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Abstract

Four experiments investigated transformation problems with insight characteristics.

Experiment 1 examined two versions of the six-coin problem with different solution

properties.  Performance on one version with a concrete and visualizable solution

followed predictions derived from assuming a hill-climbing heuristic.  The determinant of

performance on the second version, in which the solution potentially required insight, was

unclear.  Experiment 2 concluded that the difficulty of this second version stems from the

same hill-climbing heuristic, which creates an implicit conceptual block.  Experiment 3

investigated four problem variants and confirmed that the difficulty of the potential

insight solution is conceptual, not procedural.  Experiment 4 compared the six-coin

problem with the ten-coin (triangle) problem, and observed the same principles of move

selection on both insight and transformation problems.  We argue that hill-climbing

heuristics provide a common framework for understanding problem difficulty and

solution discovery in both transformation and insight problems. We suggest that at least

part of the phenomenology of insight may be accounted for by processes of post-solution

recoding.
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What makes an insight problem?  The roles of problem-solving heuristic, goal

conception and solution recoding.

In the cognitive psychological literature there has been a recurrent debate as to

whether insight represents a distinct class of problem-solving activity.  The roots of this

debate lie in the Gestalt tradition, with its emphasis on conceptual restructuring as the

mechanism of insight problem-solving.  The Gestalt explanation has bequeathed modern

cognitive science a view of insight as a step function, rather than as a steady, incremental

approach towards a goal.  In its more recent incarnation, the debate comes down to one

between a ‘business as usual’ view (e.g., Simon, 1986), and a ‘special process’ view (e.g.,

Wertheimer, 1985; Schooler, Ohlsson & Brooks, 1993).

A particular source of difficulty for this debate, as Metcalfe and Wiebe (1987)

recognise, is determining what exactly is an insight problem.  Often, the only selection

criterion for problems used in the study of insight is to have been used as an insight

problem in a previous study (Weisberg, 1996). Three a-priori approaches to defining

insight problems may be identified in the literature.  The first approach defines insight

problems in terms of their phenomenology. For example, Metcalfe and Wiebe (1987)

characterize insight problems as those showing an absence of incremental “feeling of

warmth” ratings prior to solution.  The second approach emphasizes changes in

conceptual knowledge necessary for insightful solutions to be found  (Seifert, Meyer,

Davidson, Patalano and Yaniv, 1996; Knoblich, Ohlsson and Raney, 2001).   The third

approach identifies processes underlying insight problem-solving (Kaplan & Simon, 1990;

MacGregor, Ormerod & Chronicle, 2001).  Each of these definitional approaches has its

merits, but differing theoretical stances are still apparent.  The phenomenological and
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conceptual change approaches emphasize the special nature of insight problem-solving,

and the process approach emphasizes the similarities between insight and non-insight

problem-solving.

Despite different emphases, the majority of approaches recognize that insight

problem-solving involves some kind of restructuring of the initial problem representation.

What constitutes restructuring, however, and whether the processes underlying

restructuring are special or not, are open questions. In an attempt to unpack the Gestalt

notion of restructuring to make it more amenable to empirical test, Weisberg  (1996)

distinguishes between discontinuity and restructuring in problem-solving. A discontinuity

in thinking, according to Weisberg, involves a change in the moves that are sampled, while

a restructuring involves a change in the underlying representation of a problem, that is, a

re-conceptualization of the initial or goal states of a problem, the operators that are

available for assembling moves, or the constraints under which moves are sampled.  He

proposes the following decisions to diagnose whether a problem involves insight or not:

first, if the solution process shows a discontinuity (change in approach), then it may be

an insight problem; second, if the discontinuity requires restructuring (change in problem

representation) then it may be an insight problem (if not, the solution requires

discontinuity but not insight); finally, if restructuring is the only way a solution can

occur, then it is a “pure” insight problem (if it can be solved by other means, for example

trial and error, it is a “hybrid”).  Applying these diagnostic criteria to a set of 24 problems

previously described as “insight” problems, Weisberg (1996) concluded that four were

discontinuity but not insight problems (e.g., anagrams), five were “hybrid” types (e.g.,

the nine-dot problem), and 15 were “pure” insight problems (e.g., the Matchsticks
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problem).  Later in the paper we discuss data from empirical studies involving problems

characteristic of each of these types.

One argument in favor of insight as a special process is the failure of an

information-processing approach to make significant inroads into the explanation of

insight (Wertheimer, 1985), despite its success in explaining many other kinds of

problem-solving (e.g. Newell & Simon, 1972; Anderson, 2000).  One exception to this is

the work of Kaplan and Simon (1990), who applied an information-processing framework

to explain performance on the mutilated checkerboard problem.  They argued that solvers

apply heuristics to narrow the space of possible moves, and specifically identified a

heuristic for detecting invariant features of the problem across attempts.  Their account

may be limited by a lack of generality (Knoblich et al, 2001), since it is not clear what

invariants might enable solutions to be found for other insight problems.  What are lacking

from current theories of insight problem-solving are general problem-solving heuristics

that might apply across a wider range of insight problems.

General heuristics have been widely cited as providing the basis for solving many

transformation problems (e.g., Newell & Simon, 1972; Lovett & Anderson, 1996), defined

by Greeno (1978, pp.241) as problems in which the solver must apply a finite set of

operators to find a sequence of moves that transform an initial situation into a goal state.

Heuristics such as hill-climbing and means-ends analysis operate to select moves that

appear to make progress towards the goal state.  One reason why general heuristics such

as these might not appear immediately applicable to insight problem-solving is because

the goal state of many insight problems is ill-defined, rendering the evaluation of progress

made from a current state towards an unknown goal state seemingly impossible
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(VanLehn, 1989).  However, as well as evaluating moves against a concrete and

visualizable goal state, individuals may also evaluate moves against “locally rational”

criteria that indicate whether progress is being made toward partial or intermediate goal

properties.  For example, Simon and Reed (1976) propose that individuals switch

between three locally evaluated heuristics in solving the Missionaries and Cannibals

problem: early moves balance the numbers of missionaries and cannibals on each side of

the river, intermediate moves maximize progress from one side to the other, and later

moves avoid re-visiting previous states.  It seems plausible that, in the absence of

complete goal information, individuals might also attempt insight problems by selecting

locally rational moves that make progress towards partial or intermediate goals (inferred

from the problem description or current problem state).

We have recently proposed that a hill-climbing heuristic underlies the selection of

moves across a range of variants of the classic nine-dot problem (MacGregor, Ormerod &

Chronicle, 2001), and a novel insight problem, the eight-coin problem, where the goal is to

transform a given arrangement of 8 coins into one where each coin touches exactly three

others, in a specified number of moves (Ormerod, MacGregor & Chronicle, 2002).

According to our account, individuals evaluate potential moves against a criterion of

satisfactory progress.  In the nine-dot problem, the criterion is that each line must cancel a

number of dots given by the ratio of dots remaining to lines available.  In the eight-coin

problem, a range of criteria may be selected, the simplest one being that moves should end

with the coin being moved touching exactly three others.  What these criteria have in

common is that they specify progress in terms of goal properties inferred from the

problem statement (e.g., dots must be cancelled, coins must touch three others), rather
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than in terms of movement towards a known goal state.  Individuals fail to solve, we

argue, because selecting criterion-meeting moves drives them away from moves that lie on

the correct solution path.  So, solution attempts on the nine-dot problem stay within the

square shape of the dot array because of the many criterion-meeting moves available

within that square shape.  Solution attempts on the eight-coin problem are restricted to

two dimensions because of the ready availability in two dimensions, the form in which

the problem is presented, of moves that end in the moved coin touching three other coins.

Individuals fail to make the necessary ‘insights’ to search for moves outside the

representation in which the problem is first presented because there is no apparent need

to do so and because there is no information presented in the problem statement regarding

the value of moves in different dimensions.

