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Abstract

Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and
depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and
indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In
this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the
Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and
double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We
further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and
OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA’s
GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN’s 5-HT
control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin
immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to
explore possible effects of neural circuit connection types and timescales on the DRN-LHA system’s dynamics. We find that if
the connections from 5-HT to LHA’s GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow
oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a
fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale.
Overall, our experimental and computational approaches provide insights towards a more complete understanding of the
complex relationship between 5-HT in the DRN and Ox in the LHA.
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Introduction

Mood and neuropsychiatric disorders such as depression have a

close relationship with sleep disturbances, and are instantiated by

the overlap of emotional processing and the sleep-wake regulation

neuronal circuitries [1]. The neuropeptide hormone orexin/

hypocretin (Ox) has been known to regulate sleep and its

deregulation is related to narcolepsy, and novel drugs to facilitate

sleep induction by activating Ox receptors are currently under

development [2,3,4]. Recent studies also suggest a role for Ox in

depression, emotional processing, reward seeking behaviour and in

the regulation of endocrine functions [5,6,7,8,9,10]. Ox neurons

comprising of neuropeptides Ox A and Ox B are found

predominantly in the lateral hypothalamus (LHA) [11,12] and

are known to function through OX1R and OX2R G-protein

coupled receptors, respectively [13,14,15,16].

The neurotransmitter/neuromodulator 5-hydroxytryptamine

(5-HT) released by serotonergic neurons, substantially located in

the midbrain’s dorsal raphe nucleus (DRN) is often associated with

mood and emotional processing, and its dysfunction is related to

mood and neuropsychiatric disorders [17,18,19]. In addition,

perturbations of 5-HT have also been found to influence sleep

[18,20,21,22]. Numerous drugs to treat depression are already on

the market that target 5-HT neurotransmission [23,24].

It is important to understand how drugs that target Ox and/or

5-HT systems alter neuronal activity and signal transmission in

order to understand the underlying mechanisms of antidepressive

and sleep inducing effects. Therefore, we set out to map what

subtypes of 5-HT receptors are expressed by Ox neurons, and how

neuronal transmission and signal transduction in neuronal circuits

may be controlled by these receptors.
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Up till now, only the (inhibitory) 5-HT1AR has so far been

found in LHA’s Ox neurons [25,26,27]. In addition to their

inhibitory (5-HT1A) autoreceptors [28], 5-HT also excites the

GABAergic inhibitory neurons within the DRN for self-regulation

[29,30,31,32,33]. Within the LHA, in addition to their self-

excitatory Ox autoreceptors [4], Ox neurons can send direct long-

range excitation to 5-HT neurons, and the GABAergic neurons in

the DRN [31], mediated by both OX2R and OX1R [30,32].

Thus, Ox can have both direct and indirect influences on the

DRN’s 5-HT neurons. However, it remains unknown whether 5-

HT can reciprocally indirectly influence LHA’s Ox neurons by

influencing the LHA’s GABAergic neurons, and whether this

connection is effectively excitatory or inhibitory. It is also not

known whether Ox can innervate its local GABAergic neurons

similar to how 5-HT neurons excite their local GABAergic

neurons [34].

Knowledge of direct and indirect circuit connections is

important to provide a more complete understanding of diversified

neural circuit dynamics and regulations within the DRN-LHA

system [35,36]. Furthermore, it is not known how the interplay

between fast synaptic transmission and slow currents induced by 5-

HT and Ox can affect the relay of information in these circuits. In

this work, primarily through immunofluorescence (IF) staining, we

attempt to map out a more complete neural circuit between the

principal (5-HT and Ox) and non-principal (GABAergic and

glutamatergic) neurons. Based on some of these findings, we

present a computational model to investigate possible neural

circuit dynamics between the DRN and LHA. As our goal in the

modelling is to understand how the various neural circuit

architecture and connectivity timescale affect the DRN-LHA

activity, we keep the model as simple as possible. Hence we make

use of population-based or ‘‘mean-field’’ firing-rate type approach,

which compromises between previous biophysical models

[37,38,39,40] and more abstract mathematical models [41,42,43].

Our experimental results reveal various other 5-HT receptor

subtypes expressed in Ox and GABAergic neurons in the LHA,

provide more evidence to support a unidirectional relationship

between these LHA’s neurons, and suggest that Ox can project to

DRN’s 5-HT neurons indirectly through local non-5-HT neurons.

Our computational modelling results show that if 5-HT is weakly

excitatory or inhibitory on LHA’s GABAergic neurons, the

network can exhibit slow oscillation. This is not observed if the

connection is strongly excitatory. Furthermore, we show the

importance of the timescale for the Ox-to-DRN connection during

transient behaviour.

Materials and Methods

Animals
Twelve-week-old C57BL/6 male mice (n = 4) were used for

each qualitative experiment and n = 6 mice for each quantification

experiment described in this study. An orexin/enhanced green

fluorescent protein (Ox-EGFP) breeder pair was a kind gift from

Prof. Takeshi Sakurai (Kanazawa University, Japan). Brain

sections from these mice show green fluorescence in the Ox

neurons when excited at 488 nm wavelength. Breeding was set up

in-house and the male pups were aged to ten-twelve weeks before

the start of the experiments. Animals were maintained on a 12/

12 h light/dark cycle (lights on at 8:00 A.M., off at 8:00 P.M.), in

a temperature-controlled room (21.561uC). Animals received

food and water ad libitum. All animal experiments were licenced by

the UK Home Office in accordance with the Animals (Scientific

Procedures) Act of 1986 and in agreement with UK and EU laws.

Perfusion, Fixation and Sectioning
Mice were anaesthetised with pentobarbitone (0.3 ml; Euthanal,

Bayer AG, Leverkusen, Germany) and perfused transcardially

with 0.1 M PBS (pH 7.4) buffer followed by ice-cold 4%

paraformaldehyde in PBS. The brains were removed and fixed

in 4% paraformaldehyde for at least 24 hr and cryoprotected in a

30% sucrose solution in PBS overnight at 4uC. Brains were then

snap frozen using Envirofreez, and coronal sections of 45 mm

thickness were cut using a Leica cryostat. According to the mouse

brain atlas by Paxinos and Franklin (2004), LHA and DRN

sections were cut at a depth of 20.34 mm to 22.80 mm bregma

and 24.04 mm to 25.20 mm bregma respectively. Sections were

chosen according to the stereological rules, with the first section

taken at random and every sixth section afterward. In the case of

LHA, by taking every 6th section (in total 54 sections per LHA per

brain half), at least 10–11 sections were taken per immunostaining

experiment (n = 4). In the case of DRN, by taking every 3rd section

(in total 25 sections per DRN per full brain), at least 11–12 sections

were taken per immunostaining experiment (n = 4). 10–11 sections

from 4 mice brain halves (in case of LHA) and full brain (in case of

DRN) were processed so, at least 40 sections were considered in

total for every immunostaining experiment.

