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Abstract. The inflationary cosmology paradigm is very successful in explaining the CMB
anisotropy to the percent level. Besides the dependence on the inflationary model, the power
spectra, spectral tilt and non-Gaussianity of the CMB temperature fluctuations also depend
on the initial state of inflation. Here, we examine to what extent these observables are affected
by our ignorance in the initial condition for inflationary perturbations, due to unknown new
physics at a high scale M . For initial states that satisfy constraints from backreaction, we
find that the amplitude of the power spectra could still be significantly altered, while the
modification in bispectrum remains small. For such initial states, M has an upper bound
of a few tens of H, with H being the Hubble parameter during inflation. We show that for
M ∼ 20H, such initial states always (substantially) suppress the tensor to scalar ratio. In
particular we show that such a choice of initial conditions can satisfactorily reconcile the
simple 1
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2φ2 chaotic model with the Planck data [1–3].
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1 Introduction

The increasingly precise cosmic microwave background (CMB) measurements [1–3], in com-
bination with other cosmological data, have ushered us into a precision early Universe cos-
mology era: the power spectrum of CMB temperature fluctuations is measured to have an
amplitude of order 10−5. The spectrum is almost flat, with a few-percent tilt toward larger
scales (i.e., red spectrum) and is almost Gaussian. Moreover, the B-mode polarization in the
CMB fluctuations, which is an indicative of primordial gravity waves, has not been observed
with 10% accuracy or better. A part of this cosmic data, which we will discuss further below,
is summarized in figure 1.

Inflation is by far the leading paradigm in explaining the CMB temperature anisotropy.
This paradigm, that the early Universe has gone through a period of accelerated expansion,
can be realized in concrete models formulated within effective (quantum) field theory cou-
pled to gravity. Inflation thus provides an interesting link between short distance physics and
cosmological observations. In the inflationary picture, the CMB fluctuations can be traced
back to the quantum fluctuations during inflation [4]: quantum effects are stretched to cos-
mological size due to the quasi-exponential expansion of inflation. As the pattern of quantum
fluctuations depends on the microphysics of inflation, precision data from the CMB and other
cosmological measurements thus allow us to constrain or rule out inflationary models.

However, predictions of inflationary models for the CMB temperature anisotropy depend
not only on details of the model itself, but also on the initial state of the quantum fluctuations.
It is usually assumed that these fluctuations start in the Bunch-Davis (BD) vacuum, as they
are expected to be in a minimum energy state when they are produced inside the horizon of an
inflationary background. However, various well-motivated early universe physics, e.g. effects
of high energy cutoff [5–19] and multi-field dynamics [20–22] can place these fluctuations in
an excited state, i.e., a non-BD initial state.

In this paper, we discuss how a non-BD initial state in a consistent theoretical setup
can crucially affect the implications of cosmic data for inflationary models. In particular, we
show that the simplest inflationary model, the quadratic chaotic inflation model [23] in BD
vacuum, which is disfavored by the current Planck mission data [1–3], can still be a viable
model of inflation with a very good agreement with the data if the fluctuation start in a
non-BD state.1

1One way to reconcile these models with the data is to consider gravity as a field which is inherently
classical. If such, there will be no quantum tensor seeds which can be stretched to superhorizon scales by the
expansion of the universe [24]. The tensor/scalar ratio will be exactly zero in that case.
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Figure 1. ns vs. r 1σ and 2σ contours, Planck results [1–3]. The grey shaded trapezoid region shows
the acceptable region for the m2φ2 model. The upper oblique line corresponds to the BD vacuum
and the Left and Right sides correspond to Ne = 50 and Ne = 60 respectively.

The outline of the paper is as follows. First we review the cosmological perturbation
theory with an excited initial state. We discuss how backreaction can constraint the devi-
ations from Bunch-Davies vacuum. In the next section, we show how this is translated to
bounds on the scale of new physics with respect to the inflationary Hubble parameter. We
analyze the parameter space of initial conditions for scalar and tensor fluctuations and show
that in the region that scale of new physics is maximally separated from the inflationary
parameter, the effect on the tensor over scalar ratio is always suppressive. Finally, in the
last section, we show that the large deviations from Bunch-Davies vacuum does not lead to
essential enhancement of non-Gaussianity and if a model with BD initial states is compatible
with the Planck data, it will remain so in the non-BD initial state.