When a search fails to yield moves that meet the criterion for satisfactory progress

(e.g., when all criterion-meeting moves and their offspring have been exhausted), then

according to our account individuals will relax the requirement to maximize progress.  If a

non-maximal move allows a subsequent move to make more progress than previous

attempts, then it is retained as a ‘promising state’ for future trials.  For example, in

experiments on the nine-dot problem, we found that participants often drew solution

attempts that went outside the dot array (MacGregor et al, 2001).  Where an attempt

cancelled more dots than previous attempts, participants were likely to repeat lines

drawn beyond the array, but if no progress was made then they generally returned to lines

drawn within the boundary of the dot array.  Thus, in insight problems such as these, hill-

climbing provides both the restriction on move sampling that underlies failure, and an

incentive to retain promising moves that might permit eventual success.  We recognize
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that our account has – so far – only been demonstrated to generalize across knowledge-

lean problems, that is, problems that do not require any expertise in a particular domain.

Nonetheless, we feel that our articulation of insight processes, contained both in previous

studies (Chronicle, Ormerod & MacGregor, 2001; MacGregor et al, 2001; Ormerod et al,

2002) and in the following four experiments, has the potential to generalize further.  We

return to this point in the General Discussion.

This paper explores the kinds of information that individuals use to derive and

confirm their inferences about goal state properties, across a range of problem types.  It

does so in three ways.  First, in Experiment 1, we introduce a problem (the six-coin

problem: see Gardner, 1977) that has not previously been investigated in the literature,

and that can be configured to reflect characteristics attributed both to transformation and

to insight problems.  Second, in Experiments 2 and 3, we explore the ways in which

individuals identify and confirm hypotheses about the goal properties necessary for a hill-

climbing heuristic from problem statements that have under-specified goals.  Third, in

Experiment 4, we test predictions from a hill-climbing approach in a direct comparison

between transformation and insight problems, pitting the six-coin problem against the ten-

coin ‘triangle’ insight problem (see Metcalfe, 1986; Schooler, Ohlsson & Brooks, 1993;

Weisberg, 1996).  In addition, we investigate the reproducibility of correct sequences of

moves as evidence of recoding into a single solution concept.  In doing so, we demonstrate

process commonalities between transformation and insight problem-solving, and raise

further issues about the nature of insight.



What makes an insight problem?    9

Experiment 1

Experiment 1 investigated performance on two versions of the six-coin problem,

as illustrated in Figure 1.  In the first version (left column, Figure 1), the starting state is

two offset rows of three coins, and the goal is shown as a ring of coins.  The task is to

transform the starting state into the goal state in three moves.  A move consists of sliding

a single coin, with the constraints (a) that other coins may not be disturbed during the

move, and (b) that the coin being moved must come to rest touching exactly two other

coins.  This version appears to be a transformation task with many of the properties that

made the Towers of Hanoi an important vehicle for problem-solving research.  Like the

Towers of Hanoi, its initial and goal states, single operator, and constraints are explicitly

defined from the outset.  In addition, and unlike so-called insight problems, finding the

solution does not demand any obvious conceptual insight into previously inaccessible

moves, but simply the discovery of a sequence of moves that apply a known operator.  It

might be objected that the standard Towers of Hanoi task does not impose a set number

of moves; rather, the instruction is to complete the task in the minimum number of moves

possible.  In the six-coin problem, three is indeed the minimum number of moves required,

given constraints (a) and (b), above.  It therefore seems reasonable to regard this version

of the six-coin problem as a transformation task in which the participant has one

additional piece of information, that is, the minimum number of moves required.  On the

other hand, anecdotal reports suggest that the problem is highly resistant to solution:

individuals often reach an apparent impasse (as defined by Knoblich et al, 2001) in

generating solution attempts, yet the solution appears deceptively simple when

demonstrated.  Occasional successes are met with something akin to an ‘aha’ experience.
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The second version of the problem used in this experiment (and discussed further below)

is shown in the right column of Figure 1.  The starting state, operator and constraints are

defined exactly as before, but the goal is given abstractly, as “each coin must touch

exactly two others”.  It should be noted that this abstract version is open to both the ring

and two-group solutions shown in Figure 1.

We have determined the entire state space for the six-coin problem.  This was

done by an exhaustive computation that produced every three-move sequence that was

legal according to the problem statement.  The computation permitted move sequences

that back-tracked and repeated (e.g., in Figure 1, move coin 4 to touch coins 1 and 2, move

it back to its original position, then repeat the move to touch coins 1 and 2).  The state

space is large: there are 7426 legal move sequences, of which 2 reach the ring solution and

176 reach a two-group solution (in a variety of configurations relative to the original

array).  Interestingly, the 7426 move sequences are not equiprobable under the

assumption that moves are selected randomly.  This is because the number of available

legal second moves varies depending on which of the 24 legal first moves was selected,

and likewise, the number of available legal third moves then varies depending on which of

the second moves was selected.  The overall probability of finding a correct solution by

random move selection is not, therefore, given simply by the number of correct move

sequences divided by the total number of sequences.  Rather, the overall probability of

finding a certain type of solution is the sum of the products of the conditional

probabilities of each sequence of first, second and third moves that leads to that type of

solution. For the ring solution, the overall probability is .00015, and for the two-group

solution it is .01866.
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We assume, for the moment, that participants attempting the problem employ a

hill-climbing heuristic if the ring goal is provided.  An available property of states prior to

the goal state is the number of adjacent coins that are on the goal configuration, that is, a

ring.  We propose that this is used to monitor progress through the problem space, by

comparing progress against a criterion, in a similar way to what we proposed for the nine-

dot problem (MacGregor et al, 2001).  In the latter case, we hypothesized that people

monitored progress against a criterion defined in terms of the number of dots remaining

after a move relative to the number of moves remaining. Thus, for example, at the outset,

there are nine dots to be cancelled in four moves, yielding a criterion of 9/4=2.25 dots to

be cancelled by the first move.  The most commonly-chosen first moves, intersecting

three dots, meet this criterion (MacGregor et al, 2001). In the present case we propose an

analogous criterion, that with each move the number of coins on the ring should be

increased by the difference between the goal state (6 coins on the ring) and the current

state, divided by the number of moves remaining.  At the outset, there are 4 coins on the

ring, which is 2 less than the goal state, and three moves available in which to eliminate

this difference.  The average increase required per move is therefore 2/3, which yields a

criterion for the first move of an increase of 0.67 coins on the ring, or 1 in integer terms.

This means that the first move must result in 5 coins on the ring, to meet the criterion of

satisfactory progress.  (This is assuming that the solver is looking only one move ahead.)

If an individual finds a move that meets or surpasses this criterion, then we predict that

they will select it.  If they cannot find such a move, then "criterion-failure" occurs,

initiating relaxation of the requirement to maximize and allowing a search for alternative

moves that may lie on the solution path.
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Combining the above assumptions regarding a criterion of satisfactory progress

with the characteristics of moves available allows predictions about the relative frequency

of various moves.  Considering first moves, there are 24 legal moves available, and 12 if

we ignore symmetry.  Of these 12, two result in 5 coins on the ring (and meet the

criterion), nine result in 4 on the ring, and one in 3.  The mean number of coins on the ring

if move selection is random is therefore 4.08 (s.d. 0.49).  With reference to Figure 1, the

moves resulting in 5 on the ring are to move Coin 1 to touch Coins 4 and 5, or to touch

Coins 5 and 6.  (The symmetrical moves are to move Coin 4 to touch 1 and 3 or to touch

2 and 3.)  Since these moves increase the number of coins on the ring by a margin that

surpasses the current criterion, then such moves should be selected by individuals

considering only one move ahead.  Selecting one of these moves would result in an

immediate failure to solve, since they entrap a coin (5 or 2) so that it cannot be moved

without violating the non-nudging constraint.  Someone looking further ahead might reject

a maximizing first move after mentally considering what second moves would then be

available.  Nevertheless, so long as there are sufficient participants operating at one

lookahead, we predict a higher than chance level of first moves that result in five coins in

the goal state.  This prediction was tested in this experiment.

Correct first moves are possible either by individuals operating at more than one

lookahead or, alternatively, by individuals operating at one lookahead on later attempts

once they have seen the maximizing moves lead to a dead-end.  In either of these cases we

anticipate that a strict requirement for maximization would be relaxed, allowing first

moves to be sampled that result in 4 coins on the goal configuration, the next highest

number possible.  Since there are nine such moves, one of which is correct, we predict
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that correct first moves may occur with a frequency of up to 1 in 9, or 11%, over multiple

attempts.