Immunohistochemistry
Single, double or triple immunofluorescence (IF) staining

experiments were performed on 45 mm free-floating sections using

primary antibodies: i) affinity purified goat polyclonal Ox-A (C-19)

IgG (1:400 dilution, Santa Cruz, sc-8070), raised against a peptide

mapping at the C-terminus of Orexin-A of human origin; ii) rabbit

polyclonal anti-5HT1B receptor IgG (1:500 dilution, Abcam,

ab102700) raised against a synthetic peptide taken from within the

region 230–280 (designed to the 3rd cytoplasmic domain) of the

human 5HT1B receptor conjugated to an immunogenic carrier

protein; iii) rabbit polyclonal anti-5HT1A receptor IgG (1:500

dilution, Abcam, ab79230) raised against a synthetic peptide from

the 3rd cytoplasmic domain of mouse 5HT1A receptor, conjugated

to an immunogenic carrier protein [44]; iv) rabbit polyclonal anti-

5HT2A receptor IgG (1:500 dilution, Abcam, ab16028) raised

against a synthetic peptide conjugated to KLH derived from

within residues 1–100 of rat 5HT2A receptor [45,46,47,48,49]; v)

rabbit polyclonal anti-5HT2C receptor IgG (1:500 dilution,

Abcam, ab32172) raised against a synthetic peptide derived from

within residues 400 to the C-terminus of rat 5HT2C receptor

[48,50,51,52]; vi) rabbit polyclonal anti-HTR3A receptor IgG

(1:500 dilution, Sigma-Aldrich, AV13046) raised against a

synthetic peptide corresponding to a region of human HTR3A

with an internal ID of P01375. The immunogen for anti-HTR3A

antibody was a synthetic peptide directed towards the N-terminal

of human HTR3A, with the following sequence: LLWVQQAL-

LALLLPTLLAQGEARRSRNTTRPALLRLSDYLLTNYRKVG-

RP; vii) rabbit monoclonal anti-NMDAR, clone 1.17.2.6 IgG

(1:500 dilution, Millipore, AB9864R) raised against linear

peptide corresponding to human NMDAR1; viii) guinea pig

polyclonal anti-GABA IgG (1:400 dilution, Millipore, AB175)

raised against GABA coupled to KLH via glutaraldehyde; ix)

rabbit polyclonal anti-Orexin receptor 1 IgG (1:500 dilution,

Abcam, ab83960) raised against a synthetic peptide from the

internal region (250–300) of mouse Orexin receptor 1 conju-

gated to an immunogenic carrier; x) rabbit polyclonal anti-

Orexin receptor 2 IgG (1:500 dilution, Abcam, ab85899) raised

against a synthetic peptide from the C terminal region (350–

415) of human Orexin receptor 2 conjugated to an immuno-

genic carrier; xi) rabbit monoclonal PSD-95 (D27E11) XP IgG

(1:500 dilution, Cell Signaling Technology, 3450S) raised against
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a synthetic peptide corresponding to residues surrounding Gly99

of human PSD95; xii) rabbit polyclonal Anti-Gephyrin IgG

(1:500 dilution, Abcam, ab32206) raised against a synthetic

peptide conjugated to KLH derived from within residues 700 to

the C-terminus of mouse Gephyrin.

All primary antibodies used in this study were previously

characterized and their specificity was verified according to the

respective manufacturer. After blocking in 1% BSA and 5%

donkey normal serum in TBS buffer (pH 8, Sigma Aldrich) to

avoid nonspecific antibody binding, sections were incubated in the

primary antibody overnight at 4uC. The following day, sections

were incubated in the secondary antibody for an hour at room

temperature and mounted using Vectashield mounting medium

(Vector Laboratories) on the slides coated with 3-aminopropyl tri-

ethoxy silane (Sigma Aldrich). For double IF stainings, a

simultaneous method was used where sections were incubated

with two primary antibodies together for 48 hrs at 4uC. In the case

of triple IF stainings, three primary antibodies were added

together and sections were incubated for 72 hrs at 4uC. Labeled

donkey IgG (H+L) anti-goat Alexa Fluor 488 (1:800 dilution, Cat.

# A11055, Molecular Probes), anti-rabbit Alexa Fluor 546

(1:1000 dilution, Cat. # A11056, Molecular Probes), anti-chicken

CF 594 (1:1000 dilution, Cat. # BTIU20167, Biotium) and anti-

guinea pig CF 633 (1:1000 dilution, Cat. # BTIU20171, Biotium)

secondary antibodies were used in the study. Negative controls

were performed for single IF staining by omitting the primary

antibody and for double/triple IF staining by omitting the primary

and secondary antibody.

Antigen Retrieval
Antigen retrieval was done while performing NMDAR1 IF

staining. Sections were incubated in 10 mM sodium citrate (pH 6)

at 80uC for 30 min, before blocking the sections.

Microscopy
Fluorescence microscopy. All single IF stainings in EGFP

brain sections for 5-HT receptors on the Ox neurons in the LHA

were visualized using Qimaging (Chromaphor). Microscopy was

performed using an Olympus BX51 (Surveyor version 5.5.5.30,

automated specimen scanning for the OASIS automation control

system).
Confocal microscopy. Imaging was performed using a

confocal microscope (Leica Microsystems; SP5 LAS IF Software).

For quantification experiments, three sections of similar density of

Ox neurons in the LHA were analyzed per brain (n = 6). 4–5

images were obtained from each section thus, 70–90 images were

analyzed for each quantification experiment.

Co-localization Quantification
For quantification of the 5HT receptor subtype on the Ox

neurons in LHA, images were acquired using 636 objective in a

Leica SP5 confocal microscope. Once the conditions such as

photomultiplier gain for each channel and pinhole settings were

adjusted to minimize background noise and saturated pixels,

parameters were kept constant for all acquisitions. Triple-stained

images were obtained by sequential scanning for each channel to

eliminate the cross talk of chromophores and to ensure reliable

quantification of co-localization. Ambiguity and inconsistency are

the two major issues affecting colocalization analysis. In the

context of digital imaging, colocalization means the colours

emitted by the fluorescent molecules occupy the same pixel in

the image [53,54]. Therefore, we have used the JACoP (Just

Another Colocalization Plug-in) tool of Image J for colocalization

analysis. The degree of Ox neuron (Alexa488, green) signal

colocalizing with 5HT receptor (Alexa546, red) signal was

quantified on single-plane 8-bit color images using the JACoP

plugin [55]. A simple way of measuring the dependency of pixels

in dual-channel images is to plot the pixel grey values of two

images against each other. The intensity of a given pixel in the

green image is used as the x-coordinate of the scatter plot and the

intensity of the corresponding pixel in the red image as the y-

coordinate. Results in JACoP are displayed in a pixel distribution

diagram called a scatter plot or fluorogram in addition to the

calculated co-localization coefficients such as Pearson’s and

Overlap coefficient.

Pearson’s correlation coefficient (Rr) is the most quantitative

estimate of colocalization that depends on the amount of

colocalized signals in both channels in a nonlinear manner and

is a well-defined and commonly accepted means for describing the

extent of overlap between image pairs [56]. It is used for

describing the correlation of the intensity distributions between

channels. It takes into consideration only similarity between

shapes, while ignoring the intensities of signals. The values of

Pearson’s coefficient range from 21 to 1, with values from 0.5 to

1.0 indicating colocalization and 21.0 to 0.5 indicating no-

colocalization. As Pearson’s Correlation does some averaging of

pixel information and can return negative values another method,

the Overlap Coefficient, is simultaneously used to describe

overlap. Manders’ overlap coefficient (R) is based on the Pearson’s

correlation coefficient with average intensity values being taken

out of the mathematical expression. This new coefficient varies

from 0 to 1, with values from 0.6 to 1.0 indicating colocalization

and 0 to 0.6 indicating no colocalization. Overlap coefficient

according to Manders indicates an overlap of the signals and thus

represents the true degree of Colocalization. Costes randomization

(number of randomization rounds = 1000) was used to exclude any

co-localization of pixels that might have occurred due to chance

[57]. P-value for each image pair was 100.0% (calculated from the

fitted data).

