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Solitons in binary compounds with stacked two-dimensional honeycomb lattices
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We model the electronic properties of thin films of binary compounds with stacked layers where each layer
is a two-dimensional honeycomb lattice with two atoms per unit cell. The two atoms per cell are assigned
different on-site energies in order to consider six different stacking orders: ABC, ABA, AA, ABC′, ABA′, and
AA′. Using a minimal tight-binding model with nearest-neighbor hopping, we consider whether a fault in the
texture of on-site energies in the vertical, stacking direction supports localized states, and we find localized states
within the bulk band gap for ABC, ABA, and AA′ stacking. Depending on the stacking type, parameter values,
and whether the soliton is atomically sharp or a smooth texture, there are a range of different band structures
including soliton bands that are either isolated or that hybridize with other states, such as surface states, and
soliton bands that are either dispersive or flat, the latter yielding narrow features in the density of states. We
discuss the relevance of our results to specific materials including graphene, hexagonal boron nitride, and other
binary compounds.
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I. INTRODUCTION

Low-energy flat bands in thin films of rhombohedral
graphite have attracted recent attention, due to advances in
fabrication [1–10] and experimental observations of corre-
lated states in rhombohedral trilayer graphene [11,12] and
in thin films with several layers [8–10]. The low-energy flat
bands arise from surface states, and their existence may be
related to the edge states of the Su-Schrieffer-Heeger (SSH)
model [13–16] by dimensional reduction [17–19], considering
the in-plane wave vector to be a fixed parameter.

Recently, stacking faults (in the vertical, out-of-plane
direction) have been considered for thin films of rhombohe-
dral graphite [8,20–24]. As with solitons in the SSH model
[13,14,25], stacking faults in thin graphitic films support lo-
calized states, manifested as bands in quasi-2D. Such bands
tend to appear in pairs at about the same energy because the
sequence of intra- and interlayer bonding either side of the
fault is fixed, i.e., the texture of bonding strengths away from
the fault cannot be changed by the fault. Hence, such faults
are effectively coupled soliton-antisoliton pairs [23].

In this paper, we investigate the possible existence of a
single, isolated band localized on a stacking fault in quasi-
2D materials consisting of layers of atoms on a honeycomb
lattice. We consider materials with two different chemical
elements such as hexagonal boron nitride [26,27], using a
minimal tight-binding model to provide a generic description,
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modeling stacking faults for different stacking orders. Specifi-
cally, for each layer, we consider two nonequivalent atoms per
unit cell, labeled A and B, each with a single orbital, which is
isotropic within the plane, e.g., a pz orbital for sp2 hybridiza-
tion in graphene or hexagonal boron nitride. The two atoms
have different on-site energies εA = U and εB = −U such
that U = (εA − εB)/2 and εA + εB = 0. We consider naturally
occurring stackings, i.e., those whereby every atom is either
directly above or below another atom, or above or below the
center of a hexagon. There are six of them [28–31], as shown
in the top row of Fig. 1, consisting of rhombohedral stacking
(ABC), Bernal stacking (ABA), and AA stacking. For each
of these, we also include a primed version (ABC′, ABA′, and
AA′) whereby every other layer has the sign of the on-site
energy U reversed [28,29].

For rhombohedral stacking (ABC) with alternating on-
site energies, dimensional reduction [17], by considering the
in-plane wave vector as a fixed parameter, relates the Hamil-
tonian to that of the Rice-Mele model [32], which is a
generalization of the SSH model with alternating on-site en-
ergies as well as alternating hopping in one dimension. This is
generally not topological, but, at certain wave vectors (kx = kc

in Fig. 1), the intra- and interlayer hoppings are effectively
equal, and ABC stacking is related to the charge density wave
(CDW) model [15,16,33–36], which is a one-dimensional Z2

topological insulator [37] with constant hoppings and alter-
nating on-site energies. Stacking faults for ABC stacking are
analogous to solitons in the CDW model [33,34,36], albeit
only at a certain wave vector, and our aim is to explore this
analogy.

We focus on electronic properties near the corner of the
first Brillouin zone (K point) and Fig. 1 summarizes our
results. The top row shows the six faultless systems with
their electronic band structures. Three of them (ABC, ABA,
and AA′ stacking) exhibit band gaps, and these are the
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FIG. 1. Summary of the main results for the six different stacking types. The first row [(a)–(f)] shows the faultless systems with a schematic
side view of the stacking for N = 8 layers with red (yellow) circles indicating A (B) atoms, horizontal (vertical) solid lines indicating nearest-
neighbor-intralayer (interlayer) hopping. The bottom of each panel shows the corresponding band structure near low energy as a function of
wave vector component kx (with ky = 0) measured from the center of the K+ valley, where kc = γ1/(h̄v). The second row [(g)–(l)] shows the
lattices for N = 8 layers with an atomically sharp fault in the on-site energies occurring between the middle two layers and the bottom of
each panel shows the corresponding band structures. Horizontal arrows show the energies at kx = 0 of the states localized on the soliton. In
all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41], and the magnitude of the alternating on-site energies is
u = U/γ1 = 0.4.

configurations, which support localized states on a stacking
fault that lie within the band gap. A sharp stacking fault
consists of an inversion of the signs of the on-site energy
U between two layers without any change in the intra- or
interlayer hopping, as shown in the bottom row of Fig. 1; we
refer to this as a soliton because it creates a change in texture
of the on-site energies either side of the fault. We find a range
of different behaviors, depending on the stacking; arrows in
Fig. 1 (bottom row) show the energies of states localized on
the soliton exactly at the K point. For ABC stacking, there
are two localized states. One of them is within the valence
band, but another generally lies within the bulk band gap.
Depending on parameter values, it may hybridize with surface
states, as shown in Fig. 1(g). For ABC′, there are also two
localized states, but they do not lie near zero energy; the two
states within the band gap in Fig. 1(h) are surface states. For
ABA stacking, there are two localized states. One of them is
within the conduction band, but another generally lies within
the bulk band gap, Fig. 1(i), and there are no surface states
to hybridize with. As this band eventually moves into the
conduction band, we refer to the corresponding texture as

an antisoliton whereas the band shown in Fig. 1(g) for ABC
stacking moves into the valence band, and its texture is called
a soliton. In general, both of these stackings (ABC and ABA)
can support either a soliton or an antisoliton, depending on the
position of the fault.

For both ABA′ and AA stacking, there are no states lo-
calized on the fault, although the presence of the fault does
have an impact on the band structure, Figs. 1(j) and 1(k),
respectively. For AA′, a single fault supports four localized
states: Two of them are in the bulk bands, but two of them lie
within the bulk band gap and, depending on parameter values,
they may hybridize with each other as shown in Fig. 1(l).

In the following, we describe the cases shown in Fig. 1,
focusing on the systems with a single, isolated soliton band,
and modeling their parameter dependence. We describe the
methodology used in Sec. II. We describe rhombohedral
stacking (ABC and ABC′) in Sec. III, Bernal stacking (ABA
and ABA′) in Sec. IV, and AA stacking (AA and AA′) in
Sec. V. The properties of smooth solitons with a finite width
are described in Sec. VI, and defects, which consist of a rever-
sal of the signs of the on-site energies on a single layer only
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[38] are described in Sec. VII. Section VIII briefly describes
the robustness of soliton features in the density of states to
the presence of interlayer disorder. In Sec. IX, we describe
ballistic, coherent electronic transport for ABC stacking, com-
paring the energy dependence of conductivity for systems
with and without a soliton. Section X describes the influence
of additional tight-binding parameters beyond the minimal
model, which only has nearest-neighbor intra- and interlayer
coupling. Relevance to particular materials and the stability of
structural defects is discussed in Sec. XI.

II. METHODOLOGY

We use a minimal tight-binding model with nearest-
neighbor intralayer hopping γ0 and nearest-neighbor inter-
layer hopping γ1. Assuming translational invariance within
each layer, we Fourier transform to reciprocal space
where q = (qx, qy) is the in-plane wave vector measured
with respect to the center of the Brillouin zone (the �

point). In a basis of a single orbital on each atomic site
(A1, B1, A2, B2, . . . , AN , BN ), the Hamiltonian is

H =

⎛
⎜⎜⎜⎜⎜⎝

D1 V1 0 0 0 . . .

V †
1 D2 V2 0 0 . . .

0 V †
2 D3 V1 0 . . .

0 0 V †
1 D4 V2 . . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠, (1)

written in terms of 2 × 2 blocks. Intralayer blocks are

Di =
(

Ui −γ0 f (q)
−γ0 f ∗(q) −Ui

)
, (2)

where ±Ui are on-site energies and intralayer hopping is de-
scribed [39] by

f (q) = eiqya/
√

3 + 2e−iqya/(2
√

3) cos(qxa/2), (3)

where a is the in-plane lattice constant. For faultless systems
with nonprimed stackings, e.g., Figs. 1(a), 1(c), and 1(e), then
Ui = U for all i, whereas, for faultless systems with primed
stackings, e.g., Figs. 1(b), 1(d), and 1(f), then Ui = U for odd
i and Ui = −U for even i.

The form of the interlayer block Vj in the Hamiltonian (1)
depends on the stacking type,

ABC (Rhombohedral) : V1 = V2 =
(

0 0
γ1 0

)
, (4)

ABA (Bernal) : V1 = V †
2 =

(
0 0
γ1 0

)
, (5)

AA : V1 = V2 =
(

γ1 0
0 γ1

)
, (6)

without any dependence on whether the stacking is primed or
not.

A system of N layers with an atomically sharp fault in the
on-site energies is labeled (m, n) where m is the number of
layers below the fault, n is the number of layers above the
fault, and N = m + n. Such a fault is modeled by reversing
the signs of Ui on the layers above the fault, as shown in
Figs. 1(g)–1(l). Note that the two sites, A1 and B1, on the first
layer are always considered to have fixed energies of εA1 = U

and εB1 = −U . If one were to reverse this convention, there
would be the same outcomes with electron-hole inversion
of the band structures so that, for example, solitons would
become antisolitons.

For the band structure plots we numerically diagonalize
the Hamiltonian (1). We use tight-binding parameters experi-
mentally measured [40] for Bernal-stacked bilayer graphene
γ0 = 3.16 eV and γ1 = 0.381 eV, and lattice constant a =
2.46 Å [41]. Band structures are calculated in the vicinity of
valley K+ with wave vector K+ = (4π/(3a), 0) by shifting
the wave vector as q = K+ + k, with k = (kx, ky). Specifi-
cally, we determine the energy eigenvalues En on a square
grid of points centered on K+. The band structures have
valley degeneracy (under a suitable rotation) and they are
approximately isotropic around each valley at the energies
we consider, so we plot them as a function of component kx

(with ky = 0), normalized by the characteristic wave vector
kc = γ1/h̄v [42] where v = √

3aγ0/(2h̄) is the velocity re-
lated to intralayer hopping. By plotting kx as a function of
kc and energy E as a function of γ1, there are only two free
parameters in our model, namely the ratios γ0/γ1 and U/γ1.
The density of states g(E ) per unit energy per unit area (L2) is
determined numerically by approximation using a Lorentzian
with a finite width δ,

g(E ) = 1

πL2

∑
n

δ

(E − En)2 + δ2
. (7)

States localized on solitons may or may not appear in the
bulk band gap, but we focus on those that do. Such states are
extended states in the in-plane direction, but are localized on
the soliton in the out-of-plane (z) direction. We identify them
by observing the form of the state in the atomic basis of the
Hamiltonian (1); an example is shown in Fig. 4(a) below.

