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Abstract 

This work aims at monitoring air quality in indoor environments through the integration of 

several sensing technologies into a single robust, reliable and cheap detection platform, which 

shares air pre-conditioning and electronics. Target gases and detection limits have been set 

according to recommendations of different agencies in Europe and the US. The system has 

reached detection limits stated by the OSHA (Occupational Safety and Health 

Administration) for benzene. The pre-conditioning fluidic platform has also been designed, 

simulated, fabricated and tested with sensors so the gas flow has been optimized. Field tests in 

real buildings are being carried out to contrast current measurement procedures and results 

with the obtained using the device under development. The main aim of the system is to 

control HVAC (Heat Ventilation and Air Conditioning) in energy-efficient way while keeping 

a high air quality standard inside the building. 

 

Highlights 

A system to control indoor air quality is being designed, fabricated and tested. 

Conductometric sensors based on nanostructured ZnO are developed for the system. 

A fluidic unit is being developed to improve the performance of the sensors. 

Field studies in buildings are carried out to be contrasted with the developed system. 
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Introduction 

Minimizing heating and cooling requirements is crucial to improve a building’s energy 

efficiency. Therefore, most energy efficient climate control systems minimize the fresh air 

going into the building by recirculating most of the air. However, this can reduce air quality 

[1, 2], which has become a public health concern in many countries.  

The World Health Organization (WHO) [3] recognized indoor-air pollution is the 8th most 

important factor for health and responsible for 2.7% of the global burden of diseases. Indoor 

air quality (IAQ) has become an important issue since the development of double glazing in 

the 1970’s and buildings becoming increasingly energy efficient and thus better sealed: the 

concentration of contaminants may build up in an enclosed space and so the risks to health 

may be greater. This fact is particularly significant because Europeans spend on average 80-

90% of their time indoors [4,5]. Volatile Organic Compounds (VOCs) and inorganic gases 
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can contribute to poor IAQ and have been linked to symptoms of Sick Building Syndrome: an 

ambiguous term describing a wide range of symptoms related to a particular building [6].  

Benzene is one of the 20 most relevant toxic chemicals produced in the US. It is a VOC used 

in the manufacturing of petroleum-derived products such as plastics, resins, nylon and 

synthetic-fibre manufacturing, among others. It also comes from some natural sources, such 

as volcanic emissions and wildfires, and it is closely related to some human activities such as 

tobacco consumption or gasoline combustion. Regarding its health effect, it is carcinogenic 

(according to the WHO) [7] and it may also be the cause of other diseases such as plastic 

anaemia, acute leukaemia, and bone marrow abnormalities (according to the Agency for 

Toxic Substances and Disease Registry-ATSDR) [8]. As a reference, the OSHA states a 

STEL (Short Term Exposure Limit) of 5 ppm and an action level of 500 ppb. According to 

the results of the INDEX EU project on indoor air quality assessment [9], it is one of the five 

indoor-originated compounds considered the most hazardous. 

As many organisations and nations are now recognising the need to balance ventilation, 

energy efficiency and IAQ [10, 11], the main objective of this work is to provide a low-cost  

and high-sensitivity integrated device to measure IAQ that can be either used as an 

independent monitoring system or can be linked to the HVAC system. This aim will be 

achieved through the integration of different sensing technologies onto a common detection 

platform. The system comprises technological developments: conductometric sensors for 

volatile organic compound (VOC) detection, and a fluidic preconditioning and handling 

system, as a platform for all the sensing elements, the developed within this work for gas 

detection and the commercial ones for humidity and temperature monitoring.  

 

2. System description and experimental 

The system consists on a common platform with some shared capabilities to supply the air to 

the gas sensors. The multisensor platform (Figure 1) has been designed by CSEM to deliver 

equal quantities of ambient air to three sensor chambers simultaneously. The fluid transport 

through the system was modelled prior to construction using COMSOL Multiphysics®. The 

material has been chosen to be compatible with the working conditions of the sensors, 

particularly with the high temperature the conductometric sensors can reach. The system 

contains a pump, a temperature and humidity sensor to calibrate the conditions of the air 

intake, and filters to control the humidity levels of the air reaching the sensors. As can be seen 

in Figure 1, air enters the device at the far left, where it is filtered and the temperature and 

humidity are measured before the gas path trifurcates. Gas is then delivered to three sensor 

chambers in parallel. Then the flow rate is measured before being sucked into the pump and 

out of the device. 

In order to check the uniformity of the air flow, the design was verified using e2V EC410 

oxygen sensors, which were placed in the sensor chambers. For that purpose, the inlet gas was 

allowed to fluctuate between ambient air and air with reduced levels of oxygen. 



 

 

 
Figure 1. Image of the three sensor housing unit 

 

Conductometric sensors based on metal oxide semiconductors (ZnO, SnO2 and NiO) are 

being developed by the Microsystems and Microelectronics group at CEIT for this platform. 

This technology has been chosen because it is one of the most suitable for mass production. 

