Colombeau Algebra: A pedagogical introduction

Jonathan Gratus*
Physics Department, Lancaster University, Lancaster LA1 4YB and the Cockcroft Institute.

August 2, 2013

Abstract

A simple pedagogical introduction to the Colombeau algebra of generalised functions is presented, leading the standard definition.

1 Introduction

This is a pedagogical introduction to the Colombeau algebra of generalised functions. I will limit myself to the Colombeau Algebra over \mathbb{R}. Rather than \mathbb{R}^{n}. This is mainly for clarity. Once the general idea has been understood the extension to \mathbb{R}^{n} is not too difficult. In addition I have limited the introduction to \mathbb{R} valued generalised functions. To replace with \mathbb{C} valued generalised functions is also rather trivial.

I hope that this guide is useful in your understanding of Colombeau Algebras. Please feel free to contact me.

There is much general literature on Colombeau Algebras but I found the books by Colombeau himself[1] and the Masters thesis by Tạ Ngọc Trí [2] useful.

2 Test functions and Distributions

The set of infinitely differentiable functions on \mathbb{R} is given by

$$
\begin{equation*}
\mathcal{F}(\mathbb{R})=\left\{\phi: \mathbb{R} \rightarrow \mathbb{R} \mid \phi^{(n)} \text { exists for all } n\right\} \tag{1}
\end{equation*}
$$

Test functions are those function which in addition to being smooth are zero outside an interval, i.e.

$$
\begin{equation*}
\mathcal{F}_{0}(\mathbb{R})=\{\phi \in \mathcal{F}(\mathbb{R}) \mid \text { there exists } a, b \in \mathbb{R} \text { such that } f(x)=0 \text { for } x<a \text { and } x>b\} \tag{2}
\end{equation*}
$$

I will assume the reader is familiar with distributions, either in the notation of integrals or as linear functionals. Thus the most important distributions is the Dirac- δ. This is defined either as a "function" $\delta(x)$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) \phi(x) d x=\phi(0) \tag{3}
\end{equation*}
$$

Or as a distribution $\Delta: \mathcal{F}_{0}(\mathbb{R}) \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\Delta[\phi]=\phi(0) \tag{4}
\end{equation*}
$$

We will refer to (3) as the integral notation and (4) as the Schwartz notation. An arbitrary distribution will be written either as $\psi(x)$ for the integral notation or Ψ for the Schwartz notation.

Figure 1: Plots of $\phi_{1} \in \mathbb{A}_{1}$ and $\phi_{3} \in \mathbb{A}_{3}$

3 Function valued distributions

The first step in understanding the Colombeau Algebra is to convert distributions into a new object which takes a test functions ϕ and gives a functions

$$
\boldsymbol{A}: \mathcal{F}_{0}(\mathbb{R}) \rightarrow \mathcal{F}(\mathbb{R})
$$

This is achieved by using translation of the test functions. Given $\phi \in \mathcal{F}_{0}$ then let

$$
\begin{equation*}
\phi^{y} \in \mathcal{F}_{0}(\mathbb{R}), \quad \phi^{y}(x)=\phi(x-y) \tag{5}
\end{equation*}
$$

Then in integral notation

$$
\begin{equation*}
\bar{\psi}[\phi](y)=\int_{-\infty}^{\infty} \psi(x) \phi(x-y) d x \tag{6}
\end{equation*}
$$

and in Schwartz notation

$$
\begin{equation*}
\bar{\Psi}[\phi](y)=\Psi\left[\phi^{y}\right] \tag{7}
\end{equation*}
$$

We will define the Colombeau Algebra in such a way that they include the elements $\bar{\psi}$ and $\bar{\Psi}$. The overline will be used to covert distributions into elements of the Colombeau algebra.

We label the set of all function valued functionals

$$
\begin{equation*}
\mathcal{H}(\mathbb{R})=\left\{\boldsymbol{A}: \mathcal{F}_{0}(\mathbb{R}) \rightarrow \mathcal{F}(\mathbb{R})\right\} \tag{8}
\end{equation*}
$$

We see below that we need to restrict $\mathcal{H}(\mathbb{R})$ further in order to define the Colombeau algebra $\mathcal{G}(\mathbb{R})$.
Observe that we use a slightly non standard notation. Here $\boldsymbol{A}[\phi]: \mathbb{R} \rightarrow \mathbb{R}$ is a function, so that given a point $x \in \mathbb{R}$ then $\boldsymbol{A}[\phi](x) \in \mathbb{R}$. One can equally write $\boldsymbol{A}[\phi](x)=\boldsymbol{A}(\phi, x)$, which is the standard notation in the literature. However I claim that the notation $\boldsymbol{A}[\phi](x)$ does have advantages.

