈τ

χw (dw, d−w) .

According to (5), (11), (15) and (19), the overhead function
of the vehicle w can be obtained as

χw (dw, dℓw) =


xw,W , if dw,W > 0,

xw,R, if dw,R > 0,

xw,B, if dw,B > 0,

xw,C , if dw,C > 0.

(26)

Algorithm 1 Traffic Flow Forecasting
Data: The indicators set f { f low, speed, occup}, the

node eigenvectors set h =

{
h⃗1, h⃗2, · · · , h⃗N

}
.

Result: The flow forecasting set
h′

=

{
h⃗′1, h⃗′2, · · · , h⃗′N

}
.

1 Start:
2 The original data set is constructed into an undirected

graph G (V, E) and the edge weights are defined.
3 end start
4 for each episode do
5 Confirm novel learnable linear transformation

parameter W.
6 for i = 0 to t do
7 Calculate the correlation degree ei j between

node i and node j ,
8 leverage so f tmax function

αi j = softmax j
(
ei j
)

=
exp(ei j)∑

k∈Ni
exp(eik )

to
normalize the correlation between nodes,

9 the domain nodes are aggregated with different
information by applying the coefficient of
attention to complete the convolution
operation.

10 end
11 Obtain the optimization set h′.
12 end

The issue above is transformed as a strategic game

0 =
{
W, {τw}w∈W , {χw}w∈W

}
,

where χw (dw, dℓw) denotes the overhead function of the
vehicle w and τw is the set of strategies for the vehicle w.
Following, the game 0 will be called as the resource and
channel allocation game.

Definition 1: A strategy set d∗
=
(
d∗

1 , . . . , d∗

W
)

is called a
Nash equilibrium for resource and channel allocation game if
no vehicles are able to improve its benefit (reduce the value of
the overhead function) by changing the strategy unilaterally
at the equilibrium d∗.

χw

(
d∗
w, d∗

ℓw

)
≤ χw

(
dw, d∗

ℓw

)
, ∀dw ∈ τw. (27)

According to (26), it can be divided into three game rela-
tions: (1) the game between local computing and computation
offloading, (2) the game between MEC and cloud, (3) the
internal game of MEC. Each vehicle experiences the three
games during the decision-making process and finally chooses
the optimal decision mode. In order to deal with the first layer
of the game, the definition of beneficial computation offloading
(BCO) is handed out.

Definition 2: Given the decision set d, the decision dw of
vehicle w which chooses computation offloading is beneficial
if there exists one approach among executing the service on
the RSU, the BS and the cloud that incur lower overhead than
executing the service locally (i.e., xw,y < xw,W , or xw,B <

xw,W , or xw,C < xw,W ).
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Lemma 1: Provided a decision set d, vehicle w realizes
BCO if the received interference 2

j
w =

∑
i !=w 4(i ∈

W )4(di, j = dw, j )ki Di,y , j ∈ {C, R, B} satisfies that 2
j
w ≤

∂w, j .
Proof 1: According to(2), (3), (4), (5), (11), (15), (19) and

Definition 2, the condition xw, j ≤ xw,W , j ∈ {C, R, B} is
equivalent to

λt
wϱw, j (d) + λt

wσw, j (d) + λe
w�w, j (d)

≤ λt
wσw,W (d) + λe

w�w,W (d) . (28)

Substitute (2), (3) and (4) into the above inequality respec-
tively. The inequality is transformed as(
λt

w+λe
wkw

)
Qw

9w,y (d)
+λt

wσw,y (d) ≤ λt
wσw,W (d)+λe

w�w,W (d) .

That is,

9w,y (d) ≥

(
λt

w + λe
wkw

)
Qw

λt
wσw,W (d) + λe

w�w,W (d) − λt
wσw,y (d)

.

