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Abstract

A simple pedagogical introduction to the Colombeau algebra of generalised functions is
presented, leading the standard definition.

1 Introduction

This is a pedagogical introduction to the Colombeau algebra of generalised functions. I will limit
myself to the Colombeau Algebra over R. Rather than R™. This is mainly for clarity. Once the
general idea has been understood the extension to R™ is not too difficult. In addition I have limited
the introduction to R valued generalised functions. To replace with C valued generalised functions
is also rather trivial.

I hope that this guide is useful in your understanding of Colombeau Algebras. Please feel free to
contact me.

There is much general literature on Colombeau Algebras but I found the books by Colombeau
himself[I] and the Masters thesis by Ta Ngoc Tri[2] useful.

2 Test functions and Distributions

The set of infinitely differentiable functions on R is given by
FR)={¢:R—>R| ¢'™ exists for all n} (1)
Test functions are those function which in addition to being smooth are zero outside an interval, i.e.
Fo(R) = {¢ € F(R) | there exists a,b € R such that f(z) =0 for x < a and = > b} (2)

I will assume the reader is familiar with distributions, either in the notation of integrals or as
linear functionals. Thus the most important distributions is the Dirac-d. This is defined either as a
“function” 0(x) such that

/ " s(@)é(a)dr = 6(0) (3)

Or as a distribution A : Fy(R) — R,

Alg] = ¢(0) (4)

We will refer to as the integral notation and as the Schwartz notation. An arbitrary distri-
bution will be written either as ¢ (z) for the integral notation or ¥ for the Schwartz notation.
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Figure 1: Plots of ¢; € A; and ¢3 € A3

3 Function valued distributions

The first step in understanding the Colombeau Algebra is to convert distributions into a new object
which takes a test functions ¢ and gives a functions

A Fy(R) —» F(R)

This is achieved by using translation of the test functions. Given ¢ € F; then let

P eR®), &)= by 5)
Then in integral notation
Tol) = [ vt - y)ds ©)
and in Schwartz notation
Tlel(y) = 0[] ™)

We will define the Colombeau Algebra in such a way that they include the elements ¢ and U. The
overline will be used to covert distributions into elements of the Colombeau algebra.
We label the set of all function valued functionals

HR) ={A: Fo(R) = F(R)} (8)

We see below that we need to restrict H(R) further in order to define the Colombeau algebra G(R).

Observe that we use a slightly non standard notation. Here A[¢] : R — R is a function, so
that given a point x € R then A[¢](z) € R. One can equally write A[¢](x) = A(¢p,x), which is the
standard notation in the literature. However I claim that the notation A[¢](z) does have advantages.

4 Three special examples.

For the Dirac-d we see that

|
I
L>|
I
=y
2



0.8 1 0.8

0.6 0.6

Figure 2: Heaviside (black) and 0[¢] (red) and (@[(b])Q (blue)

where R € H(R) is the reflection map

This is because

and is Schwartz notation

Alol(y) = Al¢¥] = ¢*(0) = d(—y)

Regular distribution: Given any function f € F then there is a distribution f? given by
6= | f@ows (1)
Thus we set f = f0 € H(R) as

Flél) = FPlY) = / " f@)éla — y)de (12)

The other important generalised functions are the regular functions. That is given f € F we set

Fer®), flo]=f thatis flel(y) = f(y) (13)
_ The effect of replacing [ is to smooth out . Examples of ¢ are given in figure . The action
0[¢] where 0 is the Heaviside function is given in figure
5 Sums and Products

Given two Generalised functions A, B € H(R) then we can define there sum and product in the
natural way

A+ BeH(R) via (A+B)¢] = Alg]+ Bl¢] ie (A+B)¢l(y) = Alg](y) + Blgl(y) (14)



and

AB c H(R) via (AB)[¢] = A[¢|B[¢] ic. (AB)[9](y) = A[sl(y)Bl9](y) (15)
We see that the product of delta functions 62 € H(R) is clearly defined. That is

O*[¢l(y) = (8]10]¢]) (y) = d[¢l(1)d[)(y) = (P(—y))

Although this is a generalised function, it does not correspond to a distribution, via . That is
there is no distribution ¥ such that ¥ = (§)2.

