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Abstract

Atypically-Reading Adults: An Exploratory, Longitudinal Study of Single

Word Recognition Processes

Emma Mills

Approximately 16% of school leavers cannot read to a sufficient skill level so

as to be called “functionally literate” (Castles et al., 2018; Leitch, 2006). This

exploratory study explores the single word recognition processes of a group of

atypically-reading adults in comparison with groups of younger and older readers.

In the main study, we assessed orthographic, phonological and semantic skills

longitudinally. We estimated their influence plus that of psycholinguistic properties

such as word-frequency, consistency and neighbourhood-size on single word recognition

processes by way of reaction time and accuracy data from four experimental tasks

(letter search, lexical decision, single word naming and sentence reading).

To support the estimation of our statistical models for the main study, we

conducted a wide ranging meta-analysis of psycholinguistic predictor effects. We

report the findings here and introduce the study as an accessible resource for use by

the research community.

Linear-mixed-effects-models estimated that the rate of change in

reading-related skills was either too small or too slow to detect within the time-frame

or data. Adult-learners perform similarly to all comparison groups in response

latencies across all tasks. They perform similarly to 11-12- and 16-17-year-old readers

in the lexical decision and sentence reading accuracy measures. They are more

accurate in letter search and less accurate in word naming accuracy measures.

Nonword reading skill, rather than word reading skill, is a reliable predictor

in this sample. Word-frequency, age-of-acquisition, consistency and neighbourhood

size show influence across tasks.
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We interpret the results through the lexical quality hypothesis. The

predictors that are influential across the models, and the similarity of adult-learners’

performance to younger readers suggests that their orthographic, phonological and

semantic knowledge is weakly correlated. Further, adult-learners may be using a

dominant reading strategy that reflects sublexical processing, thereby impeding

development of orthographic learning and knowledge over the longer term.
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Introduction

Reading is a skill used in everyday life. As a critical component of literacy skills, poor

reading skills are linked to reduced employment opportunities, lower health status and

reduced social mobility (Wheater & Worth, 2014). The OECD estimates the number

of adults without at least a C grade (or level 5 in the new grading structure) at GCSE

English at 16.4%. Leitch (2006) categorised these adults as “functionally illiterate”

and recommended that such individuals have the opportunity to engage in free GCSE

courses to increase their literacy skills.

The approach, skills and content of the free GCSE course with which such

adults engage is similar to that of 16-year-olds in their final year of secondary school

who are preparing to take GCSE English for the first time. This may be appropriate

if the assumption is correct that these adults are at the skill level of a final year

GCSE candidate. The National Literacy Trust, however, estimates that

approximately 14.6% of British adults have literacy levels equivalent to that of an

11-year-old learner (Morrisroe, 2014). This raises doubt about the precise level of

literacy skills in this adult cohort. Are they more similar to either 16-year-old, final

year GCSE candidates or to younger students in their literacy skills?

There is little research that speaks to this argument. Most reading research

studies are conducted comparing skilled adult readers (Adelman et al., 2014; Andrews

& Hersch, 2010; Yap et al., 2012) with readers with diagnosed reading disorders, such

as dyslexia (Bruck, 1990; Murphy et al., 1988; Szeszulski & Manis, 1987). This cohort

of adults would not fit into either of these participant groups. Given that these adults

appear to be like younger readers, we may look to research findings from studies

involving younger participants (Castles et al., 2018; Ehri & Wilce, 1983). However,

the age range of such research may be too young, focusing largely on readers below

11-years-of-age. Research that explores reading between the ages of 11-16-years-of-age
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is sparse. This represents a knowledge gap in reading research.

The adults of concern in the present study are neither skilled readers, as

defined by their low achievement in terminal assessments, nor do they demonstrate a

severity of low performance that may lead to a formal diagnosis of a reading disorder.

Additionally, they are much older than younger, typically developing readers, with a

great deal more natural language experience. The longer exposure to natural language

could confer an advantage for this group of readers, however we do not know. This

thesis aimed to investigate such questions. We explored single word reading

performance for well-established experimental tasks such as lexical decision and word

naming across a sample of younger and older typically and atypically developing

readers. Our primary focus was centred upon a group of adults who were accessing

free GCSE English classes within further education institutions. Using a longitudinal

design, we tested participants on three separate occasions to better understand when,

if any, change in performance measures occurs across the school year.

As well as lexical decision and single word naming, we included a letter search

and a single sentence reading task. We aimed to better understand if adults show

equivalent skill in recognising those critical sublexical parcels of information that

letters represent and that are a precursor to strong reading skills. Having participants

name words in sentence contexts helped us understand if wrapping single words in

meaningful and non-meaningful contexts enhances word recognition efficiency, and

whether these adults performed in similar ways to that observed across other

participants.

We also collected measures of individual differences in word and nonword

reading, phonological awareness, spelling and vocabulary knowledge and rapid

automatic naming. To make inferences about different or similar skill profiles, we

conducted simple statistical tests on the individual differences data, contributing new

knowledge to this sparsely documented space in reading research.

These individual difference measures were coupled with psycholinguistic

measures for the single word stimulus items in our four experimental tasks.

Psycholinguistic predictors such as word frequency and consistency are known to play
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important roles in single word reading for developing readers. These predictors are

strongly implicated in theoretical and computational models of single word reading,

such as the lexical quality hypothesis (Perfetti & Hart, 2002) and a series of parallel

distributed processes models (Dilkina et al., 2008; Harm and Seidenberg, 2004, 1999;

Plaut et al., 1996; Seidenberg and McClelland, 1989), which underpin the thesis.

Building statistical models that use a range of psycholinguistic predictors will allow us

to connect both to theoretical descriptions and explanations of single word reading

processes and the expansive literature that documents observed effects in single word

reading for different samples of readers.

Given the sparsity of reading research, and specifically single word reading

research, for our focus sample, we wanted to have a clear understanding of the

magnitude of psycholinguistic predictors’ influence on single word reading

performance for well established groups of readers. Additionally, there is little

research that considers child and adult participants at the same time. Therefore, we

conducted a meta-analysis. Similar effect sizes across child and adult reading groups

may indicate that the influence of a predictor is constant across age groups.

Differences between groups of child or adult readers may suggest that we should look

for interaction effects in statistical models in the longitudinal study. Performing a

meta-analysis allowed us to estimate the presence and size of psycholinguistic

predictors effects from multiple studies to represent our current state of knowledge for

predictor effects on single word reading tasks.

The thesis comprises eight chapters. Chapter 1 introduces theoretical

processes of single word reading, discussing the benchmark psycholinguistic effects of

consistency, word-frequency and neighbourhood size through the theoretical lenses of

the lexical quality hypothesis (Perfetti & Hart, 2002) and computational models of

single word reading. Chapter 2 then reviews person-level measures of lexical quality,

reviewing components of single word reading and explaining our choices of

assessments to capture individual differences in the study participant sample. Chapter

3 locates accounts of individual differences in computational models and human

behavioural data for single word reading tasks. In Chapter 4, we present a
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meta-analysis, detailing our methods and summary findings for effects across five

samples of readers and eight psycholinguistic effects.

From then on, the thesis reports the longitudinal study. Chapter 5 details the

study methods. We present our findings in two parts. Chapter 6 presents descriptive

statistics of the individual difference measures for the first data collection session.

Here, we take time to describe how the adult learner group compares to the other

participant groups. Chapter 7 presents our inferential test results for each of the four

experimental tasks. In Chapter 8, we discuss our findings and implications for the

study in light of extant theory and previous research.
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1 Single Word Reading

1.1 Lexical Quality and Word Recognition

The lexical quality hypothesis (Perfetti and Hart, 2002) is a general account that

describes how word knowledge may vary within and between individuals and how this

variation may impact single word recognition for reading purposes. There are three

components of orthographical, phonological and semantic information. A word has

high lexical quality when each are simultaneously available for word recognition. A

word of high lexical quality may be evidenced by a consistently accurate spelling

(Andrews and Hersch, 2010; Castles et al., 2018; Perfetti, 2007), correct pronunciation

and knowledge of the word’s meaning. A word with low lexical quality may result

from any one source of domain information being unavailable and be characterised by

slower reaction time or variable pronunciation.

Given an assumption that a highly-skilled reader will have more words of high

lexical quality in their vocabulary than a lower-skilled reader (Adelman et al., 2014),

behavioural data from tasks associated with the orthographical, phonological and

semantic components may describe how participants of different reading skill vary

across the components. Supporting evidence comes from Perfetti and Hart (2002).

They tested 445 university students for their spelling, auditory awareness, homophone

choice, nonword reading, word reading, vocabulary and reading comprehension skills.

The distribution of scores in the comprehension test was split to form groups of less-,

average- and more-skilled readers with roughly one third of the sample in each group.

For each group, Perfetti and Hart (2002) conducted a factor analysis of the assessment

scores. A different factored solution was presented for each level of reading skill.

The more-skilled readers were best described by a two factor structure with

orthography and phonology loading together onto one factor and semantics on a
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second. Critically, orthography scores cross-loaded with the semantic factor while

scores representing phonology did not. This suggests that orthography is the linking

source of information for words of high lexical quality. The average-skilled readers

also showed the same two factor solution as the more-skilled readers however

orthography did not show the same cross-loading with semantics. The solution for the

less-skilled readers showed three separate factors. Orthography, phonology and

semantic variables loaded onto distinct factors. The phonological information

cross-loaded with the orthographical factor but not the semantic factor.

Perfetti and Hart (2002) concluded that for more-skilled readers, high lexical

quality is expressed by internally coherent factors that capture the three domains of

orthography, phonology and semantics and that the factors will correlate strongly

with each other (also supported by Yap et al., 2012). Critically, it is orthographic

information as the linking variable. Readers of lower comprehension scores showed a

less integrated structure and it is phonological information, rather than

orthographical information that acts as a bridging source of information, and with

orthographical information alone. A difference between readers of more and less skill

appears to be the weighting between orthographical and phonological information.

This variation in coherence across skill levels has also been observed in

studies using event-related potential (ERP) measurements (Hart and Perfetti, 2008;

Yang et al., 2005). Yang et al. (2005) tested higher- and lower-skilled students on a

sentence reading task and found that the time course for word processing and

semantic retrieval was disparate in the lower-skilled students, producing two, later

peaks of ERP signals with one synchronous and earlier ERP peak in the higher-skilled

students. Breznitz and Misra (2003) also found differences in the synchronous

processing of orthographic and phonological information in ERP signals during a word

reading task. Higher-skilled students had equivalent amplitudes for orthographic and

phonological information while lower-skilled students demonstrated asynchronicity

between the two signals. This lack of coherence in the neurological signal correlated

with slower reaction times in the behavioural data of the lower-skilled students.

Taken together, high lexical quality can be indexed by multiple sources of
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information that activate strongly together. Lower lexical quality still shows the

influence of the multiple sources however the correlation between the sources is

weaker. Also apparent is that orthography links sources in more-skilled readers while

phonology performs a linking role in less-skilled readers.

Attaining this strong coherence between the three components so that

orthographical information activates both phonological and semantic information

reflects the challenge of becoming a skilled reader. Years of explicit instruction and

practice move a young learner from their pre-literacy language experience comprised

of only phonological and semantic information (Chang and Monaghan, 2018; DfE,

2023; Harm and Seidenberg, 1999) to a state where orthographical information is

sufficient for fast and accurate recognition of printed text and phonological and

semantic information play a supporting role. The English language presents a greater

challenge than most languages because words of similar spellings can have different

pronunciations and similar pronunciations can have different spellings (Ziegler et al.,

1997). Below, we describe the complexity of English language spelling-sound

relationships.

1.2 English and Spelling-Sound Consistency

There are far fewer spelling-sound groupings to learn than there are possible

mappings of an orthographic form to a meaning (Frost, 1998). English as a language

is sufficiently regular that it is a much more efficient strategy to learn spelling-sound

relationships and build words than to memorise whole words and attach them to

referent meanings (Brysbaert, 2019; Taylor et al., 2017). Of critical importance,

learning spelling-sound relationships begins the process of simultaneously learning the

relative frequency of occurrence for a specific pattern. Over time, they are thought to

become represented as a probabilistic distribution within a reader. Explicit knowledge

of the spelling-sound relationships together with the implicit knowledge of their

distribution within a language is referred to as orthographic knowledge (Nation, 2017;

Zevin and Seidenberg, 2006). A person who has the orthographic knowledge of a
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language possesses a skill that is generative in nature in that reading and writing of

known and unknown words is possible (Mimeau et al., 2018; Nation and Castles, 2017;

Share, 1999).

As a deep orthography, English has some complexity, however (Frost, 2012).

The key phrase in the above description is “sufficiently regular”. There is variability

across identical clusters of letters for sound and clusters of sounds for letters. This

poses a level of challenge for the learner as they map spelling-sound clusters for both

specific word learning but also for learning at the level of orthographic knowledge.

Venezky (1970) described two categories of spelling-sound relationship:

predictable and unpredictable. The predictable class contains patterns of letter

clusters that, for the majority of the entries counted in the dictionary, followed an

invariant pronunciation. A subset of predictable words produced variant

pronunciations, however the quantity of pronunciations or frequency of their

occurrence was sufficient to render them predictable. This invariance in pronunciation

gave good conditions for learning by abstraction of the rules therein or by “transfer”

of knowledge of smaller, sublexical sound patterns to unfamiliar words that contained

the same pattern.

This was in contrast to the unpredictable class, which contained the

remaining words that did not fit the predictable class. Unpredictable words needed

paired associative learning strategies or rote learning of a whole word for successful

pronunciation. In psycholinguistic research, the labels ‘predictable’ and

‘unpredictable’ are more often referred to as ‘regular’ and ‘irregular’ with a difference

in reaction time and accuracy between the two classes of words producing the robust

‘regularity effect’, a dichotomous measure composed of regular and irregular words.

Psycholinguistic studies provided evidence of Venezky’s (1970) two categories

of predictable and unpredictable words, with findings of longer response latencies and

higher error rates for “irregular” words compared to “regular” words (Baron and

Strawson, 1976; Stanovich & Bauer, 1970 as cited in Glushko, 1979). Readers of

acquired phonological dyslexia showed impaired reading of regular words with

relatively good reading of irregular words while readers with acquired surface dyslexia
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showed the opposite pattern (Patterson and Marcel, 1977; Plaut et al., 1996).

Teaching via the abstraction of rules for predictable words was supported by

the regularisations errors for irregular word pronunciation by participants with

acquired phonological dyslexia (Coltheart, 1996) and neurotypical skilled readers

(Glushko, 1979). The errors across both groups of participants suggested that a

cognitive process that supported learning via the abstraction of rules was feasible.

Taken together, Venezky’s (1970) theoretical suggestions and empirical data from

behavioural studies with neurotypical and atypical participants suggested that word

recognition occurs via multiple pathways.

This conclusion was challenged by Glushko (1979). In contrast to the stated

hypothesis, the majority of pronunciation errors on nonwords made by skilled readers

followed partial spelling-sound patterns from irregular words. Glushko (1979)

concluded that there was sufficient overlap of spelling-sound information between

irregular and regular words for irregular words to be read by analogy to regular words.

The access to sublexical information also suggested that whole word

recognition was not necessary since parts of any type of word appeared available for

partial processing of an unfamiliar word. This availability of information between

regular and irregular words called the suggested structure of multiple pathways for

word recognition into question. Since information between orthography and phonology

was available for all words, a single pathway would suffice. By extension, rather than

a dichotomous metric of regularity vs irregularity for two separate processes, a

‘degree’ of consistency was suggested that reflected a single process (Andrews, 1997;

Glushko, 1979; Seidenberg and McClelland, 1989; Seidenberg et al., 1985).

The two accounts of Venezky (1970) and Glushko (1979) are instrumental in

our current day understanding and practice of psycholinguistic research into single

word reading processes. Not least because these verbal theories of structure for

language and cognition have influenced the two dominant approaches to

computational modelling of single word reading, dual route models (Coltheart et al.,

2001) and parallel distributed process models (Plaut et al., 1996; Seidenberg and

McClelland, 1989, see section 1.5) but also because they shape the construction of
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measures for how we quantify the variability of spelling-sound information within and

across words.

Different methods of calculating spelling-sound information have been used.

The regularity variable is measured at a whole word level. While some researchers

maintain a dichotomous split between regular and irregular words, others have

grouped words into smaller categories that encompass regular-consistent,

regular-inconsistent, exception, strange, and unique spelling-sound groupings to name

but a few (Laxon et al., 1991; Seidenberg et al., 1984, 1985; Waters et al., 1984;

Waters and Seidenberg, 1985). Findings suggest that regular words are named more

accurately and faster than irregular words. Under the smaller grouping conditions,

findings are less robust. A general trend is for exception and regular-consistent words

to be named more accurately and faster than regular-inconsistent words (Seidenberg

et al., 1984). The present work does not use a regularity metric so we do not discuss

its construct any further.

Consistency captures sublexical parcels of spelling-sound information, while

retaining the possibility of measurement at the whole word level. Ziegler and

Goswami (2005) described these sublexical parcels as grain sizes and showed that

consistency could be measured across a range of different grain sizes. Grain sizes can

be single letters, letter clusters, word onsets, or rimes. A uniquely spelled and

pronounced word can be its own grain size.

In a deep orthography, such as English, larger grain sizes demonstrate greater

reliability and stability for pronunciation (Treiman et al., 1995). In monosyllabic

words, the rime is one of the larger grain sizes and is of primary importance in the

measurement of consistency. Jared et al. (1990) and Jared (1997) classified “friend”

and “enemy” types of words. A word that shares a target word’s rime spelling is either

congruent (thus, a friend) or incongruent (thus, an enemy) with the target word’s rime

pronunciation. For instance, the rime -EAD, has two pronunciations as in MEAD or

BREAD. The word BEAD is a friend of MEAD but an enemy of BREAD. The word

HEAD is an enemy of MEAD but a friend of BREAD. Jared et al. (1990) and Jared

(1997) counted the number of friends and enemies and also summed frequencies of the
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friends and enemies (including the specific word) as predictors of consistency.

Adelman and Brown (2007) and Ziegler et al. (1997) constructed a

probability ratio of consistency by dividing the number of friends by the sum of the

number of friends and enemy type counts. This constrains the measurement to lie

between 0 and 1. This consistency metric was a significant, negative predictor in the

re-analysis of four large data sets for reaction time, over and above the count of

friends and enemy types and log word-frequency.

It is intuitive that a word constructed of simple spelling-sound construction of

an invariant pronunciation will be easier to master than a word constructed of

complex spelling-sound patterns, for which there may be more than one pronunciation.

Additionally, for words that share frequently occurring spelling-sound patterns, the

learning of the pattern will be faster as a result of more frequent exposure to familiar

words and “transfer” to novel words that contain the pattern (Venezky, 1970). The

opportunity to reinforce sublexical patterns between orthographical and phonological

information over multiple words is a contributing factor to the strength of the

orthographical-phonological relationship that underpins a word’s lexical quality.

To summarise, the learning of a novel word that overlaps with a familiar word

for spelling-sound information will be facilitated relative to a word that does not

overlap in spelling-sound information. Partial decoding of the shared spelling-sound

information can contribute to the pronunciation of that part of the novel word.

Simultaneously, the information within the sublexical parcel is strengthened, and at

the next exposure to the familiar word, this stronger relationship should be reflected

in faster recognition and accurate pronunciation. By implication, those words that are

dissimilar to others in the corpus will take longer to recognise and parts of the word

may be pronounced incorrectly for a longer time.

1.3 Phonological Recoding and Lexical Quality

We have described how the close relationship between orthographic and phonological

information can lead to words of high lexical quality and also that when there is
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sufficient overlap of spelling-sound information between words, they can facilitate the

robust learning of one another. At a specific word level, reading a word strengthens

the coherence between the orthographical, phonological and semantic information for

the specific information pattern of that discrete word, contributing to orthographic

learning of the specific word. Additionally, the distribution of the frequency of

occurrence of the sublexical clusters of information within a word accrues with each

exposure, building a representation for the orthographic knowledge of a language

within an individual over time (Chen, 2008; Samara and Caravolas, 2014; Steacy

et al., 2017a).

The crucial aspect of the above is exposure to the orthographic form of a

word. It is the orthographic information that loads with phonological information and

links with semantic information in the lexical quality hypothesis (Perfetti and Hart,

2002). It is the greater predictive relationship shared between orthographical and

phonological information than that between orthographical and semantic information

that forms the basis of the stronger coupling. The mechanism by which

orthographical and phonological information can become strongly correlated is called

phonological recoding (Share, 1995).

On seeing the orthographic form for a word, phonological recoding states that

both an orthographic and phonological code is processed for the word, providing the

conditions for strong coupling of orthographical and phonological information (Frost,

1998; Share, 1995). Critically, the recoding mechanism acts in one direction.

Orthographic recoding does not occur when a word is heard. Only a phonological code

is processed for the acoustic form of a word and the conditions for strong coupling

between the orthographic and phonological information are not present.

Nelson et al. (2005) found that for one visual exposure to a word,

higher-skilled readers accessed both an orthographic and a phonological code. In a

systematic review, Colenbrander et al. (2019) found that seeing the word at the time

of learning facilitates memory for both the pronunciation and spelling of the word.

They concluded that efficient visual decoding has twice the learning opportunity for

the skilled reader, contributing to the growth of orthographic learning and knowledge
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simultaneously.

This is critical to an understanding of how orthographic knowledge and

lexical quality may vary within and between people, dependent upon amount and

type of exposure to word forms. It suggests that spoken language exposure holds less

information for orthographic learning and knowledge development than written

language exposure due to a processing of only one source of information at each

exposure to words that are heard but not also seen.

This has implications for the transition of words from low lexical quality to

high lexical quality. For a word of lower lexical quality, if the information sources are

not present to the same extent or not simultaneously available, the opportunity to

strengthen an association and bring about strong learning is constrained. The

strength of any potential reinforcement may be weaker where the orthographical and

phonological information are not simultaneously available (Breznitz and Misra, 2003).

Consequently, orthographic learning is less efficient within the episode of an exposure.

This necessitates a greater number of exposures of the word to attain a high quality

representation, slowing overall development for the number of known words. By

implication, if the source of information is a weaker signal by definition, i.e. word

forms are heard and not seen, the rate of development may be further slowed.

Furthermore, the incremental contribution to orthographic knowledge per

exposure for the distribution of spelling-sound patterns may be smaller or weaker.

Since orthographic knowledge works across words, this reduces the influence on all

words that share the same structure. When a reader has many words of low lexical

quality, the greater number of exposures needed to attain higher quality

representations provides greater opportunities for errors. Backman et al. (1984a)

found that poorer readers were more variable in their application of orthographical

knowledge.

So far, we have seen that the lexical quality hypothesis and the properties of

English orthography predict that, for the average reader, words that are experienced

more often, are spelled as they sound and are similar in spelling to lots of other words

will be easier to read than words that are experienced less often, may have more than
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one plausible pronunciation or are less similar in spelling to other words.

Experimental findings reflect these predictions. Reaction times and accuracy rates for

items that are manipulated for these conditions robustly demonstrate these effects for

typical readers (Backman et al., 1984a; Beech and Harding, 1984; Bruck, 1988; Laxon

et al., 1991; Lovett, 1987; Olson et al., 1985; Seidenberg et al., 1984; Siegel and Ryan,

1988; Treiman and Hirsh-Pasek, 1985).

1.4 Benchmark Psycholinguistic Effects

It is clear that the rate of development for a word’s lexical quality will vary as a

function of consistency, the frequency with which a word occurs and the availability of

other words with which a target word shares partial spelling-sound structures - i.e., its

neighbourhood. These benchmark effects and experimental findings underlie verbal

theories of the structure of the reading system. Below we describe three

psycholinguistic effects as observed in lexical decision and word naming studies in

more detail.

1.4.1 Consistency

As described earlier, words that have only one spelling pattern associated with one

pronunciation evoke faster and more accurate responses in lexical decision and word

naming tasks than words that have either more than one pronunciation associated

with one spelling pattern or one pronunciation generates more than one spelling

pattern (Glushko, 1979; Ziegler et al., 1997).

The consistency effect tends to be more robust for word naming task

outcomes than lexical decision. This is thought to be due to the phonological

requirements of the pronunciation of the item (Waters and Seidenberg, 1985). Effects

for consistency wax and wane in lexical decision as a function of the type of items

that are included. For instance, Seidenberg et al. (1984) found that a consistency

effect only appeared when “strange” words were added to the item sample and when
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the lists of different levels of consistency were mixed. Furthermore, the strange words

were responded to faster and more accurately than the words that have more than one

spelling or pronunciation.

In the individual differences literature, consistency effects tend to be smaller

for more-skilled than less-skilled readers (Bruck, 1990; Mahé et al., 2018; Mason,

1978; Romani et al., 2008; Strain and Herdman, 1999), however there are some studies

that find equivalent sizes of effects for groups (Ben-Dror et al., 1991; Parrila et al.,

2007). Even in strong readers, consistency effects may remain for words of low

frequency, less consistent spelling-sound pronunciations and novel words.

Given that all the above studies contrast skilled readers with readers with

dyslexia, a contributing factor to the difference is likely to be the persistent difficulties

with phonological processing and knowledge that readers with dyslexia experience

(Bruck, 1990; Castles and Coltheart, 1993).

1.4.2 Word-frequency

The word-frequency effect is one of the strongest and most robust effects in word

recognition studies. Irrespective of the frequency rating measure that is used (Baayen

et al., 1995; Kucera and Francis, 1967; Thorndike, 1944; Van Heuven et al., 2014),

words rated as occurring more frequently are named or decided upon faster and more

accurately than words that occur with lower frequency. Word-frequency effects tend

to be larger for lexical decision reaction times than word naming reaction times

(Balota et al., 2004).

Word-frequency effects tend to be larger for younger developing readers than

older developed readers (Davies et al., 2017; Zoccolotti et al., 2009). Frequency effects

for individuals with a history of dyslexia tend to be larger than those for readers

without dyslexia (Barber, 2009; Barca et al., 2006; Bruck, 1990; Dujardin et al., 2011;

Kuperman, 2013; Suarez-Coalla and Cuetos, 2015). We address this further in the

meta-analysis (Chapter 4).

Observations of a stable word-frequency effect over the adult lifespan are
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inconsistent across studies. Some studies demonstrate stability over groups of different

ages (Allen et al., 1993, 2011; Cohen-Shikora and Balota, 2016; Tainturier et al., 1989)

while others see change (Balota and Ferraro, 1993; Balota et al., 2004; Spieler and

Balota, 2000).

Frequency often interacts with other psycholinguistic variables. These

interactions may arise because the effect of the second variable is most often observed

in only lower frequency word items for typically-reading adults while for less-skilled or

younger readers, the interaction effects may occur at both levels of word-frequency

(Allen et al., 2011; Balota and Ferraro, 1993; Bruck, 1990; Hino and Lupker, 1996;

Jared et al., 1990; Lichacz et al., 1999; Seidenberg et al., 1984; Waters et al., 1984).

1.4.3 Neighbourhood-size

Words are described as belonging to the same neighbourhood when they share the

same letters across letter positions but for one. Orthographic (ON) and phonological

neighbourhood (PN) measures describe the number of new, real words that can be

made by changing one letter (orthographic neighbour; e.g. word -> work) or one

sound (phonological neighbour: e.g. cat -> caught) of the base word while

maintaining the position of the other letters of the base word (Coltheart et al., 1977).

Each of these effects describe either a slowing / speeding of response or significant

change in accuracy rates as a function of a word’s neighbourhood size (N-size).

N-size effects are observed in both word naming and lexical decision tasks

(Andrews, 1997). In word naming, a word from a larger neighbourhood is likely to be

named faster and more accurately than a word from a smaller neighbourhood. In

lexical decision, the effect can present as both facilitatory and inhibitory. In samples

of typically-reading adults, Andrews (1997) and Balota et al. (2004) observed

facilitatory effects but for words that had a neighbour with a higher frequency value,

where they observed an inhibitory effect. Marinus and de Jong (2010) observed this

same relationship between relative frequencies of neighbours in child readers.

Effects of N-size tend to attenuate under increasing reading skill in both child
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and adult samples (Coltheart et al., 1977; Davies et al., 2017; Dunabeitia and

Vidal-Abarca, 2008; Keating, 1987; Laxon et al., 1988). Greater reading skill is

equated with a greater quantity of words with high lexical quality. Words of high

lexical quality need only orthographical information for recognition; they are less

likely to need support from their neighbourhood. In this sense, N-size is a

phonological information measure and works at a sublexical level.

N-size often interacts with word-frequency, particularly on low frequency

words. Where a word from a large neighbourhood is of low frequency, the

orthographic knowledge accrued from its neighbours helps bring about word

recognition. This effect is observed in adults (Balota et al., 2004) and children

(Marinelli et al., 2013). N-size will also often show interaction effects with length,

with longer words showing N-size effects rather than shorter words, especially for

those of low frequency (Davies et al., 2007).

Variant measures of N-size have been constructed. Phonographic neighbours

(Adelman and Brown, 2007) describe neighbours that are made by a single change of

a consonant letter that maintains the vowel sound of the base word. Phonographic

neighbours are named faster than orthographic neighbours.

Yarkoni et al. (2008) defined an orthographic Levenshtein distance metric

(OLD). In OLD, the target word is compared to each word in a corpus database and

counts made of the number of insertions, deletions, and substitutions to change the

target word to its comparator. OLD20 is the mean number of changes taken over the

first 20 of the base word’s closest orthographic neighbours. As a variant of ON, the

OLD metric correlates strongly with ON and allows for an item sample that contains

a much wider range of length of words.
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1.5 Accounts of Word Recognition from Computa-

tional Models

While empirical studies find effects of key psycholinguistic variables, converging lines

of evidence also arise from simulations with computational models. Two models for

single word recognition dominate the literature, the Dual Route Cascaded model

(DRC, Coltheart et al., 2001; Pritchard et al., 2018) and parallel distributed process

models (PDP) built using connectionist network principles (Dilkina et al., 2008; Harm

and Seidenberg, 2004, 1999; Hoffman et al., 2018; Plaut et al., 1996; Seidenberg and

McClelland, 1989). Both models are able to simulate frequency, consistency and

N-size effects and perform word naming and lexical decision tasks. They differ from

each other in theoretical assumptions and architecture, however.

1.5.1 The Dual Route Cascaded Model of Visual Word Recog-

nition

The DRC (Coltheart et al., 2001) simulates mature skilled reading. The model has

two independent pathways to word recognition: a lexical route processes whole,

irregular or regular familiar words and a non-lexical route that processes novel words

that are regular in spelling-sound patterns. Both routes are fed by a visual input layer

and feed into a phoneme recognition, output layer.

Knowledge in the DRC is stored in two forms, whole word representations

and letters. The lexical route contains an orthographic lexicon, in which there is a

whole word node for every word of the CELEX corpus (Baayen et al., 1995). The

non-lexical route has nodes for each letter of the alphabet that represent a complete

knowledge of the grapheme to phoneme correspondence (GPC) rules (Adelman et al.,

2014) for the host language. Servicing both routes is a phonological lexicon containing

pronunciation nodes that are matched for every node in the orthographic lexicon.

Both routes feed into the phoneme recognition layer where single phonemes of the
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host language are represented.

The two routes use different methods of processing orthographical input. The

lexical route addresses the lexicon for the whole word representation by processing

each letter in the item in parallel. Every node in the orthographic lexicon that

contains a letter in the same position as the item is activated by cascaded signals from

the lexical route. All nodes that do not share the letter at that position are inhibited.

The single orthographic lexicon node with the highest activation feeds forward

activation to the matching node in the phonological lexicon. Subsequently, activation

passes to the phoneme system, where the phonemic representation of the word is

assembled.

In the non-lexical route unfamiliar words are assembled by serial processing

from left to right. Letters are processed individually, and single, two and three letter

GPC clusters are searched for applicable rules. Upon attributing a rule, the

corresponding node in the phoneme system is given excitatory activation. This serial

search process continues until all letters in the item are processed.

On presentation of a letter string, both routes process the available

information. In the case of irregular / exception words, a whole word from the lexical

route and a regularised pronunciation from the non-lexical route are fed forward to

the phoneme layer and will conflict with each other. The additional time taken by the

model to resolve this conflict produces the regularity effect where irregular words take

longer and are more likely to be mispronounced than regular words. In this way, the

architecture of the DRC recovers a regularity effect rather than a consistency effect.

The DRC replicates the word-frequency effect by weighting the activation

rates of the nodes in the orthographic lexicon by a scaled frequency parameter. All

CELEX frequency values are scaled such that the word with the lowest frequency has

a value of -1 and the highest frequency word has a value of 0; all other frequency

values fall in between. Nodes with values closer to zero (i.e. of higher frequency) are

activated at a faster rate than nodes with values closer to -1 (i.e. of lower frequency),

producing a word-frequency effect. The same level of activation for an orthographic

node is fed forward to the matching node in the phonological lexicon, ensuring the
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frequency effect is maintained. There is no frequency effect for the non-lexical route as

the unit of analysis is the letter level rather than the word level.

N-size effects are returned by the DRC. Items receive support from activated

nodes in the orthographic lexicon that share the same letter in the same position.

Nonwords that share a spelling-sound structure with words from high neighbourhoods

receive greater activation than nonwords that share spelling-sound structures with

words of low neighbourhoods, resulting in faster recognition. Researchers relaxed the

parameters for lateral inhibition of nodes in the orthographic lexicon so that word

nodes could support word letter string recognition in the lexical route to produce an

N-size effect, without which the returned N-size effect is muted (Seidenberg and

Plaut, 2006).

1.5.2 Parallel Distributed Process Models

The architecture of a PDP model consists of three layers. Each layer contains units

specialised for processing either orthographic, phonological or semantic information of

the item. Units are connected to each other within a layer and layers are connected to

each other with bidirectional flow of information. A layer of hidden units mediates

transfer of information between layers. Each unit bears a weight that determines the

unit’s activation rate. At the beginning of training, the weights on the connections are

set to random values.

There are no whole word representations as in the DRC, instead the family of

PDP models distributes grapheme and phoneme knowledge across the units within

orthographic and phonological layers (Plaut et al., 1996). Each inputted letter string

is consequently represented by several units within each of the three layers,

representing the orthographic, phonological and semantic information of the target

word.

All sources of information are processed identically via spreading activation

(Dilkina et al., 2008; Harm and Seidenberg, 2004, 1999; Plaut et al., 1996; Seidenberg

and McClelland, 1989). Spreading activation means that information from the input
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is accrued over time at the units within layers. Shared information between units

promotes excitatory activation and units that do not share information with the input

receive inhibitory activation. The cluster of units with the strongest levels of

activation becomes the model’s representation of the input.

The pattern of activated units is “learned” due to small additions made to

weights on each successfully activated unit at each exposure. This moves the resting

state of the unit closer to the threshold value. Activated once more, the unit will be

quicker to reach threshold with the iterative changes to weights inducing faster

responses over time.

The location of learning at the unit level, rather than the cluster of units for

an input, supports both learning for the specific input and also the mapping of a

statistical distribution of the spelling-sound patterns that is the orthographic

knowledge of the model language (Seidenberg and McClelland, 1989).

The word-frequency effect is recovered by the PDP model as a function of the

training cycle and the resultant adaptations made on the weights over time. Word

items within a training set are exposed to the model at rates that reflect their

frequency values from a chosen corpus (Plaut, 1997; Plaut et al., 1996; Seidenberg and

McClelland, 1989). It follows that those words of higher frequency will have the

greater amount of exposure and the adaptation on the weights will be greater,

contributing to faster activation for those letter patterns.

The variation in observed frequency effect sizes is explained by the adaptive

function of the weights. The propensity for adaptation on the next exposure is a

fraction of the amount of change in the preceding exposure. Changes accrue in

smaller amounts over repeated exposures as the weights move toward the threshold

limit. These smaller changes reflect the small effects observed for words of high

frequency over time. Larger effects for lower frequency words are explained by the

change to the weights per exposure being relatively large due to a lower exposure rate

and thus fewer episodes of adaptation to the weights’ from their initial starting values.

The same logic applies for consistency effects. Consistent words of invariant

pronunciation activate identical units and incur changes on the weights with every
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exposure. In contrast, words of variant pronunciation share their spelling pattern with

multiple plausible pronunciations. The activation for each exposure is diverted to only

one of the possible phoneme units where the weight is subsequently adapted.

Consequently, the range of units associated with possible pronunciations are activated

less frequently and the respective weights change their values at a slower rate. The

pattern of activation for each pronunciation is slower to stabilise, producing a

difference in the recognition and accuracy rates for words of differing consistency

values.

N-size effects arise due to the distributed nature of the knowledge within the

PDP architecture. A large neighbourhood indicates that a word shares a portion of its

spelling-sound structure with many other words. The greater number of words that

contain the same pattern of letters induces greater frequency of activation for the

shared unit or collection of units than words that share letters with only a small

number of other words. Additionally, the historical record of exposure is stored at the

weight on a unit. Units may be resting at a higher value because they are a high

frequency sublexical unit that is a also part of a large neighbourhood. Collectively, a

large neighbourhood set of words contributes to a faster adaptation of the weight on

the unit for the shared letters, facilitating recognition of words from large

neighbourhoods relative to words from small neighbourhoods.

In summary, the DRC and the PDP contribute contrasting processes to

emulate the same psycholinguistic effects. Apart from the obvious structural and

processing differences, two further critical differences between the models are the

representation of knowledge and the location of the word-frequency effect.

In the DRC model, knowledge is represented as whole words and single letters

while in the PDP model, it is in graphemes and phonemes of varying sizes. The

patterns of unit activation are representations of whole words, generated dynamically

upon presentation of a letter-string. Conceptually, the PDP model’s structure allows

for representation of whole words without the need for a separate orthographic lexicon

as in the DRC, or a separate route to manage exception words. Exception words and

familiar words are represented in the same way as consistent words and unfamiliar
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words, with all units able to contribute to recognition and the pattern trace of a word

being stored across several units in their respective weights.

The location of the frequency effect is fixed at the individual word node in

the orthographic lexicon of the DRC model, and passed to the phonological lexicon as

needed. In the PDP model, the frequency effect resides in the weights of the units in

each layer. Units contribute at different rates which gives the range of effects sizes

that are possible for the frequency effect. Each of these instances are managed by the

adaptive function on the weights which produces the change required as a function of

the rate of exposure to different items.

In the above, we have described how efficient reading may depend upon an

individual having many word representations of high lexical quality, but that the

English orthography makes the attainment of high lexical quality for a word quite

challenging. The properties of the English orthography predict certain

psycholinguistic effects that help us understand what makes a word harder or easier to

attain high lexical quality. The primary effects of word-frequency, consistency and

N-size are robustly observed in the experimental literature with human participants

and have been recovered in simulated data by the DRC and the series of PDP models.

In the next chapter, we turn to a discussion of how orthography, phonology and

semantics is represented in the typical reader and how effects may vary across people.
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2 Person-Level Measures of Lexical Qual-

ity

In the previous chapter we considered how three components of phonological,

orthographic and semantic information contribute simultaneously to successful word

recognition for items of high lexical quality. We described verbal and computational

accounts of word recognition processes and also benchmark psycholinguistic effects

that are predicted by the lexical quality hypothesis and observed in empirical studies.

This chapter will discuss the three components at a person level, outlining

established measures and how variation in measures across people impact single word

recognition. At this point, we introduce the focus sample of the present work:

adult-learners. We briefly define adult-learners before reviewing the literature of

individual differences in phonological, orthographical and semantic knowledge and

skills, taking some time to locate adult-learners within that literature.

2.1 Adult-Learners

The OECD estimates that 20% of school-leavers fail to attain a skill level in reading

that equips them for daily literacy tasks (Castles et al., 2018). In the 2022-2023

school year, approximately 132,000 adults (age 19+ years) enrolled in free further

education (FE) courses to gain their English or Maths GCSE1. This number

documents individuals enrolled on FE courses. As such they represent only a

proportion of adults with low-literacy in the UK. When we discuss adult-learners, it is

this population to which we refer. Adults who, despite sufficient opportunity and in
1Data retrieved from table Adult Basic Skills participation and achievements by subject and

level (Aug – Apr)/English/Level 2, https://explore-education-statistics.service.gov.uk/find-statistics/
further-education-and-skills#dataBlock-30e42381-4841-4f96-a3e9-9da5e35df7d9-tables, 29 July 2023.

https://explore-education-statistics.service.gov.uk/find-statistics/further-education-and-skills#dataBlock-30e42381-4841-4f96-a3e9-9da5e35df7d9-tables
https://explore-education-statistics.service.gov.uk/find-statistics/further-education-and-skills#dataBlock-30e42381-4841-4f96-a3e9-9da5e35df7d9-tables
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the absence of formal diagnoses of reading difficulties, have not yet mastered a level of

reading skill sufficient to be regarded as functionally literate2.

There are reasons to assume that adult-learners differ in their skills’ levels

from other populations upon which word recognition research is based. We might

estimate that adult-learners are approximately three years delayed in their reading

skills compared to undergraduate student readers, since GCSEs are typically taken a

full two years before enrolment on a higher education course. We may assume that

adult-learners read at a higher skill level than children. Adult-learners are likely to

have completed compulsory schooling, and so have more years of formal educational

experience than most children in word recognition research. Additionally, we may

assume that skills would continue to develop by mere exposure to print and language

over time.

The adult-learner population is of interest for two reasons. First, the

curricular activities offered to this group of learners are very similar to those offered

to their younger 15-year-old peers who are studying for their English GCSE. This

represents an implicit assumption that the adult-learners are merely older and do not

differ in skills or reading processes, irrespective of their prior experience and low exam

attainment. We can test this assumption by aligning adult-learner reading skills with

a population of younger readers’ skills.

Second, most theories and models of reading are built around research

findings based on samples of mature, skilled readers (undergraduate students mainly),

younger learners or those with atypical reading behaviours. Recently, Wild et al.

(2022) demonstrated conclusively that findings from reading studies involving

undergraduate student readers are not representative of the reading behaviour in the

wider, general population. If non-representative samples form the basis of cognitive

models, the generalisability of effects and predictions from the models are unstable

(Yarkoni, 2022).

We do not know how the adult-learner sample would be qualitatively or

2It is important to note at the outset that this population of adult-learners is not the same popu-
lation described as illiterate in Morais et al. (1986), Morais et al. (1979), and Bertelson et al. (1989).
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quantitatively different from skilled adult readers. A focus on adult-learners and how

they may vary in using orthographical, phonological or semantic information may

contribute to the literature, informing theory or model development that is based

upon behaviours as observed in a more inclusive and representative sample of the

general population.

In the following, we use the components of the lexical quality hypothesis

(section 1.1) to structure our discussion of individual differences. In each part of

phonology, orthography and semantics, we will address the individual differences

research and detail the relevant accounts of person-level variation that have been

observed in the literature. We first describe how a component skill is believed to

develop, describe findings for typical readers and finally review research conducted

with adult-learner participants.

2.2 Phonology

Phonological skill is a critical component of successful reading development. There are

two major strands of research. The first strand, phonological awareness, describes an

individual’s knowledge of how to manipulate sounds of a language. Manipulating

units of sounds is a precursor to mapping those sounds onto letters or letter clusters

and discovering the alphabetic principle of the English language (Castles et al., 2018;

Castles and Coltheart, 2004; Perfetti, 2011). The awareness and ability to manipulate

units of sounds of a language is the basis of the self-teaching hypothesis and so is

integral to a learner’s independence in reading skill development (Share, 2004, 2021).

Tasks such as phoneme blending, deletion, isolation or segmentation may be used to

measure such skill.

The second strand of research is phonological knowledge. Phonological

knowledge measures the extent to which the letters or letter clusters of an

orthography are correctly associated with the sounds of a spoken language in the

individual. Tests of nonword decoding are often used as measures of phonological

knowledge. Since letter strings are printed, the tests involve an element of
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orthographic processing, however, the use of unfamiliar nonwords that are novel to the

participant places a larger emphasis on phonological knowledge as they are unlikely to

be reading from memory.

2.2.1 Phonological Awareness

Phonological awareness skill is positively correlated with early word reading skills

(Hulslander et al., 2010; Melby-Lervag et al., 2012; Mellard et al., 2010; Ricketts

et al., 2011; Shanahan and Lonigan, 2010; Stanovich, 1986) and to later spelling

development in school aged learners (Hulslander et al., 2010; Shanahan and Lonigan,

2010; Vellutino et al., 2007) and adult-learners (Braze et al., 2007; Fracasso et al.,

2016; Nilssen-Nergård and Hulme, 2014; Parrila et al., 2007; Scarborough, 1998).

Poor phonological awareness (and knowledge) is long established as an underlying and

persistent component of developmental phonological dyslexia (Castles and Coltheart,

1993; Kwok and Ellis, 2014; Melby-Lervag et al., 2012; Snowling and Melby-Lervag,

2016).

Phonological awareness (PA) is reported as generally low in adult-learners

(Bakhtiari et al., 2015; Jimenez et al., 2008; MacArthur et al., 2010; Nanda et al.,

2010; Scarborough, 1998). In a meta-analysis of several components for reading skill,

Tighe and Schatschneider (2016) recovered a moderate correlation of r = .34 between

PA and reading comprehension. It was one of the weakest relationships compared to

correlations for other reading-related skills with reading comprehension.

Adult-learners tend to demonstrate weaker PA skills than their peers and also

developing readers. Greenberg et al. (1997) reported their sample of 72 adult-learners

as having phonological processing skills equivalent to 11-year-old learners. Thompkins

and Binder (2003) found that adult-learners with an average of nine years education

performed worse on a phoneme recognition task than younger learners of 1.5 years of

education.

Variation in PA skills may discriminate distinct subgroups within the

adult-learner population (Braze et al., 2007; Mellard and Patterson, 2008; Mellard
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et al., 2016, 2012b, 2010). Mellard et al. (2012b) tested a sample of 335

16-25-year-old, low-literacy adults and identified four subgroups according to the

number of words read per minute and the number of word errors. While the four

subgroups differed significantly from each other on PA scores, the pattern of relative

strengths across the tests for PA was the same with the weakest being the application

of phonological skills for the learning of new words.

Similarly, Bone et al. (2002) constructed two groups of adult-learners, one

with and one without discrepancies between predicted and actual reading achievement

scores. Both groups showed deficits on phonological awareness tasks compared to a

control sample of typically-reading college students. Narrative accounts report that

adult-learners reporting a history of reading difficulties are observed to be

approximately two years lower than adult-learners with no reported history of reading

difficulties on PA skills (Hock, 2012; Mellard and Patterson, 2008).

2.2.2 Phonological Knowledge

Studies show that phonological knowledge (PK) is reliant upon the properties of

word-frequency and consistency. Treiman et al. (1990) found that for young and

skilled mature readers, nonword reading accuracy was better for nonwords that

contained high frequency rather than low frequency spelling-sound letter patterns.

Brown and Deavers (1999) conducted a similar experiment but manipulated regularity

rather than frequency across the nonwords. Both studies found that words with less

frequently occurring spelling-sound patterns were more likely to be read by applying

grapheme-phoneme correspondence rules.

This reliance on frequency is observed in readers of low PK. In Treiman et al.

(1990), third grade, poor readers were better at reading nonwords with high frequency

patterns of letters than beginning first grade readers, however they were worse than

the first graders on the nonwords of low frequency construction. In the same study,

typically-reading students produced more real word substitutions on the high

frequency patterned or regular nonwords than the younger readers, suggestive of a
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strategy of reading by analogy.

Taken together, the Treiman et al. (1990) and Brown and Deavers (1999)

studies may suggest that readers of all ages and experience are more likely to read

high frequency patterns, and consistently spelled nonwords more accurately or by

analogy than nonwords of low frequency patterns or inconsistent spelling.

Less-experienced and less-skilled readers revert to explicit, serial decoding to

approximate a pronunciation for an unfamiliar letter string (Brown and Deavers,

1999). A reading by analogy strategy may not be as available to younger readers by

dint of vocabulary knowledge, compared to that of older student readers. Further,

readers of greater experience (and greater vocabulary) may switch between different

strategies of reading as the context demands.

Nonword reading has been tested in students with and without dyslexia.

Kwok and Ellis (2014) found no difference in accuracy levels between the two groups.

Students with dyslexia were slower to read the nonwords than students without

dyslexia. As item length increased, both groups showed a length effect but dyslexic

students showed a larger length effect than students without dyslexia. Two conclusions

may be drawn from this: serial decoding was present for both sets of readers for initial

exposures to the nonwords, evidenced by the presence of length effects. Also,

phonological knowledge in mature readers with dyslexia may be complete however the

efficiency of its application remains slower compared to readers without dyslexia.

Adult-learners may appear similar to younger, typically developing readers in

nonword reading performance. Greenberg et al. (1997), Mellard et al. (2010), Nanda

et al. (2010) and Sabatini et al. (2010) found that adult-learners had lower nonword

reading skills than 4th grade readers (10-11 years). Tighe and Schatschneider (2016)

found a similar strength of relationship between nonword reading and reading

comprehension between adult-learners and that reported by the National Early

Literacy Panel (Shanahan and Lonigan, 2010) for younger readers (adult r = .42;

younger reader r = .44). Although similar in measured strength, this does not equate

with similar reading behaviour or influences.

Binder et al. (2011) tested adult-learners on phonological knowledge tasks.
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While typically-reading children generally reach ceiling level of performance at the end

of third grade, adult-learners did not reach ceiling levels of performance on the same

task until eighth grade level. This suggests that an adult-learner accrues phonological

knowledge at a much slower rate than that of typical readers. In support of this,

Mellard et al. (2012b) found that the ‘fast and accurate group’, the best of their four

constructed groups in their sample of adult-learners, who showed near average PA and

PK scores, contained the older members of the group (mean age of 20.3 years).

Evidence of PA and PK knowledge in the adult-learner population clearly

demonstrates a slower acquisition and more variable application of skills when

completing tasks compared to typical readers.

2.3 Orthography

The lexical quality hypothesis predicts that for words of high lexical quality,

orthographic information alone is sufficient for efficient and accurate word recognition.

For words of lower lexical quality, orthographic information is necessary but not

sufficient for accurate word recognition (Perfetti and Hart, 2002). Phonological and

semantic information may contribute more to word recognition processes for words of

low lexical quality.

Paired-associative methods for learning of letter-sound relationships forms the

bedrock of early reading pedagogy in the UK education system (DfE, 2023). After a

short time, the quantity of knowledge learned approximates an “initial set” by which

a developing reader can initiate the self-teaching process via phonological recoding

through practice (Share, 1995, p. 156). In this way, over several years, learners are

systematically exposed to the spelling-sound patterns of the English orthography to

develop fluent orthographic knowledge and learning.

In the absence of fluent orthographic knowledge, a compensatory strategy for

learning of novel words may be to continue with paired-associative learning.

Unfamiliar words are then recognised from memory as whole words (Castles et al.,

2018). In the long term, this strategy is too costly given the estimated vocabulary of a
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skilled adult reader (approx 40,000 words - Brysbaert, 2019). Additionally, whole word

reading is believed to reduce the opportunity for learning of sublexical spelling-sound

patterns, thereby truncating the development of orthographic knowledge.

An alternate strategy is reading by analogy. Parts of known words are

recognised in unknown, novel words and applied to the recognition process (Glushko,

1979). This strategy is also costly though not as detrimental to further development

of orthographic knowledge as memorising whole words. The transfer of partial

information from known to novel words still provides an opportunity for activation of

sublexical components of a word. Consequently, growth of orthographic learning and

knowledge can continue, albeit more slowly.

The success of a reading by analogy strategy may depend upon the size of an

individual’s vocabulary (Brown and Deavers, 1999). Readers with lower receptive

vocabularies may have fewer examples by which to match parts of words for decoding.

Yurovsky et al. (2014) showed that greater exposure of word types and diverse reading

contexts is needed for reading by analogy to result in robust orthographic learning.

Consequently, reading by analogy may not be as useful a strategy for adult-learners.

2.3.1 Word Reading

Variation in orthographic learning is often indexed by scores on tests of word reading.

Strong skill in word reading is represented by fast and accurate responses to single

words. Multiple studies suggest that orthographic learning of adult-learners is

truncated around the grade 5 level (age 11 years), while being relatively stronger than

their phonological skills (Greenberg et al., 1997; Mellard et al., 2010; Tighe and

Schatschneider, 2016). Greenberg et al. (1997) demonstrated that adult-learners’

orthographic skills were stronger than grade 3 readers but weaker than grade 5

readers. Mellard et al. (2012a) concluded that word reading skill has “complete

dominance” status over six other predictors, including vocabulary, rapid letter naming

and nonword reading.

Rather than a strong correlation between orthographical and phonological



59

information as observed in skilled readers (Perfetti and Hart, 2002), Greenberg et al.

(1997) observed weak correlations between orthographic and phonological task

measurements in adult-learners. Weak orthographical-phonological correlations

suggest that the orthographical and phonological information have not yet integrated.

They concluded that rather than reading words, adult-learners see words, retrieving

familiar words from memory rather than applying phonological decoding strategies.

This is problematic as seeing a word may not induce phonological recoding to the

same extent as it may for a typical reader who is reading the same word. The

capacity to develop orthographic knowledge and learning development within the

exposure may be reduced. Under these conditions, a single reading episode is unlikely

to render the same benefits for an adult-learner compared to a skilled reader.

Orthographic knowledge development is slowed and a word will take longer to attain

high lexical quality.

2.3.2 Spelling Skill

As a measure of precision, spelling dictation tasks measure both orthographic learning

(each test item) and orthographic knowledge (the sublexical letter clusters across all

items, Protopapas et al., 2017; Ricketts et al., 2009, 2011). Consistently high spelling

scores can therefore reflect many word representations of high lexical quality within a

person (Andrews et al., 2020; Perfetti and Hart, 2002) and also a robust

representation of orthographical knowledge.

Adelman et al. (2014) suggested that spelling could be a key source of

variance between people who are otherwise competent readers since spelling skill in

the general population is highly variable. Andrews and Lo (2012) reported spelling

scores between the ranges of 4 – 20 words in a spelling assessment of 20 items in a

sample of 97 student readers. Masterson et al. (2007) showed an equivalent spread of

scores in a sample of 40 students and an accuracy range of 9 – 30 words in an

assessment of 30 items.

Low spelling skill in the context of high levels of reading skill has been
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hypothesised to arise from partial processing of words. Essentially, good readers may

recognise a word without fully processing the sublexical components. This partial

processing results in information for spelling being acquired less effectively and over

time, this results in sub-optimal spelling knowledge (Andrews et al., 2020; Masterson

et al., 2007).

In contrast, explanations of low spelling skill amongst less-skilled readers have

been suggested as lower vocabulary scores or less reading practice. Lower vocabulary

scores presumably are a proxy for fewer word representations with the same letter

patterns, consequently a lower exposure to spelling-sound patterns. Less-skilled

spellers are more error prone across consistently and inconsistently spelled words, and

show a wider variety of spelling errors than more-skilled spellers (Masterson et al.,

2007). Poor spellers are also more likely to incorrectly classify words as nonwords and

nonwords as words in lexical decision tasks.

Martin-Chang et al. (2014) measured standard spelling in the traditional

correct / incorrect sense but also the variability of a person’s spelling errors over

repeated assessments. They found those words that were incorrectly but consistently

(mis)spelled by a participant were named faster than those inaccurately spelled words

that varied in the type of spelling errors. The faster reaction times for the

consistently-incorrectly spelled word suggests that an incorrect spelling, when believed

to be correct, may still have high lexical quality within an individual, relative to other

words in their vocabulary.

Beidas et al. (2013) found a strong correlation between decoding and spelling

skill in their adult-learner sample. This strong correlation with decoding skill makes

intuitive sense. Decoding involves processing spelling to sound; spelling involves

encoding of sound to spelling. Swanson et al. (2003) found that word learning was

best predicted by spelling and nonword reading over and above nine other person-level

skills.

Partial information does appear to be used in spellings of adult-learners,

however, it is related to language experience rather than reading experience. Treiman

(2018) asked skilled adults to rate spellings by adult-learners and pre-instruction
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children. The adult-learner spellings were rated as more plausible than the child

spellings. Treiman (2018) inferred that adult-learners applied partial phonological

knowledge from their greater language experience, having a larger repertoire of

sound-spelling examples than young children given their older age. This finding could

also imply that the orthographic knowledge of an adult-learner may be sufficient for

partial recognition of words for reading, supporting the finding in Swanson et al.

(2003) that spelling may contribute to word recognition for this sample.

On average, adult-learner spelling skills are often weaker than those of their

reading age match peers (Greenberg et al., 1997) and adult peers (Beidas et al., 2013;

Eme et al., 2014). Taken together with the observation of low word reading skills

being truncated at approximately 11 years of age, the pivotal source of information

and knowledge upon which words of high lexical quality depend, seems to be

under-developed in the adult-learner population.

2.3.3 Reading Fluency

Fluent reading suggests both speed and accuracy. It implies automaticity of word

recognition. It is important for the release of cognitive and attentional resources for

higher order processing such as construction of meaning at the text level (Perfetti and

Stafura, 2014). Conversely, reduced fluency impinges on the capacity to understand

text level meaning (Stanovich, 1986). Fluency will vary under different reading

conditions. Even the most skilled reader will slow their reading to decode and

understand a difficult passage (Bell and Perfetti, 1994).

Fluency in the present context may additionally imply that the three sources

of orthographical, phonological and semantic information are integrated, coherent and

simultaneously available for word recognition. Dys-fluent reading or recognition then

implies that the sources of information are not integrated.

Independent of word or nonword reading skill, general processing speed can

be a contributory factor to fluent reading. A measure of general processing speed is

the rapid automised naming (RAN) task. Across four versions of the task, individuals
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are asked to name a small set of highly familiar items (letters, digits, objects or

colours) that are randomly arranged across multiple rows on one page, as quickly and

accurately as possible. A longer time to complete naming the items indicates slower

processing speed of the individual.

The naming of objects and colours is considered a purer measure of

processing speed than naming letters and digits since they are not confounded with

orthographic knowledge (Kirby et al., 2010). Object and colour naming is less

automatic, however, producing longer task completion times, on average, since labels

for objects and colours vary between people (Beidas et al., 2013; Cattell, 1886; Meyer

et al., 1998b; Sabatini, 2002).

After controlling for skill and experience, there is variation between people as

to their speed of processing. Some people process all types of information faster than

others (Seidenberg, 1985). This tends to be reliable across separate testing sessions.

Yap et al. (2012) demonstrated that a large sample of university students were highly

reliable in their reaction time profiles across two testing sessions.

Persistent low fluency can impact reading skill development. Kirby et al.

(2010) suggested that in the context of low fluency, the processing of adjacent letters

in a letter string may remain independent of each other instead of adjacent letters

being processed in parallel as a sublexical unit. This diminishes the opportunity for

strong associations to form between letters in a word. If associations between letters

are not formed, the statistical distribution for those groups of letters will be slower to

develop or be missing from a person’s orthographical knowledge.

Processing speed is often measured in beginning readers (Meyer et al.,

1998a,b; Scarborough, 1998). In a meta-analysis of 35 studies, Swanson et al. (2003)

found that RAN showed stronger correlations for average- (r = .42) and more-skilled

(r = .40) developing readers than less-skilled readers (r = .22). This difference may

suggest that from a very early age, young learners who go onto to show lower reading

skills demonstrate less integration of information sources than average- and

higher-skilled readers.

Kirby et al. (2010) describes RAN as showing a curvilinear relationship with
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typical reading skill development. In the early years, there is a strong correlation

which attenuates as other reading-related skills come on line. In support of this

observation, stable effect sizes for RAN (and PA) across the ages of 4 – 10 years have

been observed in longitudinal studies in typical readers (Åvall et al., 2019). Yet for

less-skilled readers, the predictive age range for RAN is prolonged, in a similar way to

phonological skill measurement. Meyer et al. (1998a) observed that third grade RAN

(9 years) predicted fifth (11 years) and eighth grade (14 years) reading for children

reading at or below the 10th percentile in skills.

In adult-learners, RAN scores were the second most important predictor

amongst seven for adult-learners (Mellard et al., 2012a). From 10 studies, Tighe and

Schatschneider (2016) estimated a correlation of r = .53 between reading fluency and

reading comprehension (Mellard et al., 2010; Nanda et al., 2010). Both found that the

best fitting path model included an independent predictor for processing speed.

Similar to Hulslander et al. (2010), RAN measures indirectly predicted reading

comprehension through its direct relationship with word and nonword reading.

The independence of fluency as a predictor plus the strong correlation

estimated in Tighe and Schatschneider (2016) in adult-learner models of reading,

rather than the relationship attenuating as Kirby et al. (2010) reported, suggests that

adult-learners have yet to achieve fast word reading and for it to be integrated with

accurate word recognition (Beidas et al., 2013; Ben-Dror et al., 1991; Bruck, 1990).

This is a further observation suggesting that critical skills for reading show a lack of

or weak integration in adult-learners.

2.4 Semantics

While semantic information has a role in single word recognition, as a

multi-dimensional construct it shares a much less predictable relationship with

orthography than phonology (Frost, 1998; Steyvers and Tenenbaumb, 2005). Also,

because lexical quality is a property of a word and not the person, it is likely that

words within a person will vary as to their lexical quality. This between word
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variation in lexical quality intuitively suggests that semantics has a role to play for

the recognition of words (Andrews and Hersch, 2010; Perfetti and Hart, 2002).

A convergent line of evidence comes from fMRI data exploring how skilled

readers’ brains activate for words that differ for phonological information (consistency)

and semantic information (imageability, Graves et al., 2014). Analyses demonstrated

similar pathways of brain activation across individuals under consistency conditions

but highly variable pathways of brain activation across individuals for imageability

conditions. Differences for use of semantic information are much more variable than

use of phonological information across individuals. This variability is symptomatic of

the less predictable relationship between orthography and semantic information.

Evidence suggests that semantic information supports recognition where the

orthographical-phonological information is not so strongly correlated, such as in low

frequency or inconsistently spelled words, or in individuals of low phonological skill.

Strain and Herdman (1999) demonstrated that imageability, as a proxy measure for

semantic information, supported exception word reading for readers that differed in

their phonological skills. Effects were present across exception words of high and low

imageability for readers of low phonological skill but only for exception words of low

imageability for readers of high phonological skill. Strain and Herdman (1999)

interpreted this as semantic information compensating for weak phonological

representations in word naming.

Woollams et al. (2016) measured individual consistency effects in a sample of

skilled readers and created low and high semantic reliance (SR) groups based on the

smallest and largest consistency effects observed in naming low imageability words,

respectively. The high SR group demonstrated lower phonological skills as a function

of nonword naming and rime production tasks, compared to the low SR group.

Differences were located in the naming of inconsistent words, with no differences

across error rates in consistent words. High SR readers were also slower in their

reaction time measures across tasks compared to the low SR readers.
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2.4.1 Vocabulary

Semantic knowledge in individual people is captured by vocabulary measures.

Adelman et al. (2014) suggested that a measure of size of vocabulary could be

interpreted as a person-level index of lexical quality. Participants with higher

vocabulary scores often name words faster, are more accurate and show smaller

psycholinguistic variable effects than participants with lower vocabulary scores (Yap

et al., 2012). Strong vocabulary scores predict faster and more accurate recognition of

words with inconsistent spellings (Steacy et al., 2017b; Ziegler and Goswami, 2005)

and Bell and Perfetti (1994) found that skilled readers with higher vocabulary scores

were better at nonword reading than skilled readers with lower vocabulary scores.

Katz et al. (2012) use vocabulary measures as their proxy for reading

experience. Many studies who recruit skilled readers who vary in age find superior

vocabulary skills in the older participants (Allen et al., 2002, 1995; Balota and

Ferraro, 1996; Ratcliff et al., 2010; Spieler and Balota, 2000). Keuleers and Balota

(2015) suggested that with continued exposure to diverse texts, vocabulary knowledge

will continue to grow.

