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Abstract

We show that under suitable assumptions the Segre product of two
graded cluster algebras has a natural cluster algebra structure.

1 Introduction

The map σ : Pn × Pm →֒ Pn+m+nm of projective spaces defined by

σ((x0 : . . . : xn), (y0 : . . . : ym)) = (x0y0 : x1 : y0 : . . . : xnym)

is known as the Segre embedding—it is injective and its image is a subvari-
ety of Pn+m+nm. We may then define the Segre product of two projective
varieties X ⊆ Pn and Y ⊆ Pm as the image of X × Y with respect to the
Segre embedding. We denote the Segre product by X⊗Y

def
= σ(X × Y ).

In what follows, rather than the geometric setting described above, we
will be interested in the dual notion of the Segre product of graded algebras.
Let A =

⊕
i∈NAi and B =

⊕
i∈N Bi be N-graded K-algebras. Then their

Segre product, A⊗B is the N-graded algebra

A⊗B
def
=
⊕

i∈N

Ai ⊗K Bi (1)

with the usual tensor product algebra multiplication. Letting X and Y be
projective varieties with homogeneous coordinate ringsA andB respectively,
the Segre product A⊗B is the homogeneous coordinate ring of X⊗Y .

Cluster algebras are a class of combinatorially rich algebras arising in
a number of algebraic and geometric contexts (see [FWZ21] and references
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therein). The additional data of a cluster structure leads to the existence
of canonical bases, closely related to the canonical bases arising in Lie the-
ory. Important examples of cluster algebras of this type include coordinate
algebras of projective varieties and their various types of cells, e.g. Grass-
mannians ([Sco06]) and Schubert cells ([GLS11]), positroid varieties and
positroid cells ([GL19]), etc.

In all known examples when the cluster algebra is the coordinate algebra
of a projective variety, we have a compatible grading on the cluster algebra,
with all cluster variables being homogeneous. Such cluster algebras are
naturally called graded cluster algebras and the general theory of these is
set out in work of the first author ([Gra15]).

In this note, inspired by [Pre23, Remark 4.14], we define a cluster algebra
structure on the Segre product of graded cluster algebras. This generalises
the particular case arising in [Pre23] in the study of cluster algebra structures
on positroid varieties and in doing so, we are able to clarify the required input
data to be able to form a Segre product.

We show that from the point of view of cluster algebras, forming the
Segre product is given by a gluing operation on suitable frozen variables.
We also record some simple observations on the preservation or otherwise of
cluster-algebraic properties under taking Segre products.

As we will see, the standard Segre construction imposes significant re-
strictions on both the graded cluster algebras and the choice of clusters
at which one can glue. The latter is perhaps surprising since most cluster
algebra constructions are agnostic as to choices of initial cluster.
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2 Segre Products of Graded Cluster Algebras

It was shown in [GL19] that coordinate rings of positroid varieties in the
Grassmannian have cluster algebra structures. In [Pre23], the Segre product
of two such cluster algebras is shown to have a cluster structure. In what
follows, we aim to generalise this construction to the case of graded skew-
symmetric cluster algebras.

We start by establishing some notation; readers unfamiliar with graded
cluster algebras may wish to refer to [Gra15] for further details and examples.

First, let Ai = (xi, exi, Bi, Gi) be (skew-symmetric) graded cluster alge-
bras, for i ∈ {1, 2}, such that
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• x1 = {x1, . . . , xn1
} and x2 = {y1, . . . , yn2

} are the respective initial
clusters;

• exi ( {1, . . . , ni} is the set of indices corresponding to mutable cluster
variables;

• every frozen variable (i.e. those elements with index in {1, . . . , ni}\exi)
is invertible;

• Bi is an exchange matrix with skew-symmetric principal part;

• Gi ∈ Zni is a grading vector, i.e. a vector such that BT
i Gi = 0.