A correct first move results in four coins on the goal configuration, so that the

criterion of progress for the second move becomes (6-4)/2=1.  That is, an acceptable

second move must increase the number of coins in the goal state from four to five.

Following a correct first move, there are 23 legal second moves, three of which meet this

criterion.  These are: move Coin 1 to touch Coins 2 and 5; move Coin 1 to touch Coins 5

and 6; move Coin 5 to touch Coins 1 and 2 (see Figure 1).  The first two of these moves

will entrap Coin 5.  The last is correct.  Thus, someone operating at one lookahead has a

one in three chance of choosing a correct second move following a correct first.  Finally, if

a correct second move is made, the criterion for the third move becomes (6-5)/1=1.  Only

one move meets this criterion, the correct move of Coin 1 to touch Coins 5 and 6.

Experiment 1 also tested the prediction that the first move of the problem will be the

most difficult, with a probability of success of 11%, followed by the second move, with a

probability of success of 33%, while success on the third move should have a probability

of 1 once correct first and second moves have been accomplished.  In contrast, the

conditional probabilities of correct first, second and third moves based on random

selection from all possible moves are 8.3%, 4.3% and 4.2%, respectively.

The second version of the problem presents the goal abstractly, in the absence of

the ring display, as “each coin must touch exactly two others”.  The aim of comparing

performance on the ring version of the problem with this abstract version was to examine

whether participants’ move selections on problems that lack a concrete and visualizable

goal are influenced by the same kinds of evaluation processes used in assessing progress
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towards known goal states.  As previously mentioned, the abstract version is open to

both the ring solution and the two-group solution (Figure 1).  Participants who attempt

the abstract version have both solutions open to them, as both are absolutely consistent

with the abstract goal.  If participants envisage the goal as a ring of coins, we anticipate

that performance should be determined as for the ring condition.  However, participants

who do not interpret the goal as requiring a ring shape may avoid the conflict raised by

attempting to maximize coins on the ring, and may thus be able to discover the alternative

solution.  Moreover, there are considerably more routes to the alternative solution with

the abstract version, and the state space of the problem predicts that the abstract version

should be solved more often than the ring version by chance alone.  The abstract version

of the problem therefore permits an examination of how performance varies in the face of

goal uncertainty.

Method

Participants.  Forty student volunteers from Lancaster University were quasi-

randomly assigned to one of two experimental conditions, “Ring” and “Abstract”.  In this

and all subsequent experiments, age and gender information were not collected.

Materials and Procedure.  Participants were tested individually, and their solution

attempts were video-recorded.  For both conditions, participants were shown the same

starting arrangement of coins, and then they read the following instructions “Your task is

to rearrange the coins such that each coin touches exactly 2 others.  In attempting to solve

the problem, you must abide by the following rules: (a) you have THREE moves, no

more and no fewer; (b) in each move, slide one coin only (do not pick it up); (c) when you
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slide a coin, it must not disturb any other coins; (d) at the end of each move, the coin you

are sliding must be touching TWO other coins (no more and no fewer)”.  In the Abstract

condition, no further information was provided; in the Ring condition, a drawing of the

ring solution was visible.  Instructions were available throughout the session.  20

participants were tested in each condition.  Participants were allowed up to ten minutes

to make as many solution attempts as necessary.  On each attempt, the coin array was

reset to the start state by the experimenter after the participant had moved three coins.

At the end of the ten-minute period, participants in the Abstract condition were asked

whether they had envisioned a goal state during problem-solving and the point at which

this occurred.

Results and discussion

A problem with the video recording led to the loss of data for one participant from

the Ring condition, while one participant in the Abstract condition had seen the six-coin

problem previously, during pilot testing.  Both were excluded from further analysis.

Of the remaining 19 in the Ring Condition, 6 (32%) found the solution within 10

minutes.  The ring solution was hypothesized to be difficult because selecting moves that

maximize coins on the ring is incompatible with the correct solution path.  The mean

number of coins on the ring after the first move was 4.42, which was significantly higher

than the chance mean of 4.08, t(18)=3.02, p<.01.  The results also provide a close fit with

the predicted frequencies of successive correct moves, further corroborating our hill-

climbing account of move selection with this problem. There were a total of 177 first

moves in the Ring condition, of which 20 (11.3%) were correct, very close to the

predicted probability of 11%.  Of these 20 correct first moves, 6 (30%) were followed by
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a correct second move.  Again, this corresponds very closely to the predicted probability

of 33%.   Of the 6 correct second moves, all six (100%) followed with a correct third

move, exactly as predicted.

In the Ring condition, the predicted probability of success on an attempt was .036

(.11x.33x1), assuming a hill-climbing heuristic.  Combining this probability across

multiple attempts as a series of Bernoulli trials, the proportion of participants expected

to solve within n attempts would be 1-(1-.036)n.  Substituting for n the observed average

number of solution attempts, 9.3, this evaluates to 29% of the 19 participants, or 5.5.  If

the calculation is based on the average solution attempts of non-solvers, which was 10,

the predicted value becomes 5.9.  Neither of these predicted values was significantly

different from the 6 observed successes.  In contrast, substituting the chance probability

of success of .00015, the expected number solving within either 9.3 or 10 attempts was

virtually zero (.03).  The obtained number, 6, was significantly greater than this, by the

binomial test (p<.001).  Clearly, solutions were governed by intentional rather than

chance processes.

The inferred goals reported by participants in the Abstract condition were

categorized.  Seventy-four percent inferred a ring-shaped solution.  In spite of this, no

ring solutions were found in the Abstract condition.  This was significantly fewer than in

the Ring condition, p<.01 by the Fisher exact test.  Perhaps the failure to find the ring

solution in the Abstract condition was because their degree of goal certainty was lower,

since it was an inference and not a given.  In addition, since those in the Abstract

condition were not restricted to one solution, they may have been more willing to explore

other avenues, discovering the two-group solution in the process, either by chance or



What makes an insight problem?    17

design.  It should be noted that, in some move sequences such as that shown on the right

of Figure 1, a two-group arrangement that satisfies the goal requirements of the Abstract

condition appears after two moves.  Although this is not counted as a solution (because it

uses too few moves), it may be that its emergence in attempts at the problem could

contribute to discovery of the legal two-group solution.

The results do not, however, refute the possibility that solutions appeared by

chance.  On average, participants made 6.5 solution attempts in this condition, with 5 of

the 19 participants (26%) discovering the two-group solution.  Using a 1-sample binomial

test, this was not significantly greater than 2.2, the number expected to solve by chance

(calculated by substituting 6.5 for n and .0187 for p in the previous formula: basing the

calculation on the number of attempts of non-solvers increases the predicted number only

slightly, to 2.6).  With the observed proportion of solutions being 5/19, the proportion

expected on the basis of chance being 2.2/19, and a conventional criterion for significance

of 0.05, the statistical power of the binomial test is modest, at 0.38.  The result should

therefore be viewed with some caution.  Nonetheless, it is consistent with the

interpretation that some of the successes in this condition could have occurred randomly.

(Of note, two participants in the Ring condition produced the two-group arrangement,

presumably by chance, since it was not a valid solution in that condition.)

In order to check that the sample of participants was not becoming contaminated

over the course of the experiment by word-of-mouth information about solutions to the

problems, the number of solutions of the first 9 participants in sequence was compared

with the last 10 participants.  In the Ring condition, the numbers were 4 and 2, and in the

Abstract condition, 2 and 3.  It seems unlikely that there was any such contamination.
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The results for the Abstract condition raise the question of why the two-group

solution occurs no more often than chance (bearing in mind the earlier caveat concerning

statistical power).  There was an indication that the two-group solution required not only

a physical separation of the pieces but a psychological discontinuity in the types of move

made.  The relative proportion of states in the population of all possible final states that

result in separate groups of coins is quite high, at 16.1%.  The observed frequency of final

states that separated the coins was significantly lower than this, at 4.8% (that is, of a

total of 124 final states across all solution attempts, only 6 exhibited two separate groups

of coins), c2 =11.68.  Similarly, in the Ring condition only 7 out of 177 observed final

states (4.0%) separated the coins.  What is not clear at this point is whether this apparent

resistance to creating two groups of coins is a consequence of inferring the single-figure

ring solution, or if it is a separate constraint in its own right.  We return to this issue in

the second experiment.