2 Cosmological perturbations with excited initial states

An excited initial state can in principle affect the background inflationary dynamics (through
the backreaction of the perturbations) as well as the CMB temperature anisotropy. To this
end we recall some results of cosmological perturbation theory, whose details may be found
in [4]. Let us consider the simplest single scalar field inflationary model:

L = −
M2

pl

2
R− 1

2
∂µφ∂

µφ− V (φ) (2.1)

where M−2pl = 8πGN is the reduced Planck mass. While true in more general cases, we will

focus on the quadratic chaotic model, V (φ) = 1
2m

2φ2, in most of our analysis. The metric
scalar and tensor perturbations can be parameterized as

ds2 = a2(τ)
[
−(1 + 2Φ)dτ2 + ((1− 2Ψ)δij + hij) dy

idyj
]
,

– 2 –
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where Φ and Ψ are the scalar Bardeen potentials and hij is a symmetric divergence-free
traceless tensor field, hii = 0, ∂ihij = 0. The inflaton field is also perturbed about its
homogeneous background value

φ(τ) = φhom.(τ) + δφ. (2.2)

where φhom.(τ) is the homogeneous part of the inflation which satisfies δφ� φhom.(τ) and the
perturbed Einstein equations imply Φ = Ψ. The equation of motion for the gauge-invariant
scalar perturbations, the Mukhanov-Sasaki variable u(τ, y),

u = −z
(
a′

a

δφ

φ′
+ Ψ

)
, z ≡ aφ′

H
, H ≡ a′

a
, (2.3)

is

u′′k +

(
k2 − z′′

z

)
uk = 0 , (2.4)

where prime denotes derivative w.r.t. conformal time τ and uk(τ) is the Fourier mode of
u(τ, y). For a quasi-de-Sitter background

a(τ) ' − 1

Hτ
(2.5)

where H is the Hubble constant and

ε ≡ 1− H′

H2
� 1 , η ≡ ε− ε′

2Hε
� 1, (2.6)

the most generic solution to (2.4) in the leading order in slow-roll parameters ε, η is of the
form of Bessel functions:

uk(η) '
√
π|τ |
2

[
αSk H

(1)
3/2(k|τ |) + βSkH

(2)
3/2(k|τ |)

]
. (2.7)

H
(1)
3/2 and H

(2)
3/2 are respectively Hankel functions of the first and second kind. The terms

proportional to αSk and βSk respectively behave like the positive and negative frequency modes.
These Bogoliubov coefficients satisfy the Wrosnkian (or canonical normalization) constraint

|αSk |2 − |βSk |2 = 1. (2.8)

The standard BD vacuum corresponds to αSk = 1 and βSk = 0. As discussed, one may start
with a generic non-BD excited initial state, i.e. a generic αk, βk.

In the BD vacuum the energy density and pressure carried away from the inflationary
background by the frozen-out perturbations in an e-fold is δρ0 ∼ H4, where H is Hubble
during inflation. The energy density and pressure of the background, on the other hand, as
implied by Friedmann equation is ρ0 = 3M2

plH
2. To make sure that the backreaction is small,

δρ0 should be smaller than the decrease in the background energy density due to expansion
in an e-fold ∆ρ0 ∼ ερ0 ∼ εH2M2

pl. That is, δρ0 � ∆ρ0 ∼ ερ0. This condition is satisfied if

H2 � M2
plε which is expected to be satisfied for almost all single field inflationary models,

recalling the COBE normalization.
For a generic initial state, however, the energy or pressure density carried by the per-

turbations is

δρnon-BD ∼
1

a(τ)4

∫ ∞
H

d3k

(2π)3
1

2
(|αSk |2 + |βSk |2 − 1)k , (2.9)
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and δpnon-BD ∼ δρnon-BD. In the above we have dropped the factor of z′′/z as the effects
we are studying are mainly coming from sub-Hubble modes. One may see that δρ′non-BD ∼
δp′non-BD ∼ Hδρnon-BD in the leading slow-roll approximation. The backreaction will not
derail slow-roll inflationary background if

δρnon-BD � ερ0 , δp′non-BD � Hηερ0 . (2.10)

Note that the normalization condition (2.8), assuming slow-roll, may be written in terms
of βk ∫ ∞

H

d3k

(2π)3
k|βSk |2 � εηH2M2

pl . (2.11)

We now analyze the effects of the non-BD initial state on the scalar and tensor modes
power spectra. The scalar power spectrum is defined as

PS =
k3

2π2

∣∣∣uk
z

∣∣∣2
k/H→0

. (2.12)

which for simple chaotic models reduces to

PS = PBD γS , (2.13)

where

PBD =
1

8π2ε

(
H

Mpl

)2

, γS = |αSk − βSk |2k=H
. (2.14)

Note that the dependence of the power spectrum on αk, βk is different than that of the
energy density of the modes (2.9). From (2.13) one also sees that the spectral tilt ns − 1 ≡
d lnPs/d ln k can in principle be affected by the choice of initial conditions. However, in our
analysis here we restrict ourselves to cases where the spectral tilt is not affected.