4 Three special examples.

For the Dirac- δ we see that

$$
\begin{equation*}
\bar{\delta}=\bar{\Delta}=\boldsymbol{R} \tag{9}
\end{equation*}
$$

Figure 2: Heaviside (black) and $\bar{\theta}[\phi]$ (red) and $(\bar{\theta}[\phi])^{2}$ (blue)
where $\boldsymbol{R} \in \mathcal{H}(\mathbb{R})$ is the reflection map

$$
\begin{equation*}
\boldsymbol{R}[\phi](y)=\phi(-y) \tag{10}
\end{equation*}
$$

This is because

$$
\bar{\delta}[\phi](y)=\int_{-\infty}^{\infty} \delta(x) \phi(x-y) d x=\phi(-y)
$$

and is Schwartz notation

$$
\bar{\Delta}[\phi](y)=\Delta\left[\phi^{y}\right]=\phi^{y}(0)=\phi(-y)
$$

Regular distribution: Given any function $f \in \mathcal{F}$ then there is a distribution f^{D} given by

$$
\begin{equation*}
f^{D}[\phi]=\int_{-\infty}^{\infty} f(x) \phi(x) d x \tag{11}
\end{equation*}
$$

Thus we set $\bar{f}=\overline{f^{D}} \in \mathcal{H}(\mathbb{R})$ as

$$
\begin{equation*}
\bar{f}[\phi](y)=f^{D}\left[\phi^{y}\right]=\int_{-\infty}^{\infty} f(x) \phi(x-y) d x \tag{12}
\end{equation*}
$$

The other important generalised functions are the regular functions. That is given $f \in \mathcal{F}$ we set

$$
\begin{equation*}
\tilde{f} \in \mathcal{H}(\mathbb{R}), \quad \tilde{f}[\phi]=f \quad \text { that is } \quad \tilde{f}[\phi](y)=f(y) \tag{13}
\end{equation*}
$$

The effect of replacing $\bar{\psi}\left[\phi_{\epsilon}\right]$ is to smooth out ψ. Examples of ϕ are given in figure 1. The action $\bar{\theta}[\phi]$ where θ is the Heaviside function is given in figure 2 .

5 Sums and Products

Given two Generalised functions $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{H}(\mathbb{R})$ then we can define there sum and product in the natural way

$$
\begin{equation*}
\boldsymbol{A}+\boldsymbol{B} \in \mathcal{H}(\mathbb{R}) \quad \text { via } \quad(\boldsymbol{A}+\boldsymbol{B})[\phi]=\boldsymbol{A}[\phi]+\boldsymbol{B}[\phi] \quad \text { i.e. } \quad(\boldsymbol{A}+\boldsymbol{B})[\phi](y)=\boldsymbol{A}[\phi](y)+\boldsymbol{B}[\phi](y) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{B} \in \mathcal{H}(\mathbb{R}) \quad \text { via } \quad(\boldsymbol{A B})[\phi]=\boldsymbol{A}[\phi] \boldsymbol{B}[\phi] \quad \text { i.e. } \quad(\boldsymbol{A} \boldsymbol{B})[\phi](y)=\boldsymbol{A}[\phi](y) \boldsymbol{B}[\phi](y) \tag{15}
\end{equation*}
$$

We see that the product of delta functions $\bar{\delta}^{2} \in \mathcal{H}(\mathbb{R})$ is clearly defined. That is

$$
\bar{\delta}^{2}[\phi](y)=(\bar{\delta}[\phi] \bar{\delta}[\phi])(y)=\bar{\delta}[\phi](y) \bar{\delta}[\phi](y)=(\phi(-y))^{2}
$$

Although this is a generalised function, it does not correspond to a distribution, via (7). That is there is no distribution Ψ such that $\bar{\Psi}=(\bar{\delta})^{2}$.

