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Abstract: A crystallographic bar-joint framework, C in Rd, is shown to be almost
periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid
and the rigid unit mode (RUM) spectrum, Ω(C), is a singleton. Moreover, the almost periodic
infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z), on the
d-torus, Td, determined by a full rank translation symmetry group and an associated motif
of joints and bars.
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1. Introduction

The rigidity of a crystallographic bar-joint framework, C, in the Euclidean spaces, Rd, with respect
to periodic first order flexes is determined by a finite matrix, the associated periodic rigidity matrix.
For essentially generic frameworks of this type in two dimensions, there is a deeper combinatorial
characterisation, which is a counterpart of Laman’s characterisation of the infinitesimal rigidity of
generic placements of finite graphs in the plane. See Ross [1]. For related results and characterisations of
other forms of periodic infinitesimal rigidity, see Borcea and Streinu [2,3], Connelly, Shen and Smith [4],
Malestein and Theran [5], Owen and Power [6], Power [7,8] and Ross, Schulze and Whiteley [9].

There is also extensive literature in condensed matter physics concerning the nature and multiplicity
of low-energy oscillations and rigid unit modes (RUMs) for material crystals in three dimensions. In this
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case, Bloch’s theorem applies, and the excitation modes are periodic modulo a phase factor. The set of
phase factors, or, equivalently, the set of reduced wave vectors for the modes, provides what may be
viewed as the RUM spectrum of the crystal. See Dove et al. [10], Giddy et al. [11] and Wegner [12],
for example. In Owen and Power [6] and Power [8], the RUM spectrum was formalised in mathematical
terms as a subset, Ω(C), of the d-torus, Td, or as an equivalent subset of [0, 1)d, which arises from a choice
of translation group T . This set of multi-phases is determined by a matrix-valued function, ΦC(z), on
Td with the value at z = 1̂ = (1, 1, . . . , 1) providing the corresponding periodic rigidity matrix for T .

In the present article, we move beyond periodicity and consider infinitesimal flexes of a
crystallographic bar-joint framework, which are almost periodic in the classical sense of Bohr. Such
flexes are independent of any choice of translation group and so are intrinsic to C as an infinite bar-joint
framework. It is shown that C is almost periodically infinitesimally rigid if and only if for some choice
of translation group, it is periodically infinitesimally rigid, and the corresponding RUM spectrum is
the minimal set {1̂}. More generally, we show how the almost periodic infinitesimal flexes of C are
determined in terms of the matrix function, ΦC(z).

An ongoing interest in the analysis of low-energy modes in material science is to quantify the
implications of symmetry and local geometry for the set of RUM wave vectors. See, for example,
Kapko et al. [13], where the phenomenon of extensible flexibility is related to the maximal symmetry
and minimal density forms of an idealised zeolite crystal framework. Here, the term, extensive flexibility,
corresponds to a maximal rigid unit mode spectrum Ω(C) = T3. We show that for crystal frameworks
whose RUM spectrum decomposes into a finite union of linear components, there is a corresponding
vector space decomposition of the almost periodic flex space. The flexes in these subspaces are periodic
in specific directions associated with certain symmetries of the crystallographic point group.

In Section 4, we give a small gallery of crystal frameworks, which display a variety of periodic and
almost periodic flexibility properties.

2. Crystal Frameworks and the RUM Spectrum

A bar-joint framework in the Euclidean space, Rd, is a pair consisting of a simple undirected graph
G = (V,E) and an injective map p : V → Rd. A (real) infinitesimal flex of (G, p) is a field of velocities,
or velocity vectors, u(v), assigned to the joints, p(v), such that, for every edge, vw ∈ E,

(p(v)− p(w)) · (u(v)− u(w)) = 0

If the above condition holds for all pairs v, w ∈ V , then u is a trivial infinitesimal flex of (G, p).
For convenience, we let p(E) denote the set of open line segments pe = (p(v), p(w)) with e = vw ∈ E.

Definition 1. A crystal framework, C, is a bar-joint framework (G, p) for which there exist finite subsets,
Fv ⊆ p(V ) and Fe ⊆ p(E), and a full rank translation group, T , such that:

p(V ) = {T (pv) : pv ∈ Fv, T ∈ T }

p(E) = {T (pe) : pe ∈ Fe, T ∈ T }
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The pair (Fv, Fe) is called a motif for C. The elements of Fv are called motif vertices, and the elements
of Fe are called motif edges. The translation group, T , is necessarily of the form:

T = {
d∑

j=1

kjaj : kj ∈ Z}

where a1, a2, . . . , ad are linearly independent vectors in Rd. The translation x 7→ x +
∑d

j=1 kjaj is
denoted T k for each k = (k1, . . . , kd) ∈ Zd. For each motif vertex, p(v) ∈ Fv, and each k ∈ Zd, we
denote by (v, k) the unique vertex for which p(v, k) = T k(p(v)). For each motif edge, pe ∈ Fe, with
pe = (p(v, l), p(w,m)), we let (e, k) denote the unique edge for which p(e,k) = (p(v, l+k), p(w,m+k)).
In Section 4, we provide a number of illustrative examples of crystal frameworks with natural choices of
the motif and translation group.