Yap et al. (2009) observed that skilled readers with lower vocabulary scores

relied upon semantically related word primes to a greater extent than students with

higher vocabulary scores in a lexical decision task. Andrews and Lo (2013) confirmed

these findings. They categorised skilled adult readers into semantic and orthographic

types of readers. A semantic reader displayed high vocabulary with low spelling skills

and an orthographic reader showed low vocabulary with high spelling skills. The

groups were dissociated by the effectiveness of the types of semantic primes and,

overall, the semantic reader was slower than the orthographic reader to recognise

words (cf. Woollams et al., 2016).

Intuitively, given the older age of adult-learners, one might hypothesise that

on average, they have larger receptive vocabularies that may support word

recognition, and that this may confer an advantage for word recognition over other

learners of the same word reading skill. A narrative review by Bakhtiari et al. (2015)
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found that vocabulary knowledge was important to word reading in adult-learners but

of low skill level. Sabatini et al. (2010) found that expressive vocabulary skills in

adult-learners of seventh grade level were only slightly higher than their reading skills.

Yet adult-learners do not seem able to capitalise on this relatively strong

resource for reading gains. Mellard et al. (2010) showed that greater experience of

spoken language in adult-learners did not boost the decoding and comprehension

skills relative to those of younger typical readers. Greenberg et al. (1997) and Nanda

et al. (2010) found that any advantage of oral vocabulary knowledge in adult-learners

was no longer present when compared with fifth grade reading performance.

Braze et al. (2007) suggested that this may be because the familiar vocabulary

originates from speaking and listening experience rather than print experience. While

exposure to words in print yields the orthographic and the phonological code,

exposure to the spoken form of words yields only the phonological code. Relative to

print exposure, spoken language represents an impoverished source of information

with diminished opportunities for impact on reading development over time.

Several studies suggest a close relationship between vocabulary knowledge

and phonological knowledge in adult-learners. Hall et al. (2014) found that expressive

vocabulary uniquely predicted exception word reading for adult-learners but not

regular word reading which was significantly predicted by nonword reading skills.

McKoon and Ratcliff (2016) found that their adult-learners were more reliant upon

their nonword reading skills and language skills than their undergraduate reading

sample.

Taken together, vocabulary knowledge appears to be a relative strength in

reading-related skills for adult-learners. Further, semantic knowledge appears to work

with nonword reading in effecting recognition of regular and irregular types of words.

There is conjecture in the literature that the source of vocabulary knowledge in

adult-learners is from spoken language rather than written language (Braze et al.,

2007). If so, this may mean that semantic representations are weak. This may explain

why, even though absolute vocabulary scores appear stronger than word reading

scores, the development of orthographic learning and knowledge that would otherwise
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be expected, is not observed (Mellard et al., 2010).

In summary, adult-learners tend to be lower on all reading-related skills,

relative to their adult peers. We have some understanding that adult-learners look

like younger readers. Crucially, however, study findings suggest that adult-learner

word reading skills reach a ceiling level around the age of 11 years, and do not seem to

progress beyond that.

Within their own set of reading-related skills, measures of semantic skills

appear to be strongest, with orthographic skills next and phonological knowledge the

weakest of the three sources of word reading information. Relationships between the

three sources appear to be weak – weaker than those reported in the typically-reading

younger samples.

Under these circumstances, the lexical quality hypothesis predicts that

orthographic learning in adult-learners will be of low quality. Given the importance

attached to strong correlations between orthography, phonology and semantic

information, evidenced in studies with skilled readers, the ability for adult-learners to

benefit from relative strengths in their skills profile seems limited, with learning rates

slowed as a consequence.

Although adult-learners may resemble typically-reading younger people in

their individual differences measure scores, it is not automatically clear that they read

in the same way. They may operate reading strategies at the whole-word level or

operate an analogical reading strategy. We know that words have psycholinguistic

properties that adult-learners may use to a greater or lesser extent compared to other

types of readers. For instance, they may show a difference in the N-size effect if their

vocabulary is based upon spoken language experience and the shared spelling patterns

that comprise a neighbourhood are weakly represented, compared to a

typically-reading younger person. A comparison of psycholinguistic property effects

for single word naming tasks would provide evidence for an evaluation of such a

question. Yet none of the studies with adult-learner samples examined benchmark

psycholinguistic effects. In fact, there are very few studies that go beyond individual

difference measures of adult-learners.
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There are studies that examine the relative contributions of person-level skills

and item-level properties in typically-reading adult samples and these are eminently

useful as a reference point. In the next chapter, we discuss several large scale studies

with human participants that explore variation in reading-related skills and their

impact upon psycholinguistic effects (Adelman et al., 2014; Balota et al., 2004; Davies

et al., 2017; Yap et al., 2012). We also review implementations of the PDP

computational models that simulate individual differences in word recognition that

are observed in behavoural data for atypically-reading individuals.
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3 Individual Differences in Psycholinguis-

tic Effects

Assessing individual differences for word recognition is important as they are a

significant source of variation in study data. For instance, Seidenberg and Plaut

(1998) found that the correlation between the item means for an identical set of items

used in Seidenberg and McClelland (1989) and Spieler and Balota (1997) was r = .54.

If shared variance was solely due to item-level effects, then we should expect the

correlation to be much higher.

As well as variation in experimental settings and equipment, differences

within each sample are at play, mandating the measurement of person-level skills in

conjunction with psycholinguistic variables. A greater understanding of the skills that

structure individual difference variation may go some way to explain why estimated

effects of psycholinguistic variables vary between studies and why interaction effects

are present in some studies and not others, e.g. Seidenberg and McClelland (1989)

and Spieler and Balota (1997) for frequency x consistency.

3.1 Computational Model Accounts of Individual

Differences

Most accounts for individual differences in the computational modelling literature are

located at the level of people with reading disorders or patients with neurological

conditions (Dilkina et al., 2008; Harm and Seidenberg, 1999; Plaut, 1997; Plaut et al.,

1996). If we assume that the observed behaviour from such individuals marks an

extreme pole of a continuum of reading behaviour then an alternative version of a

model may simulate data that accounts for milder behaviour observable across a range
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of typical readers. Models can be adapted to test hypotheses from a range of

experimental conditions with a range of human participants.

As a simulation of mature, skilled reading, the DRC (Coltheart et al., 2001) is

not naturally designed for an individual differences approach. Both the lexical and

non-lexical route are programmed to reflect perfect knowledge of words, graphemes

and phonemes (Coltheart et al., 2001). The architecture of the two separate routes

reflects the observed dissociations between acquired surface and phonological dyslexia

reading data and turning either route off simulates individual difference reading

behaviour at the level of either an acquired surface or phonological dyslexic reader.

The Self-Teaching Dual Route Model (ST-DRC, Pritchard et al., 2018)

extends the DRC by including a mechanism by which unfamiliar word nodes are

added to the orthographic and phonological lexicon. The assumptions of perfect

knowledge from the DRC remain unchanged, however. Consequently, the ST-DRC

simulates novel word learning in the context of mature, skilled reading. As such, the

model’s purpose does not fit our purpose and so we do not discuss it any further.

Implementations of the PDP model have sought to account for individual

differences in relation to the observed behavioural patterns of atypical reading

(Dilkina et al., 2008; Harm and Seidenberg, 1999; Plaut, 1997; Plaut et al., 1996). In

the following, we refer to the models by the author initials and year for simplicity:

Dilkina et al. (2008) as D08, Harm and Seidenberg (1999) as HS99, Plaut et al. (1996)

model as PMSP96 and Plaut (1997) model as P97.

Underpinning each of these PDP accounts for individual differences is the

division of labour hypothesis (Plaut et al., 1996). A division of labour for word

recognition is predicated upon a strong interdependence developing between the

semantic and phonological pathways as children listen to and speak their early

language, prior to the onset of literacy instruction (Chang and Monaghan, 2018).

Once the learning of printed text begins, words of consistent spelling-sound patterns

forge strong and stable orthographical-phonological relationships and word

recognition is less dependent on semantic-phonological information. For words that a

reader knows, semantic information is used where the orthographical-phonological
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relationship is less predictable. Then, co-activation of semantic information with the

phonological information strengthens the phonological activation for the word pattern,

assisting word recognition (Plaut, 1997; Plaut et al., 1996).

In the absence of a discrete layer of semantics, semantic information was

approximated in the training set of PMSP96 via an additional “boost” of activation on

the phonological units. The augmented signal was stronger for high frequency words.

Under these circumstances, the phonological units began to specialise in consistently

spelled and / or high frequency words. Semantic information became critical for

recognition of inconsistent words, where phonological information was less predictable.

This division of labour has also been observed in behavioural studies with adult and

child readers (Steacy et al., 2017b; Strain and Herdman, 1999; Woollams et al., 2016).

Once trained, the model could be lesioned in different ways to simulate

acquired and dyslexic reading behaviours. The damage to the interdependent

relationship gave a computational account of the symptoms of surface and

phonological dyslexia within a single route model. Lesioning the semantic pathway of

the model simulated successful recognition for consistent words, high-frequency

inconsistent words and nonwords but eradicated the recognition of inconsistent words.

Further, Plaut et al. (1996) suggested that variation in patterns of behaviour within

acquired dyslexia reading could be attributed to the strength of the interdependence

between semantic and phonological information.

P97 tested the division of labour hypothesis further by varying the number of

connections between units on pathways, attaching different strengths of decay on the

weights and reducing the strength of the external semantic input to the phonological

units. Within the model, the phonological pathway compensated for weak semantic

input and produced variations in the quality of the phonological representations. This

had a direct impact on recognition rates and patterns, reflective of variation within

the behavioural data from human readers with acquired dyslexia.

The PMSP96 and P97 implementations describe reading behaviour across

different types of atypical reading. Dilkina et al. (2008) described degraded reading

behaviour observed in five patients of differing degrees of semantic dementia.
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Although sharing the same diagnosis, each person displayed variable word recognition

profiles. Working from the basis of a model trained for typical development, Dilkina

et al. (2008) found that the site of the lesion to the model best described the

individual pattern of word reading behaviour amongst the five people. Different

training regimes and differing numbers of units with pathways also affected how

reading behaviour declined, in line with the behavioural data of the separate patients.

Both Plaut et al. (1996) and Dilkina et al. (2008) determined that the degree of

interdependence between the phonological and semantic pathways, before injury or

disease onset, determined some part of the behaviour of the system once damaged.

HS99 extended the remit of the PDP model into developmental dyslexic

behaviour and by implication, typical developmental reading behaviour. Critical to

the developmental account was a training phase for only semantics and phonology

information to emulate the pre-literate language experience of a typical child.

Developmental phonological dyslexia was simulated by removing the hidden

layer of units for the phonological pathway. The hidden layer’s purpose is to push the

activation and subsequent outputs of the phonological layer to a legal and precise

representation. In the presence of hidden units, the input to the phonological layer

can be less precise, which helps with generalised recognition behaviour – eminently

useful for novel word recognition. In their absence, the input to the phonological layer

must be much more precise for stable and accurate word recognition. Over time, the

phonological units became specialised to word patterns as opposed to more general

sublexical patterns, reducing the effectiveness of the model’s recognition for nonwords

– a pervasive symptom of phonological dyslexia.

An alternative behaviour was simulated by reducing connections between

units within separate domain layers. This restrained the ability of units to learn the

associations between frequently occurring adjacent units and forming sublexical

chunks – i.e. the different grain sizes that are found in English. The optimal grain size

under these conditions is single letters, constraining word recognition behaviour that

is characterised by letter-by-letter decoding.

To simulate developmental surface dyslexia, Harm and Seidenberg (1999)
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initialised the model with less training of the orthographical and phonological layers.

Further, they decreased the learning rate parameter. Making the learning rate smaller

impacted on the entire system’s ability to capture the available learning within a

cycle. A further change was to remove 80% of the hidden units between the

orthographical and phonological layers. The change observed here was that exception

word reading was impaired with nonword reading slightly impaired. Harm and

Seidenberg (1999) interpreted this as the hidden units facilitating the system learning

of larger chunks, with the activation patterns of exception words being their own

individual chunk. With a reduced number of units, the resources work to an optimal

design which is smaller units, i.e. single letters.

So far, what has been described are theory-driven implementations of

computational models to simulate atypical word recognition behaviour observed in

human participants. In this way, every lesioned model represents one possible

individual. A base model without lesions represents a single typical reader. As such,

it is impossible to capture the variability within a participant sample (Seidenberg and

Plaut, 1998).

As computational power has increased, it has become feasible - and desirable

- to implement multiple computational models to simulate multiple individuals. One

such study was conducted by Adelman et al. (2014). Skilled adult readers (n = 100)

completed a word naming task for 711 items. Each participant’s data was used as an

outcome variable in a multiple regression and model coefficients collected. The

distribution of 100 coefficients for mutliple psycholinguistic variables demonstrated a

wide range of effect sizes within a skilled-reading, adult population.

Moreover, the participants completed repeated sessions of data collection by

which to measure the stability of effect sizes within individuals across time. Individual

profiles of effects sizes were reliable across sessions with the only difference being that

participants became slower in their responses from sessions one to three.

Adelman et al. (2014) analysed the variability of estimated effects within the

participant sample for frequency, N-size, word and nonword length, exception effects,

consistency and position of irregularity. They found significant differences in the size
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of effects across all variables except N-size and consistency. The interpretation was

that the majority of psycholinguistic predictors exert a differential impact across

readers that are all assumed to be ‘skilled’.

No person-level measures of individual differences were collected from the

human sample. Individual differences were operationalised as the distribution of

estimated effects for the psycholinguistic predictors in the human data. As such, the

variation observed in the effect sizes is attributable to random sampling variation.

To complement the human data, Adelman et al. (2014) created multiple

implementations of the DRC (and the CDP+ (Perry et al., 2007, not discussed here)

by seeding 250,000 random model parameter sets, testing each model on the same

items (minus the word dire and mould) as seen by the 100 skilled readers. Of the

250,000 models, those that made less than 60 errors were retained (n = 2,674).

Estimated effects from each retained model’s parameter set became predictors for

each human participant’s reaction time data, effectively finding the best parameter set

for an individual.

Two problems occurred: an inhibitory N-size effect and under-estimation of

consistency effects. This led them to an implementation of an adapted model, the

DRC-FC. A critical change was the relocation of the frequency effect from the

individual word nodes in the orthographic lexicon to connections between orthography

and phonology. This made the most improvement on simulations for individual

differences. More models were retained for the DRC-FC than in the DRC (n = 3,548).

More importantly, the N-size effect was now in the correct direction, but the DRC-FC

estimates for consistency remained weak, as with the original implementation.

The relevance of Adelman et al. (2014) is both the variability of effect sizes

naturally occurring within a skilled reading population and also the mutability of

computational models. The number of implementations to be able to represent 100

humans’ reading behaviour illustrates the complexity of the reading system.

A much more modest endeavour that instantiates multiple models for

learning within words was achieved by Zevin and Seidenberg (2006). They tested a

PDP model’s ability to capture the variation in pronunciation of nonwords. Zevin and
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Seidenberg (2006) tracked the relative proportions of regular pronunciations for four

different types of nonwords across 10 runs of their model. The primary argument was

that nonwords of regular but inconsistent pronunciation (as defined by Glushko, 1979)

are pronounced in different ways by human participants, and computational models

need to be able to replicate this effect. Further, they hypothesised that variable

pronunciations arose from the distributions of orthographic knowledge that were

individual to a person, based upon their reading experience.

As a proxy measure for reading experience, frequency values for the words of

the training set were scrambled for each run of the model. This was to approximate

the hypothesis that the objective value of high frequency words may differ and be

lower in subjective frequency within an individual (Perfetti, 2007). Zevin and

Seidenberg (2006) tracked the inherent variability across multiple runs of the same

model.

While words that have regular analogous words by which to model

pronunciations were relatively stable across models, words with no regular analogous

words were highly variable in their accuracy across the 10 models. This suggests that

lower reading experience may be characterised by reading by analogy and produce

errors across episodes for the same word.

3.2 Accounts of Individual Differences with Human

Participants

There are several studies in humans that document individual difference accounts of

word reading behaviour (Adelman et al., 2014; Balota et al., 2004; Davies et al., 2017;

Yap et al., 2012). Each takes an explicit approach of sampling large numbers of

human participants with large numbers of items, in direct contrast to smaller, more

carefully controlled studies that use a factorial design. Each study uses large scale

multiple regression methods to provide an account of how multiple psycholinguistic

predictors behave when modeled simultaneously. Critically, each study operationalises
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one or more individual difference (ID) measures and explores how psycholinguistic

predictors may differ as a function of variation in the measure.

Balota et al. (2004) conducted a lexical decision and a word naming task with

younger and older participants. The analyses of two data sets enabled a task and age

comparison across several benchmark psycholinguistic effects, including a test of

interactions to detect if psycholinguistic effects were significantly different across the

age groups. Effects of frequency, length, N-size, consistency and semantic variables

were estimated from item level and participant level analyses. For each participant, a

multiple regression was conducted on their task outcomes. Standardised coefficients

for each variable were then collected together as dependent variables in analysis of

variance (ANOVA) analyses with age and task as independent variables.

Across tasks, there were reliable estimates for initial phonemes of words. This

is interesting because lexical decisions do not require overt pronunciation. This

supports the presence of phonological processes on apparently visual tasks where print

is involved. Frost (1998) has suggested the strong phonological theory that all reading

involves phonology; Share (1995) and Share (2004) places phonological recoding at the

centre of the self-teaching hypothesis, written predominantly for novice readers. The

observed effect in Balota et al. (2004) is tentative evidence that phonological

processing is involved in processing visual stimuli where no overt pronunciation is

required and extends beyond the earlier stages of reading development into mature,

skilled reading practices.

Across both age groups, semantic variables were larger for lexical decision

than word naming. In particular, a higher quantity of semantic connections (WordNet

predictor, Miller, 1995) for a word gave faster responses across both tasks and

participants. Additionally, an interaction between WordNet and age showed a larger

effect for older participants than younger participants in reaction time measures.

Younger adults showed greater effects of N-size and semantic variables than older

adults. Semantic variable effects needs to be interpreted with caution, however, since

there were statistically significant differences in vocabulary scores (older > younger)

and no statistical adjustments were made for this difference.
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For both age groups in word naming, the N-size effect was consistently

facilitatory, showing a larger effect at low frequency than high frequency words. N-size

behaved very differently in lexical decision. In young readers, N-size facilitated

responses for low frequency but inhibited responses for high frequency words. In older

readers, N-size was consistently inhibitory. This was further explained as being

related to the generally slower responses from the older sample as N-size was

consistently inhibitory for the slower younger reader also. Over the time course of

slow readers, therefore, the presence of neighbour words needs to be reconciled before

a response is made.

Older adults showed greater effects of objective frequency but smaller effects

of subjective frequency than younger adults. Younger adults showed larger subjective

frequency in lexical decision tasks. Effects of consistency were similar across age

groups (c.f Adelman et al., 2014).

Older adults showed a stronger correlation between word naming and lexical

decision outcome measures than younger participants. Balota et al. (2004) interpreted

this as younger readers being more affected by task specific demands. They found a

general slowing effect for older participants. Ratcliff et al. (2010) and Davies et al.

(2017) have confirmed this effect of slowing for older participants.

Yap et al. (2012) draws data for repeated sessions of participants (n = 1,289)

from the English Lexicon Project (ELP, Balota et al., 2007) and examines how

psycholinguistic effects’ estimates vary with individual differences in reading skill.

Participants were recruited from six universities. Across the 1,289 participants

(naming n = 470, lexical decision n = 819), 40,481 items were sampled with each

participant contributing either 2,500 naming responses or 3,400 lexical decision

responses, collected over two sessions. Additional to the item level responses, the ELP

contains measures of age, years of education and vocabulary knowledge for each

participant. Yap et al. (2012) operationalised reading skill as the vocabulary measure

in their statistical analyses.

With measures occurring across two sessions, Yap et al. (2012) could estimate

reliability within individuals and found stable reaction times across sessions for
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participants. Adelman et al. (2014) found that participants generally slowed across

sessions, however effects were reliable for participants. Reliability of measures across

sessions increases confidence in the estimations of effect and their sizes.

Yap et al. (2012) performed a principal components analysis to mitigate

collinearity between their 10 psycholinguistic predictors, retrieving principal

component scores for each individual participant. The best solution was for three

components: a word-structure component, a N-size component and a

frequency-semantics component. The word structure component included length in

letters, syllables and morphemes and measures of OLD20 and PLD20. Orthographical

and phonological N loaded separately onto the second component.

Overall, readers of higher vocabulary scores were faster and more accurate

than readers of lower vocabulary scores. Readers with higher vocabulary scores

showed smaller effects across all three principal components for word naming and

smaller effects for N-size in lexical decision, echoing Balota et al. (2004). There

appeared to be no effect of differences in vocabulary for either word structure or

frequency and semantic effects for lexical decision.

Davies et al. (2017) took a lifespan approach to word recognition and

included children in addition to younger and older adults in their participant sample

(n = 535, age range 8 – 83 years). They examined individual differences for age,

reading skill and phonological skill in interaction with word-frequency and

age-of-acquisition (AoA) for word naming and lexical decision tasks. Additional

psycholinguistic predictors were also included (bigram frequency, imageability, length,

N-size, regularity), ostensibly to control for their influence on the measurement of the

primary variables of interest.

Davies et al. (2017) differed from the studies above by using

linear-mixed-effects-models for data analyses. Rather than estimating single models

per participant and pooling coefficients for further analysis, or rather than averaging

across participant responses to create one mean response per item, the

mixed-effect-model allows for trial level data to be modelled while exploring fixed

effects of person- and item-level variables. The additional inclusion of random effects
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terms estimate the variation per participant and per item per predictor. As a result,

the fixed effects’ estimates for primary predictors are robust to sources of

within-participant and within-item variation and between sources of random sampling

error attributable to sampling across multiple people and multiple items (Baayen

et al., 2008).

Their primary finding was of curvilinear effects for age and skill across tasks.

Word naming and lexical decision reaction times showed an independent effect of age

where reaction times tended to decrease steeply from children to younger adults but

slow again as the participants became elderly. Effects for AoA, imageability,

concreteness and frequency also followed this pattern of diminished effects sizes from

childhood to adulthood with the rate of decrease slowing into late adulthood (the

interaction for frequency on lexical decision was marginally significant, however). In

word naming only, there was a significant regularity x age effect showing the same

curvilinear trend.

There were several significant interactions between reading skill and

psycholinguistic predictors. Frequency and imageability showed significant

interactions in word naming only, decreasing in size for those with higher reading skill.

In both tasks, orthographic neighbourhood decreased with increased reading skill.

Bigram frequency and regularity effects increased in word naming responses for

readers of higher skill. Neither the interaction of reading skill x AoA nor reading skill

x length were significant in either word naming or lexical decision.

Taken together, the four studies with human participants described above

(Adelman et al., 2014; Balota et al., 2004; Davies et al., 2017; Yap et al., 2012)

provide lines of converging evidence for the effects of individual differences on

psycholinguistic variables. First, even within a skilled reading sample, psycholinguistic

predictor effects can significantly vary in size between individual participants

(Adelman et al., 2014; Davies et al., 2017; Yap et al., 2012). Second, across repeated

sessions, reaction time (Yap et al., 2012) and patterning of effects (Adelman et al.,

2014; Yap et al., 2012) are stable within participants. Third, older participants are

generally slower than younger participants (Balota et al., 2004; Davies et al., 2017)
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but that the assimilation of information for older adults is no different from that of

younger adults (Davies et al., 2017; Yap et al., 2012). Fourth, participants who show

strong skills in the individual differences measure, tend to be faster and more accurate

than participants who are weaker on the measure (Adelman et al., 2014; Davies et al.,

2017; Yap et al., 2012). Fifth, there is a tendency for the influence of psycholinguistic

effects to diminish for human participants who show stronger skills in the individual

difference being studied (Davies et al., 2017; Yap et al., 2012). Furthermore, by taking

a lifespan approach, Davies et al. (2017) described a tendency for effects to change

once more in late adulthood. Where, for the majority of mature, skilled readers,

psycholinguistic effects may continue to decrease, the more elderly participants of

Davies et al. (2017) reversed this trend, beginning to show an increase in effect sizes.

The fourth and fifth observations listed above suggest two things. The first is

that scant assistance for word recognition from psycholinguistic predictors for skilled

readers, in the presence of strong word frequency effects, can be inferred as support

for the lexical quality hypothesis. It would suggest that for words of high lexical

quality, orthographic information alone is enough for efficient word recognition. The

second is that when exploring individual differences, modelling multiple interactions

between person-level and item-level predictors yields both insights as to the structure

of the reading system but also insights as to the stability of predictors in relation to

each other.

The studies also provide divergent lines of evidence. For instance, the effects

of regularity or consistency. Yap et al. (2012) omits a measure of consistency. Both

Adelman et al. (2014) and Balota et al. (2004) found no differences in the size of

consistency effects in their respective samples. Davies et al. (2017) confirmed this for

effects in lexical decision, however age and skill related differences were detected for

consistency effects in word naming. The inclusion of children in the Davies et al.

(2017) sample may have amplified any such effect, if we assume that children (as

young as 8 years old) have less orthographic knowledge than a mature, skilled reader.

Additionally, Davies et al. (2017) and Adelman et al. (2014) operationalise

their regularity and consistency measures differently from each other while Balota
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et al. (2004) trimmed their data set of all words that did not achieve 67% accuracy.

Considering that when present, consistency effects are small, these differences in

sample construction, operationalisation of the measures and data cleaning may

explain the difference in findings.

N-size effects are also inconsistent across the studies. In word naming, Balota

et al. (2004) reported only that N-size was facilitatory for both groups of young and

old participants. Adelman et al. (2014) found an interaction with age such that older

participants benefited less from larger neighbourhood words than younger

participants. In by-items analyses, Davies et al. (2017) found that while the

relationship was facilitatory, the N-size effect for younger adults was non-significant

and the older adults’ p value was borderline (p = .049).

In lexical decision, Balota et al. (2004) found a facilitatory effect for young

participants and an inhibitory effect for older participants. Both interaction terms for

age and N-size in Davies et al. (2017) were non-significant. Yap et al. (2012) and

Davies et al. (2017) report that participants with greater skill (operationalised by

vocabulary and reading skill, respectively) demonstrated smaller N-size effects in both

lexical decision and word naming.

Reasons for variable effects for N-size are not clear. The relational properties

of N-size may be at play. As described earlier, the N-size metric may suggest a

reading by analogy strategy, the success of which may be reliant upon a reasonably

sized vocabulary that contains enough words of similar patterns to assist word

recognition. Only Yap et al. (2012) reports measures of vocabulary, however, so we

cannot be sure. Alternatively, Yap et al. (2012) reported that of the three

components, the component for N-size was less reliable than either the word structure

or frequency / semantics component.

Zevin and Balota (2000) reported how particular primes were able to direct

attention within a task and produce effects on reaction times. It is possible that with

the large quantity of trials, weaker participants were primed by similar stimuli such

that responses quickened and the N-size effect was not detected. A weaker reliability

in the N-size component, and waxing and waning effects could be explained somewhat
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by the different sets of items across studies and trial order within those sets.

These four studies of individual differences have tested established effects

from smaller experiments in a less conservative setting. Findings have begun to

further shape our understanding of the reading system and how variability in

person-level skills may modulate the presence, size or direction of psycholinguistic

predictor effects on word recognition.

Each of the studies of human participants describe reading behaviour for

typical readers, while the computational modelling papers, in the main, focus upon

accounts of disordered reading. This begs the question as to whether the accounts

generalise to samples that are atypical but not disordered. It is not immediately clear

that any of the results should be relevant to an adult-learner population. Like typical

skilled adults, adult-learners are mature, but unlike their peers, they are relatively

unskilled in their reading behaviour but not disordered in a clinical sense.

Consequently, study findings for skilled adult readers may not generalise to

adult-learners well and model predictions based on disordered reading may not be

relevant either.

Chapter 2 detailed numerous studies that indicated that adult-learners do

seem to resemble typically-reading younger participants in their person-level measures

of reading-related skills. Adult-learners may use information from text in different

ways, however. For instance, as a result of their age and by extension, greater

language experience, adult-learners may rely, to a greater extent, on semantic

information for their word recognition.

To complicate matters further, even in the context of large sample sizes and

item sets, psycholinguistic effects’ estimates are highly variable. Although using

multiple regression methods, Balota et al. (2004) emphasises the complementarity and

importance of measuring the presence and size of effects in factorial experiments.

Seidenberg and Plaut (2006) reinforce this, stating that any computational models

need to be tested against effects that have shown successful replication across many

experiments. Nevertheless, effect sizes also differ across factorial studies.

The observation of variability of effect sizes both within participant samples
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and across separate studies suggests that we conduct a meta-analysis. Collating and

aggregating effects from multiple studies will estimate an effect size within a wider

range of plausible effect sizes. Gathering data from studies involving child and adult

participants will provide a basis for answering questions around differences between

samples of participants, such as whether children show larger effects, on average, than

adult samples and whether effects from one task really are larger than effects from

another.

On completion, we would have a collection of effect sizes, estimated with their

confidence intervals, plus an estimate for how much of the variability within the effect

is due to differences between studies and not only random sampling variation

(Adelman et al., 2014). Since we know very little about how adult-learners use

psycholinguistic variables, such a data set would be a strong reference point against

which to compare their reading behaviour in a behavioural study.

We conducted such a meta-analysis for the psycholinguistic predictors of

age-of-acquisition, arousal, consistency, imageability, length, word-frequency, N-size

and valence. We searched for study-level effects for child and adult samples on word

naming and lexical decision reaction times and accuracy measures. The meta-analysis

study findings are an openly accessible resource for use by the research community.

We detail our methods and findings, with an example predictor report for

word-frequency and summaries of the findings for the remaining seven

psycholinguistic predictors, in the next chapter.
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4 Meta-Analysis of Psycholinguistic Ef-

fects

We present a meta-analysis of effects for differences between groups in

psycholinguistic effects across word naming and lexical decision tasks for reaction time

and accuracy outcome measures. We conducted a systematic search of relevant

articles in EBSCO, ProQuest Dissertations and Theses, and SCOPUS databases up

until 2020. Additional articles were located through a search of citations in eligible

articles. To be included, studies had to compare at least two groups, measuring

performance in either single word naming or lexical decision tasks with a

manipulation of a psycholinguistic variable(s) for reaction time and / or accuracy

outcome measures. Studies with participants with clinical conditions or who were

bilingual, or studies that were not available in English, were not eligible for inclusion.

To anticipate the results, 122 articles met our inclusion criteria, representing

155 studies (n = 12705) with 472 study-level effects across five discrete groups: adult

or child samples contrasted by either age or skill. We recovered study-level effects for

age-of-acquisition, arousal, consistency, word-frequency, imageability, length,

neighbourhood-size and valence. Forty studies reported on both word naming and

lexical decision outcomes, 73 studies reported on word recognition outcomes only and

32 studies reported only on lexical decision.

Each study was judged for risk-of-bias. We fitted multi-level random-effects

or fixed-effects statistical models to return 32 global effects and 131 subgroup effects.

We performed sensitivity analyses and where sufficient data and variability were

present, moderator analyses were completed. Each estimate’s data was evaluated and

given a confidence rating.

Subgroup estimates for which we have moderate confidence are sparse (n =

24). They occur mainly for frequency and length estimates. For the majority of the
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other predictors, there is insufficient evidence to suggest differences between groups

and where data are present, estimation of differences between groups is imprecise and

unreliable, lowering confidence in the subgroup effect.

Going forward, a consortial approach using matrix sampling designs for single

word recognition research is suggested. Methods that increase efficiency of data

collection coupled with appropriate methods of analysis will power the estimation of

effects appropriately. Consequently, the precision of estimates and subsequent

confidence will increase. The goal is to have robust estimates in place for each valid

psycholinguistic predictor, such that each predictor’s influence can be considered in

the context of its peers for substantive contributions to theories of word recognition

processes.

This work was supported by the ESRC. The project protocol, all data and

code plus generated reports for eight predictors are shared via

https://bit.ly/Meta-analysis-repository.

4.1 Introduction

The previous chapter described studies that demonstrate variation in psycholinguistic

effects for word recognition within samples of skilled readers (Adelman et al., 2014;

Davies et al., 2017; Yap et al., 2012) and samples of skilled readers that differ in age

(adults: Balota et al., 2004; children and adults: Davies et al., 2017).

The variation in independent effect sizes within samples begs the question of

the reliability of the measurement of differences for psycholinguistic effects between

samples. A range of effect sizes is suggested when interaction effects are found in some

studies but not others. Estimating the range of plausible effect sizes is also desirable if

we want to make statistical inferences about practical differences in size of effects

between tasks. We collected evidence from smaller studies to estimate summary effect

sizes that can be used as a point of reference for a further study involving an

adult-learner population.

Previous review articles exist that make important contributions to reading

https://bit.ly/Meta-analysis-repository
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research, however very few of them consider psycholinguistic variables as a primary

focus. Brysbaert (2019) performed a meta-analysis for skilled, adult reading rates of

passages. Lima et al. (1991) meta-analysed lexical decision reaction times from

younger and older participants to account for general slowing in older participants’

decisions. Swanson and Hsieh (2009) and Tighe and Schatschneider (2016) collate

study-level effects to meta-analyse differences in reading-related skills between

typically and atypically-reading adults. A meta-analysis by Laver and Burke (1993)

considers semantic priming as a function of age. Reis et al. (2020) considers a measure

of consistency as a measure of orthographic depth in their meta-analysis for

differences between adult readers with dyslexia in reading-related skills across

languages of varying orthographic depth.

In child samples, there are narrative reviews that focus on phonological

awareness (Castles and Coltheart, 2004) and nonword reading (Rack et al., 1992).

Meta-analyses are also available for phonological skills (Melby-Lervag et al., 2012;

Swanson et al., 2003), rapid naming (Araujo et al., 2015), spelling instruction

(Graham and Santangelo, 2014), oral language deficits in children at familial risk of

dyslexia (Snowling and Melby-Lervag, 2016), print exposure (Mol and Bus, 2011) and

nonword reading (van Ijzendoorn and Bus, 1994).

Within the field of psycholinguistics, there are narrative reviews of AoA

(Juhasz, 2005), word-frequency (Allen et al., 1991; Ellis, 2002), neighbourhood size

(Andrews, 1997), and for processing of emotion words (Rohr and Wentura, 2021), all

describing skilled, adult readers. Metsala et al. (1998) meta-analysed study-level

effects for regularity effects in readers with reading disabilities. Just as in the adult

studies, very few of these reviews consider the impact of skills in interaction with

psycholinguistic variables. Given our interest in the variation of effect sizes as a

function of individual differences and their impact on word recognition, a

meta-analysis that explores differences in effects for skilled and less-skilled, and

younger and older readers, across a range of psycholinguistic predictors, is warranted.

Since so few studies have looked at adult-learners in relation to

psycholinguistic variable effects (but see McKoon and Ratcliff, 2016), yet we have
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studies that suggest greater difference from adult readers and similarity to younger

readers, gathering studies that explore differences between typical and atypical

readers in child and adult samples is a good place to start. Consequently, the present

meta-analysis included studies that explored adult and child samples of typical and

atypical skill on word recognition performance.

Our review was motivated by two sets of assumptions and a methodological

requirement. Assumption one is that evidence on the modulation of psycholinguistic

effects by group differences enriches theoretical accounts of the development of word

recognition skill, and the ways in which reading can vary across individual differences

in the population.

Assumption two is that variation in effect sizes does to some extent depend

on design. Word recognition enjoys a long history. While the experimental tasks are

largely unchanged, new procedures, equipment and materials are likely to have refined

the measurement which may be observed in smaller or more precise effect sizes in

more recent studies compared to older studies (Meehl, 1967), but we are unsure.

Aggregating multiple study-level effects and generating confidence intervals

for groups will provide reference points for those groups. Understanding average effect

sizes and the credible range over which they can vary may inform future research

design. To this end, the data, code, figures and meta-analysis reports for eight

psycholinguistic variables are openly accessible at an Open Science Framework (OSF)

repository for interested researchers to view and use.

Finally, our methodological requirement: the number of psycholinguistic

variables available to inform accounts of word recognition research is growing. Each

claim a portion of the variance within outcome measures. Intuitively, this demands

that they be modeled simultaneously. This suggests the use of larger and more

complex statistical models. Such models often experience convergence problems.

Bayesian inference models can be more robust to convergence problems. An integral

part of Bayesian inference modelling is the prior knowledge that is entered into the

model with the observed data. The summary effects from this meta-analysis will be

used as strongly informative priors in Bayesian inference model analyses in the main

https://bit.ly/Meta-analysis-repository
https://bit.ly/Meta-analysis-repository
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study (see next chapter).

Below, we explain our study rationale for focusing upon a contrast group

design, many variables rather than a single variable, and our chosen tasks. We also

detail our assumptions and principles for the evaluation of confidence in the study

findings.

4.1.1 Contrasting Groups

Individual differences research often contrasts two or more groups along a single

dimension. A common contrast is age. For instance, comparing younger and older

skilled adults to explore how frequency effects vary, addresses the question of whether

and how changes brought about by the typical ageing process affect cognitive reading

processes (Davies et al., 2017). A suite of papers by Allen and colleagues (Allen et al.,

1991, 2004, 2002, 1993) claimed that, for the lexical decision task, there was no

difference between the younger and older adults for a word-frequency effect, whereas

Balota and Ferraro (1996) and Balota et al. (2004) found larger effects in their older

participants compared to their younger participants. In contrast, Davies et al. (2017)

found a smaller frequency effect in older compared to younger adults. Later still

Cohen-Shikora and Balota (2016) found no differences for a word-frequency effect

between younger and older participants, concluding that, once skilled reading

development is attained, the word-frequency effect remains fairly stable across the

lifespan.

The second type of contrast is reading skill. A well-practised approach is to

recruit a group of typical readers and a group of dyslexic readers of the same age and

test them on the same items to identify variation in psycholinguistic effects. Findings

from these age-matched samples may inform a model of typical reading development

or describe a word recognition profile of skills for the atypical reader. For instance,

Jorm (1981) found a difference between two groups when asked to name regular and

exception words. The impaired readers experienced a greater difficulty with accurate

exception word reading compared to regular word reading. Jorm (1981) argued that
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this difference indicated greater reliance on grapheme-phoneme correspondence rules

for exception word reading. In contrast, Treiman and Hirsh-Pasek (1985) and

Gottardo et al. (1999) found no differences between their typical and atypical readers

in the impact of consistency on word naming accuracy outcomes. The variable

findings contributed to debate upon how words were represented in the cognitive

reading system for verbal and computational models of word recognition.

Studies that compare groups along the skill dimension often include a further

group that is matched to the atypical group’s reading skill level, referred to as a

reading-matched sample. Generally, this means the third group is younger in age than

the atypical group, and has typical reading skills (Backman et al., 1984b). Any lack of

difference in skill between the atypical and reading-matched group allows assertions to

be made about reading delays or deficits with regard to the atypical readers,

dependent upon the pattern of findings. As an example, Bruck (1988) and Jimenez

Gonzalez and Valle (2000) both implemented a reading-match design and found no

difference between older atypical readers and younger typical readers for frequency

effects on word naming reaction time. Both drew the conclusion that the older readers

are delayed in their skill development, and show a younger, immature reading style,

thus giving confidence to a theory that skill levels will be attained over a longer

period of time for the atypically-reading individual.

From only a couple of examples, it is clear that the evidence for a difference

in the effect of psycholinguistic variables between groups is far from consistent. Each

of the examples above claimed an effect’s presence or absence depending on the

significance or non-significance of a corresponding hypothesis test. It is well

established that a null finding does not equate to no effect, however. Effects may be

present but too small to detect in studies that are often under-powered for a

significance test (Gelman and Stern, 2006).

Meta-analysis offers the opportunity to reappraise a study finding by

estimating an effect size with confidence intervals rather than performing a threshold

test of significance (Cumming and Finch, 2001). The presence and reliability of an

effect for a predictor may be better supported when aggregated from multiple
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study-level effects (Cooper et al., 2009; Shadish and Haddock, 2009). Further, the

meta-analytic approach allows an estimation of the amount of variability between

studies (Borenstein et al., 2017; Ellis, 2010). With a sufficient amount of variability

and number of included studies, moderator analyses could also be performed that may

explain heterogeneity across the included study-level effects, informing accounts of

variation in effect sizes across studies.

4.1.2 Psycholinguistic Variables

There is an array of distinct psycholinguistic variables vying as candidate predictors

of single word recognition reaction time (RT) and accuracy. Balota et al. (2006) list

nine separate psycholinguistic variables (consistency, length, frequency, familiarity,

age of acquisition (AoA), orthographic neighbourhood, phonological neighbourhood,

concreteness / imageability and meaningfulness). Foreshadowing our results, we found

sufficient study-level effects from multiple studies to allow the estimation of group

differences in eight distinct psycholinguistic effects through meta-analysis (AoA,

arousal, consistency, frequency, imageability, length, neighbourhood size (N-size),

valence).

Research into the effects of psycholinguistic variables such as word-frequency,

length and consistency has a long history with many published studies. In contrast,

for more recently developed variables (e.g. arousal, valence), studies are sparse.

However, discussing the range of variables together in the same space will allow for an

evaluation of their relative influence on word recognition. Collation of findings for

multiple variables will also enable an appraisal of the current quality of the data and

understand the rate of missing data in the field.

4.1.3 Word Recognition Tasks

We have explored word naming and lexical decision tasks for two reasons. Firstly, we

believed that these tasks, of all word recognition tasks, were the most likely to yield a
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numerous sample. They are some of the earliest tasks performed in the exploration of

cognitive models for word recognition (Cattell, 1886) and they are relatively cheap

and easy to use compared to other methods such as eye-tracking. Secondly, the tasks

inform each other in terms of shared and distinct processes (Andrews, 2012; Balota

et al., 2004) which can inform theory and model building for word recognition

processes.

Both tasks share the process of taking orthographical information from a

printed item that stimulates the activation of representations. Dependent upon the

person, item and task however, activation may be of different levels or different kinds.

For instance, word naming assumes the complete identification of a word for

successful naming. For lexical decision making, it may not be a requirement for a

correct response that a complete identification of the specific item is made (Balota

and Chumbley, 1984; Grainger and Jacobs, 1996; Seidenberg and McClelland, 1989),

only that the item is more likely to be a word than not. This decision could be made

with a greater input from semantic information for words as opposed to nonwords.

Larger effects for semantic variables in lexical decision findings compared to word

naming findings is a well-established pattern (Balota et al., 2004).

By estimating effects for a range of psycholinguistic predictors for both tasks,

we can build a picture of the extent of any substantive differences between the kinds

or levels of information that each task uses across a body of evidence rather than at a

single study-level. This may strengthen conviction in certain processes and discern

between verbal theories and computational models of word recognition.

4.1.4 Risk-of-bias and Confidence

A critical component of the meta-analytic process is evaluating the quality of the

evidence and information for both the study-level effects and the summary effects

produced by the meta-analysis. Study-level effects undergo a risk-of-bias (RoB)

evaluation; summary effects are reported with a confidence rating (Higgins et al.,

2011; Schunemann et al., 2011).
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Evaluating the presence of systematic sources of bias for a study-level effect

through a RoB process may explain why a study is detected as an outlier in a

sensitivity analysis. RoB judgements can be a predictor in moderator analyses to

explain high heterogeneity values in any summary effect. Awarding a confidence

rating to a summary effect may help its interpretation and in turn, help an end-user

interpret it for use in future studies.

While detection of RoB within a study-level effect is important, we need to be

aware of downstream effects on a summary effect. Systematic sources of bias in

study-level effects are propagated within aggregated effects, leading to high levels of

heterogeneity (Higgins et al., 2011). For instance, each study involves instructions to

participants. A set of instructions requiring children to refrain from speaking until

they are sure of the answer may systematically induce longer reaction times for poorer

readers than good readers in one study than a study with no such instructions,

producing different effect sizes.

Propagated error within a summary effect may also arise from lack of

statistical power. Cohen (1988) and Sedlmeier and Gigerenzer (1989) suggest that

power in some areas of psychological research is low, where power is defined as the

probability of detecting an effect when an effect is present. Recently, Vasishth and

Nicenboim (2016) simulated 1000 data sets of a two group condition (2 x 20

participants) for reaction times to 16 items. The known, group difference in the

original study was 4 ms. The estimated power to detect the effect was 9% with 11% of

the simulations showing an opposite direction of effect to the true effect. This

illustrates the unreliability that can be present in small sample sizes.

Brysbaert and Stevens (2018) recommend that to estimate an effect size of d

= 0.4, a sample needs at least 40 people x 40 items for a sufficiently powered study to

yield a robust main effect. Power to detect effects arising from interactions mandate

even larger sample sizes. Estimating an interaction that is half the size of main effect

needs 16 times the sample size (Gelman, 2018).

Additional to the possibility of reversals of directions of effect, small samples

may inflate the size of study-level effects (Button et al., 2013). The Open Science
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Collaboration (2015) found that 100 replicated effects were approximately half the

magnitude of original study effects. Vasishth and Nicenboim (2016), based upon two

groups of 20 participants and responses to 16 items, estimated a mean exaggeration

rate of 5.08, i.e., the mean effect size across models was inflated by approximately five

times the size of the known true effect.

Inflation of study-level effect sizes can also arise due to the choice of data

analysis method. Brysbaert and Stevens (2018) mirrored an analysis-of-variance

(ANOVA) analysis workflow of a pre-existing data set with a linear-mixed-effect

model and recovered an effect size almost one tenth of the reported estimate of the

original study effect.

Bias in study-level effects is inevitably carried forward into the aggregated

summary effect. We can evaluate the quality of evidence for a summary effect and

indicate how close we believe the size of the summary effect is to the true effect

through the application of a confidence rating. The Grading of Recommendations,

Assessment, Development and Evaluations process (GRADE, Schunemann et al.,

2011) recommends evaluation of evidence across five domains:

• Imprecision focuses upon the width of the confidence interval as a measure of

uncertainty around the size of the effect.

• Indirectness refers to the relevance of the samples and outcomes within the

meta-analysis to the population to which the study wishes to generalise.

• Inconsistency considers the level of residual unexplained heterogeneity of the

finding after sensitivity and moderator analyses are completed.

• Publication bias takes into account whether missing studies are likely, as

indicated by the outcomes of the Egger’s Test or the Rank Correlation Test.

• RoB at the summary effect level. A composite indicator of RoB taken from the

study-level effects, describes whether limitations in study design or execution

feed forward as a source of bias for the summary effect.

Our research aim is to estimate effect sizes that describe the difference

between groups in the effect sizes for various psycholinguistic variables. Where a
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difference-of-differences effect is reliable, we can assume that one group has a larger

effect size than another. Where the finding is unreliable, we can assume that the effect

of the psycholinguistic variable is equivalent across groups. We detail our methods for

searching, collating, estimating and evaluating our findings next. All code, data and

reports for the eight variables are available for use at the OSF repository.

4.2 Method

The meta-analysis is guided by PRISMA guidelines (Preferred Reporting Items for

Systematic reviews and Meta-Analyses, Moher et al., 2009; Page et al., 2021). The

PRISMA-P document (Moher et al., 2015), including agreed revisions and updates is

available at OSF repository. We searched EbscoHost, Scopus and ProQuest

Dissertations and Theses on three separate occasions over the space of four years

(November 2016 - March 2020). We used a systematic search string constructed with

the help of an information specialist. An example of one of the most recent search

strings is included in Appendix A.

4.2.1 Eligibility Criteria

4.2.1.1 Article Eligibility Criteria

Articles written in English are included from peer reviewed journals and unpublished

theses and dissertations. Only studies using languages of alphabetic scripts were

included. Studies within the field of L2 learning, or where one of the groups was of

participants with a clinical condition (e.g. dementia or aphasia) were excluded. Each

of these conditions would add a layer of complexity that was out of scope of the

current research question.

https://bit.ly/Meta-analysis-repository
https://bit.ly/Meta-analysis-repository
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4.2.1.2 Study Eligibility Criteria

Individual studies were considered eligible if the design involved a) two or more

contrasting participants groups with the contrast being along dimensions of age or

reading skill; b) where participants were asked to recognise words through a visual

word naming and / or lexical decision task; c) the items were selected to vary across

one or more psycholinguistic variables; d) reaction time and / or accuracy was the

outcome measure.

In eligible articles that contained multiple studies, the first eligible study was

always included. Subsequent studies were also eligible for inclusion if they involved a

change of participants, items or both. We adjusted for the potential of greater

correlation between study-level effects reported in the same publication by employing

a nested-model analysis (see analytical model section below).

4.2.2 Study Selection

A flow diagram describes the study selection process in Figure 4.1. The author

conducted the screening of the literature search records, coding and data extraction

for all included studies at each time point. A second researcher reviewed a random

sample of 20% of the included studies for data extraction and RoB reliability checks.

Disagreements arising from this process were resolved by discussion. All code and

data are available for inspection or use at the OSF repository.

4.2.3 Data Extraction

We coded contrasts for studies in the following way. An ‘experience’ contrast is where

two groups of participants differ in age with typical reading development for that age,

i.e. younger and older participant scores are compared. An ‘ability’ contrast is where

two groups of participants are of the same age but one has atypical reading skill for

that age. An ‘age’ contrast compares two groups of participants that have the same

level of reading skill but differ in age (usually the older group is demonstrating

https://bit.ly/Meta-analysis-repository
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Figure 4.1

Flow Diagram for Systematic Search Returns
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atypical reading skills). We chose to use these labels to keep the focus on the level of

contrast (see Figure 4.2).

Occasionally, some studies used multiple groups for one contrast, e.g. five

separate age groups of typical readers. In this case a subset of the sample was

collected, matched as closely as possible to how the contrast was reflected across the

rest of the extracted data.

When a paper using an age and ability contrast (i.e. three groups) reported a

single omnibus test statistic for an effect, we merged two of the groups, respecting the

key group contrast. For instance, if an omnibus test statistic was presented for an

ability contrast, we kept the older, typical readers as one group and merged the

younger typical readers with the older, atypical readers because they were matched on

reading skill level, both being lower in skill than the older, typical reading group.

Figure 4.2

Flowchart Showing How the Participants were Subdivided to Capture the Range of

Contrasts Available in Adult and Child Participant Studies.

Similarly, where more than two levels of a psycholinguistic variable were

employed, for example, items of four different lengths, and the article reported means

and standard deviations for each level, we extracted the levels that most closely

reflected the levels used by other studies. For instance, in a study that operationalised

length of words as 3-, 4-, 5-, 6-, 7-, and 8-letters, we extracted data for words of 3-

and 6-letter lengths as these psycholinguistic variable levels closely resemble a

common operationalisation of length amongst studies.

Where studies from unpublished theses were eligible and the same data was
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included in a published article at a later date, the published article was taken as the

source of data. If other studies were available in the thesis / dissertation that were

eligible for inclusion, these data were also extracted and the thesis citation entered as

the data source.

We approached six authors of eligible studies asking that they share the study

data and code when the study findings were unclear. Four authors replied with data

but not code. We followed the methods in the original study to estimate means and

standard deviations from the data as a proxy for the published study-level effect. The

studies for which we obtained data or data and code are marked in the list of studies

given in Appendix B.

Information was extracted for articles (authors, year, publication and country

of first author), study design (design1, setting, sample type, number of participants

and number of items), participant sample construction (type of contrast, measure

used for contrast, test scores / ages, number of items), task level data (word naming

or lexical decision, outcome measure, psycholinguistic variables and effects tested) and

reported statistics (means and standard deviations for reaction time, proportions or

totals correct / incorrect for accuracy or summary values for statistical tests,

directions of effect and status of results).

4.2.3.1 Missing Data

Many studies had missing data for descriptive statistics of the study experimental

conditions. Therefore, we collected a range of statistics (e.g., F-ratio, t-value,

regression coefficients) by which to estimate the study-level effects.

Sometimes, a non-significant result was verbally reported in the text without

supporting statistical information. At other times, entire conditions reported in a

method section were missing from a results section. Chan et al. (2004, as cited in

Pigott, 2012) found that results were twice as likely to be missing if they were

non-significant results.
1The research question implicitly assumes a quasi-experimental study design because of the nature

of the contrasts at the person-level.
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For each missing datum, a p value of .1 was imputed into the datasheet. We

created an additional variable indicating the type of missingness. Verbal reports of

non-significance were coded as ‘I’ for ‘inferred’; absent verbal reports for conditions

were coded as ‘M’ for missing.

4.2.3.2 RoB for Study-Level Effects

RoB has six domains: selection, performance, detection, reporting, attrition and other

sources of bias (Higgins et al., 2011). We reviewed articles for reports of practices

covering the six domains and ascribed a level of bias to each domain, either ‘high’,

‘low’ or ‘unclear’. Finally, we gave each study-level effect an overall level of bias.

A judgement of high RoB in any one of the six domains resulted in an award

of overall ‘high’ RoB. Where all domains are adjudicated as low, a ‘low’ value was

ascribed. Where any domain is listed as ‘unclear’ but the majority of domains are

otherwise ‘low’, RoB was listed as ‘unclear’. For brevity, overall RoB judgements for

study-level effects are presented in forest plots (Figures 4.7, 4.9, 4.11, 4.13). In the

eight full predictor reports, RoB plots display judgements for each domain for each

included study.

The author evaluated all included studies; a second researcher sampled 20%

of the included studies. No studies were excluded from the review on the basis of RoB

decisions however, RoB judgements are taken into account if the study is indicated as

influential in sensitivity analyses and are also used as a predictor in moderator

analyses when performed.

4.2.3.3 Measures of Subgroup Estimates

We extracted data reflecting main effects as well as interaction effects but since our

primary focus is on the estimation of the differences in psycholinguistic effects

between groups, summary effects for main effects are not reported here. They are

included in each full predictor report at the project OSF repository.

For clarity, the summary effects reported represent the differences of the

https://bit.ly/Meta-analysis-repository
https://bit.ly/Meta-analysis-repository
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differences between two groups and levels of a psycholinguistic variable. For example,

the difference in the size of a word-frequency effect for younger vs older children in

lexical decision accuracy (see Figure 4.3).

Figure 4.3

Flowchart Showing How Raw, Study-Level, Interaction Effects Were Calculated from

Condition Means.

Included studies used a highly disparate range of items, measures and

statistical tests. There was also evidence of unbalanced samples sizes. Therefore,

rather than use raw study-level effects, we used standardised study-level effect sizes

for estimation purposes (Baguley, 2012).

If mean and standard deviation values at the condition level were available,

we calculated a standardised mean difference value for each study-level effect. Our

effect size unit is Hedges’ g with 95% confidence intervals. Hedges’ g is an alternative

to Cohen’s d that adjusts for unbalanced sample sizes between groups2.
2Hedges’ g accommodates differences between the two groups’ standard deviation and differences

in sample size where Cohen’s d assumes equivalent standard deviations and equal sample sizes. In
Hedges’ g, each group’s standard deviation value is weighted by its sample size before pooling the
standard deviation to calculate the effect (Ellis, 2010; Lakens, 2014).
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We report absolute values of Hedges’ g as a consequence of some study-level

effects supplying only omnibus statistics for effect size estimation. Although we coded

a variable to note the direction of the effect as verbally reported in study results,

sometimes this was missing information. Reporting absolute differences is a

conservative adjustment to prevent errors in interpretation, however it limits our

capacity to talk substantively about directions of effect for a summary effect.

We interpret values of Hedges’ g using Cohen’s (1998) commonly used

thresholds, i.e., Hedges’ g of 0.2 - 0.49 as small, 0.5 - 0.79 as medium, 0.8 - 1.30 as

large and higher values as very large effect size categories. We also use “very small”

for estimates below 0.2.

We report 95% confidence intervals for each study-level and summary effect.

Confidence intervals reflect a range of possible effect sizes that are compatible with

the data with a long-run interpretation that the interval will contain the true value of

the effect 95% of the time, given a sequence of valid models (Cumming and Finch,

2001). This application of confidence intervals is also consistent with the use of

random effects models that assumes that estimates vary along a continuum.

Consequently, we interpret effect sizes as ‘reliable’ when confidence intervals do not

cross zero, as the limits of the range exclude the possibility of no effect or a reversal of

direction of effect (Gelman and Carlin, 2014). When confidence intervals do cross

zero, we interpret the effect size as ‘unreliable’ because the data suggest that no effect

or a reversal of direction of effect is also plausible.

A further consideration when using confidence intervals is their relative

width. In plotting study-level effects and their confidence intervals, and summary

effects with their confidence intervals, we will be able to provide a visual

representation of the precision of measurement of the effect for differences of a

psycholinguistic variable. Where the width of a confidence interval crosses the

threshold of two effect sizes, we interpret the measurement of the effect as ‘imprecise’.
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4.2.4 Data Synthesis

4.2.4.1 Person-level and Item-level Contrasts

We use the labels of subgroup and global effects to denote two levels of estimation in

results. There are potentially five subgroup summary effects for each psycholinguistic

variable and one global summary effect across each task outcome. The global effect is

an average of all the study-level effects for that predictor, task and outcome.

As a reminder, we define child samples as participants who are younger than

18 years of age; adult samples are defined as 18 years of age and above. We define

ability contrasts as children or adults of the same age who differ in levels of reading

skill. We define experience contrasts in adult and child samples that are groups of

younger vs older participants who show age-appropriate reading skills. We define age

contrasts as children of different ages who have the same levels of reading skill.

4.2.4.2 Analytical Models

We know we are missing study-level effects. Consequently, the data set within this

paper represents a sub-sample of the potential population. We assume that, given the

different contrasts between studies, an effect may vary in size along a continuum

rather than be one size across the alternative sample constructs (Baguley, 2012;

Pigott, 2012; Shadish and Haddock, 2009). In some cases, we have included multiple

effects per study and / or multiple studies per research paper. We assume smaller

variation between effects reported within the same study or article than variation

between effects from different studies in different research papers (Nakagawa and

Santos, 2012).

These properties motivate the use of a random effects (RE) model rather

than a fixed effects (FE) model for the following reasons: They represent a level of

conservatism needed to represent the missing studies as they provide wider confidence

intervals than FE models (Baguley, 2012). The RE model assumes the sample is a

subset of the full population and accounts for a continuum of effect sizes. Choosing a
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RE model also allows a grouping term to account for inter-correlation between

study-level effects generated from the same article if and when they occur in the same

analysis.

Consequently, where two or more studies contributed study-level effects for a

psycholinguistic variable, we estimated an effect size using a random effects (RE)

model. At the subgroup level, if only one study-level effect was available, we present a

fixed effects (FE) estimate. Essentially, the single study-level effect acts as a

placeholder until further study-level effects are accrued.

All data analysis is conducted in R (R Core Team, 2020). Study-level effects

were transformed to standardised effect sizes using the compute.es package (Re,

2013)3. Meta-analysis RE models, sensitivity and moderator analyses and forest plots

use the metafor package (Viechtbauer, 2010). The multi-level-random-effects model

function in the metafor package (Viechtbauer, 2010) takes account of sampling

variance, within-study heterogeneity, between study heterogeneity and covariance

between the effects. We use restricted maximum likelihood (REML) methods to

estimate predictions. Two further packages support P-Curve analyses: meta (Harrer

et al., 2019a) and dmetar (Harrer et al., 2019b).

4.2.4.3 Measures of Consistency

A measure of between-study variability is of critical importance to understand how

dissimilar study-level effects are from each other. Low between-study variability

would mean that we could interpret a summary effect as being stable across varying

research designs, with the inverse being true . We assess the presence of variability

between study-level effects using two tests, Cochrane’s Q and 𝐼2.

Cochrane’s Q is a null-hypothesis significance test that follows a chi-squared

distribution with K-1 degrees of freedom. Assuming that between-study variance

equals zero, a p value < .05 would be interpreted as a significant amount of variability

between study-level effects and we would reject the null hypothesis of zero

3This package follows formulae recommended in Cooper et al. (2009)
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between-study variance. One caveat of Q is that it inherits the properties of the

chi-square distribution, which is well known to have difficulties with type I and II

errors at low and high samples sizes (Borenstein et al., 2009).

𝐼2 is not affected by the number of study-level effects in a meta-analysis. 𝐼2

equals Cochrane’s Q minus the degrees of freedom, divided by Q and multiplied by

100 to reflect a proportion (Borenstein et al., 2017; Moher et al., 2009). Values for 𝐼2

above zero percent tell us that between study variance is greater than that due to

sampling variation alone, with values above 25% needing to be explored and

explained. 𝐼2 levels have been assigned thresholds to assist with interpretation: low

heterogeneity ≥ 25%, moderate heterogeneity ≥ 50% and high heterogeneity ≥ 75%

(Higgins & Thompson, 2002 cited by Borenstein et al., 2009). Higgins and Thompson

(2002) note that these thresholds are not universal but it seems reasonable that values

≥ 25% provide sufficient variability (assuming sufficient data) for an exploration of

possible moderators. These thresholds will be used to interpret estimated 𝐼2 values

and dictate whether moderator analyses are warranted.

4.2.4.4 Additional Analyses

Sensitivity Analyses. While tests for heterogeneity indicate the presence of

between study differences, sensitivity analyses will perform several smaller statistical

analyses to help identify individual study-level effects that may be exerting a large

influence on the estimate. We perform sensitivity analyses of all subgroup effects

using the influence() function from the metafor package (Viechtbauer, 2010). This

performs a case deletion routine that provides leave-one-out diagnostics per study-level

effect. Where indicated, we compare the identified study-level effect against its sample

peers for methodological and design differences. We also take into account its RoB

judgement. Where differences are apparent and the summary effect’s 𝐼2 value is above

25%, we may choose to remove the study-level effect. We describe this process within

text, and update a subgroup effect if study-level effects are removed due to this

process. An example of this process is included in the example report (Section 4.3.2).
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Moderator Analyses. Where 𝐼2 values for global effects remain at moderate or

high levels after sensitivity analyses, and there are sufficient study-level effects (k >

10), we perform moderator analyses to consider whether heterogeneity in the estimate

can be further explained by other properties of the sample. For brevity, none of the

global effects in the example report (Section 4.3.2) warranted a moderator analysis so

we do not report the process any further here. Full details are available in the full

predictor reports at the project OSF repository.

4.2.5 Estimation of Bias Across Studies

Although we explicitly imputed p values at the .1 level for missing study-level effects,

this does not help us estimate if entire studies are missing from the sample. We use

statistical and graphical methods to help adjudicate the presence of missing studies.

4.2.5.1 Statistical Methods

Where more than three study-level effects contribute to a subgroup effect, we use the

Egger’s Test and the Rank Correlation Test (Begg and Mazumdar, 1994) as statistical

measures of missing study-level effects. These tests measure the association between a

study-level effect size and its standard error. Van Aert et al. (2016) recommends

adopting a p value of < .1 for an Egger’s Test and Rank Correlation Test.

4.2.5.2 Graphical Methods

Funnel Plots. We draw contour-enhanced funnel plots for global effects at the task

x outcome level (Figures 4.8, 4.10, 4.12, 4.14) when there are 10 or more study-level

effects (Lau et al., 2006). Each study-level effect size in the data set for task and

outcome is plotted as a function of their standard error. We use different colours to

represent groups. We centre the triangle at zero rather than the global effect value, to

be able to see more clearly how the data relates to a null hypothesis of zero.

https://bit.ly/Meta-analysis-repository
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The contour-enhanced aspect of the plot involves shading areas of the funnel

to denote different levels of statistical significance. The largest, white central region

denotes p values > .1. Moving outward, the next shaded area represents data with p

values between .1 and .05, the next, between .05 and .01 with study-level effects

falling outside of the funnel boundaries having p values < .01. Relatively few or no

study-level effects in the central, white section of the plot may suggest missing studies

and bias in effect sizes, introducing bias in both publication rates and the global effect

(Palmer et al., 2008).

P-curve Analysis. We also construct and inspect a p-curve for each task x

outcome sample of studies (Figures 4.8, 4.10, 4.12, 4.14). P-curve analysis (Simonsohn

et al., 2014) is a systematic method of evaluating the evidentiary value of a data set.