Likewise we can see from figure 2 that $(\bar{\theta})^{2}[\phi]=(\bar{\theta}[\phi])^{2} \neq \bar{\theta}[\phi]$.

6 Making \bar{f} and \tilde{f} equivalent

Now compare the generalised function \bar{f} and $\tilde{f}(12),(13)$. We would like these two generalised functions to be equivalent, so that we can write $\bar{f} \sim \tilde{f}$. One of the results of making $\bar{f} \sim \tilde{f}$ is that if $f, g \in \mathcal{F}$ then

$$
\overline{(f g)} \sim \widetilde{(f g)}=\tilde{f} \tilde{g} \sim \bar{f} \bar{g}
$$

In the Colombeau algebra, which is a quotient of equivalent generalised functions, we say that \bar{f} and \tilde{f} are the same generalised function.

The goal therefore is to restrict the set of possible ϕ so that when they are acted upon by $(\bar{f}-\tilde{f})$ the difference is small, where small will be made technically precise. When we think of quantities being small, we need a 1-parameter family of such quantities such that in the limit the difference vanishes. Here we label the parameter ϵ and we are interested in the limit $\epsilon \rightarrow 0$ from above, i.e. with $\epsilon>0$. Given a one parameter set of functions $g_{\epsilon} \in \mathcal{F}$ then one meaning to say g_{ϵ} is small is if $g_{\epsilon}(y) \rightarrow 0$ for all y. However we would like a whole hierarchy of smallness. That is for any $q \in \mathbb{N}_{0}=\mathbb{N} \bigcup\{0\}$ then we can say

$$
\begin{equation*}
g_{\epsilon}=\mathcal{O}\left(\epsilon^{q}\right) \tag{16}
\end{equation*}
$$

if $\epsilon^{-q} g_{\epsilon}(y)$ is bounded as $\epsilon \rightarrow 0$. Note that we use bounded, rather that tends to zero. However, clearly, if $g_{\epsilon}=\mathcal{O}\left(\epsilon^{q}\right)$ then $\epsilon^{-q+1} g_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$.

We will also need the notion of $g_{\epsilon}=\mathcal{O}\left(\epsilon^{q}\right)$ where $q<0$. Thus we wish to consider functions which blow up as $\epsilon \rightarrow 0$, but not too quickly. Such functions will be called moderate.

Technically we say g_{ϵ} satisfies (16) if for any interval (a, b) there exists $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\epsilon^{-q}\left|g_{\epsilon}(x)\right|<C \quad \text { for all } \quad a \leq y \leq b \quad \text { and } \quad 0<\epsilon<\eta \tag{17}
\end{equation*}
$$

We introduce the parameter ϵ via the test functions, replacing $\phi \in \mathcal{F}_{0}$ with $\phi_{\epsilon} \in \mathcal{F}_{0}$ where

$$
\begin{equation*}
\phi_{\epsilon}(x)=\frac{1}{\epsilon} \phi\left(\frac{x}{\epsilon}\right) \tag{18}
\end{equation*}
$$

Observe at as $\epsilon \rightarrow 0$ then ϕ_{ϵ} becomes narrower and taller, in a definite sense more like a δ-function. Thus we consider a generalised function \boldsymbol{A} to be small, if for some appropriate set of test functions $\phi \in \mathcal{F}_{0}$ and for some $q \in \mathbb{Z}, \boldsymbol{A}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q}\right)$.

Let us first restrict $\phi \in \mathcal{F}_{0}$ to be test function which integrate to 1 . That is we define $\mathbb{A}_{0} \subset \mathcal{F}_{0}$,

$$
\begin{equation*}
\mathbb{A}_{0}=\left\{\phi \in \mathcal{F}_{0} \mid \int_{-\infty}^{\infty} \phi(x) d x=1\right\} \tag{19}
\end{equation*}
$$

f (back), $\bar{f}\left[\left.\phi_{1}\right|_{\epsilon=0.2}\right]$ (blue) and $\bar{f}\left[\left.\phi_{1}\right|_{\epsilon=0.1}\right]$ (red). $\quad f$ (back), $\bar{f}\left[\left.\phi_{3}\right|_{\epsilon=0.2}\right]$ (blue) and $\bar{f}\left[\left.\phi_{3}\right|_{\epsilon=0.1}\right]$ (red).

