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Abstract

The scope of this thesis is to propose new inferential tools, based on diffusion process approx-

imations, for the study of the kinetic parameters in auto-regulatory networks.

In the first part of this thesis, we study the applicability of the EA methodology to Stochas-

tic Differential Equations (SDEs) which approximate biological systems. In principle EA can

be applied to any scalar-valued SDE as long as a transformation (known as Lamperti trans-

form) exists that sets the (new) infinitesimal variance to unity. We explore the numerical

limitations of this requirement by considering a biological system that can be expressed as a

scalar non-linear SDE. Next, we consider the multidimensional extension of this transforma-

tion and we show, with a counterexample, that EA can be applied to a class of SDEs which is

wider than the class of reducible diffusions.

In the second part of this thesis, we proposed a reparametrization of the kinetic constants

that leads to an approximation known as the Linear Noise approximation (LNA). We prove

that LNA converges to a linear SDE, as the size of the biological system increases. Since

the LNA is a linear SDE, it has a known transition density with parameters given as the

solutions of a system of Ordinary Differential Equations (ODEs) which are usually obtained

numerically. Furthermore, we compare the LNA’s simulation performance to the performance

of other (approximate and exact) methods under different modelling scenarios and we relate

the performance of the approximate methods to the system size. In addition, we consider

LNA as an inferential tool and we use two methods, the Restarting (RE), which we propose,

and the Non-Restarting (NR) method, proposed by Komorowski et al. (2009) to derive the

LNA’s likelihood. The two methods differ on the initial conditions that they pose in order to

solve the underlying ODEs. We compare the performance of the two methods by considering

data generated under different scenarios. Finally, we discuss the lnar, a package for the R
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statistical environment, that we developed to implement the LNA methodology.
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Frequently Used Notation

Mathematical Notation

R The set of Real numbers

N The set of Natural numbers, i.e. positive integers

N0 The set of non–negative integers

Z The set of integers

Ft The generated σ–algebra up to time t

Wt Brownian Motion

α {·} The drift parameter of an SDE

σ {·} The diffusion coefficient

Σ The infinitesimal variance covariance matrix

Ri The i−th reaction

ci The rate constant corresponding to Ri

c The vector of constant rates

h (X, c) The vector of hazard laws

hi (X, ci) The hazard law corresponding to Ri

Z Standard Normal Distribution

E [Xt] Expectation of Xt

E [Xt| Ft] Conditional expectation of Xt given the σ-algebra up to time t

diag {X} A diagonal matrix having X as the main diagonal

NT System Size

y(t;ϑ) The system of ordinary differential equations ϑ–depended

` (Xt, c) The log-likelihood function

O(δnt ) if f(δt) ∈ O(δnt ), |f(δt)| ≤M |δnt | where M ∈ R a constant and also 0 < M <∞.

We usually assume that the terms O(δnt ) go faster to zero than δn−1
t when δt → 0.

For other variables, e.g. h, we assume that h→∞.
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Biological – Chemical Notation

X The biological–chemical system

NS Number of Species

NR Number of Reactions

Ri The i–th reaction

{X1} The number of units (molecules) of the X1– species
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Chapter 1

Introduction

Modern scientific disciplines have embraced the principle of reductionism, where a complex

mechanism is explained by simpler ones. The principle of reductionism has affected all aspects

of modern science and its origins can be traced back at 17th century in works of Descartes

(Boogerd et al. 2007). In the exact opposite direction, the idea of integration arises, focusing

on a system of simple interacting mechanisms which, as a whole, constitutes the system of

study. Systems biology, a rather new branch of biology, is based on the integration principle:

it focuses on the interactions that take place in biological systems. The original motivation

for a systemic approach in biology can be found in works of Bánáthy (Chong and Ray 2002),

whereas a treatment on the philosophical foundations of systems biology was presented by

Boogerd et al. (2007). In this thesis we focus on a specialized topic of systems biology: the

gene auto-regulatory networks, i.e. biological systems of genes and their functional products

(e.g. RNA, proteins) which interact with each other.

1.1 Models

Various approaches have been proposed to represent gene regulatory systems. Biologists seem

to favour diagrammatic “block and arrow” representations (Bower and Bolouri 2001) which

are very convenient in illustrating the interactions among the individual species of the system.

Although they give a very good description of the structure of the systems, the absence of

measurable parameters makes the experimental testing particular difficult. A full–scale quan-

titative model can be considered instead, e.g. each participating species can be represented as

a variable in a system of ordinary or partial differential equations. A quantitative model has
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the obvious advantage of measurable variables but also introduces a new obstacle: it becomes

inconvenient to examine the structural relations of species in a list of mathematical formulae.

A common ground has been proposed by treating the interactions of a biological system as

a network of coupled biochemical equations, which provides both quantitative and qualitative

representations. Each interaction in the biological system is represented as a chemical reaction

and the participating species as reactants or products. Furthermore, each reaction is associated

with a particular kinetic constant which is the measurable variable of interest (Wilkinson 2006).

A similar approach make use of the Stochastic Petri Networks ; although they were first

introduced to model concurrency at computer science, they provide, both graphically and

quantitatively, a network representation. Goss and Peccoud (1998) introduce them at the

context of molecular biology and Wilkinson (2006) presents examples of their use in gene

regulatory systems.

As previously mentioned, each biochemical reaction is associated with a kinetic constant

and the subject of this thesis is to propose an inferential methodology for these constants

based on discrete time observations of the biological system of our interest. Although recent

technologies, e.g. confocal microscopy, calcium imaging, fluorescent tagging of proteins (Bower

and Bolouri 2001) permit the observation of molecules within living cells, it is generally difficult

to directly observe the species of interest. Quite often a strategy of indirect observation is

considered instead (Wilkinson 2010), resulting in partial observations subject to measurement

error. For instance, a very popular technique binds a fluorescent protein gene with the gene of

interest in order to produce proteins which are fluorescent to ultra–violet light (e.g. Wilkinson

2010, Finkenstadt et al. 2008, Henderson et al. 2010). The observation of the fluorescent

proteins provides indirect information for the gene activity, but introduces further complexities,

i.e. the need of data calibration (Wilkinson 2010). Nevertheless, it is a realistic requirement

for an inferential procedure be able to analyse partial data with measurement error as well.

The quantitative description of a biological system encompasses the specification of exper-

imentally measurable parameters which is the only way to formally falsify a model (Bower

and Bolouri 2001). Bower and Bolouri (2001) go a step further to suggest a novel research

methodology for systems biology models: a researcher can express his current understating of

a biological system in a model and, with the help of experimental data, he/she will unveil the

model’s limitations in order to be further investigated. Therefore, they argue, the distinction

between experimentation and modelling is blurring as the two methods become more closely

5



related.

Many mathematical modelling approaches to biological systems have been suggested; their

main distinction lies in whether they take into account the system’s intrinsic noise (stochastic

models) or not (deterministic models). Typical deterministic models employ systems of differ-

ential equations or Boolean networks (Gibson and Mjolsness 2001). In particular, differential

equations seem to be the most popular modelling choice, representing the concentration of the

species in the biological system of interest. Also, differential equations are deterministic: a

particular set of initial conditions always results to the same outcome. In contrast, a stochas-

tic approach permits different random outcomes, even when the same initial conditions are

considered. When the population of the participating species in a system increases, the theory

suggests that both approaches, deterministic and stochastic, coincide. Unfortunately, this is

not often the case for gene auto-regulatory networks since the number of individual molecules

per species is not expected to be large (McAdams and Arkin 1997).

Most traditional analytical tools for the stochastic methods make use of the Master Equa-

tion (van Kampen 2007), which is not generally tractable. Gillespie (1976, 1977) proposed an

exact model based on Markov Jump processes and also a method of simulating the system’s

dynamical behaviour which does not rely on the Master Equation formulation. Although,

Gillespie’s method is very appealing, its computational requirements are unrealistic for sys-

tems with a large number of species. Approximations based on diffusions processes have been

considered instead, namely the Chemical Langevin Equation and the Linear Noise Approxima-

tion (LNA). Since we are interested in employing the models for inferential purposes, we rule

out the model of Markov Jump processes since its application to discrete–time observations

is particularly difficult (Boys et al. 2008). In this thesis, we examine new inferential methods

based on models of diffusion processes and in particular the Linear Noise Approximation.

1.2 Thesis Overview

In Chapter 2, we present some elements from the theory of diffusion processes, numerical

optimisation and numerical solution of ordinary differential equations, which will be used in

subsequent chapters. Next, in Chapter 3, we focus on the modelling approaches of auto-

regulatory gene networks and we apply them to two example networks. Chapter 4 is devoted

on the Exact Algorithm (EA), a method proposed by Beskos et al. (2006) for (Monte Carlo)
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likelihood-based estimation of discretely observed diffusion processes: we investigate the mul-

tidimensional extension of the EA algorithm and we illustrate its application to a very simple

auto-regulatory network. In Chapter 5, we return to the general auto-regulatory models, by

deriving the Linear Noise Approximation using a reparameterization of the stochastic kinetic

constants. Additionally, a thorough comparison of the modelling approaches is also considered

in a series of simulated experiments. We continue, in Chapter 6, by considering the Linear

Noise Approximation as an inferential tool. In particular, the LNA approximation relies on

the solution of a system of ODEs, and starting with different assumptions on their initial con-

ditions, we derive two inferential methods which are compared under different experimental

configurations. We also propose an extension of the LNA method for partially observed sys-

tems with measurement error and we illustrate it in a simple system. We have developed the

lnar package which is an implementation of the LNA for the R statistical environment, and

in Chapter 7 we describe the package’s use with two examples based on the auto-regulatory

networks of Chapter 3.
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Chapter 2

Theory Background

In this chapter we present briefly some selected topics of probability theory and numerical

analysis which are used in the subsequent chapters. In particular, we introduce Stochastic

Differential Equations, their (linear) solutions and a convergence theorem of Markov Chains to

SDEs. Additionally, we outline some aspects of the numerical solutions of Ordinary Differential

Equations and numerical optimisation.

2.1 Diffusions

Diffusion processes provide a mathematical model for various physical phenomena; e.g. the

motion of a particle in a fluid container: the particle follows the movement of the fluid but

is also exposed to random collisions with the fluid’s molecules causing small “fluctuations” to

particle’s trajectory. Omitting the fluctuations, we can describe the motion of the particle by

an ordinary differential equation (ODE):

dX

dt
= α {t,X} ,

i.e. the particle at the position X at time t moves according to the fluid’s drift α {X, t}.

Extending the deterministic model, we accommodate for the “random fluctuations” by intro-

ducing a “noise” term:
dXt

dt
= α {t,Xt}+ σ {t,Xt} × noise. (2.1)

We can restrict the choices for the “noise” term by assuming some characteristic properties:

� Independent increments i.e. the present fluctuations do not depend on past or future

fluctuations.
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� Stationarity i.e. its distribution is time–independent.

� Unbiased i.e. its increments have a zero mean.

� Its increments follow a Normal distribution.

The previous assumptions uniquely define (Øksendal 2005) a stochastic processes known as

Brownian Motion1.

2.1.1 Brownian Motion and SDEs

More formally, Brownian Motion, denoted by Wt, is a continuous–time stochastic process with

independent Normal increments, i.e. for 0 ≤ s < t the increment for the 1-d Brownian Motion

follows a Normal distribution with zero mean and variance (t− s):

Wt −Ws ∼ Normal (0, t− s) .

The trajectories of Wt process are continuous2 and their increments (Wt−Ws) are independent

of Ws and of (Wt′ −Wt), assuming t′ > t. Since our “noise” candidate is Normal–distributed

we can approximate the equation (2.1) by assuming that the increments of the state variables

(∆Xt) are also Normal–distributed for small time intervals (δt):

∆Xt = Xt+δt −Xt ∼ Normal
(
α {Xt} δt, σ {Xt}2 δt

)
, (2.2)

where α {·} denotes the infinitesimal mean change, known as the drift coefficient and σ {·}

denotes the infinitesimal standard deviation, known as the diffusion coefficient3.

Although Brownian Motion is a continuous process, its paths are not smooth; in fact, they

are nowhere differentiable (p. 109, Karatzas and Shreve 1991), therefore, we cannot define

a “differential” equation using the conventional limiting approach. An alternative route is to

consider the stochastic integral first, as the limiting sum of (2.2):

Xt ≈ X0 +
k∑
i=0

α {ti, Xti} (ti+1 − ti) +
k∑
i=0

σ {ti, Xti}
(
Wti+1

−Wti

)
(2.3)

with 0 = t0 < t1 < . . . < tk = t and X0 the initial condition, e.g. the starting position of

the particle. For convenience, the notation X(t) will also be used together with Xt. Under

1The name Wiener process is also used.
2Locally Hölder continuous, a generalization of continuity (p. 53, Karatzas and Shreve 1991).
3For vector–valued processes, the infinitesimal Covariance matrix is σ {Xt}T δt σ {Xt}.
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appropriate conditions, (e.g. §3, Øksendal 2005) the sum (2.3) converges to the stochastic

integral known as Itō integral :

X(t, ω) = X(0, ω) +

∫ t

0

α {s,X(s, ω)} ds+

∫ t

0

σ {s,X(s, ω)} dWs(ω) (2.4)

where Xt ≡ X(t). We have used ω to denote the dependence of each variable Xt,Wt on a

particular path of the Brownian motion: at a fixed time t both X(t, ω) and Wt(ω) may have

different values for different trajectories, i.e. X(t, ω) 6= X(t, ω′). The integral of (2.4) contains

the X(t, ω) variable which, under appropriate conditions (§4, Øksendal 2005), is a stochastic

process known as the Itō process. Quite often, if X(t, ω) is an Itō process, a short–hand

notation is used to denote the stochastic integral of (2.4):

dX(t, ω) = α {t,X(t, ω)} dt+ σ {t,X(t, ω)} dWt, (2.5)

which corresponds to a “stochastic” differential equation (SDE). The SDEs that satisfy certain

existence and uniqueness conditions on their solutions, outlined in Theorem 2.1.1, are often

called diffusion processes.

A possible way of simulating, approximately a trajectory Xt(ω), t ∈ [0, T ] of the SDE (2.5),

is to discretize the time interval in small δt partitions and employ the (2.2) approximation. The

latter is known as Euler–Maruyama approximation and approximates (2.5) with the process:

∆X(t) = α {t,X(t)} δt + σ {t,X(t)}Z
√
δt, (2.6)

where Z is a (multidimensional) standard normal distribution. We can then proceed to the

simulation of a X(t) trajectory by applying the Euler–Maruyama approximation sequentially

(Figure 2.1). Naturally, as δt → 0 the approximation converges (§9.6, Kloeden and Platen

1995) to the true process.

2.1.2 Itō’s Lemma

The fundamental theorem of calculus relates the operations of differentiation and integration

of real–valued functions; Itō’s lemma plays a similar role for functions applied to Itō processes.

Specifically, the following lemma holds (Øksendal 2005) for multidimensional processes:

Lemma 2.1.1 LetX(t, ω) be an n–dimensional Itō process as in (2.5). Let g(t, x) = (g1(t, x), g2(t, x), . . . , gp(t, x))

be a C2 (the space of twice differentiable functions) map from [0,∞) × Rn → Rp. Then the
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Figure 2.1: Illustration of the Euler–Maruyama method. The simulation interval (t = 20s) is

partitioned into 5s intervals. At each interval the transition density is approximated with a

Normal distribution (illustrated vertically) and a sample is drawn, which in turn becomes the

next initial point.

process:

Y (t, ω) = g(t,X(t, ω))

is again an Itō process whose component number k, Yk, is given by the formula:

dYk =
∂gk
∂t

(t,X(t, ω)) dt+
n∑
i=1

∂gk
∂xi

(t,X(t, ω))dXi+
1

2

n∑
i=1

n∑
j=1

∂2gk
∂xi∂xj

(t,X(t, ω))dXidXj (2.7)

where the following simplification rules apply:

dWidWj = δijdt, dWidt = dtdWi = dtdt = 0.

Equation (2.7) establishes a closed–form relation between the original process X(t, ω) and

the new process Y (t, ω) which we will use extensively at the next Sections.
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2.1.3 Solution of SDEs

In this Section we will focus on the existence and uniqueness of the solution X(t) of an SDE

(2.5). We must note that there are two types of solutions that satisfy (2.5): the strong and

weak solutions and we will present theorems for the existence and uniqueness of the solutions

which involve the α {·} and σ {·} coefficients. The distinction lies on whether we are given

a particular Brownian motion path in advance and we construct a solution X(t) based on

it or we just ask for any (Xt,Wt) pair that satisfies (2.4). To make the distinction clearer,

we consider the uniqueness properties of two solutions Xt, X
′
t: if they are strong solutions,

they are pathwise unique, i.e. P (Xt = X ′t, ∀ 0 ≤ t < ∞) = 1, whereas if they are weak

solutions, they are unique in law, i.e. they have the same finite–dimensional distributions

P [(Xt1 , . . . , Xtn) ∈ A] = P
[
(X ′t1 , . . . , X

′
tn) ∈ A

]
, n ∈ N.

Example 2.1.1 In order to emphasise the distinction between the weak and strong solutions,

we consider the following trivial SDE:

dXt = −dWt, X0 = 0.

For a given path Wt we can construct, trivially, the strong solution by inverting the sign:

Xt = −Wt.

In addition, the solution X ′t = Wt is only a weak solution because it follows the same law

(Wiener measure), but its trajectory is of opposite sign. �

More formally the existence and pathwise uniqueness of strong solutions of SDEs is given

from the following theorem Øksendal (2005):

Theorem 2.1.1. Existence and uniqueness. Let T > 0 and α {·, ·} : [0, T ] × Rn → Rn,

σ {·, ·} : [0, T ]× Rn → Rn×m be measurable functions satisfying the linear growth condition

|α {t, x} |+ |σ {t, x} | ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ] (2.8)

for some constant C, (where |σ {t, x} |2 =
∑
|σ {t, x}i,j |2) and such that the Lipschitz condition

holds:

|α {t, x} − α {t, y} |+ |σ {t, x} − σ {t, y} | ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ] (2.9)
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for some constant D. Let Z be a random variable which is independent of the σ–algebra4 F (m)
∞

generated by Ws(·), s ≥ 0 and such that

E
[
|Z|2

]
<∞.

Then the stochastic differential equation

dXt = α {t,Xt} dt+ σ {t,Xt} dWt, 0 ≤ t ≤ T, X0 = Z (2.10)

has a unique t–continuous solution Xt(ω) with the property that Xt(ω) is adapted to the filtra-

tion FZt generated by Z and Ws(·); s ≤ t and

E
[∫ T

0

|Xt|2dt
]
<∞. (2.11)

Weak solution As previously mentioned, a weak solution is a pair of processes (Xt,Wt)

together with an appropriate probability space (see for more details §V.16 Rogers and Williams

1988, or, §5.3 Karatzas and Shreve 1991) that satisfy (2.4) or more intuitively, has the “right”

law.

An equivalent expression of the weak solution can be obtained from the martingale problem

(§V.20 Rogers and Williams 1988) (formally stated in Definition 2.1.1) which defines a property

on the law of the process, i.e. the probability measure on the space of continuous functions.

We introduce the martingale problem formulation because it is more convenient and gives

more relaxed conditions for the weak solutions of SDEs, instead of working directly with the

(Xt,Wt) pair. Informally, we consider a process Mt which is based on the drift and diffusion

coefficients of the Xt and on f : any twice continuously differentiable function vanishing outside

a bounded interval. The martingale problem asks whether a probability measure exists under

which the process Mt is a martingale5. If such a measure exists then it is a solution of the

martingale problem, and if is unique then the martingale problem is well–posed. We provide

a formal definition (Øksendal 2005) for completeness:

Definition 2.1.1. Let L be a semi–elliptic differential operator6 of the form

L =
∑

bi
∂

∂xi
+
∑

aij
∂2

∂xi∂xj

4Informally, a σ–algebra (Ft) can be interpreted as the history of the process up to time t.
5The conditional expectation of Ms given its previous history up to time t, s < t is Mt
6An operator can be considered as a mapping between functions e.g. the partial derivative. The differential

operator is a function containing the partial derivative operator.
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where the coefficients bi, aij are locally bounded Borel measurable functions on RN . Then

we say that a probability measure P̃ x on
(

(Rn)[0,∞) ,B
)

solves the martingale problem for L

(starting at x) if the process

Mt = f(ωt)−
∫ t

0

Lf(ωr)dr,M0 = f(x) a.s. P̃ x

is a P̃ x martingale w.r.t. the Borel σ-algebras Bt of (Rn)[0,t], for all f ∈ C2
0(Rn). The

martingale problem is called well–posed if there is a unique measure P̃ x solving the martingale

problem.

It can be shown (§V.20 Rogers and Williams 1988) that when a solution to the martingale

problem exists, it is equivalent to the existence of a weak solution. Similarly, when the law of

an SDE exists and is unique the martingale problems has at most one solution. Of course if

we combine the existence and the uniqueness of the weak solution the martingale problem is

well–posed.

Example 2.1.2 We will give an explicit solution to the martingale problem for the simple

SDE:

dXt = −dWt, X0 = 0,

which corresponds to a differential operator L with coefficients b = 0 and a = 1/2. From Itō’s

lemma (2.1.1) we know that for any twice differentiable function f(x) the following equality

holds:

f(Xt) = f(0) +

∫ t

0

1

2

∂2f(Xs)

∂x2
ds−

∫ t

0

∂f(Xs)

∂x
dWs,

which can be used to derive the following expression for Mt:

Mt = f(Xt)−
∫ t

0

1

2

∂2f(Xs)

∂x2
ds = f(0)−

∫ t

0

∂f(Xs)

∂x
dWs.

The last term is an Itō integral which is a martingale with respect to the probability measure

of the Brownian motion (§3.2 Øksendal 2005). In this trivial example, the law of Xt, P̃
0,

coincides with the law of Wt which is the Wiener measure. Thus Mt, is a P̃ 0-martingale w.r.t.

Bt and we can conclude that P̃ 0 solves the martingale problem. In addition, it is a solution to

a well–posed martingale problem because P̃w is unique. �

A slightly relaxed set of conditions exists which is sufficient in establishing the solution of

the well–posed martingale problem (§V.24 Rogers and Williams 1988):
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Theorem 2.1.2. Stroock–Varadhan uniqueness theorem. Suppose σ {·}σ {·}T : RN →

S+
N , S+

N the space of real N × N nonnegative–definite symmetric matrices, α {·} : RN → RN

and:

(i) Σ = σ {·}σ {·}T is continuous,

(ii) Σ is strictly positive definite, i.e. its eigenvalues are positive,

(iii) for some constant K, for all i, j and x,

|Σi,j| ≤ K(1 + |x|2), |(α {x})i| ≤ K(1 + |x|)

Then the martingale problem for σ {·} , α {·} is well–posed.

One of the requirements of the Theorem 2.1.2 is that all eigenvalues of Σ to be positive.

As we will see in Chapter 3, some kinetic models do not satisfy this requirement because they

follow one or more conservation laws (§2.3.3 Wilkinson 2006). For instance, a conservation law

may state that the total number of a certain species in a system (e.g. copies of a gene) does

not change. A usual work-around is to re-express the conserved species as a linear combination

of a constant and the other species. The simplified kinetic model has the same dynamics as

the original model and the derived SDE approximation has a positive-definite Σ .

2.1.4 Linear SDEs

Generally, very few stochastic differential equations have explicitly known solutions (§4, Kloe-

den and Platen 1995). If an SDE’s drift and diffusion coefficients are linear functions of the

state process, then the SDE belongs to the class of linear stochastic differential equations

which has known solutions. Our concern is focused on a more restricted class, named as linear

SDEs in narrow–sense, which takes the following equivalent form:

dX(t, ω) = F (t)X(t, ω) dt+σ {t} dWt, or, X(t, ω) = X(t0, ω)+

∫ t

t0

F (s)X(s, ω) ds+

∫ t

t0

σ {s} dWs,

(2.12)

i.e. the diffusion coefficient depends on time–varying constants, X(t, ω),Wt are NS and NR–

dimensional processes respectively, while F (t), σ {t} denote time-dependent NS × NS and

NS×NR matrices. The SDE (2.12) has known solutions as a member of the linear SDEs class,

which will be derived in the next Section using a fundamental matrix solution.
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2.1.4.1 Fundamental Matrix Solution

At first look, the deterministic integral of (2.12) involves the state variable, X(t), which is

non–trivial to solve. The Fundamental Matrix method overcomes this difficulty by applying

a transformation to the X(t) process to express (2.12) independently of X(t). The before–

mentioned transformation is the fundamental matrix solution (§5.6, Karatzas and Shreve 1991

or §4.8.6, Kloeden and Platen 1995) which is a matrix that satisfies the following ODE:

dΦ(t; t0) = F (t)Φ(t; t0)dt, Φ(t0; t0) = I, i.e. the unit matrix. (2.13)

we can identify Φ(t; t0) as a first order, matrix–valued, homogeneous ODE with varying coef-

ficients. Solving (2.13) w.r.t. F (t) (assuming Φ(t; t0) is non-singular) we have:

F (t) =
dΦ(t; t0)

dt
Φ−1(t; t0).