Statistics
Statistical analyses were performed using Prism 5 (GraphPad

software Inc. USA) with the level of probability set at 95% and the

results are expressed as means6SEM. Data for 5-HT receptor

quantification was analysed by two-tailed unpaired t-test.

Computational Model
To investigate the consequences of the DRN-LHA circuit

architecture on systems dynamics, we implement neural network

model that is an extension and modification of our previous model

[58]. The aim of the model is to understand how the circuit

connectivity and timescale affect the DRN-LHA activity.

Neural units. Our neural network model consists of 4

populations of neurons, namely, Ox neurons in the LHA, local

LHA inhibitory GABAergic neurons, 5-HT neurons in the DRN,

and local DRN inhibitory GABAergic neurons. Glutamatergic

neurons will be ignored in this work primarily due to the evidence

showing that glutamatergic effects in DRN are locally weaker

when compared to local GABAergic influence [59], and that we

can implicitly encompass the effects of the LHA’s glutamatergic

neurons on Ox neurons [4] with self-excitatory Ox connections.

Furthermore, incorporating two additional (glutamatergic) neural

populations can lead to more free parameters in the model.

The chosen model is of the population-averaged or ‘‘mean-

field’’ firing rate type model [60,61,62,63]. This simplifies a

population of neurons into its representative unit. The 4 neural

populations to be considered are the LHA’s Ox and GABAergic

neural populations, and the DRN’s 5-HT and GABAergic neural
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populations. With support from electrophysiological data, the

input-output or current-frequency relationship (f-I curve) for each

neural population can be described by threshold-linear functions

[64,65]:

fj Ij

� �
~gj Ilocal,j I0,j IBackground,j

� �
z

ð1Þ

where fj and (ILocal,j – IBackground,j) denote the population-averaged

firing rate activity and total afferent input of the jth neural

population, respectively. IBackground,j is the background current,

consisting of inputs from the rest of the brain areas. gj and I0,j

determine the input-output slope and the current threshold,

respectively. The threshold-linear function [z]+ = z if z.0, and 0

otherwise. Based on their known neuronal electrophysiological

properties [4,27,66]), we determine and constrain the values of the

gj’s (i.e. g5-HT and gGABA for DRN; gGABA and gOx for LHA) and

the I0,j’s, while consider IBackground,j as a free parameter. Note that

we have assumed the dynamics of the neural population (neuronal

membrane time constant , 10 ms) to be relatively instantaneous

and slaved to the much slower timescale of the connections (, s)

[63]. This simplification reduces 4 model parameters (neuronal

membrane time constants) and 4 dynamical (differential) equations

for the 4 neuronal types [60].

2.8.2. Inputs and connections: Since each neural unit receives

inputs from self-feedback and from 2 other neural units (e.g. 5-HT

neuronal population receives both afferent inputs from DRN’s

GABAergic neurons and longer range connection from Ox

neurons), the local afferent input (minus the background input)

can be described by:

Ij~Ij,self zIj,1zIj,2 ð2Þ

where the subscript ‘‘self’’ denotes a self-feedback connection

(e.g. due to autoreceptors in Ox and 5-HT neural populations, or

GABAergic synapses in the two inhibitory neural populations),

and the subscript ‘‘10 or ‘‘20 denotes the afferent inputs due to the

other 2 neural populations. For local GABAergic neurons, they

receive self-inhibition, and projections from their local principal

neural population (5-HT or Ox if from DRN or LHA,

respectively), and long-range projection from the other brain

region (LHA or DRN). If the net effect of the ith neural population

on the jth neural population is inhibitory or excitatory, the

coefficient in front of Ij,i will be 21 or +1, respectively. For

example, suppose the 5-HT neural population receives inhibitory

autoreceptor influence, direct projection from Ox neurons, and

local GABAergic influence. Then,

I5{HT~{I5{HT{autozIOx{on{5{HT{IGABA DRNð Þ{on{5{T ð3Þ

To simulate the phasic response of the circuit, an extra term Istim

is added to the 5-HT or/and Ox inputs

I5{HT~{I5{HT{autozIOx{on{5{HT{

IGABA DRNð Þ{on{5{TzIstim

ð4Þ

The dynamics of each input are filtered by its (synaptic/

effective) time constant (tsyn, j, i) as follows:

Tsyn,j,i
dIj,i

dt
~{Ij,izJsyn,j,ifi ð5Þ

In principle, there are 10 such similar dynamical equations

describing the currents caused by ionotropic (4 equations) and

metabotropic (6 equations) receptors. The synaptic time constants

associated with the ionotropic receptors are obtained from

electrophysiological data while the effective metabotropic time

constants are deduced from the associated G protein-coupled

inwardly-rectifying potassium (GIRK) current, or if unavailable, the

temporal change in firing rate due to the injection of 5-HT or Ox

[67]. For simplicity, a simple linear relationship is assumed between

the input current Ij,i and activity level fi. The other important

parameter, Jsyn,j,i is the connection strength within or between the

neuronal populations. Under steady state condition (dIj,i/dt = 0),

Jsyn,j,i is defined as the ratio of the current Ij,i and the associated

(presynaptic) activity fi. These currents are obtained from various

experiments [4,26,27,31,68,69]. The in vivo baseline firing rates (fi)

for the Ox and GABAergic populations in LHA are ,5 Hz (3–

8 Hz in experiments) [70,71,72]. In DRN, the baseline neuronal

firing rate of 5-HT and GABAergic neuronal population is ,5 and

,15 Hz, respectively [73]. The relationship among these baseline

activities will be used to constrain our model parameters, namely the

Ji, gi and Ij,0 (Table 1). Consistent with our assumption on ignoring

the relatively much faster neuronal membrane dynamics (,10 s

ms), we shall also ignore the dynamics for the relatively fast

GABAergic synapses (,4 ms), assuming they attain instantaneous

steady states. This further reduces 4 dynamical equations in

describing the associated currents.

Thus the free parameters in the model are: JGABA(DRN)-to-

GABA(DRN), JGABA(LHA)-to-GABA(LHA) connection strengths of the

GABAergic self-inhibition in DRN and LHA neuronal groups;

J5-HT-to-GABA(LHA) connection strengths of the effect of 5-HT on

GABAergic neurons in LHA; t 5-HT-on-GABA(LHA) time constants of

the 5-HT effects on GABAergic neurons in LHA; tOx-on-GABA(LHA)

time constant of the effect of Ox on GABAergic neurons in LHA;

and afferent background currents to the neuronal groups,

IBackground-5-HT, IBackground-Ox, IBackground-GABA(DRN), and IBack-

ground-GABA(LHA).