From any task-outcome data set, only study-level effects with p ≤ .05 are entered into

p-curve. Visually, the shape of the distribution of p values in the subset of data can be

indicative of strength of evidence for an effect. A right skewed distribution means p

values are clustered close to .01. This indicates strong evidentiary value for an effect.

An even spread of p values between .05 and .01 indicates a lack of evidential value. A

left-skewed distribution means p values are clustered close to .05 and may be

indicative of p-hacking.

P-curve analysis is supported by two inferential tests. The first is the ‘test of

right-skewness’. This tests that the number of ps < .025 is greater than the number of

ps > .025. The subsetted data are split into two sets at the 0.025 level and tested

against the uniform null (50% high) with a binomial test. If we can reject the null

hypothesis of equal numbers or more ps > .025, we can infer that the data sample

contains evidential value.

When we fail to reject the test of right skewness, we move to the second test,

the ‘test for flatness’. This tells us whether the data sample is under-powered to detect

a very small effect or that more studies are needed. The data are re-analysed as if the

power to detect an effect is now 33%. If we reject this test, we can infer that the data

lack evidential value due to an effect that is too small to detect under current sample



108

sizes. If we fail to reject the null hypothesis of 33% power, we must infer that there is

not enough information at the current time and more data is needed.

4.2.6 Confidence Judgements

Each summary effect is accompanied by an evaluation of how much confidence we

hold that the value reflects a ‘true’ effect size. In our evaluations, we were guided by

the GRADE process (Schunemann et al., 2011). The process involves evaluating the

strength of evidence over five domains and lowering confidence levels when the

evidence falls below a threshold. There are four confidence levels: high, moderate, low

and very low.

As all included studies operate a quasi-experimental design, we initially

placed each of the subgroup effects at ‘moderate’, which represents a belief that ‘the

subgroup effect size is probably close to a true effect size’. A ‘low’ confidence rating is

explained as ‘the estimated effect may be markedly different from the true effect’. A

judgement of ‘very low’ is interpreted as ‘the estimated effect is probably markedly

different from the true effect’ (our emphasis). We concealed summary effect labels

during the evaluation process. See Appendix C for an overview of each domain in the

adjudication process; code and data for confidence judgements is available at

https://bit.ly/ConfidenceData

Threshold criteria for the five domains are:

Imprecision: We lowered the confidence rating by one level when two or

more of the following criteria were met:

• statistical power to replicate an effect of half the size was below 80%

and magnitude of the replication effect is above 2. Power and

magnitude values are produced by retrodesign function (Gelman

and Carlin, 2014, see 4.2.6.1 below).

• average participant sample size and total number of items for each

effect are lower than a 40 x 40 group by item condition design

https://bit.ly/ConfidenceData
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(Brysbaert and Stevens, 2018);

• an effect’s confidence intervals cross more than two effect size

categories (categories as defined by Cohen (1988), by visual

inspection of forest plots).

Indirectness: We lowered the confidence rating by one level if an effect

would not generalise to the population at this time, indicated by whether

random effects models’ credible intervals included zero (visual insepction

of RE credible interval upper and lower limits).

Inconsistency: We lowered the confidence rating by one level if the 𝐼2

value was high ( > 75%) after sensitivity and moderator analyses were

performed (visual inspection of 𝐼2 value).

Publication bias: We lowered the confidence rating by one level if the p

values of either the Egger’s or Rank Correlation Test < .1 (visual

inspection of test p values).

RoB: We lowered the confidence rating by one level if an effect carried a

high RoB.

We present confidence levels in the text and in summary tables. The

information used to generate confidence levels for each summary effect is also

presented in the summary tables (Figures 4.16-4.20).

4.2.6.1 Estimating Replication Power

We use the retrodesign function (RDF, Gelman and Carlin, 2014) to estimate

statistical power to replicate a future effect of half the size of a summary effect, and

estimate the potential for exaggeration in that effect size. Gelman and Carlin (2014)

recommend retrospective design analysis based on an effect size “that is determined

from literature review or other information external to the data at hand” (p.2) with

standard error values taken from the current study. The retrodesign function takes

four arguments:
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1) drep, ‘a random variable to be the estimate that would be observed in a

hypothetical replication study with a design identical to that used in the

original study’ (Gelman and Carlin, 2014, p. 3). We define drep as half the size

of each summary effect, after the findings of Open Science Collaboration (2015);

2) the standard error value, taken from each related summary effect;

3) a statistical significance threshold: p < .054;

4) the degrees of freedom, set as infinite within the function.

The function returns three outputs:

1) statistical power, range 0 - 1, multiplied by 100 for reporting as a percentage;

2) type S error rate, a probability of the replicated estimate producing a sign error

(i.e. different direction of effect, range 0 - 1);5

3) an exaggeration ratio value. An exaggeration ratio value of 1 suggests that drep

is returned, a value of 2 has returned the original summary effect size. Values >

2 reflect even larger effect sizes.

We use the statistical power value and the exaggeration ratio value in our

confidence evaluation process.

4.3 Results

Results are presented in three parts. First, we give an overview of the data set.

Second, we present subgroup effects for the word-frequency variable. We present

results for frequency as it is the most represented effect of the set and due to its
4By calculating each set of RDF values as if drep is significant, we may be accused of holding

unreliable findings for task outcomes to an inappropriate standard, and should assess power for an
insignificant finding, however the p-curve analyses for most meta-analysis samples were inconclusive
due to lack of available data rather than indicative of a minute effect size, consequently it is too early
to make that assumption, and while these samples are explored, we should ensure adequate power.

5At this time, we cannot use the type S error rate. Due to some of the reporting of some study-level
effects being incomplete or missing, we transformed our effect sizes to absolute values before beginning
the meta-analysis.
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longevity, is well measured6. Third and finally, we present summary effects for the

psycholinguistic variables for which we recovered data and indicate which subgroup

effects are missing at this time (Figures 4.16 - 4.20). All of the data and code to

reproduce the meta-analysis findings are available at the project OSF repository.

4.3.1 Overview of the data set

We located 122 articles that were eligible for inclusion. These articles reported 155

studies in which the analyses estimated a total of 472 interaction terms, where the

interactions were between 1) the effect of one of five different kinds of group contrasts

and 2) the effect of one of eight psycholinguistic variables. Appendix B lists the

articles and the study-level data needed to be able to reproduce the meta-analysed

estimates.

The oldest study in the sample occurred 48 years ago with the most recent in

2019, demonstrating the longevity of this line of research. Articles originate from 14

distinct countries representing 10 languages. The majority of studies reported were

conducted in English (n = 71), with Italian (n = 15), Spanish (n = 12), French (n =

10) , Dutch (n = 7) and Turkish (n = 3) languages also represented. Two studies

contain participants native to Germany. One study has a Finnish sample. Most

documents were peer-reviewed journal articles, however a non-negligible amount of

eligible studies were found in doctoral theses (n = 8)7.

4.3.1.1 Psycholinguistic Variables

Most of the studies comprised a quasi-experimental design where items were sampled

to vary on two psycholinguistic variables, e.g., frequency (high vs low) and AoA (early

vs late acquired), and where participants were sampled to vary on one dimension e.g.,

experience: young vs older children. Consequently, for most studies, we could extract
6The reports for arousal, AoA, consistency, frequency, imageability, length, neighbourhood-size and

valence are also available in .pdf format at https://bit.ly/Meta-analysis-repository)
7More doctoral theses were eligible for inclusion, however, full text was not available, nor were the

authors contactable to retrieve data

https://bit.ly/Meta-analysis-repository
https://bit.ly/Meta-analysis-repository
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data for the difference between groups for more than one psycholinguistic variable.

Figure 4.4 displays how the extracted 472 study-level interaction effects are

distributed across psycholinguistic variables for reaction time and accuracy.

The most prevalent psycholinguistic variable is word-frequency (n = 149)

with length (n = 114) and consistency (n = 87) next. N-size (n = 43), AoA (n = 26)

and imageability (n = 24) are also present. Arousal and valence account for eight

effects each. We refer to these eight variables as a core set from this point. Bigram

frequency, no. of features, semantic density, semantic diversity, semantic N-size and

synset each represent four or less effects each.

Figure 4.4

Distribution of Study-Level Interaction Effects Across Psycholingusitic Variables for

Reaction Time and Accuracy.
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4.3.1.2 Participants

Study-level effects were collected for adult-experience and adult-ability samples, child-

age, experience and ability samples. Notably, the ability contrast contained a contrast

with skilled readers vs either unskilled- or dyslexic-readers. By “unskilled” we mean

that reading skills were lower than expected for their age. The “dyslexic”

categorisation derives from formal diagnosis or multiple assessments carried out

during sample screening procedures to detect dyslexic reading profiles. We coded for
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these two levels in the ability contrast for use as a potential predictor variable in

moderator analyses.

There is a lower number of study-level effects involving contrasts between

adults than children (162 vs 310 respectively). The majority of adult studies focused

upon age (100 vs 62) while ability holds a majority in the child samples compared to

experience and age (153 vs 99 vs 58).

4.3.1.3 Tasks

The majority of papers focused on a sole task (32 for lexical decision; 73 for word

naming) with the remaining 17 papers using both tasks. Given the longevity of the

research period, there are differences in task administration. We detail these briefly

next.

Item Presentation. Researchers used index cards, paper-based lists, slides or

computer display presentation of items. Research teams involved in the earlier studies

may have used index card or paper list presentation rather than slides or

computerised presentations, and it is less likely for the paper based presentation

method to report reaction time outcomes.

Word Naming Protocol. In computer based presentation, each naming trial

involved a fixation point before item presentation, often with a voice key relayed to

the presentation program that captured the response onset latency. Blocking methods

for item presentation varied across studies with most using some level of

randomisation either within and across blocks or, if using a fixed order within blocks,

counterbalancing of blocks was reported. Time out thresholds also differed across

studies. Error categorisation also showed variation: in one study, repeated attempts

were allowed; in another, if the first articulation made was not the word (e.g. an

“um”, “ah” or a stumbled sound), this was counted as incorrect and discarded before

data analysis. In all studies, analysis of reaction times was for correct responses only.
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Lexical Decision Protocol. A computerised lexical decision trial involved a

fixation symbol appearing before the item was presented which would disappear upon

the participant’s response. Gross differences centering around whether word and

nonword items were mixed, blocked as separate items with randomisation within

blocks and counterbalancing of blocks across participants occurred. Methods of

recording the responses also varied between button boxes and keyboards.

4.3.1.4 Outcomes

In the word naming task, outcomes were either response accuracy or reaction time.

There was almost an even split across the data (243 and 229, respectively). Reaction

time is defined as the time elapsed between item onset and response onset, where the

latter is usually registered by a voice key for word naming or a key press for the

lexical decision task, respectively. Most studies report mean reaction times in

milliseconds, with some reporting in seconds for lists of words, in which case a per

word measure was derived by dividing the total list time by the number of list items.

Accuracy is defined as the correct pronunciation of the word (word naming) or the

correct identification of the item as a word or nonword (lexical decision). Many

studies reported error rates. We subtracted these values from item totals (raw counts)

or from 100 (percentages) to obtain accuracy rates. The distribution of reaction time

and accuracy rates are displayed for psycholinguistic variables (Figure 4.4).

4.3.1.5 Missing Data

Of the 472 extracted effects, 386 were explicitly reported with statistical data. Where

primary psycholinguistic variables had no statistical results reported at the

study-level, we imputed a missing effect at a value of p = .1. There were 63 inferred

and 23 missing observations. Of the missing data, reaction time has a higher level of

imputed data points than accuracy (58 vs 28).
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4.3.1.6 Analysis Methods

Figure 4.5 displays the distribution of statistical analysis methods for outcomes across

the included studies. ANOVA is by far the most popular method of analysis (n =

207). Means for reaction time and accuracy was the second most prevalent (n = 119),

with proportions correct for the accuracy measure third (n = 50) Linear mixed effects

models for reaction time (n = 32) and generalised linear mixed effects models for

accuracy (n = 25) were the next most prevalent with simple regression (n = 19)

ranking the fifth most popular method.

Figure 4.5

Prevalence of Analysis Methods for Study-Level Effects.
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4.3.1.7 RoB Within Studies

Overall, just under half of the included studies were assessed as having a “low” RoB

(n = 69). Thirty-seven were given a “high” rating of RoB and 39 were given a

judgement of “unclear”. Figure 4.6 shows how the three judgements are spread within

each separate domain across the sample.
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Figure 4.6

Adjudication of Risk-of-Bias Across Included Studies.
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4.3.2 Group Differences for the Word-Frequency Effect: An

Example Report

This section presents the meta-analysis of study-level effects that involve differences

between groups for the word-frequency effect. We present word naming results first

for reaction time and then accuracy, then lexical decision outcomes. Each section

follows the same pattern: first, estimates are described. There is a global effect that

aggregates all study-level effects and five subgroup effects, one for each group contrast

(see Figure 4.2). As a reminder, the thresholds for interpretation of Hedges’ g are 0.2

- 0.49 as a small effect, 0.5 - 0.79 as a medium effect, 0.8 - 1.30 as a large effect and

any size larger than 1.31 as very large. Effect sizes below 0.2 are very small.

Each subgroup effect captures the aggregated magnitude of the difference

between the paired, contrasted groups for how differently a group uses levels of

word-frequency (see Figure 4.3). For instance, between the typical and atypical

readers in the child-ability contrasted group in word naming reaction time, there is a

difference in the word-frequency effect of g = 0.6, which tells us that for one of those

groups, the difference in reaction times is greater between high and low levels of
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frequency than for the other group, and that the difference between the two groups’

word-frequency effect is 0.6. of a standard deviation.

The estimates are presented in a forest-plot. Each subgroup has its own

section that displays the subgroup effect below the study-level effects of which it is

comprised (explained in more detail below). We do this to visualise both the

heterogeneity between studies within a subgroup and also heterogeneity between

subgroups. Displaying study-level effects also gives the reader a strong picture of how

well an estimate is populated. Additionally, we include the global effect that is an

aggregate of the entire task-outcome data set.

After the first estimation of effects, we perform sensitivity analyses and

moderator analyses, where indicated. Study-level effects may be removed at this

stage. In which case, the relevant subgroup effect and the global effect for the task

outcome are updated. Finally, we describe the results of tests for publication bias and

p-curve analyses, presenting funnel plots and p-curve plots where data permits. A

brief summary ends each section.

4.3.2.1 Word Naming Reaction Time

Thirty-two papers contributed 40 study-level effects for group differences in

word-frequency effects on word naming reaction time. A global effect estimate for this

sample is Hedges’ g = 0.46, 95% CI [0.32, 0.59], 𝐼2= 50.72%. This suggests that, on

average, when two groups were compared in how much word-frequency affected

response reaction time, the groups’ frequency effect differed by almost half a standard

deviation. Figure 4.7 displays the sample forest plot, which we explain next.

The plot is arranged in sections, one for each subgroup contrast. Each section

displays the included study-level effects arranged in chronological order of year of

publication. A study-level effect is visually represented by a solid square, the size of

which denotes its weighted contribution to the subgroup effect. Bars to the left and

right of each square denote its 95% confidence interval. The values for each

study-level effect size are also given in text in the right-hand side column.
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Figure 4.7

Standardised Mean Differences Between Groups for Frequency Effects on Word

Naming Reaction Time
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An estimate for the subgroup effect is at the bottom of each section shown by

a solid diamond shape. The centre of the diamond represents the effect size value,

while the width of the diamond extends to the 95% confidence intervals. Bars that

extend to the left and right of the diamond, represent the credible intervals indicating

if generalisation to new samples is reliable. To the left of each subgroup effect, we

indicate whether the model is a random effects (RE) or fixed effects (FE) model

alongside Q and 𝐼2 values.

A further five columns in the forest plot presents sample size, item sample

size, the study-level RoB judgement, country of origin for the first author and the

relative weight that a study-level effect carries in the global effect for the task

outcome.

Toward the very bottom of the forest plot, a further solid diamond shape

represents a global effect, following the same interpretation as the subgroup diamonds.

Additional to the tests for heterogeneity for the global effect, we display information

for a formal test of statistical difference between subgroup effects. A p value < .05

suggests that at least one of the subgroup effects is significantly different in size from

the other four.

We describe the subgroup effects and the results of sensitivity analyses next.

Seven studies explored adult-ability differences for frequency, including 277

adults (median n = 40, range = 12 to 60). A group difference of Hedges’ g = 0.58

[0.34, 0.82], 𝐼2= 0%, indicates a reliable, medium size effect with 0% heterogeneity

between studies. Lower reading skill in adults is associated with a continued

word-frequency effect in maturity that is larger than their adult, typically reading

peers. None of the seven studies were indicated as influential in the sensitivity

analysis. We have moderate confidence in this subgroup effect.

For the child-ability sample, 941 children were tested across 17 studies

(median n = 54, range = 17 to 132) to give a Hedges’ g of 0.6 [0.32, 0.87], 𝐼2=

70.78%. This is a medium sized, reliable effect. Lower reading skill is associated with

0.6 of a standard deviation difference for frequency effects on reaction times.

Two studies were identified as influential in this sample: Marinus and de Jong
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(2010) and Marcolini et al. (2011). Comparing these studies to others revealed that

the frequency manipulation in Marinus and de Jong (2010) occurred in a post hoc

analysis; the original items were all of high frequency values. Consequently, the

frequency values within the original list may represent a restricted range of frequency,

compared to other studies in this sample.

The primary interest of Marcolini et al. (2011) was in frequency effects on

morpheme-based reading, manipulating both the root and the suffix frequency of their

items and creating a contrast both within and across items. No other study

manipulates frequency within the structure of the target item.

Given these differences, we removed the two study-level effects and updated

the subgroup effect to a new Hedges’ g that is small but still reliable (0.39 [0.24,

0.55]). Cochrane’s Q is no longer significant (Q = 14.24, p = 0.432) with variability

reduced to very low levels: 𝐼2 = 9.64%. We have low confidence in this subgroup

effect resulting from both Egger’s Test and the Rank Correlation Test showing p < .1.

Six studies looked at experience differences in adults (remember that we

define experience as a pure age contrast in typical readers) and word-frequency with a

total sample size of 384 people (median n = 53.5, range = 38 to 119). Hedges’ g for

this subgroup effect is 0.15 [-0.05, 0.36], 𝐼2= 0%, a very small, unreliable effect. No

study-level effects were indicated as influential. We have very low confidence in this

subgroup effect as both confidence and credible intervals cross zero.

An estimate for the subgroup effect of the child-experience contrast

(i.e. younger vs older children of typical reading skills) is Hedges’ g = 0.3 [0.15, 0.44],

𝐼2 at 0%. The estimate is generated from five study-level effects from 753 children

(median n = 78, range = 38 to 503). It is a small sized effect and is reliable. The

picture of any direction for this effect is not clear as some studies did not fully report

or interpret the direction of their study-level effect due to its non-significant status.

In sensitivity analyses, Zoccolotti et al. (2009) was indicated as influential,

however the study-level effect size (g = 0.3) mirrors that of the subgroup effect. It is

also the only study-level effect of the subgroup with confidence intervals that do not

cross zero. With 𝐼2 at 0%, we decided to retain the study-level effect. We have very
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low confidence in this subgroup effect.

Five study-level effects pertain to the child-age subgroup effect - samples of

the same reading skill who differ in age. This sample, comprising 226 children

(median n = 44, range = 22 to 80), produces a subgroup effect that is small and

reliable: Hedges’ g = 0.34 [0.01, 0.67], 𝐼2 = 32.65%. For the most part, we see the

older students of atypical reading skill showing a larger effect for frequency than the

younger, typical reading participants.

Two study-level effects were indicated as influential for the child-age subgroup

effect: Jimenez Gonzalez and Valle (2000) and Marinus and de Jong (2010). The

Jimenez Gonzalez and Valle (2000) effect is very small (g = 0.05). This study-level

effect is in the opposite direction compared to the rest of the data. In this study,

younger typical reading participants are first grade children. Much younger than the

other younger child participants. Marinus and de Jong (2010) may show an influence

due to a post hoc manipulation on frequency being applied (as described above).

Although Jimenez Gonzalez and Valle (2000) continued to be indicated as influential

after the removal of Marinus and de Jong (2010) (Hedges’ g = 0.19 [-0.1, 0.48]), we

chose to retain the study-level effect since the measure of heterogeneity between the

remaining four studies was reduced to zero percent and Q was no longer significant (Q

= 1.88, p = 0.598). We have low confidence in this subgroup effect.

The updated global effect is now Hedges’ g = 0.34 [0.25, 0.44]. It remains

small and reliable. We conducted a formal test of the subgroup effects to see if they

were statistically different from each other. Recall that the reference level effect for

this analysis is the adult-ability subgroup effect. The test was not significant (QM4 =

9.01, p = 0.061). With heterogeneity reduced to 10.36% in the global effect, we did

not perform a moderator analysis.

Tests for Small Study Bias and Publication Bias. Only the child-ability

subgroup tested significantly for small study biases (Egger’s p = 0.043, Kendall’s 𝜏 =

0.46 p = 0.011). Figure 4.8 shows a funnel plot (left) and a p-curve analysis plot

(right) for the study-level effects contributing to the global effect of the differences in
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frequency on word naming reaction time.

As a reminder, a study-level effect is plotted by its effect size (x-axis) and

standard error (y-axis). The funnel plot contours relate to levels of statistical

significance (central white region = p > .1, dark grey = p value = .1 - .05, light grey

= p value = .05 - .01, beyond funnel boundaries = p value <.01) and an absence of

study-level effects in the central white region is suggestive of publication bias.

In reading a funnel plot, it follows that a study-level effect that is large and

precise will be far away from the central line of the plot (zero effect) and towards the

top (small error). A study-level effect that is close to the central line and towards the

bottom of the plot has a small effect size and a large standard error value. Given that

our Hedges’ g effect sizes are all positive (we coerced absolute values, see Section

4.2.3.3), a strong and precise global effect will be characterised by study-level effects

located in the top right quadrant of the plot. If study-level effects move down, either

into the centre of the plot or remain in the bottom right quadrant, a global effect may

be less precise and less robust.

Notice in Figure 4.8 how the study-level effects for adult-ability and

child-ability, (purple and green circles), move down the plot as they move away from

zero, showing a trend of less precision in the larger sized study-level effects. Of

particular interest is the variability in the precision, especially for the green

child-ability points, with some of the smallest and largest standard error values in the

cohort. Given this spread of child-ability study-level effects in the lower right

quadrant of the plot, we would expect to see some study-level effects in the central

white region aswell, however there are none. This could suggest publication bias, as

indicated by the Egger’s Test and Rank Correlation Test result for the subgroup.

We have indicated study-level effect risk-of-bias (RoB) crudely using solid,

filled circles to denote low RoB judgements and unfilled circles to denote high or

unclear RoB judgements. Notice the spread of unfilled points as a band of study-level

effects spanning all contour sections of the plot. This may suggest that consideration

of methods to reduce sources of systematic bias at the study design stage may be

useful for future research.
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Figure 4.8

Funnel Plot and P-Curve Analysis Plot for Frequency Effects on Word Naming

Reaction Time

Group Effects

Standardised Mean Difference (Hedges' g = 0.34)
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Note: The observed p-curve includes 7 statistically significant (p < .05) results, of which 4 are p < .025.

There were 30 additional results entered but excluded from p-curve because they were p > .05.

Finally, we conducted a p-curve analysis as a check of the evidentiary value of

the sample. Of 37 study-level effects, only seven had p values < .05 and were eligible

for use in this analysis (3 study effects were removed from the initial sample of 40 as a

result of the sensitivity analyses). Consequently, estimated power to detect an effect

for word-frequency on word naming reaction time when the effect is present is

critically low: 12% [0.05, 0.55]. The result of the test for right-skewness reflects this (p

= .238), meaning we must fail to reject the null hypothesis of no effect. The blue

curve in the right hand plot in Figure 4.8 shows that the seven values are distributed

throughout the .01 - .05 range, three of the seven values are p > .025, i.e., it is not

right-skewed, as we would hope in a data sample that has evidentiary value.

We move to the second test of the p-curve analysis. Statistical power is reset

to 33% and the distribution of data is tested against this null hypothesis of 33%

power. If the result is p < .05, we can reject this hypothesis and interpret the finding

as if a small effect is present, however it is too small for the current data to detect and

adjust sampling rates for future studies. Where p > .05, p-curve is inconclusive.

Tests for flatness for this data are all p > .05. We fail to reject the null

hypothesis of 33% power to detect a small effect if it is present, so the judgement

about evidential value within this set of data is inconclusive and we must wait for
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more study-level effects to accrue before a decision is made.

Word Naming Reaction Time Summary. The difference between contrasted

samples of participants in the effect of frequency on word naming reaction time is very

small for adult-experience and child-age groups. Both of these subgroup effects cross

zero. Hence, there are limits in our capacity to distinguish small effects as the results

are compatible with no effect. The subgroup effect is small for child-experience and

child-ability groups and medium sized in the adult-ability contrast group. On average,

the impact of the difference between low or high frequency words on word naming

reaction time is smaller in skilled compared to less-skilled children or adults, and it is

smaller in less- compared to more experienced children. There could be publication

bias or small study bias for the child-ability sample as indicated by its Rank

Correlation Test result and funnel plot. If corrected, this suggests the small subgroup

effect could be moderated downward. At this time, the p-curve analysis results

suggests that the data sample is too limited to be conclusive about its power to detect

an effect. We return to these points in the general discussion.

4.3.2.2 Word Naming Accuracy

The analysis for word naming accuracy includes 37 study-level effects from 29 studies.

A global effect for group differences in word-frequency for accuracy rates is Hedges’ g

= 0.41 [0.3, 0.52], 𝐼2 = 21.42%. The test for subgroup effects’ differences within the

sample is non-significant (QM4 = 5.18, p = 0.269), suggesting that each subgroup

effect size for differences are similar in size. The forest plot detailing study-level

effects and subgroup effects is shown in Figure 4.9.

But for the child-ability subgroup, 𝐼2 values for the following subgroup

analyses are all at 0%, indicating that the variability due to extraneous variables is

equal to or lower than the variability due to random sampling variation.

An estimate of the interaction between the effect of frequency and the

difference between adult-ability groups is a small and unreliable Hedges’ g of 0.4 [0 ,
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Figure 4.9

Standardised Mean Differences Between Groups for Frequency Effects on Word

Naming Accuracy
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0.8], given a sample of three study-level effects (n = 120, median n = 40, range = 36

to 44). We have very low confidence in this subgroup effect.

The difference in word-frequency effect for the child-ability subgroup is

estimated as a reliable and small Hedges’ g = 0.46 [0.29 , 0.62], for a total sample of

1213 children (median n = 63, range = 17 to 151), given 17 study-level effect

estimates. This is the only subgroup to show any level of heterogeneity between

studies (Cochrane’s Q = 22.88, p = 0.117, 𝐼2 = 36.45%). It is also the only subgroup

to present with an influence from one study-level effect. The items for Steacy et al.

(2017b) were a mix of exception and strange words, where every other study, if

exploring consistency at the same time as frequency, contains a mix of regular and

irregular items. This could represent a difference amongst the larger set of studies.

We elected to retain the study effect as the subgroup Q test for heterogeneity was

non-significant. We have a moderate level of confidence in this subgroup effect.

The adult-experience sample showed a very small and unreliable Hedges’ g of

0.1 [-0.44 , 0.65]. This cohort is also small, including only 160 adults (median n = 40,

range = 40 to 80) across three study-level effects. We have very low confidence in this

subgroup effect.

The child-experience subgroup effect is estimated as a Hedges’ g of 0.53 [0.32

, 0.74]. This is a medium size effect from eight studies with a total of 370 children

(median n = 40, range = 24 to 90). More experienced children show a smaller

frequency effect than less experienced children. We have a moderate level of

confidence in this subgroup effect.

The child-age subgroup effect is a small and unreliable Hedges’ g of 0.22

[-0.02 , 0.46] from six study-level effects, representing 211 children (median n = 37,

range = 22 to 44). We have very low confidence in this subgroup effect.

Given the very low levels of heterogeneity across the sample, we did not

perform a moderator analysis.

Tests for Small Study and Publication Bias. None of the subgroup effects gave

any indication of publication bias in the Egger’s Tests or Rank Correlation Tests (ps
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all > .1). The funnel plot for the 37 effects and a p-curve analysis are displayed in

Figure 4.10. As with the reaction time funnel plot, generally, the two ability

subgroups show the wider array of standard error values.

Figure 4.10

Funnel Plot and P-Curve Analysis Plot for Frequency Effects in Word Naming

Accuracy

Group Effects

Standardised Mean Difference (Hedges' g = 0.41)
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Note: The observed p-curve includes 11 statistically significant (p < .05) results, of which 7 are p < .025.

There were 26 additional results entered but excluded from p-curve because they were p > .05.

Eleven of the 37 study-level effects had p < .05 and were eligible for p-curve

analysis (right hand plot of Figure 4.10). As with reaction time, the accuracy effect

sample appears grossly under-powered (17% [5, 53.4]). The test for right-skewness is

non-significant (p = .100) as is the test for flatness (p = .217) so we must conclude

that at this time, the data set lacks evidentiary value of a true effect and more

information is needed to draw valid conclusions.

Word Naming Accuracy Summary. Group differences for the word naming

accuracy outcome cover a range of effect sizes. The child-experience subgroup shows a

medium sized difference in word-frequency effects. Three groups show small size

effects: child- and adult-ability and child-age. Although in different thresholds, the

direction of effects is the same. For identical items, older children, and participants

with higher reading skill should show greater accuracy than younger children or

participants of lower reading skill, with the difference being that the older and

more-skilled participants find words of lower frequency easier to name correctly. The
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adult-experience subgroup effect is very small. Furthermore, the adult-experience,

child-age and adult-ability effects are unreliable, compatible with an effect of no

difference. An interpretation of the p-curve analysis suggests caution around any

substantive interpretation of effects, with low power and insufficient information by

which to generate valid inferences.

4.3.2.3 Lexical Decision Reaction Time

Thirty-three studies giving 40 study-level effects are eligible for meta-analysis of the

interaction between the effects of word-frequency and group differences on lexical

decision reaction time. There is a global effect size of Hedges’ g = 0.35 [0.25, 0.45], 𝐼2

= 31.88%. It is a small sized, reliable effect with a low amount of heterogeneity. The

test for differences between the subgroup effect estimates is non-significant (QM4 =

3.03, p = 0.552), indicating that the subgroup effect sizes are similar to each other.

Figure 4.11 shows the forest plot of the study-level effects.

Seven studies (444 adults (median n = 52, range = 12 to 180) reported the

interaction effect for word-frequency in the adult-ability subgroup for lexical decision

reaction time. The subgroup effect is a small, reliable Hedges’ g = 0.48 [0.26, 0.71], 𝐼2

= 21.2%.

The sensitivity analysis for the adult-ability subgroup identified McKoon and

Ratcliff (2016) as an influential effect. It carries the greatest weight within the sample

as a function of its higher precision and higher sample sizes. Heterogeneity values of

the full sample were already very low and removing the McKoon and Ratcliff (2016)

effect increased the value of the subgroup effect. We retained this study-level effect.

We have very low confidence in this subgroup effect.

The child-ability contrast sample has eight studies (487 participants, median

n = 55.5, range: 34 to 114). The difference between these groups is Hedges’ g = 0.28

[0.1, 0.46], 𝐼2 = 0%, a small, reliable effect suggesting that, on average, children who

are similar in age but differ in reading skill will tend to present different effects of

word-frequency on lexical decision reaction time of approximately a quarter of a
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Figure 4.11

Standardised Mean Differences Between Groups for Frequency Effects on Lexical

Decision Reaction Time
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standard deviation. Children observed to be lower in reading skill were found to show

greater differences in reaction time between responses to low versus high frequency

words. We have a moderate level of confidence in this subgroup effect.

A small and reliable interaction effect between the effects of word-frequency

and group differences is also seen for the contrast between adult-experience groups,

Hedges’ g of 0.34 [0.15, 0.52], 𝐼2 = 54.47%. This group generated the largest sample

of study-level effects (k = 16), involving 1263 participants (median n = 64, range: 24

to 222).

Ratcliff et al. (2004): Experiment 1 is indicated as influential for the

adult-experience subgroup effect. With a Hedges’ g value of 1.33, it is clearly much

larger than the subgroup effect. This study-level effect is generated from a table of

means within the article that presents a range of SE values rather than specific values,

from which the mid-point was used to generate the study-level effect size. This may

have introduced a bias so the study-level effect was removed from the sample and the

subgroup effect updated to Hedges’ g of 0.27 [0.16, 0.39], that remains reliable and

small in size. 𝐼2 was reduced to 0% (Cochrane’s Q-test = 12.88, p. = 0.536). We have

very low confidence in this subgroup effect.

Five studies for child-experience, involving 341 participants (median n = 78,

range = 44 to 90) contributed to a small, reliable group difference of Hedges’ g = 0.35

[0.06, 0.64], 𝐼2 = 42.4%. Across these studies, younger children of typical reading skill

generally presented the word-frequency effect to a greater extent than their older,

typical reading peers.

Bosman et al. (2006) has a much larger study-level effect size than the

subgroup effect and is identified as influential in the sensitivity analysis. The younger

readers made twice as many errors as the older readers on the low frequency words in

the sample; they made four times the errors on low frequency words compared to their

own error rates on high frequency words. Since these errors were trimmed from the

reaction time analysis, low frequency words may be under-represented in the sample.

We removed the study-level effect and updated the analysis to Hedges’ g = 0.23 [0,

0.46], a small sized effect with the lower confidence interval at zero. Heterogeneity
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levels within the sample were reduced to 𝐼2 = 0% (Cochrane’s Q-test = 2.52, p. =

0.472). We have low confidence in this subgroup effect.

In the child-age subgroup four studies involving 223 children (median n =

60.5, range = 22 to 80) contributed to a small but unreliable group difference of

Hedges’ g = 0.2 [-0.06, 0.46], 𝐼2 = 0%. We have very low confidence in this subgroup

effect.

With the removal of two study-level effects, the updated global effect is now

Hedges’ g = 0.29 [0.21, 0.37], 𝐼2 = 0%. The estimate remains small and reliable. The

test for subgroup effect differences remains non-significant (QM4 = 3.58, p = 0.466).

We did not conduct a moderator analysis.

Figure 4.12

Funnel Plot and P-Curve Analysis Plot for Frequency Effects on Lexical Decision

Reaction Time

Group Effects

Standardised Mean Difference (Hedges' g = 0.29)
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There were 31 additional results entered but excluded from p-curve because they were p > .05.

Tests for Small Study and Publication Bias. Study-level effect sizes are

plotted in the left-hand side plot of Figure 4.12. While tests of publication bias on the

whole sample were significant (Egger’s p = 0.044, Kendall’s Tau = 0.26, p = 0.02),

this was driven by one group, the child-experience subgroup (Egger’s p = 0.021).

There are very few study-level effects for the child-experience subgroup (blue circles)

but there is a potential gap of study-level effects indicated by fewer blue circles in the

white region of the plot compared to the outer contours. Also notable, the study-level

effects with judgements of unclear and high risk of bias (unfilled circles) populate the
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outer edges of the distribution with the greater quantity of low risk of bias study-level

effects towards the top half of the collection in the white region of the plot.

In p-curve analyses, 7 of the 38 study-level effects were eligible for analysis

(being p < .05). Of the seven, four were < .05, such that the distribution of p values

looks fairly even (see right-hand side plot in Figure 4.12), suggesting that the sample

lacks evidential value. To support this, the test of right-skewness is non-significant (p

= .199) and the test for flatness is non-significant (p = .216). We fail to reject both

null hypotheses of the p-curve analysis and conclude that the sample lacks evidentiary

value of a true effect. More data is needed.

Lexical Decision Reaction Time Summary. Findings for group contrast effects

on lexical decision reaction time suggest that, where reliable, group differences in the

impact of word-frequency on lexical decision reaction time are small. The child-age

and child-experience subgroup effects are both small and unreliable effects. The Q

test for differences between the sizes of the effects is non-significant. The data set is

sparse for robust findings, as indicated once more by the p-curve analysis results.

4.3.2.4 Lexical Decision Accuracy

Group effects for differences in frequency on the effect of lexical decision accuracy

outcomes are estimated by 32 study-level effects from 27 papers. The global effect of

the interaction between frequency and group differences is estimated as a Hedges’ g of

0.43 [0.32, 0.55], 𝐼2 = 39.94%. It is small and reliable. This estimate suggests that, on

average, word-frequency’s effect on accuracy rates in lexical decision differs by

approximately 0.4 of a standard deviation for contrasted groups. A test for subgroup

differences is significant (QM4 = 12.31, p = 0.015). The adult-experience subgroup

effect is significantly different from the other subgroup effects.

For group differences in adults contrasted by ability, 433 participants from six

studies (median n = 56, range = 31 to 180) give a Hedges’ g = 0.35 [0.12, 0.57], 𝐼2 =

25.06%, a small, reliable subgroup effect. McKoon and Ratcliff (2016) was suggested
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Figure 4.13

Standardised Mean Differences Between Groups for Frequency Effects on Lexical

Decision Accuracy
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as influential in a sensitivity analysis, however the study effect was comfortably within

the confidence intervals of the subgroup effect (see Figure 4.13) and the Cochrane’s Q

test was non-significant (p = .36). We retained the study-level effect within the

sample. We have low confidence in this subgroup effect.

Sample sizes for child-ability groups have a median size of 46 participants,

(range = 34 to 114) with a total sample size of 409. The subgroup effect size is a

Hedges’ g = 0.41 [0.04, 0.77], 𝐼2 = 63.06%), a small, reliable effect size. Marinelli

et al. (2014) is presented as an influential study-level effect. It is very large (Hedges’ g

= 1.56) and far away from the upper confidence levels of the subgroup effect.

Marinelli et al. (2014) are the only study in the subgroup that included

unpronounceable letter strings in their item sample. Given this difference, we removed

the study-level effect and updated the subgroup effect to Hedges’ g = 0.22 [0, 0.44], 𝐼2

= 0%. Group differences in children, contrasted by ability, for word-frequency in

lexical decision accuracy are now small, and just reliable. We have very low

confidence in this subgroup effect.

The Hedges’ g value for the adult-experience sample falls into the medium

sized category with a low level of heterogeneity (0.6 [0.5, 0.71], 𝐼2 = 0%). This is the

largest interaction effect amongst the five sets of subgroup contrasts, derived from the

highest number of study-level effects: 12 studies (n = 895, median n = 64, range = 32

to 193). The sensitivity analysis for adult-experience effects suggested that the study

effect of Balota and Ferraro (1996) is influential. This is the smallest study effect

within the subgroup sample. RoB is adjudicated as high for the reporting domain of

the study due to a general trend of brief reporting using p values rather than

summary statistics of results. However, this study-level effect is generated from

accuracy proportions and so reflects a reported result. Since Cochrane’s Q was

non-significant (p = 0.679), and heterogeneity values were in the low range, we opted

to retain the study-level effect within the sample. We have very low confidence in this

subgroup effect.

The median sample size for child-experience groups is 64.5, (range = 46 to

90) with a total sample size of 265. The subgroup effect is a small Hedges’ g value of
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0.26 [0.02, 0.5], 𝐼2 = 0%, just on the right side of zero to be reliable. The effect from

Schröter and Schroeder (2017) is suggested as influential but as Cochrane’s Q

indicates no heterogeneity above and beyond random sampling variation (p = 0.66)

and the study-level effect was comfortably within the confidence interval of the

subgroup effect, we retained it in the sample. We have a moderate level of confidence

in this subgroup effect.

The median sample size for the child-age group is 46, (range = 22 to 75) with

a total sample size of 143. Younger and older participants of similar reading skill show

a very small and unreliable Hedges’ g value of 0.16 [-0.24, 0.56], 𝐼2 = 0%. We have

very low confidence in this subgroup effect.

One study-level effect was removed due to sensitivity analyses so we updated

the global effect. There was a slight reduction in the effect size to Hedges’ g = 0.41

[0.3, 0.52], 𝐼2 = 34.79%, however it remains small and reliable. The test for subgroup

differences also remains significant (QM4 = 17.44, p = 0.002), the adult-experience

effect still being larger than all the others. No moderator analysis was completed,

given the low level of heterogeneity.

Figure 4.14

Funnel Plot and P-Curve Analysis Plot for Frequency Effects in Lexical Decision

Accuracy

Group Effects

Standardised Mean Difference (Hedges' g = 0.41)
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Note: The observed p-curve includes 7 statistically significant (p < .05) results, of which 5 are p < .025.

There were 24 additional results entered but excluded from p-curve because they were p > .05.

Tests for Small Study and Publication Bias. Neither the Egger’s Tests nor the

Rank Correlation Test were significant for any of the subgroup effects of
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word-frequency for lexical decision accuracy. The funnel plot and p-curve analysis plot

for this sample are shown in Figure 4.14. Of the four funnel plots within the

frequency report, this looks the healthiest with respect to precision of measurement,

with points coalescing towards the top of the funnel (but note one adult-ability point

lying at the bottom). We suggest that this is an artefact of the coarser level of

measurement between letter strings at the word / nonword level combined with yes /

no decisions, which then makes it easier to provide more accurate estimates over

different samples and over time. The p-curve analysis has a significant result for

right-skewness (p < .001) and an estimated power of 96% [0.84, 0.99]. While 24 of the

31 study-level effects were not eligible for the p-curve analysis, the seven that were

provide evidentiary value of an effect being present in the data.

Lexical Decision Accuracy Summary. Estimates of effects of the interaction

between word-frequency and group differences for lexical decision accuracy tend to be

small with the exception of a medium sized effect for the difference between younger

and older adults. This medium sized effect is a result of younger adults showing larger

differences between responses to high and low frequency words than the older adults.

The very small effect for children of different ages but similar reading skills is

unreliable. The interaction between frequency and group differences are smaller for

group contrasts in children than for group contrasts in adults. There was no

indication of publication bias for the subgroup effects. The p-curve analysis estimated

power to detect a true effect at 96% and gave a significant test of right skewness,

suggesting that there is evidentiary value of an effect within this data set.

4.3.2.5 Overall Summary

There were sufficient study-level effects comparing the word-frequency effect across

groups to estimate a complete set of subgroup effects for word naming and lexical

decision outcomes, i.e., there are no missing data for the word-frequency predictor.

We present a summary table of the subgroup effects across tasks and outcomes in
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Figure 4.15. We explain the information contained within the table briefly next.

A summary table represents all subgroup effects across tasks and outcomes.

Subgroup effects are presented with confidence intervals and standard error values,

plus the information that contributed towards the confidence evaluation process and

the confidence rating itself.

Subgroup effects are plotted as well as presented in text. Plotting the effects

visualises how individual effects are distributed across the other subgroups. The value

of each estimate is represented by a filled black square with 95% confidence intervals

extending either side. Contrary to the earlier forest plots, each square is identical in

size as there is no weighting performed here. Where a lower or upper limit of a

confidence interval is presented with an arrow, this indicates that the range of that

limit extends beyond the range of the x-axis. We draw dashed vertical lines on the

x-axis to mark thresholds of effect sizes for Hedges’ g, beginning at 0 and marking the

lower limits of small (0.2), medium (0.5) and large (0.8) categories of effect size from

Cohen (1988).

To the right of the plot, we include the Hedges’ g value and its associated

standard error in text. We then include the information that is appraised in the

confidence evaluation process: the total number of participants and number of studies

that generated the estimate, total number of items, power to replicate an effect of half

the size, the residual heterogeneity value (𝐼2), the lowest publication bias p value, the

RoB judgement and finally, the confidence level associated with the subgroup effect.

We briefly comment on subgroup effects for differences in the word-frequency

effect across task outcomes next. We focus at the subgroup level, pulling together

results of p-curve analyses and retrospective design analyses for the word-frequency

interaction effects across task and outcome.
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Summary of Findings for Differences in the Frequency Effect By Task and Outcome and Across Groups
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Adult-Ability. Reflecting skilled readers with lower-skilled readers, differences in

word-frequency effects are present in this contrast. The lower limit of the confidence

interval for word naming accuracy rests on zero, with the remaining three effects

showing reliability. The adult-ability estimates for reaction time outcomes are largest:

word naming (g = 0.58) and lexical decision (g = 0.48); the other task outcomes

present with small effect estimates. Recall that Hedges’ g units are in standard

deviations, so the differences in the word-frequency effects for less- and more-skilled

reading adults is approximately half a standard deviation. Our confidence evaluations

are moderate for word naming reaction time and low for lexical decision accuracy but

very low for word naming accuracy and lexical decision reaction time estimates. This

may indicate larger sample sizes are needed for greater precision in estimation.

Further, in word naming outcomes the differences in adult-ability groups appears

stronger than that of adult-experience groups, and the difference effect sizes appear

more similar to the child contrast groups. In lexical decision, the adult-ability and

adult-experience effect sizes look much more similar to each other.

Child-Ability. The differences in frequency effects between child-ability

participants on accuracy appear to be equivalent across accuracy outcomes. Reaction

time effect sizes are different, with a larger difference in word naming than lexical

decision. We are moderately confident in the findings for word naming accuracy (g =

0.46) and lexical decision reaction time (g = 0.28). Word naming reaction time (g =

0.6) shows evidence for publication bias suggesting that in the presence of more data,

the effect would be moderated downward. Consequently, our confidence rating is low

for this estimate. We have very low confidence in the lexical decision accuracy effect

size (g = 0.41). The plot of the effect in Figure 4.15 clearly shows that its confidence

intervals span more than two effect size thresholds, and the RoB is adjudicated as

high.

Adult-Experience. The adult-experience group is a contrast of typically skilled

readers who differ in age. The reliable effects for this group are for lexical decision
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outcomes. In lexical decision reaction time, the effect estimate is reliably small (g =

0.34) and for accuracy, medium (g = 0.6). Our confidence for lexical decision effects

are low due to imprecision for replication of effects, low participant sample sizes and a

high risk of bias. In word naming outcomes, estimates fall below the small threshold

with confidence intervals crossing zero. Our confidence for word naming estimates is

very low. Each effect describes either a very small difference in word-frequency effects

for word naming, or potentially, no difference between the two groups. The effect sizes

are larger in lexical decision outcomes than word naming outcomes for adult

experience.

Child-Experience. There is a range of reliable differences in word-frequency effects

for children of different ages but with typical reading skills for their age. The

strongest estimate is of medium size, for the word naming accuracy outcome (Hedges’

g = 0.53). Word naming and lexical decision reaction time and lexical decision

accuracy show small sized estimates. Our confidence in the word naming reaction

time and accuracy estimates is moderate. We have low confidence in the estimate for

lexical decision reaction time as publication bias was indicated by the Egger’s Test.

Child-Age. The child-age subgroup reflects a contrast of younger and older child

readers who have equivalent reading skills. Essentially, the older readers are showing

lower reading skills than would be expected for their age. Each of the subgroup effects

is unreliable and tend to be at the lower end of small or very-small in size. The

unreliability of the estimates could suggest no difference in the word-frequency effect

between the groups, however, this subgroup is the least well powered of the five

subgroups. We have very low confidence in these results, due to small samples for

both participants and items, low power to replicate the effect and non-significant tests

for out-of-sample prediction.

P-Curve and Retrospective Design Analyses. No moderator analyses were

performed on word-frequency group level data for any task outcome since, after
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sensitivity analyses, levels of heterogeneity were low. P-curve analyses showed that

only lexical decision accuracy data showed evidentiary value, the remaining three

outcomes failed to reject the test for right-skewness. Power to detect drep across the

subgroup effects ranges from 5% to 97.9%, with only lexical decision accuracy above

the desirable threshold of 80%. When we calculated the participant-per-group and

item-per-condition rate for each effect, with a 40 x 40 design used as a threshold

suggested by Brysbaert and Stevens (2018), one effect was above this threshold for

participant sampling (child-experience group for word naming accuracy), while 17

were above the item thresholds.

4.3.3 Subgroup Estimates for All Predictors

In this final section, we present the findings of the meta-analyses of the eight

variables. Of a potential 160 summary effects, we are able to present 131.

Twenty-nine summary effects are missing data at the time of writing.

Twenty-four effects have a moderate confidence rating. Eleven effects have

low confidence ratings with the remaining 96 effects carrying a confidence rating of

very low. Moderate and low confidence ratings tended to be given to the

psycholinguistic effects that are more established, having had a longer opportunity to

be studied. Predominantly, moderate confidence ratings were for frequency, length

and consistency variables.

Information for the summary effects are in Figures 4.16 to 4.19. The figures

follow the same format as the summary figure for word-frequency presented in Figure

4.15 but now each row represents a Hedges’ g estimate for one of the eight

psycholinguistic variables. Empty rows in a figure represent missing data for that

psycholinguistic variable to ensure we create a picture of our search return and to

indicate gaps in our current knowledge.

As a reminder, an effect describes the magnitude of the difference between

two groups in the difference of how a group responds to levels of the psycholinguistic

variable, estimated with 95% confidence intervals. Additionally, confidence ratings
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represent our belief of how closely the size of an estimated effect reflects the size of the

true effect: ‘moderate’ confidence should be interpreted as probably close, ‘low’

confidence as may be markedly different and ‘very low’ confidence as probably

markedly different from the true effect’ (our emphasis).

4.3.3.1 Adult-Ability

We estimated 17/32 interactions between the effect of different levels of a word

property and how this differs between adults who differ in reading skill (Figure 4.16).

The present effect sizes range in size from g = 0.3 - 0.66. Eight of the effects have

confidence intervals that are reliably different from zero, and in those eight, three of

those estimates remained at moderate levels of confidence. More data is needed. If we

accept that, given study design (small samples, extreme group analyses) and

analytical methods may be inflating effect sizes and conservatively halve the observed

estimates to calculate power to replicate the effect, then range of power to replicate

effects is between 5 – 67%.

Across this contrast (in both adults and children), the sampling from a

population of readers with dyslexia was twice as common as for readers of lower-skill

without dyslexia. It could be that the size of effects is being driven by properties

specific to a dyslexic style of reading as opposed to a contrast of higher and lower

reading skill. There was either insufficient heterogeneity or number of study-level

effects to estimate this at the present time.

In word naming reaction time, reliable effects’ estimates are available for

length, word-frequency, and consistency. Effects for N-size, imageability and AoA are

also estimated, however they are unreliable at this time so more data is needed to be

more certain of sizes and directions for those effects. Length and frequency show

medium sized effects, while consistency shows a small sized effect.



Figure 4.16

Summary of Findings for Differences in Predictor Effects for Adult-Ability Contrasts by Task and Outcome
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In word naming accuracy, frequency and consistency effects are reliable. They

show small sized effects. Length and imageability are estimated as medium sized

effects however at this time, they are unreliable, needing more data for more precise

estimation. Of the four available estimated effects for lexical decision reaction time,

only a small sized frequency effect is reliable. Length, AoA and N-size are all

unreliable. Length is a medium size however word naming reaction time has larger

participant and item samples. The AoA effect is a fixed effect at this time since we

recovered only one study-level effect that had reported measures for AoA.

Lexical decision accuracy has three estimates for differences in how groups

use the variables. Two are reliable, N-size and frequency. Length is unreliable. All

three estimates are small sized.

4.3.3.2 Child-Ability

We found sufficient data to calculate 22 / 32 estimates for the child-ability contrast,

of which five estimates are generated from FE models (see Figure 4.17). This contrast

is one of the most frequently studied, but for a narrow set of variables. Missing data

are present. Effect sizes range between g = 0.09 - 0.84 in size. Fifteen estimates are

reliably different from zero and we have moderate confidence in nine. Power to

replicate effects estimates ranges between 6% - 86%.

Four estimates are returned for word naming reaction time, all of which are

reliable. Length shows a large sized estimated effect and frequency shows a medium

sized effect. Confidence is low due to the 𝐼2 values for both of these effect remaining

at a high level. N-size and consistency estimates are small and reliable, and confidence

ratings are moderate.

Six reliable estimates are reported for word naming accuracy, and all carry a

confidence rating of moderate. Imageability, N-size and length are all estimated as

medium size effects while frequency, AoA and consistency are all estimated as small

size effects.
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Summary of Findings for Differences in Predictor Effects for Child-Ability Contrast, by Task and Outcome
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Worth noting are the two small effects for differences in consistency in the

child-ability group for word naming. Other predictors show a range of effects. Given

that we know readers with dyslexia were sampled twice as much as low skilled readers

without dyslexia, and that difficulties with phonological information are symptomatic

of dyslexic reading, we found this surprising. We split the child-ability subgroup into

two smaller groups of skilled vs readers with dyslexia (k = 7) and skilled vs

lower-skilled but without dyslexia (k = 13) and re-analysed the study-level effects.

The estimate for the dyslexia contrast was small (g = 0.37) and the estimate

for the low-skilled contrast was very small (g = 0.16). The original aggregated

accuracy result is small due to very small effects from the low-skilled group weakening

the overall effect in the dyslexia subgroup. Aggregation over the two groups has

cancelled out the impact of length on the dyslexia sample. Going forward, refining the

child-ability subgroup may be important for a clearer understanding of relationships.

Length and frequency have reliable estimates for lexical decision reaction

time. Length is estimated as a medium size effect and frequency as a small effect. We

have very low confidence in the length effect due to a significant p value on the test

for publication bias and a high RoB rating. This suggests that in the presence of more

data, the length effect could be smaller. We have moderate confidence in the

frequency effect size. Consistency and AoA are present but unreliable at this time.

Both are estimated from FE models.

Five estimates are returned for lexical decision accuracy. N-size, length and

frequency are reliable estimates. N-size and length are both medium sized effects and

frequency is small. We have low confidence in the N-size effect. Figure 4.17 shows the

upper CI limit extending beyond the limits of the X-axis. As an effect from one single

study, it is imprecise. Length and frequency effects carry very low confidence ratings.

Both are adjudicated as having high RoB. Frequency is an imprecise measurement

and length has a low level of participants. Consistency and AoA are unreliable at this

time. N-size, consistency and AoA estimates are generated from FE models.
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Summary of Findings for Differences in Predictor Effects for Adult-Experience Contrast, by Task and Outcome
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4.3.3.3 Adult-Experience

The mean age for the younger adults is 22.4 years, range = (18.6 - 31.3) and for the

older adults is 70.0 years, range = (47.9 - 86.4). Of 32 potential meta-analysis models,

only an estimate for differences in the consistency variable for lexical decision accuracy

is missing. The ability to make inferences is blurred, however, because almost half of

the estimates come from FE models. Figure 4.18 displays the summary effects.

Generally, but for lexical decision accuracy, differences in effects are small or

very small and, at the time of writing, most of the estimates are unreliable.

Consequently, the majority of our confidence ratings of very low. Most estimates for

the word naming task fall on or below g = 0.2 and none are reliable. We have very

low confidence in each of the estimates. The power to replicate the effects ranges

between 5% - 12%. The same pattern of findings is present for the word naming

accuracy outcome. Seven of the estimated effects for word naming outcomes are from

FE models.

Length and frequency estimates are measured with some reliability and

precision in lexical decision reaction time, such that their lower confidence interval

limits do not cross zero. Both effects are small. Length has a significant test for the

presence of publication bias and a high RoB judgement, and consequently a very low

confidence rating. Frequency also shows a high RoB judgement and a moderate level

of residual heterogeneity within the subgroup estimate.

Length and frequency are also reliable estimates of effects in lexical decision

accuracy, both showing medium sized effects. We have moderate confidence in the

length estimate and very low confidence in the frequency estimate.

4.3.3.4 Child-Experience

There is a complete set of estimates available for both tasks and both outcomes

(Figure 4.19). On average, the participants differed in age by approximately

two-and-a-half years (mean age: younger = 8.2, older = 10.6 years), representing a

reading skill difference of approximately two and a half years. Just as with the
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Summary of Findings for Differences in Predictor Effects for Child-Experience Contrast, by Task and Outcome
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adult-experience effects, almost half are generated from FE models which

limits our ability to talk with certainty about them. Effect sizes range between g =

0.16 - 0.67. Fifteen estimates are reliably different from zero of which 10 have been

given a confidence rating of moderate. Power to replicate effects estimates ranges

between 5% - 80%.

Word naming reaction time has three reliable estimates. Length, frequency

and consistency all show small size effects. We have moderate confidence in the

consistency estimate but very low confidence in the length and frequency estimates,

probably due to the judgement of high levels of RoB being present in the estimated

effects. Four of the unreliable estimates are generated from FE models, so more

information could quickly improve precision and alter this number of reliable

measurements.

Length, frequency, AoA, consistency and N-size are all reliable estimated

effects for word naming accuracy. Length and frequency show medium sized effects

and show moderate ratings of confidence. AoA, consistency and N-size show small

sized effects. AoA and N-size have moderate ratings of confidence, while consistency

has a low rating. Valence, imageability and arousal are all unreliable at this time.

Five of the eight estimates are measured as reliable for lexical decision

reaction time. N-size and AoA are medium sized effects. Imageability, length and

frequency are small in size. Only N-size has a moderate level of confidence. The

length estimate has been given a very low confidence rating. AoA, imageability and

frequency have low confidence ratings. Valence, arousal and consistency are all

generated from FE models and are estimated as unreliable at this time.

Four of the eight estimates in lexical decision accuracy are reliable. Length,

AoA, frequency and N-size are all small in size and carry moderate confidence ratings.

Imageability, arousal, valence and consistency are all unreliable at this time. It is

worth noting that the two very small (and unreliable at the time of writing) difference

effects in the whole set are for consistency on lexical decision outcomes. More data is

needed, however, this could be relevant to an understanding of how developing readers

approach lexical decision if differences in the consistency effect are very small.
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Summary of Findings for Differences in Predictor Effects for Child-Age Contrast, by Task and Outcome
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4.3.3.5 Child-Age

In the child-age group, younger readers’ average age was 8.0 years; older readers’

average age was 10.3, representing a reading skill delay of just over two years for the

older participants. This contrast is often included in experiments under the

assumption that there is no difference between the younger typical and older atypical,

readers. A direct prediction then is that there are minimal differences in

psycholinguistic variable effects between these two groups.

We were able to estimate 16 / 32 effects (see Figure 4.20), of which five

estimates are generated from FE models. Contrary to an assumption of no difference,

estimates range in size (range = 0.04 - 1.04), however only four are reliable. Twelve of

the estimates’ lower confidence interval limits cross zero. Only one estimate is given a

moderate confidence rating (length on word naming accuracy). Power to replicate

effects estimates ranges between 5% - 22%.

Four estimates are available for word naming reaction time. All are small in

size. Frequency and length are reliable estimates and N-size and consistency are

unreliable at this time.

Six estimates are available for word naming accuracy. Length and consistency

are reliable estimates and both are small sized. Imageability, N-size, frequency and

AoA are all unreliable at this time. Imageability and AoA estimates are generated

from FE models.

Length, frequency and consistency estimates are returned for both lexical

decision reaction time and accuracy outcome measures. All are unreliable and all have

been given a confidence rating of very low. Length and frequency are estimated as

small effects in reaction time and very small in accuracy. Consistency shows a very

small sized effect in reaction time (this is the same threshold as the child-experience

group) but a medium sized effect for accuracy. Both consistency effects are generated

from FE models. Consequently the level of imprecision is very high.
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4.4 Discussion

We conducted a systematic search to find studies that compared groups for their

differences in performance for a psycholinguistic variable in word naming or lexical

decision tasks. One hundred and fifty-five studies met our inclusion criteria. This set

of studies yielded 472 interaction effects across a core set of eight variables for five

types of group comparisons. We used meta-analytic methods to aggregate the

study-level effects and presented a picture of the current state of our knowledge about

the size, reliability and confidence for these summary effects.

What have we learned? Despite a large number of unreliable estimated

effects, differences between groups are present for some psycholinguistic variables

across some task outcomes. Study-level effects for word-frequency, length and to a

slightly lower extent, consistency and N-size, are fairly well represented in the

literature, such that aggregated effects can be estimated with some confidence.

The difference in the word-frequency effect does appear to be larger for lexical

decision than word naming for adult readers that differ in age. In contrast,

adult-ability differences for word-frequency effects across word naming and lexical

decision appear to be similar. Interactions for the word-frequency effect in child

readers is driven by larger differences for younger and less-skilled readers than older

and skilled readers.

Differences in the length effect between groups are present for child subgroups

(all outcomes and all medium sized) and the adult-ability subgroup. Verbal

interpretations from the included studies suggest that the difference is located, once

more in the younger and less-skilled readers, with generally, no length effect detected

in the older-skilled readers. The nature of the effect is described differently across

studies with some studies describing letter by letter increments and other studies

describing effects at certain points in words, for instance between the third and fourth

letter for younger / less-skilled readers but the sixth and seventh letters for older and

more skilled readers. This suggests that ability to chunk or capacity to compress

visual information develops with age or stronger skill.
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Length shows a medium sized difference in effects for typically-reading

younger and older adults on lexical decision accuracy. The larger length effect here is

for younger skilled adults, following the pattern of the child and less-skilled adult

subgroups.

When we turn to consistency, lexical decision outcomes have very few effects;

word naming tasks show a higher level of representation. The effects are driven by

slower and greater error for low consistency words. There is a high level of imprecision

in the consistency effect estimates, however. Given its importance in verbal and

computational accounts of reading, the consistency variable is a good proposition for

replication studies.

For other variables, we probably have to say that the current state of our

knowledge is highly uncertain. The representation of evidence is quite unbalanced

between both psycholinguistic predictors and types of group. There are scattered

results for AoA and imageability estimates. The most recently constructed variables,

valence and arousal, returned study-level effects in child samples only. Obviously, time

is a confound here. Older variables are more likely to have greater coverage and so be

estimated with greater precision which gives greater probability of a moderate level of

confidence. For new variables, it does beg the question of how to efficiently build an

evidence base.

This point is linked to missing data points (n = 29) and the estimates that

are generated from FE models (n = 41). Furthermore, gathering more information as

efficiently as possible will also raise confidence in the 127 estimates that are rated

either low or very low. Below we explain what we mean by efficiency and put forward

an approach to future research design within the field that may focus and accelerate

the collection of data for psycholinguistic variables that are currently either unreliable

or under-represented.

First, estimates generated from multiple small studies convey reliability and

confidence within this data set. Contrast Figure 4.19 and Figure 4.18 with Figure

4.17. The first two figures document adult- and child-experience summary effects, for

which there is good coverage of predictors. In both groups, however, most of the
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estimates are unreliable, with almost half of the estimates reflecting only one

study-level effect and the confidence ratings marred as a result. Contrast this with the

child-ability summary effects (Figure 4.17). Missing variables are present. However,

where present, multiple small studies have been conducted (0/32 FE estimates),

giving greater confidence in the estimates that are present (9/19 ratings are

moderate). Clearly, the multiple small study approach has value.

Gathering more data is clearly mandated. P-curve analyses for the

word-frequency effect suggested that only lexical decision accuracy contained

evidentiary value of an effect. One possible solution to this is to source all single

sample studies for corresponding groups and perform network meta-analyses on those

study-level effects. Advances in statistical modelling and decreases in computational

power costs make this plausible. This does not raise precision in the measurements,

though. Across the networks, participant samples are using different sets of items,

whereas here, the two participants groups within a study saw the same items. We are

introducing a further level of variability, which may impact confidence ratings. At

most, performing a network meta-analysis would be complementary and (hopefully) a

converging line of evidence rather than additional data for this line of evidence.

Also, to perform such a review would not solve the dilemma of missing data

for the newest variables. While we know that such variables exist and contribute to

word recognition – but not by how much – the ability of the field to develop a richer

or fuller theory for word recognition is constrained. So too, is it constrained if

estimates for some groups are more present than others (compare the adult-ability

and adult-experience effects). There is a risk of developing a theory that does not

generalise outside of a reading behaviour for a specific group. On the contrary, having

a more representative sample of data will give us clarity around how experience or

skill moderate effects.

Which brings us to an entire group that is missing. Only one study included

samples between the age of 12 - 18 years. Studies with contrasted groups for

adolescent readers, that manipulate psycholinguistic variables, are not represented

here. In the previous chapters, we detailed an adult-learner literature that was also
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extremely sparse in psycholinguistic effects. We know that there are adult readers

who left school without a functional level of literacy, yet we are not looking at the

later school years to understand how this may happen.

