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Abstract
Many proposed extensions of the standard model of particle physics predict the
existence of weakly interacting sub-eV particles (WISPs) such as hidden-sector
photons and axions, which are also of interest as dark matter candidates. In this
paper we propose a novel experimental approach in which microwave photonic
lattice structures form part of a ‘light shining through the wall’-type experiment
to search for WISPs. We demonstrate the potential to match and exceed the
sensitivities of conventional experiments operating in the microwave regime.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Among the weakly interacting sub-eV particles (WISPs) hypothesized to exist are additional
gauge bosons such as hidden-sector photons (HSPs) and pseudo-Goldstone bosons such as
axions. These light bosons are predicted to give rise to a range of observable effects [1]; for
example, an axion with a mass in the range 10−6 < mA < 10−2 eV would be an ideal candidate
to explain cold dark matter observations [2]. Note that in this paper ‘axions’ is used to refer
to both Peccei–Quinn axions and generic axion-like scalar particles. Currently, a variety of
astrophysical arguments and laboratory experiments indicate that the axion mass should be
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lower than 10−2 eV [3], a mass range over which the parameters of HSPs are also relatively
unconstrained by experiment. In this paper we propose a novel experimental technique to
detect WISPs with masses in the range 10−4.5 < m < 10−3.5 eV.

Axion searches endeavour to detect the conversion between a photon and an axion in the
presence of a static magnetic field via the Primakoff effect. Examples include astrophysical
observations in helioscopes, such as the CERN axion solar telescope (CAST) which uses
an LHC dipole magnet mounted with its primary axis directed toward the sun [4], and
cavity searches for axions with galactic origins, such as the axion dark matter experiment
(ADMX) [5]. A disadvantage of these approaches is that there is no direct control of the axion
(or other WISP) source. In the case of helioscope searches, the production conditions are
generally well-understood, and the limits obtained are only weakened in the case of specific
temperature-dependent or density-dependent WISP models. More significantly, limits from
galactic searches rely on assumptions regarding the local density of dark matter.

Alternatively, ‘light shining through wall’ (LSW) laser experiments [6, 7] use purely
laboratory-based methods, free from external models. In these experiments intense infra-
red/visible radiation impinges on a wall, on the other side of which is a sensitive photon
detector. To maximize the conversion probability, strong magnetic fields and intense radiation
sources are required [8–10].

Unlike axions, massive HSPs would couple to standard model (SM) photons via kinetic
mixing, resulting in vacuum oscillation between them, similar to flavour-changing neutrino
oscillations. Current constraints on the associated coupling constant come from Cavendish-
type tests of Coulomb’s Law in the μeV to meV mass range [11, 12]. Sub-μeV constraints
arise from the non-observation of distortions in the cosmic microwave background that would
be produced by resonant production of HSPs [13]. In the few meV range model-independent
bounds are being set by optical laser and intense accelerator-based free electron laser LSW
experiments [8, 14, 15] but these have recently been surpassed by solar lifetime calculations
[16, 17] which dominate the meV to keV range, including the region previously excluded by
non-observation of photon regeneration in CAST [4].

To date none of these approaches has revealed evidence for the existence of WISPs,
although they have been used to significantly constrain the allowed parameter spaces for both
axion and HSP models. One direction for future experimental searches comes from Jaeckel and
Ringwald [18] who propose realizing the LSW technique at RF frequencies with microwave
cavities. This allows the theoretically interesting μeV mass range to be investigated with
potentially four orders of magnitude greater sensitivity than other approaches. The primary
reason for this vast improvement is the high quality factor (Q) of RF cavities [19–22]. At
microwave frequencies standard copper cavities and superconducting cavities have Qs of
order 103 and of order 109 respectively.

In the following sections we propose to extend the regime of WISP searches using photonic
band gap (PBG) structures at microwave frequencies as an analogue to the LSW experiments
of [6, 7] and to the proposals of Jaeckel and Ringwald. We concentrate on demonstrating the
potential of this approach for HSPs as this allows for a simpler experimental design. However,
as PBG structures do not require to be superconducting to achieve high Qs, a strong magnetic
field could be applied to enable the same technique to be sensitive to axions.