$(\bar{f}-\tilde{f})\left[\left.\phi_{1}\right|_{\epsilon=0.02}\right]$ (blue) and
$(\bar{f}-\tilde{f})\left[\left.\phi_{3}\right|_{\epsilon=0.02}\right]$ (blue) and
$(\bar{f}-\tilde{f})\left[\left.\phi_{1}\right|_{\epsilon=0.01}\right]$ (red).
$(\bar{f}-\tilde{f})\left[\left.\phi_{3}\right|_{\epsilon=0.01}\right]$ (red).

Figure 3: Plots of $\bar{f}\left[\phi_{\epsilon}\right]$ with $f(x)=\tanh (10 x)$

Given $\phi \in \mathbb{A}_{0}$ and setting $z=(x-y) / \epsilon$ so that $x=y+\epsilon z$

$$
\begin{align*}
\bar{f}\left[\phi_{\epsilon}\right](y) & =f^{D}\left[\phi_{\epsilon}^{y}\right]=\int_{-\infty}^{\infty} f(x) \phi_{\epsilon}(x-y) d x=\frac{1}{\epsilon} \int_{-\infty}^{\infty} f(x) \phi\left(\frac{x-y}{\epsilon}\right) d x \\
& =\int_{-\infty}^{\infty} f(y+\epsilon z) \phi(z) d z \tag{20}
\end{align*}
$$

Thus as $\epsilon \rightarrow 0$ then $f(y+\epsilon z) \approx f(y)$ so that, since $\phi \in \mathbb{A}_{0}$,

$$
\bar{f}\left[\phi_{\epsilon}\right](y)=\int_{-\infty}^{\infty} f(y+\epsilon z) \phi(z) d z \approx \int_{-\infty}^{\infty} f(y) \phi(z) d z=f(y) \int_{-\infty}^{\infty} \phi(z) d z=f(y)=\tilde{f}\left[\phi_{\epsilon}\right](y)
$$

In fact since $f(y+\epsilon z)-f(y)=\mathcal{O}(\epsilon)$ we can show using (17) that

$$
\begin{equation*}
\text { if } \quad \phi \in \mathbb{A}_{0} \quad \text { then } \quad(\bar{f}-\tilde{f})\left[\phi_{\epsilon}\right]=\mathcal{O}(\epsilon) \tag{21}
\end{equation*}
$$

This is good so far, but we want to further restrict the set ϕ so that we can satisfy

$$
\begin{equation*}
(\bar{f}-\tilde{f})\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q}\right) \tag{22}
\end{equation*}
$$

to any order of $\mathcal{O}\left(\epsilon^{q}\right)$.
Taylor expanding $f(y+\epsilon z)$ to order $\mathcal{O}\left(\epsilon^{q+1}\right)$ we have

$$
f(y+\epsilon z)=\sum_{r=0}^{q} \frac{\epsilon^{r} z^{r} f^{(r)}(y)}{r!}+\mathcal{O}\left(\epsilon^{q+1}\right)
$$

Thus

$$
\begin{align*}
(\bar{f}-\tilde{f})\left[\phi_{\epsilon}\right](y) & =\int_{-\infty}^{\infty}(f(y+\epsilon z)-f(y)) \phi(z) d z=\int_{-\infty}^{\infty}\left(\sum_{n=1}^{q} \frac{\epsilon^{r} z^{r} f^{(r)}(y)}{r!}+\mathcal{O}\left(\epsilon^{q+1}\right)\right) \phi(z) d z \\
& =\sum_{n=1}^{q} \frac{\epsilon^{r} f^{(r)}(y)}{r!} \int_{-\infty}^{\infty} z^{r} \phi(z) d z+\mathcal{O}\left(\epsilon^{q+1}\right) \tag{23}
\end{align*}
$$

Thus we can satisfy (16) to order $\mathcal{O}\left(\epsilon^{q+1}\right)$ if the first q moments of $\phi(z)$ vanish:

$$
\int_{-\infty}^{\infty} z^{r} \phi(z) d z=0 \quad \text { for } \quad 1 \leq r \leq q
$$

We now define all the elements with vanishing moments.

