Colombeau Algebra: A pedagogical introduction

Jonathan Gratus*

Physics Department, Lancaster University, Lancaster LA1 4YB and the Cockcroft Institute.

August 2, 2013

Abstract

A simple pedagogical introduction to the Colombeau algebra of generalised functions is presented, leading the standard definition.

1 Introduction

This is a pedagogical introduction to the Colombeau algebra of generalised functions. I will limit myself to the Colombeau Algebra over \mathbb{R} . Rather than \mathbb{R}^n . This is mainly for clarity. Once the general idea has been understood the extension to \mathbb{R}^n is not too difficult. In addition I have limited the introduction to \mathbb{R} valued generalised functions. To replace with \mathbb{C} valued generalised functions is also rather trivial.

I hope that this guide is useful in your understanding of Colombeau Algebras. Please feel free to contact me.

There is much general literature on Colombeau Algebras but I found the books by Colombeau himself[1] and the Masters thesis by Ta Ngọc Trí[2] useful.

2 Test functions and Distributions

The set of infinitely differentiable functions on \mathbb{R} is given by

$$\mathcal{F}(\mathbb{R}) = \left\{ \phi : \mathbb{R} \to \mathbb{R} \mid \phi^{(n)} \text{ exists for all } n \right\}$$
(1)

Test functions are those function which in addition to being smooth are zero outside an interval, i.e.

 $\mathcal{F}_0(\mathbb{R}) = \{ \phi \in \mathcal{F}(\mathbb{R}) \mid \text{there exists } a, b \in \mathbb{R} \text{ such that } f(x) = 0 \text{ for } x < a \text{ and } x > b \}$ (2)

I will assume the reader is familiar with distributions, either in the notation of integrals or as linear functionals. Thus the most important distributions is the Dirac- δ . This is defined either as a "function" $\delta(x)$ such that

$$\int_{-\infty}^{\infty} \delta(x)\phi(x)dx = \phi(0) \tag{3}$$

Or as a distribution $\Delta : \mathcal{F}_0(\mathbb{R}) \to \mathbb{R}$,

$$\Delta[\phi] = \phi(0) \tag{4}$$

We will refer to (3) as the integral notation and (4) as the Schwartz notation. An arbitrary distribution will be written either as $\psi(x)$ for the integral notation or Ψ for the Schwartz notation.

^{*}j.gratus@lancaster.ac.uk

Figure 1: Plots of $\phi_1 \in \mathbb{A}_1$ and $\phi_3 \in \mathbb{A}_3$

3 Function valued distributions

The first step in understanding the Colombeau Algebra is to convert distributions into a new object which takes a test functions ϕ and gives a functions

$$\boldsymbol{A}:\mathcal{F}_0(\mathbb{R})\to\mathcal{F}(\mathbb{R})$$

This is achieved by using translation of the test functions. Given $\phi \in \mathcal{F}_0$ then let

$$\phi^y \in \mathcal{F}_0(\mathbb{R}), \qquad \phi^y(x) = \phi(x - y)$$
(5)

Then in integral notation

$$\overline{\psi}[\phi](y) = \int_{-\infty}^{\infty} \psi(x)\phi(x-y)dx \tag{6}$$

and in Schwartz notation

$$\overline{\Psi}[\phi](y) = \Psi[\phi^y] \tag{7}$$

We will define the Colombeau Algebra in such a way that they include the elements $\overline{\psi}$ and $\overline{\Psi}$. The overline will be used to covert distributions into elements of the Colombeau algebra.

We label the set of all function valued functionals

$$\mathcal{H}(\mathbb{R}) = \{ \boldsymbol{A} : \mathcal{F}_0(\mathbb{R}) \to \mathcal{F}(\mathbb{R}) \}$$
(8)

We see below that we need to restrict $\mathcal{H}(\mathbb{R})$ further in order to define the Colombeau algebra $\mathcal{G}(\mathbb{R})$.

Observe that we use a slightly non standard notation. Here $\mathbf{A}[\phi] : \mathbb{R} \to \mathbb{R}$ is a function, so that given a point $x \in \mathbb{R}$ then $\mathbf{A}[\phi](x) \in \mathbb{R}$. One can equally write $\mathbf{A}[\phi](x) = \mathbf{A}(\phi, x)$, which is the standard notation in the literature. However I claim that the notation $\mathbf{A}[\phi](x)$ does have advantages.