The key parameters to be determined by any HSP search are the mass of the HSP mγ and
the probability that a HSP will convert to a photon, which is proportional to the square of the
hidden sector mixing parameter χ . These parameters are referred to in the remainder of this
paper and can best be understood by reference to the Lagrangian density [18]

L = −1

4
FμνFμν − 1

4
BμνBμν − χ

2
FμνBμν + m2

γ

2
BμBμ (1)
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Figure 1. Band gap diagram of a sapphire-in-air, triangular lattice calculated using the
commercial software package RSOFT [33].

where Fμν is the usual electromagnetic field tensor and Bμν is the equivalent hidden sector
field tensor with associated gauge field Bμ.

2. Photonic structure

2.1. General properties

A PBG structure is a periodic array of varying permittivities forming a lattice of scatterers of
EM radiation. PBGs have been extensively studied and have demonstrated a range of novel
physical phenomena [23] leading to many applications [23, 24], particularly in lasing where
defects in the lattice are used to produce highly-intense coherent radiation [24].

For certain lattice configurations, EM waves with specific frequencies are not able
to propagate through the lattice. Figure 1 shows the band structure (wavenumber versus
frequency) for a triangular 2D lattice of sapphire rods with the frequency normalized to the
speed of light. A ‘band gap’ in propagating frequencies is clearly present.

It follows that PBG structures containing a defect in the periodic lattice can behave
analogously to a conventional microwave resonant cavity. Wave propagation in this periodic
structure is governed by Bloch–Floquet theory [23]. If an EM wave has a half-wavelength
comparable to the size of the defect region and a frequency that lies inside the band gap, the
‘mode’ becomes spatially localized at the defect site [23]. The frequency dependence of the
localization effect makes it possible to create a structure where a specific mode is confined,
but all other modes propagate away from the defect site through the PBG lattice. The ability
of the lattice to confine an EM field by virtue of the periodicity of the lattice alone, means
the structure can confine EM modes to the defect regions without the need for any external
waveguide or cavity to support the mode.

To define the EM field tensor in equation (1) and hence the range of χ which is measurable,
we consider a specific PBG geometry consisting of a two-dimensional triangular lattice of
sapphire scatterers with relative permittivity of 9.0 and filling factor 0.183, in a vacuum.
These parameters define the propagation of EM waves in the photonic structure, the frequency
and size of the band gap, and the frequency/Q of the confined EM state [25]. The choice of
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Figure 2. Multi-defect triangular lattice of scatterers showing the electric field
distribution of a highly spatially-localized TM010 wave, generated using MEEP.

materials is determined by the thermal and mechanical properties, the frequency stability of
the permittivity, and the permittivity contrast between the materials. In this case, sapphire is
chosen as the authors of [26] have demonstrated that microwave sapphire PBG structures of
the form discussed here can operate at powers over 2 MW if required, and the high permittivity
contrast creates a well-defined band gap ideal for the experiment we propose.

The lattice parameters (and hence the filling factor) were determined using the numerical
EM solver MEEP [27] to ensure that each defect in the lattice supports a narrow bandwidth
EM state inside the band gap of the lattice. Using the technique presented in [27, 28] we have
verified that Qs of 106–109 can be achieved using this type of lattice (comparable to those
of SC cavities). In addition to potentially higher Qs, the use of PBG structures enables us to
reach frequencies higher than those accessible to conventional microwave structures, thereby
covering the regime from a few GHz to the infra-red. Typical lattice sizes are given later in
section 2.3.

It is worth noting that as the lattice is formed from dielectric material, the application of a
magnetic field through the lattice is straightforward, thereby enabling axion searches as well
as HSP searches.