Expand out 9w,y (d) by the formula. It turns out that∑
i !=w

4(i ∈ W )4(di,y = dw,y)ki Di,y

≤
kw Dw,y

(λt
w+λe

wkw)Qw

2ω(λt
wσw,W (d)+λe

w�w,W (d)−λt
wσw,y (d))

− 1
− δ. (29)

Let 2
y
w =

∑
i !=w 4(i ∈ W )4(di,y = dw,y)ki Di,y and

∂w,y =
kw Dw,y

(λt
w+λe

wkw)Qw

2ω(λt
wσw,W (d)+λe

w�w,W (d)−λt
wσw,y (d))

−1
− δ. Then (29) is

equivalent to 2
y
w ≤ ∂w,y .

similarly, substitute (15) and (19) into the above inequality.
It can finally obtain that 2B

w ≤ ∂w,B and 2C
w ≤ ∂w,C

respectively.
According to Definintion 2, if vehicle w satisfies

2y
w ≥ ∂w,y,

2B
w ≥ ∂w,B,

2C
w ≥ ∂w,C ,

(30)

it processes the service locally. Otherwise, it achieves BCO
and will offload its task to the RSU, the BS or the cloud
based on specific conditions. Lemma 1 shows that the vehicle
is advisable to offload its task to other equipment when the
received interference 2w, j , j ∈ {R, B, C} on a certain wire-
less channel is lower enough. Nevertheless, high interference
causes lower transmission rates and unbearable delay. Local
processing is more reliable under this condition.

The vehicles fall into two categories after the first stage
of the game. Those who fail to obtain the BCO dispose
the service on the vehicles, exiting the second phase of the
game. Meanwhile other vehicles start the game between edge
computing and cloud computing. According to (11), (15)
and (19), if vehicle w selects the cloud to execute the service,
it must satisfy the condition that xw,C ≤ min

{
xw,B, xw,y

}
.

Expand the above inequalities, it is obtained that(
Qw + Qo

w

)
9w,y (d)

−
Qw

9w,y (d)

≤
λt

wσw,B (d) − λe
wkwα + λt

w

(
σw,C (d) + α

)
λt

w + λe
wkw

, (31)

and (
Qw + Qo

w

)
9w,y (d)

−
Qw

9w,y (d)

≤
λt

wσw,y (d) − λe
wkwα + λt

w

(
σw,C (d) + α

)
λt

w + λe
wkw

. (32)

Thus, if the uplink data rates of vehicle w caters to above
inequalities, it selects CSs to offload the service, otherwise
edge computing becomes its optimal option. The inequalities
imply that under the circumstance of all other parameters
being fixed, the offloading decision of vehicle w depends on
the number of the existing vehicles on the wireless link. The
network congestion will increase if excessive vehicles choose
the same wireless link simultaneously, thus slowing down the
data upload rate of the vehicle.

Those who choose to execute the task on the cloud will
retreat from the third layer of the game. The remaining
vehicles participate in the internal game of edge computing,
which means if xw,B ≤ xw,y , vehicle w selects the BS to
offload the service, otherwise, it finally selects the RSU to
process the task. According to xw,B ≤ xw,y , we can get

1
9w,y (d)

−
1

9w,y (d)
≤

λt
wσw,y (d) − λt

wσw,B (d)(
λt

w + λe
wkw

)
Qw

. (33)

B. Structural Properties

Potential game, as a formidable instrument, is resorted to
testify the resource and channel allocation game satisfying
Nash equilibrium next.

Definition 3: If a game satisfies the function φ (d) such that
for every w ∈ W , dℓw ∈

∏
i ̸=w τi , d ′

w, dw ∈ τw, if

χw

(
d ′
w, dℓw

)
≤ χw (dw, dℓw) , (34)

we have

φw

(
d ′
w, dℓw

)
≤ φw (dw, dℓw) , (35)

it is a potential game.
Lemma 2: The resource and channel allocation game has

the nature of the potential game.
Proof 2: Construct the potential function φ (dw, dℓw) as

φw (dw, dℓw)

=
1
2

∑
4(µ ∈ W )

∑
ι!=µ

4(ι ∈ W )kµ Dµ,ykι Dι,y∗

× 3
{
dµ,k, dι,k

}
ϒ
{
dµ,k

}
+

∑
4(µ ∈ W )kµ Dµ,y∂µϒ

{
dµ,W

}
,

y ∈ {1, 2, . . . , Y } , k ∈ {R, B, C} . (36)