4 Three special examples.

For the Dirac- δ we see that

$$\overline{\delta} = \overline{\Delta} = \boldsymbol{R} \tag{9}$$

Figure 2: Heaviside (black) and $\overline{\theta}[\phi]$ (red) and $(\overline{\theta}[\phi])^2$ (blue)

where $\mathbf{R} \in \mathcal{H}(\mathbb{R})$ is the reflection map

$$\mathbf{R}[\phi](y) = \phi(-y) \tag{10}$$

This is because

$$\overline{\delta}[\phi](y) = \int_{-\infty}^{\infty} \delta(x)\phi(x-y)dx = \phi(-y)$$

and is Schwartz notation

$$\overline{\Delta}[\phi](y) = \Delta[\phi^y] = \phi^y(0) = \phi(-y)$$

Regular distribution: Given any function $f \in \mathcal{F}$ then there is a distribution f^D given by

$$f^{D}[\phi] = \int_{-\infty}^{\infty} f(x)\phi(x)dx \tag{11}$$

Thus we set $\overline{f} = \overline{f^D} \in \mathcal{H}(\mathbb{R})$ as

$$\overline{f}[\phi](y) = f^D[\phi^y] = \int_{-\infty}^{\infty} f(x)\phi(x-y)dx$$
(12)

The other important generalised functions are the regular functions. That is given $f \in \mathcal{F}$ we set

$$\tilde{f} \in \mathcal{H}(\mathbb{R}), \qquad \tilde{f}[\phi] = f \quad \text{that is} \quad \tilde{f}[\phi](y) = f(y)$$
(13)

The effect of replacing $\overline{\psi}[\phi_{\epsilon}]$ is to smooth out ψ . Examples of ϕ are given in figure 1. The action $\overline{\theta}[\phi]$ where θ is the Heaviside function is given in figure 2.

5 Sums and Products

Given two Generalised functions $A, B \in \mathcal{H}(\mathbb{R})$ then we can define there sum and product in the natural way

$$\mathbf{A} + \mathbf{B} \in \mathcal{H}(\mathbb{R})$$
 via $(\mathbf{A} + \mathbf{B})[\phi] = \mathbf{A}[\phi] + \mathbf{B}[\phi]$ i.e. $(\mathbf{A} + \mathbf{B})[\phi](y) = \mathbf{A}[\phi](y) + \mathbf{B}[\phi](y)$ (14)

and

$$AB \in \mathcal{H}(\mathbb{R})$$
 via $(AB)[\phi] = A[\phi]B[\phi]$ i.e. $(AB)[\phi](y) = A[\phi](y)B[\phi](y)$ (15)

We see that the product of delta functions $\overline{\delta}^2 \in \mathcal{H}(\mathbb{R})$ is clearly defined. That is

$$\overline{\delta}^2[\phi](y) = (\overline{\delta}[\phi]\overline{\delta}[\phi])(y) = \overline{\delta}[\phi](y)\overline{\delta}[\phi](y) = \left(\phi(-y)\right)^2$$

Although this is a generalised function, it does not correspond to a distribution, via (7). That is there is no distribution Ψ such that $\overline{\Psi} = (\overline{\delta})^2$.

Likewise we can see from figure 2 that $(\overline{\theta})^2[\phi] = (\overline{\theta}[\phi])^2 \neq \overline{\theta}[\phi].$

6 Making \overline{f} and \tilde{f} equivalent

Now compare the generalised function \overline{f} and \tilde{f} (12),(13). We would like these two generalised functions to be equivalent, so that we can write $\overline{f} \sim \tilde{f}$. One of the results of making $\overline{f} \sim \tilde{f}$ is that if $f, g \in \mathcal{F}$ then

$$\overline{(fg)}\sim \widetilde{(fg)}=\widetilde{f}~\widetilde{g}\sim \overline{f}~\overline{g}$$

In the Colombeau algebra, which is a quotient of equivalent generalised functions, we say that \overline{f} and \tilde{f} are the same generalised function.