Throughout, we will work over a field K, so that our cluster algebras are
K-algebras and we take all tensor products to be over K. As we will see, the
underlying field plays essentially no role in our construction.

Let si ∈ {1, . . . , ni} \ exi be an index corresponding to a frozen cluster
variable. We denote by Bsi

i the sith row of Bi and by B̂si
i the exchange

matrix obtained from Bi with the sith row removed.

Remark 2.1. In the above we require at least one frozen cluster variable in
each cluster algebra—this will be important when defining a cluster structure
on their Segre product since this will involve ‘gluing’ at frozen variables.

We have also asked that every frozen vertex is invertible, which is a
common but not universal assumption in cluster theory. In fact, an exam-
ination of our construction shows that this assumption can be weakened to
only asking that the glued frozen variables are invertible, which may be a
more appropriate assumption for geometric applications.

We wish to define a cluster algebra structure on the Segre product
A1⊗A2. Following the approach of [Pre23], we aim to construct a new
cluster algebra from A1 and A2 by gluing at frozen variables of the same
degree, which we will show coincides with the Segre product under suitable
further conditions.

2.1 A gluing construction

Fix s1 ∈ {1, . . . , n1} \ ex1 and s2 ∈ {1, . . . , n2} \ ex2 such that (G1)s1 =
(G2)s2 . We will identify the frozen variables xs1 and ys2, denoting a new
proxy variable replacing both of these by xs.

The initial data for our new cluster algebra is as follows. For the initial
cluster, we take

x = (x1 \ {xs1}) ∪ (x2 \ {ys2}) ∪ {xs}.

3



The index set corresponding to mutable variables is given by ex = ex1∪ ex2,
and for the initial exchange matrix, we take

B =



B̂s1

1 0

0 B̂s2
2

Bs1
1 Bs2

2


 .

Finally, for the initial grading vector we take

G = ((Ĝs1
1 )T (Ĝs2

2 )T Gs
1)

T

where Ĝsi
i is the grading vector Gi with the sith entry removed and Gs

1
def
=

G1
s1

= G2
s2
. We can now define a cluster algebra A1�A2 = A(x, ex, B,G)

from this initial data.
The process of gluing at frozen variables with matching degree is illus-

trated in the example below. Here and elsewhere, 1 denotes the vector
(1, . . . , 1)T .

Example 2.2. Let A1 = (x1 = {x1, x2, x3}, ex1 = {1}, Q1, G1 = 1) and
A2 = (x2 = {y1, y2, y3}, ex2 = {1}, Q2, G1 = 1) be cluster algebras with
exchange quivers as follows:

x2
Q1 :

x1 x3 y3
Q2 :

y1 y2

The quiver obtained by ‘gluing’ at the frozen variables x3 and y3 is shown
below—we denote the new variable by xs.

x2
Q :

x1 xs y1 y2

The cluster algebra A1�A2 is then given by the initial data

(x = {x1, x2, y1, y2, xs}, ex = {1, 3}, Q,G = 1).

We will show in Theorem 2.9 that this gives a cluster structure on the Segre
product A1⊗A2.

We record some straightforward observations about the cluster algebra
A1�A2.

Lemma 2.3. Let A1 and A2 be graded cluster algebras. Fix s1 ∈ {1, . . . , n1}\
ex1 and s2 ∈ {1, . . . , n2} \ ex2 such that (G1)s1 = (G2)s2 . Then the cluster
algebras A1�A2 and A2�A1 are isomorphic as cluster algebras.

Proof. This is clear from comparing the initial data for A1�A2 and A2�A1

and in particular noting that the two initial clusters are equal up to permu-
tation of the entries.
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Lemma 2.4. Let A1 and A2 be graded cluster algebras. Fix s1 ∈ {1, . . . , n1}\
ex1 and s2 ∈ {1, . . . , n2} \ ex2 such that (G1)s1 = (G2)s2.