In addition we make the following further constraints on the

values of J’s andt’s:

(i) Time constant of 5-HT effect on LHA’s GABAergic

neurons is equivalent to that of 5-HT on LHA’s Ox

neurons, i.e. t5-HT-on-GABA(LHA),t5-HT-on-Ox

(ii) Time constants of Ox (Ox2) effect on GABAergic neurons

in LHA is equivalent to the time constant of self-excitation

of Ox (Ox2) autoreceptors in LHA, i.e. tOx-on-GABA(LHA),
tOx-auto

(iii) Connection strengths of 5-HT on GABAergic neurons

(LHA) are equivalent to the connection strengths of 5-HT

on Ox neurons in LHA, i.e. J5-HT-to-GABA(LHA),J5-HT-to-Ox

(iv) Connection strength of Ox on GABAergic neurons (LHA)

is equivalent to the connection strength of the Ox

autoreceptors in LHA, i.e. JOx-to-GABA(LHA),JOx-auto

(v) Connection strengths of GABAergic (GABAA) self-inhibi-

tion in DRN or LHA is equivalent, i.e. JGABA(LHA)-to-

GABA(LHA),JGABA(DRN)-to-GABA(DRN).

Further details of the model parameter values, justifications, and

their related references are summarized in Table 1.
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Table 1. Time constants, currents of all the neuronal groups, values are deduced from experiments, and by using above
constraints and Connection strength (C. strength), and background current of all the neuronal groups.

A. Time constants, currents of all the neuronal groups, values are deduced from experiments, and by using above constraints.

Parameter Description Value Reference, remarks

t5-HT-auto 5-HT1A autoreceptor time constant 1 s [90,91]

I5-HT-auto 5-HT1A autoreceptor induced current amplitude 80 pA [68]

IGABA(DRN)-on-5-HT GABAA mediated current amplitude in 5-HT neurons 70 pA [31]

tOx-on-5-HT Ox1,2 induced current time constant on 5-HT neurons 60 s [31]

IOx-on-5-HT Ox1,2 induced current amplitude on 5-HT neurons 75 pA [31]

IGABA(DRN)-on-GABA(DRN) GABAA mediated current amplitude in DRN’s GABAergic neurons 70 pA IGABA(DRN)-on-GABA(DRN) , IGABA(DRN)-on-5-HT

t5-HT-on-GABA(DRN) 5-HT induced current time constant in GABAergic neurons in DRN 60 s [92]

I5-HT-on-GABA(DRN) 5-HT induced current amplitude in GABAergic neurons in
DRN

50 pA [92]

tOx-on-GABA(DRN) Ox induced current timescale on GABAergic neurons in DRN 5 s [31]

IOx-on-GABA(DRN) Ox induced current amplitude in GABAergic neurons in DRN 25 pA [31]

tOx-auto Ox2 autoreceptor time constant 10 s [4]

IOx-auto Ox2 autoreceptor induced current amplitude 30 pA [4]

IGABA(LHA)-on-Ox GABAergic induced current amplitude in Ox neurons 590 pA [93]

t5-HT-on-Ox 5-HT1A induced current time constant on Ox neurons 2 s [26]

I5-HT-on-Ox 5-HT1A induced current amplitude in LHA 32 pA [26]

I GABA(LHA)-on-GABA(LHA) GABA mediated current amplitude in LHA’s GABAergic neurons 70 pA IGABA(LHA)-on-GABA(LHA) , IGABA(DRN)-on-Ox

tOx-on-GABA(LHA) Ox induced current time constant on LHA’s GABAergic neurons 10 s tOx-on-GABA(LHA) , tOx-auto

IOx-on-GABA(LHA) Ox induced current amplitude in LHA’s GABAergic neurons 30 pA IOx-on-GABA(LHA) , IOx-auto

t5-HT-on-GABA(LHA) 5-HT induced current time constant in LHA’s GABAergic neurons 2 s t5-HT-on-GABA(LHA) ,
t5-HT-on-Ox

I5-HT-on-GABA(LHA) 5-HT induced current amplitude inLHA’s GABAergic neurons 32 pA I5-HT-on-GABA(LHA) ,
I5-HT-on-Ox

g5-HT Slope of input-output function of 5-HT neurons 0.033 Hz/pA [64]

gOx Slope of input-output function of LHA’s GABAergic neurons 0.205 Hz/pA [65]

gGABA(DRN) Slope of input-output function of DRN’s GABAergic neurons 0.061 Hz/pA [64]

gGABA(LHA) Slope of input-output function of Ox neurons 0.195 Hz/pA [65]

I5-HT,0 Current threshold of 5-HT neurons 0.13 pA [64]

IOx,0 Current threshold of Ox neurons 0 pA [65]

IGABA(DRN),0 Current threshold of DRN’s GABAergic neurons 0 pA [65]

IGABA(LHA),0 Current threshold of LHA’s GABAergic neurons 0 pA [64]

a Stimulus current amplitude applied to the 5-HT or Ox
neurons

150 pA 2-fold activity increase in the 5-HT
neurons

– Duration of the applied stimulus 0.5 s Behavioural timescale

B. Connection strength (C. strength), and background current of all the neuronal groups.

J5-HT-auto C. strength of 5-HT1A autoreceptors 16 pA/Hz *

JGABA(DRN)-to-5-HT C. strength of GABAergic on 5-HT neurons in DRN 5 pA/Hz *

JOx-to-5-HT C. strength of Ox neurons on 5-HT neurons 15 pA/Hz *

JGABA(DRN)-to-GABA(DRN) C. strength of GABAergic neurons in DRN 5 pA/Hz *

J5-HT-to-GABA(DRN) C. strength of 5-HT on GABAergic neurons in DRN 10 pA/Hz *

JOx-to-GABA(DRN) C. strength of Ox on GABAergic neurons in DRN 5 pA/Hz *

JOx-auto C. strength of Ox2 autoreceptors 6 pA/Hz *

JGABA(LHA)-to-Ox C. strength of GABA on Ox neurons 118 pA/Hz *

J5-HT-to-Ox C. strength of 5-HT neurons on Ox neurons 6 pA/Hz *

JGABA(LHA)-to-GABA(LHA) C. strength of GABAergic neurons in LHA 5 pA/Hz JGABA(LHA)-on-GABA(LHA) , JGABA(DRN)-on-

GABA(DRN)

JOx-to-GABA(LHA) C. strength of Ox on GABAergic neurons in LHA ,0 Very weak connection, [4]
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Simulations and analysis. We use XPPAUT [74] for neural

circuit dynamics simulations and stability analysis. The Runge-

Kutta 2 numerical integration algorithm with a time step of 10 ms

is used. Smaller time steps do not affect our results.

Results

5-HT3AR, 5-HT1BR, 5-HT2AR and 5-HT2CR Receptors on Ox
Neurons in the LHA

Muraki et al. (2004) have shown the presence of 5-HT1A

receptors on Ox neurons in the LHA. To elucidate the presence of

additional 5-HT receptor subtypes on Ox neurons, we performed

Table 1. Cont.

A. Time constants, currents of all the neuronal groups, values are deduced from experiments, and by using above constraints.