In the consideration of infinitesimal rigidity relative to general periodic flexes, or almost periodic
flexes, it is convenient and natural to consider complex velocity vectors u : Fv × Zd → Cd. Indeed,
such vectors are infinitesimal flexes if and only if their real and imaginary parts are infinitesimal flexes.
A velocity vector u : Fv × Zd → Cd for C is said to be

1. local if u(v, k) 6= 0 for at least one and at most finitely many (v, k) ∈ Fv × Zd;

2. strictly periodic if u(v, k) = u(v, 0) for all (v, k) ∈ Fv × Zd;

3. supercell periodic if u(v, k) = u(v, 0) for each motif vertex v ∈ Fv and for all k in a full rank
subgroup of Zd of the form m1Z× · · · ×mdZ.

2.1. The Symbol Function and Rigidity Matrix

We now define the symbol function, ΦC(z), of a crystal framework and the rigidity matrix, R(C),
from which it is derived. The d-dimensional torus is Td = {(z1, . . . , zd) ∈ Cd : |z1| = · · · = |zd| = 1}.
For k ∈ Zd, the associated monomial function, f : Td → C, given by f(z1, . . . , zd) = zk11 . . . zkdd , is
written simply as zk.

Definition 2. Let C be a crystal framework in Rd with motif (Fv, Fe), and for e = (v, k)(w, l) ∈ Fe,
let p(e) = p(v, k) − p(w, l). Then, ΦC(z) is a matrix-valued function on Td, which assigns a finite
|Fe| × d|Fv| matrix to each z ∈ Td. The rows of ΦC(z) are labelled by the edges of Fe, and the columns
are labelled by the vertex-coordinate pairs in Fv×{1, . . . , d}. The row for an edge e = (v, k)(w, l) with
v 6= w takes the form,

[ v w

e 0 · · · 0 p(e)zk 0 · · · 0 −p(e)zl 0 · · · 0
]

while if v = w, it takes the form,

[ v

e 0 · · · 0 p(e)(zk − zl) 0 · · · 0
]
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Definition 3. Let C be a crystal framework in Rd with motif (Fv, Fe), and for e = vw ∈ Fe, let p(e) =

p(v)− p(w). Then, R(C) is the infinite matrix, whose rows are labelled by the edges, (e, k) in Fe × Zd,
and whose columns are labelled by the pairs, (v, k) in Fv × Zd. The row for an edge (e, k) = (v, l +

k)(w,m+ k), with e = (v, l)(w,m) ∈ Fe, takes the form:

[ (v,l+k) (w,m+k)

(e,k) · · · · · · 0 p(e) 0 · · · 0 −p(e) 0 · · · · · ·
]

It follows from this definition that a velocity vector u : Fv × Zd → Rd is an infinitesimal flex for C if
and only if R(C)u = 0.

2.2. The RUM Spectrum

Let ω = (w1, . . . , ωd) ∈ Td. A velocity vector u : Fv × Zd → Cd is said to be ω-phase-periodic if
u(v, k) = ωku(v, 0) for all (v, k) ∈ Fv×Zd. Here, ωk is the product ωk11 . . . ωkdd . We also write u = b⊗eω
for this vector, where b is the vector (u(v, 0))v in Cd|Fv | and eω is the multi-sequence (ωk)k∈Zd . We refer
to ω as a multi-phase for u. The velocity vector u is said to be phase-periodic if it is ω-phase-periodic
for some multi-phase ω ∈ Td.

To explain this terminology, note that a multi-phase is a d-tuple of unimodular complex numbers
ω = (eiθ1 , . . . , eiθd). The k-th entry corresponds to the phase variation of the velocity vector, u, in the
direction of the k-th lattice direction. The d-tuple of real numbers θ = (θ1, . . . , θd) can be taken to
have entries in the interval [0, 2π), in which case, θ can be considered as the reduced wave vector of the
velocity vector, u (see [8] for further remarks on this dynamical connection).

The following theorem is given in [8,14].

Theorem 1. Let C be a crystal framework in Rd; let ω ∈ Td and let u = b ⊗ eω, with b ∈ Fv × Cd,
be a ω-phase-periodic velocity vector. Then, the following conditions are equivalent:

(i) R(C)u = 0;

(ii) ΦC(ω)b = 0.

The RUM spectrum, Ω(C), of C is defined to be the set of multi-phases, ω, for which there exists a
nonzero phase-periodic infinitesimal flex for C as an infinite-bar-joint framework, or, equivalently, as the
set of multi-phases for which the rank of the matrix, ΦC(ω), is less than d|Fv|.