Using the last expression, we can express the time derivative of the inverse matrix Φ−1(t; t0)

(note that Φ(t; t0)Φ−1(t; t0) = Φ−1(t; t0)Φ(t; t0) = I ) in terms of F (t):

d

dt
Φ−1(t; t0) = −Φ−1(t; t0)

dΦ(t; t0)

dt
Φ−1(t; t0) = −Φ−1(t; t0)F (t).

In addition, the transpose of Φ−1(t; t0), (Φ−1(t; t0))
T

is a fundamental matrix solution of the

adjoint system of (2.13) (for more details see §3.2 at Coddington and Levinson 1955). Lets

now apply (2.7) to the process Y (t) := U(t,Xt) = Φ−1(t; t0)X(t, ω):

dY (t, ω) =

[
dU

dt
(t,Xt)X(t, ω) + (∇U(t,Xt))

TF (t)X(t, ω)

]
dt+ (∇U(t,Xt))

Tσ {t} dWt

=
[
−Φ−1(t; t0)F (t)X(t, ω) + Φ−1(t; t0)F (t)X(t, ω)

]
dt+ (∇U(t,Xt))

Tσ {t} dWt

= Φ−1(t; t0)σ {t} dWt,

where (∇U(t,Xt))
T is the transpose of the gradient of U(t,Xt) and coincides with the Jacobian

matrix. We can rewrite the last expression in integral form:

Φ−1(t; t0)X(t, ω) = Φ−1(t0; t0)X(t0, ω) +

∫ t

t0

Φ−1(s; t0)σ {s} dWs

X(t, ω) = Φ(t; t0)

(
X(t0, ω) +

∫ t

t0

Φ−1(s; t0)σ {s} dWs

)
, (2.14)

we have used the fact that Φ−1(t0; t0) = I. If we consider each term of (2.14) individually

we can conclude that the SDE is reduced to an ODE plus a Gaussian noise process: X(t0, ω)

is a constant, Φ−1(t; t0),Φ−1(s; t0) and σ {s} are deterministic functions, while the stochastic
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integral
∫ t
t0

Φ−1(s; t0)σ {s} dWs can be interpreted as a Gaussian random variable since it is a

linear combination of the increments of Brownian motion. Therefore, X(t, ω) is a Gaussian

random variable as well. Taking the expectation of the integral representation of (2.12) we

have:

E [X(t, ω)] = E
[
X(t0, ω) +

∫ t

t0

F (s)X(s, ω)ds

]
+ E

[∫ t

t0

σ {s} dWs

]
,

where the expectation of the stochastic integral becomes a vector of zeroes. Additionally, if

we differentiate w.r.t. to t, we can express the mean m(t) of (2.14) as the solution of the

following ODE:
dm(t)

dt
= F (t)m(t). (2.15)

As a side note, if we set our initial value to X(t0) = 0, a NS-vector of zeroes, (2.15) becomes:

E [X(t, ω)|X(t0, ω)] = 0, (2.16)

because (2.15) attends the trivial solution m(t) = 0. For convenience, we define V (s) =

Φ(t; t0)Φ−1(s; t0)σ {s}, and we draw our attention to the variance of the Xt (2.14) given by:

S(t) =

∫ t

t0

V (s)V (s)Tds =

∫ t

to

Φ(t; t0)Φ−1(s; t0)σ {s}
[
Φ(t; t0)Φ−1(s; t0)σ {s}

]T
ds, (2.17)

and a new NS×NS quadratic diffusion J(t, ω) = U(Xt) = X(t, ω)X(t, ω)T with elements given

from the application of Itō’s lemma:

dJij(t, ω) =
1

2

NR∑
m=1

NS∑
l,k=1

Vlm(t)Vkm(t)
∂2Uij
∂xl∂xk

dt+

NR∑
m=1

NS∑
l=1

Flm
∂Uij
∂xl

dW j
t ,

we apply the following simplification to the sum of the first term:

NS∑
l,k=1

Vlm(t)Vkm(t)
∂2Uij
∂xl∂xk

=

 2V 2
im(t), when uii = x2

i

2Vim(t)Vjm(t), when uij = xixj, j 6= i

and E[dJij] = 2
2

∑NR

m=1 Vim(t)Vjm(t) = Vi·(t)V·j(t)
T in vector notation. Therefore, we switch

back to the integral form in order to calculate the expectation of the new process:

E[J(t, ω)] =

∫ t

t0

V (s)V (s)Tds = S(t), (2.18)
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which coincides with the variance of Xt (2.17). We repeat our previous strategy, by taking

the derivate of (2.18) to express S(t) as the solution of the following ODE:

dS(t)

dt
=

d

dt

(
Φ(t; t0)

∫ t

to

Φ−1(s; t0)σ {s}
(
Φ−1(s; t0)σ {s}

)T
ds Φ(t; t0)T

)
=

dΦ(t; t0)

dt

∫ t

to

Φ−1(s; t0)σ {s}
(
Φ−1(s; t0)σ {s}

)T
ds Φ(t; t0)T

+ Φ(t; t0) Φ−1(t; t0)σ {s}
(
Φ−1(t; t0)σ {s}

)T
Φ(t; t0)T

+ Φ(t; t0)

∫ t

to

Φ−1(s; t0)σ {s}
(
Φ−1(s; t0)σ {s}

)T
ds

dΦ(t; t0)T

dt

= F (t)S(t) + σ {t}σ {t}T + S(t)F (t)T . (2.19)

As a side note, the equation (2.19) is also related to the solution of the multidimensional

Kalman–Bucy filtering problem from the filtering theory (Øksendal 2005).

2.1.4.2 Normal Transition Density

In Section 2.1.4 we derived the solution of the linear SDEs in the narrow sense and es-

tablished that X(t) follows a multidimensional normal density. In this Section, we con-

tinue with the derivation of the parameters of the transition density. The transition den-

sity P (X(t, ω)|X(t0, ω)) is a multivariate Normal distribution and we can track its mean and

covariance matrix from the estimates (2.15) and (2.19) respectively:

X(t, ω)|X(t0, ω) ∼ Normal(m(t), S(t)). (2.20)

The evaluation of the transition density (2.20) at a time t, given an initial point X(t0), requires

the solution of the m(t), S(t) ODEs subject to their initial conditions. In addition, due to the

Markov property7 we can write down the transition density and the related ODEs for arbitrary

times s ≤ t, provided that we observe the process’ state at the time instance s:

X(t, ω)|X(s, ω) ∼ Normal(m(t), S(t)),

dm(t)

dt
= F (t)m(t), with initial point m(s) = X(s, ω),

dS(t)

dt
= F (t)S(t) + σ {t}σ {t}T + S(t)F (t)T , with i.p. S(s) = 0 (matrix of zeroes).

Since we are able to track the transition density at any time instance t1 conditioned on an

initial point X(t0), the simulation of the process X(t1) becomes trivial. In addition, the

7For a discrete-time discrete-state process Xt the Markov Property states: P (Xt|Xt−1, Xt−2, . . . , X0) =

P (Xt|Xt−1) .
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Markov property allows us to condition on X(t1) in order to simulate a next point X(t2),

given t0 < t1 < t2, hence we can simulate a full trajectory of the X(t) process by updating

each time the initial state.

2.1.5 Brownian Bridge

We introduce in this subsection a special process which will be used in Chapter 4 extensively.

Intuitively, a Brownian Bridge can be considered as a “stochastic interpolation” between the

points a, b ∈ R of length t ∈ (0,∞), or simply, as a Brownian Motion “tied down” at two

points. More formally, for 0 ≤ s < t, the following SDE (Øksendal 2005):

dYs =
b− Ys
t− s

ds+ dWs, Y0 = a, (2.21)

is solved by a process known as Brownian Bridge:

Ys = a(t− s) + bs+ (t− s)
∫ s

0

1

t− s
dWr. (2.22)

We denote the distribution of (2.22) with W(a,b,t). Furthermore, we can obtain a trajectory

from a Brownian Bridge following W(0,0,t), which is a special case of W(a,b,t), by transforming

a path from a Brownian Motion process:

Ws −
s

t
Wt, s ∈ [0, t].

Additionally, the Brownian Bridge holds the relocation property which facilitates the extension

of its simulation: if ω ∼ W(0,0,t) then for arbitrary a, b ∈ R, s ∈ [0, t], the transformed path

ωs + (1− s/t)a+ (s/t)b, follows W(a,b,t).

2.1.6 Convergence to SDEs

In this Section we try to explore the conditions under which a Markov Chain converges to a

diffusion process. For instance, let us consider Yt, a discrete–time Markov Chain. The process

Yt does not resemble a continuous process and a simple idea to overcome this problem is to

speed up the time. If Yt is constant on time intervals [n, n+1), n ∈ N0 we can introduce a new

process Y h
[t/h] which is now constant on intervals [nh, (n+ 1)h), i.e. h scales one time unit to

a time–period of length h. We expect that as h becomes smaller the process will resemble a

diffusion process and eventually will converge. In the next chapters we adapt this idea to the
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context of chemical reactions: instead of reducing the time step h to speed up the number of

events per unit of time, we increase the system’s size which, in turn, increases the rate of the

occurrence of events and, implicitly, decreases h.

We continue by stating the previous idea formally, using a theorem that sets the condi-

tions for the convergence of a Markov Chain to a diffusion process, originally by Stroock and

Varadhan (1979). In the context of the next theorem, Xh
t is a discrete–state discrete–time

Markov Chain with a scaled time step h. As h → 0, Xh
t converges to a diffusion process Xt.

The following statement of the theorem is by Durrett (1996):

Theorem 2.1.3 (Stroock-Varadhan). Suppose in continuous time, for any compact set K ⊂

Rd, the following holds for the transition rates Qh(x,A) ≡ d
dt
P (Xh

t ∈ A|Xh
0 = x), x ∈ K,

A ∈ Rd:

supx∈K Qh(x,A) <∞

and in either case that the martingale problem is well–posed and for each i, j, R < ∞ and

ε > 0:

(i) limh→0 sup|x|<R
∣∣σhij{Xt} − σij{Xt}

∣∣ = 0, σhij =
∫
|y−z|≤1

(yi − x)(yj − xj)Qh(x, dy)

(ii) limh→0 sup|x|<R
∣∣αhi {Xt} − αi{Xt}

∣∣ = 0, αhi =
∫
|y−z|≤1

(yi − x)Qh(x, dy)

(iii) limh→0 sup|x|<RQ (x,B(x, ε)c) = 0, B(x, ε) = {y : |y − x| < ε}.

If Xh
0 = xh → x then Xh

t converges weakly to Xt, the solution of the martingale problem with

X0 = x.

The infinitesimal moments αh(·), σh(·) above are truncated, i.e. it is assumed that |x−y| ≤

1. Durrett (1996) extends the Theorem above, considering complete infinitesimal moments(
α̂h(·), σ̂h(·)

)
, in the following Lemma (p. 306):

Lemma 2.1.1. If p ≥ 2 and for all R <∞ we have

(a) limh→0 sup|x|≤R |α̂hi {Xt} − αi{Xt}| = 0

(b) limh→0 sup|x|≤R |β̂hij{Xt} − αi{Xt}| = 0

(c) limh→0 sup|x|≤R γ
h
p (x) = 0, γhp (x) =

∫
|y − x|pQh(x, dy)

then (i), (ii) and (iii) of Theorem 2.1.3 hold.
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As we saw in Section 2.1.3, the well–posed martingale problem guarantees the existence

and uniqueness of the weak solution of an SDE, or equivalently, the existence and uniqueness

of a law that all solutions of the Xt SDE follow. Therefore, as h → 0, the scaled Xh
t process

converges weakly, i.e. has the same unique law as the diffusion process Xt. The conditions of

Theorem 2.1.2 are sufficient for the solution of the well–posed martingale problem which are

satisfied by the diffusion processes that we will consider in this thesis.

2.2 ODE Integration

Previously, we established that the solutions of linear SDEs depend on the solution of a system

of ordinary differential equations. Generally, the resulting ODEs cannot be solved analytically

and we resort to numerical solutions. In this Section we introduce the numerical ODEs solvers,

also known as numerical integrators, which will be employed in the subsequent chapters. First

we use one of the simplest method of numerical ODEs solution, Euler’s method, to introduce

the most basic features of ODEs solvers. Then, we consider two major types of numerical

methods of solving systems of ordinary differential equations: Runge–Kutta which combine

several intermediate approximations (Euler–type steps) with a Taylor series expansion, and

Multistep methods (Predictor–Corrector) which estimates the solution by extrapolating the

solutions obtained from previous steps. In particular, we will use two methods that belong to

the latter (multistep) class: Adams’ method and Backward Differentiation Formula which is

better suited for stiff problems.

Generally, a system of ODEs is usually given in the following form:

dYt
dt

= F (t, Yt),

where Yt := Y (t), and F (t, Yt) is the derivative of Yt w.r.t. time t. We are aiming to evaluate

Yt at a certain time point t1, given an initial value Y0 at t0 = 0 < t1. A simple approximation,

known as the Euler’s method, can be derived using the very definition of derivative:

Yt+h ≈ Yt + F (t, Yt)h, (2.23)

where h is the step–size, which is assumed to be small; as h→ 0 the approximation converges

to the true solution (Butcher 2008). The choice of h is crucial for all numerical ODE solvers:

from one hand, a small step–size decreases the approximation error, but on the other hand,
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introduces extra computational cost since as the discretization becomes finer, more evaluations

of F (t, Yt) are needed. Unfortunately, Euler’s method is numerically unstable and its use is

strongly discouraged (Press et al. 2007, Butcher 2008). Nevertheless, it serves as an excellent

introduction to numerical ODE solvers.

An important concept in the analysis of numerical integrators is the order (n) of the nu-

merical method which indicates the order of (local) error at each step O(hn+1), e.g. Euler’s

method is a first–order, O(h2), method. It should be noted that although most numerical

schemes have higher orders expressions, they do not always yield high accuracy (Press et al.

2007), for instance, it may be more efficient to consider a smaller step–size and a lower or-

der. We considered implementations of the ODEs solvers that support adaptive step–sizes:

heuristics are employed to keep the local error estimates under a tolerance level, which is

supplied by the user. Multistep methods follow more sophisticated strategies that enable both

the step–size and the order of the method to vary (Petzold 1983, Uri M. Ascher 1998) as the

solution progresses.

Runga–Kuta is a class of very popular methods (Press et al. 2007) since they are relatively

easy to implement and their properties have been extensively analyzed (e.g. Butcher 2008). In

our analysis, we have chosen the RK45 method which is a modification of the original method.

It is based on the embedded Runge–Kutta formulas that allow for an adaptive step–size control

by monitoring the differences between forth and fifth–order solutions estimates. Additionally,

we have used the implementation of the GSL library (Galassi et al. 2009).

A system of ordinary differential equations is characterized as stiff when, in the course

of its numerical solution, its elements have different scales, e.g. some elements are expected

to change faster than others in the same unit of time. Although a widely accepted formal

definition of stiffness does not exist, a usual ad–hock rule (p. 22 Hairer and Wanner 1991) is

to look for a dominant eigenvalue in the eigenvalue decomposition of the Jacobian of F (t, Yt),

or alternatively, when the ratio of the largest to the smallest absolute eigenvalues indicates

a difference of scale by several orders of magnitude. The previous methods (e.g. RK45) are

numerically unstable for stiff ODEs and specialized methods have been suggested which are

numerically more stable, e.g. see Hairer and Wanner (1991) for an extensive review. The most

popular method for stiff equations is the Backward Differentiation Formula (BDF) which

belongs to the class of Multistep methods. Its basic idea is to evaluate the derivate at time
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t+ h:

Yt+h ≈ Yt + F (Yt+h, t)h,

but since Yt+h is not known beforehand, the only way to track it is numerically, by by employing

a modified Newton method to a system of non–linear equations (Uri M. Ascher 1998).

To overcome the problems associated with stiffness we could employ a specialized method

blindly but it would be computationally inefficient for non-stiff problems. Alternatively, we

have chosen an adaptive method instead, namely LSODA, proposed by Petzold (1983) which

automatically switches between the implicit Adams methods (suitable for non-stiff problems)

and the Backward differentiation formulas (BDF). The switching mechanism relies on esti-

mates of the performance and stability of the solutions to make the appropriate decision. As

previously mentioned, LSODA implements further optimisations that adapt the order of the

numerical integrator using the local error estimates; in particular the order of Adams methods

can vary between 1–12 and for BDF method between 1–5.

2.3 Numerical Optimisation

In our case, Maximum likelihood estimates are not analytically known and are obtained with

the help of numerical optimisation methods. More specifically, we have used two methods

of multidimensional unconstrained non–linear optimisation, namely the Nelder–Mead and the

BFGS method, to optimize the objective function, i.e. the likelihood function derived in

Section 6.2.

2.3.1 Nelder–Mead

The class of direct search multivariate optimisation algorithms describe the methods of un-

constrained optimisation that rely only on evaluations of the objective function without the

explicit use of derivatives (Kolda et al. 2003). The downhill simplex method or the Nelder–

Mead method was first proposed by Nelder and Mead (1965) and remains, until today the

most popular direct search method. The algorithm assumes a simplex, a geometric object,

that consists of N + 1 points in N dimensions. At every iteration, the Nelder–Mead method

adapts the simplex to the local topology of the objective function, using a series of heuristic

moves, and tries to surround a stationary point as close as possible. Kolda et al. (2003) showed
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that it is not guaranteed to converge to a stationary point, i.e. a point where the gradient van-

ishes, unless certain smoothness conditions apply to the objective function (Mckinnon 1999).

Although we based our optimisation tasks on alternative methods (BFGS) that guarantee the

convergence to stationary points, Nelder–Mead remains a reference method and is used for

comparison.

2.3.2 BFGS

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method belongs to the class of multidimen-

sional unconstrained quasi–Newton methods. Newton’s methods approximate the objective

function at each step with a quadratic function based on first (gradient vector) and second–

order (Hessian matrix) derivatives. Quasi-Newton methods do not explicitly use the Hessian

matrix but an approximation based on the gradient vectors. Surprisingly, the approximation

is beneficial (§10.9 Press et al. 2007) in cases where the initial points are located far away

from a stationary point. Unfortunately, due to the dependence of the likelihood function to

the system of ODEs, it is not possible to derive the gradient vectors analytically, with the rare

exception of linear ODEs. We resort to the numerical method of (central) finite differences

(§5.7 Press et al. 2007) to estimate the gradient vectors.
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Chapter 3

Models

In this chapter we begin with a qualitative (biological) description of a genetic regulatory

network and we describe all the intermediate steps until we obtain a quantitative (stochastic)

model. First, we motivate the expression of the interactions in a genetic regulatory network

as biochemical reactions. There is overwhelming theoretical and experimental evidence that

the outcomes of regulatory functions in organisms are non–deterministic (e.g. McAdams and

Arkin 1997), therefore, it is reasonable to assume a stochastic kinetics framework. Various

quantitative approaches have been proposed to model the dynamics of networks of biochemical

reactions and we present them according to their modelling assumptions:

� Markov Jump Processes Gillespie (1976, 1977) expressed, under appropriate physical

assumptions, the kinetics of chemical reactions as Markov Jump processes. His deriva-

tion is exact, since it “correctly accounts for the inherent fluctuations and correlations”1

(Gillespie 1977). Additionally, the author proposed an algorithm to simulate trajecto-

ries from these processes which is presented in Section 3.2.2. In Section 3.3, however,

we argue that this algorithm is too demanding, in terms of the computational cost, to

be considered in a full analysis of a high dimensional system.

� Chemical Langevin Equation Following Wilkinson (2006) and Gillespie (2000), we

can compensate for the large computational cost by employing an approximation. The

approximation is derived at Section (3.3) and is a diffusion process. The resulting SDEs

are non–linear and we employ numerical methods for their solution, e.g. the Euler–

1More formally it correctly follows the probability distributions (Master Equation) imposed by the chemical

laws.
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Maruyama discretization.

� Linear Noise Approximation This can be viewed as a linear approximation of the

Chemical Langevin Equation. It was first introduced by Kurtz (1972) and the resulting

SDEs are linear with tractable solutions. We postpone its exposition until the Section

5.3, where we provide an alternative derivation based on a reparametrization of the

stochastic kinetic constants.

� Master Equation This is a differential equation that expresses the evolution of the

transition probability conditional on a initial point. The Master Equation (ME) is an

infinite order partial differential equation (Gillespie 1991) and does not generally have

analytical solutions (Gillespie 1976), hence cannot be directly employed for the study

of chemical or biological systems. Nevertheless, the ME enables the derivation of ex-

pressions for the evolution of the moments of the transition density (§4.2.C Gillespie

1991). When non–linear systems are considered, the derived moments are expressed in

terms of equations depending on higher order moments, which cannot be solved nei-

ther analytically nor numerically. The moment–closure approximation (Gillespie 2009)

overcomes this obstacle by deriving estimates for the evolution of the moments of the

transition density in the form of a system of ODEs which is easier to solve than the ME,

e.g. see §4.2.B Gillespie (1991) for more details. The main idea of the moment–closure

approximation is to set the moments that exceed a certain order equal to zero, effectively

truncating the transition density’s high order moments. For instance, the truncation of

third and higher order moments leads to a Gaussian approximation with the mean vector

and covariance obtained from the solution of a system of ODEs which can be derived

numerically. As a side note, both the Linear Noise Approximation and the Chemical

Langevin Equation are approximations of the Master Equation (Gillespie 2000, Ferm

et al. 2008).

� Ordinary Differential Equation This is a limiting approximation obtained by increas-

ing the size of the system. The ODE is appealing because of its minimal computational

requirements. The drawback of the ODE model lies on their deterministic nature: the

evolution of the biological system is completely determined by its initial values, which

is a strong assumption considering the intrinsic stochasticity associated with the gene

expression (McAdams and Arkin 1997).
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In this chapter we only focus on the first two methodologies, while the last two are considered

at Chapter 5. A detailed comparison of the above methods can be found at Ferm et al. (2008).

3.1 Stochastic Motivation

The activity of genetic regulatory networks is based on the expression rates of genes and is

often described as a cascade: the product of an expressed gene (e.g. a protein) may regulate

the expression of another gene, creating a genetically coupled link. After the initiation of the

transcription process of the first protein, the process continues until the concentration has

reached a critical level which in turn triggers the second process. Therefore, the time interval

between the two events depends on the rate of accumulation of the protein.

According to the motivational work by McAdams and Arkin (1997) the pattern of protein

concentration exhibits short and random bursts of newly–produced proteins at random time

intervals which resembles a realization of a stochastic process. Additionally, the deterministic

principle is violated when a homogeneous population is exposed to the same initial conditions

but after a certain time becomes non–homogeneous. In our case, the homogeneous population

is an isogenic2 population of cells, and the regulatory function of interest is modelled using

a small number of species. After a period of time, variations in the population will start to

occur creating subpopulations of different phenotypes. These variations can be attributed to

the regulatory mechanism, and more specifically, to a random selection of different regulatory

pathways. Arkin et al. (1998) exhibited this idea by considering a stochastic kinetic model for

the Phage λ–infected Escherichia Coli cells. Simulation from this model resulted in different

phenotypes and was consistent with their experimental observations.

3.2 Interactions as reactions

Following Wilkinson (2006), we assume that a satisfactory representation of the interactions in

a biological system can be expressed as a network of coupled chemical reactions. We consider

a system of NR reactions and NS reactants, a typical reaction (Rj) possesses the following

general form:

Rj : m1 X1 +m2 X2
cj−→ n1 X3. (3.1)

2All members have the same genotype.
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where {Xi} denotes the number of molecules of i-th species of the biochemical system, the

vectors m·,n· are the stoichiometry coefficients and cj are the stochastic rate constants (Gille-

spie 1992). The stochastic rate constants are the parameters of interest, denoted by the vector

c = (c1, . . . , cNR
). The notation at (3.1) describes the reaction of m1 molecules of X1 with

m2 molecules of X2 producing n1 molecules of X3, the product of Rj, with a rate involving

the stochastic rate constants cj. For convenience, we denote with Xt the system’s state (in

number of molecules) at the t time instance and we use the same notation to refer to the

stochastic process which expresses the dynamical behaviour of X. Another convention is that

{·} expresses the number of molecules of the relevant species.

The interpretation of a stochastic rate constant cj can be better explained by considering

the quantity cjδt, which expresses the average probability that a particular combination of the

reactants associated with the Rj reaction will react accordingly in the next δt time interval

(Gillespie 1977). Similarly, the hazard function3 hj (X, cj), takes into account all possible

combinations of the reactants associated with the Rj reaction so that hj (X, cj) expresses the

rate of occurrence of the Rj reaction. For example if the stoichiometry coefficients are the

pair (m1,m2) = (1, 1) and there are {X1}, {X2} molecules of X1,X2 respectively, then there

are {X1}{X2} distinct combinations of reactants. Therefore, the probability of the R1 reaction

occurring in the next δt interval is h1 (X, c1) δt = c1{X1}{X2}δt.