Then

(i) A1�A2 is of finite type if and only if A1 and A2 are;

(ii) writing κ(A) for the number of cluster variables of a cluster algebra
A, we have κ(A1�A2) = κ(A1) + κ(A2) − 1 when these numbers are
all finite; and

(iii) writing K(A) for the number of clusters of A, we have K(A1�A2) =
K(A1)K(A2) when these numbers are all finite.

Proof. This follows from observing that our gluing process does not intro-
duce any new arrows between mutable vertices. Since mutation is a local
phenomenon and concentrated on mutable vertices, it is straightforward to
see that mutating at vertices indexed by ex1 is independent of mutating
at vertices indexed by ex2 and the variables obtained are exactly as if the
gluing had not been carried out.

There is an overall reduction of one in the number of cluster variables
because we have glued two previously distinct frozen variables; note that
this highlights the difference between this construction and the usual “dis-
connected” product of cluster algebras (where one simply takes the union of
clusters and direct sum of exchange matrices).

Remark 2.5. One might hope that this construction extends straightfor-
wardly to graded quantum cluster algebras (cf. [GL14]). However, computa-
tion in small examples shows that this is not the case.

For if one tries the näıve approach in which initial quantum cluster vari-
ables from A1 commute with those from A2, one rapidly finds situations in
which after performing a mutation, the new variable does not quasi-commute
with the rest of its cluster. For it to do so requires the compatibility con-
dition between the exchange and quasi-commutation matrices for the glued
data and this imposes a collection of “cross-term” requirements between B1

and L2 (respectively, B2 and L1) in respect of the glued frozen variables.

2.2 Relationship with the Segre product

The cluster algebra A1�A2 defined above does not have any immediately
obvious relationship with the Segre product A1⊗A2. Our main goal in what
follows is to show that there indeed is one and furthermore, we will establish
under what conditions these algebras are actually isomorphic.

We first identify a candidate isomorphism, analogous to the map δsrc

defined in [Pre23].
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Proposition 2.6. Let Ai = (xi, exi, Bi, Gi), i = 1, 2 be graded cluster alge-
bras and fix s1 ∈ {1, . . . , n1} \ ex1 and s2 ∈ {1, . . . , n2} \ ex2.

Then the map ϕ : A1�A2 → A1 ⊗ A2 given on initial cluster variables
by

ϕ(xj) = xj ⊗ y
deg xj
s2 for j ∈ {1, . . . , n1},

ϕ(yj) = x
deg yj
s1 ⊗ yj for j ∈ {1, . . . , n2} and

ϕ(xs) = xs1 ⊗ ys2

is an injective algebra homomorphism, with the property that the above for-
mulæ hold for any cluster of A1�A2.

Proof. Let ϕ denote the algebra homomorphism between fields of rational
functions

ϕ : K(x) → K(x1 ⊗ ydeg x•

s2
, xdeg y•s1

⊗ x2, xs1 ⊗ ys2)

obtained from the above specification on generators of the domain, where
x1 ⊗ y

deg x•

s1 = {x⊗ y
deg x
s2 | x ∈ x1} and similarly for xs1 ⊗ x2.

We claim that the map ϕ has a natural extension to all cluster variables
via cluster mutation. To prove this, we proceed by induction on the number
of mutation steps from the initial cluster. We compute ϕ for a one-step
mutation from the initial cluster as follows.

We first consider the case in which xk ∈ x1, k ∈ ex1. To reduce the
proliferation of subscripts, we will write Bi

jk for the (j, k)-entry of Bi and

Gi
j for the jth entry of Gi. Note that G1

j = deg xj and G2
j = deg yj. We

also set [n]+ = max{n, 0} and [n]− = max{−n, 0}.
We have

ϕ(µk(xk)) = ϕ

(
1

xk

[
x
[Bn1+n2−1,k ]+
s1

(
∏

Bjk>0

x
Bjk

j

)(
∏

Bn1+j−1,k>0

y
Bn1+j−1,k

j

)