Parameter Description Value Reference, remarks

J5-HT-to-GABA(LHA) C. strength of 5-HT on LHA’s GABAergic neurons 6 pA/Hz J5-HT(DRN)-on-GABA(LHA) ,
J5-HT(DRN)-on-Ox(LHA)

IBackground-5-HT Background current amplitude in 5-HT neurons 231.47 pA **

IBackground-Ox Background current amplitude in Ox neurons 617.6 pA **

IBackground-GABA(DRN) Background current amplitude in DRN’s GABAergic neurons 246 pA **

IBackground-GABA(LHA) Background current amplitude in LHA’s GABAergic neurons 20.9 pA **

*Values of Jsyn,j,i are calculated from the current Ij,i and the associated firing rate activity fi and also by using the above defined constraints.
**Parameter values are chosen such that the baseline activities and basic electrophysiological properties of the neurons are similar to those in experiments
[4,27,35,66,71,72,73].
doi:10.1371/journal.pone.0088003.t001

Figure 1. Single-label immunofluorescence analysis showing Ox neurons expressing additional 5HT receptor subtypes. (A) 5- HT1BR,
(B) 5-HT2AR and (C) 5-HT2CR in the LHA of EGFP transgenic mice expressing GFP (green) exclusively in the Ox neurons. Immunoreactivity for 5-HT
receptors (Alexa 546, red), 1006magnification.
doi:10.1371/journal.pone.0088003.g001

Serotonin and Orexin/Hypocretin System Interaction

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e88003



single IF staining for 5-HT1BR, 5-HT2AR and 5-HT2CR on Ox-

EGFP transgenic mice brains (Figure 1). Co-localization of the

receptor and the Ox neuron immunoreactivity (Figure 1A–C) can

be observed in the respective overlay images. Using double IF

labeling, we found fast ligand-based 5-HT3A receptors on Ox

neurons in the LHA of wild type C57BL/6 mice (Figure 2). This

suggests that the DRN-to-LHA connection may transmit signals

fast. Figure 3 shows representative z-stackmax (30 mm thickness)

confocal images showing colocalization of Orexin A with 5HT1AR

(Figure 3A) and 5HT3AR (Figure 3B), respectively.

As we demonstrated the additional 5HT receptor subtypes on

the Ox neurons in LHA for the first time, the next obvious step

was to quantify the double-labeled Ox neurons for each 5HT

receptor subtype. Using the JACoP plug-in tool, we quantified the

degree of co-localization by calculating Pearson’s correlation

coefficient (Figure 4B) and overlap coefficient by Manders

(Figure 4C). It is important to note, that the two coefficients,

namely Pearson’s Correlation Coefficient and Overlap Coefficient,

showed similar pattern of changes while revealing the different

aspects of the colocalization process, proving the applicability of

the calculations to investigate the degree of colocalization of

serotonin receptor subtypes and orexin A (Ox neurons).

5-HT3AR and 5-HT1AR Receptors on Ox as well as
GABAergic Interneurons in the LHA

To examine the serotonergic long-range connections from DRN

in the midbrain to the Ox and GABAergic neurons in the LHA,

triple-label IF staining was performed. We searched for 5-HT3AR

Figure 3. Representative z-stackmax (30 mm thickness) confocal images. Colocalization of Orexin A with (A) 5HT1AR, (B) 5HT3AR, 636
magnification. White arrows indicate orexin neuron expressing the respective 5HT receptor and white boxes indicate orexin neuron not expressing
the receptor.
doi:10.1371/journal.pone.0088003.g003

Figure 2. Double-label immunofluorescence analysis showing 5-HT3AR (anti-HTR3A) immunoreactivity of Ox (Orexin-A) neurons in
the LHA. Confocal microscopy: Chromogens were Alexa 488 (green) and Alexa 546 (red), 1006magnification. (A) Arrows indicate the presence of 5-
HT3AR on Ox neurons in the LHA. (B) Enlarged image of the selected square in A.
doi:10.1371/journal.pone.0088003.g002
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(Figure 5A) and 5-HT1AR (Figure 5B) on the Ox and GABAergic

neurons and found that these 5-HT receptors may be present on

Ox as well as local GABAergic neurons. This may suggest both

direct and indirect (via LHA’s GABAergic neurons) 5-HT

influence on the Ox neurons.

OX1R, OX2R and NMDAR1 Receptors on Ox Neurons but
not on GABAergic Neurons in the LHA

To identify the role of Ox neurons in regulating the activity of

local GABAergic neurons, we carried out a triple IF labeling in the

LHA. To study this inter-relationship, we searched for OX1R and

OX2R receptors on the Ox and GABAergic neurons. We

identified OX1R (Figure 6A) and OX2R (Figure 6B) on the Ox

neurons but found these to be absent on the GABAergic

interneurons. This sheds light on the self-regulatory mechanism

of Ox neurons via OX1R and OX2R auto-receptors. Previous

studies have demonstrated the presence of inhibitory GABAB

receptors on the Ox neurons [33,75,76,77] and there is evidence

that GABAA receptors are also present on Ox neurons (Backberg

et al., 2004, Kokare et al., 2006). This could suggest a one-way

Figure 4. Quantitative analysis of the degree of colocalization of serotonin receptor subtypes and Ox neurons in the LHA. (A)
Representative Scatter plot (cytofluorogram) indicating colocalization of 5HT1AR and Orexin A, Pearson’s coefficient = 0.641, (B) Pearson’s correlation
coefficient calculated for the estimation of degree of colocalization of serotonin reseptor subtypes (5HT1AR, 5HT3AR, 5HT1BR, 5HT2AR and 5HT2CR) and
Ox neurons in the LHA, (C) Overlap coefficient by Manders calculated for the estimation of extent of overlap of serotonin receptor subtypes (5HT1AR,
5HT3AR, 5HT1BR, 5HT2AR and 5HT2CR) and Ox neurons in the LHA. Data was analysed by two tailed unpaired t-test (Prism 5 software). Level of
significance ****(p,0.0001).
doi:10.1371/journal.pone.0088003.g004

Figure 5. Representative photomicrographs of triple-label IF staining in LHA for Ox (Orexin-A) and GABAergic (anti-GABA)
neurons. (A) 5-HT3AR, overlay image indicates an overlay of Orexin-A, 5-HT3AR and anti-GABA, (B) 5-HT1AR, overlay image indicates an overlay of
Orexin-A, 5-HT1AR and anti-GABA. Confocal microscopy: Chromogens were Alexa 488 (blue), Alexa 546 (red) and CF633 (green), 406magnification.
doi:10.1371/journal.pone.0088003.g005
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relationship between GABAergic and Ox neurons wherein

GABAergic neurons exerts an inhibitory effect on the Ox neurons

under the partial DRN’s serotonergic control, consistent with

Yamanaka et al. (2010).

Ox neurons form a distinct group of a hypothalamic neuronal

population that project to multiple brain regions and coordinate

many physiological functions [9,78]. Also, there is a convergence

of signals that regulate the activity of Ox neurons by neurotrans-

mitters, hormones, etc. Glutamate is an important neurotransmit-

ter for Ox neurons and excitatory AMPA receptors have been

shown to mediate the miniature EPSC in Ox neurons [79]. Also,

NMDA receptors activate Ox neurons in the perifornical region of

LHA [80]. To verify whether NMDA receptors are present on the

overall Ox neurons and not confined solely to the perifornical

area, we did triple-label IF staining. Here, we show the presence of

N-methyl D-aspartate receptor 1 (NMDAR1) on the Ox neurons

(Figure 7) and their absence on the GABAergic interneurons

(Figure 7A, overlay image).