The goal therefore is to restrict the set of possible ϕ so that when they are acted upon by $(\overline{f} - f)$ the difference is *small*, where *small* will be made technically precise. When we think of quantities being small, we need a 1-parameter family of such quantities such that in the limit the difference vanishes. Here we label the parameter ϵ and we are interested in the limit $\epsilon \to 0$ from above, i.e. with $\epsilon > 0$. Given a one parameter set of functions $g_{\epsilon} \in \mathcal{F}$ then one meaning to say g_{ϵ} is small is if $g_{\epsilon}(y) \to 0$ for all y. However we would like a whole hierarchy of smallness. That is for any $q \in \mathbb{N}_0 = \mathbb{N} \bigcup \{0\}$ then we can say

$$g_{\epsilon} = \mathcal{O}(\epsilon^q) \tag{16}$$

if $\epsilon^{-q}g_{\epsilon}(y)$ is bounded as $\epsilon \to 0$. Note that we use bounded, rather that tends to zero. However, clearly, if $g_{\epsilon} = \mathcal{O}(\epsilon^{q})$ then $\epsilon^{-q+1}g_{\epsilon} \to 0$ as $\epsilon \to 0$.

We will also need the notion of $g_{\epsilon} = \mathcal{O}(\epsilon^q)$ where q < 0. Thus we wish to consider functions which blow up as $\epsilon \to 0$, but not too quickly. Such functions will be called *moderate*.

Technically we say g_{ϵ} satisfies (16) if for any interval (a, b) there exists C > 0 and $\eta > 0$ such that

$$\epsilon^{-q}|g_{\epsilon}(x)| < C$$
 for all $a \le y \le b$ and $0 < \epsilon < \eta$ (17)

We introduce the parameter ϵ via the test functions, replacing $\phi \in \mathcal{F}_0$ with $\phi_{\epsilon} \in \mathcal{F}_0$ where

$$\phi_{\epsilon}(x) = \frac{1}{\epsilon} \phi\left(\frac{x}{\epsilon}\right) \tag{18}$$

Observe at as $\epsilon \to 0$ then ϕ_{ϵ} becomes narrower and taller, in a definite sense more like a δ -function. Thus we consider a generalised function \boldsymbol{A} to be small, if for some appropriate set of test functions $\phi \in \mathcal{F}_0$ and for some $q \in \mathbb{Z}$, $\boldsymbol{A}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^q)$.

Let us first restrict $\phi \in \mathcal{F}_0$ to be test function which integrate to 1. That is we define $\mathbb{A}_0 \subset \mathcal{F}_0$,

$$\mathbb{A}_{0} = \left\{ \phi \in \mathcal{F}_{0} \, \Big| \, \int_{-\infty}^{\infty} \phi(x) dx = 1 \right\}$$
(19)

f (back), $\overline{f}[\phi_1|_{\epsilon=0.2}]$ (blue) and $\overline{f}[\phi_1|_{\epsilon=0.1}]$ (red). f (back), $\overline{f}[\phi_3|_{\epsilon=0.2}]$ (blue) and $\overline{f}[\phi_3|_{\epsilon=0.1}]$ (red).

Figure 3: Plots of $\overline{f}[\phi_{\epsilon}]$ with $f(x) = \tanh(10x)$

Given $\phi \in \mathbb{A}_0$ and setting $z = (x - y)/\epsilon$ so that $x = y + \epsilon z$

$$\overline{f}[\phi_{\epsilon}](y) = f^{D}[\phi_{\epsilon}^{y}] = \int_{-\infty}^{\infty} f(x)\phi_{\epsilon}(x-y)dx = \frac{1}{\epsilon}\int_{-\infty}^{\infty} f(x)\phi\left(\frac{x-y}{\epsilon}\right)dx$$
$$= \int_{-\infty}^{\infty} f(y+\epsilon z)\phi(z)dz$$
(20)

Thus as $\epsilon \to 0$ then $f(y + \epsilon z) \approx f(y)$ so that, since $\phi \in \mathbb{A}_0$,

$$\overline{f}[\phi_{\epsilon}](y) = \int_{-\infty}^{\infty} f(y + \epsilon z)\phi(z)dz \approx \int_{-\infty}^{\infty} f(y)\phi(z)dz = f(y)\int_{-\infty}^{\infty} \phi(z)dz = f(y) = \tilde{f}[\phi_{\epsilon}](y)$$

In fact since $f(y + \epsilon z) - f(y) = \mathcal{O}(\epsilon)$ we can show using (17) that

if
$$\phi \in \mathbb{A}_0$$
 then $(\overline{f} - \tilde{f})[\phi_{\epsilon}] = \mathcal{O}(\epsilon)$ (21)

This is good so far, but we want to further restrict the set ϕ so that we can satisfy

$$(\overline{f} - \tilde{f})[\phi_{\epsilon}] = \mathcal{O}(\epsilon^q) \tag{22}$$

to any order of $\mathcal{O}(\epsilon^q)$.