Since the number of reactions is usually large, it is more convenient to work with a matrix

notation. We define as A a (NS × NR) matrix, the reaction or net effect matrix, whose j–th

column describes the difference at the state Xt, after the occurrence of a single reaction of

type Rj:

A·j = (−(mj1, . . . ,mjNS
) + (nj1, . . . , njNS

))T (3.2)

where (mj·, nj·) are the stoichiometric coefficients associated with Rj and the stoichiometry

matrix is the transpose of A: S = AT .

3.2.1 Simple Reactions

In this thesis we will consider only three types of reactions which can be classified according

to their order, i.e. how many reactants participate. We introduce each reaction type and we

also derive the corresponding hazard functions.

3Also known as rate law.
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3.2.1.1 Reactions of order zero

Reactions of the following form:

Rj : ∅ cj−→ Xi,

describe the introduction of new molecules in the system. Since there is an absence of reactants

(∅), the hazard function coincides with the stochastic rate hj (X, cj) = cj.

3.2.1.2 First order reactions

Rj : Xk
cj−→ Xi or ∅

Express the alteration of the Xk biochemical species to the Xi species, as in radioactive decay,

or to extinction (∅). The hazard function is given by:

hj (X, cj) = cj {Xk},

since that each molecule of Xk could change to Xj with stochastic rate cj.

3.2.1.3 Second order reactions

Second order reactions consist of two types. The first describes the reaction of two molecules

of different species:

Rj : Xk + Xl
cj−→ Xi or ∅,

where (Xk,Xl) molecule pairs could react with a stochastic rate cj, resulting the corresponding

hazard function:

hj (X, cj) = cj{Xk}{Xl}.

When two molecules of the same species react:

Rj : 2 Xk
cj−→ Xi or ∅,

we have {Xk} ({Xk} − 1) /2 possible pairs which leads to the following hazard function:

hj (X, cj) =
1

2
cj {Xk} ({Xk} − 1) , (3.3)

which can be approximated it with the following hazard function:

hj (X, cj) =
1

2
cj {Xk}2. (3.4)

In the next chapters, we always employ (3.3) in our exact (Gillespie) simulations and (3.4) to

the ODE and SDE approximations.
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3.2.1.4 Higher order reactions

It has been suggested (Wilkinson 2006) that higher order reactions can be written as a com-

bination of intermediate products and lower order reactions. For example:

3 X1 → X3 can be written as

X1 + X1 → X2 and X2 + X1 → X3

The drawback is that by decomposing a higher order reaction to simpler ones the dynamics

are altered compared to the original reaction. Nevertheless, in this thesis we will only consider

reactions up to second order.

3.2.2 Gillespie algorithm

So far we have discussed how we can obtain a network of coupled chemical reactions from a

biological system. In this Section we are concerned with the analysis of a biochemical system’s

time evolution. Traditional methodologies involve the Master Equation. As mentioned at the

introduction of this Chapter, the Master Equation expresses the time evolution of the tran-

sition density of the system conditional on an initial state. In most of the cases, the Master

Equation is neither analytically nor numerically tractable (Gillespie 1976). Gillespie (1976,

1977) overcame this obstacle by suggesting a stochastic simulation algorithm which follows

the system’s exact dynamics without considering approximations nor time-discretization. The

algorithm simulates realizations of the underlying stochastic (Markov Jump) process by iterat-

ing between two steps: it first simulates the time of the next reaction occurrence (any reaction

allowed) and then chooses a particular reaction.

When reaction Rj occurs at t, the corresponding state X(t) changes deterministically

according to the stoichiometry of Rj or the j–th row of A. Assuming that our current state is

X(t), the next reaction occurs at the time instance (t+t′), where t′ is exponentially distributed:

t′ ∼ Exponential (h0(X, c)) ,

where h0(X, c) =
∑NR

i=1 hi (X, ci) is the total rate. Afterwards, a reaction hj is selected with

probability hj(X, cj)/h0(X, c) and the state is updated accordingly. It should be noted that

the process is constant during the time interval before the occurrence of the next reaction, i.e.

for all t∗ ∈ [t, t+ t′), X(t∗) = X(t).
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Since the rate laws depend on the current state X(t), the time distribution of the next

reaction occurrence is state dependent also. It should be stressed that if we allow the state

variable to change, the distribution of the time of the next reaction occurrence is no longer

Exponential, with the exception of reactions of order zero.

More formally, assuming a fixed volume, a uniform mixture of NS chemical elements which

react through NR reactions and thermal equilibrium the Gillespie algorithm at the j−th

iteration involves the following steps (Algorithm 1) which iterate until the desired duration

has been reached:

Algorithm 1 Gillespie Algorithm

1. Calculate h0(X, c)(j)

2. Sample the time to next occurrence (t+t’): t′ ∼ Exponential(h0(X, c))

3. Choose the j-th reaction with probability P (j) = hj(X, cj)/h0(X, c).

4. Update the state Xt according the stoichiometry of Rj.

3.3 Diffusion approximation

The Gillespie algorithm simulates exact trajectories from Xt, the continuous time discrete–

state stochastic process corresponding to the number of molecules of species (Xi, i = 1, . . . , NS)

of the system. However, it is computationally very demanding, and even impractical for

simulation (Wilkinson 2006) and inference (Boys et al. 2008) of large biological systems. An

alternative approach is to approximate the exact dynamics via a diffusion process known as

the Chemical Langevin equation; Gillespie (2000) provides a formal derivation, whereas we

give an informal introduction, motivated again from Wilkinson (2006).

To derive a diffusion approximation for the discrete–state system Xt at time point t we

consider its behavior in a small fixed time interval δt. The number of occurrences of the jth

reaction (Nj), will be approximately:

Nj ∼ Poisson (hj (X, cj) δt) . (3.5)

In (3.5) we have assumed that the rate of the ith reaction is constant over δt which is in

principle true for the limiting case δt → 0. Furthermore, if we expect Nj occurrences of the
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j–th reaction (Rj), then the current state Xt is expected to change according to the vector

ATj·Nj, where Aj· is the j–th column of A, i.e. the change that results from the occurrence of

a single Rj reaction. Consequently, the state change ∆Xt in a infinitesimal time interval can

be expressed as:

∆Xt = ATN (3.6)

where N = (N1, . . . ,NNR
) is a NR–vector of Poisson (3.5) random variables; their mean is

provided by the vector of hazard functions h (X, c) = (h1 (X, c1) , . . . , hNR
(X, cNR

))T . Due to

the Poisson assumption, each reaction Rj is independent of the others and the mean change

of the overall system becomes:

E [∆Xt] = E
[
ATN

]
= ATh (X, c) δt, (3.7)

and the corresponding variance:

E
[
∆Xt(∆Xt)

T
]

= E
[
ATNN TA

]
= ATdiag {h (X, c)}Aδt +O(δ2

t ) (3.8)

where diag {h (X, c)} is a diagonalNR×NR matrix with main diagonal (h1 (X, c1) , . . . , hNR
(X, cNR

)).

Using the same arguments we can also calculate the third raw moment, which will be used

in the next chapters. The third moment (µ′3) is a multidimensional array of three indices4

(i, j, k), with elements:

E [(∆Xt)i (∆Xt)j (∆Xt)k] =

NR∑
z=1

Azi Azj Azk hz (X, cz) δt +O(δ2
t ). (3.9)

In Chapter 2 we introduced diffusion processes; here we consider one, which we denote by

Vt, and we adapt it to the Poisson process (3.5). For infinitesimally small time intervals dt,

the infinitesimal state change dVt can be approximated, according to the Euler–Maruyama

(2.6) approximation, by a Normal distribution by matching the corresponding mean (3.7) and

variance (3.8) of (3.5):

µ(Vt, c) = ATN and Σ(Vt, c) = σ(Vt, c)σ(Vt, c)
T = ATNA

For simulation purposes, we resort to the Euler–Maruyama approximation (2.6) by discretizing

the desired interval [0, T ] into smaller time increments δt.

4Or more generally a tensor.
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3.3.1 Case studies

We consider two biological models: the Transcription model represents the transcription and

repression of protein in a prokaryotic organism; the Lotka–Volterra model, although not a

biological model per se, is widely used to illustrate a non-linear dynamical auto-regulatory

behavior. We apply the methodology of this chapter to derive the relevant quantitative models,

i.e. the corresponding hazard functions and net effect matrices.

3.3.1.1 Lotka–Volterra Example

The Lotka-Volterra model describes a population of two competitive species; it was proposed

independently by Lotka (1925) and Volterra (1926). We consider two species (Prey, Predators)

which interact in the following way: each prey reproduces (R1) with rate c1; a predator

reproduces by consuming a prey (R2) with rate c2 and has a natural death (R3) with rate c3.

The dependences between the species and the reactions are presented as a graph in Figure 3.1,

where the species are represented as ellipses and the reactions as rectangles. In addition, the

reactions of the model are summarized at (3.10).

Prey R1:Prey Reproduction

R2:Predator-Prey Interaction Predator R3:Predator Death 0

Figure 3.1: Graph representing Lotka Volterra (Prey-Predator) model.

R1 : Prey
c1−→ 2Prey, h1 (X, c1) = c1{Prey}

R2 : Prey + Predator
c2−→ 2Predator, h2 (X, c2) = c2{Predator}{Prey}

R3 : Predator
c3−→ ∅, h3 (X, c3) = c3{Predator}.

(3.10)

The stoichiometry matrix is:

AT =

 1 −1 0

0 1 −1

 . (3.11)
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Therefore, the mean vector and variance matrix are respectively

α {X, c} = ATh (X, c) =

 c1{Prey} − c2{Prey}{Predator}

c2{Prey}{Predator} − c3{Predator}

 (3.12)

and

σ {X, c}T σ {X, c} =

 c1{Prey}+ c2{Prey}{Predator} −c2{Prey}{Predator}

−c2{Prey}{Predator} c2{Prey}{Predator}+ c3{Predator}


(3.13)

�

3.3.1.2 Transcription Example

For our modelling purposes we use the example in Golightly and Wilkinson (2005) which

is represented graphically in Figure 3.2. This biochemical network describes a prokaryotic

auto-regulatory network illustrating three cellular process: transcription, degradation and

repression. Schematically, the biochemical network is expressed by five reactants:

X = (RNA,P,P2,DNA · P2,DNA),

illustrated as ellipses, and eight reactions, illustrated as rectangles, which occur with stochastic

rate constants c = (c1, . . . , c8) according to the dependence graph of Figure (3.2).

A gene (DNA) is transcribed (R3) to RNA which in turn is translated (R4) to protein

P. Both RNA and P degrade as time passes, which is expressed by the reactions R7 and

R8 respectively. Finally, two molecules of P bind together (R5) to form protein dimers P2

which can either split again (R6) or repress the DNA transcription by binding (R1) to the

operator region. Additionally, the attached repressor DNA · P2 can also be detached (R2).

The corresponding rate laws are:

R1 : DNA + P2
c1−→ DNA · P2, h1 (X, c1) = c1 {DNA}{P2}

R2 : DNA · P2
c2−→ DNA + P2, h2 (X, c2) = c2{DNA · P2}

R3 : DNA
c3−→ DNA + RNA, h3 (X, c3) = c3{DNA}

R4 : RNA
c4−→ RNA + P, h4 (X, c4) = c4{RNA}

R5 : 2P
c5−→ P2, h5 (X, c5) = 1

2
c5{P}({P} − 1)

R6 : P2
c6−→ 2P, h6 (X, c6) = c6{P2}

R7 : RNA
c7−→ ∅, h7 (X, c7) = c7{RNA}

R8 : P
c8−→ ∅, h8 (X, c8) = c8{P}.
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DNA

R1: Repression binding R3: Transcription

P2.DNA

R2: Reverse repression binding

Rna

R4: Translation R7: RNA Degradation

P

R5: Dimerisation R8: Protein degradation

P2

R6: Dissociation

0

0

Figure 3.2: Graph representing the example prokaryotic auto regulation biochemical network.

Edges with solid lines represent stoichiometric coefficients of ones, dotted lines coefficients of

twos.

Here {·} denotes the number of molecules of the relevant species and the net effect matrix (A)

is:
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AT =



0 0 1 1 0 0 0 0

0 0 0 1 0 2 0 0

0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0


−



0 0 0 1 0 0 1 0

0 0 0 0 2 0 0 1

1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0


=



0 0 1 0 0 0 −1 0

0 0 0 1 −2 2 0 −1

−1 1 0 0 1 −1 0 0

1 −1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0


.

(3.14)

Moreover, (3.14) is linear dependent, i.e. AT4· = −AT5·, which results to one or more zero

eigenvalues, violating the assumptions of Theorem 2.1.2 (p. 15). This can be attributed to

the following conservation law, as discussed by Golightly and Wilkinson (2005):

{DNA · P2}+ {DNA} = k,

where k is the total number of repressed and non–repressed genes and is assumed to be constant

and predefined. Substituting {DNA · P2} = k − {DNA} and omitting AT4· we have:

AT =


0 0 1 0 0 0 −1 0

0 0 0 1 −2 2 0 −1

−1 1 0 0 1 −1 0 0

−1 1 0 0 0 0 0 0

 , (3.15)

and h2 (X, c2) = c2{DNA ·P2}, the remaining hazard rates are unaffected by the reparametriza-

tion. The mean for the corresponding diffusion approximation is:

α {X, c} = ATh (X, c) =


c3{DNA} − c7{RNA}

c4{RNA} − c5 ({P} − 1) {P} − c8{P}+ 2{P2}c6

c5({P}−1){P}
2

− c1{P2}[DNA] + c2 (k − {DNA})− {P2}c6

c2 (k − {DNA})− c1{P2}{DNA}

 ,

(3.16)

and the infinitesimal variance-covariance matrix is Σ = σ {X, c}T σ {X, c} = AT diag {h (X, c)} A =
c7{RNA}+ c3{DNA} 0 0 0

0 c4{RNA}+ 2c5 ({P} − 1) {P}+ c8{P}+ 4{P2}c6 −c5 ({P} − 1) {P} − 2{P2}c6 0

0 −c5 ({P} − 1) {P} − 2{P2}c6 c5({P}−1){P}
2 + C + {P2}c6 C

0 0 C C

 ,

(3.17)

where, C = c1{P2}{DNA}+ c2 (k − {DNA}). �
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Chapter 4

Exact Algorithm

4.1 Introduction

At Section 2.1.1 we introduced the Euler–Maruyama method to numerically approximate the

solution of an SDE. The Euler–Maruyama method converges to the “true” solution when the

time increments of the approximation tend to zero. An alternative approach to discretization

schemes, the Exact Algorithm (EA), has been proposed by Beskos et al. (2006) which can be

used for the simulation of trajectories of diffusion process as well as for inferential purposes.

As the authors comment “the algorithm is exact in the sense that no discretization exists”

therefore the sampled paths follow the same finite-dimensional distributions with the original

process. When the EA is employed for inferential purposes, the estimation error can be

attributed exclusively to the Monte Carlo estimation.

Currently, the Exact algorithm is defined for the class of univariate diffusion processes

having weak solutions (see Section 2.1.2) and unit variance, i.e. diffusions of the form:

dXs = α {Xs; c} ds+ dWs. (4.1)

It can be extended to a wider class, e.g. the 1-d SDEs with arbitrary parameters:

dVt = µ{Vt; c}dt+ σ {Vt; c} dW ′
t ,

which can be transformed to (4.1) by finding a suitable transformation η(·; c), them Lamperti

transform, that sets the diffusion coefficient to unity:

η(·; c) =

∫
1

σ {x; c}
dx. (4.2)
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Now, if we apply η(·; c) to Vt, the transformed process Xt = η (Vt; c), has a unit diffusion

coefficient, while the drift coefficient is given by the following expression (Beskos et al. 2006):

α {x; c} =
µ{η−1(x; c); c}
σ {η−1(x; c); c}

− σ {η−1(x; c); c}′

2
,

where η−1(x; c) is the inverse transformation of η(x; c) and σ {·}′ the derivate of the diffusion

coefficient w.r.t. the state variable. If the transformed stochastic differential equation (SDE)

satisfies certain growth and limiting conditions the exact algorithm can be applied. The output

is a sample from a weak solution, i.e. a process having the same finite-dimensional probability

distributions as (4.1) which can be transformed back to the original diffusion. More specifically,

the EA outputs an exact skeleton, realisations of the process at finite time-points, in a given

time interval, which can be “filled-in” up to an arbitrary number of time-points and then is

back-transformed to the original process using the inverse of (4.2).

Furthermore, the authors suggest that the algorithm can be extended to multivariate and

inhomogeneous diffusions, as long as a suitable n−dimensional reversible transformation can

be found and Girsanov’s formula is tractable. In Section 4.2, we start with a rejection sampler

and we showcase its limitations in the SDE setting. Then, in Section 4.3 we show how the

Exact Algorithm addresses these limitations; in Section 4.4 we give an overview of the EA-

based inferential methods and we attempt to apply it on a scalar-valued SDE (Section 4.5),

which arises from a simple auto-regulatory model. Towards the end of the chapter (Section

4.6) we will discuss the limitations of a multidimensional extension.

4.2 Rejection Sampling

Essentially the EA is a rejection sampling algorithm (for more details on the rejection sampling

see e.g. §2.3, Robert and Casella 2004), which involves a proposal and an acceptance–rejection

step. A tradition approach to rejection sampling would consider the proposal of candidate

trajectories from a known process, the Brownian Bridge (Section 2.1.5) in our case, which in

turn are accepted (or rejected), through a stochastic mechanism. In this hypothetical case, the

acceptance criterion is given by the Radon–Nikodym derivative which, intuitively, compares

the transition probability distributions of the two processes. Girsanov’s theorem provides us

with a very convenient form of the Radon-Nikodym derivative, assuming that the relevant
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conditions (see for instance Øksendal 2005) hold:

dQ(t,xi,xi+1)
θ

dW(t,xi,xi+1)
=
Nt(xi+1 − xi)
pt(xi, xi+1; c)

exp

{
−
∫ t

0

α {s, ω; c} dBs −
1

2

∫ t

0

α {s, ω; c}2 ds

}
(4.3)

where Qθ is the measure of the stochastic process of interest for the transition (xi, 0) →

(xi+1, t), W is the measure underlying the corresponding Brownian Bridge, Nt(xi+1 − xi) is

the Normal distribution with mean 0 and variance t and pt(xi, xi+1; c) is the transition density

for the transition (xi, 0) → (xi+1, t). Essentially (4.3) is the ratio of the transition density of

interest over the known Normal transition density of a Brownian Bridge times a correction

term, similar to the idea of standardizing a Gaussian random variable.

In Chapter 3, we considered diffusion processes as alternative models for the biological

systems. Assuming that the kinetic constants c are the parameters of interest, we can derive

the likelihood function, from the Markov Property, as a product of transition densities:

L(c|Xobs) = p(x0; c)
n∏
i=1

pt(xi−1, xi; c) (4.4)

where p(x0; c) is the probability density for the initial point and pt(xi−1, xi; c) is the transi-

tion density for the transition (xi, 0) → (y, t) which is generally unknown and analytically

intractable. The EA, as an acceptance algorithm, can be used to estimate the individual

transition densities, hence the likelihood function as well. We proceed by highlighting the dif-

ficulties associated with the estimation of (4.4). Our first step is to match the likelihood (4.4)

with the acceptance probability as specified by (4.3), which can be shown that is proportional

to:
dQ(t,xi,y)

θ

dW(t,xi,y)
∝ exp

(
−r(ω, c)

∫ t

0

φ(ωs, c)ds

)
, (4.5)

where l(c), r(ω, c) and φ(ωs, c) are bounds of functions which contain the following term:

α {u; c}2 + α {u; c}′

2
, (4.6)

which can be obtained from Itos̄ Lemma when we assume that the transformation A(u) =∫ u
0
α {z} dz is applied to the biased Brownian Bridge (for more details see p. 2425 in Beskos

and Roberts 2005). We denote with α {u; c}2 the squared term and α {u; c}′ the derivative

w.r.t. u. The expression l(c) is a lower bound of (4.6) and depends only on the parameters c:

l(c) ≤ inf
u∈R

{(
α {u; c}2 + α {u; c}′

)
/2
}
,
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similarly, r(ω, c) is an upper bound to α {u; c}2 + α {u; c}′ − l(c) which depend on the path

ω:

r(ωs, c) ≥ sup
s∈[0,t]

{(
α {ωs; c}2 + α {ωs; c}′

)
/2− l(c)

}
,

and we can use the last two bounds to produce a “standardized” version of (4.6):

φ(ωs, c) =
1

r(ω, c)

(
α {ωs; c}2 + α {ωs}′

2
− l(c)

)
,

which satisfies 0 ≤ φ(ω, c) ≤ 1. A number of versions of the EA algorithm have been proposed

which pose different assumptions on r(ω, c). For instance, EA1 assumes that r(ω, c) does not

depend on the path ω i.e. r(ω, c) = r(c). Through this introduction we choose to illustrate

the main ideas of the EA using the EA1 variation. In Section 4.3.1 we will consider two further

extensions of EA, namely, EA2 and EA3.

For our purposes it would be sufficient to have a scheme that allows to sample from Qθ.

A traditional approach using a rejection sampler would propose ω from the law of dW , which

is the law of Brownian Bridge, and accept ω with probability relative to Equation (4.5).

Unfortunately, we can neither evaluate the path integral in the r.h.s. of Equation (4.5) nor

can we sample a continuous path ω, therefore, more specialized methods are needed.

4.3 Simulation using the EA

Previously, we mentioned that there are two problems associated with the estimation of (4.5):

the evaluation of the path integral and sampling a continuous path ω. EA1 does not attempt

to evaluate the path integral but it re-expresses the acceptance probability of a path as the

probability of a “special event” of a Poisson marked process. In addition, the simulation of the

continuous path ωs is avoided completely by employing the idea of retrospective sampling : the

Poisson Marked Process is simulated first and then a sample of (4.1) at discrete times can be

obtained from a Brownian Bridge. Once a finite sample, a skeleton, has been obtained, it can

be “filled-in” using Brownian Bridges in order to obtain a sample with an arbitrary number

of observations which is also exact. We continue by presenting these two ideas in more detail

and we assume that the following conditions on the drift term α {Xs; c} hold:

1. α {·} is everywhere differentiable. An essential property in order to proceed with Gir-

sanov formula.
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2. The Novikov condition (Øksendal 2005):

E
[
exp

(
1

2

∫ t

0

α {Xs; c}2 ds

)]
<∞,

holds which is sufficient to guarantee that the Girsanov formula (4.3) is a martingale

w.r.t. Wiener measure. It follows from the Girsanov Theorem that (4.3) exists and can

be used as an acceptance criterion.

3. α {·}2 + α {·}′ is bounded below, otherwise identifiability issues arise and (4.3) would

not be finite.

The use of a marked Poisson process to re-express (4.5) seems counter-intuitive but it is

completely legitimate. Let N be the number of points below the graph t → φ(ωt; c), k ∼

Poisson (r(ω; c)t), Ψ : Ψ1, . . . ,Ψk ∼ Uniform(0, t), Y1, . . . , Yk ∼ Uniform(0, 1), hence

(Ψ,Y ) is a marked Poisson process. The probability that all points of the marked Poisson

process (Ψ,Y ) lie above the graph φ(ωt; c) is derived in the following steps:

P (N = 0) =
∞∑
k=0

P (N = 0|K = k)P (K = k)

=
∞∑
k=0

∫
. . .

∫
P
(
Y1 > φ(ω(Ψ1); c), . . . , Yk > φ(ω(Ψk); c)|Ψ

)
P (Ψ) dΨ P (K = k)

=
∞∑
k=0

∫
. . .

∫
P
(
Y1 > φ(ω(Ψ1); c|Ψ1)

)
. . . P

(
Yk > φ(ω(Ψk); c|Ψk)

)
P (Ψ) dΨ P (K = k)

=
∞∑
k=0

k∏
i=1

∫ t

0

(
1−

∫ φ(ω(Ψi)
;θ)

0

dYi

)
1

t
dΨi P (K = k)

=
∞∑
k=0

[∫ t

0

(
1− φ(ω(Ψ1); θ)

) 1

t
dΨ1

]
. . .

[∫ t

0

(
1− φ(ω(Ψk); θ)

) 1

t
dΨk

]
P (K = k)

=
∞∑
k=0

[
1− 1

t

∫ t

0

φ(ωs; c)ds

]k
e−r(ω;θ)t (r(ω; c)t)k

k!

= exp [−r(ω; c)t] exp

[
r(ω; c)t

(
1− 1

t

∫ t

0

φ(ωs; c)ds

)]
= exp

[
−r(ω; c)

∫ t

0

φ(ωs; c)ds

]
(4.7)

where dΨ ≡ dΨ1 . . . dΨk, P
(
Yi > φ(ω(Ψi); c)

∣∣Ψi) × P (Ψi) for any 1 ≤ i ≤ k is equal to the

complement of the normalized area under φ(ωs; c) graph. It should be stressed that the total

range of the uniform (Ψi, Yi) variables spawns the area of the rectangle t × 1. Therefore, we
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only need to ensure that all points are accepted with probability φ(ωΨi
; c), or equivalently, all

marks Y are above the graph of t→ φ(ωt; c) by introducing the indicator function:

I(c,Φ, ω) :=
k∏
j=1

I[φ(ωΨj
; c) < υj] (4.8)

which also denotes the acceptance or rejection of the skeleton.