Likewise we can see from figure [2| that (6)%[¢] = (5[gb])2 £ 0[¢).

2

6 Making f and f equivalent

Now compare the generalised function f and f_ :' We would like these two generalised
functions to be equivalent, so that we can write f ~ f. One of the results of making f ~ f is that

if f,g € F then
(fo)~(f9)=Ffg~T7

In the Colombeau algebra, which is a quotient of equivalent generalised functions, we say that f and
f are the same generalised function.

The goal therefore is to restrict the set of possible ¢ so that when they are acted upon by (f — f )
the difference is small, where small will be made technically precise. When we think of quantities
being small, we need a l-parameter family of such quantities such that in the limit the difference
vanishes. Here we label the parameter ¢ and we are interested in the limit ¢ — 0 from above, i.e.
with € > 0. Given a one parameter set of functions g. € F then one meaning to say g. is small
is if g.(y) — 0 for all y. However we would like a whole hierarchy of smallness. That is for any
q € Ny =NJ{0} then we can say

ge = O(Eq) (16)

if € %g.(y) is bounded as ¢ — 0. Note that we use bounded, rather that tends to zero. However,
clearly, if g. = O(e?) then e %1g. — 0 as € — 0.

We will also need the notion of g. = O(e?) where ¢ < 0. Thus we wish to consider functions
which blow up as € — 0, but not too quickly. Such functions will be called moderate.

Technically we say g. satisfies if for any interval (a, b) there exists C' > 0 and 1 > 0 such that

e ge(x)] < C  for all a<y<b and 0<e<n (17)

We introduce the parameter € via the test functions, replacing ¢ € Fy with ¢. € Fy where

o) = (%) (18)

Observe at as € — 0 then ¢. becomes narrower and taller, in a definite sense more like a d-function.
Thus we consider a generalised function A to be small, if for some appropriate set of test functions
¢ € Fo and for some q € Z, A[p] = O(€?).

Let us first restrict ¢ € Fy to be test function which integrate to 1. That is we define Ay C Fy,

Ay = {qb e Fo ‘ /_Z¢(x)dx - 1} (19)
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Figure 3: Plots of f[¢.] with f(z) = tanh(10z)



Given ¢ € Ay and setting z = (z — y)/e so that x = y + ez

Tlow) = £k = [ Zf(x)cbe(x o= [ :f(x)¢><x —)ar

- [t e

Thus as € — 0 then f(y + €z) =~ f(y) so that, since ¢ € Ay,

Flod) = / " by + e)o(2)dz ~ / T Fwel2)dz = £(y) / T 6(2)dz = £y) = Fledw)

In fact since f(y + ez) — f(y) = O(¢e) we can show using that
it gehy  then  (F—f)lod =0()
This is good so far, but we want to further restrict the set ¢ so that we can satisfy
(f = Nled = O

to any order of O(e?).
Taylor expanding f(y + €z) to order O(e?™!) we have

q € (r)
f(y—l-ez)zz—zj;! )

r=0

+ O(eqH)

Thus

B R ) () q €T (r)
F-pedw = [ (re) - s = [~ (3 FHW

[e.9] —0o0

4q " (r) 0o
- 2} fT(y)/ 2 P(2)dz + O(et)

[e.e]

Thus we can satisfy to order O(e?*!) if the first ¢ moments of ¢(z) vanish:

/ 2'p(z)dz=0 for 1<r<gq

o0

We now define all the elements with vanishing moments.

2'p(2)dz=0 for 1<r< q}

—00

A, = {gb € Fo(R) ‘ /Zgb(z)dz —1 and /

So clearly A,y; C A,. We can show that these functions exist. Thus from ([23) we have

¢ € A, implies (f — f)[p] = O(e"t)

(20)

(21)

(22)

(24)

(25)

Two example test functions ¢; € A; and ¢3 € A3 are given in figure . The result f[¢.], ,

is given in fig 3]
The easiest way to construct ¢ € A, is to choose a test function ¢ and then set

$(2) = At (2) + M (2) + -+ + A1 (2)

where \g, ..., ;-1 € R are constants determined by .