Ox Axonal Projections Receive Glutamatergic and
GABAergic Post-synaptic Inputs in the DRN

To study the long-range connections of Ox neurons in the

DRN, we performed IF labeling in the DRN region for PSD-95 (a

marker for glutamatergic synapses) and gephyrin (a marker for

GABAergic synapses) post-synaptic proteins [81]. Firstly, we

carried out double-label IF staining for PSD-95 and Ox in the

DRN and observed PSD-95 immunopositive Ox axonal terminals

(Figure 8) indicating glutamatergic input to the Ox axonal

projections. In another set of experiments, we examined

GABAergic post-synaptic input to the Ox terminals as it has been

shown that Ox fibres project to both 5-HT and GABAergic

neurons in the DRN [31]. A double-label IF analysis for gephyrin

and Ox in the DRN (Figure 9) showed gephyrin immunopositive

Figure 6. Representative photomicrographs of triple-label IF staining for Ox and GABAergic neurons in LHA. (A) OX1R, overlay image
indicates an overlay of Orexin-A, OX1R and anti-GABA, (B) OX2R, overlay image indicates an overlay of Orexin-A, OX2R and anti-GABA. Arrows in A and
B overlay images indicate presence of OX1R and OX2R on Ox neurons, respectively. Confocal microscopy: Chromogens were Alexa 488 (blue), Alexa
546 (red) and CF633 (green), 406.
doi:10.1371/journal.pone.0088003.g006

Figure 7. Representative photomicrographs of triple-label IF staining for NMDAR1 on Ox (Orexin-A) and GABAergic (anti-GABA)
neurons. (A) NMDAR1 (anti-NMDAR1) in the LHA. (B) 1006magnification in A. Magenta colour in the overlay image in A and yellow/orange in the
overlay image in B indicates the presence of NMDAR1 on Ox neurons. Confocal microscopy: Chromogenes were Alexa 488 (blue in A and green in B),
Alexa 546 (red) and CF633 (green), 406.
doi:10.1371/journal.pone.0088003.g007

Serotonin and Orexin/Hypocretin System Interaction

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e88003



Ox terminals, further indicating GABAergic input to the Ox

projections. This result is in agreement with the findings of Liu

et al. (2002) where they showed Ox axons in proximity to GABA/

GABA-transporter immunoreactive neurons.

Map of the DRN-LHA Circuit
Based on the above results and in other previous studies (see

below), a tentative map of the DRN and LHA is illustrated in

Figure 10A. Connection (i) in the figure involves 5-HT1AR [26], 5-

HT1BR, 5-HT2AR, 5-HT2CR, 5-HT3AR (found in our current

study). Although connection (ii), found in this study, consists of 5-

HT1AR and 5-HT3AR, the specific types of connection (e.g.

effectively excitatory or inhibitory) and their strengths are not

known. Connection (iii) and its receptor types are not known yet.

Similarly, the receptor types for connection (iv) (Ox1R and Ox2R

found in this study are consistent with previous findings [30,32]),

and connections (v) and (vi) (found in this study) are unknown.

Connection (vii) receptors are not known and specifically Ox1R

and Ox2R are not found in our study.

Other connections in the circuit based on other previous work:

(viii) excitatory connection and receptor types are not known [82];

(ix) GABAA/B [33,75,76,77]; (x) AMPAR [79] and NMDAR1

(found in the current study); (xi) GABAB [77]; (xiii) Ox2R [4],

Ox1R and Ox2R (found in the current studies); (xv) 5-HT1B/1D

[34]; 5-HT1A/2A/2C [69]; (xvi) 5-HT7 [34]; (xvii) GABAA/B [34];

(xviii) AMPAR and NMDAR [34]; (xix) AMPAR and NMDAR

[34]; (xxi) 5-HT1AR [83]. For the connections (xii), (xiv), (xx) and

(xxii) (shown by black dotted circle/arrow in Figure 10A), we

implicitly assume that non-principal neurons (GABAergic and

glutamatergic neurons in LHA and DRN) are self-coupled.

Figure 8. Ox axonal projections receive glutamatergic post-synaptic inputs in the DRN. (A) Ox (Orexin-A) axonal projections in the DRN,
Aq indicates aqueduct, 206magnification. (B) Double IF staining was done for Ox axons and PSD-95 (post-synaptic glutamatergic marker) in the DRN,
1006. Confocal microscopy: magnification 1006. (C) Z-stackmax image of 30 mm thickness selected from 45 mm section.
doi:10.1371/journal.pone.0088003.g008

Figure 9. Ox axonal projections receive GABAergic post-synaptic inputs in the DRN. (A) Double IF staining was performed for Ox axons
(Orexin-A) and Gephyrin (post-synaptic GABAergic marker) in the DRN. Confocal microscopy: magnification 1006. (B) Z-stackmax image of 30 mm
thickness selected from 45 mm section.
doi:10.1371/journal.pone.0088003.g009
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Neural Circuit Modelling and Analysis of the Direct and
Indirect Interactions within the DRN-LHA System

The experimental findings in this study and in other previous

work now provide sufficient information to build a computational

model to investigate how the DRN-LHA neural architecture can

influence the systems dynamics. We purposely simplified the

implementation of the neural population units and connections in

order to better illustrate the effects of network topology on

dynamics (see Materials and Methods section). We also omit

modelling the glutamatergic neurons in the DRN and LHA

because there is evidence that glutamate has a weaker effect than

GABA in the DRN [59]; and that indirect excitation from LHA’s

glutamatergic neurons on Ox neurons may be represented

implicitly by the Ox autoreceptors. This significantly reduces the

number of model parameters and dynamical equations involved.

In our model, we find that the various receptor subtypes will not

affect the steady-state activities of the system. We shall henceforth

not elaborate on the specific receptor subtype till we investigate the

transient activation part of the results (section 3.6.3) when we study

the influence of various timescales induced by the various

receptors.

Next we investigate how the unknown model parameters and

different timescales affect the system behaviour. Specifically, the

focus is to understand the effects of: (i) 5-HT on LHA’s

GABAergic neurons; (ii) local Ox and GABAergic interactions;

and (iii) how connection timescales affect phasic 5-HT or Ox

activations.

Oscillatory DRN-LHA Behaviour if 5-HT Weakly Excites or
Inhibits LHA’s GABAergic Neurons

It is not yet known whether the connection from 5-HT neurons

to LHA’s GABAergic neurons (J5-HT-to-GABA(LHA)) is effectively

excitatory or inhibitory. Here, we shall explore these possibilities.

If this connection is excitatory, we find that as its connection

strength J5-HT-to-GABA(LHA) is increased, the steady-state firing rate

activities for most of the neural populations decrease (Figure 11).

Note that LHA’s GABAergic neural population barely increases.