 If the two-group solution involves a discontinuity then it is a candidate insight

problem, in Weisberg’s (1996) scheme.  To confirm its status, what would be required in

addition is that the discontinuity involves restructuring.  In the Abstract condition,

participants tended to think of the solution as a single ring, whereas the two-group

solution is, effectively, two rings.  The cognitive shift required to move from a single ring

to a double ring representation could be considered an instance of restructuring.

The experiment also collected information on the reproducibility of the ring

solution.  First, the six participants in the Ring condition who found the ring solution

were immediately asked to reproduce it, and allowed one minute to do so.  Only two

succeeded.  Second, the ring solution was demonstrated to all the participants in the
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Abstract Condition immediately following their procedure.  They then performed a filler

task for six minutes, following which they were given the six coin problem again and given

one minute to produce the ring solution.  Only 6 of the 19 participants were able to do so,

and required  a mean of two attempts.  The thirteen who failed were shown the solution a

second time, and asked to reproduce it immediately.  Six failed to do so within one

minute.  The solution was demonstrated to these six for a third time, and again they were

invited to repeat it.  Within the one minute allowed, one succeeded while five failed.

Third, the 14 participants who were able to reproduce the solution at some point were

shown the problem again, but with the starting state in reverse orientation.  Five (36%)

were unable to reproduce the solution.  The nine who did reproduce it successfully did

not do so immediately, but required a mean of 2.2 attempts.  These data suggest that

participants find it difficult to remember the ring solution to the six-coin problem, even

after several demonstrations.

Experiment 2

Participants in both conditions of the first experiment rarely made moves that

separated the configuration of coins, which may have hindered those in the Abstract

condition from discovering the two-group solution.  This apparent reluctance is explained

by our theoretical approach as resulting from selecting moves to make progress towards a

given or inferred ring goal.  Moves that separate the configuration are avoided because

they generally result in a decrease rather than increase in the number of coins on the ring.

This reasoning applies equally to the Abstract condition, since the majority of

participants in that condition conceived of the solution as a ring.  In essence, the
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conception of the goal as a ring creates an implicit conceptual block that precludes

exploration of the areas of the problem-space within which the two-group solution lies.

The hypothesis bears some resemblance to the concept of “fixation”— the adherence to

an inappropriate representation of a problem that blocks insight (Dominowski & Dallob,

1996; Smith, 1996).  In the case of the six-coin problem, however, the ring hypothesis is

quite appropriate in the sense that it is a correct solution, although it conflicts with the

other solution.

However, there are several other possible explanations for the low frequency of

moves that separated the coin configurations in Experiment 1.  One is that there may be a

more general tendency to avoid decomposing chunks into less conceptually or visually

coherent groups, as has been clearly shown in a different context (Knoblich, Ohlsson,

Haider & Rhenius, 1999).  Another is that participants may seek solutions within

dimensions that are bounded by the initial problem presentation, in this case single

composite coin figures.

  Experiment 2 was designed primarily to test among these alternatives.  The two

initial states used in Experiment 2 are shown in Figure 2, and participants were restricted

to finding solutions in two moves only.  In both cases, the two-group solution can be

achieved in two moves while the ring solution is impossible.  Each of the two figures can

be decomposed into two parts by moving any of the four interior coins, and so are

equally likely to be separated by chance.  They appear to form approximately equally

“good” figures and should therefore equally resist decomposition.  Both are unitary, and

should equally constrain moves to other unitary figures.  The two states were not

equivalent in their chance probabilities of success, which were .055 for the Partial-ring and
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.041 for the Straight-line.  However, we conjectured that a representation of the goal as a

ring would be strengthened in the Partial-ring condition and weakened in the Straight-line

condition.  Consequently, there should be greater perseverance in pursuing a ring-like

solution in the Partial-ring condition, making the two-group solution relatively less

available.  We therefore predicted a relatively greater number of two-group solutions in

the Straight-line condition than in the Partial-ring condition, contrary to the predictions

based on chance alone.

Method

Participants.  The participants were 54 final-year high school student volunteers

visiting Lancaster University.  Participants were assigned randomly in equal numbers to

either the Partial-ring condition or the Straight-line condition.

Materials and Procedure.  Testing was conducted in a group setting.  Participants

received the same instructions as the Abstract condition of Experiment 1, except that the

number of moves allowed was limited to two (thereby excluding ring solutions).  Each

participant received an envelope containing six UK penny coins, a pen and a sheet of

paper showing a template of the initial state.  They were instructed to place the coins on

the template.  They were allowed to make as many solution attempts as they wished

within a time period of three minutes.  The time period was reduced from that in

Experiment 1, as pilot work had suggested that the problems would be easier.  At the end

of three minutes, participants were asked to draw the shape of their solution.
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Results and Discussion

The present experiment manipulated the initial layout of the coins in a manner

that created a partial ring in one condition but not in the other.  We anticipated that this

would reinforce a ring interpretation of the goal state more strongly in the Partial-ring than

in the Straight-line condition and thus make the two-group solution less accessible, even

though that solution was attainable in each condition in two moves.  The results

supported this expectation.  Four participants (15%) in the Partial-ring condition and

11(41%) in the Straight-line condition produced a correct solution.  The difference was

significant, c2(1, 54) = 4.52, p<.05.  The procedure did not allow recording of the number

of attempts, but if we base an estimate on the rate of attempts from the Abstract

condition of Experiment 1, then the chance number of solutions for the Straight-line

condition is 2.1 solutions.  The observed frequency, 11, was significantly greater than

this, by the binomial test (p<.001).  In contrast, the observed number in the Partial-ring

condition, 4, was not significantly greater than the expected number of chance solutions,

of 2.8.

The results indicate that participants in the Straight-line condition were

sufficiently liberated from the ring hypothesis that they were able to discover the

alternative solution at greater than chance levels.  In contrast, participants in the Partial-

ring condition, like those in the Abstract condition of Experiment 1, did not find the two-

group solution significantly more often than chance.  These outcomes support the

hypothesis that participants in the previous experiment failed to produce moves that

separated the coins because of their focus on a single ring solution.  This fixation would

have prevented a wider exploration of the problem space that could have led to the two-



What makes an insight problem?    23

group solution.  This leads to the parsimonious conclusion that the difficulty of both the

two-group solution and the ring solution arise from the pursuit of a hill-climbing strategy

towards the ring goal.  The experiment also provides evidence that, in the absence of a

concrete and visualizable goal, individuals make hypotheses about properties of the goal

state and use these hypothesized properties to derive a test for satisfactory progress

against which to evaluate alternative moves.

Experiment 3

In Experiment 3, we manipulated the goal information given to participants.  The

experiment employed four conditions and, in all four, participants were instructed that

the correct solution resulted in each coin touching exactly two others, and that two

different solutions were possible.  In the first condition (Abstract), no further information

was given.  In the second (Ring example) the ring solution was shown, in the third (Two-

group example) the two-group solution was shown and, in the fourth (Both examples)

both solutions were shown.

The experiment addressed several issues.  First, we remedied a number of

methodological inequalities of Experiment 1, notably holding the space of possible

solutions constant across conditions.  Second, the experiment explored whether the

difficulty of the two-group solution resides wholly in forming a representation of the goal

state properties or if some component of difficulty arises in executing the required

sequence of moves (as in the ring solution, where executing the moves is the sole source of

difficulty).  If the difficulty is representational, then two-group solution rates would be

close to 100% in the Two-group and Both-example conditions, and significantly higher
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than in the Abstract and Ring-example conditions.  If the difficulty lies more in move

execution, then performance should be constant across all four conditions.  Third, the

experiment investigated the effects on two-group solution rates of providing the ring goal.

Does seeing, as opposed to inferring, the ring goal make a difference, when knowledge that

alternative solutions are present is held constant?  Fourth, the preceding distinction

between difficulty of representation and difficulty of execution suggested an additional

test.  If the move sequence is difficult to execute, we envisaged that it might be difficult to

reproduce, once discovered.  By contrast, if an adequate unitary representation of the goal

state were achieved during the course of a successful attempt at the problem, the solution

might be easily reproducible.  The experiment therefore collected information on the

reproducibility of both types of solution.