A simple rejection sampler based on (4.8) would require first the full path ωs, s ∈ [0, t] of

a Brownian Bridge and then proceed with the realization of the marked Poisson process with

rate r(ω; c). Beskos et al. (2006) employed the idea of retrospective sampling (Papaspiliopou-

los and Roberts 2008): if the rate r(ω; c) = r(c), i.e. does not depend from ω, we can

simulate the Poisson process first and then proceed with the simulation of the finite sample

of (ωΨ1 , . . . , ωΨk
) which will be used at the indicator function I. Putting everything together

the Exact Algorithm can be described by the following pseudo code:

Algorithm 2 Exact Algorithm 1 (EA1).

1. Initiate a path k(ω) of a biased Brownian motion with initial point ω0 = x and endpoint

ωt = y.

2. Generate a realization of the marked Poisson process Φ = {Ψ,Υ} of rate r{k(ω), c}, Ψ :

Ψ1, . . . ,Ψk ∼ Uniform(0, t), Υ : Υ1, . . . ,Υk ∼ Uniform(0, 1), k ∼ Poisson (r(ω; c)t).

3. Simulate the skeleton {ω(Ψ1), . . . , ω(Ψk)} conditionally on k(ω).

4. compute the acceptance indicator I (4.8).

5. If I = 1 then return k(ω) and Skel(ω) = {(x, 0), (ω(Ψ1),Ψ1), . . . , (ω(Ψk),Ψk), (y, t)} else

return to 1.

4.3.1 Extensions

All extensions of the EA assume that the conditions 1–3 given at the beginning of the chapter

hold. When the diffusion process of interest is conditioned only on the starting point and the

ending point is left unspecified, the Exact Algorithm cannot be applied directly. In order to

proceed, a variation of EA has been suggested, the unconditional EA, which has an extra step

that involves the simulation of an ending point. After an ending point has been obtained the

EA can be applied directly. If we assume that h(u) = exp{A(u) − (u − xi)2/(2 t)}, A(u) =
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∫ u
0
α {z} dz, is integrable, then h(·) is the unnormalized conditional density of the endpoint

(XT+t) of a diffusion conditioned at (XT ). Knowing h(·) we can obtain an ending point XT+t

by rejection sampling.

Beskos and Roberts (2005) proposed the first variation of the exact algorithm where the

decision of acceptance or rejection of the current skeleton is not reached immediately. The

decision is reached only when a realization of a sequence of special events have occurred,

otherwise the problem is undecidable and continues to iterate.

We saw that EA1 poses some restrictions on the rate of the Poisson process since it assumes

that does not depend on the path of the Brownian Bridge, i.e. r(ω; c) = r(c). EA2 (Beskos

et al. 2006) relaxes this condition by assuming that either:

lim
u→∞

sup
{
α {u; c}2 + α {u; c}′

}
<∞, or, lim

u→−∞
sup

{
α {u; c}2 + α {u; c}′

}
<∞

depends on the maximum (or minimum) value of the path ω. Given the starting, the ending

and an extreme (maximum or minimum) point the rest of the path can be proposed using

Bessel Bridges (Beskos and Roberts 2005).

Beskos et al. (2008) proposed a variation of exact algorithm (EA3) which does not put any

assumptions on the r(ω; c) rate. The main idea is to randomly select the range of the path

ω and conditional on the range, an extreme point of the path (minimum or maximum with

probability 1/2) is simulated.

Nevertheless, the output of EA is a skeleton, a finite set of points, which can be used

to obtain finer trajectory samples by interpolating between the accepted points either with

Brownian Bridges (EA1), Bessel Bridges (EA2) or Layered Brownian Bridges (EA3). The finer

sample is still an exact sample of the unit-variance process (4.1) which can be back-transformed

using η−1(·), the inverse of (4.2), to the original process.

4.4 Transition densities estimator

In this Section we will review the inferential capabilities of the EA algorithm. As previously

mentioned, the Likelihood function can be written as the product of the transition densities

(4.4). Specifically, we will focus on the work of Beskos et al. (2006) which proposed unbiased

estimators for the transition densities of SDEs, but for convenience, we will only consider SDEs

that satisfy the EA1 assumptions.
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We begin with a very important result by Dacunha-Castelle and Florens-Zmirou (1986)

which relates the transition density of the unit-variance SDE (4.1) with the transition density

of the Brownian Bridge:

pt(x, y; c) = Nt(y − x)EW (t,x,y)

[
exp

{
A(y; c)− A(x; c)−

∫ t

0

1

2
α {ωs; c}2 + α {ωs; c}′ ds

}]
.

(4.9)

Beskos et al. (2006) propose two estimators based on (4.9), namely the Acceptance method and

the Poisson estimator. In the next section we will go through the details of the Acceptance

Method, assuming that the SDE satisfies the conditions of the EA1. Its extension to more

general EA settings can be found in Beskos et al. (2009). Additionally, Beskos et al. (2006)

proposed an additional estimator, the Bridge Estimator applicable only to diffusions that

satisfy the conditions of EA1.

4.4.1 The Acceptance Method

We denote by γ(x, y, c) the acceptance probability of a proposed path in the EA algorithm.

We can identify γ(x, y, c) as the proportional quantity of the Radon-Nikodym derivative (4.5).

Therefore by integrating w.r.t. W(t,x,y), we get the following expression:

γ(x, y, c) = EW(t,x,y)

[
exp

{
−r(ω, c)

∫ t

0

φ(ωs; c)ds

}]
, (4.10)

and (4.9) can be rewritten in terms of γ(x, y, c):

pt(x, y; c) = Nt(y − x) exp{A(y; c)− A(x; c)− l(c)t} γ(x, y, c). (4.11)

Additionally we can express the acceptance probability as an expectation of the indicator

function (4.8):

γ(x, y, c) = E[I(c,Φ, ω)]. (4.12)

Therefore, the proportion of accepted skeletons in a finite number of EA simulation attempts,

denoted with γ̂(x, y, c), is a Monte–Carlo estimator of (4.12). Consequently, γ̂(x, y, c) can be

used in (4.11) to obtain an estimator for pt(x, y; c), referred to as the Acceptance Method by

Beskos et al. (2006).
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4.4.1.1 Simultaneous Acceptance Method

The authors identified that the estimator γ̂(x, y, c) depends on the choice of c and for different

values of c, say c′, new simulations of γ̂(x, y, c′) are needed. They proposed a new estimator,

the Simultaneous Acceptance Method (SAM), that explores the whole parameter space of c

from a common set of simulations. We briefly sketch the ideas of Beskos et al. (2006) that

lead to the derivation of SAM for diffusions that satisfy the EA1 assumptions.

In the EA1 setting the indicator function (4.8) is evaluated on the finite sample ωΨi
which is

simulated from a Brownian Bridge following a W(x,y,t) distribution. It can be rewritten, using

the relocation property (Section 2.1.5), in terms of a standard Brownian Bridge, ω ∼ W t,0,0 :

I(x, y, c,Φ, ω) =
k∏
j=1

I
[
φ

(
ωΨj

+ (1− Ψj

t
)x+

Ψj

t
y; c

)
< υj

]
. (4.13)

In the equation above, the parameters vector c is only required for the simulation of Φ, the

marked Poisson process. The authors, suggested that the thinning property can be used to

express the indicator function in terms of a marked Poisson process Φmax = {Ψmax,Υmax}

which has constant intensity rmax ≥ r(c), for all c. The thinning property suggests that if each

point of Φmax was omitted with probability 1− r(c)/rmax then the remaining points would be

realizations of the Poisson process of interest Φ. Concisely, the indicator function (4.13) can

be expressed in terms of realizations of Φmax:

I(x, y, c,Φmax, ω, U) =
k∏
j=1

I
[
I
(
Uj <

r(c)

rmax

)
φ

(
ωΨj

+ (1− Ψj

t
)x+

Ψj

t
y; c

)
< υj

]
(4.14)

where U = (U1, . . . , Uk) are iid Uniform(0,1) random variables. The indicator (4.14) can

either:

� Accept the sample when all points are accepted. A point is accepted when:

– It belongs to Φ Poisson process (Uj < r(c)/rmax) and is above the graph (υj > φ(·)).

– It does not belong to the Φ process (Uj > r(c)/rmax).

� Reject the sample when at least one point belongs to Φ Poisson process (Uj < r(c)/rmax)

and is under the graph, (υj < φ(·)).

Since a single realization of Φmax is adequate to evaluate (4.14) at the full c range simultane-

ously, simulation-based estimation of (4.8) becomes more efficient than producing a random
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sample for each new candidate vector c′. We will work towards a Monte Carlo estimator of

γ(x, y, c) by taking, first, the expectation of (4.14) conditional on (Φmax, ω):

EU [I(x, y, c,Φmax, ω, U |Φmax, ω)] =
k∏
j=1

{
P

[
Uj >

r(c)

rmax

]
+P

[
Uj <

r(c)

rmax

, φ

(
ωΨj

+ (1− Ψj

t
)x+

Ψj

t
y; c

)
< υj

]}
=

k∏
j=1

{
1− r(c)

rmax

+
r(c)

rmax

[
1− φ

(
ωΨj

+ (1− Ψj

t
)x+

Ψj

t
y; c

)]}

=
k∏
j=1

{
1− r(c)

rmax

φ

(
ωΨj

+ (1− Ψj

t
)x+

Ψj

t
y; c

)}

= r−kmax

k∏
j=1

{
rmax +

(
l(c)− 1

2
(α {ωΨi

; c}+ α {ωΨi
; c}′)

)
×

φ

(
ωΨj

+ (1− Ψj

t
)x+

Ψj

t
y; c

)}
. (4.15)

We can identify that γ(x, y, c) is the expectation of (4.15) w.r.t (Φmax, ω). Hence, we can

replicate the argument we used in the Monte Carlo estimation of the Acceptance Method: a

Monte Carlo estimator of γ(x, y, c) is obtained by averaging independent realizations of (4.15),

which in turn can be used in (4.11) to estimate the transition density.

4.4.2 Poisson Estimator

The Poisson estimator follows the idea of expressing the expectation of (4.9) w.r.t. a Brownian

Bridge as an expectation w.r.t. a Poisson process. Let f(·) any arbitrary function and the

finite expectation w.r.t. a diffusion bridge measure P (t, x) needs to be estimated over a path ω:

EP (t,x)

[
exp

{
−
∫ t

0

f(ωs)ds

}]
<∞
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let c ∈ R, λ > 0, we derive the following formulation for the above path integral (which proves

the result in Beskos et al. 2006):

exp

{
−
∫ t

0

f(ωs)ds

}
= exp

{
−ct+ ct−

∫ t

0

f(ωs)ds

}
= exp

{
−ct−

∫ t

0

λt
f(ωs)− c

λt
ds

}
= exp(−ct)

∞∑
k=0

1

k!

{
−
∫ t

0

λt
f(ωs)− c

λt
ds

}k
= exp(−ct)

∞∑
k=0

e−λteλt

k!
(λt)k

{∫ t

0

c− f(ωs)

λt
ds

}k
= e(λ−c)t

∞∑
k=0

e−λt(λt)k

k!

{∫ t

0

c− f(ωs)

λt
ds

}k
= e(λ−c)tEk

[{∫ t

0

c− f(ωs)

λt
ds

}k]

where we can identify k ∼Poisson(λt). As a side note, if Ψ ∼Uniform[0, t] then [f(ωΨ)− c]/λ

is an unbiased estimator of
∫ t

0
[f(ωs)− c]/λds. Consequently, let Ψ = [Ψ1, . . . ,Ψk] we have:

k∏
j=1

(
c− f(ωΨj

)

λ

)
is estimating

{∫ t

0

c− f(ωs)

λt
ds

}k
(4.16)

which gives the following explicit estimator given an accepted EA skeleton:

exp{(λ− c)t}λ−k
k∏
j=1

[
c− f(ωΨj

) + (1− Ψj

t
)x+ (

Ψj

t
) y

]
, ω ∼ W(t,0,0). (4.17)

4.5 The univariate case

We are considering the application of EA algorithm to diffusion processes motivated by bio-

chemical reactions and more specifically the example in Golightly and Wilkinson (2005), which

describes the dimerization of two reactants (P, P2):

R1 : 2P → P2

R2 : P2 → 2P.

The above model is one of the simplest cases involving second order reactions. Let k be a

constant representing the maximum possible number of P -molecules. Setting P2 = 1
2
(k − P )
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we obtain the scalar valued SDE:

dPt = [c2(k − Pt)− c1Pt(Pt − 1)] dt+
√

2c1Pt(Pt − 1) + 2c2(k − Pt)dWt (4.18)

where c = (c1, c2). We investigate whether the methodology suggested by Beskos et al. (2006)

can be applied. Assuming Pt, c1, c2 > 0 the proposed transformation is the anti-derivative of:

η(Pt, c) = Yt =

∫
(2c1Pt(Pt − 1) + 2c2(k − Pt))−1/2 dWt

=

√
2

2
√
c1

ln

[√
2(2c1P − c1 − c2)

2
√
c1

+ (2c1P
2 − 2(c1 + c2)P + 2c2k)1/2

]
(4.19)

and the inverse transformation is given by:

η−1(Yt, c) = e
√

2 c1Y a1 + a2 + e−
√

2 c1Y a3 (4.20)

where (a1, a2, a3) are:

a1 =

√
2

4
√
c1

a2 =
1 + c2

2

a3 =

√
2c1 +

√
8c2c

−1/2
1 −

√
8c
−1/2
1 c2k +

√
2c
−5/2
1 c2

2

8
.

A part of the inverse transformation (4.20) can be interpreted as an hyperbolic function.

Applying Ito’s lemma the transformed process becomes:

dYt = α {Yt; c} dt+ dWt (4.21)

where

α {Yt; c} =
−c1η

−1(Yt, c)
2 + η−1(Yt, c)(−c2 + c1) + c2 k − 2 c1η

−1(Yt, c) η
−1(Yt, c)

′ − η−1(Yt, c)
′(c1 + c2)√

2
√
η−1(Yt, c)2 c1 − η−1(Yt, c)(c1 + c2) + c2 k

(4.22)

The drift coefficient of the transformed process (4.22) involves a combination of exponential

functions. One of the EA assumptions, regardless of its variation, is the existence of a lower

bound for the function:

α {Yt; c}2 + α {Yt; c}′ , (4.23)

which, in our setting, is not trivial to check. Equation (4.23) involves the minimization of

exponential functions of Yt and c due to the inverse transformation (4.20). In addition, the
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behavior of the drift term changes drastically from the choice of parameters. In Figure 4.1

we plotted α {Yt; c} using different values of c. For (c1, c2) = (0.1, 0.1) or (c1, c2) = (0.1, 0.6)

the drift term seems to have an upper bound, but setting (c1, c2) = (0.6, 0.1) or (c1, c2) =

(0.6, 0.6) the drift term does not have any bounds at all. Nevertheless, we applied a numerical

minimization method to (4.23) assuming the constraints Yt ∈ [−4000, 4000] and c1, c2 ∈ (0, 3]

failed to converge and also produced warnings of numerical issues (undefined values, see also

Figure 4.5 for an illustration). Due to the involved numerical instabilities we did not proceed

with the implementation of an EA-based simulation.
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Figure 4.1: The drift term of the transformed dimerization reaction process plotted for pa-

rameter values (c1, c2, k) = (0.1, 0.1, 500), (0.1, 0.6, 500), (0.6, 0.1, 500), (0.6, 0.6, 500).

4.6 The multivariate case

The multivariate case introduces more difficulties, we specify our original untransformed dif-

fusion process or more generally the stochastic differential equation:

dXt = µ{Xt, c}dt+ σ{Xt, c}dWt , (4.24)
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Figure 4.2: Plot of α {Yt; c}2 + α {Yt; c}′ with (c1, c2) = (0.085, 10−6) illustrating numerical

stability issues.

where µ{Xt, c} a m × 1 vector corresponding to the drift coefficient and a m × n matrix

σ{Xt, c} corresponding to the diffusion coefficient. Let Sx ⊆ Rm the domain of the diffusion

Xt, and as a usual choice we consider the whole Rm.

We want to find, although is not always possible, a suitable unit-variance transformation

g : Rm → Rm which would result an SDE with unit variance-covariance matrix of infinitesimal

change:

dYt = α {Yt, c} dt+ β{Yt, c}dWt , var(dYt) = ββT = I. (4.25)

By applying Ito’s lemma at Xt, the variance-covariance matrix associated with a infinitesimal

change dYt of the transformed process Yt becomes:

var(dYt) = (Jg σ)(Jg σ)T = I, (4.26)
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where Jg is the Jacobian matrix of the transformation w.r.t. the n-th dimensional state

variables Xt,i, i = 1, . . . , n. For convenience, we can write the (4.26) as:

A = Jg σ, where the elements given by: ai,j = ∇gi · σ·j =
m∑
l=1

∂gi
∂xl

σlj, (4.27)

σ·k corresponds to the k-th row of the original diffusion coefficient (σ), gi, i ∈ (1, . . . , n) the

coordinate functions of the g mapping and ∇gi the vector corresponding to the gradient of

the gi function.

Finally by expressing (4.26) in terms of (4.27) we can derive a system of first order

non-linear (second degree), partial differential equations for the unit-variance transformation

g(x; c):

n∑
l=1

(ail)
2 =

n∑
l=1

(∇gi · σ·l)2 = 1, i ∈ N

n∑
l=1

ailajl =
n∑
l=1

(∇gi · σ·l) (∇gj · σ·l) = 0, (4.28)

where (·) the dot product, l, i, j ∈ N and i 6= j. For illustration consider the SDE:

dXt =

 µ1

µ2

 dt+

 σ11 σ12

σ21 σ22

 dWt,

the resulting system of PDEs is:

1 =

(
σ11

∂g1

∂Xt,1

+ σ21
∂g1

∂Xt,2

)2

+

(
σ11

∂g2

∂Xt,1

+ σ21
∂g2

∂Xt,2

)2

0 =

(
σ12

∂g1

∂Xt,1

+ σ22
∂g1

∂Xt,2

)(
σ11

∂g1

∂Xt,1

+ σ21
∂g1

∂Xt,2

)
+(

σ12
∂g2

∂Xt,1

+ σ22
∂g2

∂Xt,2

)(
σ11

∂g2

∂Xt,1

+ σ21
∂g2

∂Xt,2

)
1 =

(
σ12

∂g1

∂Xt,1

+ σ22
∂g1

∂Xt,2

)2

+

(
σ12

∂g2

∂Xt,1

+ σ22
∂g2

∂Xt,2

)2

(4.29)

using a short-hand notation:
a2

11 + a2
12 = 1

a11a21 + a12a22 = 0

a2
21 + a2

22 = 1

→


a11 = ±

√
1− a2

12

a11a21 = −a12a22

a22 = ±
√

1− a2
21

→


a21

√
1− a2

12 = −a12

√
1− a2

12

a11a21 = −a12a22

a21

√
1− a2

12 = a12

√
1− a2

12
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using (±
√

1− a2
12) a21 = −a12 (±

√
1− a2

21) reduces to two linear systems: a21 = a12

a11 = −a22

or

 a21 = −a12

a11 = a22

and a2
11 + a2

12 = 1. (4.30)

It is very interesting to note that two linear systems in the equations (4.30) are the Cauchy-

Riemann equations (p. 17 Abramowitz and Stegun 1964) and the non-linear is the Eikonal

equation (Evans 1998).

4.6.1 Reducibility

Aı̈t-Sahalia (2008) introduces the definition of a reducible diffusion. The concept of reducibility

derives from the same idea as the one dimensional analogue: the unit-variance transformation

can be found as an integral of the inverse variance term. In the multidimensional setting,

further complications are introduced. One can work with the diffusion coefficient, setting the

inverse of the diffusion coefficient equal to the Jacobian of the unit-variance transformation:

Jg = σ−1,

assuming σ is invertible, which spawns a system of partial differential equations. Investigating

the compatibility (or consistency) of the system of PDEs, the following necessary and sufficient

condition, is given:

Aı̈t-Sahalia’s proposition: The diffusion Yt is reducible if and only if
m∑
l=1

∂σik(x)

∂xl
σlj(x) =

m∑
l=1

∂σij(x)

∂xl
σlk(x), (4.31)

for each x ∈ Sx, (i, j, k) = (1 . . .m), k > j. If σ is non-singular the condition can be expressed

as:
∂σ−1

ij (x)

∂xk
=
∂σ−1

ik (x)

∂xj
.

If we set β = Jgσ = I, we can derive the relevant system of PDES (4.28):

aij =
m∑
l=1

∂gi
∂xl

σlj =

 1 if i = j

0 if i 6= j
.

This proposition enables the closed-form Hermite Series expansion for the transition density

of multivariate diffusions processes. Aı̈t-Sahalia (2008) also provides with an alternative ex-

pansion for diffusion processes that fail to satisfy the conditions (4.31). The transformation g

is known as the Lamperti transform and it has been used in other instances e.g. Doss (1977).
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4.6.1.1 Reducibility Counterexample

The reducibility condition sets the diffusion coefficient of the transformed process to a unit

matrix, i.e. β{Yt; c} = I, which sets, trivially, the infinitesimal variance–covariance matrix

of dYt to a unit matrix as well. We claim that EA can be applied to a class of diffusion

processes wider than the class of reducible diffusions. To support this claim, we use a counter-

example based on (4.28), a less restrictive transformation which allows the diffusion coefficient

of the transformed process, β{Yt; c}, to be non-constant while the corresponding infinitesimal

variance var(dYt) is constant (unit matrix).

Our original SDE Xt = (Xt,1, Xt,2) is:

dXt = α {Xt} dt+ σ {Xt}Wt,

with α {Xt} being an arbitrary vector-valued function and the diffusion coefficient given by

the matrix:

σ {Xt} =

 −A 0

−A sin(Xt,2 −Xt,1) 1

 ,

where A = 1/ cos(Xt,2 −Xt,1) and we assume that cos(Xt,2 −Xt,1) 6= 0. The inverse of σ−1 is:

σ−1 =

 −1/A 0

− sin(Xt,2 −Xt,1) 1

 .

We assume that σ {Xt} is non–singular, i.e. A 6= 0, and we investigate the reducibility

conditions 4.6.1. For i = 2, j = 1, k = 2, we have:

∂σ−1
21

∂Xt,2

= − cos(Xt,2 −Xt,1),

∂σ−1
22

∂Xt,1

= 0,

which are not equal and hence Aı̈t-Sahalia’s conditions are not satisfied. On the other hand,

if we assume the following transformation:

g(x1, x2) = (cos(x1)− sin(x2), sin(x1) + cos(x2)) ,

then we end up with a transformed SDE Y = g(Xt,1, Xt,2) with the following diffusion coeffi-

cient:

β =

 A [sin(Xt,2 −Xt,1) cos(Xt,2) + sin(Xt,1)] − cos (Xt,2)

A [sin(Xt,2 −Xt,1) sin(Xt,2)− cos(Xt,1)] − sin (Xt,2)

 ,
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which is clearly non-constant. We can show that ββT = I but in our case it is easier to show

that BT = βTβ = I. We quickly can go through the trigonometric manipulations, by replacing

the (Xt,1, Xt,2) notation with (a, b):

BT
2,2 = sin2(b) + cos2(b)

= 1,

BT
2,1 = A [− sin(b) (sin(b) sin(b− a)− cos(a))− cos(b) (cos(b) sin(b− a) + sin(a))]

= A
[
− sin(b− a)

(
sin2(b) + cos2(b)

)
+ sin(b) cos(a)− cos(b) sin(a)

]
= 0,

BT
1,1 = A2

[
(sin(b) sin(b− a)− cos(a))2 + (cos(b) sin(b− a) + sin(a))2]

= A2 sin(b− a)
[
sin2(b) sin(b− a)− 2 sin(b) cos(a) + sin(b− a)cos2(b) + 2 cos(b) sin(a)

]
+ A2

= A2 sin(b− a) [sin(b− a)− 2 (sin(b) cos(a)− cos(b) sin(a))] + A2

= A2
[
1− sin2(b− a)

]
= 1,

and since BT
2,1 = BT

1,2, we end up with the identity matrix, i.e. a transformed process with

unit infinitesimal variance. �

4.7 Discussion

The unit variance transformation widens the class of diffusions coefficients. Furthermore a

criterion describing that class seems possible, either by looking the consistency of the system

of PDEs or with a possible extension of the (exact) differential forms argument of Aı̈t-Sahalia

(2008). On the other hand the idea of reducibility derives a linear system of PDEs which is

much easier to handle. Overall, we have found that there is a wider class of diffusions than

those termed reducible by Aı̈t-Sahalia (2008) which can be transformed to diffusions with unit

infinitesimal variance. Nevertheless, a multidimensional extension of the EA for general SDEs

seems difficult considering the effort that should be invested in solving the involved non-linear

PDEs. Additionally, we saw in §4.5 that an SDEs arising from a very simple biological network

introduced numerical obstacles when we attempted to transform it to a unit-variance SDE.
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Chapter 5

Scaled Rates Approximation

In this chapter we introduce a reparametrization ϑ of the stochastic rate constants c which

leads, in Sections 5.2 and 5.3, to two approximations of the discrete–state process X(t;ϑ):

as a system of Ordinary Differential Equations (ODEs) and as a system of linear Stochastic

Differential Equations (SDEs), called the Linear Noise Approximation (LNA). The LNA was

first proposed by Kurtz (1972), who also considered an ODE approximation, using an approx-

imation with respect to the system size. Additionally, in Section 5.4 we give an alternative

proof of convergence of X(t;ϑ), the exact process, to the LNA as the system size increases.