Going forward, gathering new data is mandated. Efficiency will be improved

when designs are sufficiently powered to detect interaction effects. Recall that Gelman

(2018) stated that powering detection of an interaction effect needed 16 times the

sample size for detection of a main effect. We must also remember that we are

sampling at the level of both participants and items.

With these meta-analysed estimates in hand, researchers now have an

estimate of an effect size which can inform an a priori power analysis. Brysbaert and

Stevens (2018) suggested a sample of 1600 observations per condition for robust

estimation of effects. Most studies explore two conditions at least, suggesting a

minimum of 3200 observations, which can be thought of as 40 participants naming 80

items that represent two levels of a psycholinguistic variable. Yet this is still a single

sample design. Adding a condition onto the participant sample changes the design to

an 80 x 80 participants by items design for an effect size of d = 0.3 (Brysbaert and

Stevens, 2018; Westfall, Jacob et al., 2014)8.

To detect a Hedges’ g = 0.1 ( the smallest effect for word-frequency in the

adult-experience estimates), the power of an 80 x 80 participant x item design falls to

~ 17%. A massive 650 x 650 participant x item design gives a power of 81.2 %. Such

levels of participants have only been observed in megastudies (Adelman et al., 2014;

Balota et al., 2007; Davies et al., 2017; Schröter and Schroeder, 2017).

Is precise and robust estimation of effects for differences amongst groups for

the differences in how they use psycholinguistic variables only the province of

megastudies, then? To think and behave in such a way would be to lose some of the

diversity and variability that is observed in the estimated effects, which give so much

promise for generalisation of effects (Westfall, 2016). A systematic approach to new

8Westfall et al., 2014 provide a website by which to calculate sample sizes for effects in study
designs used in psycholinguistic experiments: https://jakewestfall.shinyapps.io/crossedpower/; Even
though advised that http://jakewestfall.org/power/ is the stable URL, that address gives an Error 404
message.

https://jakewestfall.shinyapps.io/crossedpower/
http://jakewestfall.org/power/
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data gathering that borrows regression analysis techniques from the megastudies and

capitalises on the multiple study approach is needed. We suggest a consortial

approach coupled with matrix sampling of items as an efficient method by which to

gather new data.

Three studies within the meta-analysis adopt a matrix sampling approach to

ensure coverage of a large sample of items while participants see only a selection

(Balota et al., 2007; McKoon and Ratcliff, 2016; Schröter and Schroeder, 2017). This

approach is incredibly flexible, evidenced by its use with adult participants (Balota

et al., 2007; McKoon and Ratcliff, 2016) and child participants (Schröter and

Schroeder, 2017, see also Hsiao and Nation (2018)). We advocate the 3-form design

(Graham et al., 2006). Samples are constructed of a base set, X, and three (or more)

further sets. Set X contains items critical to the research hypotheses, while other sets

contain items that support the hypotheses. Every participant sees set X and a

number of other sets in a systematic pattern. Using this design supports the

estimation of means, variances and covariances between variables. Further, by

constructing samples by way of a base set of items plus an extended set of items,

researchers can choose their own sets of items in the extended set but shared research

goals are maintained by set X. Common items between studies will allow for the

updating of effects’ estimates present herein and also robust estimation of summary

effects for those that are missing.

Constructing a base set that measures a selection of variables for which we

need a boost of information (for instance, FE estimated effects in this meta-analysis)

or to begin to estimate effect sizes (missing estimates) would accelerate the accrual of

data to improve the state of our knowledge. Constructing extended sets would allow

researchers to additionally focus on the variables in which they are particularly

interested. Coupling design with a regression approach for analysis would allow for

simultaneous estimation of study-level effects across a number of variables, improving

estimation of the effects due to the increased accuracy of the estimates’ standard

errors.

A consortial approach would also provide for a coherent approach to the
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operationalisations of experience or age or ability group construction. Ability

contrasts at the group level in children are measured by > 20 different tests. Where

available, and given the host language of the study, it may be preferable to reduce this

set to a smaller quantity of tests. Alternatively, data sharing and explicit reporting

routines would allow for standardisation for comparison across samples to be more

efficiently achieved.

With the advent of powerful desktop computing resources, mixed-effects

models for these conventional repeated measure designs can now be the default

method. The sensitivity of these methods and their regularisation abilities could

potentially improve estimation magnitude and precision, compared to aggregated

values computed in ANOVA (Baayen et al., 2008; Barr, 2013; Masterson et al., 2007;

Matuschek et al., 2017). The flexibility of the generalised linear model also allows

modelling of accuracy outcome data within the constraints of its statistical

distribution. Given that we have low power across many of the samples, adopting

statistical analysis methods that maintain more of the information in the data by

design can help.

A multiple regression approach to analysis benefits the field in three ways.

First, regression methods conserve more of the information within a data set, and

consequently statistical power, because the data is not aggregated as it is in analysis

of variance methods. Second, each psycholinguistic variable recovered in the

systematic search is claiming to have influence on word recognition processes.

Consequently, it is a stronger and more honest test that the effect of each

psycholinguistic variable be estimated alongside each other. Partialling out the

influence of covariates will give a more precise estimate for the primary variable.

We are sure that psycholinguistic variables’ effect sizes will be attenuated

under these conditions, however we think it represents a refinement of current practice

that will give us greater confidence in our findings for the field as a whole. Finally, by

including all the psycholinguistic variables, we are systematically and regularly

gathering data across the variable set, thereby strengthening the evidence base for the

(un)reliability of each candidate psycholinguistic variable.
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Matrix designs with base sets / extended sets allows large amounts of data to

be collected in the small controlled study setting that seems preferred by the

researchers featured here. Like minded researchers could be running many small

studies in parallel while working towards a common goal. With the communication

networks and computational infrastructure that exist today, acceleration of knowledge

production is well within our reach.

4.4.1 Future Directions

We fervently hope that the availability of the meta-analysis and its findings at the

project OSF repository provides a resource and reference point for researchers in the

field for planning future studies. The missingness of the ability estimates, particularly

for adult-ability, looks to be an intriguing vein of research. A further area for

consideration could be a systematic plan to include samples of older children. Only a

handful of studies included child samples between 12 -18 years of age, so few that we

could not realistically include them as a group here.

There are a couple of immediate recommendations that are cost-free and easy

to implement and would make estimation of study-level effects for the purpose of

meta-analysis much more reliable. First, reporting condition level means and standard

deviations in descriptive statistics sections of research reports. With these sufficient

statistics in hand, constructing effect sizes and updating these estimates is trivial.

Second, we ask that all variables and all findings are explicitly reported in the

research report. We can see that our decision to impute missing variable results at the

level of p = .1 could have introduced a systematic bias into findings. Where variable

findings are reported in full, irrespective of whether or not it was a null finding, there

is no need for this practice.

In the short to medium term, we think that the issue of missingness can be

efficiently redressed by asking people to perform multiple regression analyses that

include all the psycholinguistic variables recovered in this meta-analysis. There is a

slight cost to the researcher here in resourcing the additional variables and engaging

https://bit.ly/Meta-analysis-repository


160

in regression methods rather than choosing ANOVA, but the gains to the field of

research as a whole would be worth it.

In the medium term to long term, we advocate a consortial approach as

detailed above, where researchers network their research design, materials and data

analysis. Working together in this way is being used very successfully by projects such

as the Psychological Accelerator and BabyDev. The promise of a networked approach

together with matrix sampling techniques and standard operating procedures for task

administration and analysis, all of which can reduce the signal to noise ratio,

maximises power to produce estimates with greater precision and build confidence in

future results.

4.4.2 Limitations

We imputed hypothesised effects that were not described or completely missing from

results sections of eligible studies at a uniform value of p = .1. We are aware that this

may have introduced a source of bias but chose completeness for this first look at the

state of the field. Very few of the Egger’s Tests or Rank Correlation Tests were

significant as a result of this. Finally, research reports needed to be available in the

English language, because of the first author’s monolingual status and available

resources. The opportunity to include studies presented in languages other than

English is not lost, however, as we envision updating the meta-analysis. Researchers

who know of such studies are eagerly invited to contribute and participate in the

collation of those data.

4.5 Conclusion

We presented the results of a wide ranging meta-analysis detailing the differences in

psycholinguistic variable effects on single word recognition task outcomes for groups of

different ages and ability, for which the data, code and complementary reports are

available at the project OSF repository. We have found that the variables frequency,

https://bit.ly/Meta-analysis-repository
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length and consistency are the most populated estimates and are more likely to yield

non-zero and reliable differences between groups, and that more recent and less

studied psycholinguistic variables are yet to achieve results in which we can have

confidence. Adults are more likely to be contrasted by age and experience and

children are more frequently explored as a function of ability differences. Adult-ability

groups show some strong estimates, however, that suggests they are worthy of further

attention and research. We have also found that studies, on the whole, lack statistical

power at the level of the group interaction effect for which the studies are explicitly

designed. We have suggested immediate and longer term approaches to methods in

the field of word recognition research to raise confidence in estimates and strengthen

our capacity for inference making over typical and atypical reading processes.
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5 Longitudinal Study

The meta-analysis collected study-level effects across eight psycholinguistic variables

for five types of sub-groups. The resultant summary effects gives us an idea of what

we may expect in exploratory work with adult-learners.

To summarise from an adult-learner perspective: we may expect to find that

adult-learners show word frequency, consistency and length effects for word naming

reaction time and frequency and consistency on accuracy measures, that may differ

from both their skilled reading adult peers but also younger readers.

In lexical decision accuracy, we may expect the word frequency effect to be

more like younger readers. For the length variable, we may expect to find differences

on reaction time measures. They may perform similarly to younger atypical readers.

Adult-learners may resemble other readers for the impact of length on accuracy

measures.

We may see small effects of N-size on lexical decision reaction time, however

it is also possible that we will observe no difference, since the summary effect estimate

was unreliable. For all other predictors that featured in the meta-analysis there is

either no differences detected between subgroups or missing data.

5.1 The Present Study

Research using individual differences (ID) measures on adult-learners (chapter 2)

suggests a tendency for adult-learners to be a) different in their reading-related skills

than their adult peers and similar in skill level to younger, typical readers, b) stronger

in their semantic skills than their orthographical or phonological knowledge. We know

very little about how psycholinguistic variables may vary as a function of

reading-related skills in adult-learners. Very few studies have measured individual
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differences in the context of psycholinguistic variables (McKoon and Ratcliff, 2016).

Additionally, very few studies report participant samples in the 12–18 years of

age range. An assertion that adult-learners read like 11-year-olds may be tinged with

confirmation bias, since there is no explicit test of how they compare to readers in this

extended age range. Adult-learners could compare more favourably with

typically-reading adolescent participants.

We conducted a longitudinal study to answer this question: are there

qualitative or quantitative differences in psycholinguistic predictor effects between

adult-learners and other readers that are similar or different in their reading skills?

Our first research aim was to estimate the variation in the impact of a range of

psycholinguistic variables in the context of individual differences across a range of

groups. We included six groups, with our primary focus being an adult-learner group

(hereafter atypically-reading adults). We compared them to typically-reading adults

as a peer group comparison. We also recruited two groups of 11-12-year-old

participants as the research literature suggests that this is a reading-age match group

of the atypically-reading adults. Finally, we also invited two groups of 16-17-year-olds

to take part. The typical-readers of this group are a reference group as they represent

a level of reading skill to which the atypically-reading adults aspire. We asked

participants to complete a battery of tasks to assess person-level, reading-related skills.

We also asked participants to complete four experimental tasks. The tasks

were chosen to represent a progression in processing of visual information from

sublexical level to sentence level of print recognition. Differences on any of the tasks

for any of the groups may locate a source of difficulty or advantage that contributes to

an explanation of variability in performance. We briefly describe them here.

First, a letter search task. This task demands fast processing in serial or

parallel fashion and good letter recognition skills to be able to respond quickly and

accurately. With the use of unpronounceable nonwords, the task can also indicate

levels of processing of letters without lexical activation (Ziegler et al., 2008). Slow

reaction times or inaccurate responding may indicate that knowledge and learning at

a letter level is under-developed (Mason, 1978). Inefficient letter processing may
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indicate a reduced capacity for assimilation of statistical information on the

distribution of letters within a language, thus slowing or truncating orthographic

knowledge development (Kirby et al., 2010; Perfetti and Hart, 2002).

Allen et al. (1991) showed that skilled-reading, older adults were slower to

identify letters within words than younger readers. Chetail (2017) manipulated letter

search in the context of high and low frequency bigrams and found that reaction times

were facilitated for high frequency bigrams with no effect on accuracy in skilled,

young adult readers. Horn and Manis (1985) and Ziegler et al. (2008) showed that

letter search accuracy was lower for less-skilled child readers than typical child readers

with no difference in speed. A weaker performance may occur in lower-skilled readers,

or older readers with higher frequency words improving response time.

In contrast, strong performance may indicate that processing is highly tuned

for sublexical information, which may mean processing in parallel at a word level may

be underdeveloped.

A lexical decision and a word naming task were also completed. Differences

between the two tasks are useful for exploring locations of effects. For instance, lexical

decision explicitly examines lexical and sublexical components of word recognition

with its mixture of word and nonword items (Balota and Chumbley, 1984). Word

naming tasks may not need sublexical processing, where a word is known to the

participant, the orthographic form of the word may be sufficient for recognition.

Lexical decision may not need the identification of the entire word for a response to be

made, while word naming needs the specific word item for its correct pronunciation

(Andrews, 1997). Finally, lexical decision has no requirement for a pronunciation,

while word naming does. Consequently, the estimates for phonological variables

required across the tasks may differ. Balota et al. (2004) found a phonological

component across both tasks for skilled readers, and interpreted this as phonological

recoding processes being engaged for all types of items in the two tasks.

The fourth task that participants completed was a cloze, sentence reading

task (Bruck, 1990). Inclusion of a sentence reading task using cloze procedure allows

us to measure, at a crude level of detail, how word reading speed and accuracy fares
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in the context of other words. We manipulated the context of the surrounding words,

to be meaningful, neutral or isolated (i.e. single word recognition with no surrounding

words). For readers who are able to use meaningful sentential contexts, we may

expect word recognition to be faster and accurate. For readers who depend upon

semantic information to a greater extent (as in the division of labour hypothesis,

Plaut, 1996), we would expect variables of the semantic domain to play a greater role

in word recognition for this task.

We were also interested to see if a rate of change in ID measure’ scores for

atypically-reading adult participants was a) detectable and b) commensurate with

other readers across the duration of their course. To this end, we used a longitudinal

design and collected data across three time points within a calendar year. The study

is exploratory in nature. To the best of our knowledge, this is the first study to

explore atypically-reading adults’ word recognition processes using individual

difference measures and multiple psycholinguistic variables.

5.2 Method

5.2.1 Participants

The study collected data from participants over three data collection sessions, with

the number of days varying between data collection times and participants. For

simplicity, we refer to the three data collection points as T1, T2 and T3. In statistical

analyses, we model time using the number of days passed per data collection session

at the participant level (H. Goldstein, personal communication, June 19, 2019). Also,

for simplicity, we refer to reading groups who are demonstrating age-appropriate

reading skill as “typical” and those that are slightly below age-appropriate as

“atypical” in either 11-12- or 16-17-years old or adults.

At each data collection session, participants completed a battery of ID

measures and four experimental tasks. Recruitment and testing procedures were

approved by Lancaster University Research Ethics Committee. Typically-reading
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adults were recruited from the local community and atypically-reading adults from FE

college GCSE English classes. Participants in the atypically-reading 16-17-year-old

group were recruited from GCSE English classes running in the same FE college.

Typically-reading 16-17-year-old readers were recruited from a local sixth-form

provision within a secondary school. Typically- and atypically-reading

11-12-years-olds were recruited from two local secondary schools. Permission to

conduct the study was obtained from institutions. Duty of care was adopted by one

school due to the nature of the tasks being very similar to school activities with

parents asked to explicitly opt out of the study. The other school asked parents to opt

in by giving explicit informed consent. All participants gave informed consent at the

beginning of each data collection session.

There were 218 participants tested at T1. At T2, 191 participants returned

and at T3, 173 participants. All participants reported no history of learning disorders

during their secondary school experiences, although some of the atypically-reading

adults reported anecdotally they experienced some difficulties as they completed the

tasks. All participants reported normal or corrected-to-normal vision.

5.2.1.1 Eleven-Twelve-Year-Olds

Eighty-three 11-12-year-old readers (39 females) took part. The average age of

participants was 11.8 years (SD = 0.3, range 11.2-13.2 years). Each school sent letters

to parents for children who scored between 90 and 110 on the GL Assessment CAT4

Verbal Reasoning test. Individual students who scored between 90-99 were assigned to

the atypically-reading 11-12-year-old group (n = 40). The remainder were assigned to

the typically-reading 11-12-year-old group (n = 43). As a thank you for taking part,

participants in this group were given a raffle ticket at each time point of data

collection. The raffle was drawn at the end of data collection with 10 prizes of £20

vouchers awarded.
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5.2.1.2 Sixteen-Seventeen-Year-Olds

At T1, 69 16-17-year-old participants took part (33 females). The average age of

participants was 17.1 years (SD = 0.8, range 16.2 - 20.2 years). Atypical readers (n =

43) were approached through their English GCSE classes. Enrolment in such classes is

due to achieving less than a pass at the first attempt of their English GCSE.

Typically-reading 16-17-year-old readers who achieved a level 4 in their English GCSE

(n = 26) were recruited through a college welcome day and through a year group

assembly. Any interested student was given an information sheet and participant

consent form. At the outset of the study, there were age differences between the

groups. The atypically-reading 16-17-year-olds were slightly older than the

typically-reading 16-17-year-olds (Mtyp = 16.8; Matyp = 17.4, t(63) = 3.65, p < .001).

Students who took part in the study were entered into a raffle for a £200 prize

voucher.

5.2.1.3 Adults

Sixty-six adults, aged 20 years and above (44 females) took part. The average age of

participants was 43.0 years (SD = 15.8, range 19.7-78.6 years). Atypically-reading

adults were approached through their GCSE English classes (n = 38).

Typically-reading adults (n = 28) were recruited through word of mouth, local

newspaper adverts, and two days recruitment in local shopping centres. As such they

represent a self-selected group of people. At the outset of the study, there were age

differences between the groups. The atypically-reading adults were younger than the

typically-reading adults (Mtyp = 56.4; Matyp = 33.1, t (48) = -8.28, p < .001). The

differences in age was carried forward to the third data collection point between

groups for those present (Mtyp = 58.1; Matyp = 34.9, t (44) = -7.36, p < .001). Adults

who took part in the study were entered into a raffle for a £200 prize voucher.
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5.2.2 Data Collection

Data was collected between October 2017 and October 2018. Data collection sessions

for school and FE students took place in either the school library or an empty

classroom. Data collection for adult participants took place either at college during

lesson time or at the participant’s home, whichever was most convenient for the

individual. Each session took approximately 50 minutes. ID measures were completed

in the same order at each time point. Experimental task order was counterbalanced

within group and participants across time by way of standard latin square design.

After the third data collection session, participants were thanked for their

participation and debriefed.

5.2.3 Measures

Six ID measures were used, repeated across data collection sessions. Four

experimental tasks were used with different items within tasks at each time point.

5.2.3.1 Individual Difference Measures

Word Reading. Participants read Form A of the Test of Word Reading Efficiency

Sight Word Efficiency Test (SWE, Torgesen et al., 2012). Over 45 seconds, the

individual reads aloud as many of the 104 test items as accurately as possible. Words

at the beginning of the test are higher in frequency than words towards the end of the

test. The measure is the number of words read correctly in 45 seconds. Faster readers

who complete the 104 test items have their actual time recorded. Standard scores for

the SWE are only available for 6:0 - 24:11 year olds, so we used raw scores as

measures. A word reading skill measure is constructed by dividing the number of

words read correctly by the time taken.

Time sampling error rates for same form administration are available for

8-18-year olds with a resting period of two weeks. For a sample of 8-12–year-olds,
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test-retest reliability was alpha = .90; for a sample of 13–18-year-olds, test-retest

reliability was alpha = .84.

Nanda et al. (2010) tested 108 native English speakers and 88

English-as-a-second-language speakers who were engaged in adult education classes.

Test-retest reliability correlation with an approximate delay of four months between

testing sessions was .84 for the English speaking atypically-reading adults.

Nonword Reading Skill. Participants read Form A of the TOWRE-2 Phonemic

Decoding Efficiency test (PDE, Torgesen et al., 2012). Over 45 seconds, an individual

reads out loud as a many of the 63 nonword test items as accurately as possible. The

length and complexity of phonemic structure of the test items increases through the

test. The test score is the number of items read accurately in 45 seconds. As with the

SWE, we used raw scores. Readers who complete the 63 test items have their actual

time recorded. A nonword reading skill measure is constructed by dividing the

number of nonwords read correctly by the time taken.

Time sampling error rates for same form administration are available for

8-18-year olds with a resting period of two weeks. For a sample of 8-12–year-olds,

test-retest reliability was alpha = .91; for a sample of 13 – 18 year olds, test-retest

reliability was alpha = .90.

Nanda et al. (2010) also completed test-retest reliability for the PDE on the

same sample as listed above and found an alpha coefficient of .78.

The SWE and the PDE have a correlation of .83 for performance in samples

for which it is designed, indicating that they may be measuring the same underlying

construct or ability.

Phonological Awareness Skill. Participants completed the Phoneme Isolation

(PI) subtest from the Comprehensive Test of Phonological Processing - second edition

(CTOPP-2, Wagner et al., 2013). Over 32 items, an individual listens to a whole word

and then identifies a target sound within that word. This is an untimed test. The

items at the beginning of the test are CVC items and highly consistent in
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sound-spelling relationships. More complex words are introduced as the items

progress. Early in the test, individuals identify beginning and end sounds in words

with middle sounds introduced later. The most difficult items have more letters than

sounds. Individuals cannot rely on a visual strategy for these words and must engage

with some parsing of phonemes to identify the correct target sound. All items were

administered. The measure is the number of items answered correctly.

Time sampling error rates are available with periods between testing varying

from 1 to 2 weeks. For a sample of 12 – 18 year-olds, test-retest reliability was alpha

= .67.

This subtest has a phonological composite correlation score with the SWE of

.41 for a sample of typical readers of ages 11-20 years (n = 384). The phonological

composite correlation with the PDE for the same sample is .25 (Wagner et al., 2013).

These low correlations indicate that the PI test may be capturing a different skill than

the word and nonword reading tasks.

Processing Speed. We use the Rapid Object Naming (RON) test from CTOPP-2

(Wagner et al., 2013) to capture any general processing speed differences that may

underlie reading differences within the participant sample. The object naming test is

chosen as opposed to letter or digit naming task to measure general processing speed

rather than verbal processing speed. The object naming test was preferred to the

colour version of the test because people see colour differently, which could introduce

a confound (Kirby et al., 2010).

Pictures of six objects are randomly repeated across four rows of nine objects.

Participants name the objects in succession, beginning on the top left hand corner,

reading each row as quickly and accurately as possible until reaching the last item in

the bottom right hand corner. The measure is the total time taken in seconds to

finish naming all 36 items. We constructed a skill measure by dividing the number of

objects correctly answered by the time taken to give an object / second measure.

Test-retest reliability alpha coefficient, estimating error due to time sampling for this

subtest is alpha = .86.
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Vocabulary Knowledge. The Shipley-2 Vocabulary Scale is a 40 item test

(Shipley, 1940). It is designed to measure crystallised knowledge of vocabulary for

individuals between the age of 7:0 – 89 years within a 10 minute time period. Early

test items are higher in frequency than later test items. Reading skills of 10-years of

age are assumed for independent completion, however in the present study, if

participants asked for any words to be pronounced for them, they were.

Each of 40 target words has four possible answers listed against them.

Individuals must circle one of the four possible answers that shares a similar meaning

with the target word. The measure is the number of correctly identified words within

the time limit. Although there are standard scores available for ages 7-89 years, we

use raw scores as measures to align with other task measures.

Time sampling error rates are available with periods between testing varying

from 1 to 2 weeks. For a sample of teens to adults, test-retest reliability was alpha =

.89.

The Shipley-2 Vocabulary Scale is known to correlate well with other

reading-related measures. The correlation with the Wechsler Individual Achievement

Test - Second Edition (WIAT-II) word reading subtest is .79. These are moderate

correlations which suggest that word reading and vocabulary may be measuring

aspects of the same underlying construct.

Spelling Knowledge. Participants completed the WIAT-II spelling subtest

(Wechsler, 2001), items 27 - 53. Item 27 is the recommended basal level for

11-12-year-olds. Items increase in spelling complexity, sampling from a wide range of

orthographic patterns. Participants hear the target word, hear the target word in a

sentence and hear the word once more before recording their responses. The measure

taken is the number of correct answers with a maximum score of 27. All participants

had the opportunity to answer all items. At T1, group administration was possible

due to the consistent starting point. After T1, administration to the 16-17-year-old

and adult participants was individual, while administration to the 11-12-year-olds

remained in groups.
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Group Contrasts. We created a planned contrast variable such that specific group

differences of primary interest were estimated rather than estimates comparing all

groups to a reference group (Schad et al., 2020). We planned the following:

• Atypically-reading adults vs typically-reading 16-17-year-olds

• Atypically-reading adults vs atypically-reading 16-17-year-olds

• Atypically-reading adults vs typical 11-12-year-olds

• Atypically-reading adults vs typical adults

• Atypical 11-12-year-olds vs typical 11-12-year-olds

The first two contrasts reflect the gaps in our knowledge about how

atypically-reading adults may compare to 16-17-year-old readers. The third contrast

seeks to confirm findings of prior studies where atypically-reading adults have shown

reading-related skills similar to those of typically-reading 11-year-olds. The fourth

contrast is a check that atypically-reading adults are different from typically-reading

adults.

We chose to contrast the two 11-12-year-old groups for two reasons. First, if

the atypically-reading adults were the same as the typical 11-12-year-olds, and the

two 11-12-year-old groups were found to have no discernible differences, we could also

assume that there was a low probability of difference between atypically-reading

adults and atypical 11-12-year-olds. Second, explicitly testing for differences between

the two 11-12-year-old groups may prove useful for the institutions from which the

samples were taken, given that there are some more useful years by which an influence

through teaching could be explored.

Measures of Time. Time between data collection points varied within and across

participants. For instance, for one participant, T1 → T2 = 81 days and T2 → T3 =

86 days, giving 167 days from T1 → T3. This was the shortest data collection period

in the data set. The longest data collection period was T1 → T2 = 214 days and T2

→ T3 = 135, giving 349 days from T1 → T3. The variability within the time measure

could confound any estimates of change, so needs to be included in the model (H.
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Goldstein, personal communication, June 19, 2019). The first data collection session

for each participant was designated as day 0. The variable rate at which data was

collected is captured by two variables: ‘Days’ as the number of day since day 0 and

also ‘Age’ calculated in years (to 2 decimal places).

5.2.3.2 Psycholinguistic Measures

Item Sampling. We selected items across high and low frequency values from

SUBTLEX-UK (Van Heuven et al., 2014), collecting measures for multiple

psycholinguistic variables at the same time. We also collected measures from N-Watch

(Davis, 2005). Four lists were constructed from the item sample of which three were

eventually used in the study.

Properties of items for each experimental task are detailed within relevant

results sections. List presentation was counterbalanced within group and participants

across time by way of standard latin square design, such that by the end of three data

collection sessions, a participant would have seen all items for all tasks within the

sample. The sampling process for construction of three lists for all tasks is detailed in

Appendix D. Items are listed by task in Appendix E.

AoA. Taken from Kuperman et al. (2012), these AoA ratings capture the age in

years at which a sample of American participants reported that they first remember

understanding the word when somebody used it in their presence. AoA and frequency

values tend to show a strong, negative correlation with each other. Across the four

tasks, the range of correlations between AoA and frequency is letter search r = -.82,

lexical decision and word naming r = -.74, sentence reading r = – .60, all ps < .001.

Arousal, Dominance, Valence. Ratings for affect are taken from Warriner et al.

(2013). These ratings are collected on a 1 to 9 scale. A rating of 1 indicates high levels

of positive valence and arousal and low levels of being controlled or dominated. A

rating of 9 indicates high levels of negative valence, low levels of arousal (e.g. ‘sleepy’
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or ‘sluggish’) and high levels of controlling behaviour. Citron et al. (2014) reports

that many studies that explore affective variables find effects as interactions with

other item-level variables. Since the models are not planned to include interactions

between item-level variables at this early stage of exploration, they are included here

as part of the model as emotion words have been shown to influence word recognition

in lexical decision (Estes and Adelman, 2008; Kuperman et al., 2014).

Bigram Frequency. Bigram frequency is a measure of orthographic structure that

occurs at the sublexical level (Gernsbacher, 1984). A presence of a bigram frequency

effect could support an interpretation that readers process words above the letter level

but beneath the whole-word level (Hofmann et al., 2007). The occurrence of adjacent

pairs of letters within words are counted within a corpus by type (how many types of

words) and token (how many occurrences of each type of word). We collected

measures of both.

Bigram frequency (type) is an average of the number of words that share a

bigram in the same position with the target word. The number of words for each

bigram at each position is added together and divided by the number of bigrams

within the word.

Bigram frequency (token) is the summed frequencies of the bigrams across

the letter string, divided by the number of bigrams.

We also collected values for Mean log bigram frequency. This is an average

value made by summing the logarithmic frequencies of words that share bigrams with

the target word and dividing the sum by the number of bigrams in the word.

We extracted type and token values from SUBTLEX-UK and mean log

bigram frequency values from the CELEX database via the N-watch program (Davis,

2005). Muncer et al. (2014) found that summed bigram frequency measures were

probably the best predictive measure of bigrams for lexical decision and word naming

tasks.
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Concreteness. The extent to which a person considers the word to refer to some

perceptible concept that can be experienced by one of the five human senses is

measured by concreteness ratings. A rating of 1 indicates an abstract word; a rating

of 5 indicates a word that can be experienced directly through senses or actions. In

this study we use values taken from Brysbaert et al. (2014).

Consistency. We constructed a rime consistency ratio using the friends / friends +

enemies ratio used in Adelman and Brown (2007). We used the ‘RegExp’ function of

the online SUBTLEX-UK search facility (Van Heuven et al., 2014) to count the

number of friends for an item: monosyllabic words that have identically spelled rimes

to the target words and maintained the vowel sound; the number of enemies:

monosyllabic words that share the same rime spelling with different pronunciations.

Number of friends was then divided by the sum of friends and enemies to produce a

rime consistency rating that ranges between 0 and 1. A higher value indicates that

the target word has more friends than enemies. A higher value indicates a greater

degree of consistency of pronunciation for that rime spelling, conditional upon the

SUBTLEX-UK lexicon.

Word-Frequency. We collected words that represented high and low frequency

values from the CELEX database (Baayen et al., 1995), SUBTLEX-UK Zipf

frequency scale (hereafter Zipf scale, Van Heuven et al., 2014) and the Contextual

Diversity scale (CD, Van Heuven et al., 2014), settling on the Zipf frequency values as

the best measure (see Appendix D for our evaluation of the four measures).

During a variance inflation factor process (see section 5.2.5.5) CELEX written

and spoken frequencies were identified as having very high VIF values and were

recommended for removal. CD and Zipf values showed similar VIF values. While CD

values have been demonstrated to explain more variance than raw frequency counts

(Adelman et al., 2006; Brysbaert et al., 2016), values for items across different lists

gave significantly different standard deviation values. The Zipf scale showed

equivalent variance values across the lists. For this reason we settled on the Zipf scale
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as our frequency rating.

The Zipf scale is a log scale of frequency. The scale ranges between 1 and 7

with low values representing words of very low frequency and high values representing

words of high frequency.

Imageability. Imageability values capture the extent to which a word will conjure a

mental image. Values are taken from Cortese and Fugett (2004). Undergraduate

participants were asked to rate the ease (7: high level of easiness) or difficulty (1: low

level of easiness) with which a mental image came to mind on presentation of a word.

Length. Serial reading processes may be in evidence if length of letters or phonemes

is influential in the models. We might expect serial reading processes to be in

evidence where items are unfamiliar, challenging or in readers that are younger or

lower in reading skill. We collected length as number of letters and also number of

phonemes. The correlation between the two measures in word naming and lexical

decision (same items) r = .61, p < .001, and for sentence reading r = .75, p < .001.

During the VIF process, length was identified as having a high inflation value.

Consequently, number of phonemes was used as a proxy for length in the statistical

models (Morrison et al., 2003).

N-size. We took measures of Coltheart’s N (Coltheart et al., 1977) from N-Watch

(Davis, 2005). We also included orthographic (OLD) and phonological Levenshtein

distance values (PLD, Yarkoni et al., 2008) from the English Lexicon Project (Balota

et al., 2007). This is the mean number of substitutions, deletions or insertions of

letters or phonemes needed to turn the target word into one of its 20 nearest

neighbours. Following Yap et al. (2015) we constructed a ratio of OLD and PLD

values to make a Levenshtein phonological consistency (LPC) measure. LPC values

closer to 1 indicated greater consistency for the spelling to sound mapping of a word.
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Sensory Experience Ratings. Taken from Juhasz et al. (2011). The sensory

experience rating (SER) variable is designed to measure how much a word evokes

sensory or perceptual experience. Undergraduate participants were asked to rate

words between values of 1 (no sensory experience) to 7 (strong sensory experience).

SER may be a complement to imageability as it has been shown to correlate at a

moderate level (r = .46).

Polysemy. Words with many meanings are considered to incur a processing cost as

multiple potential meanings are activated that must be reconciled, compared to words

with fewer or a single meaning. We use two measures:

Number of Word Meanings. Following de Vaan et al. (2007), items were entered

into the WordNet search engine (Miller, 1995). Counts for different senses of each

item across nouns, verbs, adjectives and adverbs were recorded and summed. This

represented a word meaning set. The distribution of the numbers of meaning for items

within the data set was skewed by a couple having very high totals. Two items did not

have WordNet entries. Consequently, a constant value of 1 was added to each item’s

sum value and a log transformation across the item set performed to reduce skewness.

Semantic Diversity. Semantic diversity is a continuous measure, assuming that

meanings vary with use, dependent upon the language by which it is surrounded and

the context (Hoffman and Woollams, 2015). A large value indicates that the item is

found across a broad range of contexts. A word that occurs in fewer contexts is

represented by a smaller value. It is inferred that the number of definitions for a word

of higher semantic diversity will be greater for a word of lower semantic diversity.

Phonetic Onsets. To statistically adjust for systematic bias in our models

introduced by initial phonemes and phonetic onsets (Kessler et al., 2002), we made

several dummy variables that indicated the presence or absence for placement
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categories of initial letters. There are nine categories: alveolars, bilabials, fricative,

glottals, liquid, nasal, palatals, velars and voice.

5.2.4 Experimental Tasks: Procedure

All tasks were administered on a Windows 10 laptop with a 17” screen. Items were

presented in black 28-point Times New Roman font on a grey background. Each task

was administered with DMDX software (Forster K. and Forster J., 2003). Voice

responses for the word naming and sentence reading tasks were captured by a

Microsoft LifeChat X-3000 headset with integrated microphone and saved for offline

processing with the CheckVocal software (Protopapas, 2007). Button presses in the

letter search and lexical decision trials were captured using the left (yes trials) and

right (no trails) trigger buttons on a Logitech Gamepad F310. Participants sat

approximately 50 cm from the screen. Outcome measures for all tasks are accuracy

and reaction time. Analyses are conducted on words only (except for word superiority

models), and reaction time analyses are always for correct trials only.

5.2.4.1 Letter Search

Items. Following Ziegler et al. (2008), items were pairs of 72 words and 72

unpronounceable nonwords of five letters. Unpronounceable nonwords were used

rather than pronounceable nonwords to reduce the use of implicit knowledge of

transitional probabilities between letters that we assume would be higher for a

typical, skilled reader and may confer an advantage for accurate, speeded responding.

Words were balanced for low and high frequency of occurrence. Target letter identity

and position were balanced across six letter positions: not present, and first position

through to fifth, and matched across word and nonword pairs (e.g. “O” in “would

vs. ”vocbs”).

The nonwords were created using the WUGGY Pseudoword Generator

Software (Keuleers and Brysbaert, 2010). We generated 10 unpronounceable

nonwords for each word. Selection of nonwords from each set of 10 was by random
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number generation. The researcher scanned the nonword list to check for

pronounceability of items. If present, a new random number was generated for the set

and a new nonword sampled. This process was repeated until there were 72

unpronounceable nonwords. The 72 word-nonword pairs were divided into three lists

of 24 pairs. Four pairs were used for practice trials leaving 20 pairs per list for data

collection. In each list, the target letter was absent for 10 pairs of items, and present

for two pairs of items at each letter position.

Procedure. The letter search task always preceded the lexical decision task, with a

short break in between tasks. A trial started with the presentation of a target letter

in upper case (e.g., “O”) in the centre of the screen for 500 milliseconds (ms) followed

by the item. Initial presentation of the isolated target letter was presented in upper

case and the letter strings in lower case to decrease the potential use of visual

matching strategies for making decisions. The item remained on the screen until a

response was detected or 2000 ms passed at which point the next trial began.

Participants responded by way of a key press for ‘yes’ or ‘no’ as to whether the target

letter was present. No feedback was given. Participants saw all items in a single block

with trial presentation randomised between participants. There were eight practice

trials (4 words and 4 nonwords) before beginning the task.

A task specific variable for this task was ‘position’ with six levels (none; 1-5).

The reference level is “none”.

5.2.4.2 Lexical Decision and Word Naming

Items. We selected 150 words for use in lexical decision and word naming tasks.

There were an additional 60 words from the sentence reading task isolation condition

(described below). Three lists of 50 + 20 words were made with a balance of low and

high frequency values and word length. To avoid practice effects, a participant saw

different lists for word naming and lexical decision within the same session.

For lexical decision nonwords, we generated 150 nonwords paired with the 150
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words using the WUGGY Pseudoword Generator Software (Keuleers and Brysbaert,

2010). We generated 10 pronounceable nonwords for each word matched by initial

phoneme and OLD measures. Selection of nonwords from the set of 10 was by random

number generation. Words and nonwords were mixed together in the lexical decision

task, however blocks within the task ensured that paired words and nonwords were

never encountered in the same block.

This gave a total of 120 trials for lexical decision tasks and 70 trials for word

naming tasks per session. Lexical decision trials were presented in three blocks of 40

trials. Word naming trials were presented in two blocks of 35 trials. Presentation of

trials within blocks was randomised and order of block presentation randomised

between participants by the DMDX software. The letter search task was presented as

the first block of trials in the lexical decision task at each time point to each

participant. Participants were invited to take self-paced breaks in between blocks.

Procedure. Presentation of items for both tasks was the same. Each trial began

with a fixation point (*) displayed in the centre of the screen for 500 ms followed by

presentation of the item. In word naming trials, the participant was asked to name

the item as quickly and accurately as possible. In lexical decision trials, the

participant was asked to press one of two keys to respond either “yes” if they believed

the item to be a word or “no” if they did not believe the item was a word. In both

tasks, the item remained on screen until either a response was detected or 4000 ms

passed, at which point the next trial began. No feedback was given. There were 10

practice items in lexical decision tasks (5 words and 5 nonwords) and 5 practice items

in the word naming task.

5.2.4.3 Sentence Reading

Items. There were 60 words altogether, 20 per session, repeated across three

conditions, to make 60 trials per session. Words were balanced for low and high

frequency values. The conditions were: isolation, meaningful and neutral contexts.
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Words in the isolation condition were presented in the word naming task. The

“meaningful” and “neutral” contexts had associated stem sentences. For example, for

the target word “school”, a meaningful stem sentence could be “I used to play for my

football team at…” while the neutral context was always “The next word in this

sentence is…”. The final word appeared on the screen on its own and participants were

asked to name the final word as quickly and accurately as possible.

Procedure. Each trial consisted of a presentation of the stem sentence for 2500 ms,

followed by the presentation of the target word to be named. The target word

remained on the screen until a response was detected or 4000 ms had passed at which

point the target word was cleared from the screen and the next trial began. No

feedback was given. There were six practice trials before the task began.

Trials were presented in two blocks with a self-paced break halfway through

the task. A paired meaningful and neutral trial occurred in separate blocks. The

order of trial presentation was randomised within each block and the order of blocks

was randomised between each participant by the DMDX software. A predictor

variable specific to sentence reading was ‘Task’ with three levels (isolation, meaningful

and neutral).

5.2.5 Data Analysis

5.2.5.1 Attrition and Missing Data.

Attrition. It is important to consider the ID measure profiles of participants who

withdrew from the study after T1. If the profiles of participants who withdrew are

significantly different from the continuing participants, this constrains the ability to

generalise finding around how groups may differ as a function of individual differences

at T1 and also from experimental task findings. It may also imply that withdrawing

participants left the study because of their reading-related skills which is important

when we consider the mechanisms for missing data.
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We separated the T1 data of participants who withdrew at either T2 or T3

from the T1 participant data who remained. We then conducted a series of t-tests for

these subsets to determine if the participants who subsequently withdrew were

significantly different on ID measure scores than the participants who remained.

Missing Data. The data analysis strategy involves model comparison techniques.

Consequently, within the same analysis strand, we need each of the models to be

based upon the same data. This mandates a complete case analysis for the

longitudinal data (Long, 2011). Complete cases in this context means, no missing

data at the predictor level rather than no missing data at the task outcome level. For

instance, some participants partially completed ID measures within a data collection

session due to fire alarms or sports day activities.

In preparing the data, we calculated the rate and potential mechanisms for

the missing data on ID measures. We used data imputation techniques to estimate

missing data values (Gelman et al., 2021; van Buuren, 2018). If a participant was

missing data for outcome measures on an experimental task, they were not included in

the analysis for that task. Full details for our missing data process is in Appendix F.

5.2.5.2 Individual Difference Measures

We use the participants’ raw data from T1 (n = 218) and conduct tests to detect

statistically significant differences between group averages on ID measures. Our null

hypothesis is that there are no differences on test scores between groups. For each

measure, we performed a one way ANOVA with the ID measure as the dependent

variable and group as the independent variable to detect differences in scores across

the six groups. We reject the null hypothesis where the p value < .05 and move onto

post hoc tests to determine the pairs of groups that show significant differences.

We test ANOVA model assumptions with Levene’s test for homogeneity of

variance (car package, Fox and Weisburg, 2019) and the Shapiro-Wilk test for normal

distribution of model residuals. Where either the Levene’s test or the Shapiro-Wilk’s
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p values < .05, we repeat the analysis using Kruskal-Wallis tests with a pairwise

Wilcox test (rstatix package, Kassambara, 2023) for post hoc, multiple comparison

analyses, using the Holm’s method to correct the family wise error rate.

We also describe performance for the ID measures over time. We use

spaghetti line plots (Figures 6.5 -6.6) to display the variability in participant

performance within groups. We also describe whether differences identified at T1 hold

over time.

5.2.5.3 Cluster Analysis

Although nominally, there are six labelled groups in the data set, this does not

necessarily mean that their performance on the ID measures is different. There may

be statistically non-significant differences between group performance as they are

currently labelled. The observed data may contain a correlated structure that

suggests a different arrangement of participants as groups. A test of this is a cluster

analysis, a data-driven approach that will confirm the best solution for numbers of

groups and their composition.

We performed a cluster analysis in two stages. In the first stage we used

Hartigans’ Dip Test (Hartigan and Hartigan, 1985) for unimodality from the

clusterability package (Adolfsson et al., 2019). The null hypothesis is that the

sample under investigation arises from a unimodal distribution. In this simple test, a

p value < .05 suggests a departure from unimodality and that more than one sample

distribution may be present in the data.

In the second stage, we sought to confirm the findings suggested by the Dip

Test using the partitioning around mediods (PAM) method. The PAM method

identifies observations around which a substantial quantity of other observations are

gathered with minimal distance. The identified observation is the mediod around

which the other data form a cluster. In contrast to other cluster analysis approaches,

such as k-means, the PAM method identifies actual observations from the data set as

the representative mediods. As PAM is not dependent upon using means’ values for
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calculations, it has the advantage of being more robust to outliers and can model

continuous and non-continuous variables.

As a measure of agreement between the distribution of the participants across

groups in the data set and that suggested by PAM, we calculated the randIndex value

(in flexclust package, Leisch, 2006). The randIndex ranges from -1 to 1 on a scale

of no agreement to perfect agreement, respectively. A high value would therefore

indicate that we have good agreement between labeling of participants in groups in

the data set and identifiable clusters of observations that match those numbers.

We segregated data by data collection point, inputting standardised values for

word and nonword reading skill, spelling and vocabulary scores. We did not include

phonological awareness nor processing speed measures as the analyses (section 6.2.3

and 6.2.4) suggested that all groups performed to the same level on these measures.

We investigated whether the data supported six clusters (to mirror the group labels)

or three clusters (to reflect age bands).

5.2.5.4 Experimental Task Data

We expect differences within and across groups for the ID and psycholinguistic

measures. Across individuals and across data collection session, there may be different

rates of change for which we need to take account. There is also structure within the

outcome measures data arising from task design. Within data collection sessions, we

have repeated observations within participants between items and within items

between participants, representing a crossed effects design (Long, 2011). These

repeated observations introduce a dependency within a participant’s or an item’s

outcome measure data (Baayen et al., 2008). Additionally, due to the longitudinal

design, we have potential for within participant variation across time. We need to

adjust estimates for the variation within participant and item to be able to infer that

the fixed effect coefficients are not inflated due to repeated measures of the data.

Additionally, the participants and items within the study represent a subset of a much

larger sample, to which we may like to generalise the findings. Using mixed-effects
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models for our analysis strategy will help us account for all of the above.

Mixed Effects Models. We estimate coefficients for independent and interaction

terms of fixed effects for ID and psycholinguistic measures. We account for variance

between participants within items and between items within participants by including

random intercepts and slopes for participants and items. The inclusion of random

effects terms will give greater precision to the estimation of coefficients for the fixed

effects (Baayen et al., 2008).

We account for random sampling variation over time by also putting ID

measures on the participants random effects term. Specifying the ID measures as

random slopes on participants will account for the correlation within individual

participants over time for any variation on these measures (Long, 2011).

Specifying a time-related variable (for example ‘age’ or ‘days’ as a measure of

days passed) as a fixed effect will capture any independent effects of time. Adding a

time-related variable as a random slope on participants is also warranted within any

statistical model to account for the “time-unstructured” nature of the data set (Singer

et al., 2003). As the period of time between successive data collection sessions varied

between each occasion and each participant, adding a predictor to capture these

values will assist for any differential rates of change between participants.

With multiple predictors for both participants and items and with crossed

random effects estimating variance at the participant and item level, the quantity of

model parameters for estimation is massive. To complicate matters further, some of

the variables correlate moderately or strongly with each other, creating potential

estimation difficulties due to multicollinearity. This can pose a problem for estimation

of effects and convergence of models in the frequentist paradigm of statistical models.

Bayesian inference methods offer a complementary approach to the frequentist

method.

Practically, Bayesian models can be more robust to convergence difficulties

than frequentist models, given that they implement Monte Carlo Markov Chain

(MCMC) sampling methods to return a posterior distribution (McElreath, 2020).
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Consequently, we estimate effects using frequentist and Bayesian inference methods.

There are some differences between the two approaches which we discuss briefly next.

Differences in Interpretation for Frequentist and Bayesian Models.

Estimates from Bayesian and frequentist models arise from different modelling

assumptions that affect interpretation. In frequentist analysis, the current data set is

but one of many data sets, past and future with the model coefficients representing

point estimates of those imagined models (McElreath, 2020). The associated standard

error for each coefficient represents measurement error.

Bayesian data analysis assumes only the sample data, in the context of

explicit prior information and the statistical model. Rather than returning only point

estimates, the coefficient is a value within a range of plausible values, conditioned

upon the prior information, the data and the statistical model (Gelman et al., 2013).

A posterior distribution is calculated which describes a range of plausible

values for the estimate, with the point estimate representing the most plausible value,

occurring at the ‘peak’ of the distribution. Values that are closer to the peak of the

distribution are more plausible than values that are far away from the peak, however

all are plausible, given the model, the prior information and the sample data. The

width of posterior distribution indicates a level of certainty for the range of values.

Bayesian Models and Prior Information. We described above how Bayesian

inference models are dependent upon the model and the sample data. The third

necessary component is prior information. Prior information is the explicit coding of

knowledge that is already known into the model. There are levels of prior information

– uniform priors, weakly informative priors and strongly informative priors. In writing

that Bayesian inference approaches are complementary to frequentist approaches, this

is true with respect to uniform priors. A null hypothesis frequentist model is

equivalent to a Bayesian inference model conditioned upon a uniform, flat prior.

By specifying informative priors, a researcher can input a range of values that

suggest a more plausible parameter space for exploration by the MCMC algorithm.
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These can be left as default values, or effect sizes taken from prior research that

represent the state of the current knowledge. Where possible, we use the summary

effect sizes from the meta-analysis as priors.

Prior information is programmed into the model and the MCMC sampler to

have reference to this distribution during the warm up phase of sampling (Gelman

et al., 2013). The posterior distribution is then a combination of the prior

information, the posterior likelihood and the data. In large data samples, it is likely

that the strength of the observed data will minimise the influence of the prior

information on the posterior distribution.

We programmed two kinds of prior information in our Bayesian inference

models: strong and weak. Weakly informative priors are taken from the Stan manual

(Stan Development Team, 2022) and strongly informative priors are taken from the

meta-analysis project.

5.2.5.5 Modelling Strategy

Analyses are conducted for word items only. Reaction time data for correct trials is

modeled using general linear mixed effects models. Accuracy data is modeled using

generalised linear mixed effects models, specifying the logit link function and, for

Bayesian inference models, the Bernoulli distribution.

For each task, outcome measure and for Bayesian inference models, type of

prior information, we build six models1, using a nested modelling strategy. To be

clear, this means that the larger models contain the smaller models and are estimated

on identical data (see Appendix H for an aide and information criterion values). We

describe the general structure of the models below:

1. Base Random Intercepts Model (Base-RI): This model includes fixed effects

terms for number of days passed, group, ID measures and age. In letter search

there is a predictor for position of letter. In lexical decision there is a predictor

1in both frequentist and Bayesian methods.
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for word status. In sentence reading there is a predictor for context condition.

Random intercept terms are modelled for participants and items.

2. Base Random Intercepts and Slopes Model (Base-RIS): Identical to the Base-RI

model with the addition of ID measures as random slopes on both participant

and item random effect terms.

3. Additive Random Intercepts Model (Additive-RI): This is the Base-RI model

with the addition of fixed effects terms for the psycholinguistic variables.

4. Additive Random Intercepts and Slopes Model (Additive-RIS): This is the

Base-RIS model with the addition of fixed effects terms for the psycholinguistic

variables and the addition of psycholinguistic variables as random slopes on

participants. This model is the design implied model, with all predictors and all

random effects terms included.

5. Interactions and Random Intercepts Model (Interaction-RI): This is the

Additive-RI model except that the fixed effects interact with each other, giving

four way interactions between days passed, group, ID measures and

psycholinguistic variables.

6. Interactions and Random Intercepts and Slopes Model (Interaction-RIS): This is

the Additive-RIS model except that the fixed effects interact with each other,

giving four way interactions between days passed, group, ID measures and

psycholinguistic variables. Random slopes terms remain at the level of

independent predictors. Interaction terms are not entered as random slopes.

These models include a group contrast predictor, to reflect the

quasi-experimental study design that is based upon a sample containing six groups.

Yet the data-driven approach of the cluster analysis indicated that the data do not

support distinct groups. Consequently, a further set of models was constructed,

omitting the group contrast predictor.
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Model Selection. Subject to successful convergence, we inspect information

criterion values for each model. For frequentist models we use the

Akaike-information-criterion (AIC, Burnham and Anderson, 2004) and for Bayesian

models we use the Pareto smoothed importance sampling

leave-one-out-information-criterion values (LOOIC, Vehtari et al., 2017). The model

with the smallest value is presented as the preferred, most compatible model for this

data and sample.

Models in the frequentist paradigm are built using the lme4 package (Bates

et al., 2014); Bayesian inference models are built using brms (Bürkner, 2017). All data

cleaning, wrangling, modelling and plotting are conducted in the R statistical

computing environment (version 4.1.0; R Core Team, 2022). Models were run on the

High End Computing Cluster facility at Lancaster University. Scripts and data for

each tested model are available from the author.

Data Cleaning and Transformations.

Reaction Time Data. We removed observations that occurred below 200 ms (102

observations across all tasks) and above 4000 ms (5 observations). A response below

200 ms is considered too fast to be a valid response and is likely an error. A response

that registers above 4,000 ms is a clear malfunction of the equipment since the

timeout value was set for 4,000 ms.

We log10 transformed reaction time observations to ameliorate skew in the

raw RT distribution and to assist with the linear model assumptions of normally

distributed residual values in the frequentist models.

We also created a standardised reaction time variable using the

typically-reading 16-17-year-old group as our reference group (Long, 2011). We

calculated the mean and standard deviation of reaction time data for the

typically-reading 16-17-year-olds for each condition in each task at T1. We used these

values to standardise reaction times across task, time and condition for all groups.

Consequently, the intercept for reaction time models represents the mean time taken
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to respond to items for an average typically-reading 16-17-year-old participant at T1

for that task and outcome and reference levels for other categorical predictors.

Accuracy Data. Every observation of an accuracy outcome arises from a trial

where a response can either be correct (coded as 1) or incorrect (coded as 0). This

binary response scale motivates the use of logistic regression models. Within the

modelling process, the binary response outcome data (0, 1) is transformed and

coefficients are expressed on a continuous log-odds scale. Essentially, coefficient

estimates will express higher and lower odds of a response being correct with a

negative coefficient indicating a lower probability than 50% of a response being

correct and correspondingly, a positive coefficient indicating a higher probability than

50% of the response being correct. We present log-odds coefficients, transforming onto

a probability scale for verbal description and interpretation.

Predictor Variables. We applied a log10 transformation to continuous predictors

of AoA, bigram frequency, days, N-size, and number of word meanings, principally

because a few values within predictor values were very high, thus creating a skewed

distribution.

It is often advised that entering continuous variables in standardised form

helps with interpretation of interaction terms (Baguley, 2012). Standardising variables

will give the intercept coefficient a meaningful definition of continuous predictors at

their average value. Standardising will also facilitate comparison between coefficients.

Just as with the reaction time data, we used the typically-reading

16-17-year-old mean and standard deviation values by which to standardise each ID

measure. Anchoring the average in this way maintains differences (if any) between

groups within a time point but also between groups across time points (Long, 2011).

For item-level measures, we standardised predictors using the mean and standard

deviations per predictor for the item sample set within the task.

We were conscious of problems of estimation arising from multiple

collinearity. We ran an automated variance inflation function (using the vif() from
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the car package, Fox and Weisburg, 2019) to check which predictors may be very

influential. Setting our threshold at 7.5 (midway between 5-10, the values

recommended by Hair Jr. et al., 2017), the CELEX range of predictors, length, mean

log bigram frequency, the Zipf and the SUBTLEX-UK contextual distinctiveness scale

all showed VIF values > 7.5.

Given this information, we chose the Zipf scale above the CELEX and CD

frequency measures as it showed the lowest VIF value and was balanced across all lists

of items for equivalent mean and standard deviation values (see Appendix D). We

removed length as a predictor variable, choosing to use number of phonemes as a

proxy measure for length (Morrison et al., 2003). Bigram frequency (token) and Mean

log bigram frequency were also indicated as very high and were removed, leaving

bigram frequency (type) as the measure for this construct.

5.2.5.6 Sensitivity Analyses

Complete Cases. We repeated the analysis for the preferred and design implied

models for each task using a reduced data set comprising those participants who

returned for all three data collection sessions. Participants who left the study or where

a specific set of experimental task data was missing from one or more data collection

points were removed. The number of complete cases for the letter search and lexical

decision task is 161; for word naming it is 165; for sentence reading it is 169.

Outlier Analyses. We checked estimates for preferred models for the influence of

outliers. We calculated the inter-quartile range of raw reaction time for each

participant, multiplied the first and the third quartile range by 1.5 and subtracted /

added that value to the first and third quartile for each participant (Baguley, 2012).

Reaction times that lay outside these lower and upper boundaries were classed as

outliers and removed from the data set. We performed this data reduction on both

the full sample and the complete cases, re-running the preferred models for each task

outcome measure on these trimmed data.
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In the next two chapters, we present our findings. In Chapter 6, we present

the descriptive statistics of the sample. At the outset of the chapter we detail the rate

of study attrition and missing data. We present the results of the cluster analysis. We

explore differences between groups across ID measures at T1. These analyses are

motivated by the studies reviewed in Chapter 2 for the adult-learner population. We

also visualise participant variability within group data across time to appreciate what

type of function may be appropriate for modelling the task data.

To anticipate the individual difference findings, atypically-reading adults

show greater similarity with atypically-reading 16-17-year-old readers and typical

11-12-year-old readers, than with typically-reading adult and 16-17-year-olds and

atypically-reading 11-12-year-old readers, except for the phonological and rapid

naming tasks.

In Chapter 7, we present the results of the preferred models from the four

experimental tasks.
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6 Results: Descriptive Statistics

6.1 Attrition and Missing Data

6.1.1 Attrition

Figure 6.1 displays rate of attrition at the group level for each time point. At T1

there were 218 participants. This decreased to 191 participants at T2 and further

decreased to 173 participants at T3. Typically-reading 16-17-year-old and adults are

relatively stable over time. The highest rate of attrition is for the atypically-reading

16-17-year-olds and adults between T1 and T2.

In the 11-12-year-old groups, participants who withdrew were evenly balanced

across typical- and atypical-readers. There were no differences in age between

continuing and withdrawing participants. In both groups, withdrawing participants

performed similarly to their peers at T1 (all ps > .05), with the exception for rapid

naming skill (RON) in the atypical-readers group. The participants who withdrew

showed lower RON skill scores than the participants who continued (mean of 1.2 vs

1.4, t(10.79) = 2.73, p = .02).

In the 16-17-year-olds, 13 of the 14 participants who withdrew from the study

were from the atypically-reading group. There were no mean differences in age

between withdrawing and continuing participants at T3. The average performance

over the ID measures of those that withdrew from the atypically-reading group at T2

or T3 was not significantly different from the atypically-reading participants that

remained (all ps > .16).

In the adult reader group, 17 / 18 participants who withdrew from the study

were in the atypically-reading group. There were no mean differences in ages between

atypically-reading withdrawing adults and continuing atypically-reading adults at T3
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Figure 6.1

Barplot of Participant Attrition by Group From T1 - T3
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(p = 0.277). Across all ID measures at T1, the performance of withdrawing

participants were not statistically significant from those that remained (all ps > .07).

6.1.1.1 Summary

But for the significant finding of lower RON skill scores in the 11-12-year-old

withdrawn participants for the atypically-reading group, all other groups and ID

measures are similar between those participants who completed the study and those

that withdrew after T1. We can be confident that any differences we see between

groups or influence for ID measures on experimental tasks are not due to the change

in group membership scores across time points. The absence of significant differences

described above suggests that the risk of bias in model inferences due to attrition is

minimal.

6.1.2 Missing Data

Some participants completed all experimental tasks but, due to unforeseen

circumstances at the time, are missing data on some ID measures. Where

experimental task data are missing, the participant is omitted from that task analysis.

Full details for the missing data process are listed in Appendix F.

At T1, missing data is present for spelling (n = 22 / 218; 10%) and

vocabulary scores (n = 27 / 218; 12%). This is due to an error on the administration

of the tests to classes which included a subset of participants. We used random

regression imputation (Gelman et al., 2021) to impute values for the missing data.

At T2, one participant (1 / 191; 0.5% per ID measure) completed

experimental tasks but not ID measures due to a fire drill during the session. A

further participant did not complete the spelling test on the day of testing due to

absence from school.

At T3, one participant (1 / 173; 0.5%) did not complete ID measures at T3

due to timing difficulties on the day of testing. Five participants ( 5 / 173; 2.8%) did

not complete the spelling measure and four participants (4 / 173; 2.3%) did not



198

complete the vocabulary measure. This is due to absence from class on the day that

the measures were administered to the 11-12-year-old participants.

At T2 and T3 the missing data rates per ID measure are all below 5%. Due

to the low rate of missingness and the mechanism of missingness categorised as

missing at random, we use single value random sampling to impute values for these

participants (Gelman et al., 2021).

After imputation, we tested for differences between the data with missing

values and the data with imputed values, there were no statistically significant

differences between the data sets (all ps > .7). We present visualisations and results

from the imputed data set from this point forward.

6.2 Differences Between Groups

We next describe differences between group performance. Mean and standard

deviation values for the ID measures by time and group are in Table 6.11. The

distribution of scores in each group for each measure at T1 is presented in Figure 6.2.

Since our primary focus is the atypically-reading adults, we label significant

differences between that group and the other groups on the box plots and describe

other significant differences in the text.

We know that the number of days between data collection sessions varies

between individuals, but even with this variability, scores within group did not

significantly change over time. Consequently, for descriptive purposes for ID measures,

collapsing the number of days to single time points has a low risk of introducing bias

into the means or any inferences. We inspect between group differences in means in

the full sample at T1 (n = 218), and check to see if those relationships hold over T2

and T3. We repeat these checks for the complete case data set (n = 173).

1We report means and sd values here but the majority of tests conducted moved to non-parametric
methods when assumptions were not met for the ANOVA.



Table 6.1

Number of Participants, Means (SD) for Age and ID Measures for Each Group and Data Collection Point.