Method

Participants.  42 students from Lancaster University, majoring in subjects other

than psychology, were randomly assigned to one of four experimental conditions.

Participants were paid two pounds sterling.

Materials and procedure.  The materials and procedure were similar to those used

in Experiment 1.  The penny coins used in Experiment 1 were replaced with steel regular

hexagons, with length of side of 15mm and thickness 3mm.  This change was made

because hexagons make it easier for participants to evaluate the number of mutual

contacts.  For convenience, henceforth we refer to these hexagons as coins.  Participants

read the instructions of Experiment 1 with the additional line: “There are two general

types of solution to this problem, both of which are acceptable”.  In the Abstract

condition, no further instruction was provided.  In the Ring-example condition, a drawing
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of the ring solution was provided; in the Two-group example condition, a drawing of the

two-group solution was provided, and in the Both-examples condition, both drawings

were provided.  As in Experiment 1, participants were allowed up to ten minutes to make

as many solution attempt as they wished.  At the end of the procedure, participants in

the Abstract condition were asked whether they had any image of the goal state in mind

during their solution attempts.  Finally, participants in the Abstract and Ring example

conditions who produced the two-group solution were asked immediately to reproduce it

from a starting state that was reoriented by 180 degrees from the original. In addition, the

ring solution was demonstrated to the participants from all conditions who had not

produced it, and they were asked immediately to reproduce it from the same starting

state.

Results and discussion

The numbers (percentages) finding the two-group solution were 3 (27%), 3 (27%),

8 (89%) and 10 (91%) for the Abstract, Ring-example, Two-Group example and Both-

examples conditions, respectively.  The difference across conditions was significant, c2

(3,42) =16.84; p<0.015. In addition, solution rates were close to 100% in conditions

where the two-group example was shown, with participants finding the solution on the

second attempt on average.  (In both conditions, the single participant who failed

persisted in attempting to produce a ring solution) The results demonstrate that the

difficulty of the two-group solution resides in establishing an appropriate representation

of the goal and not in executing the necessary steps to solution.  When the goal is

provided, the problem becomes relatively trivial.
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Because there are relatively many paths that lead to the two-group solution we

compared the observed results with chance.  The expected numbers of two-group

solutions by chance alone (assuming a single attempt) were 1.6, 1.5, 0.5 and 0.7 for the

four conditions, respectively (calculated as in Experiment 1).  The corresponding

observed frequencies were 3, 3, 8 and 10.  The former two observed values were not

significantly different from chance (p>.20), while the latter two were (p<.001), by the

binomial test.  Given that the observed frequencies resulted from multiple attempts, the

comparison with chance is a conservative one. The result is consistent with the

hypothesis that in the Abstract and Ring-example conditions participants may simply

have stumbled upon the two-group solution by chance.  This interpretation is supported

by the move selections observed in these conditions, as described below.

There was evidence that participants in the Abstract condition entertained a ring

shaped goal.  Again, the majority of participants (8, or 73%) in the Abstract condition

inferred that the solution had a circular form.  As in Experiment 1, we expected that when

participants were shown the ring example their initial attempts would exhibit a tendency

to increase the number of coins on the ring, and this was the case.  Analyzing first move

data, this tendency was equally evident in the Abstract condition, consistent with

participants’ reported goal inference.  The means (standard deviations) of the number of

coins on the ring after the first move were 4.55 (0.52), 4.50 (0.53), 3.89 (0.33) and 4.18

(0.40), for the four conditions respectively.  There was an overall difference among the

means, F(3,37) = 4.35, MSe = 0.21, p =.01.  Post-hoc comparisons using Tamhane's T2

procedure (because of heterogeneity of variance) indicated that the Abstract and Ring-
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example conditions had significantly higher mean numbers on the ring than the Two-group

example condition.

Analysis of the times to reach the two-group solution provided information about

the solution processes in the different conditions.  The mean solution times (s) for those

solving the problem only were 221, 417, 90, and 144, for the Abstract, Ring-, Two-

Group- and Both–examples conditions, respectively.  A 2x2 ANOVA on solution times,

with presence/absence of ring example and presence/absence of the two-group example as

independent variables, resulted in significant main effects for both factors. The results

showed a significant facilitation in the time required to find the two-group solution with

the presence of the two-group example, F(1,20)=18.08, p<.001, MSe= 10156, and a

significant inhibition with the presence of the ring example, F(1,20)=6.92, p<.02, MSe=

10156. The interaction effect was not significant.  The results suggest that the effects of

the ring strategy are stronger where the ring goal is presented (rather than inferred) and

that participants will pursue it for longer before considering an alternative solution.

Five participants who produced the two-group solution in the Abstract and Ring-

example conditions (those who had not seen the two-group goal) were able to reproduce

it, three on the first attempt and two on the second (the data for one participant was

missing because of a procedural error).  Of the five reproduced solutions, four involved a

sequence of moves that differed from the original solution.  The result is instructive in

two ways.  First, although some or even all of these solutions may have occurred by

chance, participants were apparently able to quickly recode the solution, since they were

able to reproduce it.  Second, this recoding was not simply a trace of the previous moves,

since the majority of reproductions followed different solution paths and resulted in
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different orientations of the two group solution.  It seems probable that participants

recoded the general configuration of the solution and then reconstructed paths that led to

it.

The ring solution was demonstrated to the 36 participants who had not produced

it.  Only seven (19%) were then able to reproduce the solution within a one minute time

period.  This finding illustrates the difficulty of recoding the required sequence of moves

for the ring solution, in sharp contrast with the ease with which moves enabling a two-

group solution appear to be recoded.

Experiment 4

Experiments 1-3 established that performance on variants of the six-coin

transformation problem is under the control of a hill-climbing heuristic, in which moves

are evaluated for selection on the basis of their fit with a criterion for progress towards a

known or hypothesized goal.  In Experiment 4 we investigated whether the same hill-

climbing heuristic determines performance on the ten-coin or ‘triangle’ problem, widely

recognized in the literature as one requiring insight.  A reason for selecting the ten-coin

problem for comparison with the six-coin problem is that, status as insight or non-insight

problem aside, the two problems appear similar superficially, and they can be used with

identical instructional constraints.

The initial and goal states of the ten-coin problem are shown in Figure 3.  As with

the six-coin problem, the task can be stated in terms of transforming a starting state to a

goal state by moving three coins, one at a time, under the constraints that a coin being

moved (i) must not be lifted, (ii) must come to rest touching exactly two other coins and



What makes an insight problem?    29

(iii) must not displace any other coin.  As before, we determined the state space of the

ten-coin problem.  There are 81147 sequences of legal moves, as compared to 7426 for the

six-coin problem.  36 sequences lead to the goal state.  The overall chance probabilities of

finding a correct solution, calculated in both cases as the sum of the products of the

conditional probabilities of each sequence of first, second and third moves that lead to a

correct solution, are .00041 for the ten-coin and .00015 for the six-coin problem.

A number of researchers have proposed that the ten-coin problem requires insight

for its solution (Metcalfe, 1986; Schooler et al, 1993).  Metcalfe describes the insight as

restructuring the triangle of coins into a central rosette of 7 coins around which the 3

corner coins may be rotated, leading directly to the solution shown in Figure 3.  An

alternative account of the problem’s solution is offered by Weisberg (1996), who

proposes that the problem may be solved without insight, using trial and error or other

processes.  It remains the case that the role of a rotational insight as a precursor to

solution, and the conditions under which such an insight might arise, have yet to be tested

against trial-and-error and other accounts.