Taylor expanding $f(y + \epsilon z)$ to order $\mathcal{O}(\epsilon^{q+1})$ we have

$$f(y+\epsilon z) = \sum_{r=0}^{q} \frac{\epsilon^r z^r f^{(r)}(y)}{r!} + \mathcal{O}(\epsilon^{q+1})$$

Thus

$$(\overline{f} - \widetilde{f})[\phi_{\epsilon}](y) = \int_{-\infty}^{\infty} \left(f(y + \epsilon z) - f(y) \right) \phi(z) dz = \int_{-\infty}^{\infty} \left(\sum_{n=1}^{q} \frac{\epsilon^r z^r f^{(r)}(y)}{r!} + \mathcal{O}(\epsilon^{q+1}) \right) \phi(z) dz$$

$$= \sum_{n=1}^{q} \frac{\epsilon^r f^{(r)}(y)}{r!} \int_{-\infty}^{\infty} z^r \phi(z) dz + \mathcal{O}(\epsilon^{q+1})$$
(23)

Thus we can satisfy (16) to order $\mathcal{O}(\epsilon^{q+1})$ if the first q moments of $\phi(z)$ vanish:

$$\int_{-\infty}^{\infty} z^r \phi(z) dz = 0 \quad \text{for} \quad 1 \le r \le q$$

We now define all the elements with vanishing moments.

$$\mathbb{A}_{q} = \left\{ \phi \in \mathcal{F}_{0}(\mathbb{R}) \left| \int_{-\infty}^{\infty} \phi(z) dz = 1 \quad \text{and} \quad \int_{-\infty}^{\infty} z^{r} \phi(z) dz = 0 \quad \text{for} \quad 1 \le r \le q \right\}$$
(24)

So clearly $\mathbb{A}_{q+1} \subset \mathbb{A}_q$. We can show that these functions exist. Thus from (23) we have

$$\phi \in \mathbb{A}_q \quad \text{implies} \quad (\overline{f} - \widetilde{f})[\phi_\epsilon] = \mathcal{O}(\epsilon^{q+1})$$
(25)

Two example test functions $\phi_1 \in \mathbb{A}_1$ and $\phi_3 \in \mathbb{A}_3$ are given in figure 1. The result $\overline{f}[\phi_{\epsilon}]$, (12), (20) is given in fig 3.

The easiest way to construct $\phi \in \mathbb{A}_q$ is to choose a test function ψ and then set

$$\phi(z) = \lambda_0 \psi(z) + \lambda_1 \psi'(z) + \dots + \lambda_{q-1} \psi^{(q-1)}(z)$$

where $\lambda_0, \ldots, \lambda_{q-1} \in \mathbb{R}$ are constants determined by (24).

7 Null and moderate generalised functions.

As we stated we wanted \overline{f} and \tilde{f} to be considered equivalent. From (25) we have $\phi \in \mathbb{A}_q$ then $(\overline{f} - \tilde{f})[\phi_{\epsilon}] = \mathcal{O}(\epsilon^{q+1})$. We generalise this notion. We say that $A, B \in \mathcal{H}(\mathbb{R})$ are equivalent, $A \sim B$, if for all $q \in \mathbb{N}$ there is a $p \in \mathbb{N}$ such that

$$\phi \in \mathbb{A}_p \quad \text{implies} \quad \boldsymbol{A}[\phi_{\epsilon}] - \boldsymbol{B}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^q)$$
(26)

We label $\mathcal{N}^{(0)}(\mathbb{R}) \subset \mathcal{H}(\mathbb{R})$ the set of all elements which are *null*, that is equivalent to the zero element $\mathbf{0} \in \mathcal{H}(\mathbb{R})$ that is

$$\mathcal{N}^{(0)}(\mathbb{R}) = \{oldsymbol{A} \in \mathcal{H}(\mathbb{R}) \, | \, oldsymbol{A} \sim oldsymbol{0} \}$$

I.e.