Time n Age (Yrs) Word accuracy Nonword accuracy Word skill Nonword skill PI RON Spell Voc
Atypical 11-12

1 40 11.9 (0.5) 70.7 (8.3) 40.5 (9.6) 1.6 (0.2) 0.9 (0.2) 24.5 (2.5) 1.4 (0.2) 10.9 (5.1) 19.6 (3.7)
2 38 12.1 (0.5) 73.1 (8.6) 43.5 (9.6) 1.6 (0.2) 1 (0.2) 24.9 (2.1) 1.5 (0.2) 11.8 (4.3) 21.2 (3.3)
3 33 12.3 (0.5) 76.8 (8.7) 44.8 (10) 1.7 (0.2) 1 (0.2) 25.1 (2.4) 1.5 (0.2) 13.1 (4.4) 22.4 (4.3)

Typical 11-12
1 43 11.8 (0.3) 73.7 (6.7) 43.1 (8.3) 1.6 (0.1) 1 (0.2) 25.1 (2.4) 1.5 (0.3) 12.1 (4.7) 20.4 (3.8)
2 42 12 (0.3) 76 (7.2) 44.9 (9) 1.7 (0.2) 1 (0.2) 25.6 (2.2) 1.5 (0.3) 13.6 (4) 22 (3.1)
3 37 12.3 (0.3) 79.5 (8.3) 46.8 (8.3) 1.8 (0.2) 1 (0.2) 25.1 (2) 1.6 (0.3) 14 (4.7) 22.5 (3)

Atypical 16-17
1 43 17.4 (1) 81.6 (9.3) 45 (10.3) 1.8 (0.2) 1 (0.2) 24.8 (2.4) 1.6 (0.4) 14.3 (3.6) 21.3 (5.3)
2 32 17.4 (0.8) 83.7 (9.3) 47.3 (9) 1.9 (0.2) 1.1 (0.3) 24.6 (2.3) 1.7 (0.3) 15.3 (3.7) 24 (5.1)
3 30 17.7 (0.7) 85.3 (9.9) 48.6 (8.5) 1.9 (0.2) 1.1 (0.3) 25.3 (2.2) 1.7 (0.3) 15.5 (3.8) 23.8 (5.2)

Typical 16-17
1 26 16.7 (0.4) 87.3 (9.9) 50.5 (7.7) 1.9 (0.2) 1.1 (0.2) 25.5 (1.9) 1.8 (0.2) 17.2 (4.6) 26.2 (5.6)
2 25 17 (0.3) 88.6 (9.1) 53.3 (6.4) 2 (0.2) 1.2 (0.2) 26.1 (1.5) 1.8 (0.2) 17.8 (3.8) 28.1 (4.9)
3 25 17.3 (0.3) 90.2 (8.5) 53.7 (6.6) 2 (0.2) 1.3 (0.3) 25.8 (1.4) 1.8 (0.3) 18 (4.1) 27.8 (3.8)

Atypical adult
1 38 33.1 (9.4) 79.6 (13.1) 44.5 (11.8) 1.8 (0.3) 1 (0.3) 24.6 (2.9) 1.6 (0.3) 17.7 (5.1) 24.2 (6)
2 26 34 (10.1) 84.3 (11.1) 48.1 (12.8) 1.9 (0.2) 1.1 (0.3) 24.3 (2.5) 1.7 (0.3) 17.3 (4.9) 26.1 (6.2)
3 21 34.9 (10.4) 81.5 (14.9) 47.5 (13.4) 1.8 (0.3) 1.1 (0.3) 25 (2.4) 1.7 (0.3) 16.6 (5.4) 26.1 (7.2)

Typical adult
1 28 56.4 (12.5) 89.8 (8.6) 52.1 (7.9) 2 (0.2) 1.2 (0.2) 25.3 (2.1) 1.6 (0.2) 21.6 (3.6) 36 (1.9)
2 28 56.8 (12.5) 90.9 (9.4) 52.8 (6.8) 2.1 (0.3) 1.2 (0.2) 26.1 (2.7) 1.6 (0.2) 22.1 (4) 35.8 (2)
3 27 58.1 (11.4) 91.7 (10) 53 (7.7) 2.1 (0.3) 1.2 (0.3) 26.1 (2.4) 1.6 (0.3) 22.2 (3.7) 36.1 (2.5)

Note:
n = Sample size. PI = Phonological awareness skill. RON = Rapid naming skill. Spell = Spelling knowledge. Voc = Vocabulary
knowledge.
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Figure 6.2

Boxplots of Distribution of ID Measure Scores by Group at T1 (n = 218)
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6.2.1 Word Reading Skill

A Kruskal-Wallis test for group on word reading skill scores was significant (H(5) =

74.39, p < .001). The pairwise Wilcox test showed that atypically-reading adults read

more words correctly and faster (mean = 1.8, sd = 0.3) than the atypically-reading

11-12-year-olds (mean = 1.6 sd = 0.1; adj.p = .009) at T1 and T2 but not T3. This
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difference is not present in the complete cases data set. They are closer in their word

reading skill mean which results in a non-significant difference (adj.p = .424).

Atypically-reading adults read less words correctly than the typically-reading

adults (mean = 2 sd = 0.2; adj.p = .013) at T1 and T3. This difference remains in

the complete case data set.

The raw accuracy measures show the same pattern. Atypically-reading adults

showed no statistically significant differences in word reading accuracy scores from the

typically-reading 11-12-year-olds (adj.p = .079) or the 16-17-year-olds (adj.patypical =

.954; adj.ptypical = .107). There were no significant differences between the two

11-12-year-old groups nor the 16-17-year-old groups. This pattern is observed across

the complete cases data set.

In summary, the word reading skill scores for atypically-reading adults are

more like typically-reading 11-12-year-old and both groups of 16-17-year-old readers

than their adult peers. The atypically-reading adults are stronger than the

atypically-reading 11-12-year-old group however this difference has closed by the end

of the study. The pattern is identical for accuracy scores. From this point forward, we

report only word reading skill measures.

6.2.2 Nonword Reading Skill

The ANOVA test for nonword reading skill scores showed significant effects of group

on nonword reading skill (F(5, 212) = 7.64, p < .001). The Levene’s and

Shapiro-Wilk tests returned p values > .05 however this was the only ANOVA that

did not violate any of the model assumptions. For ease of comparison, we conducted

the Wilcox test and report those results here.

The Wilcox test showed that the atypically-reading adults (mean = 1.0, sd =

0.3) differed only from the typically-reading adults on nonword reading skill (mean =

1.2, sd = 0.2, p = .033). The difference was only apparent at T1, not at T2 or T3.

Atypically-reading adults perform equivalently to the younger participants. There

were no differences between the two groups in 11-12- and 16-17-year-olds.
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The difference between the adult readers is present in the complete cases data

set. The atypically-reading adults show a lower nonword skill score in the complete

cases data set compared to the full data set (mean = 0.96, sd = 0.3). They remain

significantly different from the typically-reading adults (mean = 1.2, sd = 0.2, adj.p =

.016).

In summary, the atypically-reading adults show no statistically significant

differences with the younger groups on the nonword reading skill measure. The

atypically-reading adults do show differences with the typically-reading adults,

however the conditions for a significant finding are unstable. The pattern is identical

for accuracy scores. From this point forward, we report only nonword reading skill

measures.

6.2.3 Phonological Awareness Skills

A Kruskal-Wallis test showed no significant differences between groups in

phonological awareness skills (H(5) = 4.20, p = .520) at T1. This pattern remains for

T2 and T3. There are no differences between groups in the complete cases data set.

The range within which each group mean falls is incredibly narrow: 24.5 - 26.1 out of

32 items. The majority of participants in each group successfully completed

two-thirds of the items.

6.2.4 Processing Speed

A Kruskal-Wallis test showed significant effects of group on rapid object naming skill

(RON; H(5) = 29.14, p < .001). A pairwise Wilcox test showed that the

atypically-reading adults (mean = 1.6, sd = 0.3) differed significantly from the

atypically-reading 11-12-year-olds (mean = 1.4, sd = 0.2, adj.p = .039). There were

no statistically significant differences between the atypically-reading adults and any of

the other groups.

The atypically-reading 11-12-year-olds were significantly different from all of
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the older reading groups (all adj.ps < .039). The typically-reading 11-12-year-old

group (mean = 1.5, sd = 0.3) was significantly different from the typically-reading

16-17-year-olds (mean = 1.8, sd = 0.2, adj.p = .003). There were no differences

between groups within the same age bands for 11-12- and 16-17-year-olds. This

patterns remains for T2 and T3.

In the complete cases data set, the observed difference between the

atypically-reading adults and the atypically-reading 11-12-year-olds was no longer

present. Atypically-reading adults also showed no statistically significant difference

with any of the other groups.

In summary, RON scores for atypically-reading adults differ only between the

scores for the atypically-reading 11-12-year-olds. We identified that for those

11-12-year-old readers who withdrew from the study after T1, there was a lower mean

score, which probably explains why this difference is not found in the complete cases

data set.

6.2.5 Spelling Knowledge

A Kruskal-Wallis test showed significant effects of group on spelling scores (H(5) =

85.35, p < .001). A pairwise Wilcox test showed that atypically-reading adults spelled

more words correctly (mean = 17.7, sd = 5.1) than both 11-12-year-old groups

(atypical: mean = 10.9, sd = 5.1, adj.p < .001; typical: mean = 12.1, sd = 4.7, adj.p

< .001).

The atypically-reading adults also showed a significant difference from the

spelling scores of the atypically-reading 16-17-year-old group (mean = 14.3, sd = 3.6,

adj.p = .002). On average, atypically-reading adults spelled more words correctly

than the atypically-reading 16-17-year-olds. These differences were present for T1 but

no longer apparent at T2 or T3. There was no statistically significant difference

between the atypically-reading adults and typically-reading 16-17-year-old readers.

The atypically-reading adults did not spell as many words correctly as the

typically-reading adults (mean = 21.6, sd = 3.6, adj.p = .003) at T1. This pattern
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holds across T2 and T3.

There were no differences between groups within 11-12-year-olds. There was a

significant difference between 16-17-year-old groups (atypical mean = 14.3, sd = 3.6;

typical mean = 17.2, sd = 4.6; adj.p = .003).

The pattern of differences is the same between the atypically-reading adults

and both 11-12-year-old groups in the complete cases data set at T1 to T3.

Atypically-reading adults showed slightly higher spelling means (mean = 17.8, sd =

5.4) and remained significantly different from the atypically-reading 11-12-year-old

group (mean = 11.2, sd = 5; adj.p < .001) which is also a slightly higher score. The

typically-reading 11-12-year-olds also increased their score (mean = 12.4, sd = 4.7,

adj.p < .002) and this difference remained statistically significant.

The atypically-reading adults and the atypically-reading 16-17-year-old group

(mean = 14.8, sd = 3.7) remained significantly different from each other (adj.p =

.047). The atypically-reading adults continued to score significantly lower than the

typically-reading adults (mean = 21.6, sd = 3.6; adj.p = .047).

We explored the spelling errors of the sample to understand whether

atypically-reading adults were varied in the type or quantity of errors for the spelling

task. The full error analysis is listed in Appendix G with a summary of findings

reported here for brevity.

Atypically-reading adults had higher odds of omitting an answer than

typically-reading 16-17-year-olds. They were just as likely to write a real word as a

substitute for a target word that was not a homophone. The odds of supplying a real

word when the target word was a homophone increased, as it did with

typically-reading 16-17-year-olds and the difference in error rates here was not

significant.

Fewer of the errors are likely to be a plausible sound-match to the target

word in atypically-reading adults and atypically-reading 16-17-year-old groups. In a

sound-match type of spelling error, these two groups resemble the younger reading

groups. The atypically-reading adults were inconsistent in the spelling errors for the

same target word on separate occasions, both orthographically and phonologically.
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In summary, in terms of absolute scores for correct answers,

atypically-reading adults show stronger spelling skills than the youngest readers, and

the atypically-reading 16-17-year-olds. We must interpret these findings with caution,

however. It is expected that the youngest readers in the sample may not have

experienced some of the word items in the spelling test so it is appropriate that they

are lower in skill at this time.

When we look at spelling errors, atypically-reading adults look very similar in

their approach and types of errors to the younger readers. In relation to their sources

of knowledge, atypically-reading adults appear inconsistent in applying their

phonological knowledge to spelling. They are both less frequent and more varied in

their attempts at providing a plausible sound match to the target word.

6.2.6 Vocabulary Knowledge

A Kruskal-Wallis test showed significant differences between groups for vocabulary

knowledge (H(5) = 100.22, p < .001). A pairwise Wilcox test showed that

atypically-reading adults identified more synonyms correctly (mean = 24.2, sd = 6.0)

than both 11-12-year-old groups (atypical: mean = 19.6, sd = 3.7, adj.p < .001;

typical: mean = 20.4, sd = 3.8, adj.p = .003) at T1 and T2 but not at T3. There

were no statistically significant differences for vocabulary scores between

atypically-reading adults and either of the 16-17-year-old groups. Atypically-reading

adults did not know as many synonyms as the typically-reading adults (mean = 36.0,

sd = 1.9, adj.p < .001).

There were no differences between the two 11-12-year-old groups. There was

a significant difference between the two 16-17-year-old groups. The atypically-reading

16-17-year-olds (mean = 21.3, sd = 5.3) knew fewer synonyms than the

typically-reading 16-17-year-old group (mean = 26.2, sd = 5.6, adj.p = .005).

In summary, the atypically-reading adults appear to have similar vocabulary

knowledge as 16-17-year-old readers. They have significantly weaker vocabulary

knowledge compared to their typically-reading adult peers. The finding that they
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differ from the 11-12-year-old readers is unsurprising, given that the 11-12-year-old

readers are much younger and so much less experienced in everyday, language

exposure. The loss of this significant difference at T3 is due to stability of scores in

the atypically-reading adults and continuing increase in the scores of the younger

groups. The pattern of change over time was mirrored in the complete cases data set.

The above describes vocabulary knowledge as a function of raw scores from

this sample. The Shipley Vocabulary Scale (Shipley, 1940) is designed for use between

the ages of 7-89 years and has standard scores available across the age range. For

interest, we calculated the standard scores for vocabulary for the sample (Figure 6.3).

The youngest reader groups display age-appropriate levels of vocabulary with the

mass of their distribution being centred around 100-110. The bulk of the

atypically-reading 16-17-year-olds and adults’ distributions are located towards the

lower half of the plot. Both groups show low standard scores for vocabulary.

Figure 6.3

Density Plot of Distribution of Vocabulary Standard Scores by Group at T1 (n = 218)
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6.2.7 Cluster Analysis

For each data collection point, the Dip Test was non-significant (T1: Dn: 0.02, p =

.587; T2: Dn: 0.02, p = .755; T3: Dn: 0.02, p = .783). Consequently, we fail to reject

the null hypothesis and assume that the sample distribution is unimodal at each data

collection point.

The randIndex value for a six cluster solution was T1 = 0.11, T2 = 0.16, T3

= 0.12. The randIndex value for a three cluster solution was T1 = 0.11, T2 = 0.13,

T3 = 0.14. These low numbers indicate a lack of agreement between the group

labeling and arrangement of observations as identified by the PAM method.

The findings suggest that that data do not support six or three distinct

groups as the labels or ages of the groups may suggest, Rather, to echo the analysis

within ID measures across groups, the 11-12-, 16-17-year-olds and adult readers form

one unimodal distribution.

We plotted group average scores for each time point and arranged them in

ascending order along a number line (Figure 6.4). The atypically-reading

11-12-year-olds are generally at the lowest point across all skills and the

typically-reading 16-17-year-olds or adults towards the highest. Groups overlap or are

contiguous in their scores, but notice the mingling of the atypically-reading adults

(pink dots) with the younger reading group means.

6.3 Individual Variation for Skills Over Time

The cluster analysis suggests that the data collected at each session comes from a

unimodal distribution and that the study’s nominal grouping structure is not in

evidence in the data. Inspecting differences between groups supports this with

differences mainly occurring for the atypically-reading adults and the youngest,

atypical readers and the typically-reading adults. The overarching trend suggested by

mean differences is that, in ID measures at least, atypically-reading adults’ skills are

more similar to typical 11-12- and 16-17-year-old readers.
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Figure 6.4

Line Plots of Group Means per ID Measure, T1 - T3, in Ascending Order

The findings so far have been based upon group means with a focus of

between group differences. We can also visualise how individual participant

performance varies from their group mean. Figures 6.5 and 6.6 display spaghetti plots

for each measure by group. The plots are arranged from younger to older participants

from left to right in each row. Individual participant trajectories (grey lines) are

visible over which is drawn a smoothed line of best fit to visualise the group average

for easier comparison to participants within groups and also between groups.

The plots serve two purposes. The first is to visualise the spread of

participant scores within groups. Not only can we compare by relative lows and highs

of scores but also by time. The x-axis now represents the variable number of days

between data collection sessions rather than labels of T1, T2 and T3. The second

purpose is to visualise trends over time to assist with a function for modelling the

longitudinal data (Long, 2012).

First of all, the length of grey lines are longer in the older reader groups,
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Figure 6.5

Spaghetti Plots Showing Individual Variation By Group in Performance for Word

Reading Skill (Top), Nonword Reading Skill (Middle) and Phonological Awareness

Skill (Bottom) Across Time. Grey Lines Represent Individual Participant Curves.

Blue Lines Represent the Group Average (LOESS Estimate).
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Figure 6.6

Spaghetti Plots Showing Individual Variation By Group in Performance for Rapid

Naming Skill (Top) Spelling Accuracy (Middle) and Vocabulary Knowledge (Bottom)

Across Time. Grey Lines Represent Individual Participant Curves. Blue Lines

Represent the Group Average (LOESS Estimate).
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illustrating the fact that they tended to have a higher number of days between data

collection points. Second, it is clear that as participant age increases from group to

group, performance on each measure rises, with two exceptions. The first exception to

this is for phonological awareness skill (bottom row Figure 6.5). Performance on this

measure for all at day 0 is very similar, very high and performance for each group

remains flat over time (supported by inferential test results in section 6.2.3). The

second exception is RON skill (c.f. section 6.2.4). Although subtle, performance

appears to improve over time for 11-12- and 16-17-year-olds but the rate of change

between the typically-reading 16-17-year-olds and the typically-reading adults is less.

Three other patterns emerge from the plots. First, variability within the

atypically-reading adults tends to be greater or equivalent to younger group

performance, across all measures. Second, the spelling measure appears to show the

greatest variability both within groups and across time. Third, there is a marked

difference in the spread of vocabulary scores between the 11-12-, 16-17-years-olds and

atypically-reading adults, and the typically-reading adults. Both the youngest readers

and typically-reading adults show much narrower spread of vocabulary scores than the

16-17- and atypically-reading adults.

There is clear evidence of variation within groups for patterning of scores

between individuals, evidenced by the individual grey lines. Yet the blue lines that

represent the general trend in group data tend to show a positive linear function,

suggesting that the modelling strategy of models with independent and interaction

terms is appropriate.

6.4 Bivariate Correlations Between ID Measures

Table 6.2 lists Pearson’s r correlations between the ID measures, collapsed over time

and group. Since Pearson’s r is well known for returning significant p values < 0.5

when the number of observations upon which it is based is large, it is more useful to

discuss the size and direction of the correlations.

The highest correlation value is that between the skill measures of word and
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nonword reading. They show a very large, positive correlation (r = .74). This is

slightly lower than the reported correlation of .83 from the test manual (Torgesen

et al., 2012). Intuitively this makes sense since both measures involve the decoding of

letter strings and developmentally, all words are nonwords when experienced for the

first time.

The next highest correlation is between spelling knowledge and nonword

reading (r = .66). We interpret this as the two skills tapping an underlying sublexical

knowledge of letters and how they are arranged to form words for decoding (nonword

reading) and encoding (spelling) printed letters. We note that spelling and word

reading skill also share a large sized correlation (r = .62), and that the difference in

size between the two correlations is unlikely to be statistically significant.

Age and vocabulary knowledge are also positively correlated with each other

(r = .65). This large sized relationship is not surprising given the superior knowledge

of the typically-reading adults, also clear from Figure 6.2 and the spaghetti plot for

vocabulary in Figure 6.9. The large size of the relationship between age and

vocabulary compared to the small sized correlation values for age and word / nonword

reading suggest that vocabulary knowledge continues to accrue over a range of age

while word and nonword reading skill does not to the same extent (Keuleers and

Balota, 2015). This makes sense if we consider that mastery of letter-sound

relationships may constitute a finite set of knowledge and skills of word and nonword

reading while the combinatorial possibilities of those letters to make words for

vocabulary learning are numerous. Given the strength of the relationship between age

and vocabulary, age needs to be an independent predictor in the experimental task

models.

Phonological awareness skill shows small and positive relationships with all

the ID measures. Even in a sample that has relatively good reading skills (i.e., none

are beginners), the early skill of being able to isolate a phoneme within a string of

phonemes shares a modicum of variance with the higher order skills.

RON shows a medium positive correlation (r = .44) with nonword reading

skill and a large positive correlation with word reading skill (r = .55). Each of these
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Table 6.2

Summary of the Bivariate Correlations Between ID Measures

W-Skill NW-Skill PI RON Spell Voc
W-Skill
NW-Skill 0.74***
PI 0.19*** 0.25***
RON 0.55*** 0.44*** 0.10*
Spell 0.62*** 0.66*** 0.29*** 0.28***
Voc 0.52*** 0.41*** 0.21*** 0.20*** 0.62***
Age 0.32*** 0.18*** 0.05 0.04 0.48*** 0.65***

Note:
W-Skill = Word reading skill. NW-Skill = Nonword reading skill. PI
= Phonological awareness skill. RON = Rapid naming skill. Spell =
Spelling accuracy. Voc = Vocabulary knowledge.

1 p <.05; ** p <.01; *** p <.001.

relationships are for speeded naming measures. Correlations are lower between RON

and the untimed measures of spelling (r = .28), vocabulary (r = .21).

6.5 Discussion

We discuss the findings with a particular focus on the differences of the

atypically-reading adults with other groups.

The cluster analysis showed no significant support for distinct groups,

suggesting that the range of skills present within the data are similar to each other.

This is further supported by the visualisations in Figures 6.3 to 6.6. The crude

arrangement of group means shows a continuum of skill while the spaghetti plots

clearly show increases in intercepts as age increases. The variation within each group

overlaps with other groups. In terms of similarity, this sample of atypically-reading

adults lies between the typically-reading 11-12- and 16-17-year-olds.

The lack of significant change within groups in scores across time can be

interpreted in different ways. First, each of the scores contain a true score plus
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measurement error. At each data capture, the observed scores may be higher or lower,

but they hover around a true score that is stable and robust. When we aggregate the

small deviations, they cancel each other out so that over time, a finding of no change

is observed. Second, the measurement error is minimal but increments of change are

too small to detect in the available time frame. This is an area for consideration for

future research design.

There were no group differences in scores for the phonological isolation

measure. We do not discuss this measure any further. Atypically-reading adults

showed stronger RON scores than the atypically-reading 11-12-year-olds (only at T1)

but no differences with any of the other groups. This suggests that any differences

that may be observed in the experimental tasks are not underpinned by slower

processing in the atypically-reading adults (Kirby et al., 2010).

In nonword reading skill, the only difference was with the typically-reading

adults, where the atypically-reading adults showed weaker skills. In word reading,

atypically-reading adults show similar word reading scores as the typically-reading

11-12- and 16-17-year-olds but were significantly stronger than atypically-reading

11-12-year-olds and significantly weaker than typically-reading adults.

In vocabulary knowledge, there were no significant differences with the

16-17-year-old readers, but atypically-reading adults were stronger than

11-12-year-old readers and weaker than typically-reading adults in raw scores. When

we looked at standard scores, we found that the greater proportion of scores were

lower than expected for age for atypically-reading 16-17-year-olds and adults.

Any differences that were present at T1 between atypically-reading adults

and the younger groups of readers, did not hold over time. The atypically-reading

adults showed difference with every group in spelling scores except the

typically-reading 16-17-year-olds. They were stronger in skill than 11-12-year-olds and

the atypically-reading 16-17-year-olds and weaker than typically-reading adults. This

suggests that spelling is a relative strength in adult readers.

How do these findings comport with previous studies on atypically-reading

adults? The lack of difference in phonological skills may align with Greenberg et al.
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(1997), in that they found phonological awareness skills equivalent to that of

11-year-old readers in their adult-learner sample. Yet, the lack of difference here also

includes a group of typically-reading adults. These findings do not converge with

Braze et al. (2007) who found that phonological awareness could be a skill that could

be used for discerning groups – all our groups were similar to each other.

Not only were scores similar but it was the final section of the test on which

all participants faltered. We suggest that the level of phonological awareness

demonstrated in the sample is at a level that is necessary and sufficient to support the

development of higher order skills and a lack of difference shows asymptote levels of

performance for this task for a population that is characterised as “average” readers.

For nonword reading skill, there begins to be some trace of between group

differences. Atypically-reading adults are not significantly different from the younger

reading groups but are significantly weaker from their adult peers. This is markedly

different from the level of skills as described in Greenberg et al. (1997), Mellard et al.

(2010), and Nanda et al. (2010). They all found that their adult-learners showed

nonword reading skill below 4th grade readers ( < 10 years) however the

atypically-reading adults and the typically-reading 11-12-year-olds show nonword

reading skills equivalent to a range of readers – US 5th - 10th grade equivalency. The

atypically-reading adults in this sample appear to show nonword reading skills that

are similar to that of average readers of secondary school leaving age.

Much of the literature describing adult-learners proposed that their

orthographic knowledge and skills, while still weak in absolute terms, were a relative

strength compared to their phonological skills (Greenberg et al., 1997; Mellard et al.,

2010; Tighe and Schatschneider, 2016). In this sample, word and nonword reading

skill appear to be equivalent in strength. The difference observed from the

atypically-reading 11-12-year-olds at T1 is gone by T3, as the younger readers

increase their scores. There are no differences for word reading scores between the

16-17-year-old readers or the typically-reading 11-12-year-olds, a similar pattern to

that of the nonword reading skills.

Greenberg et al. (1997) observed correlations between word and nonword
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reading in the range of r = .66, however here we see a stronger relationship (r = .74).

Further differences are observed between spelling and word / nonword reading

measures. Greenberg et al. (1997) observed larger correlations between word and

spelling than nonword and spelling measures across child and adult samples. In this

sample, those correlations are almost equivalent in size (word-spelling r = .62;

nonword-spelling r = .66).

In the context of the lexical quality hypothesis, this equivalence of the word

and nonword correlation scores may suggest that the two strands of skill are yet to

integrate, akin to the three factor solution for the less-skilled readers in Perfetti and

Hart (2002). If orthography has not yet become the dominant source of information

for word recognition, as Mellard et al. (2012b) suggested in their results, the

presentation of a word’s orthographic form may not be sufficient to activate the

orthographic and phonological information for fast and accurate recognition meaning

more sources of information are necessary (Perfetti and Hart, 2002). For the younger

readers, this is entirely appropriate, as they have time by which the skills may

strengthen and become integrated. However, this may be a site of weakness in a

reading-related skills profile for the atypically-reading adults.

A further sign of lack of integration may be the very small correlation

relationships between processing speed and the reading-related skills. The correlation

here between PI and RON is r = .10. Swanson et al. (2003) found that weaker

correlations existed for their less-skilled readers, with much stronger relationships for

individuals who were stronger readers. While processing speed per se is similar to

other groups, as observed in the non-significant differences between groups - this weak

correlation between PI and RON may jeopardise the mapping of a letter to a sound

but also the learning of adjacent relationships that underlie the body of learning that

is orthographic knowledge (Kirby et al., 2010).

The strength of the relationships between RON and word / nonword reading

skill echo those summarised in Tighe and Schatschneider (2016) (r = .53) and suggest

that RON still has an important role to play for fluent word recognition in this sample

(Hulslander et al., 2010; Mellard et al., 2012b).
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Spelling skill differences between groups are present, supporting the inference

that spelling skill is variable even amongst skilled readers (Andrews and Lo, 2012).

Atypically-reading adult spelling scores are weaker than typically-reading adults’,

supporting findings by Eme et al. (2014) and Beidas et al. (2013). The strong

correlation between spelling and nonword reading is also observed by Beidas et al.

(2013).

Our analysis of spelling errors revealed that it was the atypically-reading

adults who were the most likely to choose to omit an answer. We could interpret this

as a tendency to approach a spelling trial as if the word is something that is known or

unknown and can be recalled rather than built from its constituent sound parts at any

time.

The error analysis that looked at real-word substitutions across groups may

support this interpretation. Typically-reading 16-17-year-olds and adults were more

likely to supply alternative homophonic spellings as errors when the target word was a

homophone, however the atypically-reading adults were significantly less likely.

This was echoed when we matched errors with target words by soundex code.

The atypically-reading adults were equivalent with atypically-reading 16-17-year-olds

in their propensity for giving errors that differed in sound from the target word.

Although making the same amount of errors as typically-reading 16-17-year-olds,

more of the errors are less phonological plausible matches. Replication of this finding

is needed. If replication confirms the finding, then this could be an indication that

atypically-reading adults are less able to exploit phonological information for spelling

/ word production than typically-reading 16-17-year-olds, with which they share the

same word reading performance scores.

Martin-Chang et al. (2014) suggested that a person could be incorrect for

spelling but consistency of that erroneous spelling over time would indicate a high

quality lexical representation. That does not seem to be in evidence here. Across

time, and at the group level, atypically-reading adults demonstrate more varied

choices in their spelling attempts than 16-17-year-olds and the typically-reading

adults. This is true for orthographic and phonological similarity measures.
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More errors of weak sound-matches that also vary over time suggests low

lexical quality. This variability looked very like typically-reading 11-12-year-olds in

their propensity for matching the soundex code of the target word. Over time, this

variability would substantially diminish the opportunity for both orthographic

learning and for the assimilation of the true statistical distribution of spelling-sound

relationships that is orthographic knowledge.

Atypically-reading adults show higher vocabulary raw scores than the

11-12-year-old readers. They show similar vocabulary knowledge in absolute terms to

the 16-17-year-old participants. Braze et al. (2007) posited that vocabulary knowledge

in adult-learners is underpinned by spoken forms of words rather than printed forms.

If this were true, the atypically-reading adults may have semantic knowledge, however

the source of the information is from a phonological code only. While vocabulary

scores appear to be a relatively strong source of knowledge compared to other

reading-related skills for atypically-reading adults, the quality of knowledge may be of

a weaker kind and so its benefit to word reading may be weak also.

In summary, the atypically-reading adults in this sample appear to be

stronger in skills than adult-learner samples described in previous studies. They show

reading-related skills that are similar to students of late secondary school age. Yet,

they may still show some signs that reading-related skills are not sufficiently

developed to effect efficient word recognition. Notable of these is the lack of

dominance of word reading over nonword reading skill, a low correlation between

RON and PI scores and weak vocabulary skills that may suggest that their knowledge

is predicated upon spoken language experience, and not supported by knowledge of

the corresponding orthographic form of the word. Each of these symptoms has been

linked to lower skills and slower development of skills for word reading.

Going into the experimental task analyses, we have a picture of the

atypically-reading adults. Our next question is whether the similarities or small

differences observed between the groups here manifest as quantitative or qualitative

differences in how this sample of readers uses the psycholinguistic information

contained in the items of the single word reading tasks. We turn to this next.
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7 Results: Experimental Tasks

We present the findings of four experimental tasks across accuracy and reaction time

data. Each section lists item properties and average performance over time by group.

We present the preferred model, findings of the analyses for full sample, complete case

and outlier-removed data sets and model predictions.

Without exception, the information criterion values were lower for Bayesian

inference than frequentist models. Consequently, we took the models with the lowest

LOOIC values as the most compatible with the data for this sample and present them

as the preferred models. Information criterion values for all models are listed in

Appendix H. Information around model diagnostic check routines are in Appendix I

for each task and outcome measure.

The design of the study includes six groups, however the data of the study

suggest one (see section 6.2.7 for cluster analysis findings). We made a decision to use

model selection as our decision strategy for which set of findings to present as the

“preferred” model, allowing the data to direct us. The design implied model is the

Additive-RIS model. Since the study is exploratory in nature, in each section we also

present the coefficients for the Additive-RIS model and briefly describe it in an effort

to keep a space for possibilities open. There are different decisions that can be made

around study design and analysis for future research, and foreclosing on one model

early in the process seems premature.

We present accuracy model coefficients on the log-odds scale, where zero is

the critical threshold. Values above zero indicate higher odds of a correct response.

Values below zero indicate lower odds of a correct response, relative to the average

response given in the intercept. In the narrative, we translate the log-odds units into

probabilities for ease of interpretation. For interpretation of log-odds estimates in

terms of effect size, Rosenthal (1996) suggests the following scale:
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• log-odds 0.4 = small or weak

• log-odds 0.9 = medium or moderate

• log-odds 1.38 = large or strong

• log-odds 2.30 = very large or very strong

Additionally, we adopt a “very small” label for log-odds estimates < 0.4.

We analysed reaction time data using linear mixed-effects models. Recall that

reaction time data is log10 transformed before being standardised by task and

condition using the mean and standard deviation value of the typically-reading

16-17-year-olds at T1. As a result, the intercept represents the mean reaction time for

the predictors at an average of 0 and the reference levels of categorical predictors.

The reference group is the typically-reading 16-17-year-olds. Positive coefficients for

reaction time indicate slower reaction times for a 1 standard deviation increase in a

predictor. Negative coefficients indicate faster reaction times for a 1 standard

deviation increase in a predictor.

7.1 Letter Search

Details of the items and procedure are in section 5.2.4.1. As a reminder, participants

had to identify whether a previously displayed target letter was present in the

subsequent presentation of a letter string. The letter string could be either a real

word or an unpronounceable nonword. The target letter could either be absent, or

present at any one of the five letter positions.

Our research question was whether atypically-reading adults were detecting

the presence or absence of a letter at a similar rate and accuracy to the other groups.

If the condition of group interacted with any of the ID or psycholinguistic measures,

this could indicate a difference in either strategy or knowledge for completing trials.

No interactions between the group variable and ID or psycholinguistic measures would

suggest that the groups are approaching the task similarly. Ziegler et al. (2008),

measuring only individual differences, found deficits on error rates rather than speed



221

Table 7.1

Descriptive Statistics for Frequency for Three Item Lists in the Letter Search Task

Mean Frequency (SD)
List High Low
1 5 (0.1) 2.9 (0.1)
2 5 (0.1) 2.9 (0.1)
3 5.1 (0.1) 2.9 (0.1)

between a group of developmental dyslexic young readers (mean age 9:10 years) and

typically developing young readers, with no difference between words and nonwords.

7.1.1 Item Properties

Mean scores for low and high frequency values across lists 1 - 3 are in Table 7.1. A

two-way ANOVA for effects of frequency category (low and high) and list (1-3) on

frequency ratings confirmed a significant main effect of frequency category (F(1, 54) =

5215.72, p < .001) and a non-significant main effect of list (F(2, 54) = 0, p = .998).

Thus, our design to incorporate low and high frequency words is supported and we

can infer no differences for frequency ratings across the lists.

The descriptive statistics for properties of psycholinguistic variables for items

are displayed in Table 7.2 with distributions by variable and list displayed in Figure

7.1. Results of a series of ANOVA tests for differences between lists within

psycholinguistic variables indicated that none of the variable means differed

significantly between lists (all ps > .18).

7.1.2 Analyses

The modelling strategy was described in section 5.2.5.5. There is a task specific

predictor of “position” for the letter search task. This predictor has six levels (none;

first; second; third; fourth; fifth) that indicates the letter position at which a letter

occurred for a present trial. The level of “none” is the reference level.
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Table 7.2

Summary of Psycholinguistic Variable Measures for Letter Search Word Items with

F-Ratio and P Values to Signify Differences Between Item Lists

ANOVA
Psycholinguistic Variables Mean SD Min Max F(2, 57) p
AoA 7.8 2.8 2.8 13.7 0.17 0.84
Arousal 4.1 0.8 2.6 6.3 1.41 0.252
BF Type 30.5 8.9 8.2 50.2 0.27 0.768
Concreteness 3.6 0.9 1.5 5.0 0.98 0.383
Consistency 0.8 0.4 0.0 1.0 0.14 0.87
Dominance 5.3 0.9 3.1 7.5 0.16 0.851
Imageability 4.1 1.2 2.2 6.7 0.66 0.522
LPC 1.3 0.3 0.8 1.9 0.35 0.709
Phonemes 3.8 0.7 2.0 5.0 0.34 0.711
Neighbourhood size 4.3 2.3 1.0 10.0 1.09 0.342
Semantic diversity 1.7 0.3 0.6 2.2 0.75 0.478
Sensory experience 2.9 0.7 1.5 4.5 0.02 0.983
Word frequency 4.0 1.1 2.7 5.2 0 1
Word meanings 9.9 12.2 1.0 75.0 1.75 0.182
Valence 5.1 1.2 2.7 7.4 1.05 0.357

Note:
AoA = Age of acquisition. BF = Bigram frequency. LPC = Leven-
shtein Phonological Consistency.
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Figure 7.1

Histograms Showing the Distribution of Psycholinguistic Properties of Items for the

Letter Search Task, Across Three Lists
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Additionally, for this and the lexical decision data, we tested for a

word-superiority effect, running a further analysis that included data for both words

and nonwords plus ID measures. In this model, we included only trials where a target

letter was present (across letter position 1 - 5). We expected that the direction of

effects would follow the literature, with more accurate letter identification when the

letter was presented in a word.

7.1.2.1 Number of Observations

Full Sample. We collected 23,280 observations across words and nonwords in the

letter search task. We excluded 480 observations for 12 participants as being duplicate

items from previous waves of data collection. Nineteen observations that were made <

200 ms were also removed as technical malfunctions. This left 22,781 observations

across all letter positions for words and nonwords.

To test the word superiority effect, we removed observations in the “none”

position (n = 11,392) giving 11,389 observations.

To measure the impact of ID and psycholinguistic measures on accurate

responses, we extracted the word trials (n = 11,388). We removed incorrect responses

for reaction time analyses (n = 1413), leaving 9,975 observations.

Complete Case Analysis. The number of participants who completed three data

collection sessions across that included the letter search task was 161. There were

18,679 observations for words and nonwords available for a complete case analysis.

The analysis was repeated using the preferred model for accuracy (n = 9,356) and

reaction time outcomes (n = 8,402).

Outlier Analysis. After removing timed-out observations (n = 668, 2.3%),

interquartile ranges per participant were calculated and outliers identified (see section

5.2.5.6) and removed (n = 2,241, 9.8%), leaving 19,872 word and nonword

observations. The analysis was repeated using the preferred model for accuracy (n =
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10,015) and reaction time outcomes (n = 9,096). In the complete case analyses with

no outliers, the number of observations for accuracy analyses was 8,400; for reaction

time analyses n = 7,639.

7.1.3 Accuracy Results

7.1.3.1 Descriptive Statistics

Accuracy rate across the sample for word and nonword items was 87%. We calculated

mean accuracy rates per participant per time point and display them by group for

words and nonwords in Figure 7.2; averages across accuracy and reaction time by

position, time and group are displayed in Figure 7.3 and 7.4 for words and nonword

respectively. Most groups became less accurate between the first and third data

collection sessions. Just looking at mean performance by condition and group, there is

no clear visual evidence of a word superiority effect.

Word Superiority Effect for Accuracy Responses. The model for a word

superiority effect showed that while the coefficient indicated a minute advantage of an

accurate response in nonwords (mean = 88.6, SD = 31.7) over words (mean = 87.6,

SD = 33), the credible intervals indicated uncertainty around the effect, such that a

zero difference was plausible (log-odds = 0.07 [-0.22, 0.34]). We conclude that the

data for this sample does not support evidence of a word superiority effect.

Participants did not identify letters that were present in words any more accurately

than letters that were present in nonwords.

7.1.3.2 Preferred Model

When the target letter is not present in the item, the accuracy measure represents a

correct response of “no”. When a target letter is present in the item, the accuracy

measure represents a correct response of “yes”. For the position predictor variable,

position = “none” is the reference level.
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Figure 7.2

Histograms Showing the Distribution of Mean Accuracy Rates per Participant by

Groups Across Time Points for Words and Nonwords in the Letter Search Task
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Figure 7.3

Accuracy and Mean RT By Group, Position and Time for Letter Search Words
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Figure 7.4

Accuracy and Mean RT By Group, Position and Time for Letter Search NonWords
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The preferred model for the letter search accuracy data was the Base-RIS

model. This included predictors for letter position, group contrasts and individual

differences as fixed effects with random intercepts and slopes on participants and

items. The model satisfied diagnostic checks. The explained variance in the accuracy

outcome was R2
bayes = 20.4% [18.7, 22.1]. The coefficients for the fixed effects in the

model, on a log-odds scale with 95% credible intervals, are presented in Table 7.3 and

in Figure 7.5. We briefly explain the dot-and-whisker plot to aid interpretation.

The “dot” represents the mean value of the posterior distribution for that

predictor variable, i.e. it is the most plausible value given the model, the data and any

prior information when all other predictors are held constant at a mean of zero.

Recall that predictors are standardised, such that all mean values are 0 with a

standard deviation value of 1.

The “whisker” represents the range of alternative yet credible values of the

coefficient that lie within the 95% probability mass of the posterior distribution.

Probability for lower and higher values decreases as the value moves away from the

mean. The wider the “whiskers”, the greater the range of plausible values which

decreases our certainty of the posterior distribution estimate.

Further, we have drawn a dashed, vertical reference line at ‘0’ on the x-axis.

Positive values to the right of the line indicate higher log-odds of an accurate response

with a standard deviation increase in the predictor; negative values to the left of the

line indicate lower log-odds of an accurate response with a standard deviation increase

in the predictor.

Where a whisker crosses the critical value of 0, this indicates that the model

is uncertain about the direction of the effect, as it includes a range of both positive

and negative values within the 95% probability mass. We refer to such estimates as

“unreliable”. When a whisker does not cross zero, we refer to estimates as “reliable”.

Model Inference. The intercept reflects the mean rate of accuracy on the trial

condition where no target letter was present, with a probability of making an accurate

response of approximately 94% where all predictors are at their mean level and the
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Table 7.3

Summary of Standardised Fixed Effects for Letter Search Accuracy

Term Estimate SE Lower CI Upper CI
Intercept 2.78 0.20 2.39 3.17

Position
First 0.58 0.41 -0.22 1.37
Second -0.26 0.39 -1.04 0.51
Third 0.25 0.41 -0.56 1.05
Fourth -0.08 0.40 -0.86 0.70
Fifth -0.44 0.40 -1.20 0.34

Time
(Log) Days -0.15 0.04 -0.23 -0.08

Group Contrasts
A. Adult vs T. 16-17 0.86 0.51 -0.14 1.85
A. Adult vs A. 16-17 1.02 0.58 -0.11 2.16
A. Adult vs T. 11-12 1.08 0.57 -0.04 2.20
A. Adult vs T. Adult 0.09 0.38 -0.67 0.82
A. 11-12 vs T. 11-12 0.35 0.18 -0.01 0.70

Individual Differences
Word reading -0.02 0.08 -0.18 0.13
Nonword reading 0.11 0.07 -0.02 0.25
Rapid naming 0.17 0.07 0.04 0.29
Phonological skill -0.06 0.05 -0.16 0.05
Vocabulary 0.00 0.07 -0.13 0.13
Spelling -0.03 0.08 -0.18 0.12
Age 0.00 0.00 -0.01 0.01

Note:
CI = Credible intervals. A. Adult = Atypically-reading adult; T.
16-17 = Typically-reading 16-17-year-old; A. 16-17 = Atypically-
reading 16-17-year-old; T. 11-12 = Typically-reading 11-12-year-
old; T. Adult = Typically-reading adult; A. 11-12 = Atypically-
reading 11-12-year-old.
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Figure 7.5

Estimates from the Posterior Distribution of the Preferred Model for ID and

Psycholingustic Predictors on Letter Search Accuracy Data
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reader is a typically-reading 16-17-year-old. The first and the third letter position

shows a trend for greater accuracy, with second, fourth and fifth trending on lower

accuracy. However, the credible intervals all cross zero rendering the estimates

unreliable in this model and sample.

The effect of log (days) is estimated with much greater certainty. It is

estimated as negative for this model and sample. For a 1 SD increase in number of

days from day 0, the probability of an accurate response decreases by approximately

1%. Essentially, participants were reliably less accurate by their third data collection

session.

Although the model with the group contrast did show the lowest LOOIC

value, none of the group contrast estimates are reliable. The trend in the data is for

the atypically-reading adults and the atypical 11-12-year-olds to show greater odds of

responding correctly than the contrasted group. The difference is much smaller when

compared with typically-reading adults. The mass of probability suggests that the

atypically-reading adults are more likely to be correct, however, the results implied by

this model and this data are inconclusive.

RON is the single ID measure with credible intervals that do not cross zero

(log-odds = 0.17 [0.04, 0.29]). With a 1 SD increase in RON score, the probability of

making an accurate response increases by approximately 1%. This is a very small

effect.

Each of the remaining predictors have very small values and credible intervals

that cross zero. It is likely that there is insufficient data to estimate such small effects

with confidence.

Complete Case and Outlier Analyses. Letter position coefficients remained

stable with respect to size, direction and uncertainty. Accuracy across time log (days)

becomes positive, but unreliable in the complete case and outlier analyses, potentially

indicating that under different sample conditions, there is a greater likelihood for

more accurate responses with each data collection point. However, for this sample,

the credible intervals lie on or cross zero.
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Where each coefficient for the group contrasts is positive in the full sample,

preferred model, the coefficients for the atypically- and typically-reading adult

contrast and the atypically- and typically-reading 11-12-year-old change direction.

Credible intervals still cross zero. The 11-12-year-old effect remains positive in the full

sample data without outliers but credible intervals are wider, indicating a greater

range of plausible values. The effect becomes less certain once outliers are removed.

RON remains stable across the sensitivity analysis models. There is no

change in the remaining ID measures, either. Taken together, the sensitivity analyses

suggests that, but for RON effects, the effects for letter search accuracy data may be

dependent upon the sample herein and generalisation should be done with caution.

Letter Search Accuracy Design Implied Model. The design implied model is

displayed in Figure 7.6. As stated at the beginning of the chapter, this is always the

Additive-RIS model. For the letter search task, it also includes the position predictor.

The coefficients for letter position, log (days) and group are comparable

across the preferred and design implied models. Notice though that the coefficient for

the planned contrast between atypically-reading adults and typically-reading adults is

negative in the design implied model, opposite to that of the preferred model,

indicating that atypically-reading adults have lower odds of making a correct

response. A further note of caution in interpreting the group predictor. This caution

is echoed in the much wider credible intervals in the preferred model that describe a

high level of uncertainty around the posterior estimates.

In the design implied model, the coefficients for psycholinguistic variables are

displayed towards the bottom of the plot. All the credible intervals include zero such

that the possibility of no effect and reverse directions of effects are plausible according

to estimates from the posterior distribution. Given the manipulation of frequency

values in the sample, it is surprising that even the word-frequency effect is unreliable.

Model Predictions. We can use the model to generate predicted variation of the

impact of a particular predictor by providing new data and updating the model



234

Figure 7.6

Estimates from the Posterior Distribution of the Design Implied Model for ID and

Psycholingustic Predictors on Letter Search Accuracy Data
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implied estimates under those new conditions. Model implied predictions for accuracy

data in the letter search task are shown in Figure 7.7. These plots illustrate

predictions with credible intervals (blue bands) derived from SD values. Residual

error variance values were so large that their inclusion made the plots unreadable.

Since the preferred model for letter search accuracy contains a small number

of predictors, we can illustrate model predictions for each of them.

Plots (a) - (h) of Figure 7.7 display variation in the probability of making a

correct response for different levels of a predictor. The solid black line represents the

mean prediction value while the blue bands represent 66% and 95% credible intervals.

For every plot, the y-axis represents the probability of making a correct

response. From left to right on the x-axis, the values in each plot denote low to high

levels of skill in the predictor, while keeping all other predictors at their mean value in

the model. A rising slope indicates the trend for the accuracy to increase with

increasing skill. A falling slope indicates that accuracy rates decrease with increasing

skill. Plots (i) and (j) show the model implied predictors for the rates of accuracy for

the categorical predictors of group and letter position.

The first thing to notice is that, the expected predicted probability of an

accurate response to words in the letter search task never falls much lower than

approximately 87%, this is in line with the observed data. Even at the lowest skills

levels for nonword reading (plot c) and rapid naming (plot d), the expected

probability levels appear to be approximately 87%. The log (days) predictor (plot a)

and phonological skill show a weak, negative relationship with the probability of a

correct response over varying levels of skill. The model implied inference is that

accuracy will slightly decrease over time, and is lower for higher levels of phonological

skill in the ability to isolate single phonemes within words.



Figure 7.7

Preferred Model Predictions for the Effects of Individual Differences, Group and Letter Position on Letter Search Accuracy
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Nonword reading and rapid naming (plot c and d, respectively) show positive

relationships. The credible intervals are wider at lower levels of skill, indicating a

greater range of accuracy rates for lower levels of skill than for higher levels of skill.

As foreshadowed by the dot and whisker plot, word reading skill (b), vocabulary (f)

and spelling (g) show little variation across skill levels on the probability of making an

accurate response. The predictions for age correspond to the observed data model,

with the credible intervals displaying that while the observed data suggest high rates

of accuracy for all age levels in this model and sample, the age predictor is compatible

with chance levels of accuracy.

Summary and Discussion. The preferred model for the letter search accuracy

data included variables for letter position, group and ID measures only with ID

measures as random intercepts and slopes. Even though this model included the

group contrast predictor, the effects are unreliable.

Accuracy for correctly identifying that a letter was not present in a word was

~ 87% in this sample. The highest rate of accuracy for correctly identifying that a

letter was present was for letters at the first position (93.2%). The accuracy level

suggests that participants in the sample have the knowledge to perform the later tasks

and differences between group or findings are not related to a lack of foundational,

letter-level knowledge.

The data and the model were also inconclusive about the presence of a word

superiority effect. Mean values show that accuracy levels for word and nonwords were

equivalent. This sample was not assisted by letter identification when it was

embedded in a word rather than an illegal letter string. This finding converges with

the younger child reading sample of Ziegler et al. (2008). This could be an effect of

the type of nonwords used. We used unpronounceable nonwords here, to reduce the

use of implicit knowledge for transitional probabilities between letters. This type of

nonword may have encouraged a serial search strategy because, for at least half the

items, the relationships that would normally exist between letters in words or

pronounceable nonwords were not present.
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Support for this interpretation may be suggested by the small effect of RON

and lack of influence coming from word reading skill, vocabulary or any

psycholinguistic predictors. The model implied coefficients suggests that the

differences in word knowledge that we saw in the descriptive statistics analyses are

not relevant to the accuracy outcome and that participants are not using word

reading skill or word meanings to help identify words.

A further indication that lexicality may have been made redundant is the lack

of a reliable frequency effect (see design implied model Figure 7.6). We may be

over-interpreting here, but the lack of influence for any psycholinguistic variables may

suggest that words are not being accessed because they are not salient units within

the task.

Although with a high level of uncertainty, the values with the highest

probability mass in these models predicted that the atypically-reading adults and

atypically-reading 11-12-year-olds were more accurate at this task than the groups

with which they were contrasted. Ziegler et al. (2008) found deficits for their young

readers with dyslexia compared to readers without dyslexia. If individual differences

were associated with this finding, we would expect to find no difference as the

atypically-reading adults tended to be equivalent with their peers across the ID

measures. Looking across the remaining tasks for the same kind of accuracy

advantage may help suggest explanations for this finding.

7.1.4 Reaction Time Results

7.1.4.1 Descriptive Statistics

Distributions for mean reaction time in milliseconds per participant are displayed at

the group level in Figure 7.8 for correct responses to words and nonwords and in

Figure 7.3 and 7.4. In the models that follow, when the target letter is not present in

the item, the reaction time represents the latency between onset of the item and a

correct response of “no”. When a target letter is present in the item, the reaction time
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represents the speed of correct responses that answer “yes”.

Recall that reaction time data is log10 transformed before being standardised

by task and condition using the mean and SD values of the typically-reading

16-17-year-olds at T1 as the reference group (word RT mean = 897.3 ms, SD = 347.1

ms; nonword RT mean = 913.3 ms, SD = 299.0 ms). As a result, ‘0’ on the x-axis

represents the mean of the outcome data with reference to a typically-reading

16-17-year-old. Positive values for reaction time indicate slower reaction times for a 1

SD increase in a predictor. Negative values indicate faster reaction times for a 1 SD

increase in a predictor.

7.1.4.2 Preferred Model

As with the accuracy measures, the preferred model for reaction time data in the

letter search task was the Base-RIS model. LOOIC values for models with and

without a group predictor were almost equivalent, however the model without a group

was favoured. The model satisfied diagnostic checks. The explained variance in the

reaction time outcome for this model and data was R2
bayes = 34.0% [32.8, 35.1]. The

coefficients for the fixed effects of the model are presented in Table 7.4 and Figure 7.9.

Model Inference. The coefficients for the first, third and fifth position suggest a

faster response time than the average response for a target letter being absent. The

second and fourth letter positions are estimated as being slower. Credible intervals for

the second, fourth and fifth letter position cross zero, meaning the effects are

unreliable and a range of both positive and negative relationships are compatible with

the model and the data. The first letter is approximately 160 ms faster than a correct

response for an absent letter (log odds = -0.46 [-0.64, -0.27]). The third letter is

approximately -97 ms faster.

The positive coefficient for log (days) (log-odds = 0.04, [0.02, 0.06]) indicates

that reaction time increases over data collection sessions. This is a small, reliable

effect, however it is estimated with a high level of certainty. This equates to an
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Figure 7.8

Histograms Showing the Distribution of Raw Mean Reaction Time (ms) per

Participant by Group for Words and Nonwords in the Letter Search Task
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Table 7.4

Summary of Standardised Fixed Effects for Letter Search Reaction Time

Term Estimate SE Lower CI Upper CI
Intercept 0.21 0.06 0.09 0.33

Position
First -0.46 0.09 -0.64 -0.27
Second 0.09 0.09 -0.09 0.27
Third -0.28 0.09 -0.46 -0.10
Fourth 0.01 0.09 -0.17 0.19
Fifth -0.03 0.10 -0.23 0.16

Time
(Log) Days 0.04 0.01 0.02 0.06

Individual Differences
Word reading -0.08 0.04 -0.16 0.01
Nonword reading -0.05 0.03 -0.11 0.02
Rapid naming -0.08 0.03 -0.14 -0.02
Phonological Skill 0.01 0.02 -0.03 0.05
Vocabulary 0.06 0.04 -0.01 0.13
Spelling -0.03 0.04 -0.10 0.05
Age 0.00 0.00 0.00 0.00

Note:
CI = Credible intervals.
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Figure 7.9

Estimates from the Posterior Distribution of the Preferred Model for ID and

Psycholingustic Predictors on Letter Search Reaction Time Data
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increase of ~13 ms every 95 days.

RON is the only reliable predictor of the ID measures in this model, as it is

with accuracy, and is associated with a decrease in reaction times (log-odds = -0.08

[-0.14, -0.02]). An increase in 1 SD in RON skill will decrease reaction times by

approximately 28 ms.

The remaining predictors all show coefficients with credible intervals that

cross zero, and so the estimates are unreliable and the model is are inconclusive about

their effects for this data and this sample.

Complete Case and Outlier Analyses. The effect of slowed responses over data

collection sessions is also a stable effect. The direction of effect on the first letter

position becomes positive in the complete case and outlier analyses. Second to fifth

letter position estimates remain stable. RON remains a stable effect but for the

complete case analysis. Nonword reading has credible intervals that are just shy of

zero. There is a change in the vocabulary coefficient in the complete case and

complete case with no outliers model. Vocabulary is estimated with greater certainty

such that the model implied coefficient suggests that readers of higher vocabulary

knowledge have slower reaction time. The estimates for phonological skill, spelling

and age remain inconclusive.

Letter Search Reaction Time Design Implied Model. The design implied

model is displayed in Figure 7.10. The coefficient values and credible intervals for

letter position, log (days) and ID measures are equivalent across preferred and

design-implied models. The model clearly estimates that the atypically-reading

11-12-year-olds are slower than their typically-reading peers (Typ-11: mean = 1094.7,

SD = 401.5; Atyp-11: mean 1110.8, SD = 363.9). The data are inconclusive as to the

size of any contrast effect for the atypically-reading adult readers with the other

reading groups.

The positive coefficient for concreteness suggests that words of higher

concreteness ratings slow reaction time responses. None of the other psycholinguistic
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Figure 7.10

Estimates from the Posterior Distribution of the Design Implied Model for ID and

Psycholingustic Predictors on Letter Search Reaction Time Data
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variables contribute any reliable influence to the reaction time outcome.

Figure 7.11

Preferred Model Predictions for the Effects of Individual Differences and Group on

Letter Search Reaction Time Performance
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Model Predictions. We simulate model implied predictions for changes in

standardised reaction time at varying levels of ID measures: representing a range of

values for a predictor, maintaining the other variables at zero and updating the

model. Predictions for the ID measures are displayed in Figure 7.11.

There are two slight differences in reaction time prediction plots from

accuracy prediction plots. We intentionally draw the y-axis with the same limits (-1 -

1) on each reaction time prediction plot for each task. This allows a crude, visual

comparison of the slope for one predictor with other predictors because the range of

the y-axis of each plot is identical. The rate of change across predictors is not
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identical, however, since the range of skills for each ID measure, plotted on the x-axis

is not identical.

Secondly, we indicate the mean value of the observed data by the dashed blue

line at ‘0’ on the y-axis. Recall that this is the mean value for a typically-reading

16-17-year-old participant. The mean value of the predictive distribution is indicated

by the solid black line in the plot. Subsequently, where the intervals and solid black

line are above the dashed line, the model implied predictions for reaction times are

slower than the observed mean for the level of skill. Where intervals and the solid

black line are below the dashed line, the predictions are for faster reaction times than

the observed mean. Where the solid black line intercepts the dashed line, the two

distribution means correspond with each other.

The model implied predictions indicate that log (days), higher levels of

phonological skill and vocabulary (plot a, e and f, respectively) will be associated with

slower reaction times. Higher levels of word, nonword and RON and spelling skill will

facilitate faster reaction times.

Most notable is that reaction times for out-of-sample predictions will tend to

be slower than those within the sample. This is likely because across all letter

positions our reference group of the typically-reading 16-17-year-olds were slightly

slower than the atypically-reading 16-17-year olds and adults, however the

11-12-year-olds and the typically-reading adults were much slower than them, pulling

the predictions away from the centre of the distribution. This may also explain why

stronger vocabulary knowledge is predicted to slow responses, since the

typically-reading adult readers had by far the highest vocabulary scores and were

consistently slower than the reference group.

Summary and Discussion. For letter search reaction time data, the preferred

model was a simple model of only letter position, time and ID measures. Although,

once more, none of the estimates for letter position were conclusively positive or

negative (and unstable in sensitivity analyses), the direction of effects indicated that

first and third letter positions were fastest to be responded to, just as they were more
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likely to be correctly responded to in the accuracy data. Reaction time slowed across

data collection points and higher scores in RON skill were associated with faster

reaction times.

What is surprising is the lack of influence from skills such as nonword

reading. This seems to suggest that there is an ability to strategise for this task and

choose to not decode the information, while the start of the item, as a location rather

than a bias for letter identity, may give the initial letter position privileged status

(Kessler et al., 2002).

RON alone predicted performance for both accuracy and reaction time

measures. No other predictor was reliable. The level of analysis in this task is the

letter level and that, plus the mixed presentation of the word items and

unpronounceable letter strings, likely nullified the concept of word as salient to

successful performance. Ziegler et al. (2008) explicitly included unpronounceable

nonwords believing that identification would then occur without lexical access. The

absence of any influence of psycholinguistic predictor influence would seem to support

this. Consequently, predictors that focus at the word-level may also be reduced in

salience relative to the letter search task specific demands: there is no pronunciation

so the requirement for phonological category variables is reduced – e.g., phonological

skill or number of phonemes. The diminished status of items as words may also be

supported by the lack of a word superiority effect.

Slower reaction time for people with higher levels of phonological skill and

vocabulary are indicated in the prediction plots. There is no overt pronunciation here,

nor is there any overt word identification. The lexical quality hypothesis suggests that

people of high skill are more likely to have integrated processes across the three

components of orthography, phonology and semantics. Perhaps the strength of their

skill means that mere presentation of the orthographic form of the word activates the

information which inhibits responses for the letter.
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7.2 Lexical Decision

Participants indicated whether a letter-string was either a word or a nonword in the

lexical decision task. The items were real words and legal nonwords. Details of list

construction and task procedure are reported in section 5.2.4.2.

Our research question was whether atypically-reading adults could discern

words from nonwords to the same extent and at the same rate as other groups of

readers. If the preferred model included the group contrast predictor, this may

indicate that there are differences between the atypically-reading adult readers for

accuracy rates or speed of making decisions. If the preferred model included

interaction effects between group predictor and any of the ID or psycholinguistic

measures, this could indicate a difference in either strategy or knowledge for

completing trials. No interactions between the group variable and ID or

psycholinguistic measures would suggest that groups are approaching the task

similarly.

7.2.1 Item Properties

At each time point, a participant would see 120 items (50 words, 50 nonwords and 20

words for the isolation condition of the sentence reading task). Word items were

balanced across lists for word-frequency (high vs low) and length (3-7 letters). Mean

frequency scores for high and low ratings and also the mean length of items across

lists 1- 3 are in Table 7.5. A two-way ANOVA for frequency (high and low) and list

(1-3) on frequency ratings confirmed a significant main effect of frequency (F(1, 204)

= 859.9, p < .001) and a non-significant main effect of list (F(2, 204) = 0.2, p = .782).

A one-way ANOVA for the effect of list on length confirmed a non-significant finding

(F(1, 207) = 0, p = .944). Thus, our design to incorporate low and high frequency

words is supported and we can infer no differences for frequency ratings or length of

words across the lists.

The properties of other psycholinguistic variables and findings of inferential
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Table 7.5

Descriptive Statistics for Frequency and Length for Three Item Lists in the Lexical

Decision Task

Mean Frequency (SD)
List High Low Length
1 5.2 (0.7) 2.9 (0.4) 4.6 (1.2)
2 5.3 (0.6) 3 (0.5) 4.6 (1.3)
3 5.2 (0.7) 2.9 (0.4) 4.7 (1.3)

tests for differences across the lists are in Table 7.6 and displayed in Figure 7.12.

None of the variables differed significantly between lists (all ps > .08).

7.2.2 Analyses

In lexical decision, a correct response represents correctly identifying that a word is a

word and that a nonword is a nonword. An incorrect response represents deciding

that a word is a nonword and that a nonword is a word.

Additional to the accuracy and reaction time models, we compared accuracy

rates between words and nonwords. We expected that words would have a higher rate

of accuracy than nonwords.

7.2.2.1 Number of Observations

Full Sample. We collected 69,840 observations across words and nonwords in the

lexical decision task. We excluded 1,440 observations from 12 participants as being

duplicate items from a previous wave of data collection. We further excluded 28

observations that were < 200 ms, leaving 68,372 observations. After removing the

nonword observations (n = 28,488), 39,884 correct and incorrect word trials were

available for accuracy analyses. We further removed incorrect trials on words (n =

6,147) to leave 33,737 observation of correct trials for words for reaction time analyses.
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Table 7.6

Summary of Psycholinguistic Variable Measures for Lexical Decision Word Items with

F-Ratio and P Values to Signify Differences Between Item Lists

ANOVA
Psycholinguistic Variables Mean SD Min Max F(2, 207) p
AoA 6.8 2.7 2.9 14.2 0.37 0.69
Arousal 3.9 0.8 2.1 7.7 0.99 0.374
BF Type 27.2 18.7 1.0 116.2 0.96 0.384
Concreteness 3.8 1.0 1.7 5.0 0.19 0.824
Consistency 0.8 0.3 0.0 1.0 2.06 0.13
Dominance 5.3 0.9 2.8 7.4 0.11 0.897
Imageability 4.5 1.5 1.4 6.9 0.01 0.986
LPC 1.2 0.2 0.8 2.0 0.01 0.991
Phonemes 3.6 0.9 2.0 9.0 0.39 0.675
Neighbourhood size 7.9 6.5 1.0 27.0 0.03 0.972
Semantic diversity 1.7 0.3 0.6 2.4 0.77 0.464
Sensory experience 2.8 0.9 1.0 5.2 0.61 0.547
Word frequency 4.1 1.3 2.0 6.6 0.05 0.953
Word meanings 7.2 7.6 1.0 52.0 0.46 0.629
Valence 5.2 1.2 2.3 7.7 0.77 0.462

Note:
AoA = Age of acquisition. BF = Bigram frequency. LPC = Levenshtein
Phonological Consistency.
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Figure 7.12

Histograms Showing the Distribution of Psycholinguistic Properties of Items for the

Lexical Decision Task, Across Three Lists
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Complete Case Analysis. Just as with letter search data, 161 participants had

three data collection sessions of lexical decision trials. This left 56,731 observations

available for a complete case analysis of accuracy data. The analysis was repeated

using the preferred model for accuracy (n = 33,018) and reaction time data (n =

28,568).

Outlier Analysis. After removing timed-out observations (n = 1,697, 2.5%),

inter-quartile ranges per participant were calculated and outliers identified (see

section 5.2.5.6) and removed (n = 5,866, 8.6%), leaving 60,809 word and nonword

observations. The analysis was repeated using the preferred model for accuracy (n =

36,180) and reaction time data (n = 31,669). In the complete case analyses with no

outliers, the number of observations for accuracy analyses was 30,576; for reaction

time analyses n = 26,806.