+ x
[Bn1+n2−1,k]−
s1

(
∏

Bjk<0

x
−Bjk

j

)(
∏

Bn1+j−1,k<0

y
−Bn1+j−1,k

j

)])

= ϕ

(
1

xk

[
x
[Bn1+n2−1,k ]+
s1

(
∏

Bjk>0

x
Bjk

j

)

+ x
[Bn1+n2−1,k]−
s1

(
∏

Bjk<0

x
−Bjk

j

)])

= ϕ

(
1

xk

[
∏

B1
jk

>0

x
B1

jk

j +
∏

B1
jk

<0

x
−B1

jk

j

])
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=
1

xk ⊗ y
G1

k
s2

[
∏

B1
jk

>0

(
x
B1

jk

j ⊗ y
G1

jB
1
jk

s2

)
+
∏

B1
jk

<0

(
x
−B1

jk

j ⊗ y
−G1

jB
1
jk

s2

)]

=
1

xk ⊗ y
G1

k
s2

[
∏

B1
jk

>0

(
x
B1

jk

j

)
⊗ yds2 +

∏

B1
jk

<0

(
x
−B1

jk

j

)
⊗ yds2

]

=
1

xk

(
∏

B1
jk
>0

x
B1

jk

j +
∏

B1
jk
<0

x
−B1

jk

j

)
⊗ yd−deg xk

s2

= µk(xk)⊗ yd−deg xk
s2

= µk(xk)⊗ ydeg µk(xk)
s2

where
d =

∑

B1
jk
>0

B1
jkG

1
j =

∑

B1
jk

<0

−B1
jkG

1
j

noting that the two are equal since BT
1 G1 = 0 and deg µk(xk) = d− deg xk.

An analogous argument shows that ϕ(µk(yk)) = x
deg µk(yk)
s1 ⊗ µk(yk) for

yk ∈ y.
Now, let z = (z1, . . . , zn1+n2−1) be a cluster m mutation steps away from

the initial cluster x, i.e. z = µp(x) for some mutation path p of length m,
and assume that

ϕ(zj) = zj ⊗ y
deg zj
s2

for zj ∈ A1. Denote by B′ the corresponding exchange matrix. We claim
that, for zk ∈ A1,

ϕ(µk(zk)) = µk(zk)⊗ ydeg µk(zk)
s2

.

Indeed, the same calculation as above with z and B′ shows that this is

the case and similarly ϕ(µk(zk)) = x
deg µk(zk)
s1 ⊗ µk(zk), when zk ∈ A2.

The above allows us to define ϕ : A1�A2 → A1 ⊗ A2 on the generat-
ing set of cluster variables as above. We have seen that this respects the
defining (exchange) relations and can therefore be extended to an algebra
homomorphism. It is clearly injective on the generating set of the domain
and therefore injective.

Note that

ϕ(xj) = xj ⊗ y
deg xj
s2 ∈ (A1)deg xj

⊗ (A2)deg xj deg ys2

ϕ(yj) = x
deg yj
s1 ⊗ yj ∈ (A1)deg yj deg xs1

⊗ (A2)deg yj

ϕ(xs) = xs1 ⊗ ys2 ∈ (A1)deg xs1
⊗ (A2)deg ys2

and so we do not land in the Segre product without extra constraints. How-
ever, we also see that the obstacle is the degree of the gluing frozen variables:
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fixing these to be 1, we immediately obtain that the map is a graded homo-
morphism to the Segre product.

Proposition 2.7. Let Ai = (xi, exi, Bi, Gi), i = 1, 2 be graded cluster alge-
bras such that there exist s1 ∈ {1, . . . , n1} \ ex1 and s2 ∈ {1, . . . , n2} \ ex2 of
degree 1.