For analytic calculations, we expand the function f (q),
Eq. (3), for |k| � kc, as f (Kξ + k) ≈ −√

3a(ξkx − iky)/2
so that the intralayer hopping matrix element for layer i is
HAiBi ≈ h̄v(ξkx − iky) where ξ = ±1 is a valley index for the
valley centers at wave vectors Kξ = ξ (4π/(3a), 0). With this
approximation, the phase of HAiBi may be gauged away (using
a diagonal unitary transformation) so that the intralayer matrix
element may be replaced by HAiBi ≈ h̄vk where k = |k| =
(k2

x + k2
y )1/2, and the intralayer block is

Di ≈
(

Ui h̄vk
h̄vk −Ui

)
. (8)

In the interpretation of numerical results, we use dimen-
sional reduction [17] whereby we consider the in-plane wave
vector k to be a fixed parameter, typically either k = 0 or k =
kc. Then, we can relate the model of stacked two-dimensional
layers to a one-dimensional tight-binding model. In particular,
we use analogy with the Rice-Mele model [32], which is a
one-dimensional tight-binding model with two orbitals per
unit cell, alternating nearest-neighbor hopping, and alternat-
ing on-site energies. It has two phases with chiral symmetry:
The Su-Schrieffer-Heeger (SSH) model [13,43,44] with alter-
nating nearest-neighbor hopping but constant on-site energies,
and the charge density wave (CDW) model [15,16,33–36]
with alternating on-site energies but constant nearest-neighbor
hopping. In position space with open boundary conditions, the
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CDW model for a system with J orbitals may be written in the
atomic basis as

HCDW =

⎛
⎜⎜⎜⎜⎝

U t 0 0 0 . . .

t −U t 0 0 . . .

0 t U t 0 . . .

0 0 t −U t . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠, (9)

where ±U is the alternating on-site energy and t is the
constant nearest-neighbor-hopping parameter. This is a two
band insulator with a band gap of 2U . For a soliton
in the center of the system, i.e., with on-site energies
of . . . ,+U,−U,+U,−U,−U,+U,−U,+U, . . . it was re-
cently shown [36] that a state is localized on the soliton with
an energy Esol that is not exactly at zero energy, but within the
band gap for 0 < t/U < J/2, i.e.,

−U < Esol < U for 0 < t/U < J/2, (10)

where J is the total number of orbitals. For U/t � 1, pertur-
bation theory to second order in t shows [36] that the energy
of this level Esol is

Esol = −U + t − t2

2U
for U/t � 1. (11)

This energy Esol is not at zero because the chiral symmetry
of the CDW model is nonsymmorphic [16,34,36,37,45,46]
meaning it involves a translation by half a unit cell, and the
ends of the system and a soliton of finite width break the
chiral symmetry. The nonsymmorphic chiral symmetry may
be written as Ta/2Sz [16,36] where

Ta/2Sz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 −1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 −1
1 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Here Ta/2 describes translation by half a unit cell,

Ta/2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

and Sz describes sublattice chiral symmetry for the SSH
model, Sz = diag(1,−1, 1,−1, 1,−1, . . .).

The expectation value of Ta/2Sz is a generalization of elec-
tric polarization,

py = 〈ψ |Ta/2Sz|ψ〉, (14)

where subscript “y” is used because operator Ta/2Sz is
represented as σy in reciprocal space. In one-dimensional
topological insulators with chiral symmetry, the polarization
related to a chiral operator takes values ±1 for zero-energy
topological states [14]. However, since the nonsymmorphic

chiral symmetry is broken in a finite system, the correspond-
ing polarization takes values with magnitude less than one.
For U/t � 1, perturbation theory [36] gives

psol
y = (1 + τ )2

2(1 + τ 2)
, τ = t

2U
, (15)

for a soliton state, so that psol
y = 1/2 for t/U = 0 and psol

y >

1/2 for t/U > 0. For an antisoliton, pasol
y = −psol

y .

III. RHOMBOHEDRAL STACKING

A. ABC

1. Faultless system

For bulk, faultless ABC stacking, the unit cell consists of
two atoms Ai, Bi on the ith layer, and the Hamiltonian may be
written as

HABC =
(

U h̄vk + γ1e−iqzd

h̄vk + γ1eiqzd −U

)
, (16)

using the approximation for the intralayer hopping (8) with
k < kc, where qz is the z component of the wave vector and d
is the layer separation. The two corresponding bulk bands are

EABC = ±
√

U 2 + γ 2
1 + (h̄vk)2 + 2h̄vkγ1 cos qzd,

which have a band gap of 2U . If we consider the in-plane wave
vector k to be a fixed parameter, then the Hamiltonian (16) is
that of the Rice-Mele model [32].

For U = 0, the system is rhombohedral graphite, which has
a bulk energy gap and two flat bands at zero energy arising
from surface states (localized on sites A1 and BN ), as shown in
Figs. 2(a) and 2(f). The flat bands give rise to a narrow peak in
the density of states at zero energy. This band structure may be
understood by dimensional reduction [17–19] as being related
to the SSH model, whereby, on treating the in-plane wave vec-
tor k as a fixed parameter, the Hamiltonian of rhombohedral
graphite is the same as that of the SSH model. The point in
the band structure where kx is equal to the characteristic wave
vector kc = γ1/(h̄v) is equivalent to the metallic phase of the
SSH model, and, thus, kc defines the extent of the flat bands
in k space.

2. Single soliton

For finite U , we consider a sharp fault consisting of two
adjacent sites with negative on-site energies as shown in
Fig. 1(g). Band structures and density of states for N = 16
layers and a sharp fault occurring between the middle two
layers, denoted (8,8), are shown in Fig. 2. There are two bands
localized on the fault, as indicated by the arrows in the band
structure plots of Fig. 2. Both of these bands move into the
valence band for kx � kc, hence we refer to this fault as a
soliton [47]. We focus on the higher energy band of the two
because it is near zero energy. For U � γ1/2, this soliton band
hybridizes with the flat bands arising from the surface states,
Figs. 2(b) and 2(c). Note that the soliton changes the texture
of on-site energies, flipping the sign of the on-site energy on
the top surface (site BN ). This can be seen in Fig. 1(g) where
the soliton (between sites B4 and A5) changes the order of the
on-site energies for higher layers (with layer index j � 5) so
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FIG. 2. ABC stacking with N = 16 layers and a sharp soliton at the center (8,8). The top row shows band structures, the bottom row shows
the corresponding density of states g(E ) for different values of the magnitude of the alternating on-site energies as (a) (f) U/γ1 = 0.0, (b) (g)
U/γ1 = 0.2, (c) (h) U/γ1 = 0.4, (d) (i) U/γ1 = 0.6, and (e) (j) U/γ1 = 2.0. In the band structure plots, horizontal arrows show the energies
at kx = 0 of the states localized on the soliton. Note that the axis scales for (e) and (j) differ from the rest. In all plots, parameter values are
γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41]. For the band structures, ky = 0, and, for the density of states, δ = 0.01γ1.

that the final orbital B8 has the same on-site energy as the first
A1, in contrast to the faultless case, Fig. 1(a). As a result, both
surface states, localized on A1 and B8, are at positive energy
and move into the conduction band for kx � kc.

For U > γ1/2, Figs. 2(d) and 2(e), the soliton band and the
surface bands are always separate, although the soliton band
remains within the band gap. Thus, for U > γ1/2, there is
a band gap, but it is smaller than the bulk band gap of 2U ,
Fig. 2(j). The numerical plots may be understood by exam-
ining the form of the Hamiltonian (1) at k = 0 because the
intralayer hopping −γ0 f (q) is zero there, and the Hamiltonian
(1) becomes block diagonal. The two surface states, on A1

and BN , are completely disconnected at k = 0 and they give
two degenerate states at energy E = +U . There are N − 2
dimers with on-site energies ±U , which each give two states
of energies E = ±

√
U 2 + γ 2

1 . Finally, the soliton is a dimer of
sites Bm and Am+1 with on-site energies both at −U , yielding
two states with energies E = −U ± γ1. The soliton level is
the highest energy of the pair,

Esol = −U + γ1 for k = 0. (17)

Given that the soliton band begins at energy −U + γ1 for k =
0, and joins the valence band for k � kc, there will be a part of

this band within the bulk band gap for all nonzero values of U .
In the regime U � γ1 and U � h̄vk, it is possible to estimate
the energy of the soliton level using perturbation theory in the
hopping strength. Using the analytic approximation (8) for the
intralayer hopping matrix element gives

Esol(k) ≈ −U + γ1 − (h̄vk)2

2U
for {γ1, h̄vk} � U . (18)

Note that expressions (17) and (18) for the energy Esol of the
band localized on the soliton are independent of the position
of the soliton and the number of layers N in the system.

Soliton states are extended states in the in-plane direction,
but are localized in the out-of-plane (z) direction. At k = 0,
the soliton state is localized on the two dimer sites Bm and
Am+1, i.e., it is given by ψsol = (ψBm + ψAm+1 )/

√
2 where ψ j

denotes the atomic orbital on site j. For U ≈ γ1/2 and k �
kc we derive an effective 3 × 3 Hamiltonian describing the
hybridization of the soliton state, ψsol = (ψBm + ψAm+1 )/

√
2,

with the two surface states ψA1 and ψBN . This is done using
the linear expansion f (Kξ + k) ≈ −√

3a(ξkx − iky)/2, elim-
inating the other orbitals [39,48] and performing an expansion
for k/kc � 1 and |U/γ1 − 1/2| � 1. In basis ψA1 , (ψBm +
ψAm+1 )/

√
2, ψBN , the effective Hamiltonian is

H (m,n)
sol = γ1

⎛
⎜⎜⎝

1
2 + � + 2

9

(
4
5

)2(m−1)
(κκ†)m 1√

2

(− 4
5

)m−1
(κ†)m − 2

9

(− 4
5

)m+n−2
(κ†)m+n

1√
2

(− 4
5

)m−1
κm 1

2 − � − 4
5 cm,nκκ† 1√

2

(− 4
5

)n−1
(κ†)n

− 2
9

(− 4
5

)m+n−2
κm+n 1√

2

(− 4
5

)n−1
κn 1

2 + � + 2
9

(
4
5

)2(n−1)
(κκ†)n

⎞
⎟⎟⎠, (19)

where � is a dimensionless contribution to the on-site
energies, U/γ1 = 1/2 + � with |�| � 1, κ is a dimension-
less complex wave vector κ = (ξkx + iky)/kc, κ† = (ξkx −

iky)/kc with |κ| � 1, and cm,n is a numerical factor,

cm,n =
{

1 if n = m,

1/2 if n 
= m.
(20)
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For each matrix element in the effective Hamiltonian (19), we
retain the leading-order term in |κ|.

An antisoliton (m, n) has the same structure as a soliton
(m, n) but with the signs of all of the on-site energies reversed.
At k = 0, the antisoliton is a dimer of sites Bm and Am+1 with
on-site energies both at U , yielding two states with energies
E = U ± γ1. The antisoliton state is the lowest state of the

pair,

Easol = U − γ1 for k = 0, (21)

and it is localized on the two dimer sites Bm and Am+1 as
ψasol = (ψBm − ψAm+1 )/

√
2. The effective Hamiltonian in the

basis ψA1 , (ψBm − ψAm+1 )/
√

2, ψBN , is

H (m,n)
asol = γ1

⎛
⎜⎜⎝

− 1
2 − � − 2

9

(
4
5

)2(m−1)
(κκ†)m 1√

2

(− 4
5

)m−1
(κ†)m − 2

9

(− 4
5

)m+n−2
(κ†)m+n

1√
2

(− 4
5

)m−1
κm − 1

2 + � + 4
5 cm,nκκ† − 1√

2

(− 4
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κn − 1

2 − � − 2
9

(
4
5

)2(n−1)
(κκ†)n

⎞
⎟⎟⎠, (22)

where U/γ1 = 1/2 + � with |�| � 1, and |κ| � 1.
To analyze the hybridization of the soliton band with the

surface states, we simplify the soliton effective Hamiltonian
(19) by considering a soliton at the center of a system with an
even number of layers, m = n = N/2, and we consider a large
number of layers N � 1 to neglect terms of order (k/kc)N ,

H (m,m)
sol ≈ γ1

⎛
⎝ 1

2 + � β† 0
β 1

2 − � − α β†

0 β 1
2 + �

⎞
⎠, (23)

where α = (4/5)|κ|2 and β = (1/
√

2)(−4/5)m−1κm. The
eigenvalues of the three states are E/γ1 = 1/2 + � and
E/γ1 = 1/2 − α/2 ±