In the final Section (5.6) we apply the methods of Chapter 3 to two specific biological models

to compare their transition distributions.

5.1 Formulation

We denote the discrete–state continuous–time process as X(t; c), to highlight the dependence

on the stochastic rates c . The change of the state (∆X(t; c)) in an infinitesimal time interval

(δt) can be expressed as:

∆X(t; c) = ATκ (X(t; c), c, t) (5.1)

where A the net effect matrix and κ (X(t; c), c, t) : (κ1 (X(t; c), c1, t) , . . . , κNR
(X(t; c), cNR

, t))

is a vector of the random variables. Each r.v. κj (X(t; c), cj, t) expresses the occurrence (1) or

not (0) of a particular (j) reaction:

κj (X(t; c), cj, t) =

 1, w. prob. hj (Xt, cj) δt

0, otherwise.
(5.2)
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Analogously to the derivation in Section 3.3, the moments of (5.1) become:

E [∆X(t; c)| Ft] = ATE [κ (X(t; c), c, t)| Ft] = ATh (X(t; c), c) δt (5.3)

where Ft is a σ−algebra (informally the history of the process up to time t), h (X(t; c), c) =

{h1 (X, c1) , . . . , hNR
(X, cNR

)} the vector of hazard functions. Similarly, we track the variance

which coincides with the second moment:

E
[
∆X(t; c) ∆X(t; c)T

∣∣Ft] = AT
(
E
[
∆X(t; c) ∆X(t; c)T

∣∣Ft]− E [∆X(t; c)| Ft]E
[
∆X(t; c)T

∣∣Ft])A(
Product of means is O(δ2

t )
)

= ATE
[
κ (X(t; c), c, t)κ (X(t; c), c, t)T

∣∣∣Ft]A+O(δ2
t )

= ATdiag {h (X(t; c), c)}Aδt +O(δ2
t ). (5.4)

where diag {h (X(t; c), c)} denotes a diagonal matrix having as main diagonal the vector of

hazard rates and for first equality we have used the definition of variance: Var(x) = E [x2] −

(E [x])2.

Without loss of generality, we assume that the hazard rates in h (X(t; c), c) are ordered

according to their reaction order:

� N
(0)
R reactions of order zero

(
h

(0)
1 (X(t, c), c1), . . . , h

(0)

N
(0)
R

(X(t, c), c
N

(0)
R

)

)T
, with hazard

function: h
(0)
j (X(t, c), cj) = c

(0)
j .

� N
(1)
R reactions of first order

(
h

(1)
1 (X(t, c), c1), . . . , h

(1)

N
(1)
R

(X(t, c), c
N

(1)
R

)

)T
, with hazard

function: h
(1)
j (X(t, c), cj) = c

(1)
j X

(1)
j . Where X

(1)
j is a reactant participating in the j−th

first order reaction.

� N
(2)
R reactions of second order

(
h

(2)
1 (X(t, c), c1), . . . , h

(2)

N
(2)
R

(X(t, c), c
N

(2)
R

)

)T
, with haz-

ard rate: h
(2)
j (X(t, c), cj) = c

(2)
j X

(2,1)
j X

(2,2)
j . Where X

(2,1)
j X

(2,2)
j are the two reactants

participating in the j−th second order reaction.

We introduce the following family of parameterizations for the rate constants c which depend

on the reaction order:

ϑ =
(
ϑ

(0)
1 , . . . , ϑ

(1)
1 , . . . , ϑ

(2)
1 , . . .

)T
=

(
c

(0)
1

NT

, . . . , c
(1)
1 , . . . , c

(2)
1 NT, . . .

)T

, (5.5)

or alternatively ϑj = cjN
r−1
T , where r is the order of the reaction and NT is some measure of

the size of the system, e.g. the total number of molecules in the system at t = 0 or the volume
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of the system. In the next sections we are interested in the behaviour of the system when

both the number of molecules and NT tend to infinity but their ratio, e.g. their concentration

remains fixed which resembles the idea of the thermodynamic limit in statistical mechanics.

Assuming that we have elementary reactions with polynomial rates, the parametrization (5.5)

satisfies the following relation:

hj (Xt, c) = hj (Xt/NT,ϑ)NT. (5.6)

The reparametrization can be extended to incorporate more general reaction rates as long

as (5.6) is satisfied. Kurtz (1972) proposes a similar relation to (5.6) which keeps the same

stochastic rate constants on both sides.

5.2 Ordinary Differential Equations

The moments (5.3, 5.4) can be rewritten in terms of ϑ:

E
[

∆X(t; c)

NT

∣∣∣∣Ft] = AT

(
c

(0)
1

NT

, . . . , c
(1)
1

X
(1)
1

NT

, . . . ,
c

(2)
1

NT

X
(2,1)
1 X

(2,2)
1 , . . .

)T

δt

= AT

(
ϑ

(0)
1 , . . . , ϑ

(1)
1

X
(1)
1

NT

, . . . , ϑ
(2)
1

X
(2,1)
1

NT

X
(2,2)
1

NT

, . . .

)T

δt

= ATh (X(t;ϑ)/NT,ϑ) δt. (5.7)

Similarly:

E

[(
∆X(t; c)

NT

)(
∆X(t; c)

NT

)T ∣∣∣∣∣Ft
]

=
1

NT

ATdiag {h (X(t;ϑ)/NT,ϑ)} Aδt. (5.8)

We note that in the Equation (5.8) we have omitted the terms of order O(δ2
t ). We also

derive the third moment, similar to (3.9), which is a multidimensional array of three indexes

consisting of the following elements:

µ′3(∆X(t; c)/NT)i,j,k = E
[

(∆X(t; c))i (∆X(t; c))j (∆X(t; c))k
N3

∣∣∣∣Ft]
=

NR∑
z=1

Azi Azj Azk h (X(t;ϑz)/NT, ϑz)
δt
N2

T

+O(δ2
t ). (5.9)

As NT →∞ the moments (5.8) and (5.9) approach zero, and

y(t;ϑ) = lim
NT→∞

X(t;ϑ)/NT <∞,
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converges to the following system of ODEs:

dy(t;ϑ) = ATh (y(t;ϑ),ϑ) dt. (5.10)

Kurtz (1972) proves that (5.10) is the ODE limiting solution of X(t;ϑ)/NT as the volume of

the system increases and the concentrations remain fixed. We henceforth reserve the notation

y(t;ϑ) to denote the solution of this system of ODEs and to distinguish between the ODE

y(t;ϑ) and the scaled process X(t;ϑ)/NT. In addition, we note that (5.7) expressed in terms

of y(t;ϑ) may contain an error O(δ2
t ) term, since we are approximating a differential function

with its differential.

5.3 SDEs

We saw in Section 5.2 that the system dynamics converge to a deterministic model (ODE)

as the size of the system increases and the concentrations remain constant. In this section

we investigate the fluctuations of the system along the solution proposed by the deterministic

model and we compute them to order N
−1/2
T relative to the system size. We introduce a new

process M̂t to assess the discrepancy between the stochastic and deterministic models:

M̂t =
√
NT

(
X(t;ϑ)

NT

− y(t;ϑ)

)
, (5.11)

and proceed by finding the moments:

E
[

∆M̂(t;ϑ)
∣∣∣Ft] = E

[√
NT

(
∆X(t;ϑ)

NT
−∆y(t;ϑ)

)∣∣∣∣Ft]
=

√
NT E

[
∆X(t;ϑ)

NT

∣∣∣∣Ft]−√NTA
Th (y(t;ϑ),ϑ) δt +O(δ2

t )

=
√
NTA

T (h (X(t;ϑ)/NT,ϑ) − h (y(t;ϑ),ϑ) ) δt +O(δ2
t )

=
√
NTA

T

(
ϑ

(0)
1 − ϑ

(0)
1 , . . . , ϑ

(1)
1

(
X

(1)
1

NT
− y(1)

1

)
, . . .+O(δ2

t )

. . . , ϑ
(2)
1

(
X

(2,1)
1 X

(2,2)
1

N2
T

− y(2,1)
1 y

(2,2)
1

)
, . . .

)T
δt +O(δ2

t )

= AT
(

0, . . . , ϑ
(1)
1 M̂

(1)
1 , . . . +O(δ2

t )

. . . , ϑ
(2)
1

(
M̂

(2,1)
1 M̂

(2,2)
1√

NT
+ M̂

(2,1)
1 y

(2,2)
1 + y

(2,1)
1 M̂

(2,2)
1

)
, . . .

)T
δt +O(δ2

t ),
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the second moment:

E
[

∆M̂(t;ϑ)(∆M̂(t;ϑ))T
∣∣∣Ft] = E

[
(∆X(t;ϑ)/NT −∆y(t;ϑ)) (∆X(t;ϑ)/NT −∆y(t;ϑ))T

∣∣∣Ft]NT

= E
[
∆X(t;ϑ)/NT (∆X(t;ϑ)/N)T

∣∣Ft]NT +O(δ2
t )

=
1

NT
ATh (X(t;ϑ)/NT,ϑ)ANTδt +O(δ2

t )

= AT diag

{
ϑ

(0)
1 , . . . , ϑ

(1)
1

(
M̂

(1)
1√
NT

+ y1

)
, . . .

. . . , ϑ
(2)
1

(
M̂

(2,1)
1√
NT

+ y
(2,1)
1

)(
M̂

(2,2)
1√
NT

+ y
(2,2)
1

)
, . . .

}
Aδt +O(δ2

t ).

As NT →∞ the terms: (
M̂

(2,2)
1√
NT

,
M̂

(2,1)
1 M̂

(2,2)
1

NT

,
M̂

(1)
1√
NT

)
→ (0, 0, 0),

and the first two moments become:

E
[

∆M̂(t;ϑ)
∣∣∣Ft] = α

{
M̂(t;ϑ),y(t;ϑ);ϑ

}
δt

= AT
(

0, . . . , ϑ
(1)
1 M̂

(1)
1 , . . .

. . . , ϑ
(2)
1

(
M̂

(2,1)
1 y

(2,2)
1 + y

(2,1)
1 M̂

(2,2)
1

)
, . . .

)T
δt, (5.12)

E
[

∆M̂(t;ϑ)(∆M̂(t;ϑ))T
∣∣∣Ft] = β

{
M̂(t;ϑ);ϑ

}
δt = σ {y(t;ϑ);ϑ}T σ {y(t;ϑ);ϑ} δt

= ATdiag
{
ϑ0, . . . , ϑ

(1)
1 y

(1)
1 , . . .

. . . , ϑ
(2)
1 y

(2,1)
1 y

(2,2)
1 , . . .

}
Aδt. (5.13)

We note that we have omitted the O(δ2
t ) terms from the last two moments. In the next

Section we will show that these correspond to the drift, α {M(t;ϑ),y(t;ϑ);ϑ}, and diffusion,

σ {y(t;ϑ);ϑ}, coefficients respectively of a diffusion process:

dMt = α {M(t;ϑ),y(t;ϑ);ϑ} dt+ σ {y(t;ϑ);ϑ} dWt. (5.14)

Specifically, we identify (5.14) as a system of linear SDEs in the narrow–sense (see Equation

2.12), i.e. α {M(t;ϑ),y(t;ϑ);ϑ} depends linearly on M(t;ϑ) while σ {y(t;ϑ);ϑ} does not

depend at on M(t;ϑ) all. Linear SDEs have known solutions which facilitate the evaluation

of the transition densities as we shall see in Section 5.5.

5.4 Convergence

The convergence of a Markov process to SDEs is usually motivated either by expressing it

as a limiting process and employ a Central limit theorem (Kurtz and Protter 1991) or by
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exploiting the characterisation of the Markov process as a solution of the Martingale Problem.

In the next subsections we give an overview of the convergence of the
√
NT (X(t)/N − yt) to

an SDE M(t) using the limiting process approach (Section 5.4.1) and the Martingale Problem

characterisation (Section 5.4.2). We also assume that β {·;ϑ} is of full rank, i.e. there are no

zero-eigenvalues. This often is not an issue because we can modify the kinetic model in order

to re-express the conservation laws1 to obtain a full rank matrix.

5.4.1 Limiting Process

We will give an overview of the convergence proof from Chapter 11 of Ethier and Kurtz

(1986) adapted to our case. The kinetic parameters are re-parametrised as α = c/NT and the

transition intensities becomes:

qk,k+l =
∑

mj−nj=l

N
−|mj |+1
T αj

NS∏
i=1

(
{Xi}
mji

)
= NT

 ∑
mj−nj=l

αj∏NS

i=1 mij!

(
{Xj}
mij

)
+O(N−2

T )


where, in this proof, mij denotes the stoichiometry coefficient of the j-th reaction i-th species,

as in (3.1), and mj· = (mj1, . . . ,mjNS
), nj· = (nj1, . . . , njNS

). We note that the intensities can

be written as:

qk,k+l = NTβl({X}/NT) +O(N−1
T )

which holds without the error term for reactions with stoichiometry coefficients mij, nik either

0 or 1. The authors assume that βl(·) are non-negative functions, l ∈ ZNS , defined on a subject

E ⊂ RNS . Let ENT
= E ∩ {N−1

T k : k ∈ ZNS} it is required that x ∈ ENT
, βl(x) > 0 which

implies x+N−1
T l ∈ ENT

.

For t less than the first infinity of jumps, we can write (Theorem 4.1 in Chapter 6, Ethier

and Kurtz 1986) the markov jump process as:

X(t) = X(0) +
∑
l

lYl

(
NT

∫ t

0

βl

(
X(s)

NT

)
ds

)
,

Yl are independent standard Poisson processes. Let F (x) =
∑

l lβl(x) and X̂(t) = N−1
T X(t),

X̂(t) becomes:

X̂(t) = X̂(0) +
∑
l

lN−1
T Ỹl

(
NT

∫ t

0

βl

(
X̂(s)

)
ds

)
+

∫ t

0

F
(
X̂(s)

)
ds, (5.15)

1See also the discussion at the end of Section 2.1.3
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where Ỹl(u) = Yl(u) − u is a compensated Poisson processes, centered at its expectation.

As a side note, Ethier and Kurtz (1986) note that limNT→∞ Ỹl(NTu) = 0, a.s., u ≥ 0 and

Ŵl = N
−1/2
T Ỹl(NTu) converges weakly to Wl, the standard Brownian Motion. They prove that

X̂ converges to the deterministic (ODE) model yt using the following theorem (for the proof

see §2.1, p. 456 in Ethier and Kurtz 1986):

Theorem 5.4.1. Suppose that for each compact K ⊂ E∑
l

|l| sup
x∈K

βl(x) <∞

and there exists MK > 0 such that

|F (x)− F (y)| ≤MK |x− y|, x, y ∈ K.

Suppose X̂ satisfies (5.15), limNT→∞ X̂(0) = x0, and yt satisfies

yt = x0 +

∫ t

0

F (ys) ds, t ≥ 0,

assuming also global existence for dyt

dt
= F (yt). Then for every t ≥ 0,

lim
NT→∞

sup
s≤t
|X̂(s)− ys| = 0, a.s.

They follow the same idea for the SDE approximation: M̂(t) =
√
NT

(
X̂(t)− yt

)
, satis-

fying:

M̂(t) = M̂(0) +
∑
l

lŴl

(∫ t

0

βl

(
X̂(s)

)
ds

)
+

∫ t

0

√
NT

[
F
(
X̂(s)

)
− F (ys)

]
ds. (5.16)

The latter is shown to converge to a Gaussian process M(t), which coincides with (5.14):

M(t) = M(0) +
∑
l

lWl

(∫ t

0

βl (ys) ds

)
+

∫ t

0

DF (ys)M(t)ds, (5.17)

where (DF (x))ji =
∂Fj(x)

∂xi
, a NR × NS matrix. The result is derived using the (martingale)

Central Limit theorem and also the following theorem (the proof is in §2.3, p.458, Ethier and

Kurtz 1986)):

Theorem 5.4.2. Suppose for each compact K ⊂ E,∑
l

|l|2 sup
x∈K

βl(x) <∞,

and that the βl and DF are continuous. Suppose X̂, yt, M̂(t), M(t) as above and limNT→∞ M̂(0) =

M(0), M(0) constant. Then M̂ converges weakly to M , the solution of (5.17).
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5.4.2 Martingale Problem

In this section we sketch a proof for the same result using the Stroock–Varadhan Theo-

rem 2.1.3 and its extension, Lemma 2.1.1, for h = 1/NT → 0. We note that βl(·) =∑
j I (l = Aj·)hj (·,ϑ), where I(·) is the indicator function. The assumptions of the theo-

rems on βl(·), F (·) above hold since we only consider reactions up to order two and y0 = X̂(0).

For each compact K ⊂ E, we assume x ∈ K and |x| ≤ R <∞ and NT > 0. We use the same

notation as above for X̂(t) = X(t)/NT and M̂(t) =
√
NT(X̂(t)− yt).

The conditions (a) (b) of Lemma 2.1.1 (Section 2.1.6) for the drift α
{
M̂(t;ϑ),y(t;ϑ);ϑ

}
and infinitesimal covariance β

{
M̂(t;ϑ);ϑ

}
terms can be derived from (5.12) and (5.13) re-

spectively. We note that we know the transition rates for X̂(t) and y(t;ϑ) beforehand and the

terms δt and O(δ2
t ) are finite due to the assumptions on t. As h(= N−1

T )→ 0 they converge to

α {M(t;ϑ),y(t;ϑ);ϑ} and infinitesimal covariance β {M(t;ϑ);ϑ} respectively. We also stress

that the condition (b) holds for a full rank β {·;ϑ} which often requires some modifications

to the kinetic model in order to re-express the conservation laws.

Now for (c), we rearrange the terms in (5.16) and we use the assumptions on F (·):

M̂(t)− M̂(0)√
NT

=
∑
l

l
1√
NT

Ŵl

(∫ t

0

βl(X̂(s))ds

)
+

∫ t

0

MK |X̂(s)− ys|ds

by applying Gronwall’s inequality (Appendix 5, Ethier and Kurtz 1986):

M̂(t)− M̂(0)√
NT

≤
∑
l

l
1√
NT

Ŵl

(∫ t

0

βl(X̂(s))ds

)
eMKt.

We can now derive a bound using the rate of the compensated Poisson processes:

NT

∫ t

0

βl

(
X̂(s)

)
ds ≤ NTβ̄lt

where β̄l = sups≤t βl

(
X̂(s)

)
< ∞. We can exploit the fact that Ŵ converges to a standard

Brownian motion, we denote with µ′3(ξl) the third raw moment of Gaussian variable with mean

0 and (bounded) variance β̄lt:

lim
h→0

γh3 (x) ≤ µ′3

(∑
l

ξl e
tMK

)

which satisfies the condition (c).
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5.5 Transition Density

In Equation (5.11) we established a relation between the discrete process X(t;ϑ) and the ODE

y(t;ϑ) as well as the SDE M(t;ϑ). We assume that the initial values of M(t;ϑ) are the scaled

differences at points of observation. Furthermore, we will be assuming that the observations

have no error and in the special case of y(tobs;ϑ) = X(tobs;ϑ)/NT, M(tobs;ϑ) is reset to 0

at each observation time tobs. Hence, by (5.12) E [M(t;ϑ)] = 0, ∀t and we will refer to this

special case as the restarting method.

Additionally, M(t;ϑ) is a linear in the narrow–sense SDE and from (2.20) we know that

its transition density coincides with a multivariate Normal distribution with mean (mt or a

vector of zeros) and covariance matrix (St), which are tractable up to the numerical solu-

tion of a system of ODEs (2.19). The discrete stochastic process X(t;ϑ) has a scaled mean

which approximately evolves according to y(t;ϑ) and the mean of M(t;ϑ),mt. Similarly,

the scaled covariance of X(t;ϑ) evolves according to the covariance of M(t;ϑ), St, as illus-

trated in Figure 5.1. Therefore, we exploit (5.11) to approximate the mean of the discrete

ϑ

ODEsyt

mt St

MtXt

Figure 5.1: Dependence graph between the variables (in circles) and parameters ϑ. The

deterministic processes, which are given as solutions of ODEs, are positioned inside the“ODEs”

frame.

process X(t;ϑ) with y(t;ϑ), mt and similarly, the covariance matrix of X(t;ϑ) in terms of

the covariance of M(t;ϑ). A single simulation of a point X(t;ϑ) given a starting point at

X(0;ϑ) would involve the solution of y(t;ϑ), St up to time t, subject to initial conditions

(y(0;ϑ), S(0;ϑ)) = (X(0;ϑ)/NT, 0) and the generation of M(t;ϑ)|M(0;ϑ) = 0 from the
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transition density Normal (0, St). Putting everything together we have:

Xt|X0 = x0 ∼ Normal (ytNT, StNT)

and if we drop the condition of the restarting method (M(0;ϑ) 6= 0) :

Xt|X0 = x0 ∼ Normal
(
ytNT +mt

√
NT, StNT

)
,

where yt,mt, St are the solutions of the following system of Ordinary Differential Equations:

dyt
dt

= ATh (y(t;ϑ),ϑ) , (5.18)

dmt

dt
= Fmt, (5.19)

dSt
dt

= F St + St F
T + ATdiag {h (y(t;ϑ),ϑ)}A, (5.20)

and F is the matrix of coefficients which satisfies the equation:

Fmt = ATh (y(t;ϑ),mt,ϑ) ,

h (y(t;ϑ),mt,ϑ) is the main diagonal vector of (5.13) or alternatively, we can define it by

(Kurtz 1972) taking the partial derivatives w.r.t. mt:

F = DmtA
Th (y(t;ϑ),mt,ϑ) .

5.6 Case Studies

So far we have introduced both exact and approximate methods in a general context: a class

of abstract biological networks. In this Section we use two biological models, the Transcription

example and the Lotka–Volterra model which were introduced in Section 3.3.1.1, to illustrate

the methods of the Chemical Langevin Equation (CLE), the linear noise approximation (LNA)

and the exact Gillespie (SSA2) method. The Chemical Langevin Equation leads to a system of

non–linear SDEs which are subsequently solved using a Euler-Maruyama discretization scheme

with discretization step ∆t = 10−3, as well as with a single (∆t = t) step. It should stressed

that although the transition densities that emerge from the LNA and the single–step Euler

approximations are both multivariate Normals, the computational cost of calculating their

parameters is disproportional. The LNA requires the solution of a system of non-linear ODEs,

2Stochastic Simulation Algorithm.
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whereas the parameters of the single–step Euler are readily available, in closed-form, from

(2.6). Therefore, the comparison between the LNA and the single-step Euler approximation

questions whether the introduction of a computationally more demanding method can be

justified.

The LNA method relies on a numerical ODEs solver and we have used the method proposed

by Petzold (1983) (refer to Section 2.2 for more details) while specifying the tolerance levels

of relative and absolute errors at 10−6. We produced 1000 samples at each of 4 different time

points (0.01, 0.1, 1, 10) using 3 different system sizes: (Small, Medium, Large) defined for each

system separately at Sections 5.6.1 and 5.6.2. We choose the system configurations as such

to keep ϑ fixed (rather than c) while varying the size of the system. The last consideration

renders the concentration–based solutions of the ODEs (Equation 5.10 and Tables 5.4, 5.1)

independent of the system size. As a result, the solution of the means for the LNA’s transition

densities remain unchanged (again in concentrations) irrespectively of the system size. Tables

5.4, 5.1 detail the system of ODEs (5.10, 2.19) which estimate the mean vectors (y(t),m(t))

and the covariance matrices
(
S1,2 := Cov(X1(t), X2(t)N−1

T

)
of the LNA’s transition density.

Results are presented in terms of number of molecules X(t; c); this is obtained by multiplying

the concentrations by the system size NT.

We now compare the samples obtained by the approximate methods to the corresponding

samples generated by the Gillespie algorithm: marginal comparisons include Q–Q plots and

Gaussian kernel density estimates (using Silverman’s rule of thumb). In particular, the LNA’s

actual marginal density was used and vertical bars were preferred to indicate the relative

frequencies in samples with a small range of values (< 25), that render smoothing methods

misleading. Joint comparisons also were included by plotting the sum of the squares of the

log-ratios of the means and standard deviations for each possible size–time combination:

NS∑
i=1

(
log

(
µi,SSA

µi,CLE

))2

,

NS∑
i=1

(
log

(
µi,SSA

µi,LNA

))2

and

NS∑
i=1

(
log

(
σi,i,SSA

σi,i,CLE

))2

,

NS∑
i=1

(
log

(
σi,i,SSA

σi,i,LNA

))2

.