Whether solved through insight or not, the concrete goal and well-defined

operators of the ten-coin problem suggests that it may be addressed in a similar manner to

the six-coin problem and that, perhaps prior to any rotational insight, move selection may

be governed by simple locally-rational progress evaluation criteria.  What constitutes

reasonable progress will depend on how each participant conceptualizes the goal of the

ten-coin problem, specifically the hypotheses that they develop regarding the properties

of the path towards the goal state, and there are several possibilities.  For example, a

participant might translate the goal into a requirement to transform the apex of the triangle
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into the base.  Given such a conception, a reasonable approach would be to move a corner

coin from the base to touch the apex coin (with reference to Figure 3, move Coin 7 to

touch Coins 1 and 2, or 1 and 3, or move Coin 10 to touch Coins 1 and 3 or 1 and 2).  An

alternative conception might maintain the current base and translate the rest of the figure

across it, shifting the apex from its current location to the bottom of the array by moving

Coin 1 to touch Coins 7 and 8, 8 and 9, or 9 and 10.  A third conception might direct

attention towards rows that appear to have too many adjacent coins (the bottom row) or

too few (the top and second rows).  This representation could result in a number of

locally rational first moves.  These include the moves described for the first goal

conception, since they reduce the number of coins on the bottom row and increase the

number on the top.  Alternatively, moving coins 7 or 10 to touch coin 2 and 4 or coins 3

and 6 decreases the bottom row and increases the second row.  Of the 10 moves identified

for the three goal conceptions described above, 5 are correct and could result in success on

a first attempt, while 5 are incorrect and will lead to failure on that attempt.

Given that there appear to be several possible conceptions of goal properties in

the ten-coin problem and a relatively large number of moves stemming from them, we will

not attempt to elaborate related criteria of progress, though evidence regarding the

existence of different goal conceptions is reported below.  While many of the predicted

first moves are incorrect, all of them involve moving a coin that has to be moved in the

correct solution path.  This suggests that, while the ten-coin problem may be quite

difficult to solve on a first attempt, it may be relatively amenable to solution across

multiple attempts.  In contrast, the goal conception identified for the six-coin problem

(ring goal) predicts first moves that lead to failure.  Even if a wrong first move is rejected
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on subsequent attempts, the probability of selecting a correct first move from the next

best alternatives is only 11%.  This leads to the prediction that the six-coin problem will

be extremely difficult to solve on a first attempt and will continue to be relatively difficult

over subsequent attempts.  Overall, the ten-coin problem should be relatively easier than

the six-coin, both on the first and on subsequent attempts.

Accounts that invoke insight as a precursor to solution (e.g., Metcalfe, 1986),

might suggest that the ten-coin problem should be more difficult than the six-coin

problem.  Restructuring of some kind – perhaps to identify the central “rosette” – is held

to be necessary in the ten-coin problem, but no such restructuring seems possible in the

six-coin problem, nor is there any evidence for it in the foregoing experiments.  In

contrast, a trial-and-error account allows the prediction that the six-coin problem should

be no more difficult than the ten-coin problem: the chance probabilities of finding a

correct solution are diminishingly small for both problems.  Thus, the comparison

between six- and ten-coin problems in this experiment provides a strong test of our

theoretical predictions against a other accounts.

Method

Participants.  The participants were 50 student volunteers from Lancaster

University, each paid two pounds sterling.

Materials and procedure.  The six-coin condition used similar materials and

procedures to the Ring condition in Experiment 1.  The start and goal states of the ten-

coin problem are shown in Figure 3.  Participants were instructed as follows: “Show how

you can make the triangle of 10 coins…point downward by moving only three of the coins.

You must abide by the following rules: You have three moves, no more and no fewer.  In
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each move, slide one coin only (do not pick it up).  When you slide a coin, it must not

disturb any other coins.  At the end of each move, the coin you are sliding must be touching

two other coins (no more and no fewer).”  In order to keep the total amount of time spent

on problem-solving comparable to that in Experiments 1 and 3, and to avoid any

confound with fatigue, participants were allowed 5 minutes for each of the two problems

(10 minutes total).  Participants were tested individually on both the six-coin problem and

the ten-coin problem.  Half received the six-coin problem first, half the ten-coin first.  If a

correct solution was given the participant was invited to reproduce it immediately, and

was allowed one minute in which to do so.  All moves were recorded on videotape.

Results and discussion

The data for two participants, one from each order assignment, were unusable.

The results for the remaining 48 were used to test the experimental predictions.

The prediction that the six-coin problem will be more difficult to solve than the

ten-coin problem on first and subsequent attempts, was confirmed.  The numbers

(percentages) solving at the first attempt were zero (0%) and 9 (19%), Wilcoxon z = 2.65,

p =.008, and solving within 5 minutes were 10 (20.8%) and 36 (75%), Wilcoxon z = 2.67,

p = .008, for the six-coin and ten-coin problems, respectively.  As in Experiment 1, the

numbers of solutions to the six-coin problem in the first and second half of the experiment

were examined to ensure that no contamination of the participant sample had taken place.

Five solutions were found by the first 24 subjects, and five by the second 24.

The greater difficulty of the six-coin problem supports a hill-climbing rather than

trial-and-error account of solution.  One possible caveat is that the instructions used for



What makes an insight problem?    33

the ten-coin problem imposed additional constraints (the requirement that the coin being

moved must come to rest touching exactly two other coins).  Ormerod and Gross (2003)

tested participants with standard instructions to the ten-coin problem and found that

65% solved within the same time period of five minutes.  It does not appear, therefore,

that the additional constraints radically altered the problem’s difficulty.  Rather, it is

notable that the clear and significant difference in performance between the six- and ten-

coin problems occurred in a situation where care was taken to equate instructions and

move constraints.

The first moves made on each participant’s first attempt were analyzed, on the

grounds that these provide the clearest evidence for the influence of goal conception on

move selection, unaffected by outcome.  For the six-coin problem, first moves were

analyzed for the number of adjacent coins on a ring that they produced and compared

with the population distribution of all possible first moves.  The expected frequency of

moves resulting in 5, 4 or 3 coins on a ring, are 17%, 75% and 8%, respectively, with a

mean of 4.08 and a standard deviation of .49.  The corresponding obtained frequencies

were 50%, 40% and 10%, with a sample mean and standard deviation of 4.40 and 0.68,

respectively.  The obtained sample mean was significantly higher than the theoretical

population mean, t(47) = 4.53, p<.01, indicating a greater than chance preference for

maximizing the number of coins on the ring.  These results are consistent with those of

Experiment 1, and again suggest that move selection is determined by the operation of a

hill-climbing heuristic.  Again, the probabilities of correct moves across multiple attempts

were close to the predicted values.  Of the 352 first moves, 35 (10%) were correct

(predicted value 11%).  Of these, 25 were followed by a second move, of which 9 (36%)
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were correct (predicted value 33%).  Of the nine correct second moves, all (100%) were

followed by a correct third move (predicted value 100%).  Based on these predicted

probabilities, the expected number solving within the mean number of observed attempts

was 11.3, which was not significantly different from the observed value of 10.

First moves in the ten-coin problem were also examined for consistency with the

application of a hill-climbing heuristic to the different goal conceptions identified earlier.

First move data from six participants could not be unambiguously transcribed from video.

The results for the remaining 42 showed that the number (percentage) selecting first

moves consistent with each of the three goal conceptions were 13 (31%), 11(26%) and 5

(12%), respectively.  This yielded a total of 29 (69%) first moves consistent with a hill-

climbing heuristic, which was significantly higher than the 7.33 (17%) based on a chance

selection of first moves from all available moves in the state space, c2 (1, 42) =77.61,

p<.01.  Thus, the analysis of first moves yields direct evidence of the kinds of goal

conceptions we had hypothesized.

In the case of the 36 participants who solved the ten-coin problem, we examined

the successful sequence of three moves for evidence of the “rotational insight” that has

been attributed to the problem.  We defined this as any sequence of moves where each of

the three corner coins was shifted in order one position around the central rosette, as

shown in Figure 3, in a clockwise or counter-clockwise direction.  Thirty-four of the

successful trials were unambiguously classifiable and of these 8 (24%) exhibited this

rotational pattern.  In contrast, 19 (56%) were consistent with the application of hill-

climbing to a goal conception of trying to translate the figure across a horizontal median

axis, either by moving the top coin to the center of the bottom row, followed by moving
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the two lower flanking coins up, or the same moves in reverse order.  In his taxonomy of

problem types, Weisberg (1996) classified the ten-coin problem as a "hybrid", meaning

that it could in principle be solved either through insight or other means.  The present

results appear to support Weisberg's interpretation, since only 24% of people solving did

so with a sequence of moves that were completely consistent with the "rotational"

insight.  More solvers (56%) used moves consistent with a hill-climbing heuristic.