Figure 2 shows a simulation of the electric field distribution of a lattice with the described
geometry, where defects have been created by the removal of scatterers so that there is a
spatially-localized TM010 state in one of the defects. The natural symmetry presented by the
lattice can be exploited to include multiple equivalent defects increasing the detector volume
relative to a simple two-defect arrangement. In the configuration shown, the inner defect
acts as an EM source (fed by an external source), and the outer defects act as detectors. For
illustration, the detector defects have been placed close together so that they are clearly all
coupled to the central defect. Conversely, if the detector defects are sufficiently distant that
they are electrically decoupled from the source then any detected photons above the noise
threshold represent transport mediated by non-SM processes. The requirements for achieving
the necessary decoupling are explored in the next section.
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2.2. Isolation of defects

In our lattice the defects are all identical, hence the EM field established in each defect is the
split state of the single defect structure [29, 30]. This enables the use of a tight-binding model,
with an analytical method based on the variational principle [31] extended to the case where
the states in each defect become decoupled. Taking �E0(�r) as the electric field at position �r for
a state associated with a single defect, �E0(�r) obeys [23]:

Ĥ �E0(�r) =
(ω0

c

)2
ε(�r)�E0(�r), (2)

where the operator Ĥ is defined as ∇×∇×, ω0 is the angular eigenfrequency, ε(�r) the effective
permittivity and c the speed of light. In the multi-defect case, each state is a superposition of
each individual defect state [31]. For an m-defect structure with n resonant states we have,

�En(�r) =
m∑

i=1

Cni �E0(�Pi), (3)

where �En(�r) is the nth state, �Pi = �r − �Ri, �Ri is the coordinate of the ith defect and Cni is
the coefficient of the linear combination. Replacing the eigenfrequency ω0 in equation (2) by
the eigenfrequency of the nth eigenstate, ωn shows that �En(�r) also satisfies equation (2). This
forms a variational problem in which assigning different coefficients Cni to each state creates
different �En(�r). According to [23], the eigenvalue should correspond to the minimum of the
variational equation,

(ωn

c

)2
= min

�En(�r)

∫ |Ĥ �En(�r)|2 d�r∫
ε(�r)|�En(�r)|2 d�r

= 〈�En(�r)|Ĥ|�En(�r)〉
〈�En(�r)|ε(�r)|�En(�r)〉

(4)

=
∑

i j CniCn jHi j∑
i j CniCn jSi j

(5)

where

Hi j = 〈�E0(�Pi)|Ĥ|�E0(�Pj)〉,
Si j = 〈�E0(�Pi)|ε(�r)|�E0(�Pj)〉,

Hi j denotes the elements of the Hamiltonian, Si j denotes the elements of the overlap
matrix, i and j denote states localized on the ith and jth defects respectively. To simplify
calculations, the eigenstate in the single-defect system �E0(�r) is taken to be real and is
normalized such that

〈�E0(�r)|ε(�r)|�E0(�r)〉 =
∫

�E0(�r)ε(�r)�E0(�r) d�r = 1. (6)

Using this normalization, the values of Hi j for the seven-defect PC shown in figure 2 can
be estimated as,

Hi j =
{
(ω0/c)2 (i = j),
(ω0/c)2βi j (i �= j),

(7)

where βi j = 〈�E0(�Pi)|ε(�Pj)|�E0(�Pj)〉 describes the coupling strength between defects, and
different βi j are related to each other by the lattice symmetry. Here we assume that for an
effective hidden sector search, each defect state must be spatially localized to that defect [31],
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Figure 3. The dependence of the defect coupling coefficients βi on the defect separation
Ibb in units of the lattice constant ‘a’. β1 represents coupling between nearest neighbours
and β2 represents coupling between next-to-nearest neighbours.

such that it decouples from all other defects. This is achieved when the overlap term Si j in
equation (4) tends to zero for all i �= j such that,

Si j = 〈�E0(�Pi)|ε(�r)|�E0(�Pj)〉 ≈ δi j. (8)

The coefficientsCni should be restricted to minimize the variational problem in equation (4)
with the condition that Cni gives stationary values, resulting in,

det

[
Hi j −

(ωn

c

)2
δi j

]
= 0. (9)

This indicates that the allowed frequencies in a coupled-defect photonic lattice, ωn, can be
determined from the single-defect resonant frequency, ω0 and the coupling coefficient βi j.

Solving equation (8) using the least-squares method [31] enables us to study the
dependence of the βi j on the lattice properties. In the case of our example structure, the
six-fold symmetry means that there are only three possible values of the coupling coefficient,
corresponding to the coupling between nearest neighbours (β1), next-to-nearest neighbours
(β2) and next-to-next-to-nearest neighbours (β3). Figure 3 shows the dependence of both the
nearest neighbour and next-to-nearest neighbour couplings on the separation between defects
Ibb in the lattice. Coupling coefficients of order 10−24 were obtained when the separation
between defects was 16 lattice constants. This semi-analytical study also acts to benchmark
the more-detailed numeric simulations described below.