Likewise, one may repeat a similar analysis for the tensor perturbations hij . The tensor
mode perturbations are also given by Hankel functions:

hk(τ) '
√
π|τ |
2

[
αTk H

(1)
3/2(k|τ |) + βTk H

(2)
3/2(k|τ |)

]
, (2.15)

where hk(τ) is the Fourier mode of the amplitude of either of the gravity wave polarizations.
The tensor power spectrum is then given by

PT = PTBD γT , (2.16)

and

PTBD =
2

π2

(
H

Mpl

)2

, γT = |αTk − βTk |2k=H
, (2.17)

where αTk and βTk satisfy the normalization condition |αTk |2− |βTk |2 = 1. The tensor-to-scalar
ratio is then

r ≡ PT

PS
= 16γε, γ =

γT
γS

=

∣∣∣∣αTk − βTkαSk − βSk

∣∣∣∣2 . (2.18)

Since in our analysis the tensor initial state parameters αT , βT and those of the scalars are
taken to be independent, we should in principle also check the smallness of the backreaction,
i.e. (2.9) and (2.10), for the tensor modes.
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The factor γ which parameterizes the effects of initial states can in principle be bigger
or smaller than one. The αk, βk parameters need not be the same for the scalar and tensor
modes. This can be seen from the fact that they parameterize excitations in the initial state
(e.g. caused by new physics at super-Hubble scale M). The new physics, which is assumed
to have a description in terms of a generally covariant effective field theory, can affect scalar
and tensor sectors differently. Therefore, γ is not necessarily one. If γ is smaller than one, it
will help to suppress r in models with large H, like chaotic models. This leads to an “initial
state modified” Lyth bound [25] (cf. [26]) on the inflaton field range ∆φ during inflation

r . 2.5× 10−3
(

∆φ

Mpl

)2

γ , (2.19)

and also a modified consistency relation r = −8γnT . The above indicates that super-
Planckian field excursions does not necessarily allow for large r, if γ . 1.

As a specific example, following [29, 41], let us consider a crude model with

βk ∝ β0 exp
{
−k2/ [Ma(τ)]

2
}

(2.20)

(or any smooth function in which |βk|2 falls off as k−(4+δ)). The above form roughly implies
that the non-BD state kicks in at scales above M which is the scale of new physics and τ0
marks the moment the physical momentum of the mode becomes of order of the new physics
scale, k/a(τ0) ∼M . This choice, hence leads to no extra k-dependence in power spectra and
does not change the spectral tilt. Next, we note that

δρnon-BD ∼ |β0|2M4 , δp′non-BD/H ∼ |β0|
2M4. (2.21)

Thus one obtains the following upper bound on |β0|,

β0 .
√
εη
HMPl

M2
∼ εHMPl

M2
. (2.22)

As we will discuss, β0 is not necessarily very small. Moreover, the above indicates that the
upper bound on the deviation from BD initial state, measured by β0, is inversely proportional
to the scale of new physics M . Hence, larger values of M require smaller β0.

3 Allowed region in non-BD initial states parameter space

To study this more closely, we note that the energy and the power spectra (and also the
bi-spectrum) expressions only depend on relative phase of α, β. Hence, they may be param-
eterized as

αSk = coshχSe
iϕ
S , βSk = sinhχSe

−iϕ
S ,

αTk = coshχT e
iϕ
T , βTk = sinhχT e

−iϕ
T ,

(3.1)

With this parametrization, χS ' sinh−1 β0, e
−2χ

S ≤ γS ≤ e2χS , and e−2χT ≤ γT ≤ e2χT .
Using the COBE normalization, assuming ε ∼ η ∼ 0.01 we learn that

H

Mpl
=

1
√
γ
S

3.78× 10−5 , (3.2)

– 5 –
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and the backreaction condition (2.22) reads