In (36), 3 {a, b} is an indicator function where 3 {a, b} = 1
if a = b, otherwise 3 {a, b} = 0. ϒ {h} is a judgement
function. If h > 0, ϒ {h} = 1, else ϒ {h} = 0. The wireless
interference ∂µ for choosing offloading decisions can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Lancaster University. Downloaded on March 21,2024 at 15:25:57 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: POTENTIAL GAME BASED DISTRIBUTED IoV SERVICE OFFLOADING WITH GATs 9

obtained according to the condition min
{

xµ,y, xµ,C , xµ,B
}

≤

xµ,W . So we can get that

∂µ =


∂µ,y, if xµ,y ≤ xµ,C and xµ,y ≤ xµ,B,

∂µ,B, if xµ,B ≤ xµ,y and xµ,B ≤ xµ,C ,

∂µ,C , if xµ,C ≤ xµ,y and xµ,C ≤ xµ,B .

(37)

Then referring to the equations above, it can be proven that
the resource and channel allocation game has the nature of a
potential game. To prove this, the update process is partitioned
into four cases.

Case 1: dµ,W > 0, d ′

µ,k > 0, k ∈ {R, B, C}. In such case
it is obtained that∑

ι!=µ

4(ι ∈ W )kι Dι,y3
{

d ′

µ,k, dι,k

}
≤ ∂µ. (38)

So we have

φ
(
dµ, dℓµ

)
− φ

(
d ′
µ, dℓµ

)
= kµ Dµ,y∂µ −

1
2

∑
ι!=µ

4(ι ∈ W )kι Dι,y3
{

d ′

µ,k, dι,k

}
−

1
2

∑
µ!=ι

4(µ ∈ W )kµ Dµ,y3
{

dι,k, d ′

µ,k

}

= kµ Dµ,y

∂µ −

∑
ι!=µ

4(ι ∈ W )kι Dι,y3
{

d ′

µ,k, dι,k

} > 0.

(39)

Case 2: dµ,y > 0, d ′

µ,B > 0. According to (34), it is
obtained that∑

ι!=µ

4(ι ∈ W )kι Dι,y3
{

d ′

µ,B, dι,B

}
≤

∑
ι!=µ

4(ι ∈ W )kι Dι,y3
{
dµ,y, dι,y

}
. (40)

Let π ′

µ, j =
∑

ι!=µ 4(ι ∈ W )kι Dι,y3
{

d ′

µ, j , dι, j

}
and

πµ, j =
∑

ι!=µ 4(ι ∈ W )kι Dι,y3
{
dµ, j , dι, j

}
, j ∈ (y, B, C).

φ
(
dµ, dℓµ

)
− φ

(
d ′
µ, dℓµ

)
= kµ Dµ,y

(
πµ,y − π ′

µ,B

)
> 0. (41)

Case 3: dµ,y > 0, d ′

µ,C > 0. According to (33), it is
obtained that∑

ι!=µ

4(ι ∈ W )kι Dι,y3
{

d ′

µ,C , dι,C

}
≤

∑
ι!=µ

4(ι ∈ W )kι Dι,y3
{
dµ,y, dι,y

}
. (42)

φ
(
dµ, dℓµ

)
− φ

(
d ′
µ, dℓµ

)
= kµ Dµ,y

(
πµ,y − π ′

µ,C

)
> 0. (43)

Case 4: dµ,B > 0, d ′

µ,C > 0. According to (32), it is
obtained that∑

ι!=µ

4(ι ∈ W )kι Dι,y3
{

d ′

µ,C , dι,C

}

≤

∑
ι!=µ

4(ι ∈ W )kι Dι,y3
{
dµ,B, dι,B

}
. (44)

φ
(
dµ, dℓµ

)
− φ

(
d ′
µ, dℓµ

)
= kµ Dµ,y

(
πµ,B − π ′

µ,C

)
> 0. (45)