Then the map ϕ : A1�A2 → A1⊗A2 given on initial cluster variables by

ϕ(xj) = xj ⊗ y
deg xj
s2 for j ∈ {1, . . . , n1},

ϕ(yj) = x
deg yj
s1 ⊗ yj for j ∈ {1, . . . , n2} and

ϕ(xs) = xs1 ⊗ ys2

is an injective graded algebra homomorphism, with the property that the
above formulæ hold for any cluster of A1�A2.

It remains to show that ϕ is an isomorphism, for then the cluster struc-
ture defined on A1�A2 indeed induces a cluster structure on the Segre
product A1⊗A2. This again requires a further assumption.

Definition 2.8. Let A = (x, ex, B,G) be a graded cluster algebra. We say
that a cluster y of A is homogeneous of degree d if all cluster variables in
y have the same degree d.

Theorem 2.9. Let Ai = (xi, exi, Bi, Gi = 1), i = 1, 2 be graded cluster
algebras such that x1 and x2 are homogeneous of degree 1 and fix s1 ∈
{1, . . . , n1} \ ex1 and s2 ∈ {1, . . . , n2} \ ex2.

Then the map ϕ : A1�A2 → A1⊗A2 given on initial cluster variables by

ϕ(xj) = xj ⊗ ys2 for j ∈ {1, . . . , n1},

ϕ(yj) = xs1 ⊗ yj for j ∈ {1, . . . , n2} and

ϕ(xs) = xs1 ⊗ ys2

is a graded algebra isomorphism, with the property that the above formulæ
hold for any cluster of A1�A2.

Thus the construction above endows A1⊗A2 with the structure of a clus-
ter algebra.

Proof. It remains to check surjectivity. Note that a generating set for
A1⊗A2 is given by taking the elementary tensors with components in gen-
erating sets for A1 and A2, i.e.

{z1 ⊗ z2|z1 ∈ (A1)d, z2 ∈ (A2)d cluster variables, d ∈ Z}

Now

z1 ⊗ z2 = (z1 ⊗ ys2)(xs1 ⊗ z2)(x
−d
s1

⊗ y−d
s2

) = ϕ(z1)ϕ(z2)ϕ(xs)
−d.

Hence, Imϕ contains a generating set for A1⊗A2, and so ϕ is surjective.
The claim follows.
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Remark 2.10. Notice that in proving surjectivity, we required ϕ(xs) =
xs1 ⊗ ys2, and hence xs1 and ys2 themselves, to be invertible, but no other
frozen variables needed to be invertible for the proof to hold.

The following is now immediate from Lemmas 2.3 and 2.4.

Corollary 2.11. Let Ai = (xi, exi, Bi, Gi = 1), i = 1, 2 be graded cluster
algebras such that x1 and x2 are homogeneous of degree 1 and fix s1 ∈
{1, . . . , n1} \ ex1 and s2 ∈ {1, . . . , n2} \ ex2.

Then

(i) the cluster algebras A1⊗A2 and A2⊗A1 are isomorphic as cluster al-
gebras;

(ii) A1⊗A2 is of finite type if and only if A1 and A2 are;

(iii) writing κ(A) for the number of cluster variables of a cluster algebra
A, we have κ(A1⊗A2) = κ(A1) + κ(A2) − 1 when these numbers are
all finite; and

(iv) writing K(A) for the number of clusters of A, we have K(A1⊗A2) =
K(A1)K(A2) when these numbers are all finite.

Remark 2.12. In the above theorem, we require the input clusters to be
homogeneous of degree one. This was necessary to ensure that the image of
ϕ generates the Segre product as defined. We note that this condition is very
restrictive and it would be desirable for it to be weakened. However, without
it, it does not seem feasible to describe the image in as simple a fashion as
for the standard Segre product.

We also observe that, as a result, the construction of A1�A2 and hence
the cluster structure induced on A1⊗A2 is strongly “rooted”, i.e. dependent
on a choice of initial clusters with specific properties. Even in a graded clus-
ter algebra that has a homogeneous cluster, only with very specific exchange
matrices we will find that other clusters are also homogeneous.
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