The final prototype will contain 3 different conductometric sensors. In this context, 

fabrication methods for SnO2 [12, 13], and NiO [14,15] thin films were previously developed 

as well as methods for SnO2 nanowire fabrication [16]. It is commonly agreed that one-

dimensional nanostructures of those metal oxides, such as nanowires and nanorods, usually 

constitute improved sensing structures because sensitivity and velocity of response are closely 

related to the surface activity of the material. At the moment a fabrication process for the in-

situ manufacturing of ZnO nanostructures is being investigated [17]. To that end, Vapour 

Liquid Solid (VLS) technique [18] is used to grow nanostructures precisely over Pt electrodes, 

as shown in Figure 2. First, Pt electrodes are grown on the alumina substrate by DC sputtering 

through a lift-off process (steps 1 to 3 in Figure 2), secondly, Zn is also deposited by 

sputtering onto the electrodes (steps 4 and 5 in Figure 3), and finally the VLS process is 

carried out in nitrogen and oxygen controlled flow at high temperature. 

 

 
 

Figure 2. Steps for sensor fabrication 

 

The sensor prototype has been designed and fabricated on an alumina substrate with an 

integrated Pt heater, whose performance has been characterized through a thermography IR 



 

 

camera FLIR-P25. The sensor prototype has been measured in two different packages and 

power comsumptions of the two packaging conditions is compared. 

The characterization of the sensors’ signal in the lab environment is performed inside sealed 

chambers under a fixed flow. The target atmosphere of benzene is obtained by means of a 

mixing system consisting of mass flow controllers (MFCs) from Bronkhorst Hi-Tech 

controlled by a PC. A Dynamic Data Exchange communication is established between the 

computer and the MFCs to operate them by Labview© (Figure 3). 

 

 
 

Figure 3. Setup for gas sensor test: gas mixing and data acquisition systems 

 

In order to compare the results of the developed sensor with the obtained by currently used 

methods, an active sampling of VOCs in a modern university building is being carried out. In 

particular, air samples were taken throughout the new Lancaster Institute for the Creative Arts 

(LICA) building (built 2010) at Lancaster University. The LICA building is non-residential, 

including offices, dance studios, seminar rooms and study areas. The building utilises a 

passive ventilation system. The data presented here in this paper are from a preliminary 

characterisation of the IAQ within LICA. Active air sampling was conducted using pocket 

pumps attached to Markes sorbent tubes, 6 litres of sample air was drawn through each tubes 

for analysis by Thermal Desorption- Gas Chromatography- Mass Spectrometry (TD-GC-MS) 

using a Perkin Elmer system. The GC-MS was calibrated using a Supelco BTEX standard 

containing benzene, toluene, ethylbenzene and xylenes. 

 

3. Results and discussion 

First, the results related to the support platform will be analyzed, secondly the results of the 

measurements with the conductometric ZnO sensors will be shown, and finally, the test fields 

performed in a real building will be described and analyzed.  

 

3.1 Pre-conditioning fluidic platform performance 

The first aim of the support platform is to manage the flow reaching the gas sensors, so that it 

is uniform. Secondly, it has to keep the humidity at known levels and finally it must be an 

interface between the sensors and the signal conditioning and control electronic board (which 

is out of the scope of this communication). At this stage, tests to verify the uniformity of the 

flow within the sensors have been carried out.  



 

 

The results of the test performed in the fluidic platform show identical response times, 

indicating that the gases arrive at the sensor simultaneously, and similar peak heights, 

indicating that the amount of gas flowing through the device is comparable (Figure 4).  Flow 

rates were also monitored, confirming this point. The sensor chamber itself is not limited by 

the sensor operation method, and has currently been tested with both metal oxide sensors and 

chemical sensors with sensor housings with diameters which range from 7mm to 17mm.  

 

 
 

Figure 4. Response the three oxygen sensors in the three chambers 

 

 

3.2 Conductometric ZnO sensor 

The results of the characterization of a sensor prototype are explained in the following 

paragraphs. All the three sensors will have the same package, same sensor die, but the sensing 

material will be different. 

The sensor layout consists of a Pt heater surrounding the sensing material, so all the sensor is 

fabricated on the same side of the alumina substrate, with a whole size of 2.5x2.5 square 

millimetres (Figure 5, left). After optimizing the fabrication parameters, the sensors were 

fabricated and were packaged in two different TO holders to compare their performance. In 

the first case, the sensor was suspended in the air and in the second case it was glued to the 

holder, as the one in the right hand side of Figure 5. 

 

 
 

Figure 5. Sensor prototype scheme (left), and packaged sensor on test board (right) 

 

In order to test the heat distribution on the surface of the sensors, the integrated heater was 

supplied with increasing power to check the sensor surface temperature, which was measured 

using an IR thermography camera. The results show that in terms of power consumption, the 

glued sensor requires three times more power than the suspended one (Figure 6), but the glued 

sensor is more robust to be handled. As in both cases the power consumption of the sensor 

compared to other elements in the system is low, any of the two would be suitable for the 

system. The temperature distribution was also simulated using ANSYS and the temperature 

distribution found was in good agreement with the measurements with the IR thermography 



 

 

camera. The most important fact is that the sensing area is held at uniform temperature with 

the designed heater.  