Algorithm 2 Game Theoretical Based Distributed
Computation Offloading
Result: Decision profile d and the total minimum

utility value x
1 Start:
2 Each vehicle w performs the service on its own

device. That is, dw,W (0) = 1.
3 end start
4 Repeat:
5 for vehicle w in each time slot t do
6 BS collects information of all vehicles and

compute their departure time T y
w,lev =

Ry−lw
vw

7 BS collects information of all channels and sends
them to the vehicles.

8 Compute the data uplink rates
9w,y(dw,y),9w,y(dw,B),9w,y(dw,C ) and total
time T y

w , T B
w , T C

w , repectively
9 end

10 if min{T y
w , T B

w , T C
w } ≥ T y

w,lev then
11 Vehicle w performs the service on local device and

quits the game at this phase, i.e., W = W \ {w}

12 end
13 The remaining vehicles play the three-tier game and

obtain the optimal response set Cw(t)
14 if Cw(t) ̸= φ then
15 The vehicles transmit request signal to the BS,

competing for the opportunity of updating.
16 if acquires permission signal from the BS then
17 Vehicle w chooses the decision

dw(t + 1) ∈ Cw(t) in next phase
18 else
19 Choose the original dw(t + 1) = dw(t) in next

phase.
20 end
21 end
22 Until Cw(t) = φ and the BS sends the END message.

The core idea of the proof is to testify when vehicle
w updates its present di to the optimized decision d ′

i , the
majorization in χw is mapped to the majorization in the φw.

Based on the game formulation and the asynchronous opti-
mization of the resource and channel allocation game, a novel
game theoretical based distributed traffic flow forecasting and
task offloading (TFFTO) algorithm is designed. To be specific,
TFFTO is primarily composed of three stages. From line 4 to
line 9 in the first stage, the total transmission and executed time
of each task through computing the task locally and selecting
the MEC/CS is calculated respectively. Then, the departure
time T y

n,le f t of each vehicle is calculated. From line 10 to
line 12, the services which fail to meet the maximum time
constraints, i.e., min{T y

w , T B
w , T C

w } ≥ T y
w,lev , ∀w ∈ W , are
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discarded from the game set and forced to be processed locally.
Finally, from line 14 to line 21, the remaining vehicles, whose
tasks are able to be processed locally or be offloaded to the
MEC/CS, play the three-tier game. Repeat the process above
until the game reaches a Nash equilibrium. The details of
TFFTO are given in Algorithm 2.

C. Time Complexity Analysis

In this subsection, we approximate the time complexity of
the proposed algorithm. Multi-user service offloading is an
NP-Hard problem, and we optimize the time complexity of
this problem using a combination of GAT and potential game
approaches. After training, the GAT model only involves the
forward propagation process, and the time complexity depends
on the number of nodes and edges, as well as the number of
neighbors for each node. Typically, the time complexity is
O(N + E), where N is the number of nodes and E is the
number of edges. The time complexity of potential games is
related to the state space and action space, and in simpler
cases, it can be O(n), while in special cases, it may reach
exponential complexity. Therefore, the overall time complexity
of the proposed algorithm in this paper is similar to the existing
complexity.

VI. PERFORMANCE EVALUATION

The numerical results to evaluate the TFFTO proposed by
us are presented in this section.

A. Experiment Setup

In the experiment, we utilize the real dataset collected from
the vehicles in September 2014 from Nanjing to evaluate the
performance of TFF in TFFTO. There are 436 RSUs collecting
traffic metrics in the dataset.

In the simulation experiment scenario of service offloading,
we intercept a specific area of Nanjing and take the results
of traffic flow prediction as the input set. The CS is 500 km
away from the tested road and 8 RSUs are installed uniformly
along the road, each with a wireless signal coverage range of
200 m. The transmission power kw = 2 W and the background
noise δ = 1.5 × 10−8 W. The channel gain is set as Dw,y =

ς
− f
w,y based on the model of wireless interference in urban

environment, where ςw,y is the relative position of the vehicle
w and RSU y and f = 4 is the general loss coefficient.