This slight change is due to the self-inhibition within these

GABAergic neurons. In contrast, the relatively larger changes for

Figure 10. Neural circuit map of the LHA-DRN system. (A) Diagrammatic representation of the receptor mapping suggests a complex bi-
directional relationship between DRN and LHA. Black circle/arrow represents effective inhibitory/excitatory connections between LHA and DRN, solid
black line represents various receptor types derived from previous experimental studies, dashed black line shows the recent experimental findings,
dashed arrows with * (asterisk) indicates that some of these receptors are known in the previous studies, dashed-dotted line signifies that receptors
(in the target neurons) are not identified in this current study, dotted lines shows the hypothesized connection, diamond arrows indicate that
connection types (excitatory/inhibitory) are not known, ? (question mark) means that receptors are not known and gray line signifies that the
connection is not studied. All these receptor types are numbered on the figure and details are provided below. See text for more information. (B)
Reduced LHA-DRN circuit used in the computational model. Label as in (A).
doi:10.1371/journal.pone.0088003.g010
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the other neural populations (especially when the connection

strength is weaker) are due to the strong inhibitory projection from

the LHA’s GABAergic neuron onto the Ox neurons (see Table 1),

which subsequently affect the neurons in the DRN.

When the connection from 5-HT to LHA’s GABAergic neurons

becomes very weak (J5-HT-to-GABA (LHA) close to 0), the DRN-LHA

circuit will begin to exhibit slow oscillatory behaviour. Figure 12

shows such transition towards oscillatory behaviour for one sample

neural population (the rest of the neural populations look similar).

The oscillatory period can be as slow as a few minutes (Figure 12,

inset). It can also be observed that as the connection strength

decreases, the amplitude of oscillation (bounded by the top and

bottom lines in grey region) increases. When this particular

connection becomes inhibitory (J5-HT-to-GABA(LHA) ,0), the oscilla-

tion amplitude can become very large (not shown). It is well-known

that excitatory-inhibitory network can easily create oscillation

[60,61]. Similarly, the observed oscillation phenomenon can be

explained by the interplay between strong inhibition and self-

excitatory auto-regulation in the Ox neural population; the

oscillation disappears when Ox autoreceptors are removed from

the model e.g. when JOx-auto = 0 (not shown). As far as we know,

there has yet to be any observable slow oscillation of Ox in the

timescale of minutes. Hence, our model suggests that strong

excitatory connection from 5-HT to LHA’s GABAergic neurons is

more plausible, and we shall proceed with this assumption from

here on.

DRN-LHA System is Resilient to Changes in the Ox-to-
GABAergic Neurons in the LHA

One of our experimental findings in this study shows that the

LHA’s GABAergic neurons do not have Ox receptors, consistent

with indirect results from previous works [4]. Using our model, we

check for the significance of such Ox receptors’ absence. In our

model, we gradually increase the connection strength of Ox to

LHA GABAergic neurons (JOx-to-GABA(LHA)). This only marginally

decreases the DRN-LHA steady-state activities (Figure 13). A

similar explanation as that for the results in Figure 11 can be used

to account for this phenomenon.

Transient Ox and 5-HT Activities can be Affected by
Different Receptor Timescales

Having studied the tonic activities (stable steady states) of the

LHA-DRN system, we shall now proceed to investigate how

transient or phasic activations of 5-HT or Ox can affect the

system. The motivation for this is that it has been known that 5-

HT and Ox can phasically activate in the presence of behaviour-

ally relevant stimuli [84,85,86]. Furthermore, our current exper-

imental finding suggests that 5-HT can influence LHA neurons

over multiple timescales, through both the slow G-protein-coupled

(non-5-HT3A) and fast ligand-gated (5-HT3A) receptors. To

simulate this, the (more plausible) excitatory connection J5-HT-to-

GABA(LHA) is considered, and a pulse stimulus current of the

duration of 0.5 s with an amplitude of 150 pA is applied to either

the 5-HT or Ox neural populations. To understand the individual

role of the slow and fast timescales, and minimize any confounding

effect, we simulate the two timescales separately.

Figure 14A (left) shows that a 0.5 s stimulation of 5-HT neurons

rapidly increase its activity, followed by a slower decay back

towards baseline. The 5-HT activity decay is due to feedback

inhibition from its autoreceptors and the local GABAergic neurons

(hence the undershoot below baseline). The Ox activity responses

are generally suppressed by the strong 5-HT-mediated inhibition

(Figure 14A, right). When the 5-HT-to-Ox and 5-HT-to-GABA

(LHA) connections are fast (mimicking 5-HT3AR), the rebound

upon removal of stimulus (, after the 2 s mark in Figure 14A,

right) is higher, suggesting the faster disinhibition than that for the

slower connections. Varying these timescales do not affect the

transient 5-HT activity in DRN (overlapping curves, Figure 14A,

left).

When a similar stimulus is applied to the Ox neurons, the

activity of the Ox neurons increases considerably throughout the

stimulus duration (Figure 14B, right), which is due to the self-

amplifying effect of Ox autoreceptors dominating over the local

GABAergic inhibition (feedback inhibition is not strong due to the

weak excitatory connection from Ox neurons to their local

GABAergic neurons). These Ox neurons, affect 5-HT neurons

either directly or indirectly (through the DRN’s GABAergic

neurons). From our simulations, we find that when the Ox-to-5-

HT connection acts on a fast timescale (5 s), they can transiently

excite the 5-HT neurons (Figure 14B, left). If the direct timescale is

Figure 11. Neural circuit responses to change in connection
strength from 5-HT to GABAergic neurons (LHA). Change in the
steady-state values of the neural firing frequencies of the neuronal
groups with varying connection strength factor J5-HT-to-GABA(LHA) (in pA/
Hz) from 5-HT neurons to the GABAergic neurons (LHA) for excitatory
connection. Steady states are obtained after simulating for a sufficiently
long time. f5-HT, fOx, gGABA(LHA), and gGABA(DRN): population firing
frequencies of 5-HT, Ox, LHA’s GABAergic and DRN’s GABAergic
neurons, respectively.
doi:10.1371/journal.pone.0088003.g011

Figure 12. LHA-DRN system can exhibit oscillations with weak
excitatory from 5-HT to GABAergic (LHA) neurons. Steady-state
values of the firing rate activity of 5-HT neurons are plotted as a
function of the connection strength J5-HT-to-GABA(LHA) (in pA/Hz).
Oscillatory region (left of dashed) is bounded by the values of J5-HT-to-

GABA(LHA) below 0.804 pA/Hz. Max (Min): maximum (minimum) firing
rates during oscillation. Label as in Figure 11.
doi:10.1371/journal.pone.0088003.g012
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much slower (e.g. 60 s), then 5-HT neurons can hardly be

activated. Varying Ox-to-GABA(DRN) connection does not affect

the system significantly. Note the post-stimulus undershoot due to

recurrent inhibition, suppressing the Ox and 5-HT transiently

below baseline. Taken together, when Ox-to-5-HT acts on a faster

timescale, the phasic influence of Ox on 5-HT activity is much

larger.

Discussion

We have mapped out the direct and indirect connections

between and within the DRN and LHA brain regions using IF

staining to identify the receptors and trace long-range connections.

To consider indirect connections, non-principal neurons have to

be involved. In our study, the non-principal neurons are the

inhibitory GABAergic and excitatory glutamatergic neurons,

although there exist other neuronal types (e.g. neurons containing

neuropeptide Y, etc) [87].