7 Null and moderate generalised functions.

As we stated we wanted f and f to be considered equivalent. From we have ¢ € A, then
(f = lod = O(e7™'). We generalise this notion. We say that A, B € H(R) are equivalent, A ~ B,
if for all ¢ € N there is a p € N such that

¢ € A, implies A[p] — Blp] = O(e?) (26)

We label NO(R) C H(R) the set of all elements which are null, that is equivalent to the zero
element 0 € H(R) that is

NOMR)={A cHR)| A~ 0}
ILe.

NOR) ={A € H(R) | for all p € N there exists ¢ € N such that for all ¢ € A,, A[¢] = O(e?)}
(27)

Examples of null elements are of course f — f € NO(R), which is true by construction. Another
example is N € N (R) which is given by

N¢l(y) = o(1) (28)

Since for any ¢ € A there exists n > 0 such that 1/n is outside the support of ¢. Thus ¢.(1) =0
for all € < n and hence N[¢.] = 0 so N € NO(R). However, although N € N we can choose ¢
so that N[¢]|(y) = ¢(1) is any value we choose. Thus knowing that a generalised function A is null
says nothing about the value of A[¢] but only the limit of A[¢.] as e — 0.

We would like N (R) to form an ideal in H(R), that is that if A, B € N©(R) and C € H(R)
then

e A+ Bc NOR)and
e AC e NO(R).

It is easy to see that the first of these is automatically satisfied. However the second requires one
additional requirement. We need

Clo] = O(™) (29)

for some N € Z. Thus although C[¢.] — oo as € — 0 we don’t want it to blow up to quickly. Now
we have the following:

Given A € NO(R) and C satisfying and given ¢ € Ny then there exists p € Z such that
¢ € A, implies A[p.] = O(e7™V). Hence

(AC)[p] = A[6]Clo] = O(e™M)O(e™™) = O(e?)

hence AC € NO(R). We call the set of elements C € H(R) satisfying , moderate and set of

moderate functions
EO(R) = {A € H(R) | there exists N € N such that for all ¢ € Ag, A[p] =0 ™M)}  (30)

Examples of moderate functions include

o) = o) = 2o~ L) =06, (&)fo] =0

€

and



8 Derivatives

The last part in the construction of the Colombeau Algebra is to extend all the definitions so that

dA d’A
they also apply to the derivatives dg[/(ﬁ]’ dy£¢]’ etc. We require that not only does a moderate
function not blow up too quickly, but neither do its derivatives, i.e.
dn
(Alp)™ = 7 (Al9]) € E0R) (31)
Thus we define the set of moderate function as
E(R) = {A c EO(R) ] (A[6)™ € EO(R) for all n € N, ¢ € AO} (32)

That is
E(R) = {A € H(R) ‘ for all n € Ny there exists NV € N such that for all ¢ € A,

(Alod)” = 0(¢ ™)}

Likewise we require that for two generalised functions to be equivalent then we require that all the
derivatives are small

N(R) = {A e NO(R) ‘ (Al6)™ € NO(R) for all n € N} (34)

(33)

That is

N(R) = {A € H(R) ‘ for all n € Ny and g € N there exists p € N such that
(35)
for all ¢ € A, (A[¢6])(n) = O(eq)}

9 Quotient Algebra

We write the Colombeau Algebra as a quotient algebra,
G(R) = £(R)/N(R) (36)

This means that, with regard to elements A, B € £(R) we say A ~ B if A— B € N(R). For
elements in A, B € G(R) we simply write A = B.

Given A € G(R), then in order to get an actual number we must first choose a representative
B € £(R) of A € G(R), then we must choose ¢ € Ay and y € R then the quantity B[¢|(y) € R.

10 Summary

We can summarise the steps needed to go from distributions to Colombeau functions:

e Convert distributions which give a number ¥[¢] as an answer to functionals A[¢] which give a
function as an answer.

e Construct the sets of test functions A,, so that f ~ f, ie. f— f € NO(R)

e Limit the generalised functions to elements of £ (R) so that the set N O(R) c £O(R) is an
ideal.

e Extend the definitions of £@(R) and N®(R) to £(R) and N(R) so that they also apply to
derivatives.

e Define the Colombeau Algebra as the quotient G(R) = £(R)/N (R).

The formal definition, we define £(R) via (33)), then N(R) via and (24). Then define the
Colombeau Algebra G(R) as the quotient (30]).
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