The data size of each service is Qw = 5000 K and the
total quantity of CPU revolutions is Gw = 1 Gigacycles.
The computation power pL

w of vehicle w is stochastically
appointed from the set {0.4, 0.7, 1.0} GHz. The computation
power distributed for the vehicle w by the CSs is pC

w = 10
GHz. The computation powers of each RSU and the BS are
assigned as PR = 10 GHz and PB = 20 GHz respectively.
As to the decision weights of vehicle w for both the consumed
energy and the computation time, we set that λe

w = 1 − λt
w,

where λt
w is stochastically appointed from the set {1, 0.5, 0}.

Some parameters above are set according to [32] and [33].
Others are set based on the real environment of the road
section being studied in Nanjing.

Fig. 3. Traffic flow forecast value and actual value.

Fig. 4. Mean absolute error value.

B. Numerical Results of TFF

In the following section, the performance of TFF will be
measured from four perspectives: the difference between the
predict value and the true value, Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) and test-loss.

1) Numerical Analysis on Prediction Accuracy: Fig. 3
shows the comparison of the predicted average flow over a
period of time with the real value of the selected region. The
horizontal axis represents time segments and the vertical axis
represents the current traffic flow on the road section. The
data shows that the predicted and true values of traffic flow
are roughly in line, with the prediction accuracy remaining
roughly constant over time. There is some distortion in the
peak and trough of traffic flow, and the predicted value is
slightly greater than the true value. Overall, the accuracy of
the flow forecast is very high.

2) Analysis on MAE and MAPE: Fig. 4 and Fig. 5 show
the variations of MAE and MAPE respectively. MAE in the
results is 1000 times the actual value, so the MAE value of the
TFF algorithm is very low, which proves that the prediction
results of this algorithm have high accuracy. As the epoch
times increase, the value of MAPE gradually declines and
eventually converges to around 2, indicating that the average
error of the algorithm is very small.

3) Analysis on Test-Loss: Test-loss is an important index
based on MAPE and MAE to measure the distortion rate of
forecast results. In Fig. 6, each point on the polyline represents
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Fig. 5. Mean absolute percentage error value.

Fig. 6. Test-loss value.

a test-loss value of prediction. As the epoch times increase,
most of the points are clustered along the axis near 0, and
only a few points have values above 0.5, which proves that
the prediction value of the TFF algorithm has high accuracy.

C. Numerical Results of TFFTO

In the following sections, the numerical results of the game
theory based TFFTO are compared with that of four other
service processing modes.

• Local computing for all the vehicles (LCFA): all the
vehicles choose to process the service locally.

• Computation offloading for all the vehicles (COFA): all
the vehicles choose to offload the task to the nearest RSU
server.

• The task offloading and resource allocation method
F-TORA in [34].

• An approximation collaborative computation offloading
algorithm (ACCO) proposed in [35].

It is worth noting that ACCO is another method based on
game theory. The five methods (TFFTO, F-TORA, ACCO,
LCFA and COFA) are applied to delay sensitive services, high
energy consumption services, and services with a mixture of
the two features respectively to verify that the game theory
method based on GAT proposed by us is obviously better
than the single game theory based method and other service

Fig. 7. Comparative analysis on system-wide processing and transmission
time.

Fig. 8. Comparative analysis on system-wide energy consumption.

offloading methods when faced all kinds of service requests.
Moreover, the convergence of TFFTO will also be evaluated.

1) Comparative Analysis on Average System-Wide Process-
ing and Transmission Time: The comparison of system-wide
processing and transmission time between TFFTO and other
four methods (F-TORA, ACCO, LCFA and COFA) is shown
in Fig. 7. With fewer than 20 vehicles, the system-wide
processsing and transmission time based on TFFTO is nearly
5 times lower than that of ACCO. As the number of the
vehicles grows, this value falls but is still optimized by nearly
30 percent when the number of vehicles reaches 50. At all
times, the result of TFFTO is vastly superior to those obtained
by the other two methods LCFA and COFA. Compared with
F-TORA, the results of TFFTO is slightly better when the
traffic scale is small, but TFFTO’s advantages become more
prominent when the number of vehicles increases. Therefore,
in the face of delay-sensitive services, TFFTO can effectively
reduce the total delay of the system.