M2

H2
. 220

√
γ
S

sinhχS
. (3.3)

A similar analysis can be carried out for the tensor modes, assuming the same form as (2.20)
for the βT . While one may choose the scale of new physics M to be different for tensor
or scalar modes, for simplicity we choose to work with the same M for both modes. The
backreaction for tensor modes is small if

M2

H2
. 220

√
γ
S

sinhχT
. (3.4)

Let us first consider a specific, but illuminating case: χT = χS = χ, ϕS = π/2 and
ϕT = 0. In this case, the scalar and tensor backreaction conditions reduce to

M2

H2
. 440

1

1−√γ
, γ = e−4χ ≤ 1. (3.5)

Demanding γ < 0.5 leads to M . 39H. Note also that one can decrease γ to arbitrary small
values and that for this case H = 3.8× 10−5γ1/4Mpl.

For a more general analysis it is convenient to distinguish two different cases:

• Quasi-BD case:, χS � 1 and generic ϕS . In this case γS ∼ 1 and as physically expected,
M can be arbitrarily large and H is very close to its BD value.

• Typical or large χS : χS & 1. For generic values of ϕS ,
√
γS ∼ eχS sinϕS and sinhχS ∼

eχS /2. We see from (3.3) that M . 21H. Also from (3.2) we note that H can be made
(much) smaller than 3.78 × 10−5Mpl which is its corresponding BD value. Physically,
we need to ensure that M & H and hence ϕS & 10−3. The desirable larger values of
M , e.g. M ' 20H, is obtained if ϕS ' π/2, i.e. when α and β have opposite phase. For
M ∼ 20H, (3.6) is satisfied if

2 sinhχT .
√
γS ' e

χ
S sinϕS . (3.6)

From (3.6) we learn that χT can be in quasi-BD, or typical or large χT regions. The
tensor to scalar ratio suppression factor γ is then

γ '


e−2χ

S

sin2 ϕ
S

, χT � 1,

e2(χT−χS )
sin2 ϕ

T

sin2 ϕ
S

, χT & 1, generic ϕT ,

e−2(χT+χ
S
) 1
sin2 ϕ

S

, χT & 1, tanϕT . e−2χT .

(3.7)

That is as long as (3.3) and (3.6) hold, for any value of χT , γ . 1.
Notice that regardless of ϕ-values, for large M , M & H, suppression of backreaction of

scalar and tensor non-BD excitation results in suppression of tensor-to-scalar ratio compared
to its BD value, i.e. γ . 1. We also note that the backreaction considerations only impose
an upper bound on the the value of H: H/Mpl . 3.78 × 10−5 which is its BD value for the
quadratic chaotic model.

– 6 –
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Next, we note that the shift in the spectral tilt due to the non-BD vacuum state is
given by

δnon-BD(ns − 1) =
∂ ln γS
∂ ln k

' 2 cotϕS
∂ϕS
∂ ln k

, (3.8)

where we used the value of γS in the typical or large χS range and assumed ϕS to have
k-dependence. On the other hand, our earlier arguments indicate that we need to consider
ϕS close to π/2. Therefore, for smooth k-dependence of ϕS , the shift in the spectral tilt due
to non-BD vacuum should be very small. We will henceforth ignore k-dependence in the
phase ϕS .

The results of the 1
2m

2φ2 model may be brought to 1σ contour of the Planck results
(figure 1), if γ < 0.5. The above discussions show that this cannot happen for the quasi-BD
χS case. However, typical χ’s values can do the job. For example, for M ' 20H, ϕS = π/2
and generic values of ϕT , γ ' e2(χT−χS ) sin2 ϕT which can be made of order 0.5 or lower.
Smaller values of ϕT can reduce r to much smaller values. Also in this case, if χT < χS the
ratio can lowered further. As depicted in figure 1, non-BD initial states can bring this model
back to a favorable region with the recent Planck satellite data.