√
(� + α/2)2 + 2|β|2 or, in terms of

physical parameters, there is a flat band E = U and two hy-
bridized bands,

E

γ1
= 1

2
− 2

5

(
k

kc

)2

±
√[

U

γ1
− 1

2
+ 2

5

(
k

kc

)2]2

+
(

4

5

)N−2( k

kc

)N

,

(24)

FIG. 3. ABC stacking with N = 16 layers and a sharp soliton
at the center (8,8). Plots of the analytic band energies of bands
hybridized between the soliton and surface states for (a) U/γ1 = 0.45
and (b) U/γ1 = 0.55. The black-dotted line is the flat band E = U ,
the red-dashed line is the solution corresponding to the “+” sign in
Eq. (24), and the blue solid line corresponds to the “−” sign.

for U ≈ γ1/2, k � kc, and layer number N � 1. By consid-
ering the eigenstates of the effective Hamiltonian (23), it is
possible to see that the flat band E = U has zero weight on
the soliton state, i.e., it is a linear combination of surface
states only and, hence, it is dispersionless because of the
approximation neglecting terms of order (k/kc)N . The analytic

FIG. 4. A sharp soliton at the center of the system (8,8), N = 16
layers, for ABC stacking (top) and ABA stacking (bottom). (a) The
probability density |ψ j |2 per site j = 1, 2, . . . , 32 for the energy
level localized on the soliton at kx = kc, ky = 0 and U/γ1 = 0.6.
(b) The polarization py = 〈ψ |Ta/2Sz|ψ〉, Eq. (14), of the soliton
state as a function of kx with ky = 0 for U/γ1 = 0.6 (solid) and
U/γ1 = 1.8 (dashed). (c) The probability density |ψ j |2 per site j =
1, 2, . . . , 32 for the energy level localized on the soliton at kx = kc,
ky = 0 and U/γ1 = 0.6. (d) The polarization p̃y = 〈ψ |T̃a/2Sz|ψ〉,
Eq. (34), of the soliton state as a function of kx with ky = 0 for
U/γ1 = 0.6 (solid) and U/γ1 = 1.8 (dashed). In all plots, γ0 =
3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41].
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FIG. 5. ABC stacking with N = 16 layers and a soliton-antisoliton pair (5,6,5). The top row shows band structures, the bottom row shows
the corresponding density of states g(E ) for different values of the magnitude of the alternating on-site energies as (a) (g) U/γ1 = 0.2, (b) (h)
U/γ1 = 0.4, (c) (i) U/γ1 = 0.6, (d) (j) U/γ1 = 0.8, (e) (k) U/γ1 = 1.0, and (f) (l) U/γ1 = 1.2. In the band structure plots, horizontal arrows
show the energies at kx = 0 of the states localized on the soliton or antisoliton. In all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV
[40], a = 2.46 Å [41]. For the band structures, ky = 0, and, for the density of states, δ = 0.01γ1.

solutions for the flat band E = U and the hybridized bands
Eq. (24) are plotted in Fig. 3 for energy values near U = γ1/2.

For k = kc, the Hamiltonian (16) is approximately equal to
that of the CDW model (this equivalence is only approximate
because k/kc is not small when k = kc) with the replacement
t ≡ γ1. For k = 0, the soliton state is localized on the two
adjacent dimer sites as ψsol = (ψBm + ψAm+1 )/

√
2. For k = kc,

it remains localized on the soliton, but has a broader ex-
tent in position space as shown in Fig. 4(a) for U/γ1 = 0.6.
Figure 4(b) shows the polarization py = 〈ψ |Ta/2Sz|ψ〉,
Eq. (14), as a function of kx (with ky = 0) for U/γ1 = 0.6
(solid line) and U/γ1 = 1.8 (dashed line). For U/γ1 � 1, the
value of py at kx = kc is in good agreement with the analytic
expectation (15) with τ = γ1/(2U ) (dashed line), and the
value of py increases as U/γ1 decreases (solid line). The po-
larization py never reaches unity because the nonsymmorphic
chiral symmetry is broken by the ends of the system and the
finite width of the soliton.

3. Soliton-antisoliton pair

A soliton-antisoliton pair is denoted (�, m, n) meaning a
soliton (with consecutive on-site energies of −U,−U ) after
� layers and an antisoliton (with consecutive on-site en-

ergies of +U,+U ) after � + m layers, with N = � + m +
n. For example, (2,2,1) would indicate on-site energies of
+U,−U,+U,−U,−U,+U,−U,+U,+U,−U .

The band structure and density of states of a soliton-
antisoliton pair (5,6,5) with N = 16 layers is shown in Fig. 5
for different values of U . There are two localized states as-
sociated with the soliton, two with the antisoliton, and two
surface states. The two surface states, one soliton state and
one antisoliton state generally lie within the bulk band gap. At
k = 0, the soliton has energy Esol = −U + γ1, the antisoliton
Easol = U − γ1, and the surface states have energies ±U .

For U � γ1/2, the soliton and antisoliton state hybridize
with the two surface states, Figs. 5(b) and 5(h). For γ1 > U >

γ1/2, the soliton and antisoliton are closer to zero energy than
the surface states, and they tend to hybridize together with a
tiny anticrossing, Figs. 5(c) and 5(d). For U > γ1, the soliton
and antisoliton states separate, leaving an overall band gap
Eg = 2(U − γ1), Figs. 5(f) and 5(l).

For U ≈ γ1/2, the soliton state will strongly hybridize with
the bottom surface state (on A1) at energy +γ1/2, and the
antisoliton state will strongly hybridize with the top surface
state (on BN ) at energy −γ1/2. We derive an effective 4 ×
4 Hamiltonian in the basis ψA1 , (ψB�

+ ψA�+1 )/
√

2, (ψB�+m −
ψA�+m+1 )/

√
2, ψBN as

H (�,m,n)
sol−asol

= γ1

⎛
⎜⎜⎜⎜⎜⎝

1
2 + � + 2

9

(
4
5

)2(�−1)
(κκ†)� 1√

2

(− 4
5

)�−1
(κ†)� − 1

3
√

2

(− 4
5

)�+m−2
(κ†)�+m 0

1√
2

(− 4
5

)�−1
(κ )� 1

2 − � − f�,mκκ† 1
2

(− 4
5

)m−1
(κ†)m − 1

3
√

2

(− 4
5

)n+m−2
(κ†)n+m

− 1
3
√

2

(− 4
5

)�+m−2
κ�+m 1

2

(− 4
5

)m−1
κm − 1

2 + � + fn,mκκ† − 1√
2

(− 4
5

)n−1
(κ†)n

0 − 1
3
√

2

(− 4
5

)n+m−2
κn+m − 1√

2

(− 4
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)n−1
κn − 1

2 − � − 2
9

(
4
5

)2(n−1)
(κκ†)n

⎞
⎟⎟⎟⎟⎟⎠,
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where U/γ1 = 1/2 + � with |�| � 1, and κ = (ξkx +
iky)/kc with |κ| � 1. Here we neglect the contributions
(H (�,m,n)

sol−asol )14 = (H (�,m,n)
sol−asol )

∗
41 ∼ O(γ1|κ|N+2), and fn,m is a nu-

merical factor,

fn,m =

⎧⎪⎪⎨
⎪⎪⎩

2/9 for n = 1 and m = 1
2/5 for n = 1 and m > 1
28/45 for n > 1 and m = 1
4/5 for n > 1 and m > 1

. (25)

For U ≈ γ1, the soliton and antisoliton state are both near
zero energy at k = 0 and they hybridize for k 
= 0 (the surface
bands are distant, at energies ±U ). We use a two-component
basis (ψB�

+ ψA�+1 )/
√

2, (ψB�+m − ψA�+m+1 )/
√

2 to write

H (�,m,n)
sol−asol = γ1

(−δ − gm,�κκ† −(−κ†/2)m

−(−κ/2)m δ + gm,nκκ†

)
, (26)

where U/γ1 = 1 + δ with |δ| � 1, |κ| � 1, and gm,� is a
numerical factor,

gm,� =

⎧⎪⎪⎨
⎪⎪⎩

5/8 for m = 1 and � = 1
3/8 for m = 1 and � > 1
3/4 for m > 1 and � = 1
1/2 for m > 1 and � > 1

. (27)

Hamiltonian (26) has eigenvalues given by

E

γ1
= 1

2
(gm,n − gm,�)

(
k

kc

)2

±
√[

U

γ1
− 1 + 1

2
(gm,n + gm,�)

(
k

kc

)2]2

+
(

k

2kc

)2m

,

(28)

describing hybridization of the soliton and antisoliton states
for U ≈ γ1 and k � kc.

B. ABC′

1. Faultless system

For bulk, faultless ABC′ stacking, the unit cell consists
of four atoms such as A1, B1, A2, B2 [in Fig. 1(b)], and the
Hamiltonian may be written as

HABC′ =

⎛
⎜⎜⎝

U h̄vk 0 γ1e−iqzd

h̄vk −U γ1eiqzd 0
0 γ1e−iqzd −U h̄vk

γ1eiqzd 0 h̄vk U

⎞
⎟⎟⎠, (29)

using the approximation for the intralayer hopping (8) with
k < kc, where qz is the z component of the wave vector and
d is the layer separation (the length of the unit cell in the z
direction is 2d). The four corresponding bulk bands are given
by

(EABC′ )2 = U 2 + γ 2
1 + (h̄vk)2

± 2γ1

√
U 2 + (h̄vk)2 cos2 qzd.

For a thin film of finite thickness, we begin by considering
the faultless system for an even number of layers N , Fig. 6
(top row). At k = 0, the intralayer hopping is zero, and the
system simplifies as a collection of separate dimers plus two

isolated surface states. Thus, the N bands (for N � 4) are at
five distinct energies at k = 0 with E = +U (twice) arising
from the surface states, and from the dimers: E = +U + γ1

(N/2 − 1 times), E = +U − γ1 (N/2 − 1 times), E = −U +
γ1 (N/2 times), and E = −U − γ1 (N/2 times). The surface
bands appear at lower energy (E = +U ) than the bulk bands
for 0 � U < γ1/2, and the bulk bands touch at k = 0 for U =
γ1. Considering the bands for all k values, the numerical plots
in Fig. 6 show that there is always a band within the nominal
band gap for U < γ1, whereas there is a bandgap for U > γ1.

2. Single soliton

For even N and a single fault, Fig. 6 (second row), we
consider k = 0 again. In this case, the N bands (for N � 4) are
at eight distinct energies at k = 0 with E = +U and E = −U
levels arising from the surface states; the presence of the fault
switches the texture of on-site energies, causing the energy of
the top surface to flip sign as compared to the faultless case.
For dimers at k = 0, the energies are E = +U + γ1, E =
+U − γ1, E = −U + γ1, and E = −U − γ1, each of these
occurring N/2 − 1 times. In addition, there is the dimer con-
sisting of the stacking fault giving energies E = ±

√
U 2 + γ 2

1 .
For nonzero k, for 0 < U < γ1, there is a small anticrossing
between two low-energy bands, then, for U = γ1, the bands
touch, and, for U > γ1, there is a band gap Eg = 2(U − γ1).
However, the states localized on the soliton are not near low
energy, as indicated by the arrows in Fig. 6 (second row). They
are at energies E = ±

√
U 2 + γ 2

1 for k = 0, and then move
further away from zero for nonzero k.

The band structure for ABC′ stacking depends on whether
there is an even or odd number of layers, even for a faultless
system. The band structure for a faultless system with an
odd number of layers N is shown in Fig. 6 (third row). For
N � 3, at k = 0, the N bands are at six distinct energies
with E = +U and E = −U levels arising from the surface
states, and from the dimers: E = +U + γ1, E = +U − γ1,
E = −U + γ1, and E = −U − γ1, each of these occurring
(N − 1)/2 times. As with the faultless even N case, the sur-
face bands appear at lower energy (E = ±U ) than the bulk
bands for 0 � U < γ1/2, and the bulk bands touch at k = 0
and U = γ1. Nevertheless, the band structure is more similar
to that of the even N case with a fault. This can be seen by
considering the bands for nonzero k values: For 0 < U < γ1,
there is a small anticrossing between two low-energy bands,
then, for U = γ1, the bands touch, and, for U > γ1, there is a
band gap Eg = 2(U − γ1).