 $\mathcal{N}^{(0)}(\mathbb{R}) = \{ \boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \mid \text{for all } p \in \mathbb{N} \text{ there exists } q \in \mathbb{N} \text{ such that for all } \phi \in \mathbb{A}_q, \ \boldsymbol{A}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^p) \}$ (27)

Examples of null elements are of course $\overline{f} - \tilde{f} \in \mathcal{N}^{(0)}(\mathbb{R})$, which is true by construction. Another example is $\mathbf{N} \in \mathcal{N}^{(0)}(\mathbb{R})$ which is given by

$$\mathbf{N}[\phi](y) = \phi(1) \tag{28}$$

Since for any $\phi \in \mathbb{A}_0$ there exists $\eta > 0$ such that $1/\eta$ is outside the support of ϕ . Thus $\phi_{\epsilon}(1) = 0$ for all $\epsilon < \eta$ and hence $\mathbf{N}[\phi_{\epsilon}] = 0$ so $\mathbf{N} \in \mathcal{N}^{(0)}(\mathbb{R})$. However, although $\mathbf{N} \in \mathcal{N}^{(0)}$, we can choose ϕ so that $\mathbf{N}[\phi](y) = \phi(1)$ is any value we choose. Thus knowing that a generalised function \mathbf{A} is null says nothing about the value of $\mathbf{A}[\phi]$ but only the limit of $\mathbf{A}[\phi_{\epsilon}]$ as $\epsilon \to 0$.

We would like $\mathcal{N}^{(0)}(\mathbb{R})$ to form an ideal in $\mathcal{H}(\mathbb{R})$, that is that if $A, B \in \mathcal{N}^{(0)}(\mathbb{R})$ and $C \in \mathcal{H}(\mathbb{R})$ then

- $\boldsymbol{A} + \boldsymbol{B} \in \mathcal{N}^{(0)}(\mathbb{R})$ and
- $AC \in \mathcal{N}^{(0)}(\mathbb{R}).$

It is easy to see that the first of these is automatically satisfied. However the second requires one additional requirement. We need

$$\boldsymbol{C}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^{-N}) \tag{29}$$

for some $N \in \mathbb{Z}$. Thus although $C[\phi_{\epsilon}] \to \infty$ as $\epsilon \to 0$ we don't want it to blow up to quickly. Now we have the following:

Given $A \in \mathcal{N}^{(0)}(\mathbb{R})$ and C satisfying (29) and given $q \in \mathbb{N}_0$ then there exists $p \in \mathbb{Z}$ such that $\phi \in \mathbb{A}_p$ implies $A[\phi_{\epsilon}] = \mathcal{O}(\epsilon^{q+N})$. Hence

$$(\boldsymbol{A}\boldsymbol{C})[\phi_{\epsilon}] = \boldsymbol{A}[\phi_{\epsilon}]\boldsymbol{C}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^{q+N})\mathcal{O}(\epsilon^{-N}) = \mathcal{O}(\epsilon^{q})$$

hence $AC \in \mathcal{N}^{(0)}(\mathbb{R})$. We call the set of elements $C \in \mathcal{H}(\mathbb{R})$ satisfying (29), moderate and set of moderate functions

$$\mathcal{E}^{(0)}(\mathbb{R}) = \left\{ \boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \, \middle| \, \text{there exists } N \in \mathbb{N} \text{ such that for all } \phi \in \mathbb{A}_0, \ \boldsymbol{A}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^{-N}) \right\}$$
(30)

Examples of moderate functions include

$$\overline{\Delta}[\phi_{\epsilon}](y) = \phi_{\epsilon}(-y) = \frac{1}{\epsilon}\phi\left(-\frac{y}{\epsilon}\right) = \mathcal{O}(\epsilon^{-1}), \qquad \left(\overline{\Delta}\right)^{n}[\phi_{\epsilon}] = \mathcal{O}(\epsilon^{-n})$$

and

$$\tilde{f}[\phi_{\epsilon}](y) = f(y) = \mathcal{O}(\epsilon^0)$$

8 Derivatives

The last part in the construction of the Colombeau Algebra is to extend all the definitions so that they also apply to the derivatives $\frac{d\mathbf{A}[\phi]}{dy}$, $\frac{d^2\mathbf{A}[\phi]}{dy^2}$, etc. We require that not only does a moderate function not blow up too quickly, but neither do its derivatives, i.e.

$$(\boldsymbol{A}[\phi])^{(n)} = \frac{d^n}{dy^n} (\boldsymbol{A}[\phi]) \in \mathcal{E}^{(0)}(\mathbb{R})$$
(31)

Thus we define the set of moderate function as

$$\mathcal{E}(\mathbb{R}) = \left\{ \boldsymbol{A} \in \mathcal{E}^{(0)}(\mathbb{R}) \mid \left(\boldsymbol{A}[\phi] \right)^{(n)} \in \mathcal{E}^{(0)}(\mathbb{R}) \text{ for all } n \in \mathbb{N}, \phi \in \mathbb{A}_0 \right\}$$
(32)