In addition, the experiment collected information on the reproducibility of

solutions to both problems.  Of the ten solving the six-coin problem, only 2 (20%) were

able to replicate the solution on an immediately subsequent attempt.  Of the 36 who

solved the ten-coin problem, 35 (97%) succeeded in replicating the solution immediately.

We return to these data in the General Discussion, where we propose that they hold the

key to understanding a major remaining difference between the ten-coin and six-coin

problems, and one that may lie at the heart of a useful definition of insight.

General Discussion

This paper addressed the potential for an information-processing approach to

demonstrate and account for commonality in the strategies used by participants solving

knowledge-lean problems of both transformation and insight types.  It did so in three

ways.  First, it introduced the six-coin problem, which is configurable to reflect

characteristics attributed both to transformation and to insight problems.  Second, it

explored how individuals identify the information about goal properties necessary to

implement a hill-climbing heuristic when problems have under-specified goals.  Third, it
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tested predictions derived from a hill-climbing approach in a direct comparison of

transformation and insight problems.

Experiment 1 gathered baseline information on two versions of the six-coin

problem, one in which a ring goal was shown to participants, the other in which the goal

was described only in abstract terms as “each coin touching exactly two others”.  While

not quite as difficult as the nine-dot problem (e.g., MacGregor et al, 2001), both versions

of the problem are challenging, with less than one-third of participants solving either

version within 10 minutes.  Performances with the ring version of the problem supported

the hypothesis of a hill-climbing heuristic, in that (a) first moves maximized the number

of coins on the ring significantly more than chance and (b) the observed probabilities of

correct first, second and third moves corresponded to those predicted by hill-climbing.

Given the difficulty of the problem, how were participants ever successful in

solving the six-coin problem?  If participants discovered the correct first move, then they

were likely to repeat it and eventually solve.  The correct first move appears to be a

‘promising state’ (cf.  MacGregor et al, 2001), in that it allows the discovery of second

moves that make progress against the goal in a way that the second moves following all

other first moves do not.

While the majority of participants who received the abstract version of the six-

coin problem reported holding a ring hypothesis, none found that solution.  Some found

the alternate two-group solution. The number of such solutions was not significantly

greater than chance, though the power of the test was admittedly low.  One source of

difficulty in finding the two-group solution appeared to be a reluctance to select moves

that split the coin array.  This difficulty may be explained in a number of ways, such as
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the possibility that participants are unwilling to decompose the ‘chunk’ that the coins

form into less conceptually coherent groups, as has been clearly demonstrated with other

stimuli (Knoblich et al, 1999).  The account deriving from a hill-climbing model is that the

relative absence of splitting moves was primarily a by-product of participants inferring

and seeking the ring solution.  The latter explanation was supported by Experiment 2,

which manipulated the perceptual salience of the ring goal while holding the figural

coherence of the starting state constant.  The results demonstrated that providing

participants with a visual cue to reinforce a ring hypothesis inhibited the discovery of the

two-group solution, the only solution possible in two moves.

Experiment 3 manipulated the presence of ring and two-group solution examples,

while holding key features of the state space constant across conditions.  The important

findings of this experiment were twofold.  First, participants who received the two-group

example were generally able to find the two-group solution, in contrast to participants

who did not.  This finding supports our hypothesis that the key source of problem

difficulty with this version of the problem lies in conceiving of the two-group solution,

not in executing it.  In contrast, few participants who received the ring example were able

to find the ring solution, suggesting that the problem with this version lies in executing the

ring solution, not conceiving it.  The fact that the two-group example gave rise to many

more correct solutions than the ring example confirms the hypothesis that a two-group

display yielded different and less inhibiting local goal conceptions than the ring display.

The application of hill-climbing to the goal conception elicited by the ring example

(maximize coins on the ring) initially inhibits selection of the correct move, whereas the

same heuristic applied to the goal conception elicited by the two-group example does not
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appear to inhibit correct moves.  The second important outcome of the experiment was

that presenting participants with the ring example slowed down the discovery of two-

group solutions.  This indicated greater perseverance on the ring goal when it was

presented, as opposed to inferred, even with the knowledge that an alternative solution

was available.

In Experiment 4 we compared performance on the six-coin problem with the ten-

coin problem, a well-known problem characterized as necessitating insight by many

researchers.  As predicted, the six-coin problem was considerably more difficult to solve

than the ten-coin problem, despite the apparent absence of a requirement for insight as a

precursor to solution, and despite the fact that it has a much smaller state space.  There

was evidence that first moves in the ten-coin problem were determined by the same hill-

climbing heuristic as in the six-coin problem.  Nearly 70% of first moves conformed to the

application of hill-climbing to the three goal conceptions described earlier.  Evidence that a

‘rotate around a rosette’ insight was a necessary precursor to solution was slight, only

24% of solutions reflecting a move sequence consistent with such an insight.  Instead,

over 56% of solutions conformed to a non-insightful but nonetheless successful

application of hill-climbing.  The result supports Weisberg’s (1996) contention that the

problem is a hybrid rather than a pure insight problem, and that solutions may be found

either through restructuring from a lateral to a rotational view of the movement of coins,

or through other means.  However, the results are slightly inconsistent with Weisberg’s

taxonomy, in that the majority of solutions did not appear to involve any discontinuity in

approach.  Rather, the ten-coin problem appears to be an extreme type of hybrid, which

can be solved either through the continuous application of a hill-climbing heuristic or
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through restructuring.  Interestingly, Isaak & Just (1996) have also claimed that the ten-

coin problem requires an insight for solution, but the illustration they provide of the

moves required to solve (p.320) is not the “rotational insight” solution but is in fact

identical to the application of hill-climbing to one of the goal conceptions we described

above.  The apparent inconsistency highlights again the definitional difficulties and the

absence of clear criteria for specifying insight solutions.  However, as discussed below,

the present results suggested one new factor that could be helpful in distinguishing

between insight and non-insight problem-solving.

Although the evidence reviewed so far suggests that performance on the ten-coin

problem was governed in many ways by the same kind of move selection heuristic as the

six-coin problem, performance did differ on the two problems in one important respect:

only 2 of the 10 participants who solved the six-coin problem in Experiment 4 were able

to recreate their successful solution on the subsequent attempt.  In contrast, 35 of the 36

participants who solved the ten-coin problem replicated their solution immediately.  We

propose that participants identified some kind of solution principle for the ten-coin

problem that allowed them to recreate the solution without a requirement to remember a

sequence of moves in its entirety.  A number of solution principles might serve this

purpose, including the ‘rotate around a rosette insight’ that has been attributed to the

problem (Metcalfe & Wiebe, 1987).  In contrast, it is difficult to conceive of a principle

that captures in a single clause the path to solution of the six-coin problem.   We propose

that, while both problems are solved initially by the discovery of a sequence of moves

selected under the application and subsequent relaxation of a hill-climbing heuristic, the

ten-coin problem can be reproduced because its solution can be described as a single
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executable concept, whereas the solution to the six-coin problem cannot easily be

reproduced because it is not amenable to a simple recoding. Insight into a single,

executable concept may occur either prospectively, where it guides the solution, or

retrospectively, we propose, as the rapid recoding of a solution that has been revealed

through other processes.  The latter may include hill-climbing, chance or demonstration.

Further evidence in support of the role played by solution recoding comes from

the solution reproduction data of Experiment 3.  Participants from conditions in which

the two-group example was not shown but who nonetheless discovered the two-group

solution were able to reproduce the solution despite a 180 degree inversion of the start

state.  Moreover, typically they reproduced the solution using a different sequence of

moves, suggesting a conceptual rather than sequential encoding of the solution.  In

contrast, participants who saw a demonstration of the ring solution were unable to

reproduce it from an identical start state.  The procedure of Experiment 2 precluded

collecting data on solution reproducibility.  Instead, 14 additional participants were tested

using the partial-ring condition only.  After the solution had been demonstrated once, all

fourteen were able to reproduce it without error from a start state inverted through 180

degrees.  Thus, while the same ‘ring’ goal conception inhibited solutions in both the three-

move ring problem of Experiment 1 and the two-move partial-ring problem of Experiment

2,  its inhibiting effects on solution reproducibility appear to have been overcome by

solution recoding in the latter but not in the former problem.