The band structure for an odd number of layers N and
a fault near the center is shown in Fig. 6 (bottom row).
In this case, the N bands (for N � 5) are at seven distinct
energies at k = 0 with E = +U (twice) arising from the
surface states, and from the dimers: E = +U + γ1 ((N −
3)/2 times), E = +U − γ1 ((N − 3)/2 times), E = −U + γ1

((N − 1)/2 times), and E = −U − γ1 ((N − 1)/2 times). In
addition, there is the dimer consisting of the stacking fault
giving energies E = ±

√
U 2 + γ 2

1 . Again, the surface bands
appear at lower energy (E = ±U ) than the bulk bands for
0 � U < γ1/2, and the bulk bands touch at k = 0 and U = γ1.
Near low energy, the band structure is similar to that of the
faultless even N case. Considering the bands for nonzero k
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FIG. 6. Low-energy band structures for ABC′ stacking. Each column shows a different value of the on-site energies U , each row shows a
different system. The top row shows a faultless system with N = 16 layers, whereas the second row shows N = 16 layers with a sharp fault at
its center (8,8). The third row shows a faultless system with N = 15 layers, and the final row shows N = 15 layers with a sharp fault near its
center (8,7). Horizontal arrows show the energies at kx = 0 of the states localized on the soliton. Note that the axis scales for the final column
(with U = 2.00γ1) differ from the rest. In all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41].

values, there is always a band within the nominal band gap for
U < γ1, whereas the bandgap, for U > γ1, is given by Eg =
2(U − γ1). As with the even N case, the states localized on the
soliton are not near low energy, as indicated by the arrows in
Fig. 6 (bottom row). They are at energies E = ±

√
U 2 + γ 2

1
for k = 0, and then move further away from zero for
nonzero k.

IV. BERNAL STACKING

A. ABA

1. Faultless system

For bulk, faultless ABA stacking, the unit cell consists
of four atoms such as A1, B1, A2, B2 [in Fig. 1(c)], and the
Hamiltonian may be written as

HABA =

⎛
⎜⎜⎝

U h̄vk 0 0
h̄vk −U 2γ1cos(qzd ) 0
0 2γ1cos(qzd ) U h̄vk
0 0 h̄vk −U

⎞
⎟⎟⎠,

(30)

using the approximation for the intralayer hopping (8) with
k < kc, where qz is the z component of the wave vector and

d is the layer separation (the length of the unit cell in the z
direction is 2d). The four corresponding bulk bands are given
by

(EABA)2 = U 2 + (√
γ 2

1 cos2qzd + (h̄vk)2 ± γ1 cos qzd
)2

,

which shows that the band gap is Eg = 2U . The two conduc-
tion bands are degenerate at the Brillouin zone edge (qzd =
±π/2) because cos qzd = 0 there giving a block diagonal
Hamiltonian (30), likewise the two valence bands.

For a thin film of finite thickness, a faultless system is
gapped with bandgap Eg ≈ 2U , Fig. 1(c). This can be un-
derstood by considering k = 0 where the intralayer hopping
is zero and the system separates into isolated atoms with
energies E = ±U plus a N-mer, which is a single chain of
N atoms [N = 8 in Fig. 1(c)]. This chain corresponds to the
CDW model [15,16,33–36], which is a one-dimensional chain
with constant hopping γ1 and alternating on-site energies ±U ,
having a band gap of 2U , as described in the methodology,
Sec. II.

2. Single soliton

For a system with a single fault, there are two bands local-
ized on the fault, one of which generally lies within the bulk
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FIG. 7. Low-energy band structures for ABA stacking with N = 16 layers and a sharp soliton near the center. The top row shows band
structures, the bottom row shows the corresponding density of states g(E ), with the left side showing a soliton at the center (8,8) after an
even number of layers, and the right side shows a soliton near the center (7,9) after an odd number of layers. There are different values of the
magnitude of the alternating on-site energies as (a), (c), (e), (g) U/γ1 = 0.5, (b), (d), (f), (h) U/γ1 = 2.0, with different scales on the axes.
Horizontal arrows in the top row show the energies at kx = 0 of the states localized on the soliton. The dashed line in (b) shows the perturbative
approximation for the antisoliton energy Easol(k) and that in (d) shows the soliton energy Esol (k) where Easol(k) = −Esol (k) and Esol (k) is
given in Eq. (31). In all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41]. For the band structures, ky = 0, and,
for the density of states, δ = 0.01γ1.

band gap, Figs. 1(i) and 7. The nature of this band depends on
whether the fault occurs after an even or odd number of layers
[47] as shown in Fig. 7. When the fault occurs after an even
number of layers, Figs. 1(i), 7(a), and 7(b), the fault consists of
two consecutive on-site energies of +U [on atoms A4 and B5

in Fig. 1(i)] and we refer to this as an antisoliton; the energy
band moves into the conduction band for k � kc. However,
when the fault occurs after an odd number of layers, Figs. 7(c)
and 7(d), the fault consists of two consecutive on-site energies
of −U , a soliton texture, and the energy band moves into the
valence band for k � kc.

We consider k = 0 where the intralayer hopping is zero.
Once again, the system separates into isolated atoms with
energies E = ±U plus a N-mer [N = 8 in Fig. 1(i)]. But
now the N-mer, which corresponds to the CDW model
[15,16,33–36], has a soliton or antisoliton in it [34,36]. It was
shown [36] that the energy of the state localized on such a
fault lies within the bulk band gap as long as 0 < γ1/U < N ,
when the fault lies at the center of the system of N layers.

For large U (U � γ1 and U � h̄vk), it is possible to esti-
mate the energy of the soliton level using perturbation theory
in the hopping strength. Using the analytic approximation (8)
for the intralayer hopping matrix element gives

Esol(k) ≈ −U + γ1 − γ 2
1

2U
− (h̄vk)2

2U
, (31)

for {γ1, h̄vk} � U , assuming the soliton is not at the surface
of the system. For an antisoliton, Easol(k) = −Esol(k). The

approximation (31) is shown as the dashed line in Figs. 7(b)
and 7(d).

Soliton states are extended states in the in-plane direction,
but are localized in the out-of-plane (z) direction. For k = 0,
the soliton state is localized on the soliton [34,36], and, for
kx = kc (and ky = 0), the state is still localized near the soliton
as shown in Fig. 4(c). Since the system is equivalent to the
CDW model at k = 0, the soliton state is polarized, with
maximum polarization at k = 0, Fig. 4(d). In this case, the
equivalence with the CDW model only applies to the N-mer
(the atomic sites connected by interlayer hopping γ1), exclud-
ing the isolated non-N-mer atoms. Therefore, we modify the
definition of the translation operator Ta/2, Eq. (13), in order to
describe translation between the atoms on the N-mer only,

T̃a/2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 . . .

0 0 1 0 0 0 0 0 . . .

0 0 0 0 0 1 0 0 . . .

0 0 0 0 1 0 0 0 . . .

0 0 0 0 0 0 0 1 . . .

0 0 0 0 0 0 1 0 . . .
...

...
...

...
...

...
...

...
. . .

0 1 0 0 0 0 0 0 . . .

1 0 0 0 0 0 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

which is shown for an even number of layers N (for N �
4). The translation T̃a/2 for an odd number of layers is the
same with the replacements (T̃a/2)N,1 = (T̃a/2)N−1,2 = 0 and
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FIG. 8. ABA stacking with N = 16 layers and a soliton-antisoliton pair (5,6,5). The top row shows band structures, the bottom row shows
the corresponding density of states g(E ) for different values of the magnitude of the alternating on-site energies as (a) (g) U/γ1 = 0.2, (b) (h)
U/γ1 = 0.4, (c) (i) U/γ1 = 0.6, (d) (j) U/γ1 = 0.8, (e) (k) U/γ1 = 1.0, and (f) (l) U/γ1 = 1.2. In the band structure plots, horizontal arrows
show the energies at kx = 0 of the states localized on the soliton or antisoliton. In all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV
[40], a = 2.46 Å [41]. For the band structures, ky = 0, and, for the density of states, δ = 0.01γ1.

(T̃a/2)N−1,1 = (T̃a/2)N,2 = 1. Hence, for an even number of
layers,

T̃a/2Sz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0 0 . . .

0 0 1 0 0 0 0 0 . . .

0 0 0 0 0 −1 0 0 . . .

0 0 0 0 1 0 0 0 . . .

0 0 0 0 0 0 0 −1 . . .

0 0 0 0 0 0 1 0 . . .
...

...
...

...
...

...
...

...
. . .

0 −1 0 0 0 0 0 0 . . .

1 0 0 0 0 0 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(33)

using Sz = diag(1,−1, 1,−1, 1,−1, . . .). Thus, we define the
modified polarization as

p̃y = 〈ψ |T̃a/2Sz|ψ〉. (34)

Figure 4(d) shows the polarization p̃y, Eq. (34), as a function
of kx (with ky = 0) for U/γ1 = 0.6 (solid line) and U/γ1 =
1.8 (dashed line). The polarization is a maximum at k = 0,
and, at k = 0, it is larger for smaller U/γ1 (solid line). Note
that the values of p̃y at k = 0 in Fig. 4(d) are approximately
the same as the values of py at kx = kc in Fig. 4(b) because, at
these points, both systems are equivalent to the CDW model.
The polarization p̃y never reaches unity because the nonsym-
morphic chiral symmetry is broken by the ends of the system
and the finite width of the soliton.

3. Soliton-antisoliton pair

For ABA stacking, the band structure and density of states
of a soliton-antisoliton pair (5,6,5) with N = 16 layers is
shown in Fig. 8 for different values of U . There are two
localized states associated with the soliton and two with the
antisoliton, of which one soliton state and one antisoliton lie
within the bulk bandgap of Eg = 2U . For small values of

U/γ1, the low-energy soliton and antisoliton states hybridize
with an anticrossing, Figs. 8(a) and 8(g). For larger values of
U/γ1, the soliton and antisoliton bands separate. For large U
(U � γ1 and U � h̄vk), we can use the perturbation expres-
sion (31) for the energy of a soliton to estimate the separation
of these bands as 2U − 2γ1 + γ 2

1 /U . This separation appears
as an extra feature within the bulk band gap in the density of
states, Fig. 8 (bottom row).

B. ABA′

1. Faultless system

For bulk, faultless ABA′ stacking, using the approximation
for the intralayer hopping (8) with k < kc, we can use a unit
cell of two atoms, either Ai, Bi on an odd layer or Bi, Ai on an
even layer, to give the Hamiltonian

HABA′ =
(

U h̄vk
h̄vk −U + 2γ1 cos qzd

)
, (35)

where qz is the z component of the wave vector and d is the
layer separation. The two corresponding bulk bands are

EABA′ = γ1 cos qzd ±
√

(h̄vk)2 + (U − γ1 cos qzd )2.

This shows that there is no band gap for U � γ1, but that the
band gap is Eg = 2(U − γ1) for U > γ1.

For a thin film of finite thickness, we begin by consid-
ering the faultless system, Fig. 9 (top row). At k = 0, the
system separates into isolated atoms with energy +U [47]
and a N-mer monoatomic chain with on-site energies −U and
nearest-neighbor hopping γ1, Fig. 1(d). Such a chain has a
bulk band given by E (qz ) = −U + 2γ1 cos(qzd ) where d is
the layer separation and qz is the z component of the wave
vector; this band is centered on energy −U and it has a
bandwidth of 4γ1. Thus, this band overlaps with the isolated
atoms of energy +U for U � γ1. Hence, Fig. 9(c) for U = γ1

shows the bands due to the isolated atoms of energy +U just
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FIG. 9. Low-energy band structures for ABA′ stacking. Each column shows a different value of the on-site energies U . The top row shows
a faultless system with N = 16 layers, whereas the second row shows N = 16 layers with a sharp fault at its center (8,8). In all plots, parameter
values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41].

touching the lower bands due to the N-mer chain whereas
Fig. 9(d) for U > γ1 shows that they are separated.