7.2.3 Accuracy Results

7.2.3.1 Descriptive Statistics

We calculated average participant performance for words and nonwords by time. We

display the distributions for accuracy and reaction time at the group level in Figures

7.13 and 7.19; averages across accuracy and reaction time by time and group are

displayed in Figure 7.14 and 7.15 for words and nonword respectively. For accuracy,

as with the letter search task, it appears as if more participants in each group are less

accurate at the third data collection session. The spread of the lower accuracy is more

pronounced in the nonword graphs.
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Figure 7.13

Histograms Showing the Distribution of Mean Accuracy Rates per Participant, by

Group and Time for Words and Nonwords in the Lexical Decision Task
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Figure 7.14

Accuracy and Raw Mean RT for Words By Group and Time for Lexical Decision

Figure 7.15

Accuracy and Raw Mean RT for Nonwords By Group and Time for Lexical Decision

Difference Between Words and Nonwords. We estimated a model to test for a

difference between word and nonword items. The model included predictors for

log(Days), ID measures, random intercepts and ID measures on random slopes for
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participants and words. We did not include psycholinguistic variables since nonwords

do not have values for these predictors.

The model estimated an average probability of a word being identified

correctly as 96.3%. If the item was a nonword, the odds were lower (log-odds = -1.11

[-1.39, -0.82]). This suggests that nonwords have 6.6% lower probability of being

identified correctly in this model and this sample. This is a medium sized effect and

supports our prediction that words would be identified with greater accuracy than

nonwords.

Worth noting is that the log(Days) showed an attenuated rate of decrease in

this model compared to the model on words only (log-odds = -0.08 [-0.13, -0.04]).

Nonword reading and vocabulary were estimated unreliably but spelling was reliable

(log-odds = 0.18 [0.06, 0.30]). When word and nonword items were modelled together,

a 1 SD increase in spelling knowledge (approximately 4.5 words) increased the odds of

an accurate response by approximately 0.6%.

7.2.3.2 Preferred Model

The preferred model for the lexical decision data was the Additive-RIS model, i.e., the

model containing ID and psycholinguistic predictors as independent terms on fixed

effects, random intercepts and slopes. The model without the group predictor was

preferred over the model with the group predictor. This model explained R2
bayes =

40% [39.2, 41.0] of the variance in the accuracy outcome. Figure 7.16 and Table 7.7

display the fixed effects’ coefficients for the model.

Model Inference. On average, the probability of making a correct response is

96.3%. The effect of log (days) is reliable and negative (log-odds = -0.15 [-0.21, -0.09])

indicating that with a 1 SD increase in days (~ 95), the probability of making a

correct response decreases by about 0.5%. This is a very small effect.

Each of the mean values of estimates for ID measures lie to the right of zero,

suggesting that they all show a trend for increasing the odds of an accurate response.
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Table 7.7

Summary of Standardised Fixed Effects for Lexical Decision Accuracy

Term Estimate SE Lower CI Upper CI
Intercept 3.26 0.13 3.01 3.51

Time
(Log) Days -0.15 0.03 -0.21 -0.09

Individual Differences
Word reading 0.13 0.10 -0.06 0.32
Nonword reading 0.21 0.08 0.05 0.38
Rapid naming 0.06 0.07 -0.07 0.19
Phonological skill 0.00 0.06 -0.11 0.11
Vocabulary 0.14 0.07 0.02 0.27
Spelling 0.11 0.07 -0.03 0.25
Age 0.02 0.00 0.01 0.03

Psycholinguistic Variables
AoA -0.61 0.11 -0.83 -0.40
Arousal 0.06 0.07 -0.07 0.20
Concreteness -0.06 0.08 -0.22 0.10
Consistency -0.04 0.07 -0.18 0.09
Dominance 0.01 0.08 -0.15 0.17
Imageability 0.06 0.09 -0.11 0.24
(Log) BF Type 0.06 0.08 -0.08 0.21
Word meanings 0.09 0.09 -0.09 0.26
LPC -0.04 0.07 -0.18 0.09
Neighbourhood size -0.06 0.09 -0.23 0.11
Phonemes 0.15 0.09 -0.01 0.32
Semantic diversity 0.06 0.09 -0.12 0.23
Sensory experience 0.04 0.08 -0.11 0.19
Word-Frequency 0.87 0.13 0.61 1.13
Valence -0.04 0.09 -0.22 0.13

Note:
CI = Credible intervals. AoA = Age of acquisition. (Log)
BF Type = Log Bigram Frequency Type. LPC = Levenshtein
Phonological Consistency.
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Figure 7.16

Estimates from the Posterior Distribution of the Preferred Model for ID and

Psycholingustic Predictors on Lexical Decision Accuracy Data
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Only nonword reading skill, vocabulary and age are estimated with such certainty

however, that we can assert that the sign of the effect is positive. Word reading skill,

rapid naming skill, and spelling’s lower credible intervals include zero. Phonological

skill is uninformative as to outcome in this model as it sits squarely on zero.

Reliable or not, these are all very small effects. The coefficient for nonword

reading (log-odds = 0.21 [0.05, 0.38]) indicates that with 1 SD increase in nonword

reading skill, there is an increase in the probability of responding accurately of 0.7%.

The SD of nonword reading for this sample was 7.7, so in raw units of nonword skill

and probabilities of making a correct response, this means a person who answered

approximately 50 of the 63 nonwords had a 96.3% probability of making a correct

response. This increased to 97% for a person who could answer approximately 57

words.

With an increase of 1 SD in vocabulary scores, the log-odds of making a

correct response increases by 0.14 [0.02, 0.27]. This is an increase from 96.3% to

96.8% - half a percentage point for knowing six more vocabulary items on the Shipley

vocabulary test.

Age is estimated as a very small, positive and reliable effect. Older

participants show higher odds of being accurate than younger people (log-odds = 0.02

[0.01, 0.03]). For a 1 SD change in the age variable which equates to 38.6 years,

accuracy increases from 96.31% to 96.38% - a difference of 0.07%.

Of the 15 psycholinguistic variables, only AoA and word-frequency show

reliable estimates. A range of positive and negative relationships with accuracy are

possible according to the model implied coefficients for the remaining 13 predictors,

however none are reliable for this model and this sample.

AoA has a small, negative association with lexical decision accuracy (log-odds

= -0.61 [-0.83, -0.40]. Later learned words show lower odds of being identified as

words than early learned words. As AoA increases by 1 SD, the probability of making

a correct decision for a word decreases from 96.3% to 93.3%, approximately 3%. The

SD for AoA on the raw scale is 2.7 years. Consequently, the model estimates that

words that are learned approximately two and half years apart have significantly
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different probabilities of being identified as a word.

Word-frequency shows a small positive relationship (log-odds = 0.87 [0.61,

1.13]) with lexical decision accuracy. Words that carry higher frequency ratings show

higher odds of being answered correctly than words with lower frequency ratings. The

SD value for the frequency scale is 1.3 in this dataset. A move of 1.3 categories up the

Zipf-scale will increase accuracy from 96.3% to 98.4%.

Since this is an exploratory study, we think it worth noting the estimate for

phonemes. Recall that the length predictor was identified as having a high VIF rate

and so we dropped length from the modelling process, retaining the phonemes

predictor as a proxy measure (Morrison et al., 2003). The estimate here is log-odds =

0.15 [-0.01, 0.32]. One SD in the phonemes measure is equivalent to an increase of one

sound to a word. While unreliable and very small, the estimate suggests that as the

number of phonemes increases by 1, they have a higher odds of being identified

correctly as words. The advantage is roughly 0.5%.

Complete Case and Outlier Analyses. The effects of nonword reading and

vocabulary remain stable in the complete case analysis. Plus word reading skill is

reliable and positive. Participants with higher word reading skill have higher odds of

making a correct response. The complete cases analysis also shows that the tendency

to be less correct over time is diminished. All other ID measures remain inconclusive.

AoA and frequency maintain their status as well defined, certain effects for accuracy

on lexical decision trials.

Since AoA and frequency have sometimes been discussed as variant of a

frequency type predictor, we created two additional models to scrutinise whether a

model with one of them omitted performed better than the model that included both.

Neither model performed better from a reading of the subsequent LOOIC values

(LOOICboth: 21741.6; LOOICAoA = 21808.3; LOOICfreq = 21746.9).

In the model with AoA removed, the frequency coefficient increases from a

log-odds of 0.87 [0.61, 1.13] to 1.22 [0.97, 1.47]. The change is not significant between

the two absolute effect sizes, however in terms of interpretation, this means the
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frequency is now a moderate effect. The direction of effect remains the same. Without

AoA in the model, a 1 SD increase in frequency increase accuracy by approximately

2.5%. The difference in accuracy effects when AoA is included and not included is

approximately 0.5% of a probability point.

In the model with frequency removed, the AoA coefficient increases from

-0.61 [-0.83,-0.40] to -0.94 [-1.15, -0.75]. The effect size is not significantly different

between the two models, however the direction of the effect remains unchanged with

the absolute magnitude being larger. This represents an overall decrease in accuracy

by approximately 5% for every 1 SD increase in AoA - a difference of 2% when

frequency is estimated in the same model. It is clear from these further models that

AoA can recover some of the frequency variance, in its absence, where frequency

cannot do the same for AoA.

Design Implied Model. The design implied model is in Figure 7.17. The

difference between models is only the inclusion of the group contrast predictor. The

model implied relationship between atypical and typically-reading adults is reliably

negative and of a medium size. Atypically-reading adults have lower odds than

typically-reading adults to correctly identify that a letter string is a word. The

credible intervals are wide, indicating a wide range of plausible values. This is the

only contrast amongst the range of group contrasts where the model is confident that

the relationship is negative, with both positive and negative relationships plausible for

the remaining contrast effects.

There are changes in the estimates for ID measures. The effects of vocabulary

and age are less certain here; their credible intervals cross zero, meaning no difference

is a plausible relationship. Nonword reading, AoA and word-frequency remain strong

and each follow the same direction of effect as in the preferred model.

Model Predictions. The model implied predictions are shown in Figure 7.18. As

before, these plots are drawn on the probability scale with the y-axis ranging from 0 -

1. We present the ID measure predictions (plots a - h) and the model implied
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Figure 7.17

Estimates from the Posterior Distribution of the Design Implied Model for ID and

Psycholingustic Predictors on the Lexical Decision Accuracy Data
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predictions for AoA (plot i) and word-frequency (plot j). Credible intervals denoting

66% and 95% certainty for the predictions surround the curve, here indicated by the

solid black line.

As with the letter search task, at the extreme values of any of the predictors,

lexical decision accuracy is high. The predictions for reading skill (plot b) and

nonword reading skill (plot c) suggest that even at a very low level of skill, accuracy is

not predicted to fall below ~ 80%. The lowest age prediction (10 years) suggests that

the lower credible interval falls just above 75% predicted accuracy. The predictions for

AoA and word-frequency appear to be mirror images of each other. The model

implied probability for correctly identifying a word as a word for the latest learned

words and the lowest frequency words is approximately 80%.

Summary and Discussion. Words have a higher probability of being correctly

classified than nonwords in this data sample. Over time, responses generally decrease

in accuracy, echoing the letter search effect of time. The preferred model for lexical

decision accuracy does not include the group predictor. Nor does it include any

interaction terms, which suggests that, given this range of models and this data,

irrespective of age or literacy status, participants approach lexical decision in similar

ways.

Having higher levels of nonword reading skill and vocabulary knowledge, and

being older participants means your odds of correctly identifying a word as a word are

higher. People of lower nonword reading and vocabulary skill, and younger are less

likely to be accurate. It is emphasised that these are very small sized effects.



Figure 7.18

Preferred Model Predictions for the Effects of Individual Differences, Age of Acquisition and Frequency on Lexical Decision
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Nonword reading rather than word reading is the reliable predictor for this

model and sample. In the complete case analysis, word reading becomes reliable,

alongside nonword reading and vocabulary. We observed that rates of attrition for the

atypically-reading adults and 16-17-year-old groups were the highest among the

sample (Figure 6.1). We suggest that as the number of participants of

atypically-reading status left the study, word reading could register as an influential

predictor as the balance between groups remaining in the study had stronger word

reading skills. For nonword reading to remain reliable in the complete cases analysis,

however, it must be relevant to all readers to some extent. This may be the related to

the use of pronounceable nonwords mixed with the word items, promoting decoding

skills for all participants for the unfamiliar items.

The presence of vocabulary as a reliable estimate is unsurprising as discerning

words from nonwords in a lexical decision is often believed to recruit the use of

semantics as a decision principle for words. Perhaps the strength of the nonword

estimate - for both the full sample and the complete cases analysis - is a reflection of

the low vocabulary we observe for the atypical groups. This interpretation invokes the

division of labour hypothesis (Plaut et al., 1996) where phonological and semantic

information work together to facilitate word recognition.

We also noted the almost reliable predictor of phonemes. The phoneme

predictor is acting as a proxy for an absent length predictor, so it isn’t clear if this is a

pseudo length effect or if the number of phonemes is the actual effect. If it were, this

would suggest that phonological information is being used to make decisions in the

lexical decision task, where no overt pronunciation is required. Phonological recoding

in the absence of a phonological output supports the strong phonological theory for

this sample (Frost, 1998).

The model estimates for AoA and word-frequency show negative and positive

relationships, respectively. Both effects are in line with previous studies. However,

once more, because the baseline accuracy rate in the lexical decision task for words is

high (96.3%), these effects are small, as accuracy approaches 100%, effects become

compressed.
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7.2.4 Reaction Time Results

7.2.4.1 Descriptive Statistics

Distributions for the mean reaction time in milliseconds are displayed at the group

level in Figure 7.19, 7.14 and 7.15 for correct responses to words and nonwords.

Atypical and typically-reading adult and 16-17-year-old readers appear to be faster for

word responses than nonword responses, that trend is not so clear for

atypically-reading 16-17-year-old readers or the younger groups.

7.2.4.2 Preferred Model

The preferred model for reaction time data in the lexical decision is the Additive-RIS

model without the group contrast predictor, as with accuracy data. The model

contains predictors for time, ID measures and psycholinguistic variables, with

predictors on random intercepts and slopes for participants and items. The explained

variance in the reaction time data for the model is R2
bayes = 35.5% [34.9, 36.2]. The

fixed effects of the model are presented in Figure 7.20 and Table 7.8.

Model Inference. Log (days) is positively and reliably associated with reaction

time (𝛽 = 0.07 [0.06, 0.09]). With a 1 SD increase in days, reaction time slows by

approximately 23 ms. In the first data collection session, the model implied average

response time is approximately 825 ms with this increasing to approximately 847 ms

95 days later.

The general trend for the group of ID measures is for them to quicken

responses, all but phonological skill being negatively associated with reaction time.

Only nonword reading skill and rapid naming reliably estimated, however. The

remaining variables show that both positive and negative effects are compatible with

the data.

Higher nonword reading scores are associated with faster reaction times (𝛽 =

-0.07 [-0.12, -0.02]). A reader that is 1 SD stronger in nonword reading is
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Figure 7.19

Histograms Showing the Distribution of Raw, Mean Reaction Time (ms) By

Participant, Group and Time Point for Words and Nonwords in the Lexical Decision

Task
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Figure 7.20

Estimates from the Posterior Distribution of the Preferred Model for ID and

Psycholingustic Predictors on the Lexical Decision Reaction Time Data
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Table 7.8

Summary of Standardised Fixed Effects for Lexical Decision Reaction Time

Term Estimate SE Lower CI Upper CI
Intercept -0.02 0.04 -0.10 0.06

Time
(Log) Days 0.07 0.01 0.06 0.09

Individual Differences
Word reading -0.05 0.03 -0.11 0.01
Nonword reading -0.07 0.03 -0.12 -0.02
Rapid naming -0.05 0.02 -0.10 -0.01
Phonological skill 0.01 0.02 -0.03 0.04
Vocabulary -0.01 0.03 -0.06 0.04
Spelling -0.02 0.03 -0.08 0.03
Age 0.00 0.00 -0.01 0.00

Psycholinguistic Variables
AoA 0.09 0.02 0.06 0.12
Arousal 0.00 0.01 -0.02 0.02
Concreteness 0.02 0.01 0.00 0.05
Consistency -0.01 0.01 -0.03 0.01
Dominance -0.01 0.01 -0.03 0.01
Imageability -0.03 0.01 -0.06 0.00
(Log) BF Type 0.01 0.01 -0.01 0.03
Word meanings -0.02 0.01 -0.05 0.00
LPC 0.01 0.01 -0.01 0.03
Neighbourhood size -0.02 0.01 -0.04 0.01
Phonemes 0.00 0.01 -0.03 0.02
Semantic diversity -0.02 0.01 -0.05 0.00
Sensory experience 0.00 0.01 -0.02 0.02
word-frequency -0.16 0.02 -0.20 -0.12
Valence 0.00 0.01 -0.02 0.03

Note:
CI = Credible intervals. AoA = Age of acquisition. (Log)
BF Type = Log Bigram Frequency Type. LPC = Levenshtein
Phonological Consistency.
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approximately 23 ms faster at responding correctly. Higher scores for RON (𝛽 = -0.05

[-0.10, -0.01]) also decreases reaction time by approximately 17 ms. Just as with the

accuracy outcome, the individual difference effects are incredibly small.

AoA and word-frequency are also identified as influential predictors for

reaction time, as they were in the accuracy outcome model for lexical decision. AoA

shows a positive, reliable association with reaction time (𝛽 = 0.09 [0.06, 0.12]) ,

describing how later learned words are slower (by approximately 30 ms) to be

identified correctly as words than earlier learned words. We know that the AoA SD is

approximately 2.5 years, so when words are separated in ratings by this amount, this

model predicts that the later learned word will be slower by about 30 ms.

Word-frequency is reliably, negatively associated with reaction time (𝛽 =

-0.16 [-0.20, -0.12]): words of higher frequency are associated with shorter reaction

times. Each 1 SD increase in frequency (SD = 1.3) results in a decrease in reaction

time of about 53 ms.

An additional influential predictor in the reaction time model is concreteness.

It is showing a very small, positive relationship, with its lower credible interval resting

on zero (𝛽 = 0.02 [0.00, 0.05]). It suggests that for every 1 SD increase in

concreteness ratings (SD = 1.02), reaction times slow by approximately 7 ms. The

concreteness measure within this study uses a Likert scale from 1 - 5, suggesting that

as the ratings move up a single scale value, associated reaction times are 7 ms slower

than the average rated word for concreteness.

Turning to predictors worthy of note given the exploratory nature of the

study. Imageability (𝛽 = -0.03 [-0.06, 0.00]), number of word meanings (𝛽 = -0.02

[-0.05, 0.00]) and semantic diversity (𝛽 = -0.02 [-0.05, 0.00]) all appear to be potential

candidates for predictors that show some influence. You will notice that their credible

intervals contain positive and negative values, with their upper credible interval limits

resting on zero. The model has estimated a posterior distribution that includes zero,

however the limit of the posterior is so close to zero that the digits are not printed

here. These estimates and credible intervals could change with a change in sample or

study design and so are worthy of consideration here for replication purposes.
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Each has a negative relationship with reaction time. In this model, words

whose referents are easier to call to mind are decided upon quicker than words that do

not easily call up a mental image (difference = -10 ms); words that have many

synonyms are categorised more quickly than words that have few alternatives

(difference = -7 ms) and words that can be used in numerous contexts are faster to be

responded to than words that have a limited breadth of use (difference = -7 ms).

Complete Case and Outlier Analyses. At the time of writing, the full sample

model with no outliers was still running.

In the complete cases data set, log (days) remains reliable and positive.

Nonword reading becomes unreliable but slightly larger while RON remains reliable

but shrinks slightly towards zero. AoA and word-frequency remain reliable but are

reduced slightly in size. For the purposes of an exploratory study, concreteness is just

reliable but smaller. Imageability and semantic diversity remain the same but number

of word meanings is now estimated as negative and reliable. Consistency joins the

small band of predictors that should be considered under an exploratory label. It

shows a negative effect that is very small. Bigram frequency is also resting on zero in

this data set, is a very small effect and positive in sign.

The complete cases with no outliers model shows the same pattern of effects

as the complete cases data set with the addition of N-size to the group of exploratory

predictors. It shows a very small effect size and a negative relationship with reaction

time.

Design Implied Model. The design implied model includes the group predictor

(see Figure 7.21). All group contrast are unreliable except for the contrast between

atypically-reading adults and typical 11-12-year-old readers, where the adults are

estimated to be faster in reaction time than the younger readers. It explains the same

amount of variance as the preferred model (R2
bayes = 35.5% [34.9, 36.2]). Given the

similarities in LOOIC values and variance explained, we performed a model averaging

check to see how much weight each model would be apportioned if we considered the
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Figure 7.21

Estimates from the Posterior Distribution of the Design Implied Model for ID and

Psycholingustic Predictors on the Lexical Decision Reaction Time Data
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two side by side. The model averaging result gives 97.1% of the weighting to the

model with no group predictor.

It would be easy to be fooled into thinking that the coefficients in the study

design implied model are estimated with much greater precision than the preferred

model but this is due to the massive uncertainty by which the group contrast

coefficients are estimated, such that the x-axis scale is compressed, relative to the

x-axis for the preferred model.

The estimates are very similar, however. With the increase in days, reaction

times lengthen. RON’s upper credible interval now rests on zero but higher skill still

indicates faster reaction time. The estimate for nonword reading is stable. AoA and

concreteness remain positive and associated with slowed responses for higher values

and word-frequency remains negatively associated with reaction time, as in the

preferred model. Imageability, number of word meanings and semantic diversity also

remain as candidate predictors showing the same direction of effects.

Model Predictions. Model implied predictions for lexical decision reaction time

are displayed in Figure 7.22 and 7.23. Recall that because predictors and outcome

variables are standardised, where the solid black line crosses the dashed blue line is

where the average response is located. In this model, with this data, the average

reaction time is based upon that of a typical reading 16-17-year-old. Where intervals

and the solid black line are below the dashed line, the predictions are for faster

reaction times. Where intervals and the solid black line are above the dashed line, the

predictions are for slower reaction times.

The model predicts faster times for higher nonword reading and RON skill.

Although not indicated in the model, model implied predictions do indicate a role for

word reading (plot b), with higher skills predicting faster reaction times than average.

There is also a very slight trend for higher skills in spelling to facilitate reaction time

(plot g). The model implied predictions indicate that repeated sessions (plot a) will

be associated with slower reaction times, as observed in the model.



Figure 7.22

Preferred Model Predictions for the Effects of Individual Differences on Lexical Decision Reaction Time Data

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3
 

Z
 R

ea
ct

io
n 

T
im

e

a. Log (Days)

−4 −2 0 2 4
 
 

b. Word Reading

−5.0 −2.5 0.0 2.5 5.0
 

 

c. Nonword Reading

−1.0

−0.5

0.0

0.5

1.0

−2 0 2

Z
 R

ea
ct

io
n 

T
im

e

d. Rapid Naming

−4 −2 0 2 4
 

 

e. Phonological Skill

−4 −2 0 2 4
 

 

f. Vocabulary

−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4
 

Z
 R

ea
ct

io
n 

T
im

e

g. Spelling

10 20 30 40 50 60
 

 

h. Age

Credible
Intervals

0.95

0.66



Figure 7.23

Preferred Model Predictions for the Effects of Age of Acquisition, Concreteness, Imageability, Number of Word Meanings,

Semantic Diversity and Word-Frequency on Lexical Decision Reaction Time Data
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Just as in the accuracy predictions, AoA and word-frequency predictions

support the observed estimates of the model. We simulated the semantic predictors

since their credible intervals touch on zero. Words that have lower concreteness

ratings will have a slight advantage over words of higher concreteness ratings. Yet

words that are highly imageable will also have a slight advantage over words that are

more abstract. Number of word meanings and semantic diversity are clearly negative

for higher values.

Summary and Discussion. Lexical decision reaction time, given this model and

this data, shows some very small effects from a couple of ID measures and some small

effects from a couple of psycholinguistic predictors. The model that included the group

contrast was not the preferred model, suggesting that for this model and sample, the

participants approach lexical decision for their speed of responses similarly.

Participant responses become slower with successive data collection points,

and There is a very small difference on accuracy outcomes for participants who are

slightly older than other participants. Given an updated range of data for age, older

participants are faster than child participants by approximately a quarter of a

standard deviation. Word-frequency and AoA effects are reliable. The predictors that

touch on zero are all of semantic domain - concreteness, imageability, number of word

meanings and semantic diversity.

The surprising finding is a positive effect for concreteness. Prior studies have

observed negative relationships between estimates for concreteness and reaction time

outcomes (Cohen-Shikora and Balota, 2016). Kousta et al. (2011) found a latency

advantage for abstract words when imageability ratings were controlled. We have not

controlled for imageability by design, but we have statistically adjusted for the

independent influence of imageability by including it as a predictor in the model. We

suggest that the presence of imageability as a predictor in the model has partialled

out the effect of imageability and gives rise to this observed effect. It is an incredibly

small effect and in need of confirmation through replication.
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7.3 Word Naming

Participants were asked to name a presented word as quickly and accurately as

possible. Details of the sample items and list construction are reported in section

5.2.4.2. Our research question was whether the speed and accuracy by which

atypically-reading adults named single words was different to that of other groups of

readers. Difference between groups could be characterised as rates of recognition but

also if the groups differed in their use of psycholinguistic information. If the preferred

model includes the group predictor, this may indicate that there are differences

between the atypically-reading adult readers for accuracy rates or speed of single word

naming. If the preferred model included interaction effects between group and any of

the ID or psycholinguistic measures, this could indicate a difference in either strategy

or knowledge for completing trials. No interactions between the group variable and ID

or psycholinguistic measures would suggest that the groups are approaching the task

similarly.

7.3.1 Item Properties

At each time point, a participant would see 70 words (50 words and 20 words for the

isolation condition of the sentence reading task). Mean frequency scores for high and

low ratings and mean number of letters across lists are in Table 7.9.

A two-way ANOVA for effects of frequency category (high vs low) and list

(1-3) on frequency ratings confirmed a significant main effect of frequency category

(F(1, 204) = 856.36, p < .001) and a non-significant main effect of list (F(2, 204) =

0.05, p = .952). A one-way ANOVA for the effect of list on length confirmed a

non-significant finding (F(1, 207) = 0.09, p = .91). Thus, there is a difference between

levels of high and low frequency within lists but lists are equivalent with each other

for frequency and length.

The properties for the other psycholinguistic variables and findings of

inferential test for differences within variables across list are in Table 7.10 and
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Table 7.9

Descriptive Statistics for Frequency and Length for Three Item Lists in the Word

Naming Task

Mean Frequency (SD)
List High Low Length
1 5.2 (0.7) 2.9 (0.4) 4.7 (1.2)
2 5.3 (0.7) 3 (0.4) 4.6 (1.2)
3 5.2 (0.7) 2.9 (0.4) 4.7 (1.3)

displayed in Figure 7.24. There is a difference for consistency values (p = .038),

between the second and the third list. None of the other variables show statistical

differences across lists (all ps > 0.22).

7.3.2 Analyses

In word naming, a correct response reflects that the participant pronounced an item

correctly. An incorrect response represents that either part of the word was

pronounced incorrectly or an different word from the target item was pronounced.

7.3.2.1 Number of Observations

Full Sample. We collected 40,950 word naming observations. We excluded 420

observations from six participants data as duplicates of items from previous waves of

data collection. A further 210 observations were excluded due to microphone errors

from three participants. There were two trials that were measured as < 200 ms and

five observations that were recorded as above 4,000 ms, all were excluded as mis-trials

from malfunctions of equipment. This left 40,313 observations for accuracy analyses.

After removing incorrect trials (n = 2,322) there were 37,991 observations available

for reaction time analyses.
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Table 7.10

Summary of Psycholinguistic Variable Measures for Word Naming Items with F-Ratio

and P Values to Signify Differences Between Item Lists

ANOVA
Psycholinguistic Variables Mean SD Min Max F(2, 57) p
AoA 6.8 2.7 2.9 14.2 1.29 0.276
Arousal 3.9 0.8 2.1 7.7 0.7 0.498
BF Type 27.2 18.7 1.0 116.2 1.5 0.226
Concreteness 3.8 1.0 1.7 5.0 0.24 0.788
Consistency 0.8 0.3 0.0 1.0 3.34 0.038
Dominance 5.3 0.9 2.8 7.4 0.2 0.819
Imageability 4.5 1.5 1.4 6.9 0.27 0.763
LPC 1.2 0.2 0.8 2.0 0.59 0.553
Phonemes 3.6 0.9 2.0 9.0 0.54 0.584
Neighbourhood size 7.9 6.5 1.0 27.0 0.12 0.887
Semantic diversity 1.7 0.3 0.6 2.4 0.1 0.909
Sensory experience 2.8 0.9 1.0 5.2 0.88 0.417
Word frequency 4.1 1.3 2.0 6.6 0.01 0.99
Word meanings 7.2 7.6 1.0 52.0 1.5 0.226
Valence 5.2 1.2 2.3 7.7 0.12 0.886

Note:
AoA = Age of acquisition. BF = Bigram frequency. LPC = Levenshtein
Phonological Consistency.
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Figure 7.24

Histograms Showing the Distribution of Psycholinguistic Properties for Items on the

Word Naming Task Across Three Lists
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Complete Case Analysis. There were 165 participants with complete data for

word naming trials across three data collection sessions. The number of observations

available for a complete case analysis is 34,393. The preferred model was re-run on

this dataset for accuracy and for correct trials in reaction time (n = 32,778).

Outlier Analysis. In the full sample dataset, we removed 320 (0.8%) trials that

were at the time-out value and performed the calculations for identifying outliers for

each participant, removing them (n = 5,033, 12.5%) leaving 34,960 observations. The

preferred model for accuracy was was re-run on this dataset and for reaction time on

all correct trials (n = 33,708).

In the complete case dataset with no outliers, there were 30,059 observations

for the accuracy model. For analysis of reaction time outcomes on correct trials only,

there were 29,061 observations.

7.3.3 Accuracy Results

7.3.3.1 Descriptive Statistics

We calculated mean accuracy performance per participant and display the

distributions within groups across time in Figure 7.25; averages across accuracy and

reaction time by time and group are displayed in Figure 7.25. As may be apparent

from the numbers of observations above, and from the plots, accuracy rates were very

high in this dataset. There is very little variance observed for the typically-reading

16-17-year-olds and adult readers. Atypical reading groups show a greater spread of

mean accuracy rates, however their distributions are still display quite extreme

negative skew. Estimation of effects under these conditions can be tenuous and results

may be unstable.
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Figure 7.25

Histograms Showing the Distribution of Mean Accuracy Rates per Participant By

Group Across Time Points in the Word Naming Task Across Time
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Figure 7.26

Mean Accuracy and Raw Mean RT for Correct Trials By Group and Time for Word

Naming

7.3.3.2 Preferred Model

The preferred model for word naming accuracy data was the Additive-RIS model that

included the predictors for time, group contrasts, ID and psycholinguistic variables,

with random intercepts and slopes for ID and psycholinguistic predictors on

participants and items. This model explained R2
bayes = 37.5% [36.1, 39.0] of the

variance in the accuracy outcome. This model is also that implied by the study design.

Table 7.11

Summary of Standardised Fixed Effects for Word Naming Accuracy

Term Estimate SE Lower CI Upper CI

Intercept 5.42 0.22 5.00 5.86

Time

(Log) Days -0.08 0.04 -0.16 -0.01

Group Contrasts
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Table 7.11

Summary of Standardised Fixed Effects for Word Naming Accuracy (continued)

Term Estimate SE Lower CI Upper CI

A. Adult vs T. 16-17 -1.46 0.41 -2.28 -0.65

A. Adult vs A. 16-17 -1.04 0.38 -1.78 -0.28

A. Adult vs T. 11-12 -1.24 0.47 -2.14 -0.29

A. Adult vs T. Adult -1.86 0.65 -3.17 -0.63

A. 11-12 vs T. 11-12 -0.10 0.22 -0.53 0.32

Phonemic Onsets

Voice 0.07 0.14 -0.20 0.33

Nasal 0.08 0.12 -0.16 0.32

Fricative 0.16 0.16 -0.16 0.47

Liquid_SV 0.13 0.13 -0.13 0.39

Bilabials -0.27 0.18 -0.62 0.08

Alveolars 0.02 0.17 -0.32 0.36

Palatals 0.04 0.13 -0.21 0.30

Velars -0.08 0.17 -0.42 0.25

Glottals 0.11 0.13 -0.15 0.37

Individual Differences

Word reading 0.00 0.12 -0.23 0.24

Nonword reading 0.28 0.10 0.08 0.47

Rapid naming 0.03 0.07 -0.10 0.16

Phonological skill -0.01 0.05 -0.11 0.08

Vocabulary 0.44 0.08 0.27 0.60

Spelling 0.22 0.08 0.06 0.39

Age 0.01 0.01 -0.01 0.02

Psycholinguistic Variables

AoA -0.29 0.18 -0.64 0.05
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Table 7.11

Summary of Standardised Fixed Effects for Word Naming Accuracy (continued)

Term Estimate SE Lower CI Upper CI

Arousal -0.11 0.11 -0.33 0.11

Concreteness 0.09 0.13 -0.17 0.35

Consistency 0.37 0.11 0.16 0.58

Dominance 0.04 0.13 -0.22 0.30

Imageability -0.04 0.15 -0.34 0.26

(Log) BF Type -0.35 0.13 -0.61 -0.09

Word meanings 0.19 0.14 -0.08 0.48

LPC -0.09 0.12 -0.32 0.14

N-Size 0.19 0.14 -0.09 0.47

Phonemes 0.04 0.13 -0.23 0.30

Semantic diversity -0.08 0.15 -0.37 0.21

Sensory experience 0.04 0.12 -0.20 0.27

Word-frequency 0.95 0.21 0.54 1.36

Valence 0.00 0.14 -0.28 0.29

Note:

CI = Credible intervals. A. Adult = Atypically-reading adult; T.

16-17 = Typically-reading 16-17-year-old; A. 16-17 = ATypically-

reading 16-17-year-old; T. 11-12 = Typically-reading 11-12-year-

old; T. Adult = Typically-reading adult; A. 11-12 = Atypically-

reading 11-12-year-old; AoA = Age of acquisition. (Log) BF Type

= Log Bigram Frequency Type. LPC = Levenshtein Phonological

Consistency. N-Size = Neighbourhood size.

Model Inference. As suggested by Figure 7.25, the accuracy rate for the word

naming task was very high. Within the full sample observed data, accurate answers
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Figure 7.27

Estimates from the Posterior Distribution of the Preferred Model for Group, Phonemic

Onsets, ID and Psycholingustic Predictors on the Word Naming Accuracy Data
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were at 97.3%. The intercept indicates that when all predictors are at their mean,

accuracy is a log-odds of 5.4 - which transforms to a probability rate of 99.5%.

With accuracy above 95%, we have to interpret the coefficients with caution.

Although the model returns some coefficients whose credible intervals lie far from

zero, and are measured with some certainty, the biggest effect only increases

probability of being correct by 0.3%.

There is a small negative effect of log (days) (log-odds = -0.08 [-0.16, -0.01])

indicating that, over time there are lower odds that a response will be accurate. The

coefficient credible intervals do not include zero, so we can be confident that the

model implied effect is negative. However the magnitude of the effect is so small so as

to have no discernible effect on the intercept term (-0.03% difference on the intercept).

Model implied estimates for the group contrast predictor appear to be much

stronger, with the coefficients for differences between atypically-reading adults and

the other groups being far away from zero and negative. Atypically-reading adults are

less likely to be accurate than the typically- and atypically-reading 16-17-year-olds, as

well as the typically-reading 11-12-year-olds and adults. The model is inconclusive

about the sign of any difference between the two 11-12-year-old reading groups.

Atypically-reading adults and typically-reading 16-17-year-olds differ by

approximately 3%, this rises to a difference of approximately 4.5% between

atypically-reading adults and typically-reading adults. The difference between the

atypically-reading adults and the typically-reading 11-12-year-olds is a lower accuracy

rate of approximately 2% and the difference between atypically-reading adults and

atypically-reading 16-17-year-olds is a lower accuracy rate of approximately 1.6%.

In this model, none of the phonetic onset terms predict a reliable difference in

accuracy rates.

Nonword reading skill, vocabulary knowledge and spelling show positive

relationships with word naming accuracy. Higher scores in each of these measures is

associated with higher odds of producing a correct pronunciation. Nonword reading

(log-odds = 0.28 [0.08, 0.47]) and spelling (log-odds = 0.22 [0.06, 0.40]) are very small

effects, each predict an increase in the probability of being accurate of 0.1% for a 1 SD
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increase in the respective skill scores. Vocabulary (log-odds = 0.44 [0.27, 0.60]), as a

small effect size, increases probability of a correct pronunciation by 0.2% for a 1 SD

increase in knowledge scores. The remaining individual difference estimates are

unreliable.

Consistency, word-frequency and log bigram frequency (type) are indicated as

reliable psycholinguistic predictors. Consistency shows a very small, positive

relationship (log-odds = 0.37 [0.16, 0.58]), with a 1 SD increase in consistency value

increasing the probability of being correct by 0.2%. As word-frequency increases by 1

SD, accuracy increases by 0.3% (log-odds = 0.95 [0.54, 1.36]). Log bigram frequency

for the type of word shows a very small negative relationship (log-odds = -0.34 [-0.61,

-0.09]). A 1 SD increase in log bigram frequency values decreases accuracy by 0.2%.

Complete Case and Outlier Analyses. The complete case model shows a

smaller, now unreliable effect for log (days). The model is still certain that

atypically-reading adults have lower odds than typically-reading adults, 11-12- and

16-17-year olds for naming a word correctly. The coefficient for the group contrast

between atypically-reading adults and atypically-reading 16-17-year-olds is not

reliable in the complete cases model. The accuracy rates between the two

11-12-year-old groups remains equivalent. Nonword reading shows a stronger effect,

while vocabulary and spelling are slightly reduced in size. All remain reliable.

Consistency, bigram frequency and word-frequency also remain reliable and are

stronger effects in this model.

While the group contrasts remain stable when outliers are removed in the full

sample dataset, the contrast effects between atypical reading adults and atypical

reading 16-17-year-olds and typical reading 11-12-year-olds are attenuated in the

complete case dataset with no outliers. The model is no longer confident that the

atypically-reading adults are likely to be less accurate than these other groups. All

other predictor effects remain stable, reflecting those of the full sample model.
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Model Predictions. The model implied predictions for word naming accuracy are

shown in Figure 7.28. As before, these plots are drawn on the probability scale with

the y-axis ranging from 0 - 1. The granularity of the axis does not match the small

effects well but we felt that to change the axis for these plots would distort the image

of these effects relative to the other outcomes for other tasks.

The model implied predictions reflect the ceiling level of the observed

accuracy rates with the solid black line to the uppermost part of plots a - k. In plot c,

f and g, the model predicts that even very extreme low scores for nonword reading,

vocabulary and spelling decrease the certainty around the probability of a correct

response to a very small extent.

Predictions for consistency and word-frequency show high certainty at the

upper levels of their ranges, with probability of a correct response falling potentially

below 75% and 50% respectively, at the lower extremes. In contrast, target words that

have a low number of bigrams that are shared with other words show a narrower

range of uncertainty while words that show a high number of shared bigrams have

greater uncertainty, with the model predicting accuracy rates of 75% as plausible.

Summary and Discussion. The preferred model for word naming accuracy

includes the group contrast predictor. It is not the interaction model. Consequently,

it is quantitative rates of accuracy that differ rather than a qualitative difference in

approach. This is the first set of results that describe lower performance for

atypically-reading adults across all of the contrasted groups. It is an unstable effect

since it disappears in the sensitivity analysis. An inspection of the group means for

word reading skill shows that the atypically-reading adults resemble the

atypically-reading 11-12-year-olds most closely.

Nonword reading skill, vocabulary knowledge and spelling skill are positively

associated with word naming accuracy. This feels like a nexus of phonological,

semantic and orthographic skills that reflect the three domains of the lexical quality

hypothesis. We are surprised that the estimates for word reading skill are inconclusive

in this model.



Figure 7.28

Preferred Model Predictions for the Effects of Individual Differences, Consistency, Bigram Frequency and Word-Frequency on

Word Naming Accuracy Performance
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Interpreted with respect to the lexical quality hypothesis, we suggest that the

three components are working together, but are not integrated. Interpreted through a

connectionist model of reading, this implicates a role for the phonological and

semantic route as suggested by the division of labour hypothesis. Lack of integration

from a lexical quality hypothesis perspective could also mean the interdependence of

the two components is weak.

The role of spelling might also be cast as phonological in a feed-backward

consistency mechanism (Balota et al., 2004; Ziegler et al., 1997). Whichever is chosen,

spelling represents a fragmented source of information for the orthographic function.

The absence of a definitive word reading skill effect may suggest that word units as a

whole are not the most efficient route to word identification for this sample, i.e. the

orthographic route of the connectionist model is not playing a strong role.

Consistency, log bigram frequency (type) and word-frequency are implicated

as psycholinguistic predictors of word naming accuracy. We need to interpret the

consistency effect with caution because there were significant differences between

items on list 2 and 3. The consistency measure in this sample of items is constructed

as a ratio of friends and enemies, with the rime of a word always sharing letters but

not necessarily the same pronunciation. The bigram frequency for type of word is a

count of letter pairs across the entire body of a word, irrespective of the sound of the

pair. This could be understood as a phonological effect of a larger section of a word

facilitating greater accuracy while the sublexical attributes of letter-pair frequency,

that can occur at any point within the letter string and leaves the larger part of a

word still to be activated, acts as competition. Where the pairs of letters have high

frequency, many candidate words are activated. A larger selection pool introduces a

greater probability of making an error.

7.3.4 Reaction Time Results

Reaction time data was log transformed to reduce skew before standardising using the

typically-reading 16-17-year-olds as our reference level (mean RT = 691.5 ms, SD =
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239.8). Consequently, positive coefficients indicate slower reaction times and negative

coefficients indicate faster reaction times than that of a typically-reading

16-17-year-old.

7.3.4.1 Descriptive Statistics

Distributions for the raw, mean reaction time in milliseconds on correct trials per

participant are displayed at the group level in Figure 7.29 and Figure 7.25 for correct

responses to words.

7.3.4.2 Preferred Model

The preferred model for reaction time data in the word naming task is the

Additive-RIS model, containing fixed effects for time, phonetic onsets, ID measures

and psycholinguistic variables, random intercepts and slopes for participants and

items. The explained variance in the reaction time outcome was R2
bayes = 39.3%

[38.8, 39.9]. The model coefficients are plotted in Figure 7.30 with the model

summary of fixed effects in Table 7.12.

Model Inference. Neither number of days between data collection sessions nor any

of the ID measures are reliable in this model. Each predictor’s credible interval crosses

zero. Estimates are very small for this model and this sample.

For exploratory purposes, we note the results whose credible intervals just

cross zero. Although inconclusive, the general trend across the ID measures is for

negative estimates that suggest individuals with higher scores are quicker to begin a

correct pronunciation. RON (𝛽 = -0.04 [-0.09, 0.01]) and vocabulary (𝛽 = 0.03 [-0.02,

0.08]) need exploring further. The vocabulary measure suggests a positive relationship

and that readers of higher vocabulary knowledge are slower to begin a correct

pronunciation than those with lower vocabulary knowledge. Age shows absolutely no

influence on reaction time in this model for this sample (𝛽 = 0.00 [0.00, 0.00]).
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Figure 7.29

Histograms Showing the Distribution of Raw, Mean Reaction Time (ms) By

Participant, Group and Time Point for Correct Pronunciations in the Word Naming

Task
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Figure 7.30

Estimates from the Posterior Distribution of the Preferred Model for ID and

Psycholingustic Predictors on the Word Naming Reaction Time Data
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Table 7.12

Summary of Standardised Fixed Effects for Word Naming Reaction Time

Term Estimate SE Lower CI Upper CI
Intercept 0.23 0.05 0.13 0.34

Phonemic Onsets
Voice 0.06 0.02 0.03 0.09
Nasal -0.08 0.02 -0.11 -0.05
Fricative -0.20 0.02 -0.23 -0.15
Liquid_SV -0.04 0.02 -0.07 -0.01
Bilabials 0.02 0.02 -0.02 0.07
Alveolars -0.03 0.02 -0.08 0.01
Palatals -0.02 0.02 -0.05 0.01
Velars -0.02 0.02 -0.06 0.02
Glottals -0.09 0.02 -0.12 -0.06

Time
(Log) Days 0.01 0.01 -0.01 0.02

Individual Differences
Word reading -0.04 0.04 -0.12 0.04
Nonword reading -0.05 0.03 -0.11 0.02
Rapid naming -0.04 0.03 -0.09 0.01
Phonological skill -0.01 0.02 -0.04 0.03
Vocabulary 0.03 0.03 -0.02 0.08
Spelling -0.02 0.03 -0.07 0.03
Age 0.00 0.00 0.00 0.00

Psycholinguistic Variables
AoA 0.06 0.02 0.02 0.11
Arousal 0.01 0.01 -0.02 0.03
Concreteness 0.02 0.02 -0.02 0.05
Consistency -0.03 0.01 -0.05 0.00
Dominance 0.01 0.02 -0.03 0.04
Imageability -0.03 0.02 -0.07 0.01
(Log) BF Type 0.02 0.02 -0.01 0.05
Word meanings -0.02 0.02 -0.05 0.02
LPC -0.01 0.02 -0.04 0.02
N-size -0.06 0.02 -0.10 -0.02
Phonemes -0.02 0.02 -0.06 0.01
Semantic diversity 0.01 0.02 -0.03 0.04
Sensory experience -0.01 0.02 -0.03 0.02
Word-frequency -0.08 0.03 -0.14 -0.03
Valence 0.01 0.02 -0.03 0.04

Note:
CI = Credible intervals; AoA = Age of acquisition. (Log) BF
Type = Log Bigram Frequency Type. LPC = Levenshtein
Phonological Consistency. N-Size = Neighbourhood size.
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The control variables for phonetic onsets show a slowing of reaction time for

voiced onsets and faster responses for onsets in the nasal, fricative, liquid SV and

glottal position.

AoA, N-size and word-frequency are identified as reliable psycholinguistic

predictors for reaction time. AoA shows a positive association with reaction time (𝛽
= 0.06 [0.02, 0.11]), describing how later learned words are slower (by approximately

14 ms) to be pronounced correctly than earlier learned words for a 1 SD increase in

AoA values.

N-size is estimated as having a reliable negative relationship with word

naming reaction time for this model and sample (𝛽 = -0.06 [-0.10, -0.02]). A word

from a neighbourhood that is 1 SD larger is faster to be named by approximately 14

ms.

Word-frequency is negatively associated with reaction time (𝛽 = -0.08 [-0.14,

-0.03]): words of higher frequency are associated with shorter reaction times. Each 1

SD increase in frequency (SD = 1.3) results in a decrease in reaction time of about 19

ms.

Consistency’s upper credible interval touches on zero (𝛽 = -0.03 [-0.05, 0.00]).

The negative sign of the coefficient suggests that for a 1 SD increase in consistency

value, a word will be correctly pronounced approximately 7 ms faster.

Complete Case and Outlier Analyses. At the time of writing, the full sample

with no outliers model was still to converge.

The complete case analysis shows the same pattern of effects as the full

sample model for time passing and ID measures - all remain unreliable.

Word-frequency and AoA remain reliable and relatively stable in size. N-size becomes

unreliable. Consistency remains just reliable and imageability is also just touching on

zero so needs including as an exploratory study.

The complete case with no outliers is essentially the same as the complete

cases with outliers model. The phonemes predictor is suggested as reliable as an

addition. It is negative in size and very small. This describes faster reaction times for
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words with a greater number of phonemes.

Design Implied Model. The model coefficients for the design implied model are

plotted in Figure 7.31. The model adds the group contrast predictor. Only two of the

contrasts are reliable, although the trend of the estimates is for the atypically-reading

adults to be slower than the group with which they are contrasted. A reliable

estimate is present for the contrast between atypically-reading adults and

atypically-reading 16-17-year-olds (𝛽 = 0.31 [0.06, 0.63]) which equates to a difference

of approximately 74 ms, and between atypically- and typically-reading 11-12-year-olds

(𝛽 = 0.23 [0.02, 0.46]) which is a difference of approximately 55 ms. All other

predictors remain the same.

Model Predictions. Model implied predictions for word naming reaction time are

displayed in Figure 7.32. The model implied predictions follow the observed data well

for the effect of log (days) with plot (a) drawn as a flat line across repeated sessions.

The predictions for all ID measures are negative but for vocabulary. The predictions

for age show a slight negative influence, suggesting that older individuals may be

slightly faster than younger individuals. The credible intervals also show a much

wider range of values than for the other ID measures, showing how uncertain the

model is for this variable.

We simulated AoA, consistency, N-size and word-frequency. No matter the

ratings of the variables, none drop below the observed data mean value. Overall, the

model predicts slower reaction times than observed in the data.
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Figure 7.31

Estimates from the Posterior Distribution of the Design Implied Model for ID and

Psycholingustic Predictors on Word Naming Reaction Time Data
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Figure 7.32

Preferred Model Predictions for the Effects of Individual Differences, Age of Acquisition, Consistency, Neighbourhood Size and

Word-Frequency on Word Naming Reaction Time Data
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Summary and Discussion. The word naming models are estimated on a dataset

that is characterised by a high level of accuracy, suggesting that, possibly the sample

items were too easy. Well known words are likely to be responded to much more

quickly, which reduces the variability on the outcome measure by which to detect

effects.

For this model and data, the ID measures are important for accuracy. The

atypically-reading adults are observed as having lower odds of naming a word

correctly than the group with which they are contrasted. They are predicted to have

lower odds than the typically-reading 11-12-year-olds. This, being the task that in

prior literature, is supposed to be a relative strength for atypically-reading adults, is a

weakness.

Two of the ID measures - vocabulary and spelling - that are implicated to

assist with word naming accuracy, are the relatively strong ID measures for the

atypically-reading adults. The nonword reading skill is relatively weak in

atypically-reading adults. Consequently, Plaut et al. (1996)’s division of labour

hypothesis would have semantics supporting the phonological skill of nonword reading

to accomplish the recognition of the orthographic form, which appears to be best

represented by the spelling predictor.

This is not true for the reaction time data, however. The preferred model

does not include group and shows no influence of ID measures. All things being equal

across person-level measures, the psycholinguistic predictors that assist speeded word

recognition are a canonical set of AoA, consistency, N-size and word-frequency. Early

learned words, with straightforward decoding patterns of high frequency are named

faster. However, the accuracy rate is very high and replication is needed to confirm

these results, especially since one) this task implicates group differences for the

atypically-reading adults and two) in the sensitivity analyses the psycholinguistic

predictors changed across models. While AoA, word-frequency and consistency were

relatively stable, under the different conditions of the data sets, N-size, imageability

and phonemes were observed to change.
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7.4 Sentence Reading

Participants were asked to silently read a stem sentence that was missing the final

word. The final word then appeared in isolation on the next screen and the task was

to pronounce the single word as quickly and accurately as possible. Details of the

sample items and list construction are reported in section 5.2.4.3.

There was a context predictor in the task, of three levels. The first was no

context - reading a word in isolation. These words were presented as additional items

in the word naming task. The second and third levels involved a sentential context,

neutral and meaningful. The neutral reading context is set as the reference level for

this variable.

There were two research questions for this task. The first was whether the

speed and accuracy by which atypically-reading adults named single words across

each sentence reading context was different to that of other groups of readers. The

second research question was how the addition of context affected accuracy and speed

of word naming.

We expected the meaningful context to facilitate both accuracy and reading

rate for all groups, compared to the neutral condition because it contributes semantic

priming information. We were agnostic about where the isolated reading condition

would place, relative to the other two conditions. As an extension, we expected

vocabulary knowledge to be positively associated with accuracy and negatively

associated with reaction time on this task since meaningful context suggests that

semantic properties of a word may be activated while reading the sentence stem and

preparing candidate words for pronunciation. This would elevate both the probability

of the correct word being pronounced and also the speed with which the

pronunciation begins.

If the preferred model includes the group predictor, this may indicate that

there are differences between the atypically-reading adult readers for accuracy rates or

speed of word identification in the context of sentence reading. If the preferred model

included interaction effects between group and any of the ID or psycholinguistic



301

Table 7.13

Descriptive Statistics for Sentence Reading Items Across Three Lists

Mean Frequency (SD)
List High Low Length
1 4.6 (0.4) 3.4 (0.2) 4.6 (1.2)
2 4.7 (0.3) 3.3 (0.2) 4.6 (1.2)
3 4.6 (0.4) 3.3 (0.1) 4.5 (1.1)

measures, this could indicate a difference in either strategy or knowledge for

completing trials. No interactions between the group variable and ID or

psycholinguistic measures, or a preferred model that did not include the group

variable would suggest that the groups are approaching the task similarly.

7.4.1 Item Properties

At each time point, a participant would see 20 words in the isolation task embedded

within the word naming task, and a further 40 (20 x 2) words for the neutral and

meaningful conditions within a separate sentence reading task. Mean frequency scores

for high and low ratings across lists are in Table 7.13. A two-way ANOVA for effects

of frequency category (high and low) and list (1-3) on frequency ratings confirmed a

significant main effect of frequency category (F(1, 174) = 986.32, p < .001) and a

non-significant main effect of list (F(2, 174) = 0.4, p = .674). Thus, there is a

difference between high and low frequency of words within lists and no evidence to

suggest differences in levels of high and low frequency between lists.

We display the mean and SD values for the measured ratings across words for

other psycholinguistic variables in Table 7.14. The final column of Table 7.14 list the

F-ratio and p values of a series of ANOVA testing for differences between lists within

psycholinguistic properties.

There is a number of psycholinguistic predictors that are showing differences

for values between lists. This raised number of variables that are different across lists
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Table 7.14

Summary of Psycholinguistic Variable Measures for Sentence Reading Items with

F-Ratio and P Values to Signify Differences Between Item Lists

ANOVA
Psycholinguistic Variables Mean SD Min Max F(2, 177) p
AoA 5.8 1.9 3.0 11.3 2.07 0.13
Arousal 3.7 0.8 2.7 7.7 3.83 0.023
BF Type 27.8 15.9 1.5 63.8 3.78 0.025
Concreteness 4.9 0.1 4.7 5.0 3.07 0.049
Consistency 0.8 0.3 0.0 1.0 0.81 0.445
Dominance 5.4 0.7 3.6 6.6 2.58 0.079
Imageability 6.1 0.6 4.1 6.8 4.96 0.008
LPC 1.2 0.2 0.9 1.8 2.86 0.06
Phonemes 3.6 0.8 2.0 6.0 0.08 0.922
Neighbourhood size 8.6 6.3 1.0 24.0 0.28 0.753
Semantic diversity 1.5 0.3 0.7 2.1 4.66 0.011
Sensory experience 3.3 0.7 1.9 5.2 0.62 0.54
Word frequency 4.0 0.7 3.1 4.9 0.18 0.833
Word meanings 5.8 3.6 1.0 15.0 6.19 0.003
Valence 5.4 0.9 3.2 7.1 3.5 0.032

Note:
AoA = Age of acquisition. BF = Bigram frequency. LPC = Levenshtein
Phonological Consistency.
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could introduce results that confound our interpretation of model effects.

Consequently, results must be interpreted with caution. The distribution of different

psycholinguistic properties of items across three lists are displayed in Figure 7.33.

7.4.2 Analyses

7.4.2.1 Number of Observations

Full Sample. We collected 34,920 observations in the sentence reading task. We

excluded 360 observations from six participants due to them being duplicated items

from previous waves of data collection. We excluded a further 40 observations from

one participant due to technical issues. We also excluded 53 observations that were

<200ms and two observations that were recorded as above 4,000 ms, all were excluded

as mis-trials due to technical malfunctions. This left 34,465 observations correct and

incorrect word trials were available for accuracy analyses. We further removed

incorrect trials (n = 1,079) to leave 33,386 observations of correct trials for reaction

time analyses.

Complete Case Analysis. There were 169 participants who completed the

sentence reading task at three data collection sessions. This gave 29,866 observations

for a complete case analysis. The preferred model was run on this dataset for

accuracy. Accuracy was at 97.7% for this dataset. For correct trials in reaction time

data there were 29,201 observations.

Outlier Analysis. We removed 233 trials (0.7%) that were at the time-out value

before calculating the outliers for each participant, removing them (n = 4,039, 11.7%)

leaving 30,193 observations by which to re-run the preferred model for accuracy data.

Accuracy was at 98.3% for this dataset. We re-ran the preferred models on correct

trials for reaction time (n = 29,675).

In the complete dataset with no outliers, there were 26,464 observations for
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Figure 7.33

Histograms Showing the Distribution of Psycholinguistic Properties of Items in the

Sentence Reading Task Across Three Lists
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the accuracy model. Accuracy was at 98.4% for this dataset. For analysis of reaction

time outcomes on correct trials, there were 26,037 observations.

7.4.3 Accuracy Results

7.4.3.1 Descriptive Statistics

We calculated mean accuracy performance per condition per participant and display

the distributions within groups across time in Figure 7.34; averages across accuracy

and reaction time by time, condition and group are displayed in Figure 7.35. Total

mean accuracy performance was above 95% (isolation = 98.5%; meaningful = 99.4%;

neutral = 99.0%). This ceiling level means that any effects are likely to be extremely

small and that estimation of those effects may be highly unstable. We must exercise

caution in the interpretation of the preferred model.

7.4.3.2 Preferred Model

The preferred model for the sentence reading accuracy data was the Additive-RIS, the

model with predictors for time, ID and psycholinguistic variables, with random

intercepts and slopes on participants and items. This model explained 28.6% of the

variance in the accuracy outcome (R2
bayes = 28.6% [26.2, 31.0]). Figure 7.36 and

Table 7.15 display the fixed effect coefficients for the model.

Model Inference. The intercept coefficient of the preferred model shows a log-odds

value of 6.07, which transforms to a probability accuracy rate of 99.8% when all

predictors are at their mean. With accuracy above 95%, we have to interpret the

coefficients with caution. Although the model returns some coefficients whose credible

intervals lie far from zero, the largest coefficient translates to an increase in the

probability of being accurate of only 0.001% because accuracy in the model at the

ceiling level.
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Figure 7.34

Histograms Showing the Distribution of Mean Accuracy Rates per Participant By

Group, Condition and Time in the Sentence Reading Task
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Figure 7.35

Accuracy and Raw Mean RT for Words By Group, Time and Condition for Sentence

Reading
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Figure 7.36

Estimates from the Posterior Distribution of the Preferred Model for Time, Sentence

Context, Phonemic Onsets, ID and Psycholingustic Predictors on the Sentence

Reading Accuracy Data
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Table 7.15

Summary of Standardised Fixed Effects for Sentence Reading Accuracy

Term Estimate SE Lower CI Upper CI

Intercept 6.07 0.27 5.57 6.61
Time

(Log) Days -0.08 0.05 -0.19 0.02
Reading Context

Isolated context -0.22 0.09 -0.39 -0.04
Meaningful context 0.35 0.10 0.17 0.54

Phonemic Onsets
Voice 0.28 0.22 -0.14 0.71
Nasal -0.05 0.17 -0.37 0.29
Fricative 0.66 0.28 0.11 1.21
Liquid_SV -0.04 0.21 -0.46 0.37
Bilabials -0.09 0.33 -0.75 0.56
Alveolars 0.24 0.26 -0.29 0.75
Palatals 0.23 0.23 -0.22 0.68
Velars 0.19 0.26 -0.33 0.71
Glottals 0.18 0.19 -0.18 0.55

Individual Differences
Word reading 0.18 0.16 -0.13 0.49
Nonword reading 0.31 0.13 0.06 0.56
Rapid naming -0.04 0.10 -0.24 0.17
Phonological skill 0.08 0.08 -0.07 0.24
Vocabulary 0.20 0.12 -0.04 0.45
Spelling 0.11 0.14 -0.17 0.39
Age 0.01 0.01 0.00 0.03

Psycholinguistic Variables
AoA -0.27 0.26 -0.79 0.23
Arousal -0.08 0.16 -0.40 0.24
Concreteness -0.09 0.16 -0.40 0.23
Consistency 0.32 0.17 -0.01 0.64
Dominance 0.00 0.18 -0.35 0.35
Imageability 0.10 0.21 -0.33 0.51
(Log) BF Type -0.22 0.21 -0.63 0.20
Word meanings -0.03 0.19 -0.40 0.35
LPC 0.05 0.17 -0.27 0.39
N-Size 0.19 0.21 -0.22 0.61
Phonemes -0.07 0.24 -0.54 0.39
Semantic diversity -0.19 0.20 -0.59 0.20
Sensory experience 0.13 0.17 -0.21 0.46
Word-frequency 0.72 0.24 0.25 1.20
Valence -0.01 0.18 -0.35 0.34

Note:
CI = Credible intervals. AoA = Age of acquisition. (Log) BF Type
= Log Bigram Frequency Type. LPC = Levenshtein Phonological
Consistency. N-Size = Neighbourhood size



310

The coefficients for the context predictor levels were reliable. Reading a word

in a meaningful context gives higher odds of an accurate response (log-odds = 0.35

[0.17, 0.54]) relative to a neutral context, increasing the probability of an accurate

response by 0.0007%. As you can see, in real terms, the effects sizes are infinitesimal.

Reading a word in isolation gives lower odds of an accurate pronunciation compared

to the neutral context of reading (log-odds = -0.22 [-0.39, -0.04]), decreasing the

probability of accuracy by approximately 0.0006%.

We predicted that vocabulary would be a reliable predictor in the sentence

task. It was not (log-odds = 0.20 [-0.04, 0.45])). Only nonword reading and age

variables have credible intervals that do not include zero. The nonword reading

coefficient is positively related to accuracy (log-odds = 0.31 [0.06, 0.56]), suggesting

that people of higher nonword reading skill have higher odds of giving an accurate

response. Incredibly small but present is a positive coefficient for age (log-odds = 0.01

[0.00, 0.03]). Older participants are more likely to be accurate than younger

participants, to an extremely small degree. None of these effects move the accuracy

rate from 99.8 to 99.9 they are that small.

Word-frequency has credible intervals that do not include zero (log-odds =

0.72 [0.25, 1.20]) and is a big enough effect to register a change in accuracy rate from

the intercept term. For a 1 SD increase in frequency values, the odds of being

accurate increase by 0.1%. In terms of exploratory effects, consistency has a log-odds

of 0.32 [-0.01, 0.64] with a lower credible interval that has just crossed zero. It is

worthy of consideration in this instance, given that the predictor is reliable for word

naming for this sample, but it is just as tiny as the ID measures coefficients.

Complete Case and Outlier Analyses. The full sample with no outliers model

shows a strengthening of the effects for the context condition. The isolation condition

moves from log-odds = -0.22 [-0.39, -0.04] to log-odds = -0.61 [-0.87, -0.35], almost

three times the size of the full sample data set model. Vocabulary remains an

unreliable predictor. Nonword reading and age remain reliable. Age remains the same

size but nonword reading becomes a stronger effect log-odds = 0.40 [0.10, 0.70].
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Word-frequency doubles in size in this data set log-odds = 1.24 [0.50, 1.94]. The

model is very certain that consistency is not a reliable effect in the full sample with no

outliers data set.

The negative effect attributed to accuracy over time is attenuated in the

complete case and outlier analyses. In each of these models, the model implied

coefficient for log (days) lies on zero. The effects for word reading in isolation or

meaningful sentences remain the same.

Nonword reading remains the same across the models and vocabulary

becomes influential also, showing an extremely small, positive coefficient with a

credible interval whose lower bound lies on zero. The effects across the

psycholinguistic predictors remain the same as in the full sample model.

Design Implied Model. The design implied model is in Figure 7.37. As with the

earlier models, the difference here is only the addition of the group contrast predictor.

The group predictor does show coefficients that predict differences in accuracy rates

between the atypically-reading adults and other groups of readers. The model implied

trend is that atypically-reading adults are less likely to accurately pronounce a word

than either the typically-reading 16-17-year-olds (log-odds = -1.92 [-3.15, -0.70]),

atypically-reading 16-17-year-olds (log-odds = -1.39 [-2.50, -0.25]), typically-reading

11-12-year-olds (log-odds = -1.88 [-3.28, -0.50]) and the typically-reading adults

(log-odds = -0.66 [-2.50, 1.17]). The credible interval for the contrast between

atypically- and typically reading adults includes zero which implies that the opposite

effect is also plausible, with atypically-reading adults reading more accurately than

their typical reading peers. Each of these effects is of a size worthy of notice in that

they are greater than -0.5. The estimates for nonword reading, age and

word-frequency are the same.