4 Non-BD initial state and non-Gaussianity

In view of the Planck results for non-Gaussianity [1–3] one should also make sure that possible
enhancement of the three point function of curvature perturbation due to non-BD initial
conditions is not large. The computations may be carried out following [27]. Similar analysis
with non-BD initial state has appeared in [28–40]. Here, we follow the conventions in [32]
where it was shown that

B ≡ 〈ζ−→
k1
ζ−→
k2
ζ−→
k3
〉 =

π3H4

M2
plεk

3
1k

3
2k

3
3

A (4.1)

A =

∑
i<j

k2i k
2
j

[(1− cos(ktτ0))

kt
C1 −

sin(ktτ0)

kt
C2

+C3

3∑
j=1

(1− cos(k̃jτ0))

k̃j
− C4

3∑
j=1

sin (k̃jτ0)

k̃j

]
, (4.2)

Here, ζ−→
ki

are the curvature perturbations and kt = k1 + k2 + k3 and

C1 = Re[(αSk − βSk )3(αSk
∗3

+ βSk
∗3

)] ' −3

2
cos 2ϕS sin2 ϕSe

4χ
S ,

C2 = Im[(αSk
∗ − βSk

∗
)3(αSk

3 − βSk
3
)] ' −3

2
sin 2ϕS sin2 ϕSe

4χ
S ,

C3 = Re[(βSk − αSk )3(αSk
∗
βSk
∗2

+ αSk
∗2
βSk
∗
)] ' −1

2
(cos 2ϕS + 2) sin2 ϕSe

4χ
S ,

C4 = Im[(αSk − βSk )3(αSk
∗2
βSk
∗ − αSk

∗
βSk
∗2

)] ' −2

3
C2,

In the second equalities, we have given the leading contribution for typical or large χS & 1.
Recalling that H4/ε ∝ P2

Sεγ
−2
S
∝ P2

Sεe
−4χ

S / sin4 ϕS and fNL ' B/P2
S [27, 32] the powers of

eχS cancel out in the leading contribution. Since we are interested in cases where ϕS ' π/2

– 7 –
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we do not get any enhancement due to the sinϕS factors in the denominator of the expression
for fNL.

For excited states two types of enhancement can occur: (i) “flattened configurations” [28]
(and subsequent work [29–32]) in which k1 + k2 ' k3 and two of the vectors are almost
collinear. The enhancement for this configuration is lost for slow-roll inflation after taking into
account the effect of two dimensional projection of the bispectrum to the CMB surface [29].
(ii) “Local configuration” [33–40] in which k1 � k2 ≈ k3. In this case there is a possibility of
enhancement from the slow-roll results by a factor of k2/k1 [33]. We take k2 to be the smallest
wavelength probed by Planck, ` ' 2500 and k1 the largest scale at which the cosmic variance
is negligible, ` ' 10. For χS & 1 and ϕS & π/10, one obtains an amount of non-Gaussianity
which is below the 2σ limit set by Planck on local fNL. For example, if M is taken to be
close to its maximal value, M ' 20H, i.e. χS & 1 and assume that ϕS = π

2 , one obtains

f localNL ' 0.43 (4.3)

which is well within 1σ viable region of the Planck results for local non-Gaussianity. For the
same values of χS & 1, only when ϕS . π

10 , the local non-Gaussianity goes beyond the 2σ
limit on the local fNL. However, this range of ϕS is already ruled out from the backreaction
bound, eq.(3.3).

5 Concluding remarks

High energy scale models of inflation, like those with concave monomial potentials, are in
tension with the Planck data due to the large tensor over scalar ratio they predict. In this
paper, we showed that there exist regions of parameter space in the initial conditions for
scalar and tensor perturbations where tensor-to-scalar ratio is suppressed with respect with
to the corresponding Bunch-Davies value. In fact the backreaction constraint along with the
COBE normalization for the amplitude of density perturbations puts an upper bound on how
large the scale of new physics could be with respect to the inflationary Hubble parameter.
For large deviations from the Bunch-Davies vacuum, the scale of new physics M , which is
implemented through a crude cut-off model, could at most be around ∼ 20H. In this region of
parameter space, the effect on tensor over scalar ratio is suppressive regardless of the details
of the initial condition for tensor fluctuation. In such region, the amount of non-Gaussianity
in the local configuration is compatible with the Planck data.

Simple chaotic models, in particular m2φ2 model, were/are of interesting not only en-
dowed with simplicity and beauty but also through predicting a large amplitude for the
tensor modes which could be in reach of current proposals for CMB B-mode polarization
searches. Nonetheless, recent Planck data [1–3] put these models under severe constraints
to the extent that some considered the inflationary paradigm to be in trouble [42]. Excited
initial state for tensor and scalar fluctuations is viable proposal, because through which one
can reconcile these models with the Planck data for ns vs. r diagram, while respecting the
bounds on non-Gaussianity.
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