2. Single soliton

Band structures for ABA′ stacking with a sharp fault at
its center are shown in Fig. 9 (bottom row). At k = 0, the
system separates into isolated atoms with energies ±U plus
the N-mer chain. Now the N-mer chain contains a fault, so
it consists of a monoatomic chain with on-site energies −U
and nearest-neighbor hopping γ1 connected to a monoatomic
chain with on-site energies +U and nearest-neighbor hopping
γ1. The former has a bulk band E (qz ) = −U + 2γ1 cos(qzd ),
the latter has a bulk band E (qz ) = U + 2γ1 cos(qzd ), i.e., the
system consists of one part with a band centered on energy
+U and of bandwidth 4γ1, connected to another part with
a band centered on energy −U and of bandwidth 4γ1. For
U � 2γ1, the two bands overlap leading, in a system of a finite
number of layers, to overlapping bands with anticrossings at
low energy as in Figs. 9(h)–9(j). For U > 2γ1, the two bands
do not overlap, giving an overall band gap as in Fig. 9(l).

Although the presence of a fault for ABA′ stacking creates
changes in the band structure, Fig. 9, there are no states
localized on the fault. This can be understood by consider-
ing the system at k = 0: The fault divides two sections of
monoatomic chains with different on-site energies (+U or
−U ) and, thus, the two sections are not degenerate, nor do
they have a Dirac-like low-energy continuum description [25].

V. AA STACKING

A. AA

1. Faultless system

For bulk, faultless AA stacking, the unit cell consists of
two atoms Ai, Bi on the ith layer, and the Hamiltonian may be
written as

HAA =
(

U + 2γ1 cos qzd h̄vk
h̄vk −U + 2γ1 cos qzd

)
, (36)

using the approximation for the intralayer hopping (8) with
k < kc, where qz is the z component of the wave vector and d
is the layer separation. The two corresponding bulk bands are

EAA = 2γ1 cos qzd ±
√

U 2 + (h̄vk)2.

At k = 0, the bands are centered on energy +U or −U and
each of them has a bandwidth of 4γ1. This shows that there
is no band gap for U � 2γ1, but that the band gap is Eg =
2(U − 2γ1) for U > γ1.

For a thin film of finite thickness, band structures for the
faultless system are plotted in Fig. 10 (top row). The two
bands overlap for U � 2γ1 as shown in Fig. 10 (top row). It
is also notable that there are no anticrossings when the bands
overlap. This is because the system has reflection symmetry
(swap A1 with AN , B1 with BN , etc.), which may be used to
block diagonalize the position space Hamiltonian (1) into two
separate blocks with either even or odd parity eigenstates.

2. Single soliton

In the presence of an atomically sharp fault, there are
different ladders either side of the fault, Fig. 1(k), resulting in
band structures as plotted in Fig. 10 (bottom row). As with the
faultless case, there are two bands overall, centered on energy
+U or −U and each of them with a bandwidth of 4γ1. Thus,
the two bands overlap for U � 2γ1 as shown in Fig. 10 (bot-
tom row). Unlike the faultless case, however, there are some
anticrossings (and crossings) of the bands in the region when
the bands overlap. The situation shown in Fig. 10 (bottom
row) is somewhat special because the fault is at the center
so that the system has inversion symmetry (swap A1 with BN ,
B1 with AN , etc.) and this may be used to block diagonalize
the position space Hamiltonian (1) into two separate blocks
with either even or odd parity eigenstates. Hence there are
level crossings and all bands are doubly degenerate at k = 0.
However, within each even or odd parity block, anticrossings
can arise giving the band structure in Figs. 10(h) and 10(i).

As with ABA′ stacking, although the presence of a fault for
AA stacking creates changes in the band structure, Fig. 10,

165416-12



SOLITONS IN BINARY COMPOUNDS WITH STACKED … PHYSICAL REVIEW B 109, 165416 (2024)

FIG. 10. Low-energy band structures for AA stacking. Each column shows a different value of the on-site energies U . The top row shows a
faultless system with N = 16 layers, whereas the second row shows N = 16 layers with a sharp fault at its center (8,8). In all plots, parameter
values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41].

there are no states localized on the fault. The term describ-
ing hopping along the ladder, 2γ1 cos(qzd ), appears on the
main diagonal in the ladder Hamiltonian (36) and it breaks
chiral symmetry. The trivial nature of the fault may be further
understood by considering the limit k = 0 when the system
separates into monoatomic chains, which do not have a Dirac-
like low-energy continuum description [25].

B. AA′

1. Faultless system

For bulk, faultless AA′ stacking, using the approximation
for the intralayer hopping (8) with k < kc, we can use a unit
cell of two atoms, either Ai, Bi on an odd layer or Bi, Ai on an
even layer, to give the Hamiltonian

HAA′ =
(

U h̄vk + 2γ1 cos qzd
h̄vk + 2γ1 cos qzd −U

)
, (37)

where qz is the z component of the wave vector and d is the
layer separation. The two corresponding bulk bands are

EAA′ = ±
√

U 2 + (h̄vk + 2γ1 cos qzd )2,

which have a band gap Eg = 2U .
For a thin film of finite thickness, there is indeed a band

gap of Eg ≈ 2U in the numerically-derived band structure,
Fig. 1(f). Note that the system at k = 0 consists of two sep-
arated CDW chains and, for k 
= 0, the chains are coupled by
intralayer hopping to form a ladder. By dimensional reduction,
treating k as a fixed parameter, this ladder is equivalent to a
one-dimensional model in class CI [16], which is a topologi-
cally trivial insulator.

2. Single soliton

In the presence of a single atomically sharp fault, there are
four states localized on the fault, Figs. 1(l) and 11. Of these,
one is at the top of the conduction band, one is at the bottom
of the valence band, and the other two generally lie within the

band gap. At low U values, they can hybridize together as in
Figs. 11(b) and 11(g).

At k = 0, the system consists of two separated CDW
chains, each of them has either a soliton or an antisoliton.
This is why there are two low-energy states. The analogy with
the CDW model means that, at k = 0, we can say that the
energies of the two low-energy states are within the band gap
for 0 < γ1/U < N for a fault at the center of a system with N
layers. For U/γ1 � 1, these energies are

Esol/asol ≈ ±
(

− U + γ1 − γ 2
1

2U

)
, (38)

at k = 0, as indicated by the two middle arrows in Fig. 11(e).
The solitons give rise to a step-like nonzero density of states
within the bulk band gap. For U � γ1, the nonzero density of
states due to the solitons is visible at energies −U to −(U −
γ1 + γ 2

1 /(2U )) and at (U − γ1 + γ 2
1 /(2U )) to U , Eq. (38),

see Fig. 11(j). In addition to the soliton feature, there are also
sharp peaks in the density of states at the bulk band edges,
E = ±U .

For small values of U/γ1, there are crossings between lev-
els, including the two low-energy levels, Fig. 11(b), whereby
the energies appear to oscillate as a function of k. Using
spatial inversion symmetry, it is possible to block diagonalize
the Hamiltonian (1) into a block with even parity states and
a block with odd parity states. The odd parity block has
eigenstates which are the electron-hole reflection (E → −E )
of the even parity eigenstates. Each individual block describes
a system similar to AA′ stacking with a spectrum having
anticrossings at U 
= 0 and a single soliton level. For small
U/γ1, the soliton level crosses zero energy, at which point its
electron-hole partner (from the opposite parity block) crosses
zero energy in the opposite direction. Oscillations are caused
by anticrossings with levels from the same block. The an-
ticrossings, and resulting oscillations, are reduced as U/γ1

increases because the other levels (in the bulk conduction and
valence bands) move further away in energy and the soliton-
antisoliton pair move away from zero energy and separate.
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FIG. 11. AA′ stacking with N = 16 layers and a sharp soliton at the center (8,8). The top row shows band structures, the bottom row shows
the corresponding density of states g(E ) for different values of the magnitude of the alternating on-site energies as (a) (f) U/γ1 = 0.0, (b) (g)
U/γ1 = 0.25, (c) (h) U/γ1 = 0.5, (d) (i) U/γ1 = 1.0, and (e) (j) U/γ1 = 2.0. In the band structure plots, horizontal arrows show the energies
at kx = 0 of the states localized on the soliton. In all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41]. For the
band structures, ky = 0, and, for the density of states, δ = 0.01γ1.

This picture holds in the presence of spatial inversion sym-
metry. When the soliton is off-center, the band structure is
similar, but the level crossings between the levels with even
or odd parity are replaced by anticrossings.

VI. SMOOTH SOLITONS

Atomically sharp solitons support localized states within
the bulk band gap for ABC, ABA, and AA′ stacking, Fig. 1.
Now we will describe the properties of smooth solitons with a
finite width for these three stacking types. Band structures and
density of states are determined as described in the method-
ology, Sec. II, by numerically diagonalizing Hamiltonian (1)
after replacing the diagonal elements with a smooth soliton
texture. Specifically, for ABC and ABA stacking, we model
the on-site energy of an A site on the jth layer, where j =
1, 2, . . . , N , as

εA, j = −U tanh

(
j − m − 1/2

ζ

)
, (39)

where U is the magnitude of the texture at infinity, m is the
number of layers below the fault, and ζ is the soliton width
in dimensionless units, i.e., measured in units of the interlayer
spacing. For AA′ stacking,

εA, j = (−1) jU tanh

(
j − m − 1/2

ζ

)
. (40)

For all solitons, we assume charge neutrality within each layer
so that, for the on-site energy of a B site on the jth layer,
εB, j = −εA, j . Band structures and density of states for the
three stacking types are shown in Fig. 12 for a smooth soliton
of width ζ = 8 at the center (8,8) of a system with N = 16
layers, and different values of U/γ1.

A. ABC stacking

For ABC stacking, Fig. 12 shows that the soliton level
remains near the same energy Esol ≈ γ1 at k = 0 for a range
of U values, in contrast to a sharp soliton, Eq. (17). Since
the soliton level moves into the valence band for large k, this
means that the soliton state crosses the bulk band gap, leading
to a nonzero density of states.

The behavior at k = 0 may be understand because the
system separates into dimers and isolated atoms there, and
the soliton state is localized on a dimer consisting of site Bm

and Am+1 connected by interlayer hopping γ1, as in Fig. 1(g).
The on-site energy of these sites is identical, εA,m+1 = εB,m =
−U tanh(1/2ζ ) according to Eq. (39). The dimer yields two
energy levels and the soliton level is the highest energy of the
pair,

Esol = γ1 − U tanh

(
1

2ζ

)
for k = 0. (41)

This is in agreement with the sharp soliton energy (17), Esol =
γ1 − U , in the limit ζ → 0, as expected. For ζ � 1/2, we
expand the hyperbolic tangent to give Esol ≈ γ1 − U/(2ζ ),
which shows that Esol ≈ γ1 for a range of U values if the width
ζ is large enough.

As in the case of a sharp soliton, the two surface states, on
A1 and BN , are completely disconnected at k = 0 and they give
two degenerate states at energy E ≈ U according to Eq. (39)
(they are at E = U in a sufficiently large system N � ζ ). For
N � ζ � 1, the soliton level moves from Esol ≈ γ1 at k = 0
to the valence band at large k, crossing the surface states at
E ≈ U provided that U < γ1.

At k = kc, the soliton level is at Esol ≈ 0 for a wide range
of U values. This is because the system is approximately
equivalent to the CDW model at this point and, for smooth
solitons ζ � 1, the system approaches the continuum limit,
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FIG. 12. Band structures and density of states g(E ) for smooth solitons with width ζ = 8 at the center (8,8) of a system with N = 16 layers
for ABA, ABC, and AA′ stacking. In the band structure plots, horizontal arrows show the energies at kx = 0 of the states localized on the
soliton. There is a different axis scale for AA′ stacking. In all plots, parameter values are γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41].
For the band structures, ky = 0, and, for the density of states, δ = 0.01γ1.

which supports a zero-energy soliton level, as discussed in
detail previously for the CDW model [34,36].