Model Predictions. Figure 7.38 shows the model predictions for the sentence

reading accuracy outcome. We draw the plots here with a truncated range on the

y-axis because the effects are so small. In contrast to earlier predicted effects plots
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Figure 7.37

Estimates from the Posterior Distribution of the Design Implied Model for ID and

Psycholingustic Predictors on Sentence Reading Accuracy Data
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where the y-axis begins at 0, here the y-axis begins at 0.7 to allow some resolution of

effects to be displayed.

The ceiling levels of accuracy means that predictions show little variation

across the range of low to high skills for RON, phonological skill, vocabulary and

spelling. There is some decrease in accuracy for predictions of low word reading and

nonword reading skill. The plot visualises that the lower bound of the 95% interval

suggests that accuracy could fall as low as 97% and 95% for individuals at the lowest

values of the simulated range. The lower bound of the 95% interval on word-frequency

estimates an accuracy value of between 80% - 85% for the lowest frequency words.

7.4.3.3 Summary and Discussion.

We asked participants to name single words under three levels of sentence reading

context that provided different levels of information for word recognition. The

preferred model did not include the group contrast predictor nor interactions,

suggesting that for this model and sample, groups approached the task similarly,

using the same information and strategy.

The three conditions of reading context differed from each other. A

meaningful context reliably facilitates accuracy relative to a neutral sentence context

or no sentence context at all, confirming our prediction. This finding aligns with

Bruck (1990), Ben-Dror et al. (1991), and Ricketts et al. (2016).

Only nonword reading and frequency were estimated with any certainty.

People of higher nonword reading skill are likely to be more accurate than people of

lower nonword reading skill. High frequency words are likely to be pronounced at a

higher rate of accuracy than lower frequency words. As in earlier models,

consistency’s lower bound of its credible level rested just on zero. Vocabulary comes

online as a reliable predictor in the sensitivity analyses. Future design of this task

should take this into consideration.



Figure 7.38

Preferred Model Predictions for the Effects of Individual Differences and Word-Frequency on Sentence Reading Accuracy
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Nonword reading has a very small effect in this model. It is the only predictor

amongst the range of ID measures to not include zero inside its credible intervals. For

words that are well known and for skilled readers, the lexical quality hypothesis and

computational models of reading both suggest that the lexical / orthographic form

and route for words takes prominence over phonological and semantic forms / routes

as the word becomes better known and reader skill increases. If orthographical

information were sufficient, then we might expect word reading to show greater

influence. The very high accuracy rates within task suggest that with the added

information of sentence context, the words are known. Consequently, a nonword

reading skill effect and an absence of a word reading skill effect is surprising.

Interpretation of this model is limited because of ceiling levels of accuracy in

the data. While the relative redundancy of most of the predictors mirrors that of

lexical decision and word naming models, greater variation in the outcome variable

needs to be present to have greater trust in these results. This suggests either a

higher level of challenge in the items or a higher level of challenge in the reading

context is mandated. It is also possible that the small number of items (20 items

repeated three times), compared to other tasks in the study (150 individual items)

reduced the variation to further reduce information available for modeling.

7.4.4 Reaction Time Results

7.4.4.1 Descriptive Statistics

Distributions of raw mean reaction time in milliseconds across correct trials per

participant are displayed at the group level in Figure 7.39 and Figure 7.35. Reaction

time data was log transformed to reduce skew before standardising within condition

using the typically-reading 16-17-year-olds as our reference level (Isolation mean =

680.9 ms, SD = 205.7; Meaningful mean = 621.4 ms, SD = 181.6; Neutral = 676.6

ms, SD = 219.2). Consequently, positive coefficients indicate slower reaction times

and negative coefficients indicate faster reaction times than the mean of an average
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typically-reading 16-17-year-old.

7.4.4.2 Preferred Model

The preferred model for reaction time data in the sentence reading task is the

Additive-RIS model with predictors for the effects of time, phonetic onsets, ID and

psycholinguistic variables, random intercepts and slopes for participants and items.

The explained variance in the reaction time outcome was R2
bayes = 38.8% [38.2, 39.4].

The plot for fixed effects of the model is presented in Figure 7.40. A summary of the

coefficients for the fixed effects can be seen in Table 7.16.

Model Inference. Log (days) is positively associated with reaction time,

suggesting that responses slowed, on average, across data collection sessions (𝛽 = 0.08

[0.06, 0.10]). Every 95 days, reaction time increased on average by ~ 16 ms.

Both isolation 𝛽 = -0.21 [-0.23, -0.19] and meaningful contexts 𝛽 = -0.10

[-0.12, -0.08] are reliably faster than the neutral context for reading. The isolation

context is on average 42 ms faster than the neutral context, while the meaningful

context’s advantage is estimated as approximately 20 ms. Taken together, this gives

and estimated difference of approximately 22 ms between the isolation and the

meaningful context for reaction time.

The control variables for phonetic onsets with credible intervals that exclude

zero show a slowing of reaction time for voiced onsets and faster responses for onsets

in the nasal, fricative, palatal and glottal position.

The model is confident for the sign and direction for word reading skill (𝛽 =

-0.06 [-0.13, 0.00]), RON (𝛽 = -0.05 [-0.11, 0.00]) and spelling (𝛽 = -0.05 [-0.11, 0.00]).

For a 1 SD increase in word reading skill, a person would be approximately 12 ms

faster. For RON and spelling skill, the gain is 10 ms. These are very small effects

which indicate that people of higher skill in these tasks are faster in pronouncing the

target word across all conditions of reading contexts. In absolute terms, the data are

inconclusive about the direction of effect for the remaining ID measures for this model
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Figure 7.39

Histograms Showing the Distribution of Raw, Mean Reaction Time (ms) By

Participant, Group and Condition Across Time in the Sentence Reading Task
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Figure 7.40

Estimates from the Posterior Distribution of the Preferred Model for Time, Sentence

Context, Phonemic Onsets, ID and Psycholingustic Predictors on the Sentence

Reading Reaction Time Data
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Table 7.16

Summary of Standardised Fixed Effects for Sentence Reading Reaction Time

Term Estimate SE Lower CI Upper CI

Intercept 0.34 0.05 0.23 0.45
Phonemic Onsets

Voice 0.08 0.03 0.01 0.14
Nasal -0.09 0.03 -0.14 -0.03
Fricative -0.20 0.04 -0.29 -0.12
Liquid_SV -0.02 0.03 -0.08 0.04
Bilabials 0.02 0.05 -0.08 0.11
Alveolars -0.04 0.04 -0.11 0.04
Palatals -0.12 0.04 -0.19 -0.05
Velars -0.04 0.04 -0.12 0.03
Glottals -0.07 0.02 -0.12 -0.02

Reading Context
Isolated context -0.21 0.01 -0.23 -0.19
Meaningful context -0.10 0.01 -0.12 -0.08

Time
(Log) Days 0.08 0.01 0.06 0.10

Individual Differences
Word reading -0.06 0.03 -0.13 0.00
Nonword reading -0.04 0.03 -0.10 0.02
Rapid naming -0.05 0.03 -0.11 0.00
Phonological skill -0.01 0.02 -0.04 0.03
Vocabulary 0.03 0.03 -0.02 0.09
Spelling -0.05 0.03 -0.11 0.00
Age 0.00 0.00 0.00 0.00

Psycholinguistic Variables
AoA 0.07 0.04 -0.01 0.15
Arousal 0.03 0.02 -0.02 0.08
Concreteness 0.05 0.02 0.00 0.10
Consistency 0.02 0.03 -0.03 0.07
Dominance 0.01 0.03 -0.05 0.06
Imageability -0.03 0.03 -0.10 0.03
(Log) BF Type 0.03 0.03 -0.04 0.09
Word meanings 0.02 0.03 -0.03 0.08
LPC -0.02 0.03 -0.07 0.03
N-size -0.01 0.04 -0.08 0.06
Phonemes 0.00 0.04 -0.08 0.08
Semantic diversity -0.04 0.03 -0.10 0.02
Sensory experience -0.01 0.02 -0.06 0.04
Word-frequency -0.05 0.04 -0.13 0.03
Valence -0.02 0.03 -0.07 0.04

Note:
CI = Credible intervals. AoA = Age of acquisition. (Log) BF Type
= Log Bigram Frequency Type. LPC = Levenshtein Phonological
Consistency. N-Size = Neighbourhood size
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and this sample.

The sole psycholinguistic predictor to show a marginally conclusive effect is

concreteness (𝛽 = 0.05 [0.00, 0.10]). Words of a higher concreteness rating predict

slower pronunciation times, equating to an inhibitory effect of approximately 10 ms

with each move up the rating scale.

Complete Case and Outlier Analyses. When outliers are removed from the full

sample, word reading and spelling remain as stable, negative estimates. The estimates

for context and concreteness are also stable. However, there are some changes to the

model estimates. AoA also becomes a reliable, positive estimate, suggesting that later

learned words are read more slowly than early learned words.

The complete case data set continues to show a slowing of responses over

time. The context condition shows the same pattern and strength as the full sample

model. Word reading, RON and spelling all become unreliable but concreteness is a

stable effect.

When outliers are removed from the complete cases data set, the context

condition estimates retain their direction of effect but change size. While the isolation

estimate remains stable, the meaningful condition is reduced in size. Word reading,

RON and spelling remain unreliable but concreteness is a stable effect. Just as in the

full sample with no outliers data, AoA is indicated as a positive, reliable predictor.

Design Implied Model. The design implied model includes the group contrast

predictor. Coefficient estimates for this model are displayed in Figure 7.41.

The estimates are similar in direction and size in the design implied model

compared to the preferred model. The upper bound for the credible interval for word

reading skill now crosses zero, and so is similar to the other ID measures.

Concreteness remains reliably positive.

The group contrasts all show very wide credible intervals. The coefficient for

the contrast between atypically-reading adults and atypically-reading 16-17-year-olds

has a lower boundary that is resting on zero. The trend in the model is for
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Figure 7.41

Estimates from the Posterior Distribution of the Design Implied Model for Sentence

Reading Reaction Time Data
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atypically-reading adults to be slower than other groups (16-17-year-olds,

typically-reading 11-12-year-old and typically-reading adults), however credible

intervals also suggest that the opposite effect is plausible, with each estimate interval

including zero.

The model shows the same uncertainty around the contrast between

atypically- and typically-reading 11-12-year-olds, however the trend is the same with

atypically-reading 11-12-year-olds tending to be slower in responding, to a very small

degree, than their peers.

Model Predictions. We show the model implied predictions Figure 7.42. The

predictions follow the model estimates. Reading and nonword reading skill, RON and

spelling all show negative relationships while higher vocabulary knowledge is

implicated as an inhibitory effect, as are words of high concreteness ratings.

Summary & Discussion. We expected the meaningful condition to facilitate both

accuracy and reading speed relative to the neutral condition, which it did, reliably. It

was the most accurate condition and the second fastest for reading. We were unsure

of how the isolation condition would place - the models estimate a lack of context to

be less accurate but the fastest condition amongst the three.

We also expected vocabulary to show a positive relationship with sentence

reading accuracy data and facilitate reaction times. In the full sample model for

accuracy, it was unreliable but in the sensitivity analyses, vocabulary became reliable.

We believe this may be because accuracy rates were at ceiling and so there was no

need for assistance from other sources outside of the items themselves. Constructing a

more challenging item sample may test this assumption.

Nor did vocabulary facilitate reaction time responses. The model estimated

its effect as unreliable and model predictions imply a positive effect, slowing reaction

time for people with stronger vocabulary knowledge. We interpret this as a

competitive effect for those people with stronger vocabulary knowledge having more

candidate words from which to choose the correct response (Ramscar et al., 2013).



Figure 7.42

Preferred Model Predictions for the Effects of Individual Differences and Concreteness on Sentence Reading Reaction Time
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Both preferred models did not include the group contrast predictor,

suggesting that on average, this model and this sample describe participants who are

approaching the task in a similar way and use similar types of information and skill.

Of interest is the repeated occurrence of an estimate for concreteness that is positive,

when previous studies tend to find that it shares a negative relationship with reaction

time (Kousta et al., 2011).
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8 Discussion

The present study explored the single word recognition performance of a group of

atypically-reading adults. We compared this group with typically-reading adults, and

younger, typical- and atypical-readers. We measured reading-related skills through

individual difference (ID) measures to connect to previous studies. We also conducted

four experimental tasks – letter search, lexical decision, word naming and sentence

reading – to estimate single word reading processes from letter level to sentence level

and modelled the impact of psycholinguistic variables on reaction time and accuracy

outcome measures. Only one study that we know of has explored the influence of

psycholinguistic variables on single word reading processes for a similar group of

adults (McKoon and Ratcliff, 2016, – word-frequency), with the preponderance of

research focusing on individual difference measures.

Our exploratory research questions were whether atypically-reading adults

were similar or dissimilar to the other groups of readers and what the form of those

differences may take. We constructed several statistical models to see if independent

or interaction effects were better fits for the observed data. Crucially, we used

mixed-effects models to account for the within-participant-between-item and

within-item-between-participant dependencies in the data due to the crossed effects

and longitudinal design of the study. We estimated our effects using frequentist and

Bayesian Inference (BI) approaches, knowing prior to beginning data analysis that

model convergence could be problematic and that BI approaches offer some mitigation

of these problems. To construct strongly informative priors for the BI models, we

conducted a meta-analysis of a core set of eight predictors. The meta-analysis is a

living project, openly accessible for researchers to use for their own research purposes.

Findings from the ID measures suggest that the atypically-reading adults’

reading-related skills are broadly in line with atypically-reading 16-17-year-olds and
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typically-reading 11-12-year olds. We found no evidence of significant change in ID

measures across the three data collection sessions of the study. Differences that were

present at T1 tended to remain stable or disappear by T3 due to increases in the

other groups’ scores. A lack of significant findings for separate clusters in a cluster

analysis supports a finding of similarity between groups.

Atypically-reading adults present with relative strengths, in decreasing order,

in spelling, vocabulary, word reading and nonword reading. Previous studies suggest

that adult-learners may be stronger in their semantic skills (Braze et al., 2007;

Greenberg et al., 1997; Mellard et al., 2012b) but at first look, atypically-reading

adults in the present sample would appear to be relatively stronger in their

orthographic skills, as represented by spelling scores. As an orthographic measure of

precision (Andrews et al., 2020), however, spelling skill is a fragmented source of

information for word recognition compared to word reading skill. Word and nonword

reading skill are at the lowest ranks. Furthermore, they appear to be of equivalent

strength. This may be problematic if word recognition needs word reading skill to be

stronger in order for orthographic learning to develop (Perfetti and Hart, 2002;

Perfetti, 2011; Share, 2004).

All of the preferred models for the experimental tasks were for independent

effects. The lack of support for any models that include interaction terms suggests

that participants across the sample are approaching the experimental tasks in a

similar way and using similar sources of information or skill to complete trials.

Across the tasks, the range of variance explained for accuracy was 18.7% -

41% and for reaction time models was 32.8% - 39.9%%. Every preferred model

included random intercepts and slopes for participants and items, rather than only

random intercepts. Two conclusions arise from this. The first is that individual

differences within and between participants may exist which are not captured by the

predictors in the study and second, accounting for the dependencies within outcome

measures that exist intra-individuals and items is worthwhile for effects estimation.
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8.1 Design Effects

The design of the study mandated that certain predictors needed to be entered into

every model. These were the passage of time, age, word-frequency measure and the

group contrast predictor. We briefly discuss these below before turning to the model

effects across tasks.

The longitudinal design of the study captured a very general effect of slowed

responses and reduced levels of accuracy across all tasks with each passing data

collection session. Adelman et al. (2014) and Yap et al. (2012) show attenuation in

reaction time measures over two sessions amongst skilled readers. In the context of no

detectable changes across ID measures, we have interpreted this as a habituation

effect. It is worth noting as correlational designs that capture data at one time point

only may consider their findings in the context of this repeated finding.

The lack of a general effect of age across time and tasks is surprising. The age

range in the study was 11 – 79 years. Age as a group contrast variable is prevalent in

the literature, as attested to by the number of included studies that focus on age

differences in the meta-analysis. One explanation is that for older typical readers in

this sample, reading development may be at an asymptote level of skill such that

differences are too small to detect. Additionally, small changes in younger groups, not

yet at an asymptote level of reading skill, may be better captured by the ID measures.

Future studies could consider that age effects are a proxy measure for ID effects that

could be measured more directly.

The recovery of a word-frequency effect for the majority of task outcomes is

not surprising. The item sample was manipulated for high and low frequency values.

That being said, an interesting finding is the lack of a word-frequency effect for

sentence reading reaction time measures. In connected text, the effect of frequency for

a speeded response appears to be washed out for all participants1. We interpret this

1We also found this effect in a pilot study of items with two groups of 11-12-year-olds. Items
were sampled from a reading book from their school. Frequency values were collected rather than
manipulated. No frequency effect was evident in any of the subsequent models and accuracy was very
high. This suggested a manipulation on items for the main study to ensure that items would present
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as a demonstration of the priming capacity of the sentential context. The

identification and recognition of the target word enjoys an extended time course as

the contextual information builds prediction for the target word. The advantage that

high frequency words show over low frequency words when read in an isolated context

is nullified (Zevin and Balota, 2000). In the absence of sentence level support, the

word-frequency effect assisted participants’ reaction times for items that were

unfamiliar in the usual way.

Another surprising finding is that the observed word-frequency effect for word

naming accuracy is larger than that observed for lexical decision. This differs from

previous studies (Adelman et al., 2014; Balota et al., 2004; Spieler and Balota, 2000;

Yap et al., 2012). Vocabulary effects also show this same reversal of the typical trend,

with a larger effect in word naming than lexical decision. This may be symptomatic of

both the requirements of each task and the wide range of experience in the sample.

Lexical decision does not rely on specific word knowledge to be able to make a correct

response. The mixing of words and nonwords promotes a focus upon sublexical

structures where orthographical knowledge is the stronger source of information and is

shared between all items. Information boundaries between items are less clear.

Consequently, the influence of word-frequency and vocabulary as lexical level variables

is diminished.

In contrast, word naming requires a specific item for a correct response.

People of higher vocabulary skill are more likely to know a greater range of words and

words of higher frequency are more likely to be known by a greater range of people.

Both assist each participant in selecting the specific item for a correct response.

Consequently, word-frequency and vocabulary show larger effects.

Perfetti (2007) suggests that for persons of lower vocabulary knowledge,

words of objective high frequency are experienced as medium frequency, with low

frequency words becoming very low frequency. Kuperman and Van Dyke (2013)

support this observation. They critically reviewed the objectivity of word frequency

values and their interaction with varying levels of reading experience and found that

a challenge.
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objective measures of frequency do not explain word recognition behavior so well as

subjective word familiarity values. In the present sample, the word-frequency effect

for the same item could therefore work differently across two people who differ in

vocabulary. While high frequency words likely behave similarly across participants,

the differences will begin to be observed lower down the distribution, with objectively

“low” frequency valued items showing the largest amount of disparity amongst

participants. The word-frequency effect is likely amplified in these conditions because

of the amount of “very low” frequency words for some participants, extending the

lower range of frequency.

In word naming, although accuracy rates were very high, the presence of the

group contrast predictor suggests that specific items were unfamiliar to the

participants and that this was true to a greater extent for the atypically-reading

adults than other groups. This may be the differential impact of word frequency in

operation for atypically-reading adults. In lexical decision, half of the items are

nonwords and are unfamiliar to all participants. This disperses the spread of items

that are unfamiliar across the groups making them more alike in their knowledge for

the task, attenuating effect sizes.

The group contrast predictor was not supported in any of the reaction time

models. We conclude that the range of reaction times observed for the

atypically-reading adult group, across tasks, was similar to other groups. Any

differences in accuracy performance between groups can then be viewed as occurring

within a similar time frame. The group contrast predictor was included in the

preferred models for letter search and word naming accuracy. Atypically-reading

adults show unreliable higher odds of being correct on a letter search task and reliable

lower odds of being correct in a word naming task.

This cross-task difference in performance is intriguing. Intuitively, the

similarity in word and nonword reading scores as observed in the ID measures would

seem to suggest that atypically-reading adults’ performance in both tasks would echo

that of the younger readers. However, atypically-reading adults are weaker still than

all groups in the word naming accuracy performance. Contrast this with the trend for
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higher accuracy in the letter recognition task.

We have already suggested above that observed high frequency values may

behave as lower frequency values in the context of low vocabulary knowledge. The

atypically-reading adults do have low vocabulary compared to the younger readers, as

shown in Figure 6.3. This may explain the reliable group differences predicted by the

word naming accuracy model. Yet this does not explain the superior performance in

the letter search task.

We suggest that the difference in performance across groups in the two tasks

is due to the atypically-reading adults demonstrating a preferred reading strategy that

applies sublexical processing. Sublexical processing and a letter-level of analysis for

the letter search task are congruent with each other for grain size. It confers an

advantage to the atypically-reading adults observed in the trend for higher accuracy

scores. Sublexical processing and the word level of analysis for the word naming task

are incongruent with each other. Using this processing strategy, many more parts of a

word will need to be identified, remembered and integrated to produce a specific word

item, inevitably increasing the chance of error.

The interpretation of a sublexical processing strategy fits for equivalent

accuracy performance on the lexical decision task between the atypically-reading

adults and other groups. The mixture of word and nonword items in lexical decision

supports a sublexical approach for any reader however the benefit for the

atypically-reading adults may be greater than for other typical-readers. The task

requirement is not for identification of a specific word. A response can be made by

way of recognition for an unlikely letter sequence within the letter string.

Consequently, the sequencing and integration of all identified letters in a letter string

is not a necessary condition for a successful trial, and the probability of making an

error is reduced. This elevates the performance of the atypically-reading adults so

that their accuracy is equivalent with the other groups.

Meanwhile, there is a question as to whether the processing of information for

typically-reading 16-17-year-old and adults means they experience a cost in their

performance for both the letter search task and to a lesser extent, the lexical decision
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task. The lower odds of accuracy in the letter search task, relative to the

atypically-reading groups, may be due to being unable to switch off phonological or

lexical processing in the letter search task. The lexical quality hypothesis posits that

for highly-skilled readers, the orthographic and phonological information is essentially

one factor (Perfetti and Hart, 2002), so this assumption is plausible. If this processing

style was applied in the lexical decision task, the cost maybe lower as now there are

words as items. The cost is not fully extinguished because specific word recognition

may not be the optimal strategy under these sample conditions. The reduction in the

cost experienced for the letter search task, plus the suggested elevation of the

atypically-reading adults’ performance closes the performance gap between themselves

and the atypically-reading adults. The model reflects this by recommending that the

model with no group is the best fitting for the data.

The sentence reading task is harder to interpret. An intuitive explanation is

that the surrounding, supportive presence of words semantically primes the word for

correct pronunciation (Perfetti and Stafura, 2014). However, there is also priming

through repetition of items across conditions in this task. While it is perhaps easy to

assume that the priming properties of sentence context either equalises performance

or negates the need for sublexical processing strategies, task design may be inducing

practice effects and masking other possible effects in this instance.

8.2 Cross Task Comparisons

In this section, we look across tasks for similar and different predictors and discuss

them in the context of task specific demands and the participant sample, with a focus

on the atypically-reading adult group. We begin by looking at individual difference

measures first and then examine the psycholinguistic predictors for their level of

support across the preferred models. We discuss findings with respect to the lexical

quality hypothesis (Perfetti and Hart, 2002) and the division of labour hypothesis

(Plaut et al., 1996).
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8.2.1 Individual Difference Measures

Rapid naming skill (RON) is suggested as an influential predictor across all

experimental tasks on reaction time measures (credible intervals on word naming just

cross zero). This is intuitive if we accept that speeded tasks depend upon a general

domain skill such as processing speed. We find this quite surprising however, as the

weight of the literature for RON with respect to word recognition suggests that RON

may be more relevant to studies with younger children. Meyer et al. (1998b) and

Hulslander et al. (2010) found that measures of RON predicted word reading into

later years of school for samples that included atypically-reading individuals.

Meyer et al. (1998b) documented that it was the object/colour versions of the

task that continued to show the prolonged relationship with reading development over

the years. By choosing the object form of the task we may therefore be seeing a

specific result that looks like a difference but the reviewed literature may have used

letter and digit naming versions of the task.

An alternative explanation is that an element of working memory is

implicated. Katz et al. (2012) suggested that effects of RON (as observed in student

readers with a range of reading difficulties) could be acting as a proxy measure for

working memory capacity. However, only letter search and sentence reading explicitly

involve holding items in memory to be able to complete a trial.

The RON effect on lexical decision may arise as a lagged effect of the letter

search task as it preceded the lexical decision trials in each data collection session. As

a design element, this could be confirmed by separating the tasks in future studies.

Alternatively, the lexical decision task could have a working memory demand

if, as suggested above, the participants were heavily reliant upon a sublexical

processing strategy. Parts of unfamiliar items would need to be held in working

memory while a decision was made. Approaching the lexical decision task at a

sublexical level of processing when the task requires a lexical level unit to be identified

increases the cognitive load on all trials, not just unfamiliar trials, possibly invoking

working memory and reflected in an effect for RON.
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Future studies could test for this by collecting a measure of working memory

and asking for immediate recall of lexical decision items after a decision is made. The

level of recall could be left free to vary across trials which may allow for some

inference about preferred levels of processing.

Which version of memory to operate would be the important question.

Talwar et al. (2018) finds that verbal working memory is a better predictor than short

term working memory in a sample of adult-learners, however Swanson (1994) found

that both types of memory measures were related to reading ability, short term

memory for readers with disabilities and WM for readers without disabilities. Mellard

et al. (2016) tested auditory working memory and found it did not differ across two

subgroups across the sample but remained important for predicting reading progress.

Just this small sample of studies shows that this question may have some relevance to

further study, however the best way to operationalise the construct is not entirely

clear.

Modeling RON and a memory measure simultaneously may show that RON

is no longer a relevant predictor if it is indeed acting as a proxy for memory. The

persistence of RON across reaction time models suggests that, an explanation

notwithstanding, statistically adjusting for processing speed is important to account

for differences when comparing a wide range of skills in a participant sample.

The remaining three experimental tasks showed a wider range of ID measures

as reliable effects. Nonword reading skill and vocabulary were indicated across

accuracy outcomes in the preferred models, showing higher odds for accurate

responses in the context of stronger skill. On reaction time outcomes, nonword

reading was present for lexical decision. Word reading skill was indicated for sentence

reading reaction time outcomes; neither was present for letter search or word naming.

Spelling was indicated on word naming accuracy measures and sentence reading

reaction time measures as very small effects. This converges with the meta-analysis by

Swanson et al. (2003) that real word reading was best predicted by measures of

nonword reading and spelling.

Nonword reading, spelling, and vocabulary skill represent the triad of
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components for the lexical quality hypothesis. Spelling would be cast in the role of

the orthographic component in the absence of word reading skill (Andrews et al.,

2020; Treiman, 2018), with a critical difference between the two measures of the level

at which they operate: word reading at the lexical level and spelling at the sublexical

level. Does the presence of spelling over the presence of a reliable word reading

measure indicate that sublexical variables are in the dominant roles for reading

forever more? How do you move to a more lexical style of reading if a lexical level

variable is not present to form a bridge. The three factor solution for less-skilled

readers (Perfetti and Hart, 2002) also had spelling on one factor, with nonword

reading and word reading loading together onto another factor. Crucially, it was

nonword reading that linked the two factors together.

Nonword skill is estimated in the presence of vocabulary for lexical decision

and word naming but not sentence reading. We have interpreted the lack of a

vocabulary effect in the sentence reading accuracy as a difference in the trial level

information between tasks. The target items in the sentence reading task are

embedded in an external source of semantic information to which everyone has equal

access. Individual differences in vocabulary are consequently less relevant.

In vocabulary and nonword reading, we have semantic and phonological

information that can work together to support word recognition, as suggested by the

division of labour hypothesis (Plaut et al., 1996). Over-reliance on such a path

however may reduce orthographic learning and knowledge development over time.

The mapping induced at each learning episode that is supported by semantic

information will not be as useful for the next word learning episode as the mapping

for an episode supported by phonological information. Orthographic-semantic

relationships are less systematic than orthographic-phonological relationships.

Knowing one orthographic-semantic relationship neither helps in knowing the next

orthographic-semantic relationship nor the pronunciation of the next encountered

word.

Furthermore, the utility of the semantic-phonological division of labour may

vary as a function of vocabulary knowledge (Dilkina et al., 2008; Plaut et al., 1996).
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Figure 6.3 displays the low vocabulary profile of atypically-reading adults as a

function of their standard score. In the context of low vocabulary, sufficient semantic

information may not be present to help, leaving the brunt of the work to be

completed by phonological skills.

Spelling was ranked as one of the stronger skills for the atypically-reading

adults in their reading-related skills, however we know that the

orthographic-phonological relationships for atypically-reading adults are unstable and

vary across performances. Spelling errors are more likely to be a poor match for the

sound form of target items and are inconsistent for an item across time. The stronger

ability to identify single letters as demonstrated in the letter search task but variable

application across types of spelling errors could point to a under-developed knowledge

of the relationships between adjacent letters. This reduces the ability to predict which

letter is more likely to follow another from the sound of a word. It further constrains

the development of orthographic knowledge for prediction and also orthographic

redundancy that comes from knowing that frequently occurring letter grouping

(Ziegler and Goswami, 2005). This increases cognitive demands to remember single

letters in a sequence.

Previous studies have found that continuing use of nonword reading skill for

word recognition is indicated in readers at risk of or with reading difficulties (Katz

et al., 2012; Steacy et al., 2017a). Bruck (1990) found that their adult readers with

dyslexia were slower than the typically-reading 11-12-year-olds. This is not the case

here. For this sample, data and analyses, group differences are indicated for accuracy

measures and not reaction time. Additionally, a hallmark symptom of phonological

dyslexia is observed in a weaker nonword reading ability relative to word reading

(Castles and Coltheart, 1993). We do not observe that here. We observe equivalent

levels of skill as measured by word and nonword scores. These two behaviour markers

would suggest that on the whole, the atypically-reading adults are not readers with

undiagnosed phonological dyslexia.

This begs the question of whether the markers of developmental surface

dyslexia are present. However this is out of scope for the present study and remains
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an open question. A further study, designed to answer such a specific and important

question, would need to be established.

An alternative explanation for the presence of nonword reading over word

reading skill may be that, given that our sample is young and less-experienced or

atypically reading (but for the typically-reading 16-17-year-olds and adults), many

more words may be unfamiliar to this sample. Ricketts et al. (2011) consistently

found that nonword reading washed out the effects of other predictors for

orthographic learning of novel words in a non-selected sample of primary school aged

children. We do not see that here, nonword reading is supported by multiple ID and

psycholinguistic predictors. Nation and Castles (2017) state that phonological skills

remain salient for all readers for unfamiliar words. This is not a satisfactory

explanation either, since word naming accuracy rates were at 97.3% in the sample,

suggesting that for the majority of words, familiarity was good enough for successful

recognition.

Lexical level word recognition, as measured by word reading skill, may not be

sufficiently strong at the person-level in this sample. Hence, the prevalence of

nonword reading skill as a reliable predictor across task models. Nonword reading skill

can approximate lexical level recognition and also accommodate the additional

sublexical processing requirements of unknown nonwords in lexical decision and letter

search tasks. In this way, the properties of nonword reading skill make it relevant to a

wide range of tasks. A potential downside of this is that approaching every task with

one strategy is likely inefficient. It is well known that stronger readers change strategy

according to task demands (Brown and Deavers, 1999; Tamura et al., 2017; Treiman

et al., 1990).

The similar strength of nonword reading skill effects across the three tasks

suggests that nonword reading may be being used in the same way across tasks. The

items across the lexical decision and word naming tasks are identical, yet the tasks

demand different types of processing and different types of output (Andrews, 2012;

Balota and Chumbley, 1984; Chumbley and Balota, 1984). The overarching presence

of nonword reading in the face of different task demands suggests that for the
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majority of the sample, switching strategy across tasks is not occurring.

In contrast, vocabulary does show different effect sizes (lexical decision

accuracy log-odds = 0.14; word naming log-odds = 0.44) for the same items. In the

context of tasks where sublexical processing can complete a trial, vocabulary as a

lexical variable may not be called upon as frequently as in word naming. In word

naming, where all items are words, when it is known to the individual, vocabulary

knowledge is more helpful to identify the specific word, with boosts to the signal of

words that are known creating a stronger vocabulary effect, as suggested by the

division of labour hypothesis (Plaut et al., 1996).

We suggest that the strength of the vocabulary effect in word naming

expresses an advantage for those words that are familiar to all participants but also

reflect use by stronger participants in the sample and who can more easily switch

between sublexical and lexical levels of processing as the task demands. The

vocabulary effect size may be attenuated in lexical decision if, as mentioned earlier,

the stronger participants switch from a lexical level processing strategy to sublexical

processing to accommodate the mix of familiar (word) and unfamiliar (nonword)

items, thereby reducing the weight of vocabulary’s influence.

If we assume that the vocabulary effects are driven by the stronger

participants this may mean that the mechanism of the division of labour hypothesis is

not so useful to the atypically-reading adults and possibly atypically-reading

16-17-year-old readers. Their low vocabulary levels are not strong enough to render

useful support for word recognition.

Alternatively, the vocabulary and phonological skills may be present in

sufficient quantity and it is the interdependence part of the relationship that has yet

to develop (youngest readers) or has not developed (atypically-reading 16-17-year-old

and adults). In this case, an underlying problem as suggested by both the lexical

quality and the division of labour hypothesis stems from an identical basis, a lack of

strong interdependence between the critical components for word recognition.

This would suggest that representations are of low lexical quality. Effects for

word reading skill were present, but for the exception of sentence reading reaction
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time, they were always slightly smaller in magnitude than nonword reading skill

effects and unreliable. The lexical quality hypothesis states that for words of high

lexical quality the presentation of orthographic information is sufficient to bring about

successful word recognition, making phonological and semantic information redundant

in the process (Perfetti and Hart, 2002). No such redundancy is present for words of

low lexical quality, which needs all three of the phonological, orthographic and

semantic components for recognition. We observed reliable nonword reading skill

effects supported by vocabulary and spelling, a triad of measures that reflect the

information sources upon which the lexical quality hypothesis rests.

Taken together, we suggest that atypically-reading adults may show an

integration difficulty between orthographical and phonological information. The

evidence for this is suggested by the relatively superior performance on the accuracy

outcome for the letter search task, equivalent performance on lexical decision and

weak accuracy performance on the word naming task, all performed under equivalent

reaction time performance.

Each of the tasks can be achieved with sublexical processing however the

work that sublexical processes must do increases from letter search to lexical decision

to word naming. The overt pronunciation for a discrete word in word naming further

demands that whichever type of processing is used, sublexical or lexical,

orthographical and phonological information must be integrated to produce a

pronunciation.

Perfetti and Hart (2002) assert that the lack of integration of mapping within

a learning episode slows learning of orthographic knowledge and learning in the long

term. Words of low lexical quality are all affected since their overlapping attributes do

not help each other over successive exposures to the same extent. The transition from

low to high lexical quality is slowed.

Relatively good performance in the letter-search task may be symptomatic of

single letter level processing. The letter search task could also be interpreted as being

a pure test of visual encoding. Successful trials may be achieved merely by looking

and recognising an object (a single letter) from a string of objects. If the
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atypically-reading adults performed the letter search task by seeing, this may explain

their stronger performance, relative to lexical decision and word naming. As

Greenberg et al. (1997) hypothesised, adult-learners may ‘read by seeing’, leading to a

weak performance in word naming where a specific item is required for accuracy and

rules of pronunciation change according to the spelling of the item. Yet we

deliberately limited the conditions by which a visual matching strategy could easily be

used by mixing the case of the target letter presentation episode and the target letter

identification episode. Letter names link the two visual forms of the letters which

involves an element of integrated orthographic-phonological information. As a result

we believe that simple orthographic-phonological relationships at this level look secure.

Orthographic-phonological information in a spelling task represents more

complex levels of knowledge, where relationships are conditioned upon letter position.

More information is brought to bear in this task and the stimulus of the target word

has no visual cue. Not only are simple phonological-orthographic mappings tested in

this task, but different grain sizes of information, distributional characteristics

representing frequency of the most likely spelling and also selection of a correct

orthographic form for a semantic context. This knowledge of how spellings and

sounds may change in relation to one another appears truncated (Bruck, 1990;

Masterson et al., 2007).

Equivalent performance in the lexical decision task for atypically-reading

adults may arise from the application of sublexical processing for entire letter strings

and the absence of needing to integrate orthographical and phonological information

for a word pronunciation. The requirement of a pronunciation in the word naming

task further lowers accuracy rates for atypically-reading adults. Even with good

sublexical processing, if the knowledge of the orthographic-phonological information is

not present, a correct answer cannot be derived. The atypically-reading adults’

reliably lower odds for accuracy on word naming may suggest that although sublexical

processing can achieve word recognition, a difficulty with integration for, or incorrect

or under-developed orthographic-phonological knowledge will lead to incorrect

pronunciations.
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There is a connectionist implementation of this kind of reading behaviour.

Harm and Seidenberg (1999) damaged a version of a PDP model by reducing the

number of connections between orthographic and phonological domain layers. As a

consequence, the model could not learn the relationships between letters. It did not

learn the different grain sizes available to readers of the English language and

developed instead a preferred reading style of letter-by-letter decoding2.

In summary, atypically-reading adults in this sample show a reading-related

skills profile that is similar to that of older secondary school children. The equivalent

scores between word and nonword reading skills may suggest that orthographic

learning is insufficiently strong to work as the dominant reading strategy, and

nonword reading skill with support from vocabulary and spelling form a complement

of skills to facilitate word recognition. These multiple components of information need

integrating for each item, which is costly and error prone in the long-term. The array

of skills supports an interpretation that familiar words are of low lexical quality. The

coupling of nonword reading skill with vocabulary suggests that phonological and

semantic sources are working together, as the division of labour hypothesis states.

However, each of the component skills are relatively weak.

When the output of a trial is a letter or making general decisions, this

produces relatively good performance for atypically-reading adults. When the target

word is surrounded by other words that prime word recognition, the sentence reading

preferred model suggests that accuracy performance is equivalent. Yet once a specific

word is required in isolation, over the same time course, accuracy performance falls to

below that of the youngest readers. The specificity of this decrement to performance

as located in word naming suggests to us that the integration of

orthographic-phonological information as a potential site of difficulty and may be

truncating or slowing development of a broad orthographic knowledge, with

consequent impingement on orthographic learning over the longer term.

2Apropos of the (out of scope) question regarding atypically-reading adults and surface dyslexia:
this implementation precedes the next simulation that involves much more severe lesioning across
several locations in the architecture and that demonstrated developmental surface dyslexia type be-
haviour.
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8.2.2 Psycholinguistic Variables

We come to the level of psycholinguistic variables. This is the first study we know of

that includes multiple psycholinguistic variables and explores their influence for

atypically-reading adult word recognition processes.

None of the preferred models were interaction models, which suggests that

atypically-reading adults are similar in their use of psycholinguistic predictor

information, at least for the group of readers in this sample. Group differences were

indicated across two accuracy models, although the letter search preferred model did

not include psycholinguistic predictors. All of the remaining preferred models

included psycholinguistic predictors.

Predictors for arousal, dominance, LPC, and valence were not reliable in any

of the models. We believe this to be due to sampling reasons and the niche properties

of these variables. Yarkoni et al. (2008) designed the measures underpinning the LPC

predictor to accommodate longer words where N-size could not. In the company of

N-size and a sample of monosyllabic items (maximum no. of letters = 8), the N-size

effect has probably appropriated all the relevant variance for the construct.

Arousal, dominance and valence, all predictors that capture an affective type

of semantic information, often work together with concreteness, imageability and in

interaction with their context (Snefjella and Kuperman, 2016). We did not focus on

interaction effects between psycholinguistic predictors in this first look at the

atypically-reading adult population. However, the effects we observed for concreteness

(see below) may suggest that they could be relevant in future studies.

The preferred lexical decision model for reaction time enjoys a high level of

semantic support from psycholinguistic predictors. By this token, the cumulative

amount of semantic effects do appear to be greater for lexical decision than word

naming, however the sources of semantic support are disparate. In contrast, apart

from AoA, the type of psycholinguistic predictors for word naming are working at a

phonological and sublexical level.

AoA predicts reaction times for both lexical decision and word naming. It is
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also a reliable predictor for lexical decision accuracy. The estimate for AoA is larger,

in absolute terms, for lexical decision compared to word naming reaction times (~30

ms vs ~14 ms) and accuracy (log-odds = 0.61 vs 0.29, though unreliable for word

naming accuracy). AoA is not indicated as a reliable predictor in the sentence reading

task. It would seem that for this sample and these models, the AoA effect attenuates

when the support of semantic information lessens (Ellis and Lambon Ralph, 2000;

Monaghan and Ellis, 2010; Morrison et al., 2002). We interpret this as AoA acting as

a semantic predictor in this sample, rather than an adjunct to word-frequency,

contributing to the accumulation of semantic information by which the correct

decisions and pronunciations are facilitated.

The AoA effect may be spurious however, in that some of the AoA ratings are

above the age of the youngest participants. When errors were trimmed from the data

set for reaction time analyses, this could mean that the remaining trials showed a bias

for earlier learned words. We looked at the sample of words for which errors were

made in both lexical decision and word naming (16 items), splitting the sample into

two groups of ratings: 11 – 11:6 and 11:6 – 14:3 years.

In absolute terms, younger readers made significantly more errors across both

groups of AoA words than 16-17-year-old and adult groups in lexical decision. The

difference in error rates between the two AoA ratings groups was significant only for

the typically-reading 11-12-year-old group. Word naming was a little more divided:

The atypically-reading groups made similar levels of errors to the typically-reading

11-12-year-old group while the typically-reading older groups were consistently lower

on errors. In summary, the AoA effects in the models do not appear to be because

those items rated as being learned at an older age than our youngest participants were

unfamiliar to only the younger readers. They were just as likely to be unfamiliar to

some of the older, atypically-reading participants.

In both tasks, the AoA effect predicts that earlier learned words are faster

and more accurately recognised (as words). In lexical decision, number of word

meanings, semantic diversity and imageability also facilitate faster response times for

words of higher values. Conversely, concreteness inhibits a response (reliable also in
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sentence reading – see below). Each of these remain reliable after the differences in

vocabulary between participants are accounted for.

Words of multiple meanings are believed to excite faster activation because

the independent meanings contribute multiple increments of semantic activation to

patterns across orthographic units for a word (Balota et al., 2004; Jastrzembski, 1981;

Jastrzembski and Stanners, 1975). Words that are used in multiple contexts

contribute nuanced meanings that add to cumulative semantic contribution (semantic

diversity and number of word meanings show a correlation of r = .48).

The plurality of the ways in which a word can be experienced, gives them an

advantage over words that have a more niche application. Convergent with semantic

diversity, words of greater abstractness (lower concreteness) or multiple meanings, are

likely to have more possible meanings than concrete words and are more able to be

used across many contexts. Often labels for specific objects carry the fixed meaning

across a narrower selection of contexts (Adelman et al., 2006; Kousta et al., 2011).

All of these effects are very small, between 7 – 11 ms. It is the type of

predictors that is interesting. Steyvers and Tenenbaumb (2005) suggested that early

learned words as represented by AoA form the centre of hubs of semantic networks,

with spokes of later learned words forming connections as a function of overlapping

semantic features. The selection of predictors gives support to the argument that

breadth as much as depth of reading type is key to efficient word recognition (Hsiao

and Nation, 2018; Keuleers and Balota, 2015). In this sense, AoA is a depth metric

while semantic diversity and number of word meanings provide a breadth metric

(Hoffman et al., 2018).

Imageability and concreteness are type measures that share a positive

relationship with each other. We observe a very small effect for imageability in lexical

decision reaction time (𝛽 = -0.03). The direction of effect is similar to previous

studies in that imageability shares a negative relationship with reaction time (Balota

et al., 2004; Davies et al., 2017). Crucially, this effect is present over and above an

independent effect of AoA (Baddeley et al., 1988; Klose et al., 1983; Woollams, 2005).

This is important because imageability is often used interchangeably with
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concreteness (Kousta et al., 2011) and as early learned words are often of high

concreteness values, in the absence of an AoA effect, imageability is often interpreted

as a pseudo-AoA effect.

At the same time as a facilitatory effect for imageability, we observed a

reliable, inhibitory concreteness effect on lexical decision. The opposite direction of

this effect is often observed, with a facilitatory effect for words of high concreteness

ratings (Cohen-Shikora and Balota, 2016; Strain and Herdman, 1999). However, in

the present study, this inhibitory concreteness effect is also observed on sentence

reading reaction time models, and the letter search design implied model, without the

complementary presence of a reliable imageability effect.

There was evidence of a significant difference in concreteness ratings between

items for list 2 and 3 in the sentence reading task (p = .049). These items are also

included in lexical decision and word naming trials. We considered if the concreteness

ratings were driven by this difference. The difference was not present in lexical

decision lists (p = .824), nor in the word naming lists (p = .788).

Sentence reading items were not in the letter search sample items. Letter

search always preceded lexical decision trials, negating the possibility of a lagged

effect as an explanation. Additionally, the sentence reading items were in the word

naming trials but concreteness is not a reliable predictor for word naming reaction

time. Consequently, it is unlikely that the difference between concreteness ratings in

list 2 and 3 of the sentence reading task are the only source of the concreteness effect.

Kousta et al. (2011) and Barber et al. (2013) found that when paired concrete

and abstract items were identical for imageability ratings, then abstract words were

identified faster than concrete words. Although in the absence of one another,

facilitatory effects on either concreteness or imageability are observed, in the presence

of each other imageability partials out the indirect effects of concreteness on the items

with the residual abstractness effect eliciting faster reaction times.

Two theories proffer mechanisms by which words with higher concreteness

values have an advantage over words of lower values: Dual Coding Theory (Paivio,

1991) and Contextual Availability (Schwanenflugel et al., 1988). Although different in
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their details, both essentially claim that a multiplicity of sources of information for

concrete items relative to abstract items, contributes to greater activation for the item

pattern over the same time course, resulting in faster responses for words of higher

concreteness ratings.

Kousta et al. (2011) uses the basis of these accounts to explain the inhibitory

effects of concreteness. The richer or greater number of sources of information on

concrete items need greater integration, with words of lower concreteness ratings

exciting fewer sources of information and so needing less integration. Integration

processes incur a time cost and result in the observed inhibitory effect of concreteness

when imageability has been partialled out. Within this sample, across the wide range

of vocabulary scores and word reading skills, semantic properties assist at the item

level for recognition of more challenging words, with richer and denser definitions of

items taking longer to integrate and activate for each participant.

Quite apart from the item-level explanation, the implication of integration

processes aligns with our interpretation of findings that integration of multiple sources

of information may be a location of difficulty for atypically-reading adults.

But for AoA (discussed above) and vocabulary, none of the predictors on

word naming are for semantic properties. They represent phonological and by

extension, sublexical levels of word processing (Hofmann et al., 2007). Consistency is

indicated on both outcomes for word naming with N-size on reaction time and bigram

frequency on accuracy. The lack of an effect for consistency and bigram frequency in

the lexical decision accuracy model, while using the same items, suggests that the

effects for word naming are related to the phonological and articulatory processes of

the word output (Andrews, 1992; Balota et al., 2004; Coltheart et al., 1977;

Thompkins and Binder, 2003).

The bigram frequency effect predicts lower odds of an accurate response for

words that contain high frequency bigrams. Bigram frequency effects in previous

studies are inconclusive. Some studies have found effects (Broadbent & Gregory, 1968,

Orsowitz 1963 cited in Gernsbacher, 1984). Other studies have not: Chetail (2017)

observed no effect for bigram frequency on accuracy outcomes for a typical-reader
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sample. Davies et al. (2017) found a small, positive effect for bigram frequency in an

interaction with reading skill on reaction time in a sample that included young

children and elderly participants. The difference in findings may be due to the

inclusion of a typically-reading child sample in Davies et al. (2017). Appropriately

lower skill in the typically-reading children compared to the typically-reading adults

may mean a greater reliance on sublexical processing that is then expressed as a small

cost for older skilled readers.

In Chetail (2017), this variation is not present and so no bigram frequency

effect is observed. In the present study, we have younger and older readers of both

typical and atypical reading skills and sublexical parcels of information appear to be

relevant. The influence of bigram frequency in the word naming task data suggests

that this sample of participants is not processing words via a lexical, whole word

strategy.

The positive bigram frequency effect occurs in the presence of a reliable

negative consistency effect. Bigrams are two letters in length. The consistency

predictor is constructed at the level of the rime of words. Consequently, it is at least

two letters in length but more often larger. The concept of grain sizes (Ziegler and

Goswami, 2005) and their use for word recognition becomes relevant in the presence

of these two effects occurring side by side. The consistency effect is located toward the

end of a word, while bigrams are constructed along the length of a word. It is not

clear whether the location of the effects are overlapping or occurring at different parts

of a word. Andrews (1992) controlled their items for initial phonemes and the bigram

effect of an earlier experiment disappeared. We have performed a statistical

adjustment that should approximate such a control. Future studies could control

initial phonemes of items to explore this finding in greater depth for a similar sample

of participants.

In terms of the lexical quality hypothesis, a bigram frequency effect is further

evidence that many words within participants are of low lexical quality. Low lexical

quality for an item implies a lack of orthographic redundancy, with letters at all

positions of the word remaining salient (Perfetti and Hart, 2002). A connectionist
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interpretation describes an interactive competitive process where words that overlap

in features are activated in parallel. Pairs of letters with high frequency activate all

those words with the bigram in the same position (Plaut et al., 1996), increasing the

number of items for recognition thus decreasing the probability of the correct item

being selected for recognition. Each of the explanations suggest that sublexical

processing is the dominant mechanism for word recognition.

On reaction time, consistency and N-size are reliable. N-size shows a very

small, negative effect (𝛽 = -0.06). The items contributing to the consistency measure

are a subset of a neighbourhood since our consistency measure is constructed by

words that are similar and dissimilar at the level of the rime. Consequently, the N-size

effect may be attenuated because the majority of its influence is explained in the

consistency effect.

In the context of low spelling skills and low vocabulary, a facilitatory effect

for N-size for efficient naming on accurate responses suggests partial decoding

processes (Andrews, 1989; Andrews and Hersch, 2010). In lexical quality hypotheses

terms, word representations are not yet unitary; in connectionist terms, since the

pattern of activation for the discrete word has not yet stabilised, there is sufficient

time for the co-activation of words containing similar letters to activate and assist

with pushing the activation signal strength to threshold. In each explanation, this

means that orthographic similarity can help, with words of higher consistency having

an advantage.

In the context of low orthographic learning, the difference between words may

be as minimal as one letter, as suggested by the N-size effect, making the selection of

the correct word highly error prone because words are very similar in appearance.

Additionally, for accuracy, the location of a bigram may be critically important, due

to the complexity of the English spelling sound system. The position of some bigrams

in relation to adjacent letters, may alter the pronunciation of letters in a word,

introducing multiple possible pronunciations for parts of, or whole, words. Over and

above the number of orthographic forms, the number of possible pronunciations may

be larger. For participants of low orthographic knowledge, this further amplifies the
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chance for error.

Together with spelling knowledge on word naming accuracy, this suggests

that where the orthography and phonology of a word are systematic, accuracy and

speed of pronunciation are promoted (Andrews and Lo, 2013; Dilkina et al., 2008).

Andrews posited that orthography drives recognition when spelling is implicated as a

reliable predictor. In the word naming accuracy model, spelling is a reliable predictor,

however the size of its influence is very small, compared to the other effects. On

balance, phonology and semantics are working together and the orthographical

component appears to play a weaker role.

The sentence reading task has not featured much in the discussion. As a

bridging task between a word level and sentence level of reading, and with so few

predictors being indicated as influential, it feels distanced from the nexus of lexical

decision and word naming. Consequential to the current argument, however, is that

nonword reading and – tentatively – consistency facilitate accurate responses over and

above the larger sentential context in which the target word is placed. For reaction

time, word reading skill takes the lead over nonword reading, in the presence of a

RON effect. Participants of higher word reading skill and processing speed are faster,

over and above the assistance of context. Spelling also facilitates faster responses on

correct trials.

There may be a confound inherent in the sentence reading task that enables

the word reading skill to come through, however. This is a possible practice effect

from the repeated items across the meaningful and neutral condition within a data

collection session. We chose to maintain the pairs of words within a data collection

session to provide some fidelity of the data should participant attrition occur. In

support of this argument, as part of the neutral condition, half of the sentence

contexts were also repeated. Since word reading skill has been notably absent in all

other models within the study, the high content of repetition within this task suggests

that this the word reading skill effect could be an artefact of the task design.

In summary, the single word recognition skills of the atypically-learning adults

in this sample are equivalent to a sample of late secondary school readers. Across all
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ID measures, they perform significantly lower than their typically-reading adult peers.

They are supported by an array of skills, of which spelling and vocabulary are relative

strengths. Application of these skills to experimental tasks show that they are better

at identifying letters in a letter string than recognising discrete single words. They are

equivalent in their ability to recognise a word from a nonword and use sentence

context to identify words to the same extent as the larger sample of participants.

Word and nonword reading skill appear to be as strong as each other, while

being weak compared to other reading-related skill measures. The downstream effect

of this appears to be a weak orthographic learning capacity and a suggestion that

reading is performed by sublexical processing. The lexical quality hypothesis (Perfetti

and Hart, 2002) assumes that orthographic information from word reading skill is

dominant for words of high lexical quality. Orthographic knowledge as measured by

spelling was the stronger of the reading-related skills for the atypically-reading adults.

Critically, however, types of spelling errors showed a greater probability of making a

plausible sound matched attempt as not while typically-reading 16-17-year-olds were

more likely than not to make a plausible sound-match error. So while orthographic

knowledge was relatively strong in the atypically-reading adults, application of that

knowledge varied over time. This variability must impede the correct learning of

correct spelling-sound relationships over time.

Nonword reading skill was the best predictor to effect word recognition across

tasks that were congruent and incongruent with sublexical processing as optimal

reading strategies. In the task where sublexical processing was sub-optimal as a

reading strategy, the word naming task, the atypically-reading adults were lower in

accuracy than the youngest readers in the sample.

The persistence of variables involved with sublexical processing as better

predictors of outcomes leads to a conclusion that atypically-reading adults have many

words that are of low lexical quality. The balance of words within the item sample

that may be of high lexical quality is insufficient to push word reading skill forward as

the recognition measure.

Low lexical quality indicates that sources of information are not integrated



350

with one another. They may activate at slightly different times and so mapping of

repeated patterns is reduced in each learning opportunity. We have tentatively

suggested that this integration or this mapping process may be the source of difficulty

for atypically-reading adults because we observed stronger performance in letter

search, equivalent performance on lexical decision and weaker performance on word

naming. The word naming task is where the orthographical and phonological

information must be integrated to be able to produce the correct pronunciation for

the target item. It is here that we observed surprisingly low performance for the

atypically-reading adults. As an exploratory study, we put this forward as an area for

future studies to consider for confirmatory research involving an atypically-reading

adult participant sample.

Across the sample, people of high processing speed made quicker responses.

This is a surprising finding however previous research suggests that the RON measure

could be a proxy for memory ability in older adults (Katz et al., 2012). Stanovich

(1986) suggested that memory capacity may develop in low-literacy individuals as a

consequence of reliance on memory for reading-by-rote. The absence of word reading

skill in the models does not preclude lexical level processing operating, rather it

suggests its is weaker, compared to nonword reading skill in the context of task

demands. If RON is a proxy for memory, this may be expressed as a lexical level

support. We put forward the inclusion of a more explicit measure of memory for

consideration for future research design.

We introduced the division of labour hypothesis in section 3.1, and we can see

that conditions for it to be useful as an explanatory mechanism are present: word

recognition is most definitely supported by sources of phonological and semantic

information for this sample. The quality of semantic information for

atypically-reading adults has been addressed in previous studies, with several authors

hypothesising that much of semantic knowledge for this atypically-reading adults

arises from spoken language experience (Braze et al., 2007; Mellard et al., 2012b). As

such it may be a weaker source of information compared to that garnered from print

sources due to the lack of orthographic information input at the time of using the
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word. Further investigation of this origin of semantic knowledge and resultant

differences in strength of semantic information would be useful.

Our interpretation hinges upon a cross task difference observed under

exploratory research circumstances. So, the findings and logically, the conclusions, are

very tentative and need replication before any firm assertions as to a difference and

then a site of difference is made. That being said, the realisation that under speeded

conditions, an atypically-reading adult’s accuracy for single word reading could be less

accurate than a reader in the first year of their secondary school experience, may be of

interest to persons involved in such education - learners and tutors. It may be

grounds to motivate a further research endeavour with the explicit goal of confirming

or disconfirming these findings. Upon confirmation of findings, the psycholinguistic

predictors herein are markers of types of materials and ways of working with

atypically-reading adults that could form the basis of intervention research to raise

the lower levels of accuracy in single word recognition.

8.3 Limitations

Much has been made of a dominant reading strategy of sublexical processing for the

atypically-reading adults. A strong test of this would have been the presence of a

length effect for lexical decision and word naming outcome measures. We were

conservative in our approach, due to an explicit aim of modelling multiple predictors

simultaneously. When length was suggested as having an overly high VIF value, we

decided to use the phonemes predictor as a proxy for length instead. Knowing what

we now know, and looking at the phoneme predictor, the range of which may be

restricted compared to that of length, we regret removing the length variable. We

would either ensure that the phoneme variable gave equivalent coverage in future item

samples or keep length as a predictor.

The interaction models that did converge all had higher IC values than the

preferred models. However, some interaction models were still running at the time of

writing. It is likely that the data from the present study were not sufficient to
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successfully model interactions to the same extent as independent effects. Given the

small and very small effects returned by independent predictor models, it is likely that

much more information is needed to fully run, check and return an interaction model.

This is especially true in the word naming and sentence reading tasks where accuracy

was very high which adds to difficulties for estimation.

The rate of attrition across the atypically-reading adult and 16-17-year-old

groups was the highest within the sample. The reduction in information on T3

experimental tasks, coupled with the high rate of accuracy in word naming and

sentence reading tasks probably explains why the interaction models did not converge.

In lexical decision and letter search, it may explain why the interaction models were

not preferred. This remains an open question with a larger amount of data needed to

be able to estimate small effects that exist, if they do at all. Not only does this

indicate recruiting a larger sample, but over-recruiting to maintain optimal amount of

information in the face of inevitable attrition across time.

In the letter search task, the number of trials in the letter position = “none”

condition was equal to the amount of all the other letter position trials put together,

merely to calculate the intercept of the model. Any future replication may consider

rethinking the distribution of trials across the position variable so that it is more

evenly balanced and more information is given to the estimation of effects across the

variable. As a result of more information, other predictors may be estimated with

greater precision and the inferences on the group predictor may be more conclusive.

Finally, the word naming and sentence reading accuracy levels were too high.

A greater level of challenge needs to be added to the item set. Lowering the accuracy

rate would possibly allow for more precise estimation of effects and a check on

whether group differences in word naming accuracy are still indicated. For the word

reading task, we would argue that the addition of nonwords would be the best choice

of introducing a level of challenge, with presentation of word and nonwords in

separate blocks to encourage use of both word and nonword reading skills for those

whose strength of skills enables them to strategise this way. We would predict that

this would be expressed through an interaction effect for group and word-reading skill
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in a preferred model.

8.4 Future Directions

The most obvious need in the short term is replication of these findings, to ensure that

this sample is not, in some unobserved way, unique and that the findings generalise to

a new sample. Given the small population (relative to the school age population), the

short window of time in which atypically-reading adults may be eligible for

participation, and their rate of attrition in the present study, securing an optimal

number of repeated sessions will likely involve a multi-site study of cohort design.

Extensions of the present work could be added to refine the measurements.

Questions of a role for working memory are raised by the presence of RON effects.

Including a measure of working memory would be desirable.

The prevalence of nonword reading and the array of ID measures that are

indicated in the absence of a reliable word reading effect have been interpreted here as

a preferential reading strategy at the sublexical level. HS99 approximated a mild form

of developmental surface dyslexia in the HS99 PDP model by reducing connections

between orthographic-phonological domain layers, inducing a sublexical reading

strategy behaviour in the PDP model. Additionally, we have raised a question about

integration of information in this population. HS99 suggests one site of difficulty.

Critical to the division of labour hypothesis is the strength of the

interdependence between the two sources of semantic and phonology. The

atypically-reading sample (both adult and 16-17-year-old) demonstrates a low level of

vocabulary in the context of average phonological awareness skill. With the training

protocol of HS99 and the action layer of D08 there are potential simulation

environments that could explore the impact of different levels of interdependence

(from both spoken and written semantic information) within a connectionist

framework. This could guide or augment behavioural investigations.

The meta-analysis has been little mentioned in Chapter 8. With few

exceptions, it was the models with the stronger priors that returned the lower IC
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values and were consequently nominated as the preferred models. Information to form

the strongly informative priors was lifted from the meta-analysis. The aim is to

maintain the current project but also to develop it into a resource that can perform

network meta-analyses across different sample constructs. Continuing on a bent of

secondary analysis approaches, the sparsity of research and data for the adult-learner

population means that every study is important and needs to work harder than a

research field that is well populated. Using integrated-data-analysis techniques may

mean that findings from the field can be augmented as single studies become part of a

connected network of measures and yield secondary insights that may guide research

design and foci.

8.5 Conclusion

The present study explored the single word recognition processes of a group of

adult-learners. We assessed the participants on a series of reading-related individual

difference measures to connect with previous studies. We have found that, like

previous study findings with similar groups, the adult-learners have scores that

emulate the performance of secondary school students.

Many of the previous studies compared adult-learners with younger readers of

11-12 years of age. We also included readers of 11-12 years of age and extended the

reader sample to include 16-17 year old readers. We have found that, in respect of

individual difference task scores, the adult-learners are positioned in between the

typically-reading 11-12-years olds and 16-17-year-olds.

We are the first study that we know of to extend the exploration of

adult-learners’ word recognition processes into the experimental task landscape and

estimate psycholinguistic predictor effects for an adult-learner population. From the

experimental task outcomes, we have been able to capture cross-task differences that

may suggest atypically-reading adults engage a sublexical reading strategy to effect

word recognition. Most importantly, while appearing equivalent in skill in ID

measures, the atypically-reading adults were reliably less accurate than the youngest
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readers in speeded word naming. By including psycholinguistic predictors, we have

found that phonological and semantic predictors assist nonword reading skills for

single word recognition.

In terms of the lexical quality hypothesis, adult-learners look as if their triad

of orthographical-phonological-semantic knowledge are either too weak to cohere with

each other or are not sufficiently integrated to support fast and accurate word

recognition. In terms of the division of labour hypothesis, the psycholinguistic

predictors that support lexical decision and word naming suggest that this sample of

readers use phonological and semantic information to help access word forms. But

once more, for word recognition, the skills may be weak such that the interdependence

upon which the division of labour hypothesis is based is not robust.

An intuitive solution (after confirmation of the present findings) is to work

with adult learners to bring about a more flexible or whole word reading strategy.

However the dominance of nonword reading, spelling and vocabulary across the

models suggests that these sublexical predictors may reinforce a fractionated

processing style, making it a very hard habit to break.

With the inclusion of two younger sets of readers, who are on a trajectory to

possibly become adult-learners later in life, there may be opportunity to confirm if

their reading styles show similar patterns. If this is confirmed, are the styles mutable,

and if so at what stage and which are the best tools and methods? This is the stuff of

further study.