In contrast to the ring version of the six-coin problem, anecdotal reports given by

five participants who took part in experiments on the eight-coin problem (Ormerod et al,

2002) indicate that they remembered the necessary “insight” to move coins in three
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dimensions many months after participating in our studies.  Moreover, they successfully

reproduced the solution at their first attempt.  Knoblich et al (1999) report a similar

ability of participants to remember, and to transfer to new problems, a conceptual insight

into the solution principles underlying a range of matchstick algebra problems.

The present results raise a number of issues about the nature of insight problems

and about the usefulness of the defining criteria that have been proposed.  A summary is

provided in Table 1.  The first column of the table provides some of the criteria that have

been proposed for insight, together with the criterion identified here, of solution recoding.

The remaining columns of the table summarize the corresponding results obtained here for

the three problems, and contrast them with the profile that would be expected for the

“ideal” insight problem.

Although we did not formally measure the step-function emergence of solutions,

some clues were provided by the empirical probabilities of correct moves across the first,

second and third moves of each problem.  These were obtained as described in the Results

section of Experiments 1 and 4, and provided, for the three problems, the observed

conditional probabilities of correct first, second and third moves.  The results for the six-

coin ring problem were 0.10, 0.33 and 1.00 for the three moves, respectively (Experiment

4 data).  The combined probability of executing a correct first and second move was

therefore very low, at 0.03, but if a person did so, the probability of finding the correct

third move -- and solving the problem -- jumped to 1.00.  This suggests a step-function

component to the solution process, where the solution was suddenly obvious after

correctly executing the first two moves.  By the same measure, the conditional

probabilities of correct moves showed no step-function pattern for the two other
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problems.  For the abstract six-coin two-group solution the probabilities of correct moves

were relatively flat across the three moves, at 0.57, 0.44 and 0.56 respectively

(Experiment 1 data).  For the ten-coin problem, the probabilities increased across moves,

but in a progressive fashion, at 0.36, 0.60 and 0.95.  (This pattern was the same whether

or not participants showed the rotational insight.) Therefore, if we employed this step-

function criterion alone, the conclusion would be that only the six-coin ring is an insight

problem.

In terms of discontinuity, the six-coin ring solution does not appear to require a

change in the moves that are sampled.  In contrast, the two-group solution demonstrates a

clear discontinuity in the resulting array, if not in the sampled moves themselves, whether

we interpret it as relinquishing the ring hypothesis, or of separating the pieces into two

groups.  The ten-coin problem is a mixed case—the majority of solutions indicated no

discontinuity while a minority did.  The conclusion by this first of Weisberg’s criteria is

therefore that the six-coin ring version is not an insight problem and the ten-coin problem

was not an insight problem for the majority of participants.

It seems clear that the two-group solution to the abstract six-coin problem may

potentially involve restructuring if the representation of the solution changed from a

single ring to two separate rings.  However, we have no evidence that anyone ever found

the solution in this way, while the results suggest that some, perhaps all, solutions came

about by chance.  This classifies the problem as “hybrid”, in Weisberg’s taxonomy.

Similarly, the ten-coin problem can be solved by restructuring, if a shift in focus occurs

from translating coins across a lateral axis to rotating them around a central axis.  In this
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case, there was evidence that participants solved in both ways, making this problem a

“hybrid” also, since it was solved both by restructuring and by other means.

The weight of evidence suggests that the six-coin ring is not an insight problem,

and that, while the others have the potential to be insight problems, they may be solved

by other means.  The results provided empirical support for Weisberg’s taxonomy, and

caution against the use of any single criterion in diagnosing insight problems and problem-

solving.  The lack of commonality among any of the problems reviewed in Table 1

suggests that defining insight problems purely on phenomenology is of limited value.

Moreover, the absence of any obvious conceptual change that might lead to solution of

the ring-version of the six-coin problem, along with limited evidence of solutions to the

ten-coin problem consistent with a conceptual change, raise doubts about the generality of

definitions based upon conceptual restructuring alone.

We have tentatively introduced a new process-related criterion for insight, based

on the recoding of a solution, which is distinct from the defining criteria previously

proposed for insight. From the analysis offered in Table 1, solution recoding is not

associated with a consistent combination of matches against other criteria for the

problems reported here.  An important distinction between this account and the

traditional Gestalt account of insight is that the emergence of a new conceptual principle

is not necessarily the precursor to solution: instead, such principles may be a product of

solution discovery that enables future reproduction of solutions without extensive search

for moves.  It is evident that solution recoding has not yet been examined with problems

other than the knowledge-lean, multi-step problems we discuss here.  It is plausible and

empirically testable suggestion, however, that the way in which a solution can be recoded
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may relate to whether or not complex and/or knowledge-rich problems are perceived as

“insight problems”.

We recognize that our solution recoding hypothesis is preliminary.  Nonetheless,

we believe that the results of the four experiments reported here undermine the view that

a class of insight problems can be distinguished from other types of problems purely on

the basis of phenomenology and/or processes that occur during solution discovery.

Implications of the solution recoding hypothesis go beyond distinguishing between

different definitions of insight. Our view of the processes of solution discovery in insight

problem-solving indicates linkages between insight and conventional problem-solving,

suggesting that accounting for insight lies within the scope of unitary cognitive

architectures such as SOAR (Newell, 1991) and ACT-R (Anderson, 1993). Distinguishing

between processes of solution discovery and solution recoding also has implications for

neuropsychological studies that associate creative problem-solving with specific cortical

regions (e.g., Carlsson, Wendt, & Risberg, 2000). Furthermore, an appropriate focus on

solution recoding may help resolve the difficult question of why it appears to be so

difficult to transfer or train creative or “insightful” thinking (e.g., Sternberg & Bhana,

1986; Davidson, 1995).  Rather than relying on generic instructions to think “outside the

box”, it may be productive to encourage strategies for recoding, remembering and reusing

solutions.
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Table 1.  

Criteria for insight problems, and their match with characteristics of the 6-coin and 10-

coin problems

Criterion Ideal Six-coin Ring Six-coin Abstract

(2-group solution)

Ten-coin

Step-function Yes Yes No No

Discontinuity Yes No Yes Only in minority

of cases

Restructuring

(potential)

Yes No Yes Yes

Restructuring

(actual)

Yes No No Only in minority

of cases

Solution

recoding

High Low High High
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Figure Captions

Figure 1.  The six-coin problem, with initial state shown top center.  In the ring version,

shown in the left column, the task is to transform the initial state  into the ring goal state

(bottom left), moving only three coins.  Each move involves sliding a coin (in two

dimensions) to a position where it touches exactly two others, without nudging or

displacing any other coin.  There are only two correct sequences of moves that will reach

the ring goal: 6 to 5 & 4, 5 to 1 & 2, 1 to 5 & 6, or the mirror image 3 to 1 & 2, 2 to 5 & 4,

4 to 2 & 3.  The problem also has an abstract version, with the same rules and operator, in

which the goal is given verbally as “each coin must touch exactly two others”.  In the

abstract version, an alternative, two-group goal is available.  There are 176 paths to

correct two-group arrangements.  One example is shown in the right column.

Figure 2.  The starting arrays for the Straight-line (upper panel) and Partial-ring (lower

panel) conditions of Experiment 2.

Figure 3.  The ten-coin problem (upper panel), together with a “rotational” sequence of

three moves that reach the goal state (lower panel).



What makes an insight problem?    52

1           2          3

       5                      4

                       6

             2          3

       5                      4

           1           6

         1                       3            5

   2          6                       4

         1                                     5

   2          6                       4            3

         1                       3

   2          6           5          4

1           2          3

                5            4

                      6

    

                          6

1           2          3

      6           5          4

Route to ring
solution

Route to two-
group solution



What makes an insight problem?    53

1           2          3            4           5           6

                                     3            4

                1            2                         5           6



What makes an insight problem?    54

                              1

                        2          3

                 4           5          6

          7            8           9          10

1      2          3           10

                    4            5           6

                            8           9

                                  7