Also, a non-parametric multivariate signed rank test (§5.4 Puri and Sen 1971) based on

marginal ranks was used to test if the combined observations (LNA–SSA and repeated for

CLE–SSA) follow the same distribution for all configurations. It should be noted that if the

variables are dependent, the efficiency of the non-parametric test may become poor (for more

details see Sections 5.8 and 4.6 of Puri and Sen 1971).

The implementation of the Gillespie algorithm (gillespie2) was developed by Darren
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dy1
dt

= ϑ1y1 − y1ϑ2y2
dy2
dt

= y1ϑ2y2 − y2ϑ3
dS1,1

dt
= 2S1,1 (ϑ1 − ϑ2y2) + y1ϑ2y2 − 2y1S1,2ϑ2

+ϑ1y1

dS1,2

dt
= S1,2 (−ϑ3 − ϑ2y2 + y1ϑ2 + ϑ1)

−y1ϑ2S2,2 + S1,1ϑ2y2 − y1ϑ2y2
dS2,2

dt
= y2ϑ3 + 2S2,2 (y1ϑ2 − ϑ3) + 2S1,2ϑ2y2

+y1ϑ2y2

Table 5.1: System of ODEs for Lotka-Volterra example.

Wilkinson and Carole Proctor using model specifications in sbml. The Euler scheme and LNA

method was implemented in the programming language C using the numerical library GSL

(Galassi et al. 2009) and LSODA (Petzold 1983) for the numerical solution of ODEs.

5.6.1 Lotka–Volterra

We consider three systems with initial (Predator,Prey) numbers of (30, 50), (300, 500), and

(3000, 5000), leading to system sizes (NT) of (80, 800, 8000) respectively. Among all configu-

rations, we consider fixed scaled rates ϑ = (.25, 0.2, 0.125) while the corresponding (unscaled)

rates c are adjusted according to (0.25, 0.2/NT, 0.125); as discussed in Section 5.6 this leaves

the deterministic process yt unaffected by changes in system size.
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Kernel estimates of the marginal (Prey) transition densities for the three methods (SSA,

LNA, CLE) are illustrated in Figure 5.2. The Normal Density of the LNA method provides an

adequate approximation to the empirical SSA density or mass function for all configurations.

The empirical transition density of the CLE approximation generally provides similar support

as the LNA method but with one striking difference: at t = 0.01 and for systems of a Large

size the CLE’s empirical transition density seems off-centre compared to the LNA’s and SSA’s

densities.

The single step Euler–Maruyama approximation was omitted from the plot but the means

and the variances of the corresponding samples can be found in Table 5.5. For all t = 0.01, 0.1

and 1, the estimates of the mean are close to the SSA’s but they become worse for t = 10.

For the Large system at t = 10 the transition density of the single-step Euler–Maruyama

approximation is concentrated in a completely different range compared to the corresponding

range of SSA. The single-step standard deviations provide reasonable approximations to the

SSA’s empirical standard deviations up to t = 0.1.

Figure 5.3 illustrates the Q–Q plots of the empirical Prey quantiles of the CLE vs SSA and

LNA vs SSA samples. The lines at each figure illustrate the empirical quantiles of the SSA

samples. The CLE’s empirical transition densities are satisfactory for medium–large configu-

rations with the only exception of the Large–0.01 seconds configuration: the CLE’s quantiles

do not follow SSA’s which confirms the “off-centre” observation of the kernel estimates. The

exact samples of the small configuration have empirical transition densities concentrated on

a few point masses (Figure 5.3) discouraging the application of continuous approximations

in small system sizes for simulation purposes. The quantiles of the LNA’s transition density

are generally similar to the SSA’s, except the cases of Small and Medium sized systems, for

t = 0.01, where the discreteness of SSA is most prominent.

The sum of squared log–ratios of means favor the LNA’s estimates over the CLE’s method

in the small system configurations but they are equivalent for the rest. Furthermore, the LNA’s

estimates consistently (Figure 5.4–b) outperform CLE’s, in terms of the sum of squared log–

ratios of standard deviations. It must be noted that the LNA is a (linear) approximation

to the CLE and any observed differences can be attributed to the numerical method for the

solution of SDEs. In particular, the performance of the Euler–Maruyama method is linked to

the choice of the time step, therefore, a choice of a smaller time step is expected to improve

the numerical approximations.
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Time Points

Size Method 0.01 0.1 1 10

Small 1-Step 50.0875 (0.40) 50.875 (1.27) 58.75 (4.03) 137.5 (12.75)

SSA 50.1120 (0.42) 50.933 (1.34) 59.38 (4.63) 148.6 (33.03)

Medium 1-Step 500.875 (1.27) 508.75 (4.03) 587.5 (12.75) 1375 (40.31)

SSA 500.916 (1.28) 509.02 (4.21) 595.4 (15.3) 1486 (101.14)

Large 1-Step 5008.75 (4.03) 5087.5 (12.75) 5875 (40.31) 13750 (127.48)

SSA 5008.81 (4.13) 5087.8 (12.46) 5954 (47.77) 14851 (321.78)

Table 5.2: Means (s.d.) of the single step Euler approximation and the corresponding Gillespie

Samples for Lotka–Volterra Model

Time Points

Size Test 0.01s 0.1s 1s 10s

Small LNA vs SSA 0.0024 0.5542 0.3013 0.4162

CLE vs SSA 0.2497 0.9375 0.1800 0.3239

Medium LNA vs SSA 0.2586 0.6296 0.7054 0.2680

CLE vs SSA 0.0028 0.3973 0.3024 0.6484

Large LNA vs SSA 0.1487 0.3245 0.2489 0.1779

CLE vs SSA 0.0000 0.1542 0.8586 0.0583

Table 5.3: P-values of the multivariate singed rank test based on marginal ranks for the

Lotka–Volterra model.
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Figure 5.3: Q-Q plots of Prey samples; Chemical Langevin Equation vs Gillespie (points)

and Linear Noise Approximation vs Gillespie (crosses) at at four time points (t =

0.01, 0.1, 1, and 10) using three different system sizes (Small, Medium, Large).

The multivariate signed rank tests (Table 5.3) resulted fewer significant differences (at 95%

s.l.) of the LNA samples over the CLE at short (0.01s) transition intervals; although, overall,

the performance of the two methods in the non-parametric tests is close for both.

5.6.2 Transcription Example

We now describe the details of the simulations of the Transcription example (3.3.1.2). For

the small system we set the initial state to {X} = (8, 8, 8, k − 5, 5) and k = 10 while the

unscaled (c) parameters are set equal to (3.4, 0.7, 0.35, 0.2, 3.4, 0.9, 0.3, 0.1) which matches the

parameter choice for c considered by Golightly and Wilkinson (2005). For larger system sizes

i = 10 and 100, corresponding respectively to medium and large sizes, the initial number of
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Figure 5.4: Comparisons of Prey means (a) and s.d.s (b) using the sums of the squared log-

ratios of the means–s.d. The first four entries at the x-axis correspond to the small system

at the time instances t = 0.01, 0.1, 1, 10. Similarly the next four correspond to the Medium

system and the last four to the Large.

molecules are increased by a factor of i. The molecule-level rate constants c are adjusted

according to the formula ((10 i)−1, 0.7, 0.35, 0.2, (10 i)−1, 0.9, 0.3, 0.1) , and the ϑ remain fixed.

We choose the DNA species to start our marginal comparisons. The empirical transition

densities of DNA molecules (Figure 5.5) show that the transition densities of all methods

provide similar support. The single step Euler–Maruyama approximation, leads to a Normal

distribution which for t = 1 and t = 10 is outside the range of the previous methods; the mean

and variance estimates of the transition densities are provided in Table 5.5.
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dy1
dt

= ϑ3y4 − y1ϑ7
dy2
dt

= −y2ϑ8 + 2y3ϑ6 − y22ϑ5 + y1ϑ4

dy3
dt

= ϑ2

(
k

N
− y4

)
− y3ϑ6 +

y22ϑ5
2
− ϑ1y3y4

dy4
dt

= ϑ2

(
k

N
− y4

)
− ϑ1y3y4

dS1,1

dt
= −2S1,1ϑ7 + y1ϑ7 + ϑ3y4 + 2S1,4ϑ3

dS1,2

dt
= S1,2 (−ϑ8 − ϑ7 − 2y2ϑ5) + 2S1,3ϑ6 + S1,1ϑ4

+S2,4ϑ3

dS1,3

dt
= S1,3 (−ϑ7 − ϑ6 − ϑ1y4) + S1,2y2ϑ5 + ϑ3S3,4

+S1,4 (−ϑ1y3 − ϑ2)

dS1,4

dt
= S1,4 (−ϑ7 − ϑ1y3 − ϑ2) + ϑ3S4,4 − ϑ1S1,3y4

dS2,2

dt
= y2ϑ8 + 2S2,2 (−ϑ8 − 2y2ϑ5) + 4y3ϑ6

+4S2,3ϑ6 + 2y22ϑ5 + 2S1,2ϑ4 + y1ϑ4

dS2,3

dt
= S2,3 (−ϑ8 − ϑ6 − 2y2ϑ5 − ϑ1y4)

+2S3,3ϑ6 − 2y3ϑ6 + y2S2,2ϑ5 − y22ϑ5

+S1,3ϑ4 + S2,4 (−ϑ1y3 − ϑ2)

dS2,4

dt
= S2,4 (−ϑ8 − 2y2ϑ5 − ϑ1y3 − ϑ2)

+2S3,4ϑ6 − ϑ1S2,3y4 + S1,4ϑ4

dS3,3

dt
= ϑ2

(
k

N
− y4

)
+ y3ϑ6 + ϑ1y3y4 +

y22ϑ5
2

+2ϑ5y2S2,3 + 2 (−ϑ1y3 − ϑ2)S3,4

+2S3,3 (−ϑ6 − ϑ1y4)

dS3,4

dt
= −S3,4 (ϑ6 + ϑ1y4 + ϑ1y3 + ϑ2)

− (ϑ1y3 + ϑ2)S4,4 − ϑ1S3,3y4 + ϑ1y3Y4

+ϑ2

(
k

N
− y4

)
+ y2S2,4ϑ5

dS4,4

dt
= ϑ2

(
k

N
− y4

)
+ 2 (−ϑ1y3 − ϑ2)S4,4

−2ϑ1S3,4y4 + ϑ1y3y4

Table 5.4: System of ODEs for the Transcription example.
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Time Points

Size Method 0.01 0.1 1 10

Small 1-Step 4.995 (0.27) 4.95 (0.87) 4.5 (2.74) −8.8 10−16 (8.66)

SSA 7.994 (0.18) 7.968 (0.59) 7.32 (1.72) 5.891 (2.47)

Medium 1-Step 49.95 (0.87) 49.5 (2.74) 45 (8.66) −7.1 10−15 (27.39)

SSA 79.959 (0.63) 79.326 (2.02) 74.131 (5.54) 59.577 (8.04)

Large 1-Step 499.5 (2.74) 495 (8.66) 450 (27.39) −1.13 10−13 (86.60)

SSA 799.346 (1.99) 793.29 (6.29) 743.242 (17.84) 589.198 (24.99)

Table 5.5: Means (s.d.) of the single step Euler approximation and the corresponding Gille-

spie Samples for the Transcription model.

Q–Q plots (Figure 5.6) highlight the discreteness of SSA samples in all instances of the small

configuration and also at short transition intervals (t = 0.01, 0.1) and (t = 0.01) of the medium

and large configurations respectively. Both approximate methods generate samples that have

similar quantiles to the exact samples with the exception of the largest time transitions: the

upper CLE quantiles seem to indicate a slight positive skew. Omitting the case of the small

system at t = 0.01, where both approximations are not satisfactory, the LNA quantiles seem

overall closer to the exact quantiles.

The overall comparison of means and standard deviations (Figure 5.7) does not indicate

large differences between the summed squares of the log-ratios of the means; the largest is

observed at the transition time of t = 10 of the small configuration. Contrary to the means,

the comparison of the standard deviations (Figure 5.7 b) reveals large differences in scale

between the CLE and SSA samples.

Finally, the non-parametric multivariate signed rank test showcases fewer significant dif-

ferences (at 95% s.l.) between the exact and the LNA method (4/12), compared to the CLE

v.s. SSA tests for all size–time combinations. The samples from the CLE method exhibit con-

sistently significant differences from the exact sample in large transition times for all system

sizes, which is in accord with the pattern in Figure 5.7–b.
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Figure 5.6: Q-Q plots of samples; Chemical Langevin Equation vs Gillespie (circles) and

Linear Noise Equation vs Gillespie (crosses) at various time points.

5.6.3 Discussion of the Examples

The simulated samples from the two models that we have considered share some common

features, in terms of their empirical transition densities. First we consider the behavior of the

exact discrete process in short transition times. In small time intervals, e.g. t = 0.01, we

expect that few reactions will occur, therefore, the changes on state of the process will involve

a small number of molecules. Hence, the concentration of the transition probabilities at few

discrete points, as seen in Figures 5.3 and 5.6, is explained by the occurrence of a small number

of reactions. Furthermore, both LNA and the Euler–Maruyama-based approximations rely on

continuous densities which do not approximate well enough densities concentrated on a small

number of discrete points.

Following the previous argument, we expect that as the LNA and CLE methods will provide
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Figure 5.7: Comparisons of DNA means (a) and s.d.s (b) using the sums of the squared log-

ratios of the means–s.d. The first four entries at the x-axis correspond to the small system

at the time instances t = 0.01, 0.1, 1, 10. Similarly the next four correspond to the medium

system and the last four to the large.

good approximations when the transition densities involve a large range of values. When the

number of reactions increases, the corresponding range of the transition distributions increases

as well. In systems with a small number of molecules, or with slow reactions, the number of

reaction occurrences will become sufficiently large after a large time interval; whereas in system

with larger number of molecules, the number of reaction occurrences will become sufficiently

large sooner. Hence, we can confirm in Figures 5.3 and 5.6 that the LNA and CLE methods

provide good approximations for the transition densities of systems of small size for both

models at t = 1 and t = 10 but not at t = 0.1. Contrary, both methods provide good

approximations for systems with medium and large number of molecules sooner, i.e. t = 0.1, 1

and 10.

We established previously that for both models, the single–step Euler–Maruyama approx-

imation becomes very poor as the transition time increases (Tables 5.2 and 5.5). Under

the single–step approximation the mean and the variance of the Normal transition density

is estimated from the initial point. Therefore, it is acceptable locally, i.e. for small transi-

tion intervals t = 0.01, but as t increases, the approximation cannot follow the behaviour of
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Time Points

Size Test 0.01s 0.1s 1s 10s

Small LNA vs SSA 0.0001 0.0162 0.2382 0.4431

CLE vs SSA 0.0001 0.0730 0.2117 0.0000

Medium LNA vs SSA 0.8920 0.4902 0.3589 0.2064

CLE vs SSA 0.2708 0.7367 0.3335 0.0000

Large LNA vs SSA 0.2026 0.9331 0.7700 0.0412

CLE vs SSA 0.8849 0.8881 0.8330 0.0000

Table 5.6: P-values of the multivariate rank-sum test keeping ϑ fixed, using 1000 samples from

the Transcription example at four time instances.

the system dynamics. In contrast, the CLE method which is based on a discretized Euler–

Maruyama follows the system dynamics more closely. The rather poor performance of the

CLE at estimating the transition of the Transcription model at t = 10, in the Large system,

could be attributed to the discretization step: a smaller step may improve the accuracy of the

approximation.

In both examples the LNA seems to provide satisfactory approximations for the medium

and large system sizes while in some cases the CLE samples diverged from the exact samples.

For small system sizes both approximate methods seems to struggle since the system’s dis-

creteness is approximated poorly. The LNA’s s.d. estimates seems to be closer to the exact

s.d. estimates than the CLE’s. Overall, most configurations show that the LNA’s approxima-

tion is as good as or even has a small improvement over CLE’s. In addition, LNA is tractable,

and as we will see in Chapter 6, more amenable to use for inference than the CLE method.

Nevertheless, the LNA is a linear approximation of the CLE method and we can attribute

its superior performance to the numerical schemes: the numerical solution of ODEs are much

easier to handle compared to the numerical solution of non-linear SDEs.

5.7 Discussion

In this chapter we introduced a reparametrization which leads to the LNA approximation. In

order to investigate the performance of the LNA we considered the Lotka–Volterra model and a
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model for prokaryotic Transcription. In particular, we compared the LNA’s transition density

to the empirical transition densities of the Gillespie algorithm and the Chemical Langevin

Equation approximation under different modelling scenarios. The LNA method provided very

satisfactory approximations for the transition densities of large time intervals. For small

transition intervals, we saw that LNA, being a continuous approximation, is difficult to account

for a (discrete) probability mass function. Nevertheless, the estimates of the mean and the

standard deviation were close to the exact method’s empirical estimates. Overall, LNA’s

performance was as good as the CLE’s approximation and for some cases, it showed a small

improvement.
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Chapter 6

Inference for Auto–regulatory

networks

In Chapter 5 we concluded that, with the exception of small systems at small time intervals, the

Linear Noise Approximation provides a reasonable approximation to the system’s dynamics

and we proceed, in this chapter, by exploring the inferential possibilities. First, in Section

6.1, we outline the methodologies that have been proposed for the inference of auto-regulatory

networks. In Section 6.2 we derive the two inferential methods based on the LNA which differ

in the solutions of the underlying ODEs. Finally, in Section 6.3 we compare the two LNA

methods by considering a series of simulated experiments based on two case studies.

6.1 Methods Overview

The inference for auto-regulatory networks can be perceived as a twofold problem: inferring the

model structure (Bower and Bolouri 2001) and estimation of the stochastic kinetic constants.

We only address the latter problem and assume that the methodology described in Chapter 3

is applicable, i.e. the underlying network structure is known and can be expressed as a set of

biochemical reactions. The problem of stochastic rate constants estimation from discrete time

observations has recently attracted the research interest; similar to Chapter 3, we outline the

proposed methods classified according to their modelling assumptions:

� Deterministic Approximations: A system of ODEs is considered as an approxima-

tion to the stochastic kinetics. Usually, the procedure of fitting ODE models is considered
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as a non–linear regression, e.g. the COPASI software developed by Hoops et al. (2006)

employs a minimisation criterion based on weighted residual sum of squares.

� Exact methods: The exact Markov Jump processes are employed to estimate the cor-

responding stochastic rate constants. Tian et al. (2007) follow a simulated likelihood

approach by applying non–parametric transition density estimators on SSA and SDE

generated samples. Boys et al. (2008) propose a method that tracks the exact likelihood

of the discrete process using MCMC algorithms which accommodates for missing data

and data with completely unobservable species. Although the exact methods are theo-

retically very appealing, in practice they are very computationally demanding and the

application to realistic biochemical networks is an open problem (Boys et al. 2008).

� Chemical Langevin Equation: as discussed in Section 3.3, CLE is a non–linear SDE

which is used as an approximation to the exact process. Golightly and Wilkinson (2005)

combined a data imputation scheme based on Euler–Maruyama transition densities with

a MCMC algorithm which had deteriorating mixing properties as the data augmentation

increased. Their proposed methodology was applied in a auto-regulatory network assum-

ing both complete and partial observations. The same authors (Golightly and Wilkinson

2007) addressed effectively the mixing issue of their previous MCMC methodology and

also extended its scope to partial observations subject to measurement error. Further-

more, in parallel with their work on static inference, Golightly and Wilkinson (2006)

proposed a sequential MCMC method that handles partial observations with measure-

ment error as well.

� Linear noise approximation: as we saw in Section 5.3, the linear noise approximation

(LNA) leads to a linear in the narrow sense SDE which has a known (Normal) transition

density with parameters expressed as solutions of systems of ODEs. Komorowski et al.

(2009) express the likelihood in terms of the LNA’s transition densities and employ

a Bayesian analysis in conjunction with a MCMC algorithm and apply it to a time

dependent model of gene expression. It should be noted that the method considered

by Komorowski et al. (2009) corresponds to the Non–Restarting method, derived in the

next Sections of this chapter. Ruttor et al. (2010) consider two methods, the LNA and

a mean field approximation, which are derived from a variational formulation of exact

inference.
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� Moment closure: Approximations of the transition densities can be achieved by con-

sidering the moments of the Master Equation up to a certain order. In the presence

of non–linear reaction rates a recursive relation occurs where lower order moments are

expressed in terms of higher order moments. Based on the recursion, analytical approx-

imations can be derived by assuming a closure, i.e. all moments whose order exceeds a

preset threshold are set to zero. Although a full–scale inferential methodology has not

yet been proposed, it is an area of active research, moment closure has been applied to

the analysis of regulatory genetic systems: Singh and Hespanha (2007) used the moment

closure technique to estimate the coefficient of variation in two regulatory models and

Gillespie (2009) to estimate the transition density of certain species in a chaperone model

of realistic size.

6.2 Likelihood arising from the Linear Diffusion Ap-

proximation

We assume complete observations of the state of the system, {X}, at a set of times t0, t1, . . . , tn.

We denote with X(t;ϑ) the LNA approximation of {X} at time t and for i = 0, . . . , n − 1,

X(ti;ϑ) is set equal to the corresponding observations of {X}. A given observation at ti,

provides initial conditions for the ODEs described in the Section 2.1.4; the ODEs are then

integrated forward until time ti+1 to provide the transition kernel for the system at time ti+1

given its state at time ti. Explicitly,

X(ti+1;ϑ)|X(ti;ϑ) ∼ Normal
(
NT y(ti+1;ϑ) +

√
NTm(ti+1;ϑ), NTS(ti+1;ϑ)

)
(6.1)

y(t;ϑ) is the ODE solution of the “deterministic approximation” detailed in Section 5.2, and

m(t;ϑ), S(t;ϑ) are the solutions to the ODEs expressing the mean (2.15) and variance (2.17)

of the deviation process M(t).

The product of the transition densities provides a conditional likelihood1 for the data

(conditional on X(t0;ϑ)). A numerical optimisation algorithm (BFGS, introduced in Section

2.3.2) is then used to obtain the Maximum Likelihood Estimators (MLEs) ϑ̂ of ϑ, the vector

of scaled stochastic rate constants. The parameters of interest express the rate of occur-

rence of a reaction in a single unit of time per unit of “concentration”, and are constrained

1The log of which we denote by ` (Xt, c).
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to the non–negative plane: (ϑ ∈ [0,∞)NR). Since the BFGS algorithm is unconstrained,

we use a log–transformation (log(ϑ) ∈ RNR) for consistency. In addition, we preserve the

log−parametrisation in the derivation of approximate confidence intervals (CIs), based on the

Wald’s approximation and the observed Fisher information.

6.2.1 Restarting and Non–Restarting
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Figure 6.1: Illustrating the solutions obtained by the RE (top left) and the NR (top right)

methods which are also plotted in a common plot (bottom left) for a toy dataset of the tran-

scription network (Section 5.6.2). The mean m(t) of the NR method’s scaled residual process

Mt is also plotted (bottom right) for the time interval [0.05, 0.1) which obtains the non-trivial

(non-zero) solution.

As mentioned before, we obtain the solutions of the system of ODEs (y(t;ϑ),m(t;ϑ), S(t;ϑ))

by numerically resetting the initial conditions at every observed time point. In this section we

present two different methods to update the initial conditions: the Restarting method (RE)

and the Non–Restarting (NR) method.
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In the NR method we solve the ODEs (yt) of the deterministic model using the (scaled)

initial observation as the initial condition: y(t0;ϑ) = x(t0)/NT, which corresponds to the solid

black line in the two top right plot of Figure 6.1, and we let it evolve forward in time until the

requested duration T . At each time instance ti, associated with an observation x(ti), we re-

initialise the residual process Mt by updating its mean m(ti;ϑ) =
√
NT (x(ti)/NT − y(ti;ϑ))

and its covariance matrix S(ti;ϑ) = 0, i.e. a vector of zeroes2. The combined mean (
√
NTm(t;ϑ)

+NTyt) is illustrated as a solid red line and the (scaled) covariance matrix which is associated

with
(√

NTm(t;ϑ) +NTyt
)
± 2 s.d., illustrated as dashed red lines, in the top right plot of

Figure 6.1. As a side note, the Non–Restarting method has been used for inferential purposes

previously by Komorowski et al. (2009).

In the RE method, we solve the ODEs (yt) associated with the deterministic model by

reconsidering our initial conditions at each time point ti associated with an observation x(ti):

y(ti;ϑ) = x(ti)/NT. By restarting the deterministic model, we set implicitly the mean m(t)

of the residual process Mt equal to zero m(ti;ϑ) = 0 at each ti which makes m(t) to obtain

the trivial solution m(s;ϑ) = 0, ∀s ∈ [0, T ]. Therefore, in the RE method the combined mean
√
NTm(t;ϑ)+NTyt coincides with the (scaled) solution of the deterministic model, illustrated

as a solid black line in the top left plot in Figure 6.1. In addition, at each ti we restart the

initial conditions for the covariance matrix S(ti;ϑ) = 0 which is used to estimate the standard

deviation in the formula
√
NTm(t;ϑ) +NTyt ± 2 s.d, illustrated as the dashed black lines in

the top left plot.