8.6 Summary

This thesis reports the results of two studies: a wide ranging meta-analysis that

aggregated study level effects for eight psycholinguistic predictors across groups of

child and adult readers and a longitudinal study that describes a sample of

atypically-reading adults and their similarities and differences with younger readers.

Both studies contribute new knowledge to research on single word reading processes.

From the meta-analysis, we found that while individual studies were explicitly
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designed to compare groups for effects of predictors, many were statistically

underpowered for the estimation of these interaction effects. This lowers our

confidence in the estimation of aggregated effects. To raise confidence in aggregated

effects, we suggested building sample numbers through collaboration and networking

between smaller studies. A move towards greater collaboration would enhance the

robustness of effect estimation yet involve only small changes to research practice.

From the longitudinal study, we may have a better understanding of two

things: within the atypically-reading adult sample, word and nonword reading skills

show equivalent strength, such that word reading does not perform as the primary

skill when individuals are exposed to single words. Atypically-reading adults do not

appear to have a lexical approach to reading. Instead, nonword reading acts as the

primary decoding predictor, supported by vocabulary and spelling knowledge.

Atypically-reading adults appear to rely on this nexus of skills which are themselves

under-developed and vary in their application over time. A trend for superior

performance in identifying the presence of embedded letters in a letter string (as

observed in the letter search task), may suggest that a lower accuracy in the single

word reading task may be because atypically-reading adults are applying a

sub-optimal reading strategy and that single word reading is performed using

sublexical reading strategies.

At the outset of the study, we asked whether atypically-reading adults may

enjoy a greater vocabulary knowledge than younger readers because of their older age

and longer natural language exposure. As measured by the Shipley vocabulary scale

in the present study, they do not. Furthermore, the presence of independent effects of

vocabulary, rather than interaction effects in our statistical models, suggests that

atypically-reading adults use their vocabulary skills in a similar way to younger

readers. Spelling skill is relatively strong within the atypically-reading adult

individual differences measures. Over time, however, observed spelling performance

for the same item is highly variable in the atypically-reading adult sample.

In terms of psycholinguistic predictors, we found that independent effects of

AoA, consistency, word-frequency, neighbourhood-size, bigram-frequency and
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concreteness were reliably indicated as predictors of outcome variables across the four

experimental tasks. Confidence intervals for the predictors of imageability, number of

word meanings and semantic diversity fell on or just over zero, which we think means

they should also be considered candidate predictors in future models. Future research

should seek to replicate these models and confirm these results. When we compared

the independent effect sizes of the longitudinal study with those of the meta-analysis,

we found our study effects sizes to be generally smaller, except for the word-frequency

effects on accuracy measures, which were larger.

The longitudinal study modelling strategy has demonstrated that in a

moderately sized study, the parallel estimation of multiple predictors is possible. This

differs from the much more conservative modelling strategy adopted by many of the

included studies in the meta-analysis, where only one or two predictors were modelled

in conjunction with each other. Given the theoretical reading models, we performed a

stronger test of the viability and influence of psycholingustic predictors. This is likely

to yield a more precise estimate of effects as a result of the more stringent testing

conditions.

The findings from the present meta-analysis and empirical study will help to

progress the methodological approach taken in the field. The meta-analysis revealed

that it is clear the field is heavily invested in modelling interactions between group

reading skills and psycholinguistic properties. However, statistical power is often low.

In the empirical study, no interactions with time for any of the predictors were

indicated. The lack of any effect for repeated measures over time suggests that the

effects could be estimated with one round of data collection and that a correlational

study design is appropriate.

Taken together, the findings suggest that correlational study design and

collaboration across researchers would boost sample sizes and increase power to detect

small interaction effects. Further, parallel estimation of multiple predictors would

estimate effect sizes conditional upon the presence of a more representative set of

predictors. This would facilitate greater precision in the estimation of predictor effects

and identification of those predictors that show no influence when tested in
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conjunction with the larger set. This will also progress the field in terms of

constructing valid models that can speak to theory and cognitive models of single

word reading.

Furthermore, the meta-analysis provides a contemporary dataset of research

findings, available as an open resource to the research community. We chose to use

the findings as strong priors in Bayesian Inference models that use

linear-mixed-effects-models. Linear-mixed-effects-models offer greater flexibility, can

incorporate different distributions of data and accommodate the correlated structure

of observations that is integral to much of reading research empirical data. The

additional flexibility of the Bayesian Inference paradigm arises from the Monte-Carlo

simulation method which in this study showed a greater likelihood of model

convergence over the frequentist linear-mixed-effect-models. While the ANOVA

method was clearly the preferred method of analysis in the included studies of the

meta-analysis, the present study is a demonstration that it need not be so, going

forward.

The theoretical implications of our work are somewhat more clear at the end

of the study. To begin, we underpinned our study with the lexical quality hypothesis

(Perfetti & Hart, 2002) and the division of labour hypothesis (Plaut, 1996). In

concluding our study, we think the division of labour hypothesis allows for a richer

description of atypically-reading adult single word reading processes. The end state of

the lexical quality hypothesis is the lexicalisation of a single word such that the

orthographic code of the item is sufficient to access an item’s pronunciation and

meaning. The prevalence of nonword reading, spelling and vocabulary skills observed

across all models (bar sentence reading reaction time) suggests that the lexical

representations within an atypically-reading adult are likely of low quality. The lexical

quality hypothesis has little to say about the mechanisms by which information for

items of low lexical quality are accessed.

In contrast, the PDP model account describes cognitive mechanisms where

sublexical processes contribute to the growth of stable lexical representations over

time, without ever requiring lexicalisation of a whole word. Additionally, the division
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of labour hypothesis, with its extensive modelling in both P96 and HS99, provides

accounts of alternative pathways by which phonological, orthographic and semantic

information may operate in interdependent ways that reflect a skilled and less-than

skilled reading performance. Furthermore, the PDP framework is extendable in that

it could be both computationally and empirically explored in future research for a

sample of atypically-reading adults. With confirmation of findings through

replication, the current study’s data and effects could act as an initial benchmark by

which to judge the output of parameters within an adapted PDP model.

The applied implications of the present study may also be helpful to educators

of atypically-reading adults. Although generally, the atypically-reading adult shows a

profile of an older secondary school student, the accuracy of the single word naming

task for this group was reliably lower than that of first-year secondary-school

students. This exploratory finding may be of immediate use to educators. Also, we

have found that vocabulary and spelling skill appear to be supportive sources of

information for atypically-reading participants. Critically, there is some suggestion in

the literature that for atypical readers of college age and above, vocabulary may be

accumulated through spoken language experience rather than print exposure, and as

such may not contain the dual codes of orthographic and phonological information.

Consequently, the source of vocabulary knowledge available to atypically-reading

16-17-years old and adult individuals may be a weak source of information.

This may have implications for reading practice in a secondary school or

further education college classroom where online and immediate reading of novel text

is often performed. Such episodes are not framed as reading practice per se, since the

reading activity is secondary to the primary goal of understanding the content in

order to be able to complete a task. Much of this immediate reading is performed

independently and in silence. Any exposure to a novel printed word does not provide

access to its acoustic signal and an opportunity to experience the dual codes of print

and sound contiguously is lost. This may have important implications for the

development of vocabulary and spelling skill over time.

To conclude, our beginning aim was to understand how similar or different
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atypically-reading adults were to cohorts of younger readers. We may tentatively say

that atypically-reading adults’ individual differences profile for component skills that

contribute to successful single word naming look to be very similar to

atypically-reading older secondary school students. Crucially, however, while similar

skills may appear to be in place, when applied, the atypically-reading adults are lower

in accuracy performance in single word reading tasks. We observed patterns of results

across letter-search and word naming tasks that suggest atypically-reading adults may

apply sublexical reading strategies for single word naming, Over time, this strategy

can act as a barrier to the formation of strong links between letters and sounds and

slow the consolidation of predictable relationships that contributes to the development

of fluent and accurate reading. We can assume from this, that the reading strategy

was in place during their school years and may explain why, given opportunity and

exposure, these individuals’ reading skills developed more slowly than their peers.

This is a testable hypothesis and with consideration of simulation studies of the

division of labour hypothesis using computational models, could form the basis for

future research.
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Appendix A

Meta-Analysis: Systematic Search Strategy

Updated Search Strategy 2020

Terms for search in March 2020 were developed with the advice of Lancaster

University librarian, Jonathan Barbrook.

EbscoHost Search – using Psycholinguistic as a key term:

TI ( (psycholinguistic AND (predictor* OR variable* OR effect) ) OR “age of

acquisition” OR “contextual diversity” OR “word frequency” OR “word familiarity”

OR “imageability” OR “concreteness” OR “word length” OR ” (neighborhood OR

neighbourhood) size” OR “consistency” OR “semantic diversity” OR “sensory

experience” OR “valence” OR “regularity” OR “bigram frequency” OR “regular

spelling patterns” ) OR AB ( (psycholinguistic AND (predictor OR variable* OR

effect*) ) OR “age of acquisition” OR “contextual diversity” OR “word frequency”

OR “word familiarity” OR “imageability” OR “concreteness” OR “word length” OR ”

(neighborhood OR neighbourhood) size” OR “consistency” OR “semantic diversity”

OR “sensory experience” OR “valence” OR “regularity” OR “bigram frequency” OR

“regular spelling patterns” )

AND

“word naming” OR “word-naming” OR “word recognition” OR “lexical

decision”

→ S1 AND S2 = s3 = 3957 records
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“english as a second language” OR “L2”

aphasia OR dysphasia OR “communication disorder”

“alzheimer* disease” OR dementia

→ s4 OR s5 OR s6 = s7 = 355,455 records

→ s3 NOT s7 = s8 = 3666 records

(typical OR normal OR good OR “non disabled” OR “non-disabled” OR

nondisabled) AND readers

(old* AND young*) AND adults

(old* AND young*) AND children

→ s9 OR s10 OR s11 = s12 = 172003 records

→ s8 AND s12 = 233 records

EbscoHost through PsychInfo:

• Academic Search Ultimate

• APA PsycInfo

• APA PsycArticles
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Appendix B

Meta-Analysis: Included Articles
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Table 1

Articles Included in the Meta-Analysis

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Allen et al., 1991 Article USA English High U Adult 48 LD Exp. Freq.,

Length

Acc, RT

Allen et al., 1993

(Study 1 & 3)

Article USA English High U Adult 40 LD Exp. Freq.,

Length

Acc, RT

Allen et al., 2002

(Study 1: single

task condition)

Article USA English High U Adult 40 LD Exp. Freq. Acc, RT

Allen et al., 2004 Article USA English High U Adult 193 LD Exp. Freq. Acc, RT

Allen et al., 2011

(Exp 1 & 2)

Article USA English High,

Un-

clear

C, U Adult 40 WN Exp. Cons.,

Freq.

Acc, RT

Araujo et al.,

2014

Article Portugal Portugese Unclear School Child 37 LD Ab. Freq.,

Length

Acc, RT

Backman et al.,

1984

Article Canada English Low School Child 112 WN Ab., Exp. Cons. Acc, RT

Baddeley et al.,

1982 (Exp 3)

Article UK English Low School Child 30 / 45 WN Ab., Age, Exp. Image Acc

Baddeley et al.,

1988

Article UK English Unclear School Child 32 – 64 WN Ab., Age, Exp. AoA,

Cons.,

Freq.,

Image,

Length,

Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Balota &

Ferraro, 1996

Article USA English High U Adult 96 LD Exp. Freq. Acc, RT

Balota et al.,

2004

Article USA English Low C, U Adult 60 LD, WN Exp. Cons.,

Freq.,

Image,

Length,

N-size,

Synset

Acc, RT

Barber 2009 Thesis Canada English High U Adult 40 LD, WN Ab. Freq. Acc, RT

Barca et al.,

2006

Article Italy Italian Low School Child 82 WN Ab. Freq. Acc, RT

Barry et al.,

2006 (Priming

stage)

Article UK English High C, U Adult 20 / 19 LD, WN Exp. AoA Acc, RT

Beech &

Harding, 1984

Article UK English High School Child 92 / 79 WN Ab. Cons. Acc, RT

Ben-Dror et al.,

1991

Article USA English Low U Adult 38 WN Ab. Cons. Acc, RT

Bosman et al.,

2006

Article Netherlands Dutch Low School Child 69 LD Ab., Age, Exp. Cons.,

Freq.

Acc, RT

Brown, 1997 Article UK English Low School Child 20 WN Age Cons. Acc
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Bruck 1988

(Task 2)

Article Canada English Low Clinic,

School

Child 34 WN Age Cons.,

Freq.

Acc, RT

Bruck 1990

(Section 2)

Article Canada English Low School,

U

Adult 55 WN Ab. Cons.,

Freq.

RT

Burani et al.,

2002 (Exp 1 & 2)

Article Italy Italian Low School Child 90 LD, WN Exp. Freq.,

Length

Acc, RT

Butler & Hains,

1979

Article Canada English Unclear U Adult 12 LD, WN Ab. AoA,

Freq.,

Length

RT

Cohen-Shikora &

Balota, 2016

Article USA English Low Database Adult 148 LD, WN Exp. Cons.,

Freq.,

Image,

Length,

Valence

Acc, RT

Coltheart et al.,

1988 (Exp 1)

Article England English Low School Child 47 WN Ab. AoA,

Image

Acc

Compton, 1993 Thesis USA English Unclear School Child 22 LD, WN Age Cons.,

Freq.

Acc, RT

Davies et al.,

2013

Article Spain Spanish Low School Child 29 WN Ab. Freq.,

Length

Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Davies et al.,

2017

Article UK English Low School,

U, C

Adult 219 /

117

LD, WN Exp. AoA,

BF,

Cons.,

Freq.,

Image,

Length,

N-size,

RT

Davies, Cuetos

& Glez-Seijas,

2007

Article Spain Spanish Unclear School Child 66 WN Ab., Age, Exp. Freq.,

Length,

N-size

Acc, RT

De Luca et al.,

2008

Article Italy Italian High School Child 51 WN Ab. Length RT

De Luca et al.,

2010 (Test 5)

Article Italy Italian Low School Child 54 WN Ab. Length RT

De Luca et al.,

2017

Article Italy Italian Low School Adult,

Child

76 WN Ab., Exp. Freq.,

Length

RT

Defior et al.,

1996

Article Spain Spanish High School Child 140 WN Ab. Freq.,

Length

Acc

Deyne & Storms,

2007

Article Belgium French Unclear School,

U

Adult 41 LD Exp. AoA RT

Di Filippo et al.,

2006

Article Italy Italian Unclear School Child 63 LD Ab., Exp. Length Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

DiBenedetto et

al., 1983

Article USA English Low School Child 40 / 60 WN Ab., Age, Exp. Cons. Acc

Dorot & Mathey,

2010

Article France French High U Adult 85 LD Exp. AoA,

Freq.

RT

Dujardin et al.,

2011

Article France French Low U Adult 52 LD Ab. Freq. Acc, RT

Dunabeitia &

Vidal-Abarca,

2008

Article Spain Spanish Low School Child 262 LD Exp. N-size Acc, RT

FRiLL, 2012 Database UK English Unclear School Child 61 – 93 WN Ab., Age, Exp. Cons. Acc

Gottardo et al.,

1999

Article USA English Low School Child 112 WN Ab., Age Cons. Acc

Hautala et al.,

2013

Article Finland Finnish Low School Child 28 LD, WN Ab. Length Acc, RT

Holligan &

Johnston, 1988

(Exp 4)

Article UK English Low School Child 40 WN Age Cons.,

Freq.

Acc

Horn & Manis,

1985 (Exp 2)

Article USA English Low School Child 36 LD Ab., Age, Exp. Freq. Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Hsiao & Nation,

2018 (Exp 1 -3)

Article UK English Low,

Un-

clear,

Low

School Child 35 / 114

/ 350

LD, WN Ab. AoA,

Freq.,

Length,

Seman-

tic

diver-

sity,

Acc, RT

Ishaik, 2003 Thesis Canada English High School Child 77 WN Ab. Cons. Acc

Jimenez

Gonzalez &

Hernandez Valle,

2000

Article Spain Spanish High School Child 118 LD, WN Ab., Age, Exp. Freq.,

Length

Acc, RT

Johnston et al.,

1990

Article UK English Unclear School Child 40 WN Ab., Age, Exp. Cons.,

Freq.

Acc

Jorm, 1977 (Exp

2)

Article Australia English Low School Child 48 WN Ab. Freq.,

Image,

Length

Acc

Jorm, 1981 Article Australia English Low School Child 38 WN Ab. Cons. Acc

Keating, 1987

(Exp 8)

Thesis UK English Low School Child 60 WN Exp. Cons. Acc

Kitzan et al.,

1999 (Exp 1)

Article USA English Low C, U Adult 88 LD Exp. Synset Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Lavidor et al.,

2006

Article England English Unclear U Adult 22 LD Ab. N-size Acc, RT

Laxon et al.,

1988

Article UK English Low School Child 47 LD, WN Ab. N-size Acc

Laxon et al.,

1991

Article UK English Low School Child 87 WN Ab. Cons. Acc

Laxon et al.,

1994

Article UK English Low School Child 40 WN Exp. Cons.,

N-size

Acc

Laxon et al.,

2002 (Exp 1)

Article UK English Low School Child 94 WN Ab. N-size Acc

Leach, 1984

(Task 3)

Thesis USA English Low FE

College

Adult 36 WN Ab. Length Acc, RT

Lewellen et al.,

1993 (Exp 1 & 2)

Article USA English Unclear,

Low

U Adult 30 / 70 LD, WN Ab. Freq.,

N-size

Acc, RT

Lovett, 1987 Article Canada English High Clinic,

School

Child 96 WN Ab. Cons.,

Freq.

Acc, RT

Luque et al.,

2013

Article Spain Spanish Low School Child 158 LD Ab., Age, Exp. Freq. Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Macdonald, 2013

(Exp 2 & 3)

Thesis Canada English Low C, U Adult 63 LD Exp. Semantic

Density,

Seman-

tic

N-size

Acc, RT

Mahe et al., 2012 Article France French High C, U Adult 31 LD Ab. Freq. Acc, RT

Mahe et al., 2018 Article France French Low U Adult 42 WN Ab. Cons. Acc, RT

Marcolini et al.,

2011

Article Italy Italian Low School Child 63 WN Ab. Freq. Acc, RT

Marinelli et al.,

2011

Article Italy Italian Low School Child 65 LD, WN Ab. Freq. Acc, RT

Marinelli et al.,

2013

Article Italy Italian Low School Child 66 WN Ab. Freq.,

N-size

Acc, RT

Marinelli et al.,

2014

Article Italy Italian High School Child 41 LD Ab. Freq.,

Length

Acc, RT

Marinus & de

Jong, 2010a

Article Netherlands Dutch Low School Child 72 WN Ab., Age, Exp. Freq.,

Length,

N-size

RT

Marinus & de

Jong, 2010b

Article Netherlands Dutch High School Child 63 WN Ab., Age, Exp. N-size Acc, RT

Martens & de

Jong, 2006

Article Netherlands Dutch High School Child 66 LD Ab., Age, Exp. Length Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Martens & de

Jong, 2008

Article Netherlands Dutch High School Child 64 WN Ab., Exp. Length RT

Martens, 2006ba Thesis Netherlands Dutch High School Child 43 WN Ab., Age, Exp. Length Acc, RT

Martin et al.,

2010 (Exp 2)

Article France French Unclear U Adult 30 WN Ab. Length Acc, RT

Mason, 1978

(Exp 1, 2 & 3)

Article USA English Low U Adult 24 WN Ab. Cons.,

Length

Acc, RT

McKoon &

Ratcliff, 2016

Article USA English Low FE

College,

U

Adult 180 LD Ab. Freq. Acc, RT

Morrison et al.,

2002 (Exp 1a &

1b)

Article England English Low Database,

U

Adult 60 WN Exp. AoA,

Freq.,

Image

RT

Morrison et al.,

2003 (Exp 2a &

2b)

Article England English High Database,

U

Adult 60 WN Exp. AoA,

Freq.,

Image,

Length

RT

Murphy &

Pollatsek, 1994

Article USA English Unclear School Child 82 / 130 WN Ab., Age, Exp. Cons. Acc

Murphy et al.,

1988

Article USA English Low School Child 28 WN Ab. Cons. Acc, RT



373

Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Navarro-Pardo

et al., 2013

Article Spain Spanish High U Adult 80 LD Exp. Freq. RT

Nazir et al., 2003 Article France French High School Child 75 / 30 LD Exp. AoA Acc, RT

Olson et al.,

1985 (Task D &

E)

Article USA English Unclear,

High

School Child 281 WN Ab., Exp. Cons. Acc

Paizi et al., 2013

(Exp 1 – 4)

Article Italy Italian Unclear School Child 34 LD, WN Ab. Freq. Acc, RT

Parrila et al.,

2007

Article Canada English High U Adult 55 WN Ab. Cons. Acc, RT

Perea et al., 2016 Article Spain Spanish Unclear C Adult 32 LD Exp. Freq. Acc, RT

Perfetti &

Hogaboam, 1975

(Grade 3)

Article USA English Low School Child 30 WN Ab. Freq. RT

Provazza et al.,

2019

Article UK English Unclear U Adult 36 WN Ab. Freq.,

Length

Acc, RT

Raman &

Baluch, 2001

(Exp 2)

Article Turkey Turkish Unclear U Adult 44 WN Ab. Cons.,

Freq.,

Image

Acc, RT

Raman, 2000 Article Turkey Turkish Unclear U Child 40 WN Ab. Image Acc

Raman, 2011 Article Turkey Turkish Unclear U Adult 30 WN Ab. AoA RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Ratcliff et al.,

2004

Article USA English Unclear C, U Adult 98 / 94 LD Exp. Freq. Acc, RT

Ratcliff et al.,

2010b

Article USA English Low C, U Adult 85 LD Exp. Freq.,

Length

Acc, RT

Robert &

Duarte, 2016

Article France French Low U Adult 50 LD Exp. No. of

features

RT

Roderigo Lopez

& Jimenez

Gonzalez, 1999

Article Spain Spanish Unclear School Child 132 WN Ab. Freq.,

Length

Acc

Roderigo Lopez

& Jimenez

Gonzalez, 2000

Article Spain Spanish Unclear School Child 132 WN Ab. Freq.,

Length

RT

Romani et al.,

2008

Article UK English Unclear C, U Adult 64 WN Ab. Cons. Acc, RT

Schroter &

Schroeder, 2017

Article German German Unclear School,

C

Adult,

Child

46 LD, WN Exp. AoA,

Arousal,

Freq.,

Image,

Length,

N-size,

Valence

Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Schwanenflugel

et al., 1994 (Exp

2a & 2b)

Article USA English Low,

Un-

clear

School,

U

Child 32 / 32 LD Exp. Image Acc, RT

Seidenberg et al.,

1985

Article Canada English Low Clinic,

School

Child 51 WN Ab. Cons. Acc, RT

Seymour, 1987b Article UK English Low School Child 22 WN Ab. Freq. Acc, RT

Siegel & Ryan,

1988

Article Canada English Unclear School Child 56 / 79

/ 66

WN Ab., Age, Exp. Cons. Acc

Spinelli et al.,

2005 (Study 1)

Article Italy Italian High School Child 84 WN Ab. Length RT

Stanovich et al.,

1988

Article USA English Unclear School Child 64 WN Age Cons. Acc

Steacy et al.,

2017

Article USA English Low School Child 170 WN Ab. Freq.,

Image,

Length,

N-size

Acc

Strain &

Herdman, 1999

Article Canada English High U Adult 60 WN Ab. Cons.,

Image

Acc, RT

Suarez-Coalla &

Cuetos, 2012

Article Spain Spanish Unclear Clinic,

School

Child 38 WN Ab. AoA RT

Suarez-Coalla &

Cuetos, 2015

Article Spain Spanish High C Adult 60 LD, WN Ab. Freq.,

Length

Acc, RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Szeszulski &

Manis, 1987

Article USA English Unclear School Child 51 / 34 WN Ab., Age, Exp. Cons. Acc

Tainturier et al.,

1989

Article Canada English High C Adult 39 LD Exp. Freq. RT

Tainturier,

Tremblay &

Lecours, 1992

Article France French High C Adult 39 LD Ab. Freq. RT

Traficante et al.,

2014

Article Italy Italian Low School Child 54 WN Ab. Freq.,

Length

Acc, RT

Treiman &

Hirsh-Pasek,

1985

Article USA English High Clinic,

School

Child 74 WN Age Cons. Acc

Treiman et al.,

1995

Article USA English Low School Child 40 WN Exp. Cons. Acc

Verhoeven &

Keuning, 2018

Article Netherlands Dutch Unclear School Child 3157 WN Ab., Exp. Length Acc, RT

Waters et al.,

1985

Article Canada English Low School Child 36 WN Ab. Cons. Acc, RT

Weekes et al.,

2006: (Exp 1)

Article UK English Low School Child 40 WN Exp. Cons.,

Freq.

Acc

Whiting et al.,

2003

Article USA English Unclear C Adult 24 LD Exp. Freq. RT
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Table 1

Articles Included in the Meta-Analysis (continued)

Sample

Study Name Format Country Language RoB Setting Type n Task Contrast Predictors Outcome

Willcutt, 2008a Thesis USA English High C, U Adult 60 LD Ab. Length RT

Ziegler et al.,

2003

Article France English,

German

Low School Child 149 WN Ab., Age, Exp. Length,

N-size

Acc, RT

Ziegler et al.,

2008

Article France French Low Clinic,

School

Child 48 WN Ab. Cons. Acc, RT

Zoccolotti et al.,

2005

Article Italy Italian Low School Child 37 WN Ab. Length RT

Zoccolotti et al.,

2009

Article Italy Italian High School Child 503 WN Exp. Freq.,

Length

RT

Note:

Values in the *n* column indicate total sample numbers for each study, separated by a forward slash where appropriate. RoB = Risk of bias. U =

University; C = Community; WN = Word naming; LD = Lexical Decision; Ab. = Ability; Exp. = Experience; AoA = age of acquisition; BF = Bigram

Frequency; Cons. = Consistency; Freq = Frequency; Image = Imageability; N-size = Neighbourhood-size; Acc = Accuracy; RT = Response time.
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Appendix C

Meta-Analysis: Confidence Judgement Process

The summary of findings is comprised of several parts that contribute to an

adjudication of confidence for each meta-analysis estimate. In conducting our

evaluations for confidence, we were guided by the GRADE process (Cochrane:

https://training.cochrane.org/introduction-grade) and their five domains of

imprecision, indirectness, inconsistency, publication bias and risk of bias at the

outcome level. We explain our operationalisation of these domains and their

presentation in the summary of findings next. Data for each of these domains is

available at the project webpage.

Imprecision of Summary Effects

Imprecision was assessed using three points of information: (1) RDF results of < 0.8

to replicate d(rep) and the magnitude error > 2; (2) after dividing total participant

sample and total number of items, each sample < 40 per group / condition; (3)

confidence intervals of the estimated effect sizes cross more than two effect size

categories. Two matches in any three contributed to a lowering of confidence by one

level.

Power and Magnitude of Error

Power values from the RDF analyses are presented in the summary findings. Sign and

magnitude of error data are available at the project webpage. Of the 127 estimated

effects, 124 summary estimates showed power levels for replication that were below

https://training.cochrane.org/introduction-grade
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80% (RE: 71; FE 52), with 59 of these having power of below 10%. Mean power across

all estimated effects is 20.53% (sd = 21.8; RE: 29.05%, sd = 24.52 and FE: 8.24%, sd

= 6.38). Ninety-six estimates (RE: 46; FE: 50) showed a magnitude error bigger than

twice the size of d(rep), indicating a greater instablity of the meta-analysis finding.

Sample Size

Number of participants, studies and items for each summary estimate is presented in

each figure. One hundred and three estimates had discrete groups of less than 40

participants, of which 28 had less than 40 stimuli per predictor condition. In contrast,

of the 127 estimated effects, only 32 summary effects show less than 40 items per

predictor condition, of which 28 show low participant numbers; of the remaining 95

studies showing adequate levels of item stimuli, 75 also show lower than desired

participant numbers. Clearly, studies are more likely to be adequately powered in the

item sample than the participant sample.

Confidence Interval Span

Point estimates, with their 95% confidence intervals are presented in each plot.

Vertical dashed lines are drawn to indicate values of 0, 0.2, 0.5 and 0.8 to allow

readers to judge reliability and the size category for each estimate. Ninety-nine of the

127 estimates’ confidence intervals spanned more than two effect size categories (RE:

49; FE: 50). Essentially, a combination of low power, particularly from the low

numbers for participant samples, contributed to some very wide confidence intervals.

Indirectness of Summary Effects

Credible intervals estimate predictions of effects for out of sample findings. If credible

intervals cross zero, we should exercise caution as to the generalisability of the

estimated effect. Credible intervals that cross zero reduce our confidence in the

estimate by one level. Credible intervals are estimated at the same level as 95%
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confidence intervals for fixed effects models. Of the 75 RE models, 32 of the estimate

credible intervals crossed zero, meaning we feel unable to generalise the estimates

outside of the present sample. Credible interval data is available at the project

webpage.

Inconsistency Within Summary Effects

Heterogeneity values are presented for each summary estimate. We use residual

heterogeneity values to define inconsistency and retained the thresholds used

throughout the analyses. Consequently, inconsistency was adjudicated as present if,

after sensitivity analyses and outlier removal, 𝐼2 values remained high (i.e. > 75%) for

a summary estimate. 𝐼2 values are not relevant for FE model estimates.

None of the 75 RE models displayed high inconsistency. Five studies showed

low consistency (𝐼2 values between 25 - 50%), with the remaining 70 showing very low

values (i.e. below 25%) and Cochrane’s Q p-values greater than .05, indicating random

sampling variation as a competing source of variability within sample.

Publication Bias

Egger’s Test and Begg’s Rank Correlation Test were performed on all full, subgroup

samples where there were three or more study effects (n = 53). If either test returned

a result p < .1, publication bias was indicated as present and confidence was lowered.

We present the lowest p-value in the summary findings. Five out of 53 summary

estimates showed evidence of publication bias in at least one test, two of the five

showed significant p-values for both tests.

Risk-of-Bias Outcome Level Judgements

Risk-of-Bias (RoB) judgements for each estimated effect are presented in the

summary findings. We performed a simple counting of RoB judgements across the
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individual studies for each subgroup meta-analysis. As noted in the methods section,

low and unclear RoB adjudications did not lead to a lowering of confidence, but an

adjudication of high RoB did. Very few of the summary effects obtained a “high” RoB

adjudication (n = 8). The majority of summary effects were estimated as “unclear” (n

= 67), with the remaining 52 studies adjudicated as “low” risk of bias.

Further to this counting we inspected the comments attributed to low,

unclear and high judgements within each RoB domain and briefly describe some

features of high judgements given to study level evidence. High RoB for the selection

domain was often suggested by unequal participant samples at the recruitment phase

and then employing an analysis of variance strategy. In the performance domain, a

high RoB judgement was given for confounds of ability with age or vice versa between

the participant groups that were not corrected for by adding covariates, missingness of

randomisation or fixed order of presentation for item samples and instructions to

participants that could introduce greater workload for one of the sample groups.

Indicators of potential high RoB for the detection domain were mainly around outlier

analysis, unequal data trimming practices and removal of participants (sometimes

with replacement) or items with no clear indication of how that affected the data

sample before analysis for inference. In the reporting domain, notwithstanding

changes in reporting standards over time, high RoB was given for selective reporting

of results where initial hypotheses and study design explicitly prescribed their

inclusion, with no explanation why, or in a few cases, additional analyses with the

introduction of a new variable.

Confidence Ratings within Summary Effects

We present our confidence rating for each estimate within the summary findings plot.

The GRADE process recommends beginning at higher levels of confidence and using

the domain evidence to lower confidence. High levels of confidence indicate a

convergence of the analysis estimate with the notion of a “true” effect size. As

confidence is lowered, the distance between the estimated effect size and any “true”
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effect size increases. Though the GRADE process has four ratings for confidence -

high, moderate, low and very low - we operated only three of them as the “high”

rating is recommended to be reserved for studies using randomised controlled designs

or with blinding mechanisms at the assignment, assessment and analysis stages. No

studies use randomised assignment of participants to groups within this sample.

Consequently, each summary effect began with a “moderate” rating and the above

evidence was taken into account when making a final decision. Of the 127 summary

estimates calculated at the time of writing, only 28 estimates retained their moderate

confidence rating. Eighteen were reduced one level to “low” confidence and 81 were

reduced by two levels to “very low” confidence. Data for this process is available at

the OSF project page

https://osf.io/4hn5b/?view_only=2eee7604410e47e98338d46c94d68b5a
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Appendix D

Longitudinal Study: Item List Construction

The process of generating four lists of approximate equivalence is described below:

In the first instance, ratings databases were downloaded and merged together

to form a composite list of 1903 words that contained measures for all variables of

interest arising from the pilot study. This set of words was sorted in an Excel

spreadsheet by length and Zipf frequency (SUBTLEX_UK) and words labelled from

one to four at the beginning of the low frequency scale and the end of the high

frequency scale such that the four lists contained 50 words of three-seven letters. A

second list was constructed that was sorted and labelled as a function of length and

Contextual Diversity (SUBTLEX_UK). Both of these ratings are from the SUBTLEX

corpus. Each set was further decomposed into four sets of 50 words (Zipf1 - Zipf4;

CD.1 - CD.4) - each with 25 low and 25 high frequency ratings - as proposed stimuli

sets for the word naming and lexical decision tasks across four time points in the

longitudinal study. The equivalence of each list for frequency needed to be evaluated.

Lexical Decision and Word Naming Items

In order to test that the distributions of low and high frequency words are distinct

within word lists, frequency ratings were partitioned at a Zipf value of 3.5 with values

below categorised as low and ratings above categorised as high. To perform a

statistical check of difference, a two-sample Kolmogorov-Smirnov test was used (CD

list: p < .001; Zipf list: p < .001). The difference between the low and high frequency

values within lists by both frequency scales is signficant. We tested Zipf values across

CD and Zipf scale lists using a independent samples t-tests. For both low and high
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frequency values, across lists, there were no differences (all ps > 0.07) for both the CD

and Zipf lists.

We tested for the equivalence of variance for Zipf values across the CD200

and Zipf200 list. There were no statistically significant differences for variance values

across lists 1-4 for low or high Zipf Frequency values (all ps > .31).

We repeated the process for contextual diversity values across CD and Zipf

ranked lists. To perform a statistical check of difference, a two-sample

Kolmogorov-Smirnov test was used (CD list: p < .001; Zipf list: p < .001). The

difference between the low and high frequency values within lists by both frequency

scales is signficant. We tested CD values across CD and Zipf scale lists using a

independent samples t-tests. For both low and high frequency values, across lists 1-4,

there were no differences (all ps > .37).

We tested the equivalence of variance values for sets of contextual diversity

ratings across lists 1 -4 in the CD ranked list. These results showed that there were

statistically significant differences between some of the low lists (1 vs 2 p < .001; 1 vs

4 p = .002; 2 vs 3 p < .001; 2 vs 4 p < .001). There were no significant differences for

variance of high frequency values across the lists (all ps > .86).

Given that the low contextual diversity ratings show a difference in variance,

while the Zipf sorted list shows equivalence across lists for means and variances, the

Zipf sorted list is chosen as the list to prepare as stimuli for the main study.

Letter Search

Kolmogorov Smirnoff tests for the frequency value distributions are significant and

Wilcoxon test aslo confirm that the means between the two categories of frequency

are distinct (all ps < .05). Within the sentence reading set, there is some overlap

between the low and high frequency distributions. Kolmogorov Smirnoff test

demonstrates that the distributions are distinct and the Wilcoxon Test demonstrates

that the means between the two categories are distinct (all ps < .05).

T-tests for low frequency values across the lists confirm that the stimuli items
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are drawn from the same population and have equivalent means. The variance within

the low frequency distribution is also equivalent. High frequencies across the lists also

appear to be normally distributed. The same is true for words with high frequency

values.

Sentence Reading

Both low and high frequency density plots display similar trends across lists but

bimodal distributions across both categories. KS-tests and Wilcoxon tests revealed

that distributions for the sentence reading stimuli were equivalent across lists; the

mean values also appear to be similar. Variance values were tested for similarity

across the lists and shown to be equivalent.
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Appendix E

Longitudinal Study: Item Stimuli

Table 2

Items for Letter Search Task

List

Condition Frequency 1 2 3

word Low horde cleft twine
clang mauve sneer
wring waive nymph
scorn gleam purge
scoff mulch wreak

suave crypt slant
shunt shawl lunge
bulge crepe plush
quilt wield tract
snore shrug speck

High voice press doubt
track shape sleep
force style blood
drive dream proud
trust stick earth

fight catch build
queen check board
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Table 2

Items for Letter Search Task (continued)

Condition Frequency 1 2 3

guess quick tough
prime stage third
state break white

non-word qsmgt crezb mcodj
lpevg cjfng joitx
wqsme xrizu tlurc
hivzt dntwe ngfal
qgahn gemvr ykqvd

sberp tfyks gxlnf
hyueg owajq idtzr
jtyvx phskw tnkzg
uryla uvkcx lrpoa
xqinm yisce mhail

meahf jwaxs ktbqz
yhkqo inpdb wdfge
mnhjd bsyjf xyrju
ntibc mdfbz qjzwh
eghui kozbg aerzp

tvufr hvsqx uhdlo
acous hvogf vbcht
byxwc lmndb hqsym
jqcgb rvoeq ymtzd
yxver nryjk gkujx
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Table 3

Items for Lexical Decision and Word Naming Tasks

No. of Letters

List Condition Frequency 3 4 5 6 7 or 8

1 word Low sag curt scowl squall
jot slur taunt wheeze
hoe lewd smock clique
pox moot drape crutch
oar lint gruff shriek

yank bathe screech
High bra bike phone drawer glimpse

top team watch spring stretch
big play south strike strange
put nice small search

say year wrong choose
see know right change

non-word hoa bign bidst baphed chaides
oir brai culct drawps chooged
seu jodd knohm gruess clitsch

mout lebbs phoink crurghs
pohl lixth riqued drawped
pufo nintz scorde screuch
salb plawp smayes searned
sato shraik smonde spriscs

tohl slurg sourth squayer
teapt taphed stribid
yaubs waides wheefed
yeaux wrorne glirched
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Table 3

Items for Lexical Decision and Word Naming Tasks (continued)

List Condition Frequency 3 4 5 6 7 or 8

strawped

strelfth
2 word Low keg wisp snide broach

pry hick spunk hoarse
lax daze braid thrift
fad reek whine quench

pew husk smirk sphinx
scourge
fraught

High flu trot midst scheme scratch
pop must stove speech thought

job mean price square
try tell north church
man make close street
day like place
let three

one
3 non-word pri dalc darcs branst broafed

tra fadv hibid cloilt churghs
fluv hulct misles hoathes
joif lixth nowths quevved

kegm madze plarcs schewts
laxe meaut pridth speethe
legg murke smilns sphiscs
malb reeze snixth squayes
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Table 3

Items for Lexical Decision and Word Naming Tasks (continued)

List Condition Frequency 3 4 5 6 7 or 8

onde telte spuess thrixth

pekg threo stoifs frarques
poif tronj struet scounced

wicbm whidst scraphed
thouache

word Low orb gush knoll scorch

hag lisp snarl clench
wad kink taint clothe
sob snub girth soothe
coy brig trite squint

cleanse

breadth
High lab pail depth prayer breathe

may week grand threat strength
old four piece bridge
new sure heart bright

two find whole league
can need round health

time world
non-word caye briud delfth brinxed

corb filst gitsch britzed

haxe foubt grayer clelfth
lalc gulge headth clondes
maif kilst knorne heansed
necd lixth pieled learled
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Table 3

Items for Lexical Decision and Word Naming Tasks (continued)

List Condition Frequency 3 4 5 6 7 or 8

nued parcs rourns praults

onde snufo snarcs scoynes
onne suoys taults sooched
sohl tibid tricbm squilge
twoz weeze whorde threamt
wadv worpse brearled

brearths
clearled
strerthed

Table 4

Items for Sentence Reading Task

No. of Letters

List Frequency 3 4 5 6

1 Low mule leash blouse
shin crate bruise

thorns
High bun ship plane shrimp

dam card clock mousse

gun dish sponge
hat
leg

2 Low ape tire latch spleen
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Table 4

Items for Sentence Reading Task (continued)

List Frequency 3 4 5 6

clam moose stripe

stairs
High gum meat paint thread

arm ring dress branch
bus breast
cat

3 Low mop yarn sloth wrench
fig crib shack fleece

prune sleeve
High rug wood bread script

van bird fruit throat

pot bear
foot
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Appendix F

Longitudinal Study: Missing Data Process

We used random regression imputation (Gelman et al., 2021) to impute values for the

22 spelling and 27 vocabulary values. Missing data is especially problematic within

this dataset as a repeated measures design. Any empty cell for one missing ID score is

propogated across each observation for each item in the experimental tasks, creating

multiple rows with missing data. Where the computer algorithm detects a missing

datum, it will silently drop the trial level observation from the analysis, resulting in

loss of all information for that trial.

Solutions are to drop entire variables or entire participants from the analyses.

This results in a deleterious loss of information and loss of statistical power. Rather

than omit these observations, we inspected the patterns of missingness and, given the

percentages of missing data found, used data imputation to replace missing data

values to give a complete set of ID measure scores.

Our approach was the following: First, we considered the possible mechanism

for the missingness of the data. We plotted the pattern for the missingness of the data

and found that it followed a connected and general pattern (van Buuren, 2018). This

means that scores from other ID measures are present by which missing data can be

estimated. Since all other information for these observations are fully recorded, we

can assume that the mechanism for the missingness is ‘missing at random’. Second,

since these data are longitudinal by design, they are structured by time. This means

the order of missing data imputation is critically important. If later data is dependent

upon earlier data, then missingness on earlier data needs to be inspected first before

treating later instances of missingess (Enders, 2010).

Below we describe our treatment for missing data according to the rate of
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missingness at each time point. After treatment, we conducted t-tests between raw

and imputed ID measure data across all three time points and found no statistically

significant differences between the two sets (all ps > .7).

Imputing Missing Values for T1

Missing data is present for spelling (n = 22 / 218; 10%) and vocabulary scores (n =

27 / 218; 12%). This is due to an error on the administration of the tests to a subset

of classes by the class teachers and participant absence on the day of testing. We used

random regression imputation (Gelman et al., 2021) to impute values for the missing

values.

Spelling scores were regressed upon predictors for gender, institution, word

reading accuracy, nonword reading accuracy, processing speed, phonological

awareness, type of group, skill and age. Predictions from that model were generated,

with the error term from the predictions being added to the imputed values to give

back some uncertainty to the values, in an attempt to mitigate bias. This procedure

was repeated for vocabulary missing values.

Imputing Missing Values for T2 and T3

At T2, one participant (1 / 191; 0.5% per ID measure) completed experimental tasks

but not ID measures due to a fire drill during the session. A further participant did

not complete the spelling test on the day of testing due to absence from school. At

T3, one participant (1 / 173; 0.5%) did not complete ID measures at T3 due to timing

difficulties on the day of testing. Five participants ( 5 / 173; 2.8%) did not complete

the spelling measure and four participants (4 / 173; 2.3%) did not complete the

vocabulary measure. This is due to absence from class on the day that the measures

were administered to the 11-12 year olds participants. At T2 and T3 the missing data

rates per ID measure are all below 5%.

Due to the low rate of missingness and the mechanism of missingness still

being categorised as missing at random, we use single value random sampling to
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impute values for these participants (as described in Gelman et al., 2021). Using the

sample() function, we randomly sampled from the range of values within each

variable at T2 for missing data values at T2, repeating the procedure for variable

values at T3 for missing data values at T3. As mentioned above, when we tested for

differences between the data with missing values and the data with imputed values,

there were no statistically significant differences between the datasets (all ps > .7). We

present visualisations and results from the imputed dataset from this point forward.
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Appendix G

Longitudinal Study: Spelling Error Analysis

Spelling Error Analysis

The lexical quality hypothesis says that words that are consistently spelled correctly

index high lexical quality, with the inverse being true. Martin-Chang et al. (2014)

measured standard spelling in the traditional correct / incorrect sense but also the

variability of a person’s spelling errors over repeated assessments. They found those

words that were incorrectly spelled but consistently (mis)spelled within a participant,

were named faster than those inaccurately spelled words that varied in the type of

spelling errors. The faster response times for in incorrect word suggests that an

incorrect spelling when believed to be correct may still have high lexical quality

within an individual, relative to other words in their vocabulary.

We took the errors from the data and explored the nature of the recorded

answers. We looked at which group was most likely to leave out an spelling item,

rather than make an attempt. We looked at the occurence of real word substitutions

for answers and whether the probabilty of supplying a real word was related to the

target word’s status as a homophone. Irrespective of homophone status, we also

explored whether the supplied answer was an attempt to sound like the target word.

Finally, we charted errors across time. Where errors were made on every

occasion, we explored how similar those errors were compared to the target word and

also how similar they were to each other.

Omitted Answers. We observed 6455 spelling errors across all participants for

three time points. Of those 6455 observations, 116 were missing answers. We ran a
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logistic regression with missing status as a binary outcome variable (Yes / No) and

group as the dependent variable (reference level = typical 16 year olds). Figure 1

displays the probabilities of choosing to omit an answer by group. Only the

atypically-reading adults showed significantly lower odds for supplying an answer than

the typically-reading 16-17-year-old participants (𝛽 = 3.54, SE = 0.72, p < .001). On

a probability scale, there is a probability of 0.29% that typically-reading

16-17-year-olds will omit an answer compared to a 9.1% probability for

atypically-reading adults.

Figure 1

Omitted Answers (yes) vs Not Omitted Answers (no) by Group
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Real-Word Substitutions. Of the 6339 observed spelling errors, 1041 were

real-word substitutions for the target word. We coded the errors as either real-words

(Yes) or not real-words (No) and used this variable in a logistic regression to estimate

the odds of real-word substitutions as errors as a function of group (reference level =

typically-reading 16-17-year-olds). We also constructed a variable that categorised the

target word as either a homophone (Yes) or not a homophone (No) to model whether

the odds of a real-word being substituted as an answer was related to the target word

having multiple spellings that sounded the same.
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The best fitting model contained independent effects of group and

homophone status plus the interaction term between group and homophone status

(AIC = 4286.9; see Table 5). Typically-reading 16-17-year-olds showed a 6.9%

probability of substituting the target word with a real-word when the word was not a

homophone. The only group that showed a statistically significant difference from this

rate of errors was the typically-reading adults (2.9%, p = .015). Essentially, most

groups were just as likely as each other to mistakenly write real-words for target

words that were not homophones.

The change in probability of substituting a real-word once the target word

was categorised as a homophone was substantial. Target words that were homophones

had higher odds of a real-word substitution being given as an answer than

non-homophones. Typically-reading 16-17-year-olds were 67.5% more likely to

substitute a real-word if the target word was categorised as a homophone (p < .001).

Also, the change from non-homophones to homophones did see some group differences.

Atypically-reading adults were 54.7% more likely (p = .061) and 16-17-year-olds were

51.5% more likely (p = .026) to (incorrectly) give a real-word as an answer. The

change in atypically-reading adult rates is non-significant which implies that that,

overall, atypically-reading adult spelling behaviour for real-word substitution is more

similar to the typically-reading 16-17-year-old readers spelling behaviour.

Typically-reading adults moved from 2.9% to 75.6% for real-word spelling errors (p =

.005). Typically-reading 11-12-year-olds moved from 6.1% to 41.8% (p = .001) and

atypically-reading 11-12-year-olds moved from 6.1% to 34.5% more likely (p = <.001)

to give real-word spelling error answers if the target word was a homophone. The

rates for the 11-12-year-old readers are significantly lower than the rates of real-word

substitutions for homophonic target words for typically-reading 16-17-year-old readers.

Figure 2 shows the percentages of errors by group for nonword errors (NA),

and the split between homophones (Y) and non-homophones (N) for real-word

substitutions as errors.

Errors that are similar in sound to the the target word. Steacy et al. (2017b)
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Table 5

Summary of Estimates for Group and Their Likelihood of Making Real-Word

Substitutions as a Function of Whether the Word is a Homophone

Term lOR sd t p
Intercept -2.60 0.17 -15.04 0.000
Atypical-16 -0.01 0.22 -0.04 0.971
Typical-adult -0.92 0.38 -2.43 0.015
Atypical-adult 0.06 0.23 0.28 0.783
Typical-11 -0.13 0.21 -0.63 0.531
Atypical-11 -0.14 0.21 -0.65 0.515
Homophone 3.33 0.24 14.02 0.000
Atypical-16:Homophone -0.66 0.30 -2.22 0.026
Typical-adult:Homophone 1.32 0.48 2.78 0.005
Atypical-adult:Homophone -0.60 0.32 -1.87 0.061
Typical-11:Homophone -0.93 0.29 -3.27 0.001
Atypical-11:Homophone -1.23 0.28 -4.33 0.000

Note:
lOR = log-odds ratio

Figure 2

Percentage of Non-Real-Word (NA) and Real-Word Substitutions, Conditioned on

Their Status as a Homophone of the Target Item (Y / N) by Group
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found that spelling (orthographic choice task) + a string distance measure of spelling

answers to correct spelling forms was implicated in their sample of 11-year-old readers

showing signs of late emerging reading difficulties. We analysed errors using sound as

a matching criterion. The function soundex from the stringdist package (van der

Loo, 2014) constructs the phonetic code of the target word and the error and returns

0 for a match between the two phonetic codes and 1 for a non-match. We then

tabulated the errors by the homophone status of the target word (Yes / No) and

whether soundex code for the error matched the soundex code for the target word (0 /

1). Figure 3 shows the observed percentages of the split across errors by group. From

the figure it is clear that both the typical-16-year-old readers and adult readers are

more likely to produce sound matching errors than non-sound mathcing errors,

irrespective of whether the word is a homophone or not. Both the atypical-16-year-old

reading groups and the atypically-reading adults are reduced in their split for sound

matched errors, with approximately a third of their errors being scored as a

non-match for sound with the target word. This distribution looks similar to that of

the 11-12 year old groups, who we have already discussed as being very naive for this

measure. Given their greater exposure, the ability of the atypical-16-year-olds and

adults to approximate the sound form of the target word looks under-developed.

Coupled with the findings from the real-word substitutions, this may suggest a

particular phonetic code weakness for the atypically-reading adults, relative to their

real-word substitutions, as above they showed equivalent performance with the

typical-16-year-old real-word spelling error rates, here they are weaker.

Across Time. We looked at errors across data collection sessions to explore

whether error spellings were consistent or not. Due to attrition, 25 participants were

excluded from this analysis because they completed one time point only. We further

separated participants who completed only two data collection points (n = 33) from

those that completed three (n = 160). We also removed any observation that included

an omitted answer. We scored each time point for correct or incorrect answers and

then removed observations where a correct answer was present, leaving only
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Figure 3

Percentage of Errors that Match the Target Word for Sound (0) as a Function of

Whether the Target Word is a Homophone (Yes)
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observations that included errors across each time point. We compared spelling errors

for orthographic and phonetic (as measured by soundex) similarity.

Orthographic similarity. Across two time points, 33 participants generated 459

errors. Where answers were omitted, the observation was removed (nT1 = 27; nT2 =

5). Of the remaining 427 observations, 318 spellings were incorrect across both times.

Across three time points, 160 participants made 2121 errors. Omitted answers

(nT1 = 4; nT2 = 5; nT3 = 1) were further removed. Of the remaining 2111

observations, 1251 were incorrect across the three time points.

Figure 4 plots the percentage data for groups that repeatedly spelled words

incorrectly over two time points (left) and three time points (right), and whether the

spelling of those errors was consistent or inconsistent with each other across each

occasion.

In these figures, the height of the dark blue portion reflects the percentage of

errors that were inconsistently spelled across time points. Due to their naivety, we
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would expect the 11-12-year-old groups to have a higher proportion of different

spellings. When looking at the atypically-reading adults bar, they are the same height

as the 11-12-year-old group bars, reinforcing the suggestion of spelling skills being

under-developed. With respect to the lexical quality hypothesis, atypically-reading

adults are showing under-specified representations of words for the orthographical

dimension of word properties.

Figure 4

Matched and Non-Matched Spelling Errors Across Two (left) and Three (right)

Occasions by Group.

Typ−16 Atyp−16 Atyp−Adult Atyp−11

Group

0
20

40
60

80
10

0

Typ−16 Atyp−16 Atyp−Adult Atyp−11

same
diff

Group

0
20

40
60

80
10

0

Figure 5

Matched and Non-Matched Values for Phonological Similarity of Errors to Target

Word Across Two (left) and Three (right) Occasions by Group.
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Phonological similarity. We summed soundex values across time points.

Consequently, a value of 0 means that each error maintained fidelity with the target

word phonetic code; a value of 1, 2 or 3 the sum of how many times any error differed

in phonetic code from the target word over a maximum of three time points. We

removed the typically-reading adult group from the two time point data as their error

rate (n = 3) was extremely low, and each observation comprised a sound match. An

ordinal regression with summed soundex values (min = 0, max = 2) regressed onto

group found no significant differences across groups for the log-odds of making two

errors that sound different from the target word. The change in log-odds between 0

and 1 sound difference to two sound differences approached significance (log-odds =

1.37, se = 0.70, p = .051).

The ordinal regression for soundex values across three time points (min = 0,

max = 3) returned significant estimates for differences across groups and also changes

in log-odds for number of differences in sound across the time points. Only the

typically-reading adults showed a non-significant estimate compared to the

typically-reading 16-17-year-olds. All other groups differed significantly. The

probability of errors sharing the same sound code as the target word across all three

time points was ~76%. Of the remaining categories, there was a 10% probability of

one or all three of the errors sounding different; there was a 4% probability of at least

two of the errors sounding different. Figure 5 shows the differences in probabilities

across the number of sound codes generated by group. The plots are ordered so that

as you move from left to right, within each plot, there is higher fidelity of sound

between the errors and the target word. The atypically-reading adults resemble the

younger readers very closely. The typically-reading adults and the typically-reading

16-17-year-old readers are also very similar in the distribution of their sound values

and show a much smaller proportion of their errors as generating inconsistent sound

codes across time.

Taken together, the atypically-reading adults appear to be very like the

youngest participants when they do not know how to spell a given word. Although

they scored significantly higher than the youngest readers when they are correct, their
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use of orthographic knowledge and phonological skills to approximate a spelling for an

unfamiliar word resembles that of relatively inexperienced readers.
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Appendix H

Longitudinal Study: Modelling Strategy and Infor-

mation Criterion Values for Accuracy and Reaction

Time Models
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Table 6

Overview of Modelling Strategy for Generalised Linear Mixed Models for Accuracy Outcomes

Effect lme4 brms
Model Nested Model Fixed Subjects Items AIC AIC:Group LOOIC-s LOOIC-s:Group LOOIC-w LOOIC-w:Group
Letter Search

Base-RI Position + Days + ID Intercept Intercept 7459 7453 7282.9 7279.6 7283.4 7280.1
Base-RIS Base-RI + ID + ID 8048 7820 7159.8 7158.8 7162.3 7161.3
Additive-RI Base-RIS + PV 7472 7466 7285.1 7283.4 7285.6 7283.8
Additive-RIS Additive-RI + PV + PV 8233 8719 7181.2 7180.4 7187.2 7186.2
Interaction-RI Additive-RIS + ID * PV 7677 NC 7529.2 9775.1 7532.6 10718.9
Interaction-RIS Interaction-RI NC NC

Lexical Decision
Base-RI Days + ID Intercept Intercept 23929 23912 23074.1 23064 23075.4 23065
Base-RIS Base-RI + ID + ID 23771.87 23826.81 21971.5 21975 21977.7 21982
Additive-RI Base-RIS + PV 23684 23667 23053.3 23041 23054.1 23043
Additive-RIS Additive-RI + PV + PV NC NC 21730.1 21733.4 21741.6 21744.6
Interaction-RI Additive-RIS + ID * PV 23339 NC 21881.4 21898.8 21898.8 21881.4
Interaction-RIS Interaction-RI NC NC 22727.7 23727.2 22729.7 23875.4

Word Naming
Base-RI Days + Onsets + ID Intercept Intercept 11928 11897 11370.8 11359 11374.2 11362
Base-RIS Base-RI + ID + ID 12032.11 11907.11 10879.8 10876 10891.3 10887
Additive-RI Base-RIS + PV 11806 11774 11354.7 11342 11357.1 11344.6
Additive-RIS Additive-RI + PV + PV NC NC 10758.6 10757.7 10775.6 10773.5
Interaction-RI Additive-RIS + ID * PV 11797.47 NC 11366.3 11371.7
Interaction-RIS Interaction-RI NC NC 10959.5 10993.3

Sentence Reading
Base-RI Context + Days + Onsets + ID Intercept Intercept 7347 7337 7064.8 7066.3 7066.4 7068
Base-RIS Base-RI + ID + ID 7238.6 7160.3 6669.9 6673.8 6678 6682.1
Additive-RI Base-RIS + PV 7314 NC 7064.7 7066.4 7066.4 7068.1
Additive-RIS Additive-RI + PV + PV 7408.4 4797 6532.9 6538.2 6559.3 6565.4
Interaction-RI Additive-RIS + ID * PV NC NC 7860.5 7945.7
Interaction-RIS Interaction-RI NC NC

Note:
RI = Random intercepts models. RIS = Random intercepts and slopes models. ID = Individual difference measures. PV = Psycholinguistic variables. AIC = Akaike information
criterion. LOOIC-s = PSIS-Leave-one-out information criterion for strongly informative priors models. LOOIC-w = PSIS-Leave-one-out information criterion for weakly informative
priors models. Group = information criterion for the models that include the planned contrast variables for Group. NC = Non-convergence.
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Table 7

Overview of Modelling Strategy for Linear Mixed Models for Reaction Time Outcomes

Effect lme4 brms
Model Nested Model Fixed Subjects Items AIC AIC:Group LOOIC-s LOOIC-s:Group LOOIC-w LOOIC-w:Group
Letter Search

Base-RI Position + Days + ID Intercept Intercept 24855 24816 23560.2 23554.1 23561.5 23555.5
Base-RIS Base-RI + ID + ID 25733 26336 23286.6 23288.8 22847.7 22851.7
Additive-RI Base-RIS + PV 24927 24888 23561.4 23555.3 23562 23556.1
Additive-RIS Additive-RI + PV + PV 28482 28977 22861.3 22867.3 22873.7 22879.3
Interaction-RI Additive-RIS + ID * PV 27009 34348 23719.3 23725.3
Interaction-RIS Interaction-RI 30286.71 NC 23055.7 23087.5

Lexical Decision
Base-RI Days + ID Intercept Intercept 81885 81859 77296.5 77292.2 77297 77292.8
Base-RIS Base-RI + ID + ID 84734 85012 75662.7 75669.4 75667.1 75673.7
Additive-RI Base-RIS + PV 81672 81645 77271.6 77267.1 77272 77267.6
Additive-RIS Additive-RI + PV + PV 90693.75 91870.12 75313.8 75320.2 75327.2 75334.3
Interaction-RI Additive-RIS + ID * PV 83792 92426
Interaction-RIS Interaction-RI NC NC

Word Naming
Base-RI Days + Onsets + ID Intercept Intercept 98989 98991 88272.3 88272.8 88270.7 88271.3
Base-RIS Base-RI + ID + ID 98288.06 98182.61 84223.2 84231.5 84225.5 84234.6
Additive-RI Base-RIS + PV 98939 98941 88265.7 88266.3 88263.5 88264.1
Additive-RIS Additive-RI + PV + PV 107709.6 105184.8 83347.1 83376 83344.2 83373.9
Interaction-RI Additive-RIS + ID * PV 100346 108727
Interaction-RIS Interaction-RI NC NC

Sentence Reading
Base-RI Context + Days + Onsets + ID Intercept Intercept 87074 87077 81965.5 81962 81965.7 81962.2
Base-RIS Base-RI + ID + ID 88112 88057 80087 80088.2 80088.5 80089.6
Additive-RI Base-RIS + PV 87131 87134 81964.2 81962.1 81964.4 81962.3
Additive-RIS Additive-RI + PV + PV 99340.03 99138.69 79926.7 79929.2 79932.9 79935.2
Interaction-RI Additive-RIS + ID * PV 92914 115123
Interaction-RIS Interaction-RI NC NC

Note:
RI = Random intercepts models. RIS = Random intercepts and slopes models. ID = Individual difference measures. PV = Psycholinguistic variables. AIC = Akaike information
criterion. LOOIC-s = PSIS-Leave-one-out information criterion for strongly informative priors models. LOOIC-w = PSIS-Leave-one-out information criterion for weakly informative
priors models. Group = information criterion for the models that include the planned contrast variables for Group. NC = Non-convergence.
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Appendix I

##Longitudinal Study: Model Diagnostic Information {-}

Letter Search

Accuracy. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. Figure 6 shows how the posterior predictive check (PPC) estimates

reflected the empirical data. The model implied estimates for accurate and inaccurate

responses (blue dots at the top of each bar) are in line with the observed rates of

accurate and inaccurate responses (light blue bars).

Figure 6

Posterior Predictive Check for Accuracy Data in the Letter Search Task
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Reaction Time. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. The PPC for the model displayed a satisfactory fit of the posterior

distribution estimates compared to the observed data (see Figure 7). The grey lines

resulting from the markov chain sampling process clearly follow the darker line of the

observed reaction time distribution.

Figure 7

Posterior Predictive Check for Reaction Time Data in the Letter Search Task
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Lexical Decision

Accuracy. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. Figure 8 shows how the PPC estimates reflected the empirical data.

The model implied estimates from the PPC; accurate and inaccurate responses are in

line with the observed rates of accurate and inaccurate responses.
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Figure 8

Posterior Predictive Check for Accuracy Data in the Lexical Decision Task
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Posterior Predictive Check for Accuracy Data from Letter Search Task

Reaction Time. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. The PPC for the model slightly underestimates the observed data.

Figure 9 shows the grey lines of the markov-chain sampling process shifted slightly to

the right of the leading edge of the curve for the observed data, and slightly to the left

in the tail of the distribution. Essentially, the posterior distribution of the model is

estimated with a narrower spread of values than those observed.
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Figure 9

Posterior Predictive Check for Reaction Time Data in the Lexical Decision Task
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Posterior Predictive Check for Reaction Time Data from Lexical Decision Task

Word Naming

Accuracy. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. Figure 10 shows that the model implied estimates for accurate and

inaccurate responses from the PPC are in line with the observed rates of accurate and

inaccurate responses.
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Figure 10

Posterior Predictive Check for Accuracy Data in the Word Naming Task
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Posterior Predictive Check for Accuracy Data from Word Naming Task

Reaction Time. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. The PPC shows that the posterior distribution of the model is

estimated with a narrower spread of values than those observed. Figure 11 shows the

grey lines of the markov-chain sampling process shifted slightly to the right of the

leading edge of the curve for the observed data, and slightly to the left in the tail of

the distribution.
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Figure 11

Posterior Predictive Check for Reaction Time Data in the Word Naming Task
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Posterior Predictive Check for Reaction Time Data from Word Naming Task

Sentence Reading

Accuracy. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. See Figure 12 for the PPC estimates. The model implied estimates

for accurate and inaccurate responses are in line with the observed rates of accurate

and inaccurate responses.
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Figure 12

Posterior Predictive Check for Accuracy Data in the Sentence Reading Task
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Posterior Predictive Check for Accuracy Data from Sentence Reading Task

Reaction Time. Rhat and ESS diagnostic values were within limits and graphical

inspection of the MCMC trace plots showed good mixing of MCMC chains during the

sampling process. The PPC for the model slightly underestimates the observed data.

Figure 13 shows the grey lines of the markov-chain sampling process shifted slightly to

the right of the leading edge of the curve for the observed data, and slightly to the left

in the tail of the distribution. Essentially, the posterior distribution of the model is

estimated with a narrower spread of values than those observed.
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Figure 13

Posterior Predictive Check for Reaction Time Data in the Sentence Reading Task
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