For U < γ1, all levels in the conduction and valence bands
originate from near E = ±γ1 at k = 0, as for rhombohedral
graphite at U = 0. For U > γ1, the levels no longer coalesce
at k = 0, but bifurcations are visible in the conduction and
valence bands whereby levels that are doubly degenerate at
k = 0 split at nonzero k. This is because of spatial inversion
of the texture of on-site energies (39) about the center of the
soliton. At k = 0, there are identical dimers either side of the
soliton and equidistant from it, creating a degeneracy, which
is broken at nonzero k.

As stated above, the soliton state at k = 0 is localized on
two adjacent sites near the center of the soliton as ψsol =
(ψBm + ψAm+1 )/

√
2. For k = kc, it remains localized on the

soliton, but has a broader extent in position space as shown
in Fig. 13(a) for U/γ1 = 0.6. Figure 13(b) shows the po-
larization py = 〈ψ |Ta/2Sz|ψ〉, Eq. (14), as a function of kx

(with ky = 0) for U/γ1 = 0.6 (solid line) and U/γ1 = 1.8
(dashed line). There is a notable dip in py for U/γ1 = 0.6
(solid line) at kx ≈ 0.6kc which arises when the soliton level
crosses the surface states, Fig. 12(g). Otherwise, py ≈ 1 for

a range of k values. This is related to the fact that, for
k = kc, the Hamiltonian (16) is approximately equal to that
of the CDW model. However, the polarization py is never
exactly one because the nonsymmorphic chiral symmetry is
broken by the ends of the system and the finite width of the
soliton [34,36].

B. ABA stacking

For ABA stacking, Fig. 12 shows that the antisoliton level
remains near the same energy Esol ≈ 0 at k = 0 for a wide
range of U values, and it moves into the conduction band at
large k. The level is near zero at k = 0 because the central N-
mer of the system is separated from the individual nondimer
atoms at this point and, thus, the N-mer is equivalent to
the CDW model. For smooth solitons ζ � 1, the N-mer ap-
proaches the continuum limit with a soliton level approaching
zero exponentially quickly as a function of ζ , as discussed in
detail previously for the CDW model [34,36].

In addition to the soliton state, however, there are many
levels in the conduction and valence bands, and also in
the nominal bulk band gap, which bifurcate, being doubly
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FIG. 13. A smooth soliton of width ζ = 8 at the center of the sys-
tem (8,8), N = 16 layers, for ABC stacking (top) and ABA stacking
(bottom). (a) The probability density |ψ j |2 per site j = 1, 2, . . . , 32
for the energy level localized on the soliton at kx = kc, ky = 0, and
U/γ1 = 0.6. (b) The polarization py = 〈ψ |Ta/2Sz|ψ〉, Eq. (14), of
the soliton state as a function of kx with ky = 0 for U/γ1 = 0.6
(solid) and U/γ1 = 1.8 (dashed). (c) The probability density |ψ j |2
per site j = 1, 2, . . . , 32 for the energy level localized on the soli-
ton at kx = kc, ky = 0, and U/γ1 = 0.6. (d) The polarization p̃y =
〈ψ |T̃a/2Sz|ψ〉, Eq. (34), of the soliton state as a function of kx with
ky = 0 for U/γ1 = 0.6 (solid) and U/γ1 = 1.8 (dashed). In all plots,
γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41].

degenerate at k = 0 and splitting at nonzero k. These levels
arise from the individual non-N-mer atoms, which are sepa-
rated from the rest of the system at k = 0. Owing to spatial
inversion of the texture of on-site energies (39) about the
center of the soliton, there are single atoms with identical
on-site energies either side of the soliton and equidistant from
it, creating a degeneracy, which is broken at nonzero k. The
two atoms nearest to the center of the soliton have energies
E = −U tanh(1/2ζ ) at k = 0 according to Eq. (39), so, for
ζ � 1, they are very close to zero energy as E ≈ −U/(2ζ ).

For k = 0, the soliton state is localized near the center of
the soliton [34,36], and, for kx = kc (and ky = 0), the state is
still localized near the soliton center as shown in Fig. 13(c).
Since the system is equivalent to the CDW model at k = 0,
the soliton state is polarized, with maximum polarization ap-
proaching one at k = 0, Fig. 13(d). Again, the polarization
p̃y is never exactly one because the nonsymmorphic chiral
symmetry is broken by the ends of the system and the finite
width of the soliton [34,36].

C. AA′ stacking

For AA′ stacking, Fig. 12 shows that there are a pair of
bands (soliton and antisoliton) near zero energy, as for a sharp
soliton, but the major difference is that these two bands do not
separate as U/γ1 increases, but remain near zero energy as flat
bands with a large extent up to k ≈ 2kc.

At k = 0, the system consists of two separated CDW
chains, each of them has either a soliton or an antisoliton. For
smooth solitons ζ � 1, the CDW chains approach the con-
tinuum limit with a soliton (or antisoliton) level approaching
zero exponentially quickly as a function of ζ , as discussed
previously [34,36].

For small values of U/γ1, Figs. 12(e) and 12(k), there are
also level crossings between the soliton and antisoliton bands,
which appear to oscillate as a function of k, as described for
sharp solitons in Sec. V B 2. The oscillations, due to anti-
crossings with the other conduction and valence bands, are
reduced as U/γ1 increases and the other bands move away
from zero energy, separating from the soliton-antisoliton pair.
The flat bands due to the soliton-antisoliton pair result in a
large peak in the density of states near zero energy, Figs. 12(r)
and 12(x). We consider the effect of disorder on this peak in
Sec. VIII.

VII. SINGLE-LAYER DEFECTS

So far, we have considered solitons, which consist of a
change in the texture of on-site energies without changing the
interatomic hopping, and they may be sharp on the atomic
scale or smooth with a nonzero width ζ . There are many
other types of stacking faults one could consider. An example,
which also involves on-site energies, is to reverse the signs
of the on-site energies on a single layer only. This does not
change the texture of the on-site energies either side of the
defect, and we refer to this as a “single-layer defect”, not a
soliton. Such defects were modeled for AA, AA′, ABA, and
ABA′ stacking using density functional theory (DFT) in the
context of hexagonal boron nitride [38], and we will only
discuss them briefly here, for ABC, ABA, and AA′ stacking.
The lattice structures, with the defects, are shown schemat-
ically in the top panels of Fig. 14 for a system we denote
as (3,1,4) indicating a system of N = 8 layers consisting of
three layers (at the bottom) with regular stacking, followed
by a single-layer defect, followed by four layers (at the top)
with regular stacking. Band structures and density of states
for ABC, ABA, and AA′ stacking, are shown in the remaining
panels in Fig. 14 for a system with a larger number of layers
N = 16 and a defect near its center (7,1,8).

A. ABC stacking

For ABC stacking, Fig. 14 shows that there are generally
two defect states within the band gap, one merges with the
conduction band for k � kc, the other merges with the va-
lence band. For U < γ1/2, Fig. 14(a), the two surface states
are closer to zero energy than the defect states whereas, for
U > γ1/2, the defect states are closest to zero energy and, for
U = γ1, Fig. 14(m), they touch at E = 0 and there is no band
gap at this point. For U = γ1/2, Fig. 14(g), the defect states
hybridize strongly with the surface states.
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FIG. 14. Band structures and density of states g(E ) for single-layer defects near the center (7,1,8) of a system with N = 16 layers for
ABA, ABC, and AA′ stacking. In the band structure plots, horizontal arrows show the energies at kx = 0 of the states localized on the defect.
There is a different axis scale for AA′ stacking, and the other stackings at large values of U/γ1. In all plots, parameter values are γ0 = 3.16 eV,
γ1 = 0.381 eV [40], a = 2.46 Å [41]. For the band structures, ky = 0, and, for the density of states, δ = 0.01γ1.

The behavior at k = 0 may be understand because the sys-
tem separates into dimers and isolated atoms there. There are
the two isolated surface states with energies E = ±U , N − 3
dimers each with energies E = ±

√
U 2 + γ 2

1 , and, near the de-
fect, a dimer with on-site energies −U giving E = −U ± γ1

and a dimer with on-site energies +U giving E = +U ± γ1.
These four energies are shown with the horizontal arrows in
Fig. 14. The presence of two defect states within the band gap
is in stark contrast to a single soliton, which only supports one
state within the gap, Fig. 2. Instead, a single-layer defect has
a band structure very similar to that of a soliton-antisoliton
pair, Fig. 5, because the latter can also be viewed as a defect,

albeit of larger spatial extent than just one layer, which does
not change the texture of the on-site energies either side of the
defect.

B. ABA stacking

For ABA stacking, Fig. 14 shows that there is a single-
defect state within the bulk band gap. For small U/γ1, it is
near the bottom of the conduction band for k = 0, crossing the
band gap to move into the valence band at k � kc, whereas,
for larger U/γ1, it is always at negative energy. The lattice
structure, Fig. 14(b), shows there are three consecutive sites in
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the N-mer with the same on-site energies E = −U . For k =
0 and U � γ1, this trimer gives energies E = −U and E =
−U ± √

2γ1 (as indicated by the horizontal arrows in Fig. 14).
The level E = −U + √

2γ1 is the one within the band gap. A
single soliton also creates a single level within the band gap,
Fig. 7, and the band structure and density of states of a single
soliton and a defect are similar, particularly for U � γ1. For
U � γ1, the defect state extends across most of the band gap,
creating a wide energy region with a nonzero density of states,
unlike the soliton state.

C. AA′ stacking

For AA′ stacking, Fig. 14 shows that there are generally
two defect states within the band gap, one merges with the
conduction band for k � kc, the other merges with the valence
band. The lattice structure, Fig. 14, shows the ladder structure
consisting of two coupled N-mers. In one of them, there is a
trimer of states with on-site energy E = +U near the defect,
and, in the other, there is a trimer of states with on-site energy
E = −U near the defect. Together, they contribute six states,
which are, at k = 0 and U � γ1, E = ±U , E = −U ± √

2γ1,
and E = U ± √

2γ1 (as indicated by the horizontal arrows
in Fig. 14). The two levels E = −U + √

2γ1 and E = U −√
2γ1 are within the band gap. A single soliton also creates

two levels within the band gap, Fig. 11, and the band structure
and density of states of a single soliton and a defect are
similar. There are differences such as the hybridization of the
two levels with the levels being close together and strongly
hybridized for U � γ1 in the soliton and for U ≈ γ1 in the
defect.

VIII. THE ROLE OF INTERLAYER DISORDER

We have shown that solitons, both atomically sharp and
smooth in position space, are able to support localized states
with energies within the bulk band gap for ABC, ABA, and
AA′ stacking. The soliton bands are generally dispersive as a
function of the in-plane wave vector k so that they give rise
to a nonzero density of states without any particularly sharp
features. The exception are smooth solitons for AA′ stacking,
which give flat bands yielding a narrow peak at zero energy in
the density of states, Fig. 12(x).

For certain values of the in-plane wave vector k, the lattice
structure of these systems may be related by dimensional
reduction to that of the CDW model [15,16,33–36], which has
nonsymmorphic chiral symmetry. The influence of symmetry-
breaking disorder has been considered previously for the
CDW model [36] so here we consider it only for the most
interesting case of AA′ stacking, for both atomically sharp and
smooth solitons.