We have confirmed a previously identified 5-HT1A receptor on

Ox neurons, and have also identified multiple major 5-HT

receptors in the LHA. They include, on Ox neurons, 5-HT1BR, 5-

HT2AR, and 5-HT2CR and also fast ligand-gated 5-HT3AR. It is

interesting to note that Muraki et al. (2004) has shown that the 5-

HT1A receptor antagonist WAY-100635 can completely block the

5-HT hyperpolarizing effect on Ox neurons. It could perhaps be

that the 5-HT1A receptors have the highest affinity as compared to

the other 5-HT receptor subtypes found in this study. Further

Figure 13. Neural circuit responses to change in connection strength from Ox to GABAergic neurons (LHA). Steady-state firing
frequencies of the neural populations as functions of the connection strength (in pA/Hz). Label as in Figure 11.
doi:10.1371/journal.pone.0088003.g013

Figure 14. Transient activities of 5-HT and Ox neuronal groups under phasic stimulation. (A) Firing frequency of 5-HT neurons for
different slow and fast 5-HT receptor timescales (left) and for the Ox neurons (right). (B) Firing frequency of 5-HT neurons for different slow and fast
Ox receptor time scales (left) and for the Ox neurons (right). Solid horizontal black lines denote presence of stimulus with duration of 500 ms, and
amplitude of 150 pA. Label as in Figure 11.
doi:10.1371/journal.pone.0088003.g014
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experimental work would help to clarify this issue. In addition, we

found both fast and slow 5-HT receptors (5-HT3AR and 5-

HT1AR) on LHA’s GABAergic neurons. Hence, these 5-HT

(especially 1A) receptors could directly and indirectly influence Ox

neurons, and further studies would be required to compare their

relative affinities, and hence relative influences on Ox neurons.

Within the LHA, we have also found the presence of OX1R,

OX2R and NMDAR1 receptors on Ox neurons but not on

GABAergic neurons. For LHA-to-DRN projections, we have

identified Ox neurons receiving glutamatergic and GABAergic

post-synaptic inputs in the DRN. The results from our experi-

mental work and from previous work are summarized in

Figure 10A. Our results also suggest that LHA’s GABAergic

neurons could be isolated from direct (excitatory) afferent

influences from local glutamatergic and Ox neurons, but could

be influenced directly by 5-HT neurons, or through a unidirec-

tional closed loop that involves the Ox and 5-HT neurons

(Figure 10A).

From Figure 10B, the local LHA architecture looks similar in

some respects to the well-studied cortical column architecture,

with the Ox neurons acting as pyramidal neurons, with excitatory

feedback among themselves [88]. However, our present work and

in a previous study [4] have shown Ox neurons to have very weak

influence on their local GABAergic neurons. This differs from the

stereotypical excitatory-inhibitory feedback loop in a cortical

column model. The DRN also looks similar to that of a cortical

column if we include glutamatergic neurons (or glutamate-

containing 5-HT neurons) to provide excitatory feedback. But

excitation in the DRN is known to be weaker than GABA-

mediated inhibition [59]. To provide a systemic understanding of

the identified DRN-LHA architecture, we incorporated some of

our current findings and previous published data into a

computational model, which is an extension of our previous

model [58].

We purposely simplified the neural unit and neuronal interac-

tion implementations to focus primarily on this unique neural

architecture of the DRN-LHA system. As a first step, glutama-

tergic neurons were justifiably omitted in our model simulations

and analyses. We have included various constraints to the model,

specifically on the relative values of the input-output slope, total

input currents, and time constants and relative strengths of the

connections. More importantly, we intentionally constructed a

model to demonstrate the complex consequences of the neural

circuit architecture we have established from our current

experimental study.

We first use our model to explore the consequences of 5-HT’s

effect on LHA’s GABAergic neurons. We found that the system

becomes oscillatory when the connection strength is weak or

inhibitory (Figure 12). This oscillatory behaviour has so far not

been observed in experiments. Thus, based on these results, we

hypothesize that this connection is excitatory. It would be

interesting to test the strength of this connection using 5-HT3AR

agonists/antagonists on LHA’s GABAergic neurons. This hypoth-

esis would also imply that DRN may send inhibition to Ox

neurons both directly and indirectly (through the GABAergic

neurons), i.e. no balanced projections. This is in contrast with the

long-range projection of Ox to the DRN, which excites both 5-HT

neurons and GABAergic neurons in the DRN (Figure 10B).

Another interesting experimental finding in our work is the

indication of an absence of Ox receptors on LHA’s GABAergic

neurons. Our model simulations show that this particular

connection does not affect the coupled DRN-LHA system

significantly (Figure 13). This means that Ox receptor on LHA’s

GABAergic neurons will have little influence on the circuit’s

dynamics. It is interesting to speculate that the absence of these Ox

receptors could be due to a lack of significant functional roles at

the circuit level.

From our experimental work, we have identified both slow 5-

HT G-protein-coupled and fast ligand-based receptors on both Ox

and GABAergic neurons in the LHA. Our model attempted to

mimic these different 5-HT receptor mediated timescales sepa-

rately to investigate how the DRN-LHA circuit as a whole can be

affected. We found that the 5-HT timescales do not change the

tonic (steady-state) activities of the system, but can greatly affect

the transient activations (Figure 14). In general, a faster transient

5-HT influence on Ox neurons does not affect the suppression

much but can result in a faster disinhibition of Ox neurons. This

could mean that the faster 5-HT3AR could be useful for quickly

resetting the Ox neurons back to baseline after phasic 5-HT

activation. More interestingly, a faster transient Ox influence can

excite phasically 5-HT activity while slower timescale does not.

In summary, we have established aspects of the neurobiological

circuitry function between the levels of 5-HT and Ox through

direct and indirect pathways between the DRN and LHA. This

work could have important implications in clinical neuroscience

and neuropsychopharmacology as this DRN-LHA loop has been

interpreted in two ways. It has been hypothesized that lower levels

of 5-HT (common in depression) provide weaker inhibition to Ox

neurons. Taking into account the effects of the circadian

regulation of Ox and its influence on other neurotransmitters or

neuromodulators, the Ox level may increase by this change in 5-

HT. This increase in Ox levels may then generate a state similar to

insomnia and other mood alterations. Similarly, in the reverse

direction, it has been argued that lower levels of 5-HT are due to

either a weaker excitatory connection from the Ox neurons (LHA)

or because of lower levels of Ox (LHA), a situation commonly seen

in hypersomnia or in narcolepsy [3,89]. To explore the potential

effects of Ox knock-out mice on 5-HT activity, our model can

simulate such an effect by removing all the Ox effects in the

circuit, and we observed that 5-HT neurons can still fire at

,3.5 Hz (not shown). Furthermore, drug studies often do not

consider integrating multiple targeted and non-targeted but

connected brain areas. For example, in the DRN-LHA circuit

considered in this study, an administration of 5-HT1AR agonist

can directly affect not only 5-HT autoreceptors, but also all the 5-

HT1AR in the DRN’s GABAergic neurons, and LHA’s Ox and

GABAergic neurons. Other brain regions without 5-HT or Ox

receptors, but connected to the affected DRN and LHA, will also

be indirectly affected. Thus, the overall effect is complex, and this

could be one important reason underlying serious side effects of

various neuropharmacological drugs. A promising approach to

gain a holistic understanding of such complex neurobiological

systems is to perform more intensive computational modelling,

simulations and analyses.
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