$$
\begin{equation*}
\mathbb{A}_{q}=\left\{\phi \in \mathcal{F}_{0}(\mathbb{R}) \mid \int_{-\infty}^{\infty} \phi(z) d z=1 \quad \text { and } \quad \int_{-\infty}^{\infty} z^{r} \phi(z) d z=0 \quad \text { for } \quad 1 \leq r \leq q\right\} \tag{24}
\end{equation*}
$$

So clearly $\mathbb{A}_{q+1} \subset \mathbb{A}_{q}$. We can show that these functions exist. Thus from (23) we have

$$
\begin{equation*}
\phi \in \mathbb{A}_{q} \quad \text { implies } \quad(\bar{f}-\tilde{f})\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q+1}\right) \tag{25}
\end{equation*}
$$

Two example test functions $\phi_{1} \in \mathbb{A}_{1}$ and $\phi_{3} \in \mathbb{A}_{3}$ are given in figure 1 . The result $\bar{f}\left[\phi_{\epsilon}\right]$, (12), (20) is given in fig 3 .

The easiest way to construct $\phi \in \mathbb{A}_{q}$ is to choose a test function ψ and then set

$$
\phi(z)=\lambda_{0} \psi(z)+\lambda_{1} \psi^{\prime}(z)+\cdots+\lambda_{q-1} \psi^{(q-1)}(z)
$$

where $\lambda_{0}, \ldots, \lambda_{q-1} \in \mathbb{R}$ are constants determined by (24).

7 Null and moderate generalised functions.

As we stated we wanted \bar{f} and \tilde{f} to be considered equivalent. From we have $\phi \in \mathbb{A}_{q}$ then $(\bar{f}-\tilde{f})\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q+1}\right)$. We generalise this notion. We say that $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{H}(\overline{\mathbb{R}})$ are equivalent, $\boldsymbol{A} \sim \boldsymbol{B}$, if for all $q \in \mathbb{N}$ there is a $p \in \mathbb{N}$ such that

$$
\begin{equation*}
\phi \in \mathbb{A}_{p} \quad \text { implies } \quad \boldsymbol{A}\left[\phi_{\epsilon}\right]-\boldsymbol{B}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q}\right) \tag{26}
\end{equation*}
$$

We label $\mathcal{N}^{(0)}(\mathbb{R}) \subset \mathcal{H}(\mathbb{R})$ the set of all elements which are null, that is equivalent to the zero element $\mathbf{0} \in \mathcal{H}(\mathbb{R})$ that is

$$
\mathcal{N}^{(0)}(\mathbb{R})=\{\boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \mid \boldsymbol{A} \sim \mathbf{0}\}
$$

I.e.

$$
\begin{equation*}
\mathcal{N}^{(0)}(\mathbb{R})=\left\{\boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \mid \text { for all } p \in \mathbb{N} \text { there exists } q \in \mathbb{N} \text { such that for all } \phi \in \mathbb{A}_{q}, \quad \boldsymbol{A}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{p}\right)\right\} \tag{27}
\end{equation*}
$$

Examples of null elements are of course $\bar{f}-\tilde{f} \in \mathcal{N}^{(0)}(\mathbb{R})$, which is true by construction. Another example is $\boldsymbol{N} \in \mathcal{N}^{(0)}(\mathbb{R})$ which is given by

$$
\begin{equation*}
\boldsymbol{N}[\phi](y)=\phi(1) \tag{28}
\end{equation*}
$$

Since for any $\phi \in \mathbb{A}_{0}$ there exists $\eta>0$ such that $1 / \eta$ is outside the support of ϕ. Thus $\phi_{\epsilon}(1)=0$ for all $\epsilon<\eta$ and hence $\boldsymbol{N}\left[\phi_{\epsilon}\right]=0$ so $\boldsymbol{N} \in \mathcal{N}^{(0)}(\mathbb{R})$. However, although $\boldsymbol{N} \in \mathcal{N}^{(0)}$, we can choose ϕ so that $\boldsymbol{N}[\phi](y)=\phi(1)$ is any value we choose. Thus knowing that a generalised function \boldsymbol{A} is null says nothing about the value of $\boldsymbol{A}[\phi]$ but only the limit of $\boldsymbol{A}\left[\phi_{\epsilon}\right]$ as $\epsilon \rightarrow 0$.