2) Comparative Analysis on Average System-Wide Energy
Consumption: Fig. 8 shows the system-wide energy consump-
tion based on TFFTO, F-TORA, ACCO, LCFA and COFA
respectively. Although the degree of optimization is not as
great as that of the time dimension, TFFTO still outperforms
the other four methods. At any traffic scale, the energy
consumption generated by using TFFTO is significantly lower
than that generated by using LCFA and COFA. Additionally,
under TFFTO, the system-wide energy consumption is reduced
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Fig. 9. Comparative analysis on system-wide overheard.

by 25 percent compared with that of ACCO and reduced by
15 percent compared with that of F-TORA.

3) Comparative Analysis on Average System-Wide Over-
head: Fig. 9 shows the comparison of the average system-wide
overhead generated by TFFTO and four other service offload-
ing methods: F-TORA, ACCO, LCFA and COFA. The
experiments are conducted with W = {10, 20, 30, 40, 50, 60}

vehicles respectively. The average system-wide overheads of
the five service offloading schemes are in close proximity
when there are few vehicles at first. With the increase of the
vehicles, the overhead generated by LCFA grows steadily and
shows a state of approximately linear growth. The result is
very close to reality, although the computing capacity and the
task size vary from vehicle to vehicle, they are generally close,
which means the overhead induced by executing the service
locally is almost the same for each vehicle. Hence, as the
number of the vehicles rises, the total overhead is approxi-
mately equal to the overhead of a vehicle times the number
of the vehicles. The overhead caused by COFA grows slowly
in the first few experiments. Nevertheless, it explodes when
the number of the vehicles reaches thirty, which shows that
ESs tend to become resources constrained due to overloaded.
The performance of TFFTO algorithm is nearly 17 percent
better than LCFA and 80 percent better than COFA, which
can largely improve the QoS. It is evident that the TFFTO
outperforms all other two computation models, the overhead
has been growing slowly and steadily, undistributed by the
number of the vehicles, which proves the algorithm is able
to ensure users’ experience during heavy traffic. Additionally,
TFFTO and F-TORA achieve almost the same results on
a smaller vehicle scale, and TFFTO is slightly better than
F-TORA at a certain vehicle scale. When the number of the
vehicles is less than 20, the overhead based on ACCO is twice
more than that of TFFTO. As the number of vehicles grows
sustainably, the BS tends to be saturated with users, which
means an increasing number of vehicles is opting for local
execution. Nevertheless, the system-wide overhead of TFFTO
is still nearly 25 percent optimized than that of ACCO. As a
result, TFFTO outperforms the ACCO in terms of reducing
system overhead. To sum up, TFFTO is superior to the other
four schemes at any traffic scale.

4) Analysis on Convergence: Fig. 10 shows that the
system-wide overhead decreases at each decision slot and
finally converges to a fixed value after a finite step decision,

Fig. 10. The variety of system-wide overhead during each decision slot.

Fig. 11. Average decision slots for different numbers of vehicles.

which proves that the TFFTO algorithm possesses perfect
convergence and can reach Nash equilibrium. In Fig. 11,
as the number of the vehicles rises, the average quantity of
decision slots for convergence grows approximately linearly
which demonstrates that TFFTO converges rapidly and is less
affected by the number of the vehicles. Therefore, the time
complexity of the proposed service offloading algorithm based
on potential games can be approximated as linear complexity.
As a result, the scheme has perfect stability and convergence.

VII. CONCLUSION AND FUTURE WORK

A novel approach based on graph attention networks and
game theory is proposed to solve the service offloading issue
of the vehicles. Specifically, graph attention networks are
leveraged to predict the traffic flow in different time periods.
Then the service offloading issue is formulated as a resource
and channel allocation game which is proved to possess the
nature of a potential game. Furthermore, a game theory based
distributed computation offloading algorithm is designed to
optimize the computation offloading problem. The numerical
results demonstrate that TFFTO outperforms its representative
counterparts.

In the future, we are committed to consider the computation
offloading problem in the 5G scenario, where a task can be
split into multi-subtasks and vehicles can transmit data to each
other.
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