That is

 $\mathcal{E}(\mathbb{R}) = \left\{ \boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \, \middle| \, \text{for all } n \in \mathbb{N}_0 \text{ there exists } N \in \mathbb{N} \text{ such that for all } \phi \in \mathbb{A}_0, \\ \left(\boldsymbol{A}[\phi_{\epsilon}] \right)^{(n)} = \mathcal{O}(\epsilon^{-N}) \right\}$ (33)

Likewise we require that for two generalised functions to be equivalent then we require that all the derivatives are small

$$\mathcal{N}(\mathbb{R}) = \left\{ \boldsymbol{A} \in \mathcal{N}^{(0)}(\mathbb{R}) \mid \left(\boldsymbol{A}[\phi] \right)^{(n)} \in \mathcal{N}^{(0)}(\mathbb{R}) \text{ for all } n \in \mathbb{N} \right\}$$
(34)

That is

 $\mathcal{N}(\mathbb{R}) = \left\{ \boldsymbol{A} \in \mathcal{H}(\mathbb{R}) \, \middle| \, \text{for all } n \in \mathbb{N}_0 \text{ and } q \in \mathbb{N} \text{ there exists } p \in \mathbb{N} \text{ such that} \\ \text{for all } \phi \in \mathbb{A}_p, \ \left(\boldsymbol{A}[\phi_\epsilon] \right)^{(n)} = \mathcal{O}(\epsilon^q) \right\}$ (35)

9 Quotient Algebra

We write the Colombeau Algebra as a quotient algebra,

$$\mathcal{G}(\mathbb{R}) = \mathcal{E}(\mathbb{R}) / \mathcal{N}(\mathbb{R}) \tag{36}$$

This means that, with regard to elements $A, B \in \mathcal{E}(\mathbb{R})$ we say $A \sim B$ if $A - B \in \mathcal{N}(\mathbb{R})$. For elements in $A, B \in \mathcal{G}(\mathbb{R})$ we simply write A = B.

Given $A \in \mathcal{G}(\mathbb{R})$, then in order to get an actual number we must first choose a representative $B \in \mathcal{E}(\mathbb{R})$ of $A \in \mathcal{G}(\mathbb{R})$, then we must choose $\phi \in A_0$ and $y \in \mathbb{R}$ then the quantity $B[\phi](y) \in \mathbb{R}$.

10 Summary

We can summarise the steps needed to go from distributions to Colombeau functions:

- Convert distributions which give a number $\Psi[\phi]$ as an answer to functionals $\boldsymbol{A}[\phi]$ which give a function as an answer.
- Construct the sets of test functions \mathbb{A}_q , so that $\overline{f} \sim \tilde{f}$, i.e. $\overline{f} \tilde{f} \in \mathcal{N}^{(0)}(\mathbb{R})$
- Limit the generalised functions to elements of $\mathcal{E}^{(0)}(\mathbb{R})$ so that the set $\mathcal{N}^{(0)}(\mathbb{R}) \subset \mathcal{E}^{(0)}(\mathbb{R})$ is an ideal.
- Extend the definitions of $\mathcal{E}^{(0)}(\mathbb{R})$ and $\mathcal{N}^{(0)}(\mathbb{R})$ to $\mathcal{E}(\mathbb{R})$ and $\mathcal{N}(\mathbb{R})$ so that they also apply to derivatives.
- Define the Colombeau Algebra as the quotient $\mathcal{G}(\mathbb{R}) = \mathcal{E}(\mathbb{R})/\mathcal{N}(\mathbb{R})$.

The formal definition, we define $\mathcal{E}(\mathbb{R})$ via (33), then $\mathcal{N}(\mathbb{R})$ via (35) and (24). Then define the Colombeau Algebra $\mathcal{G}(\mathbb{R})$ as the quotient (36).

Acknowledgement

The author is grateful for the support provided by STFC (the Cockcroft Institute ST/G008248/1) and EPSRC (the Alpha-X project EP/J018171/1.

References

- [1] Jean François Colombeau. Elementary introduction to new generalized functions. Elsevier, 2011.
- [2] Tạ Ngọc Trí and Tom H Koornwinder. The Colombeau Theory of Generalized Functions. Master's thesis, KdV Institute, Faculty of Science, University of Amsterdam, The Netherlands, 2005.