To focus on the topology related to the CDW model,
we consider random tight-binding parameters in the
perpendicular-to-layer direction while preserving transla-
tional invariance in the in-plane direction. We consider four
types of disorder: (i) “Sharp on-site disorder” (diagonal),
which gives an additional contribution δεA, j to the on-site
energy of an A site on the jth layer, where j = 1, 2, . . . , N ,
which is drawn randomly from a uniform distribution −W �
δεA, j � W with disorder strength W . We maintain charge

neutrality within each layer so that δεB, j = −δεA, j for all
layers j. (ii) “Sharp hopping disorder” (off-diagonal) where
the interlayer coupling takes random values γ1 + δn where
n = 1, 2, . . . , N − 1 indexes the N − 1 interlayer spaces and
each δn takes a value drawn randomly from a uniform distribu-
tion −W � δn � W . For AA′ stacking, the values of coupling
between A atoms and between B atoms for any pair of adja-
cent layers are identical, so that there are only N − 1 random
values of δn in total. (iii) “Smooth on-site disorder” (diagonal)
with an additional contribution δεA, j to the on-site energy of
an A site on the jth layer described by a Gaussian-correlated
potential [49,50] as given by

δεA, j =
∑

m wm exp(−| j − m|2/η2)√∑
m exp(−| j − m|2/η2)

, (42)

where η is the correlation length in dimensionless units, i.e.,
measured in units of the interlayer spacing. The summation
is over all layers m = 1, 2, . . . , N with wm drawn randomly
from a uniform distribution −W � wm � W with disorder
strength W . We maintain charge neutrality within each layer
so that δεB, j = −δεA, j for all layers j. (iv) “Smooth hop-
ping disorder” (off-diagonal) where the interlayer coupling
takes random values γ1 + δn where n = 1, 2, . . . , N − 1 in-
dexes the N − 1 interlayer spaces and each δn is described
by a Gaussian-correlated weighting as in Eq. (42), the only
difference being that now there are N − 1 bonds and N − 1
independent parameters wm. Again, the values of coupling
between A atoms and between B atoms for any pair of adja-
cent layers are identical, so that there are only N − 1 random
values of δn in total.

The normalization with the square root factor in Eq. (42) is
used so that smooth disorder interpolates between sharp disor-
der for η � 1 and sample-to-sample parameter variations [36]
for η � N . The latter are parameter values that are spatially
uniform across a single member of the ensemble, i.e., δεA, j =
δεA for all j, but that differ from sample to sample with δεA

drawn randomly from a uniform distribution −W � δεA �
W . Smooth solitons in the CDW model are fairly robust to
parameter variations [36] because the nonsymmorphic chiral
symmetry holds in the continuum limit (of a smooth soliton
with parameter variations). However, the equivalence of AA′

stacking with the CDW model only holds at k = 0, so smooth
solitons for AA′ stacking are not expected to be as robust.
As parameter variations were studied in detail for the CDW
model [36], we consider instead the case of a smooth potential
with a finite range 1 � η � N .

For AA′ stacking and an atomically sharp soliton in the
absence of disorder, Fig. 11(j), the density of states has a
step-like nonzero density of states within the bulk band gap
−U � E � U due to the soliton bands, Fig 11(e). In addition,
there are also sharp peaks in the density of states at the bulk
band edges, E = ±U . Figure 15 shows the disorder-averaged
density of states 〈g(E )〉 for an atomically sharp soliton at the
center (8,8) of a system with AA′ stacking and N = 16 layers.
We consider the example of on-site energy U = 2.0γ1 and
disorder strength W = 0.5γ1. Figure 15 shows that all types
of disorder tend to smooth out the step-like feature due to the
soliton states within the bulk band gap. The sharp peaks at
E = ±U at the band edges are quite robust to disorder, as they
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FIG. 15. Dependence of the disorder-averaged density of states
〈g(E )〉 on energy E for an atomically sharp soliton at the center (8,8)
of a system with AA′ stacking and N = 16 layers. For all plots, the
on-site energy is U = 2.0γ1, the disorder strength is W = 0.5γ1, and
〈g(E )〉 is determined using Eq. (7) with broadening δ = 0.01γ1 and
20 disorder realizations. Other parameter values are γ0 = 3.16 eV,
γ1 = 0.381 eV [40], a = 2.46 Å [41]. (a) is for atomically sharp
on-site disorder (black), (b) is for sharp hopping disorder (magenta),
(c) is for Gaussian-correlated on-site disorder (42) with correlation
length η = 4 (red), and (d) is for Gaussian-correlated hopping disor-
der with η = 4 (blue).

are only smoothed out by atomically sharp on-site disorder,
Fig. 15(a).

For AA′ stacking and a smooth soliton in the absence of
disorder, Fig 12(x), the density of states shows a narrow peak
at zero energy due to the flat bands related to the soliton
states. Figure 16 shows the disorder-averaged density of states
〈g(E )〉 for a smooth soliton at the center (8,8) of a system with
AA′ stacking and N = 16 layers. Sharp disorder, Figs. 16(a)
and 16(b), tends to destroy the narrow peak at zero energy,
leaving a small but finite density of states in the bulk band gap.
The narrow peak is fairly robust to smooth disorder, however,
and more robust to hopping disorder than on-site disorder,
Figs. 16(c) and 16(d). This is possibly because the solitons are
textures in the on-site energies, not the hopping parameters.

IX. ELECTRONIC TRANSPORT

Solitons, both atomically sharp and smooth in position
space, are able to support localized states with energies
within the bulk band gap for ABC, ABA, and AA′ stacking.
The contrasting electronic band structures and densities of
states will impact transport and spectroscopic measurements
[31,51–57]. As an example, we model coherent, ballistic,
electronic transport for rhombohedral-stacking, generalizing a

FIG. 16. Dependence of the disorder-averaged density of states
〈g(E )〉 on energy E for a smooth soliton of width ζ = 8 at the
center (8,8) of a system with AA′ stacking and N = 16 layers. For
all plots, the on-site energy is U = 2.0γ1, the disorder strength is
W = 0.5γ1, and 〈g(E )〉 is determined using Eq. (7) with broadening
δ = 0.01γ1 and 20 disorder realizations. Other parameter values are
γ0 = 3.16 eV, γ1 = 0.381 eV [40], a = 2.46 Å [41]. (a) is for atomi-
cally sharp on-site disorder (black), (b) is for sharp hopping disorder
(magenta), (c) is for Gaussian-correlated on-site disorder (42) with
correlation length η = 4 (red), and (d) is for Gaussian-correlated
hopping disorder with η = 4 (blue).

model developed for monolayer and bilayer graphene [42,58]
in which the central sample is connected to leads of the
same material that are heavily doped in order to provide a
large density of states. The conductivity is determined using
the Landauer-Büttiker formalism [59] where the transmission
probability is found by wave matching at the boundaries of
the leads to the central sample, and Hamiltonians are taken in
the continuum limit. Details of our numerical calculations are
described in the Appendix.

Generalizing previous results for monolayer and bilayer
graphene [42,58], we find that the minimal conductivity for
rhombohedral stacking in the absence of on-site energies
(U = 0) is given by σmin = 4Ne2/(πh) for N layers with
W � L where W and L are the sample width and length,
respectively. Figure 17 shows band structures and correspond-
ing conductivities for a rhombohedrally-stacked system with
N = 10 layers and on-site energy U = 0.1 eV. The band
structures are plotted near the K point, with the direction
of the � and M points indicated for negative and positive
kx, respectively. Figs. 17(a) and 17(b) are for the minimal
tight-binding model [with γ0, γ1, and U only, Eq. (1)] and
the faultless system. The region of the band gap, Fig. 17(a),
corresponds to zero conductivity, Fig. 17(b), and, when the
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FIG. 17. Rhombohedral stacking with N = 10 layers and on-site
energy U = 0.1 eV showing band structures (left) and electrical con-
ductivity (right). (a) (b) show the faultless system and (c) (d) show
a system with an atomically sharp soliton at the center using the
minimal model with γ2 = γ3 = γ4 = 0. (e) (f) show the faultless
system and (g) (h) show a system with an atomically sharp soliton
at the center using the full parameter model. Parameter values are
γ0 = 3.16 eV, γ1 = 0.381 eV, γ2 = −0.02 eV, γ3 = 0.315 eV, γ4 =
0.044 eV, a = 2.46 Å. The conductivity calculation is performed for
a system of length L = 1754a and width W = 1754a, where a is the
lattice constant. Details are described in the Appendix.

energy is equal to that of higher-energy bands, the presence of
additional transport modes produces steps in the conductivity.
Figures 17(c) and 17(d) are for the minimal tight-binding
model with an atomically sharp soliton at the center. The
state localized on the soliton creates a nonzero density of
states resulting in nonzero conductivity, and the position of
the strong hybridization of the soliton state with the surface
states corresponds to a characteristic dip in the conductivity
[at E ≈ U = 0.1 eV in Fig. 17(d)].

X. ADDITIONAL TIGHT-BINDING PARAMETERS

So far our calculations have employed a minimal model
with only γ0, γ1, and U , Eq. (1). To assess the influence
of additional tight-binding parameters, we consider three ex-
amples: rhombohedral graphite (ABC stacking), hexagonal
boron nitride [27] (AA′ stacking), and hexagonal boron phos-
phide [60–62] (ABA stacking).

A. ABC stacking: Rhombohedral graphite

We consider a tight-binding model of rhombohedral
graphite containing skew interlayer hopping γ3 and γ4, and
next-nearest-layer hopping γ2. In a basis of a single orbital
on each atomic site (A1, B1, A2, B2, . . . , AN , BN ), the Hamil-
tonian (1) is modified [63] as

H =

⎛
⎜⎜⎜⎜⎝

D1 V W 0 0 . . .

V † D2 V W 0 . . .

W † V † D3 V W . . .

0 W † V † D4 V . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠, (43)

where intralayer blocks Di are defined in Eq. (2) and we use
Ui = U for all i (for a faultless system). Interlayer blocks are

V =
(

γ4 f (q) −γ3 f ∗(q)
γ1 γ4 f (q)

)
, (44)

and next-nearest-layer blocks are

W =
(

0 γ2/2
0 0

)
. (45)

The band structures and corresponding conductivities for this
model are shown in Figs. 17(e)–17(h). We use the following
parameter values [40,63], γ0 = 3.16 eV, γ1 = 0.381 eV, γ2 =
−0.02 eV, γ3 = 0.315 eV, γ4 = 0.044 eV with U = 0.1 eV.
Figures 17(e) and 17(f) are for the faultless system, whereas
Figs. 17(g) and 17(h) are for an atomically sharp soliton at
the center of the system. In comparison to the minimal model,
it can be seen that the additional parameters have a generally
small effect on the band structure and conductivity, without
producing any qualitative changes.

B. AA′ stacking: Hexagonal boron nitride

As a second example of the influence of additional tight-
binding parameters, we use a tight-binding model of AA′-
stacked hexagonal boron nitride (h-BN) with parameters fitted
to calculations using density functional theory (DFT) and the
GW approximation for a faultless system [64]. In this model
[64], tight-binding parameters are γ0 = 2.33 eV, γ1 = 0.5 eV,
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and U = 3.625 eV. Additional parameters, as compared to the
minimal model, are in-plane next-nearest-neighbor hopping
γn = −0.4 eV and next-nearest-layer hopping γ2 = −0.1 eV.

In this tight-binding model, for AA′-stacking, the Hamilto-
nian (1) is modified [64] as

H =

⎛
⎜⎜⎜⎜⎜⎝

D̃1 Ṽ W̃ 0 0 . . .

Ṽ † D̃2 Ṽ W̃ 0 . . .

W̃ † Ṽ † D̃3 Ṽ W̃ . . .

0 W̃ † Ṽ † D̃4 Ṽ . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠, (46)

written in terms of 2 × 2 blocks. Intralayer blocks are

D̃i =
(

Ui − γn| f (q)|2 −γ0 f (q)
−γ0 f ∗(q) −Ui − γn| f (q)|2

)
, (47)

where Ui = U for odd i and Ui = −U for even i (for a faultless
system). Interlayer blocks are

Ṽ =
(

γ1 0
0 γ1

)
; W̃ =

(
γ2 0
0 γ2

)
. (48)

The band structure plotted across the whole Brillouin zone is
shown for a faultless system in Fig. 18(a) and for an atomi-
cally sharp soliton at the center in Fig. 18(b). For the faultless
system, the band gap is near the K point but is indirect in the
presence of additional parameters, Fig. 18(a). For the soliton,
there are two states localized on the soliton within the bulk
band gap, Fig. 18(b), and this is qualitatively similar to the
minimal model, Fig. 11(e). However, h-BN is in the wide band
gap regime with U/γ1 ≈ 7.25, and, as a result, the soliton
states do not extend very far into the band gap, in relative
terms.