To verify that the source and detector defects are sufficiently decoupled, suppressing all
SM transport of photons, MEEP simulations of the EM field were performed. The natural
symmetry of the lattice was used to reduce the simulation domain to a two-defect sub-domain
of figure 2. An excitation at the decoupled frequency ω0 was simulated in the source defect
and operated for approximately 40 RF cycles. Frequencies outside the band gap were allowed
to disperse over a duration of 4200 RF cycles and then the EM field across the lattice and the
detector defect was monitored for a further 120 RF cycles, where the latter is a small part of
the data-taking period of the envisaged experiment. A representative example of the results
is presented in figure 4 which shows suppression of the electric field strength in the detector
defect by a factor of 105 relative to the field in the source region for a defect separation of 13
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Figure 4. The normalized electric field along the central line between the source and
detector. The position of the dielectric scatterers is indicated by the grey lines.

lattice constants. At 16 lattice spacings the suppression factor increases to 107, and at greater
separations the simulations are limited by numerical noise.

The results from both the semi-analytical and full numeric simulations suggest that
separations of 16 lattice spacings are sufficient to make the frequency shift due to coupling
between detector defects negligible compared to the natural frequency width of the states
localized in the defects. However, for maximum sensitivity, the coupling between the source
and detector defects should be small enough that the dominant background in the detector
defect is thermal noise. At liquid nitrogen temperatures, this requires that the power coupled
into the detector defect through the lattice should be less that 10−24 W assuming a 1 mHz
frequency resolution for the detector electronics. For a 1 kW source we therefore require a
factor 1027 (260 dB) of suppression. Extrapolating from the MEEP simulations this requires
a minimum of 30 lattice spacings, which is the number used in the remainder of this paper to
determine the sensitivity of such structures to the presence of HSPs.

2.3. HSP sensitivity

Any photons mediated by HSPs between the source and detector defects in our structure would
produce an excess above the thermal noise background. The probability of transmission of
photons via the hidden sector is determined by the Q factors and by the geometric factor
G [32],

G(k/ω0) ≡ ω2
0

∫
v′

∫
v

d3x d3y
exp(ik|x − y|)

4π |x − y| Aω0(y)A′
ω0(x), (10)

where x and y are the co-ordinate systems centred on the source and detector regions
respectively, Aω0 and Aω0′ are the (electric) field vectors of the source and detector states
and k/ω0 is a measure of the velocity of the HSP in the rest frame of the lattice. Figure 5 shows
a plot of the G factor for the PBG structure used in figure 2 as a function of defect separation,
where we take the optimal case of resonant HSP production corresponding to k/ω0 being close
to zero. As can be seen, for the types of lattices we consider in our paper where defect regions
are separated by 30 lattice constants (as required from the studies highlighted in section 2.2)
the value of G is approximately 0.001.

7
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Figure 5. Maximum G factor between a source and defect region for the PBG structure
used in figure 2 as a function of separation between the source and defect.

Figure 6. Current bounds on hidden-sector photons from some of the different
experiments discussed at the beginning of the paper. The dashed line indicates the
potential bounds of the PBG proposed experiment calculated in this paper corresponding
to a range of lattices parameters of the order of millimetres.

We have analysed the EM field distribution of the PBG structure to determine the χ

exclusion sensitivity for a given mγ , where we can relate mγ of the HSP to the frequency of
excitation of the source. Assuming that the seven-defect structure is cooled to liquid nitrogen
temperatures, each defect is separated by 30 lattice spacings and 1 kW of power is supplied
to the central defect via a coaxial waveguide we obtain an estimated exclusion which is
shown by the dashed curve in figure 6. The curve corresponds to the expected 3σ exclusion
with approximately 1 year of running, or equivalently to the expected 5σ exclusion with less
than 3 years of running. The operating parameters used have been deliberately chosen to be
conservative.