From the plots in Figure 6.1 we can observe that one difference between the two methods

is the way that the combined mean (
√
NTm(t;ϑ) + NTyt) is handled by the two methods:

in the RE method, coincides with the deterministic model because m(t) vanishes, but in the

NR method the combined mean involves m(t) in addition to yt. Both solutions seems to be

very close when they are combined in a single plot (bottom left in Figure 6.1). As we saw in

Section 2.1.4.2, the ODEs associated with the covariance matrix S(t) involve only terms of

yt, the deterministic model, and not m(t;ϑ). Therefore, as the solutions for the yt diverge

between the two methods we would expect the same to happen for S(t) the estimate of the

covariance matrix. In the subsequent Sections we will investigate the performance of both

methods in a series of numerical examples.

2We choose to work with a vectorised version of the upper triangular of S(t).
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6.2.1.1 Stiff ODEs

In Section 2.2 we characterized a system of ODEs as stiff when, in the same time interval,

certain of its elements exhibit rapid changes compared to the rest subject to their initial con-

ditions. Taking into account the fact that we employ the ODE solver within the optimisation

procedure, it is not possible to foresee, in the course of the optimisation, if a certain param-

eter choice would lead to stiff behavior. Furthermore, general ODE numerical methods do

not usually address the stiffness problem, which leads to numerical instabilities (Hairer and

Wanner 1991). We chose the numerical ODE solver LSODA (Petzold 1983) which has the ad-

vantage of automatically switching between stiff and non–stiff methods. For testing purposes,

we considered a non–stiff method, RK45 introduced at Section 2.2, but this resulted in a very

long completion time.

6.3 Case Studies

As in the Section 5.6, we employ the Transcription and Lotka–Volterra models to put the

estimating capabilities of both methods (RE, NR) to the test. We generated 100 datasets,

using the SSA algorithm, for each combination of the following two factors: the observation

intervals chosen to be every 0.1, 0.5, 1 time units and the system size considering an initial

population (small) a tenfold increase (medium) and a successive tenfold increase as well (large).

In order to assess the maximum likelihood estimators (MLEs) we apply the asymptotic result:

T := 2
(
`
(
Xt, ϑ̂

)
− ` (Xt,ϑTrue)

)
∼ χ2

NR

where NR is the number of parameter which in our setting corresponds to the number of

reactions. We examine Q–Q plots of T compared to its anticipated distribution and we also

count the number of datasets for which T is significant at the 5% level, which should account

for 5% of the datasets. We also investigate the coverage probabilities of the estimated 95%

confidence intervals (CIs) through counts, per parameter, of CIs that do not include the true

parameter.

Finally, we analyze three specific datasets of the Transcription model, which have been

previously analyzed by Golightly and Wilkinson (2005) in a Bayesian setting, to assess the

performance of LNA relative to other methods.
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6.3.1 Lotka–Volterra

For the generation of Lotka–Volterra data we considered three observational intervals (0.1, 0.5, 1)

corresponding to (100, 20, 10) observations of a system evolving for 10 seconds. The choice of

the initial conditions and the parameters was identical to the example presented in Section

5.6.1, i.e. the initial number of species for systems of small size (NT = 80) is ({Prey}, {Predator})

= (50, 30) with fixed scaled reaction rate constants ϑ = (.25, 0.2, 0.125) while the correspond-

ing unscaled rates c are adjusted according to the formula: c = (0.25, 0.2/NT, 0.125).

System Size

Obs. Interval Method Small Medium Large

0.1 NR 17 8 7

RE 13 7 6

0.5 NR 14 6 5

RE 9 6 5

1 NR 13 7 3

RE 7 8 3

Table 6.1: Counts of statistically significant likelihood ratios for the Lotka–Volterra model.

Table 6.1 shows the counts of statistically significant likelihood ratio test statistics for

both the Restarting and Non–Restarting method. As the system size increases the number of

significant log–likelihood differences decreases since the LNA approximation, an asymptotic

approximation3 with respect to NT, becomes more accurate. The latter problem becomes more

prominent in the case of a system of small size and dense (100) observations. In addition, RE

method provides a better coverage than the NR for each possible system size and observational

interval combination.

Figure 6.2 illustrates Q–Q plots of the likelihood ratio test statistics, for each configuration

of system size–observations number, v.s. the theoretical χ2
3 distribution. When we focus

on systems of small size, the likelihood ratio test statistics depart from the χ2
3 distribution

3Can also be viewed as a central limit theorem of the transition densities as the system size increases (Kurtz

1972).
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Figure 6.2: Q–Q plots of the likelihood ratio test statistic for the Lotka–Volterra model.

Likelihood ratio statistics based on the Restarting (points) and the Non–Restarting method

(crosses) are plotted against the quantiles of the χ2
3 distribution (lines). Systems of three sizes

(Small, Medium, Large) were considered at three observational intervals (0.1, 0.5, 1) which

correspond to samples sizes of (100, 20, 10) observations, indicated with the symbol (#).

for both methods. In particular, as the number of observations increase the deviation from

the χ2 assumption increases which is in accordance with the high number of significant log–

likelihood differences. Furthermore, the marginal CIs of the RE method result a coverage of

true parameters which is at least as good as or even better than the coverage provided by the

NR method.

We summarize the number of the approximate CIs that fail to cover the true value of the
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Increment System Size Method ϑ1 ϑ2 ϑ3

Small NR 31 10 9

RE 9 11 14

0.1 Medium NR 5 4 5

RE 4 4 5

Large NR 6 8 8

RE 4 7 8

Small NR 18 9 8

RE 9 8 5

0.5 Medium NR 5 8 4

RE 3 7 5

Large NR 4 9 5

RE 5 9 6

Small NR 18 8 4

RE 13 9 4

1 Medium NR 6 10 4

RE 5 9 3

Large NR 3 3 3

RE 2 2 2

Table 6.2: Missed Wald’s CIs coverage counts for the Lotka-Volterra example.
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parameters of interest in Table 6.2. The parameter ϑ1 corresponds to the first order R1 reaction

that expresses the reproduction of Prey. Coverage is especially poor for this parameter in the

small system, for both methods, although the restarting method does perform better than

the Non-Restarting method. In general, coverage is worse for the small system, and for the

most part the Non-Restarting method performs better than the Restarting method, which is

accordance with the findings from Table 6.1

6.3.2 Transcription Network

We considered three levels of observation time intervals of (0.1, 0.5, 1) time units leading to

(500, 100, 50) observations over a simulation interval of 50 time units. The initial states and

parameter choices are similar to the simulation choices at Section 5.6.2. To be more specific,

we assumed that a system of small size has initial state:

({RNA}, {P}, {P2}, {DNA}) = (8, 8, 8, k − 5, 5)

with k = 10 and parameters:

ϑ = (3.4, 0.7, 0.35, 0.2, 3.4, 0.9, 0.3, 0.1)

which correspond to the unscaled parameters:

c = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1).

For systems of medium and large sizes we considered subsequent tenfold increases of the initial

state. The ϑ remain fixed, while c are adjusted to the [(10 i)−1, 0.7, 0.35, 0.2, (10 i)−1, 0.9, 0.3, 0.1]

formula with i = {10, 100} corresponding to the medium and large system respectively.

The LNA approximation is based on the asymptotic consideration that the system size

NT increases, which is most strongly violated by the small systems. Table 6.3 shows counts

of significant likelihood ratio tests for the Transcription example; as might be expected, of

the three system sizes, the χ2 fit is poorest for the small system. As with the Lokta–Volterra

example, the introduction of more observations exacerbates this problem as evidenced by the

increase in the number of significant log–likelihood differences. Conversely, sparser observa-

tions (50) exhibit a smaller number of significant ratios: the smaller number of observations

contributes to the estimation uncertainty leading to wider confidence intervals (Table 6.4). In
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System Size

Obs. Interval Method Small Medium Large

0.1 NR 69 11 5

RE 40 7 4

0.5 NR 25 3 4

RE 12 5 3

1 NR 13 4 5

RE 6 5 5

Table 6.3: Counts of significant likelihood ratio tests for the Transcription example.

terms of significant log-likelihood differences, the RE method consistently outperforms the NR

in systems of small size and both method provide a good fit for systems of larger sizes.

The Q–Q plots (Figure 6.3) of the Likelihood ratio test statistic v.s. the theoretical χ2
8

distribution provide further evidence that the combination of large number of observations

(500) with small system size leads to large likelihood ratios that cannot be attributed to

chance. Nevertheless, the Restarting method in the sparser dataset (50) is consistent with the

asymptotic χ2 assumption as in the Lotka–Volterra case, i.e. the smaller number of significant

test statistic of Table 6.3 can be attributed to the uncertainty introduced by the smaller number

of observations. In contrast, with the exception of the medium system with observations at

0.1 time intervals, the test statistics of larger system sizes seem to be consistent with the χ2

approximation for both methods.

In Table 6.4 we investigate each parameter separately by considering the counts of CIs

that do not cover the true parameters. Both methods provide adequate coverage when they

are applied to datasets generated from observations of large systems, and observations of 0.1

and 0.5 time intervals from medium systems. As expected from the likelihood ratio test, the

coverage for small systems is poor; the only exception, again, is traced at the combination of the

small system with an observational interval of 1 time units: the small number of observations

increases the range of CIs leading to an improved coverage. Generally, the performance of RE

method seems to be as good as the performance of NR or better.
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Figure 6.3: Q–Q plots of the Likelihood ratio test statistic for the Transcription model. Like-

lihood ratio test statistics based on the Restarting (points) and the Non–Restarting method

(crosses) are plotted against the quantiles of the χ2
8 distribution (lines). Systems of three sizes

(Small, Medium, Large) were considered at three observational intervals (0.1, 0.5, 1) which

correspond to samples sizes of (500, 100, 50) observations, indicated with the symbol (#).

It should be noted that incidents of missed coverage are not independent between param-

eters. If we take into account the graph of Figure 3.2 which depicts the species–reactions

dependencies, we can identity two reversible reactions, Repression Binding and Dimerisation,

associated with the parameter pairs (ϑ1,ϑ2) and (ϑ5,ϑ6), respectively. The presence of re-

versible reactions, imposes a correlation structure on each pair which can be traced in almost

all configurations of Table 6.4. The smallest system with short (0.1) observational interval
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Obs. Interval Method Size ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8

Small NR 10 12 23 8 3 9 10 24

RE 6 11 16 14 15 9 14 28

0.1 Medium NR 6 3 11 8 3 2 3 6

RE 7 6 9 8 4 3 5 6

Large NR 1 3 3 8 8 7 5 8

RE 4 4 3 9 8 8 4 9

Small NR 7 9 10 12 5 4 4 11

RE 8 8 11 11 6 4 6 10

0.5 Medium NR 6 6 5 2 2 3 3 1

RE 6 6 6 2 3 5 3 2

Large NR 4 5 11 8 4 5 9 8

RE 4 5 9 8 4 5 9 7

Small NR 2 4 5 7 10 10 2 10

RE 3 5 3 8 10 10 2 7

1 Medium NR 10 11 4 6 12 13 3 3

RE 9 9 3 6 12 13 3 3

Large NR 3 3 3 9 11 11 5 10

RE 4 3 2 9 8 9 4 10

Table 6.4: Missed Wald’s CIs coverage counts for the Transcription example.

seems to be an exception which can be attributed to the overall large number of missed cov-

erage incidents.

6.3.2.1 Three Datasets

In this Section, we consider three datasets (D1, D2, D3) of sparse (50) observations generated

by Golightly and Wilkinson (2005). As mentioned before, we have selected the configura-

tion of the small system to match the configuration considered by the authors for the three

datasets. Additionally, the duration of the simulation remains unchanged (50) and the states

are observed per unit of time.
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Golightly and Wilkinson (2005) proposed a Bayesian inferential methodology for the pa-

rameters c which they applied to (D1, D2, D3). For convenience, we reproduce their results

in Table 6.5. According to Golightly and Wilkinson (2005), for each dataset a single chain of

1, 000, 000 iterations was run and the first 100, 000 iterations was discarded as a burn-in period.

Therefore, Table 6.5 contains the estimated posterior means and s.d. from the final 900, 000

iterations. The posterior means and variances of the parameters which are not associated with

a reversible reaction, provide a good support for the corresponding true values. In addition,

the authors commented that each pair of parameters that is linked with a reversible reaction,

raises identifiability issues. To overcome this problem, they introduced a new parametrisation

by considering the ratio of the kinetic constants of each pair, i.e. c1/c2 and c5/c6 in this case,

which improved the accuracy of the Posterior estimates.

Values c1 c2 c1/c2 c3 c4 c5 c6 c5/c6 c7 c8

True 0.1 0.7 0.1429 0.35 0.2 0.1 0.9 0.1111 0.3 0.1

D1 Mean 0.064 0.474 0.141 0.360 0.252 0.043 0.475 0.094 0.288 0.143

SD 0.022 0.148 0.035 0.125 0.079 0.013 0.154 0.025 0.099 0.044

D2 Mean 0.058 0.363 0.157 0.372 0.240 0.048 0.477 0.105 0.285 0.121

SD 0.020 0.120 0.090 0.131 0.071 0.014 0.154 0.047 0.095 0.039

D3 Mean 0.052 0.346 0.153 0.416 0.213 0.044 0.488 0.092 0.321 0.115

SD 0.020 0.120 0.046 0.151 0.061 0.011 0.145 0.021 0.108 0.036

Table 6.5: MCMC Posterior means and standard deviations for c estimated on three datasets

(D1, D2, D3) of 50 observations. The Table above is a reproduction of Table 1 from Golightly

and Wilkinson (2005).

We employed the RE method to the three datasets in order to get MLEs as well as 95%

confidence intervals for the parameters of interest. To facilitate the comparisons, we report,

in Table 6.6, the results in terms of c instead of ϑ. In order to provide (Wald) Confidence

Intervals for the ratios c1/c2, and c5/c6 we have used an approximation based on the Delta

method:

Var

[
ĉ1

ĉ2

]
≈ Var[ĉ1]

ĉ2
2

+
ĉ2

1

ĉ4
2

Var[ĉ2]− 2
ĉ1

ĉ3
2

Cov[ĉ1, ĉ2], (6.2)
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Values c1 c2 c1/c2 c3 c4 c5 c6 c5/c6 c7 c8

True 0.1 0.7 0.1429 0.35 0.2 0.1 0.9 0.1111 0.3 0.1

UCI 0.297 2.213 0.164 0.591 0.337 0.273 2.636 0.122 0.499 0.200

D1 EST 0.113 0.851 0.133 0.366 0.222 0.080 0.793 0.101 0.298 0.133

LCI 0.043 0.327 0.102 0.226 0.147 0.023 0.238 0.080 0.177 0.088

UCI 0.196 1.285 0.193 0.599 0.320 72.69 664.581 0.134 0.476 0.178

D2 EST 0.088 0.572 0.154 0.381 0.216 0.243 2.171 0.112 0.289 0.114

LCI 0.039 0.255 0.115 0.242 0.146 0.001 0.007 0.090 0.175 0.073

UCI 0.098 0.665 0.186 0.766 0.285 0.420 3.891 0.129 0.596 0.171

D3 EST 0.053 0.372 0.142 0.477 0.191 0.098 0.915 0.107 0.357 0.109

LCI 0.029 0.208 0.099 0.297 0.128 0.023 0.215 0.085 0.213 0.070

Table 6.6: Upper bounds of the 95% C.I. (UCI), Maximum Likelihood Estimates (EST) and

the lower bound of ϑ (LCI) and of three datasets (D1, D2, D3) of 50 observations.

and the observed Fisher information. Both ratios are reported in terms of the original c

parameters.

Table 6.6 shows the results of the RE method. Specifically, the 95% confidence intervals of

D1 provide good coverage of the true values. The CIs of the second dataset (D2) are extremely

wide for the c5, c6 parameters which may indicate identifiability issues as they are linked with

a reversible reaction. In D3 we observe a similar behavior for the c1, c2 kinetic constants

associated, again, with a single reversible reaction. Nevertheless, the ĉ2/ĉ1 and ĉ5/ĉ6 estimate

the ratios of the true parameters accurately, while the corresponding CIs provide excellent

coverage of the true values. It is interesting to note, that although the ĉ5, ĉ6 of D2 dataset seem

off-location their estimated ratio is surprisingly close to the true value. Since the remaining

parameters are unaffected from the miss-estimation of ĉ5, ĉ6, we are leaded to the conclusion

that the relative ratio of the reversible rates plays a more important role than the individual

parameters.

The results from both methodologies (Tables 6.5 and 6.6) suffer from the same identifiability

issues introduced by the reversible equations. Fortunately, these issues vanish when the ratios

of the involved parameter pairs are considered, which both methods estimate with a high
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degree of accuracy. The performance of the two methods is not directly comparable because in

some instances, e.g. for the c1, c2, c8 parameters, RE produces more accurate estimates, while

in some others, e.g. for the D2 dataset the Bayesian estimates give much more reasonable

estimates for c5, c6 parameters. The last example can be attributed to the fact that Bayesian

estimates benefit from prior information that constrains the range of parameters. As a side

note, it is possible to constrain the range of parameters in the RE method as well, by using a

constrained optimization method. If we consider the ratios of the kinetic constants of reversible

equations then, with the exception of c3, LNA provides estimates with a small improvement

to their accuracy.

In Figure 6.4 we compare the quadratic approximations with the profile likelihood ratios for

the logarithm of the scaled stochastic kinetic constants (log(ϑ)) using the Restarting method.

From one hand, parameters associated with non–reversible first–order reactions (ϑ3, ϑ4, ϑ7, ϑ8)

obtain almost exact quadratic approximations of their profile likelihoods. On the other hand, in

most of cases the quadratic approximations for parameters associated with reversible equations

and non–linear reactions (ϑ1, ϑ2, ϑ5, ϑ6) are very poor and so the Wald CIs are likely to be

inaccurate; a possible solution is to employ likelihood–based confidence intervals. In addition,

Figure 6.4 highlights the identifiability issues of D2 for the ϑ5, ϑ6 pair associated with reversible

reactions: marginally the likelihood ratios indicate a very wide set of acceptable parameter

values while jointly the log–likelihood contour plot of the joint profile log-likelihood strongly

supports pairs of parameters along a line with slope equal to the true value of identifiable

reparametrisation ϑ5/ϑ6 = 3.81 (c5/c6 = 0.11206).

6.4 Extending LNA

So far we assumed that, in our system of interest, we can observe all species without any

measurement error. In this section we extend the previous methodology to handle datasets

with unobserved species and measurement error. For convenience, we denote vectors with bold

lower case letters x and the matrices are denoted with bold capital letters X. Our approach

is based on the idea of Extended Kalman Filter (See for instance §8.2 in Anderson and Moore

2005), we use LNA to “linearise” the stochastic process of the system’s state, the unobserved

system ηi, and then we assume that our observations di are obtained from the observed system

oi which is a combination of a linear function of ηi and a Gaussian measurement error εi.
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Figure 6.4: Profile Likelihood ratios (solid lines) and the Quadratic approximation (dotted

lines) of the D1 (top left), D2 (top right), D3 (bottom left) datasets. The MLEs are indicated

with vertical solid lines and the true vales with vertical dashed. The parameters (x–axis) are

on log–scale and a 95% approximate cut–off point is included (horizontal grey line). Contour

plot of the profile log–likelihood of (ϑ5, ϑ6) parameters in D2 (top right).

We assume that only the initial state of the d1-dimensional unobserved system η0 ≡ ηt0
is known and at the time instances ti, i ∈ (1, . . . , ND) we have ND vector-valued observations
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di ≡ dti , of d2 elements each, from the observed system oi ≡ oti :

(unobserved system) ηi = f (ηi−1,wi,ϑ) ,

(observed system) oi = Gηi + εi, (6.3)

wherewi a vector-valued r.v. following a standard multivariate Normal distribution, f(ηi−1,wi,ϑ)

a non-linear vector-valued function with d1 elements, G is a constant d2 × d1 matrix, εi, i ∈

(1, . . . , ND) is a random vector of d2 variables distributed according to Normal(0, ρId2), where

Id2 is the unity d2 × d2 matrix and ρ a scalar constant. We can assume a more general co-

variance matrix of εi, but for simplicity we stick to the i.i.d. case. The matrix G is the

observability matrix and, in the case of partial observations, we assume that it is not of full

rank, i.e. some elements of the state system η are not observed in the system o. The function

f(ηi−1,wi,ϑ) represents the solution of the LNA process which combines the non-linear deter-

ministic functions yi(·),mi(·),Si(·) which are solutions of the system of Ordinary Differential

Equations (5.18–5.20) associated with the Linear Noise Approximation.

6.4.1 Kalman Filter Recursions

In the special case where the function f(·) of the system (6.3) is linear we can estimate the

unobserved states conditional on the observations by employing the Kalman Filter method

(§3, Anderson and Moore 2005). The solution is given as a recursive estimator which, at

each iteration, repeats two steps: first predicts the mean (αi|i−1) and variance (Pi|i−1) of ηi

conditional on di−1 and then updates the estimates (αi, Pi) conditional on di. Additionally,

we can use the Kalman Filter to write the Likelihood function (L) of the observed system.

In our case, we assume that the unobserved system in (6.3) follows the solution of the linear

SDE of the LNA approximation and as our recursive estimates we use the equations for the

Extended Kalman filter method (see for instance Anderson and Moore 2005, §8.2) combined

with the solutions of the system of ODEs (5.18–5.20):

αi|i−1 = NT yi +
√
NTmi

Pi|i−1 = NT Si

Ki = GPi|i−1G
T + ρ Id2

αi = αi|i−1 + Pi|i−1G
TK−1

i

[
di −Gαi|i−1

]
Pi = Pi|i−1 − Pi|i−1G

TK−1
i GPi|i−1, (6.4)
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where αi|i−1,αi are the prior and posterior estimates of the mean respectively. Likewise,

Pi|i−1,Pi are the prior and posterior estimates of the covariance matrix and Ki is the Kalman

gain matrix. In (6.3) the subscript i|i− 1 denotes that we condition on the latest observation,

at time ti−1, to estimate either the mean or the covariance at the time instance ti. Furthermore,

the subscript i denotes the posterior estimates, i.e. the estimates after observing di. We notice

that we can obtain the current distribution of the unobserved state:

ηi|d0:i,η0 ∼ Normal (αi,Pi) , d0:i ≡ (d0,d1, . . . ,di) .

Similarly, the predictive distribution of the observed state is:

oi|d0:(i−1),η0 ∼ Normal
(
Gαi|i−1,Ki

)
,

which coincides with the transition density:

P
(
oi|d0:(i−1),ϑ

)
=

∫ ∞
−∞

P (oi|ηi, ρ) P (ηi|di−1,ϑ) dHi = Normal
(
Gαi|i−1,Ki

)
.

The latter expression allows us to write the Likelihood function as:

L(ϑ |d0:i) = P (d0|ϑ)
n∏
i=1

P (di|di−1,ϑ)

= δ(d0 −Gη0)
n∏
i=1

Normal
(
Gαi|i−1,Ki

)
, (6.5)

where δ(·), is the Dirac’s delta function, the distribution of the initial (known) conditions,

which is ommited in the next examples.

6.4.2 Lotka Volterra with partial observations

We illustrate the extension of LNA in an example based on the Lotka Volterra model of

Section 6.3.1. We followed the modelling choices of Boys et al. (2008). In particular, we used

the following kinetic parameters and initial state:

c = (0.5, 0.0025, 0.3) , ({Prey}, {Predator}) = (79, 71) ,

and we simulated the evolution of the system until the time instance 40 which is plotted as

a time-series in Figure 6.5. We obtained equidistant observations (with a time step 1.025

and ND = 40), represented in Figure 6.5 as diamonds and points for the Prey and Predator

species respectively. We proceeded to the estimation of the kinetic parameters by assuming
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Figure 6.5: Simulated observations of Preys (diamonds) and Predators (points) of the Lotka

Volterra model. The trajectories are indicated with solid faded lines.

two different observational scenarios. First, in the full dataset, we assumed that all species are

observed and we applied the error-free methodology of the previous section. Second, in the

partial dataset, the full initial state (d0) is observed for both species and in the subsequent

observations (di, i > 0) only the levels of the Prey species are observed. Therefore, for the

partial dataset we chose the (1×2) observational matrix G = (0, 1). Finally, in both datasets,

we did not considered adding measurement error and we assumed ρ = 0.

In Table 6.7 we summarise the MLEs together with the bounds of the 95% approximate

(Wald’s) Confidence Intervals (CIs). The confidence intervals have been derived for the log(c)

parameters and then transformed to the original (c) scale. In both cases, the MLEs are close

to the true values and the corresponding CIs provide good coverage as well. In addition,

the CIs become narrower when we considered the full dataset as a result of smaller standard

errors. It should be noted that Boys et al. (2008) compared various Bayesian estimation

methods under similar observational scenarios. Although the interpretation of the MLEs and

their corresponding CIs in Table 6.7 is completely different from the posterior summaries of

Boys et al. (2008), we can get an informal indication for their performance by looking at the
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Observations Estimates c1 c2 c3

UCI 0.54591 0.00281 0.33826

Full EST 0.51564 0.00264 0.31678

LCI 0.48705 0.00249 0.29666

UCI 0.60965 0.00292 0.35955

Partial EST 0.54026 0.00254 0.30454

LCI 0.47876 0.00222 0.25795

Table 6.7: Upper bounds of the Wald’s 95% Confidence interval (UCI), Maximum Likelihood

Estimates (EST) and Lower bounds of the 95% Confidence interval (LCI), of the simulated

dataset.

numerical values of the parameter estimates and the corresponding posterior means – which

are close. To be more precise, the absolute differences between the MLEs and the true values

are within the range of the corresponding absolute differences of the posterior means.