 

 
 

Figure 6. Power consumption of the glued and suspended sensor and simulation of the 

temperature distribution  

 

 

The ZnO sensor response (resistance change) to benzene was measured in a controlled 

atmosphere of benzene in air, under a sequence of pulses of 30 minutes of benzene followed 

by 30 minutes in clean air. The sequence started with 20 ppm of benzene followed by 

decreasing concentrations down to 500 ppb. The sensor shows a good recovery of the baseline 

after each pulse, and an average time of response of 2 min, as can be seen in Figure 7. The 

sensitivity of the sensor within this range is 2% per ppm (Figure 8). If the sensor response is 

compared with other authors who reached similar benzene low concentrations with 

conductometric sensors, in the case of the SnO2 sensor in [21], the response to 500 ppb of 

benzene is below 1%, while in the current device is 2%. Moreover, the drift in the sensor 

baseline is higher than the presented here, and in the order of the response to 500 ppb of 

benzene. Such low levels of benzene are usually not reported using bare metal oxide 

conductometric sensors, and the literature reports the need of pre-concentrating elements for 

them [Error! Reference source not found.]. 

If the sensor is compared with other sensors of the same technology currently in the market, 

the TGS 822 of Figaro [20], for organic solvent vapours, only shows results for 

concentrations of benzene down to 50 ppm, which is still far from the 5 ppm STEL requested 

by the OSHA standards. 

 



 

 

 
 

Figure 7. ZnO sensor response to benzene concentrations from 20 ppm to 500 ppb at 250ºC 

 
Figure 8. Sensitivity curve of the ZnO sensor in the 20 ppm-500ppb range at 250ºC 

 

It can be stated that the detection level reached by the sensor exceeds the devices of the same 

technology available in the market. Another disadvantage of the currently available sensors, 

also in the TGS 822 of Figaro is cross-sensitivity to humidity, which will be avoided in this 

system by means of filters included in the pre-conditioning fluidic platform.  

 

3.3 Real field measurements 

The sampling in real buildings took place in May and June of 2013 throughout the different 

types of rooms within LICA, with triplicate measurements at each of the 8 locations. Mean 

concentrations from all room types in LICA can be seen in Table 1. 

 

 

 Benzene Ethylbenzene Toluene Xylenes (m-, o-, p-) 

14/05/2013 - 5 ppb 1 ppb 3 ppb 

28/06/2013 1 ppb 1 ppb 1 ppb 0.1 ppb 

Table 1. Mean concentrations seen in Lancaster University's LICA building during May and 

June 2013. 

 



 

 

Measurements are continuing in the same locations within LICA to further understand the 

variation between the two sampling dates. Despite the variation between sampling dates the 

concentrations remain below recommended guidelines set by OSHA, NIOSH (National 

Institute for Occupational Safety and Health) and ASTDR (Agency for Toxic Substances and 

Disease Registry). This pilot study of LICA validated the sampling volumes and method for 

this application. Intra-annual variation will be investigated to ascertain how season and 

academic terms impact on the IAQ in LICA. LICA will be compared to other modern 

buildings on campus with different ventilation systems as well as a comparison with the older 

non-residential buildings on campus. 

The method used for the field measurements shows detection levels far below the ones 

reached by the developed sensor, but these measurements are time consuming, and require 

very costly and bulky equipments that make it not useful for IAQ on-line measurements. The 

final aim of the current development is to develop a low-cost product to be bought in the 

consumer market to ensure a minimum air quality in buildings. The results shown are on the 

right way to reach this goal. 

 

 

Conclusions 

Some critical parts of the air quality measuring system have been analyzed. In the 

microfluidic platform, all the required elements have been integrated (pump, filters, and 

temperature and humidity sensor) and the uniformity of the flow reaching the three sensor 

chambers has been verified using commercial sensors.  

Regarding the sensors, a conductometric sensor prototype has been developed, which can be 

used to implement different metal oxides on it. Its temperature and power consumption has 

been analyzed and both are suitable for the fluidic platform. A ZnO nanostructured layer has 

been tested in the prototype, and compared with other sensors in the market and in other 

research groups, showing lower detection limit if compared with the commercial sensor and 

less drift and higher response when compared to other research. 

Finally, the suitability of active air sampling through pocket pumps attached to Markes 

sorbent tubes and subsequent TD-GC-MS analysis has been validated as a suitable method to 

detect very low concentrations of benzene, among other BTEX compounds. 

This method has been compared to the sensor developed, reaching the conclusion that the 

application fields are not the same. While the described field analysis is very suitable for 

accurate measurements, it requires bulky equipment and skilled personnel to be carried out, as 

a long lengthy sampling and analysis time. Moreover, the cost of this system analytical 

technique would be at least one thousand times bigger than the expected for the system 

described here.  
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