We would like $\mathcal{N}^{(0)}(\mathbb{R})$ to form an ideal in $\mathcal{H}(\mathbb{R})$, that is that if $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{N}^{(0)}(\mathbb{R})$ and $\boldsymbol{C} \in \mathcal{H}(\mathbb{R})$ then

- $\boldsymbol{A}+\boldsymbol{B} \in \mathcal{N}^{(0)}(\mathbb{R})$ and
- $\boldsymbol{A C} \in \mathcal{N}^{(0)}(\mathbb{R})$.

It is easy to see that the first of these is automatically satisfied. However the second requires one additional requirement. We need

$$
\begin{equation*}
\boldsymbol{C}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{-N}\right) \tag{29}
\end{equation*}
$$

for some $N \in \mathbb{Z}$. Thus although $\boldsymbol{C}\left[\phi_{\epsilon}\right] \rightarrow \infty$ as $\epsilon \rightarrow 0$ we don't want it to blow up to quickly. Now we have the following:

Given $\boldsymbol{A} \in \mathcal{N}^{(0)}(\mathbb{R})$ and \boldsymbol{C} satisfying (29) and given $q \in \mathbb{N}_{0}$ then there exists $p \in \mathbb{Z}$ such that $\phi \in \mathbb{A}_{p}$ implies $\boldsymbol{A}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q+N}\right)$. Hence

$$
(\boldsymbol{A C})\left[\phi_{\epsilon}\right]=\boldsymbol{A}\left[\phi_{\epsilon}\right] \boldsymbol{C}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{q+N}\right) \mathcal{O}\left(\epsilon^{-N}\right)=\mathcal{O}\left(\epsilon^{q}\right)
$$

hence $\boldsymbol{A} \boldsymbol{C} \in \mathcal{N}^{(0)}(\mathbb{R})$. We call the set of elements $\boldsymbol{C} \in \mathcal{H}(\mathbb{R})$ satisfying 29, moderate and set of moderate functions

$$
\begin{equation*}
\mathcal{E}^{(0)}(\mathbb{R})=\left\{\boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \mid \text { there exists } N \in \mathbb{N} \text { such that for all } \phi \in \mathbb{A}_{0}, \boldsymbol{A}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{-N}\right)\right\} \tag{30}
\end{equation*}
$$

Examples of moderate functions include

$$
\bar{\Delta}\left[\phi_{\epsilon}\right](y)=\phi_{\epsilon}(-y)=\frac{1}{\epsilon} \phi\left(-\frac{y}{\epsilon}\right)=\mathcal{O}\left(\epsilon^{-1}\right), \quad(\bar{\Delta})^{n}\left[\phi_{\epsilon}\right]=\mathcal{O}\left(\epsilon^{-n}\right)
$$

and

$$
\tilde{f}\left[\phi_{\epsilon}\right](y)=f(y)=\mathcal{O}\left(\epsilon^{0}\right)
$$

8 Derivatives

The last part in the construction of the Colombeau Algebra is to extend all the definitions so that they also apply to the derivatives $\frac{d \boldsymbol{A}[\phi]}{d y}, \frac{d^{2} \boldsymbol{A}[\phi]}{d y^{2}}$, etc. We require that not only does a moderate function not blow up too quickly, but neither do its derivatives, i.e.

$$
\begin{equation*}
(\boldsymbol{A}[\phi])^{(n)}=\frac{d^{n}}{d y^{n}}(\boldsymbol{A}[\phi]) \in \mathcal{E}^{(0)}(\mathbb{R}) \tag{31}
\end{equation*}
$$

Thus we define the set of moderate function as

$$
\begin{equation*}
\mathcal{E}(\mathbb{R})=\left\{\boldsymbol{A} \in \mathcal{E}^{(0)}(\mathbb{R}) \mid(\boldsymbol{A}[\phi])^{(n)} \in \mathcal{E}^{(0)}(\mathbb{R}) \text { for all } n \in \mathbb{N}, \phi \in \mathbb{A}_{0}\right\} \tag{32}
\end{equation*}
$$

That is

$$
\begin{align*}
& \mathcal{E}(\mathbb{R})=\left\{\boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \mid \text { for all } n \in \mathbb{N}_{0} \text { there exists } N \in \mathbb{N} \text { such that for all } \phi \in \mathbb{A}_{0},\right. \\
& \left.\qquad\left(\boldsymbol{A}\left[\phi_{\epsilon}\right]\right)^{(n)}=\mathcal{O}\left(\epsilon^{-N}\right)\right\} \tag{33}
\end{align*}
$$