6.5 Discussion and future work

We have presented two likelihood–based methods to estimate the stochastic kinetic constants

and their extension to handle observations from partially observed systems. These methods

both depend on the LNA but differ on the initial conditions presented to the ODEs associ-

ated with the transition densities of the linear SDEs. In most cases, the Restarting method

provided 95% CIs with coverage properties at least as good as or even better than those of

the Non–Restarting method. An intuitive explanation, is that the RE method follows the

stochastic process more closely by updating the initial conditions at every observation. The

linear noise approximation assumes a large system size, and, unsurprisingly, this assumption

is violated for datasets from systems of small size, for which both methods did not provide

satisfactory estimates. Perhaps more surprisingly, the coverage properties worsened as the

temporal density of the observations increased; a likely explanation is that more observations

result in narrower confidence intervals, which in turn, highlight in the form of biased estimation
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the poor approximation approximation.

The accuracy of RE estimates for kinetic constants of non–reversible equations presented a

small improvement compared to Bayesian estimates of Golightly and Wilkinson (2005) which

also applies for the ratios of the parameters of reversible equations. In contrast, the RE

method did not incorporate any prior information which resulted, for the D2 dataset, very

wide confidence intervals for parameters associated with reversible equations. Fortunately,

model identifiability issues can be diagnosed using profile likelihoods and identifiable param-

eterizations can be preferred instead.

The NR method was faster, in computational time, than the RE method when the BFGS

numerical optimization routine was employed: in the Transcription model the mean time of

a single dataset was 108 (±11) and 65 (±8) secs for the RE and NR methods respectively,

considering datasets from a large system with 500 observations4. The replication of the exper-

iment using the Nelder–Mead optimisation routine, yielded similar parameter estimates with

a smaller mean computational time per dataset of: 15.3 (±2.62) and 14.5 (±2.59) secs for the

RE and NR methods respectively.

Motivated by the Extended Kalman Filter method, we extended the RE/NR methods to

support partially observed data subject to measurement error. The RE method handled quite

well the case of a partially observed LV system, by providing MLEs close to the true values

of the kinetic constants and CIs with satisfactory coverage which are in agreement to the

Bayesian estimates of Boys et al. (2008) for a similar modelling scenario.

Finally, this Chapter presents many opportunities for applications of the LNA method as

well as future extensions:

� Its employment in a Bayesian setting. Obviously, LNA can be used as an approxima-

tion to the discrete process. Also, since LNA’s transition density is known and can be

computed fast, it may be a reasonable proposal density for simulating trajectories of the

state process.

� Its application to models motivated from other disciplines, provided that a suitable

scaling of the parameters is available.

4Tested on a GNU/Linux system with eight Intel® Xeon� CPU 3 GHz processors. The optimizations were

enabled but no parallelization was employed. The datasets of 100 and 50 observations were less computationally

demanding.
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� As a methodology to fit models based on ODEs. Both the Non-Restarting and the

Restarting method provide two deterministic (ODEs) approximations for the state pro-

cess: RE introduces a local model which tries to approximate the dynamics between each

pair of observations and NR introduces a global model and which tries to approximate

the overall dynamics.
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Chapter 7

Implementation

In this chapter we discuss the lnar package, for the R statistical environment, which we

developed to implement the LNA methodology of Chapter 6. The core functions of the package

are coded in C programming language for efficiency but no knowledge of C is required for

its use. In fact, after the specification of a biological model, lnar tries to automatically

generate optimized C code in order to be passed at the LSODA ODEs solver which is the

most demanding computationally aspect of the model. Alternatively, the code generation

can be skipped by letting the user to specify the relative C code. After the generation of

the relevant C code, the model can be fitted to data via a maximum likelihood estimation

procedure. The lnar package is hosted in R-Forge (Theußl and Zeileis 2009) in the following

url: http://r-forge.r-project.org/projects/lnar/ and can be installed1 by issuing the

following command:

1 in s ta l l . packages (c ( ” i n l i n e ” , ”Ryacas ”) )

2 in s ta l l . packages ( ” lna r ” , repos=”http : //R−Forge .R−p r o j e c t . org ”)

We split the exposition of lnar into two Sections: in Section 7.1 we discuss how to specify

a model, and then, in Section 7.2 we show how to use it for inferential purposes. Also, in

parallel to the general discussion, we consider two example applications of lnar based on

the Lotka–Volterra and the prokaryotic transcription models. Both examples are available as

demos for the lnar which can be run by issuing the commands demo(lv) and demo(autoreg)

corresponding to the Lotka–Volterra and the prokaryotic transcription models respectively.

1Currently is available only for the Linux platform.

102



7.1 Model Specification

In Section 5.5 we established that we can approximate the (discrete) state process with a new

stochastic processes, induced by LNA, which has the following transition density:

Xt|X0 = x0 ∼ Normal
(
YtNT +mt

√
NT, StNT

)
,

where yt,mt, St are given as a single system of ODEs. The first step is to generate the code

for these ODEs using the function parsemod. The functions parsemod expects as arguments

a stoichiometry matrix (AT ), a vector of hazard functions (h (X, c)), the names of c kinetic

constants and the names of species. The final step of the model specification involves the

compilation of the code either using the compmod function or the standard mechanisms of R

(R Development Core Team 2010).

7.1.1 The function parsemod

Description

Given as input the reaction rates, stochastic constants and model constants, the function

outputs the C code (via yacas) of the underlying ODEs. The system of odes express the

macroscopic approximation (ODE) as well as the estimates for the instanteneous mean and

covariance of the linear SDE from the LNA approximation.

Usage

parsemod(y,rfun,thetas,species,constants=NA)

Arguments

y The stoichiometry matrix, note that the dimensions are assumed to be:

NS ×NR.

rfun A character vector with each elements expressing the reaction rates. Make

sure that the ryacas package is able to parse the formula of each reaction.

thetas A character vector which denotes the stochastic constant names associated

with each reaction.

species A character vector which denotes the species names.
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constants A character vector which denotes the model constants. The model constants

are substituted in the C code by their numeric value.

Return values

Returns a list with the following elements:

ccode The actual C code as text.

cspecies A character vector of the species names in the C code and their correspond-

ing model names are given in the names attribute.

cthetas A character vector of the names of the stochastic constants in the C code

and their corresponding model names are given in the names attribute.

Cov A character vector of the functions names that corresponds the upper trian-

gular matrix (given as the names attribute) of the instantaneous variance-

covariance matrix.

Means A character vector of the functions names that corresponds to the instan-

taneous means (given as the names attribute).

Orders A numerical vector indicating the order of each reaction.

7.1.1.1 Details

The derivation of the ODEs (yt,mt, St) is accomplished with the help of Ryacas package

(Goedman et al. 2010), an interface between R and the symbolic computer algebra system

Yacas. The derived ODEs are joined together, i.e. treated as a single system, and are expressed

as C code. In particular, they are expressed as a C function of the following form:

1 double * name (double * t , double * y , double * fout , double * vthetas )

Listing 7.1: The of the function expressing system of ODEs.

Where t is a pointer to the variable denoting the state’s time, y is a pointer to the state of the

(yt,mt, St) ODEs, fout is a pointer that returns the numerical values of the derivatives w.r.t

time and vthetas is a pointer to the values of the kinetic constants.

The hazard functions are assumed to express reactions of zeroth to second orders. It is

possible to specify more general hazard functions as long as they can be parsed from lnar,

Yacas and the C compiler. Alternatively, they can be specified directly in the C code, i.e. the

element ccode of the returned list.
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7.1.2 The function compmod

Description

Compiles the generated C source code of a parsed model using the inline package.

Usage

compmod(cout, name = "derivs")

Arguments

cout A parsed model.

name A string indicating the name of the compiled function, defaults to ”derivs”.

Details

Uses the inline package to compile the generated C code.

Return values

Returns a compiled function named as the name argument and is included in R’s environ-

ment automatically.

7.1.3 Examples

As mentioned previously we consider the Lotka–Volterra and prokaryotic transcription models

to illustrate the usage of lnar. First, we use the biological descriptions of the Section 3.3.1.1

to specify, for each model, the stoichiometric matrix, the hazard the names of the parameters

of interest and the names of the species. Then, we call the parsemod function using the previous

defined variables as arguments to generate the C code, which in turns is compiled with the

help of the compmod function.

7.1.3.1 Lotka-Volterra

1 require ( l na r )

2 t t <− matrix (c (1 ,−1 ,0 ,0 ,1 ,−1) ,nrow=2,ncol=3,byrow=TRUE)

3 r fun <− c ( ”con1 * Prey ” , ”con2 * Prey * Predator ” , ”con3 * Predator ”)

4 the ta s <− paste ( ”con ” , 1 : 3 , sep=””)

5 s p e c i e s <− c ( ”Prey ” , ”Predator ”)
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6 cout <− parsemod ( tt , rfun , thetas , s p e c i e s )

7 compmod( cout , ”d e r i v s ”) # Compile the model

Listing 7.2: Specification of the Lotka-Voltera Model.

7.2 we specify the Lotka–Volterra model: the variable tt is the stoichiometric matrix, rfun is a

character vector with the hazard rates, thetas contains the namers of the parameters and the

variable species contains the corresponding names of the species. The parsed model is saved in

the variable cout and contains the C implementation of the system of ODEs defined in Table

5.1. Note that if the names of the species or the parameters do not match the ones of rfun the

generated model will be inaccurate. The last line compiles the c code and loads it to the R

environment as the derivs variable, without the need of an assignment (<− or =).

7.1.3.2 Transcription Model

1 l ibrary ( l na r )

2 #Number o f Spec i e s : 4

3 s p e c i e s=c ( 'RNA ' , 'P ' , 'P2 ' , 'DNA ' )

4 #Number o f Parameters : 8

5 params=c ( ' k1 ' , ' r1 ' , ' k2 ' , ' k3 ' , ' k4 ' , ' r4 ' , ' k5 ' , ' k6 ' )

6 s t o i c h=matrix (c ( 0 ,0 ,1 ,0 ,0 ,0 , −1 ,0 ,

7 0 ,0 ,0 ,1 ,−2 ,2 ,0 ,−1 ,

8 −1 ,1 ,0 ,0 ,1 ,−1 ,0 ,0 ,

9 −1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ) ,4 ,8 , byrow=TRUE)

10 #Number o f React ions : 8

11 reac=c ( ' k1*DNA*P2 ' ,

12 ' r1*(10−DNA) ' ,

13 ' k2*DNA ' ,

14 ' k3*RNA ' ,

15 ' k4*0 .5*P*P ' ,

16 ' r4*P2 ' ,

17 ' k5*RNA ' ,

18 ' k6*P ' )

19 #genera te the model and c code

20 model1<−parsemod ( s to i ch , reac , params , s p e c i e s )

21 compmod( model1 , ”tder ”) #Compile model

Listing 7.3: Specification of the prokaryotic transcription model.
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We specify the Transcription Model in Listing 7.3. In this example, the stoich variable is

the stochiometric matrix, species contain the names of the species, params variable contains the

names of the kinetic constants and reac variable contains the vector of hazard function. Finally

the model1 variable contains the generated model and tder the compiled derivatives function.

7.2 Model Usage

After the generation and the compilation of the C code, we are ready to use it. The function

lnalik calculates the log-likelihod given a set of data-points. The function calcdens, given an

initial state, estimates the parameters (mean and variance) and the value of the transition

density at a number of time-points. The function optmod fits the LNA approximation to a

dataset using a maximum likelihood estimation procedure based on numerical optimization.

7.2.1 Functions

7.2.1.1 The function lnalik

Description

Estimates the log-likelihood of the LNA approximation.

Usage

lnalik(cout, nthetas, mydata, syssize = sum(mydata[1, -1]),

relerr = 1e-09, abserr = 1e-09, method = 0, dfunction)

Arguments

cout The parsed model.

nthetas The vector of the parameters.

mydata Either a matrix or a data frame of the data to be evaluated. The first

column is assumed to correspond to the time of each observation.

syssize Optional, a scalar indicating the system size.

relerr Optional, a scalar indicating the relative error for the ODE solver.

abserr Optional, a scalar indicating the absolute error for the ODE solver.

method Optional, a scalar with possible options:
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� 0: Restarting method using concentrations. The parameters are as-

sumed to be scaled, i.e. ϑ.

� 1: Restarting method using number of molecules. The parameters are

assumed to be un-scaled, i.e. c.

� 3: Non-Restarting method using concentrations. The parameters are

assumed to be scaled as well.

dfunction The compiled model.

Return values

Returns the estimated log-likelihood.

7.2.1.2 The function calcdens

Description

The system of ODEs is solved subject to initial conditions and the estimates of the mean,

the variance, the macroscopic equations and the transition density are returned.

Usage

calcdens(initdata, edata=NA, tstart=0, tend,

initode=NA,initmean=rep(0,length(initdata)),

initvar=rep(0,length(initdata)*(length(initdata)+1)/2),

thetas,relerr=1e-9, abserr=1e-9, syssize,dfunction)

Arguments

initdata A numerical vector indicating the initial point. It is unscaled, e.g. expressed

as number of molecules.

edata Optional, a numerical vector indicating the ending point. It also is unscaled,

e.g. expressed as number of molecules.

tstart The starting time, defaults to 0.

tend Either a vector or a scalar with the time-points to be estimated.

initode Optional, the initial values of the macroscopic ODEs, defaults to the scaled

initdata, e.g. the concentration of the species.
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initmean A numerical vector indicating the initial values for the means. Defaults to

a vector of zeroes, otherwise it is expected to be scaled by the inverse of

the square root of the system size.

initvar Either a matrix indicating the initial Variance-Covariance matrix or a vector

representing the upper diagonal (including the main diagonal) following a

row orientation. Defaults to a matrix of zeroes and is expected to be on

the scale of macroscopic ODEs.

thetas A numerical vector with the parameter values.

relerr Numerical, the relative error for the numerical ordinary differential equa-

tions (ODEs) solver.

abserr Numerical, the absolute error for the numerical ordinary differential equa-

tions (ODEs) solver.

syssize Numerical, indicating the system size.

dfunction The compiled function, given as a loaded dynamic library in R.

Return values

A list of the following components, estimated at each tend time-point:

Time The time instance of the estimates.

ODE The value of the ODE equation (the macroscopic model)

MEAN The mean of the SDE process.

VAR The covariance of the SDE process.

prob Optional, epxresses the estimated transition probability density, available

only ifedata is defined.

Note

All densities are conditioned on the initial time-point tstart. The MEAN and VAR elements

are not at the same scale but they depend on the scale of the initial values. We assume

that the initial values are given as number of molecules.
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7.2.1.3 The function optmod

Description

Fits the compiled model to a given datased using a numerical Maximul Likelihood Esti-

mation procedure.

Usage

optmod(cout,nthetas, mydata, maxiter=300,

syssize=sum(mydata[1,-1]), tcrit=.0001,

relerr=1e-9, abserr=1e-9, hessianh=1e-4,

method=1, usebfgs=0, dfunction)

Arguments

cout The parsed model containing the C code and the name relations.

nthetas A numerical vector with the initial values for the scaled parameters to be

optimized.

mydata A data.frame or a matrix with the data. The first column must indicate

the time of the observations.

maxiter Numerical, indicated the maximum number of iterations for the optimiza-

tion algorithm.

syssize Numerical, the system size defaults to the initial population.

tcrit Numerical, the convergence criterion for the optimization algorithm.

relerr Numerical, the relative error for the numerical ordinary differential equa-

tions (ODEs) solver.

abserr Numerical, the absolute error for the numerical ordinary differential equa-

tions (ODEs) solver.

hessianh Numerical, indicates the approximation step for the central differences cal-

culations of the Hessian matrix.

method Numerical which takes the following integer values:

� 0: Restarting Method using number of molecules.
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� 1: Restarting Method using concentrations.

� 3: Non-Restarting Method using concentrations.

usebfgs Specify whether to use the BFGS algorithm (1), or the default Nelder-Mead

simplex algorithm (0)

dfunction The compiled function, given as a loaded dynamic library in R.

Details

By default the L-BFGS-B optimization procedure is employed (see optim for more details).

Return values

A list with the following elements:

UP The upper confidence bound.

ES The MLEs

LO The lower confidence bound.

Note

Note that the tcrit has a different interpretation for the Nelder-Mead algorithm and

different for BFGS.

7.2.2 Examples

In this Section we try to fit each model to a corresponding dataset. We consider two datasets

to fit, one for each model, which correspond to the large and small systems configurations we

considered in Section 6.3 for the Lotka–Voltera and the Transcription model respectively. The

dataset of Lotka–Volterra Model in inputted in the example and the dataset of the Transcrip-

tion model is contained in the package’s distributed datasets. The initial parameter values are

expected to be in terms of ϑ, for any method choice.

7.2.2.1 Lotka-Volterra Model (Continued)

8 mydata<−c ( 0 . 0 , 5000 .0 , 3000 , 1 , 5989 , 2992 , 2 , 7165 , 3107 , 3 , 8534 , 3306 ,

9 4 , 10041 , 3709 , 5 , 11624 , 4265 , 6 , 13306 , 5181 , 7 , 14741 , 6492 ,

10 8 , 15867 , 8337 , 9 , 16025 , 10981)
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11 mydata2 <− matrix ( mydata , 1 0 , 3 , byrow=TRUE) # Example da t a s e t

12 nthetas<−c ( . 4 , . 1 , 0 . 4 ) # The i n i t i a l parameter va l u e s

13

14 #Find the Maximum Lik e l i h ood Est imates and Wald CIs

15 ( run1<−optmod ( cout , nthetas=nthetas , mydata=mydata2 , method=1,

16 maxiter =300 , t c r i t =1e−5, r e l e r r =1e−9,

17 abse r r=1e−9, hes s ianh=1e−4,

18 dfunct ion=d e r i v s ) )

19

20 ##Ca lcu l a t e the t r a n s i t i o n dens i ty ' s parameters at t=1

21 ca l cdens ( mydata2 [ 1 , ] , tend =1, the ta s=run1$ES , s y s s i z e =8000 , d funct ion=d e r i v s )

22

23 ##Evaluate the log− l i k e l i h o o d at the mles

24 ( l 1<−l n a l i k ( cout , nthetas=run1$ES , mydata=mydata2 , method=1,

25 r e l e r r =1e−9, abse r r=1e−9,

26 dfunct ion=d e r i v s ) )

Listing 7.4: Maximum Likelihood Estimation for the Lotka-Voltera model.

Listing 7.4 fits the Lotka Volterra model to the mydata2 dataset. We choose the (0.4, 0.1, 0.4) as

our initial parameter values, contained in variable nthetas. We set the option method=1, at the

arguments of optmod function, in order to work with the concentrations. Next, we calculate

(calcdens) the transition density and its parameters at t = 1 conditional on the first set of

observation of the dataset (mydata2[1,]). Finally, we evaluate the log-likelihood ( lnalik ) for the

values of the mles that we estimated previously.

7.2.2.2 Transcription Model (Continued)

22 ##load the data

23 data ( ardata )

24 ##We se t a l l c ' s to .2 f o r our i n i t i a l v a l u e s

25 nthetas <− rep ( . 2 , 8 )

26 nthetas [1 ]= nthetas [ 1 ] *34 # corresponds to a 2nd order r eac t i on

27 nthetas [5 ]= nthetas [ 5 ] *34 # corresponds to a 2nd order r eac t i on

28 ##Optimize wi th Nelder−Mead

29 ( model1opt<−optmod ( model1 , nthetas=nthetas , mydata=ardata , method=0,

30 maxiter =1800 , t c r i t =1e−5, r e l e r r =1e−12,

31 abse r r=1e−12, hes s ianh=1e−4, s y s s i z e =34,

32 dfunct ion=tder ) )
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33 ##Continue wi th BFGS

34 ( model2opt<−optmod ( model1 , nthetas=model1opt$ES , mydata=ardata , method=0,

35 maxiter =25, t c r i t =1, r e l e r r =1e−12,

36 abse r r=1e−12, hes s ianh=1e−4, s y s s i z e =34, u seb fg s =1,

37 dfunct ion=tder ) )

38 ##Ca lcu l a t e the t r a n s i t i o n dens i ty ' s parameters at t=1

39 ca l cdens (as .numeric ( ardata [ 1 , ] ) , tend =1,

40 the ta s=model2opt$ES , s y s s i z e =34, d funct ion=tder )

41

42 ##Evaluate the log− l i k e l i h o o d at the mles

43 ( l 1<−l n a l i k ( model1 , nthetas=model2opt$ES , mydata=ardata , method=0,

44 r e l e r r =1e−9, abse r r=1e−9,

45 dfunct ion=tder ) )

Listing 7.5: Maximum Likelihood Estimation for the Transcription Model.

Listing 7.5 fits the prokaryotic transcription model to the dataset ardata. The initial values

(nthetas) of the parameters c are set equal to .2 and converted to ϑ. Then the optmod is called

once to find the MLEs using the Nelder–Mead algorithm. The termination criterion ( tcrit )

is 10−5, i.e. when the maximum distance between the points of the simplex and its center

becomes smaller than 10−5 the algorithm ends. Then, we repeat the optmod call but this time

we select the BFGS method for the numerical optimization. BFGS uses a different termination

criterion: when the (Euclidean) norm of the gradient becomes less than 1 the algorithm stops.

In this example we choose to work with the number of molecules ( method=0) because in

Section 3.3.1.2 we have specified the constant k = {DNA · P2} + {DNA} in term of molecules

(k = 10). Choosing method=1 would make the optmod function to use concentrations ({X}/NT)

instead of number of molecules ({X}), but in this case, the rate at line 12 in Listing 7.3 must

be rewritten in terms of concentrations: r1*( (10/34)− DNA).

Finally, as with the Lokta–Volterra model previously, we estimate (calcdens) the transition

density conditional on the first observation of the ardata dataset and we evaluate ( lnalik ) the

log-likelihood at the mles values, found by the BFGS algorithm.

7.3 Discussion

In this Section we shaw how to use lnar package to specify and analyze two biological models.

The advantage of the lnar package is that generates, implicitly, the C code for the solution of
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the ODEs related to LNA. Therefore, the computations performance benefits from the use of

compiled code, which offers a great improvement compared to the performance of interpreted

code. In addition, the lnar package can also be used to fit a deterministic model based on

ODEs. The restarting method fits a local model, i.e. restarts at every observation, while the

non-restarting method fits a global.

Although, the lnar package has been tested only for simple reactions, presented in Section

3.2.1, it can accept hazard functions of arbitrary type, as long as, the underlying code can be

parsed from lnar package. Nevertheless, one can specify the ODEs directly in C to overcome

this limitation. The lnar package is far from complete and many features can be added: e.g.

support for incomplete and noisy datasets, profile likelihoods, parallelization.
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Chapter 8

Conclusion

In the first part of this thesis, We studied the possibility of extending the Exact Algorithm to

multidimensional SDEs which approximate gene auto-regulatory systems. We showed that it

is non-trivial to find a suitable unit-variance transformation. Even a scalar SDE, expressing

a simple protein dimerization network, has a unit-variance transformation which is compu-

tationally difficult to handle. For the multidimensional case, we expressed the unit-variance

transformation as a system of Partial Differential Equations and we showed that the EA can

be applied to a class of diffusions wider than the one implied by the definition of reducibility

(Aı̈t-Sahalia 2008). To support our claim, we provided a counterexample of a diffusion that

can be transformed to an SDE with non–constant diffusion coefficient but with a constant

(unit matrix) instantaneous variance.

In the second part of the thesis we presented the Linear Noise Aproximation (LNA) with

applications to gene auto-regulatory networks. First, we introduced a reparameterization

of the kinetic constants that leads to the LNA and we proved that converges to a linear

diffusion process. Secondly, we investigated to what degree the approximation to the system

dynamics is satisfactory, under different modelling scenarios. We concluded that the LNA’s

simulation performance was as good as or even better than the performance of the Chemical

Langevin Equation’s approximation. But as we have seen, both approximations are weak for

the cases where the probability density is concentrated in few points. Next, we employed

the LNA for inferential purposes and, more specifically, we used two methods to derive the

LNA’s likelihood: the Restarting (RE), which we proposed, and Non-Restarting (NR) method

proposed by Komorowski et al. (2009). These two methods are similar and they only differ

on the initial conditions that they use to solve the ODEs involved in the estimation of the
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transition density. We compared these two methods in a series of simulated datasets using

likelihood ratios statistics and the coverage of the approximated confidence intervals. We

concluded that the performance of RE was better than the performance of NR. In addition,

we extended RE method to handle the case of partially observed systems with good inferential

power in the example of a simple dynamic model (Lokta–Volterra). Finally, we presented lnar,

an implementation of the LNA method for the R statistical environment, which facilitates the

LNA analysis without compromising its performance.
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