The bounds on the range of operation of the PBG structure for HSPs from figure 6 enable
us to specify the parameters of the lattice. Although detailed analysis needs to be undertaken
for a specific geometry we can estimate to an accuracy of 1% the dimensions required for our
proposed structure. At 10 GHz our sapphire scatterers would have a radius of 2 mm and a
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separation of 9 mm, and at 100 GHz our sapphire scatterers would have a radius of 200 μm
and a separation of 0.9 mm. The lattice would be 80 by 80 scatterers in size, surrounded by
microwave absorbent material (to ensure no outside interference). This configuration, and the
method for coupling the EM field into the lattice and out of the lattice is the same as that
presented in [25].

3. Summary

In this paper we have demonstrated that a compact multi-defect photonic lattice can create
very high Q resonators in which nearby defects can be decoupled from each other, providing
an environment where transport mediated by non-SM processes can be measured. In addition,
by including a large number of defects the probability of a photon produced from an axion
or hidden-sector photon (HSP) exciting a defect region can be increased to maximise the
sensitivity of an experiment. As shown by figure 6, PBG structures are a promising technology
for LSW-type experiments and should be able to make a substantial contribution to model-
independent HSP searches.

We intend to realise the 2D structures proposed in this paper by constructing a
multi-layered heterostructure of dielectric materials, where our seven-defect lattice will be
sandwiched between two defect-free lattices to create a pseudo-two-dimensional structure.

Suitable PBG structures can be formed from dielectric materials in air/vacuum, and unlike
conventional microwave resonators an external magnetic field may be applied over the defect
resonator region. Using an external EM source to excite a resonant state in a central defect,
the defects surrounding the central resonator will act as our detectors for couplings mediated
by non-SM processes, while any photons will be confined by the high Q factor of the defects.
Detection of excited states will be accomplished using a spectrum analyser connected to
antennas placed in the vicinity of the defects, using the approach outlined in [25]. This will
enable us to examine parts of the HSP parameter space beyond the scope of current experiments
in the GHz to infra-red regime.
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[14] Robilliard C, Battesti R, Fouché M, Mauchain J, Sautivet A-M, Amiranoff F and Rizzo C 2007

Phys. Rev. Lett. 99 190403
[15] Ehret K et al 2010 Phys. Lett.B 689 149–55
[16] Haipeng A, Pospelov M and Pradler J 2013 Phys. Lett. B 725 190–5
[17] Haipeng A, Pospelov M and Pradler J 2013 Phys. Rev. Lett. 111 041302
[18] Jaeckel J and Ringwald A 2008 Phys. Lett.B 659 509–14
[19] Slocum P L, Baker O K, Hirshfield J L, Jiang Y, Kazakevitch G, Kazakov S, LaPointe M A,

Martin A, Shchelkunov S and Szymkowiak A 2010 Proc. Patras Workshop on Axions, WIMPs
and WISPs p 49

[20] Betz M and Caspers F 2012 Proc. IPAC’12 (New Orleans) THPPC021
[21] Povey R, Hartnett J and Tobar M 2010 Phys. Rev. D 82 052003
[22] Williams P H 2010 Proc. Patras Workshop on Axions, WIMPs and WISPs p 37
[23] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the

Flow of Light (Princeton, NJ: Princeton University Press)
[24] Busch K, Lolkes S, Wehrspohn R B and Foll H 2004 Photonic Crystals: Advances in Design,

Fabrication and Characterization (New York: Wiley)
[25] Xu Y and Seviour R 2012 New J. Phys. 14 013014
[26] Munroe B, Cook A, Shapiro M and Temkin R 2012 Proc. IPAC’12 (New Orleans) TUPPR070
[27] Rodriguez A, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G, Farjadpour A, Roundy D

and Burr G 2006 Opt. Lett. 31 2972–83
[28] Joannopoulos J D, Rodriguez A, Ibanescu M and Johnson S G 2005 Opt. Lett. 30 3192–5
[29] Temelkuran B, Bayindir M and Ozbay E 2000 Phys. Rev. Lett. 84 2140–3
[30] Bulu I, Ozbay E, Bayindir M and Cubukcu E 2002 IEEE J. Quantum Electron. 38 837–43
[31] Lin B-S 2003 Phys. Rev. E 68 036611
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