C. ABA stacking: Hexagonal boron phosphide

As a third example of the influence of additional tight-
binding parameters, we use a tight-binding model of ABA-
stacked hexagonal boron phosphide (h-BP) with parameters
fitted to calculations using DFT for a faultless system [61].
As compared to the minimal model, we add skew interlayer
couplings γ3 and γ4. In this tight-binding model, for ABA
stacking, the Hamiltonian (1) is modified [65] as

H =

⎛
⎜⎜⎜⎜⎝

D1 V 0 0 0 . . .

V † D2 V † 0 0 . . .

0 V D3 V 0 . . .

0 0 V † D4 V † . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠, (49)

where intralayer blocks Di are defined in Eq. (2) and we use
Ui = U for all i (for a faultless system). Interlayer blocks
V are given by Eq. (44). We use parameter values fit to
DFT [61] near the K point for bilayers, neglecting small
differences in the hopping between boron and phosphorous
atoms, giving γ0 = 1.65 eV, γ1 = 0.761 eV, γ3 = −0.456 eV,
γ4 = 0.255 eV, and U = 0.636 eV.

The band structure plotted across the whole Brillouin zone
is shown for a faultless system in Fig. 18(c) and for an atomi-
cally sharp soliton at the center in Fig. 18(d). For the faultless
system, the band gap is near the K point but is indirect in
the presence of additional parameters, Fig. 18(c). For the

FIG. 18. [(a),(b)] Band structure of hexagonal boron nitride with
N = 10 layers and AA′ stacking, plotted across the whole Brillouin
zone with (a) a faultless system, and (b) a soliton at the center. Plots
are obtained by diagonalizing Hamiltonian (46) with parameters
γ0 = 2.33 eV, γ1 = 0.5 eV, γn = −0.4 eV, γ2 = −0.1 eV, and U =
3.625 eV [64]. [(c),(d)] Band structure of hexagonal boron phosphide
with N = 10 layers and ABA stacking, plotted across the whole Bril-
louin zone with (c) a faultless system, and (d) a soliton at the center.
Plots are obtained by diagonalizing Hamiltonian (49) with parame-
ters γ0 = 1.65 eV, γ1 = 0.761 eV, γ3 = −0.456 eV, γ4 = 0.255 eV,
and U = 0.636 eV [61].

soliton, there is a state localized on the soliton within the bulk
band gap, above the bulk valence bands, Fig. 18(d). This is
qualitatively similar to the minimal model, Fig. 7(c). Note
that h-BP is in a regime of a relatively-small band gap with
U/γ1 ≈ 0.84.

XI. RELEVANCE TO SPECIFIC MATERIALS

Although graphite occurs with both Bernal and rhombo-
hedral stacking, our results do not apply to it because it
is practically impossible to induce different on-site energies
in a controlled way. However, we note that it may also be
possible to obtain isolated bands in graphite by consider-
ing rhombohedrally-stacked sections within Bernal-stacked
graphite [66,67], by applying a large displacement field to
a stacking fault near the surface of rhombohedral graphite
[8], or with a large in-plane magnetic field in rhombohedral
graphite [68]. Localized topological states have also been
considered in a different context, that of domain walls in the
horizontal, in-plane direction [69,70].

Our results apply to binary compounds with a honey-
comb structure. A well-studied example is h-BN [27], which
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occurs predominantly with AA′ stacking [29–31,71–77], al-
though samples with ABA [29,31,78–82] and ABC stacking
[83–87] have also been fabricated. Density functional theory
[28–30,38] predicts that ABA stacking has a total energy
comparable to AA′, but that ABC stacking is less energetically
favorable. Excitons localized on structural defects in h-BN
have been discussed in the context of observed optical prop-
erties [51–54], and features in x-ray spectroscopy have been
attributed to interlayer stacking faults [55]. Domain walls
in the in-plane direction have been observed experimentally
[31,56,57] and discussed theoretically [88], and the nonlin-
ear optical properties of multilayers with a controllable twist
in the vertical (stacking) direction have been measured and
analyzed [89].

The stacking types to be realized experimentally (AA′,
ABA, and ABC) all have different atoms connected in the
vertical direction, i.e., boron to nitrogen, and a fault consisting
of a connection between two identical atoms, i.e., boron to
boron or nitrogen to nitrogen, will be energetically expensive.
Single-layer defects, as described in Sec. VII, were modeled
using DFT [38] for AA, AA′, ABA, and ABA′ stacking,
and it was found that the formation energy of such faults is
very small. For example, an AA-type defect in AA′ stacking
was estimated to cost of the order of 50 meV. Even so, it is
likely that such a defect is difficult to realize experimentally
because a relative shift in the in-plane direction would yield
the more favorable ABA stacking [29,78]. Nevertheless, ex-
periments [90,91] have recently demonstrated the possibility
of engineering stacking of boron nitride (to create ferroelectric
materials), and a relative twist between layers creates domains
of ABA stacking separated, in the in-plane direction, by do-
main walls and regions of AA stacking.

Other binary compounds with a honeycomb structure in
thin films and a direct band gap at the K point include boron
phosphide [60–62] and silicon carbide [92–95]. Some two-
dimensional materials have a similar lattice structure, but they
are not described by our model. They include compounds such
as gallium nitride [96–99], aluminium nitride [98–100], and
zinc oxide [101–105] where the band gap does not lie at the K
point, or materials, including transition metal dichalcogenides
[93,106–110] and III-VI semiconductors [111–115], that have
more than two orbitals per unit cell near the Fermi level.
Nevertheless, these materials should in general support states
localized on solitons analogous to the ones we discuss.

XII. CONCLUSIONS

Using a minimal tight-binding model, we determined the
electronic properties of thin films of binary compounds with
two atoms per unit cell arranged as stacked two-dimensional
honeycomb lattices. The two atoms per cell are assigned dif-
ferent on-site energies. We considered six different stacking
orders to determine whether a fault in the texture of on-site
energies in the stacking direction supports localized states.
Faults for ABC, ABA, and AA′ stacking support localized
states within the band gap, whereas faults for ABC′, ABA′,
and AA stacking do not. For ABC and ABA stacking, there is
a single localized state within the bulk band gap and, for ABC
stacking, this state may hybridize with surface states. For
AA′ stacking, there are two states within the bulk band gap,

which may hybridize with each other, depending on parameter
values.

We consider smooth solitons where the texture of on-site
energies changes over a length scale greater than the interlayer
spacing, leading to different band structures as compared to
atomically sharp solitons. In particular, a smooth soliton in
AA′ stacking results in a flat band at zero energy and a corre-
sponding narrow peak in the density of states. We show that
this feature is fairly robust to long-range correlated disorder.
Finally, we also consider the band structure due to single-
layer defects [38] where the signs of the on-site energies are
reversed on a single layer only without a subsequent change of
texture. Overall, different stackings and types of fault produce
a range of contrasting electronic band structures and densities
of states, which will manifest themselves in various transport
and spectroscopic measurements [31,51–57].

ACKNOWLEDGMENTS

The authors thank V. I. Fal’ko for helpful discussions.

APPENDIX: TRANSPORT CALCULATION

Here we provide details of the conductivity calculation for
rhombohedral stacking shown in Fig. 17. We consider a two-
contact system with a central sample at 0 < x < L and two
semi-infinite leads on the left (x < 0) and on the right (x >

L). Following [42,58], the leads are modeled by considering
the system with a very large on-site energy, creating a large
density of states. Wave matching is performed to match states
in the central sample to those in the leads at the same E and
ky values.

We consider the continuum limit near the valley at wave
vector K+ = (4π/(3a), 0) so that f (K+ + k) ≈ −√

3a(kx −
iky)/2. Following [63], we write the Hamiltonian (43) as

H =

⎛
⎜⎜⎜⎜⎝

D1 V W 0 0 . . .

V † D2 V W 0 . . .

W † V † D3 V W . . .

0 W † V † D4 V . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠, (A1)

where

Dj =
(

Uj,A vπ†

vπ Uj,B

)
; V =

(−v4π
† v3π

γ1 −v4π
†

)
, (A2)

with π = h̄(kx + iky), π† = h̄(kx − iky), v3 = √
3aγ3/(2h̄),

and v4 = √
3aγ4/(2h̄). Next-nearest-layer hopping is de-

scribed by

W =
(

0 γ2/2
0 0

)
. (A3)

In the center of the system, 0 < x < L, we set UA, j =
−UB, j = Uj for all j (for a faultless system) and numerically
determine 2N eigenstates � j of the Hamiltonian (A1) each
with a value of kx denoted k j where j = 1, 2, . . . , 2N . Then
the states in the center can be written as

ψ� =
∑

j

c�
j� je

ik j x+ikyy, (A4)
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where index � = 1, 2, . . . , N denotes N different incoming
states.

In the contacts, we set UA, j = UB, j = −U∞ for all j, where
U∞ � γ1, E . Then we numerically determine the eigenstates
of the Hamiltonian (A1). There are N right-moving solutions
ϒ� with kx = Q(R)

� where Re(Q(R)
� ) > 0, and three left-moving

solutions �� with kx = −Q(L)
� where Re(Q(L)

� ) > 0, where
� = 1, 2, . . . , N . Each of them is normalized to carry unit flux
by setting ϒ

†
� Sxϒ� = �

†
�Sx�� = 1 where Sx is proportional to

the current operator,

Sx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 . . .

1 0 0 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 1 0 0 0 . . .

0 0 0 0 0 1 . . .

0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

In the left contact at x = 0, there are N possible states, � =
1, 2, . . . , N , describing incoming flux,

L� = ϒ�eikyy +
∑

j

r�
j � je

ikyy, (A6)

where r�
j is a reflection amplitude from state � to state j. In the

right contact at x = L, there are N corresponding transmitted

states,

R� =
∑

j

t�
j ϒ je

iQ(R)
j L+ikyy, (A7)

where t�
j is a transmission amplitude from state � to state j.

We consider wave-matching ψ� = L� at x = 0 and ψ� =
R� at x = L for � = 1, 2, . . . , N . For each � value, there are
4N unknowns consisting of 2N values of c�

j , N values of r�
j ,

and N values of t�
j , and there are 4N boundary conditions

due to continuity of the wave function components. Following
[42], the matching conditions for all � values may be ex-
pressed as MC = A where C is a 4N × N matrix of unknown
coefficients

C =
⎛
⎝r̂T

ĉ
t̂ T

⎞
⎠, (A8)

where r̂ j� = r j
� is N × N , ĉ j� = c�

j is 2N × N , and t̂ j� = t j
� is

N × N . A is a 4N × N matrix of incoming states,

A =
(−ϒ1 −ϒ2 −ϒ3 . . . −ϒN

0̂ 0̂ 0̂ . . . 0̂

)
, (A9)

where 0̂ represents a 2N × 1 column vector of zeros. M is a
4N × 4N matrix,

M =
(−�1 −�2 −�3 . . . −�N �1 �2 �3 . . . �2N 0̂ 0̂ 0̂ . . . 0̂

0̂ 0̂ 0̂ . . . 0̂ z1�1 z2�2 z3�3 . . . z2N�2N −y1ϒ1 −y2ϒ2 −y3ϒ3 . . . −yNϒN

)
, (A10)

where z j = eik j L for j = 1, 2, . . . , 2N , and y� = eiQ(R)
�

L for
� = 1, 2, . . . , N . In the leads with U∞ � γ1, E , the disper-
sion is approximately linear so that U∞ ≈ h̄vQ(R)

� . For our
numerical calculations, Fig. 17, we choose U∞ = 50γ1 so that
Q(R)

� ≈ 50kc.
The unknown coefficients are found by determining C =

M−1A. Then, for a given energy value, the conductivity

[42,59] is given by

σ (E ) = 4e2

h

L

W
tr(t̂ t̂†), (A11)

where L is the length and W is the width of the sample. The
trace may evaluated by summing over the eigenvalues of t̂ t̂†

for all ky values where, for periodic boundary conditions [42],
ky = 2πn/W for integer n = 0,±1,±2, . . ..
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