Likewise we require that for two generalised functions to be equivalent then we require that all the derivatives are small

$$
\begin{equation*}
\mathcal{N}(\mathbb{R})=\left\{\boldsymbol{A} \in \mathcal{N}^{(0)}(\mathbb{R}) \mid(\boldsymbol{A}[\phi])^{(n)} \in \mathcal{N}^{(0)}(\mathbb{R}) \text { for all } n \in \mathbb{N}\right\} \tag{34}
\end{equation*}
$$

That is

$$
\begin{align*}
& \mathcal{N}(\mathbb{R})=\left\{\boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \mid \text { for all } n \in \mathbb{N}_{0} \text { and } q \in \mathbb{N} \text { there exists } p \in \mathbb{N}\right. \text { such that } \tag{35}\\
& \left.\qquad \text { for all } \phi \in \mathbb{A}_{p},\left(\boldsymbol{A}\left[\phi_{\epsilon}\right]\right)^{(n)}=\mathcal{O}\left(\epsilon^{q}\right)\right\}
\end{align*}
$$

9 Quotient Algebra

We write the Colombeau Algebra as a quotient algebra,

$$
\begin{equation*}
\mathcal{G}(\mathbb{R})=\mathcal{E}(\mathbb{R}) / \mathcal{N}(\mathbb{R}) \tag{36}
\end{equation*}
$$

This means that, with regard to elements $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{E}(\mathbb{R})$ we say $\boldsymbol{A} \sim \boldsymbol{B}$ if $\boldsymbol{A}-\boldsymbol{B} \in \mathcal{N}(\mathbb{R})$. For elements in $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{G}(\mathbb{R})$ we simply write $\boldsymbol{A}=\boldsymbol{B}$.

Given $\boldsymbol{A} \in \mathcal{G}(\mathbb{R})$, then in order to get an actual number we must first choose a representative $\boldsymbol{B} \in \mathcal{E}(\mathbb{R})$ of $\boldsymbol{A} \in \mathcal{G}(\mathbb{R})$, then we must choose $\phi \in \mathbb{A}_{0}$ and $y \in \mathbb{R}$ then the quantity $\boldsymbol{B}[\phi](y) \in \mathbb{R}$.

10 Summary

We can summarise the steps needed to go from distributions to Colombeau functions:

- Convert distributions which give a number $\Psi[\phi]$ as an answer to functionals $\boldsymbol{A}[\phi]$ which give a function as an answer.
- Construct the sets of test functions \mathbb{A}_{q}, so that $\bar{f} \sim \tilde{f}$, i.e. $\bar{f}-\tilde{f} \in \mathcal{N}^{(0)}(\mathbb{R})$
- Limit the generalised functions to elements of $\mathcal{E}^{(0)}(\mathbb{R})$ so that the set $\mathcal{N}^{(0)}(\mathbb{R}) \subset \mathcal{E}^{(0)}(\mathbb{R})$ is an ideal.
- Extend the definitions of $\mathcal{E}^{(0)}(\mathbb{R})$ and $\mathcal{N}^{(0)}(\mathbb{R})$ to $\mathcal{E}(\mathbb{R})$ and $\mathcal{N}(\mathbb{R})$ so that they also apply to derivatives.
- Define the Colombeau Algebra as the quotient $\mathcal{G}(\mathbb{R})=\mathcal{E}(\mathbb{R}) / \mathcal{N}(\mathbb{R})$.

The formal definition, we define $\mathcal{E}(\mathbb{R})$ via (33), then $\mathcal{N}(\mathbb{R})$ via (35) and (24). Then define the Colombeau Algebra $\mathcal{G}(\mathbb{R})$ as the quotient (36).

Acknowledgement

The author is grateful for the support provided by STFC (the Cockcroft Institute ST/G008248/1) and EPSRC (the Alpha-X project EP/J018171/1.

References

[1] Jean François Colombeau. Elementary introduction to new generalized functions. Elsevier, 2011.
[2] Tạ Ngọc Trí and Tom H Koornwinder. The Colombeau Theory of Generalized Functions. Master's thesis, KdV Institute, Faculty of Science, University of Amsterdam, The Netherlands, 2005.