Note that the strictly periodic velocity vectors for C are, by definition, precisely the phase-periodic
velocity vectors, which have multi-phase 1̂ = (1, . . . , 1) ∈ Td. Evidently, the RUM spectrum must
always contain the point, 1̂ ∈ Td, as every constant velocity vector, u, is a phase-periodic infinitesimal
flex with multi-phase 1̂. Thus, the RUM spectrum of C is a singleton (i.e., it contains only the single
point, 1̂) if and only if every phase-periodic infinitesimal flex for C is strictly periodic.

Corollary 1. Let C be a crystal framework in Rd with translation group T . Then, the following
statements are equivalent:

(i) The T -periodic real infinitesimal flexes of C are trivial;
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(ii) The T -periodic complex infinitesimal flexes of C are trivial;

(iii) The periodic rigidity matrix ΦC(1, . . . , 1) has rank equal to d|Fv| − d.

We may view phase-periodic infinitesimal flexes of a crystal framework as the pure flexes with
(possibly incommensurate) oscillatory variation relative to the periodicity lattice. Note that finite linear
combinations of such flexes need not be phase-periodic, but will in fact be almost periodic in the sense
of Definition 4 below. Our main theorem may be viewed as an almost periodic flex variant of the general
principle that general motions can be synthesised by combinations of purely oscillatory motions.

3. Almost Periodic Rigidity

In this section, we first outline the proof of the fundamental approximation theorem for uniformly
almost periodic functions and its counterpart for almost periodic sequences. These ensure that a function
(or sequence), which is almost periodic in the sense of Bohr, is approximable by trigonometric functions
(or sequences) that are obtained in an explicit manner from convolution with Bochner–Fejér kernels.
A convenient self-contained exposition of this fact for function approximation is given in Partington [15].
(See also [16,17]). The direct arguments there can be extended to almost periodic vector-valued functions
on Zd, and this embraces the setting of velocity fields relevant to the almost periodic rigidity of crystal
frameworks (see Definition 4). The constructive approximation theorem that we require is given in
Theorem 2. This theorem together with Lemmas 1 and 2 leads to the almost periodic rigidity theorem.

3.1. Almost Periodic Sequences

First, we recall the classical theory for univariable functions on R. The Fejér kernel functions are
given by:

Kn(x) =
∑

|m|≤n+1

(1− |m|
n+ 1

)eimx, x ∈ R

The positivity of the Kn and their approximate identity property under convolution with a continuous
periodic functions feature in a standard proof that a continuous 2π-periodic function, f(x), on the real
line is uniformly approximable by the explicit trigonometric functions:

gn(x) =

∫ 2π

0

f(s)Kn(s− x)
ds

2π

Almost periodic functions on the real line in the sense of Bohr are similarly uniformly approximable
by an explicit sequence of trigonometric polynomials that are determined by convolution with certain
Bochner–Fejér kernels.

Note first that it is elementary that the functions, gn(x), has the form gn(x) = [f,RxKn], where [·, ·]
is the mean inner product:

[f1, f2] = lim
T→∞

1

2T

∫ T

−T
f1(s)f2(s)ds

and RxKn(s) = Kn(s − x). It is classical that for a function, f(x) in AP (R,C), there is a sequence of
Bochner–Fejér kernels K ′n, which provide, by the same formula, a uniformly approximating sequence
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of trigonometric polynomials, gn(x). In this case, the frequencies, λ, in the nonzero terms, aeiλx, of
these approximants appear in a countable set derived (by rational division) from the spectrum, Λ(f), of
f defined by:

Λ(f) = {λ ∈ R : [f(x), eiλx] 6= 0}

It follows from a Parceval inequality for almost periodic functions that this spectrum, which we refer to
as the Bohr spectrum, is a well-defined finite or countable set.

Similar considerations apply to the space,AP (Z,C), of almost periodic sequences. The approximants
are general trigonometric sequences, that is, sequences, (h(k))k∈Z, that have a finite sum form:

h(k) =
∑

ω=eiλ:λ∈F
aλω

k

so that, in our earlier notation,
h =

∑

ω=eiλ:λ∈F
aλeω

where F is a finite subset of R. The Bohr spectrum of a sequence, h inAP (Z,C), is defined to be the set:

Λ(h) = {λ ∈ R : [h, eω]Z 6= 0, for ω = eiλ}

where
[h1, h2]Z = lim

N→∞

1

2N + 1

∑

|k|≤N
h1(k)h2(k)

This spectrum of ω values is now a subset of T. Partial counterparts of the Fejér kernel functions, Kn(x),
are given by the Fejér sequences:

K(n,λ) =
∑

|m|≤n+1

(1− |m|
n+ 1

)eωm

associated with a single frequency ω = eiλ. In particular:

K(n,λ)(k) =
∑

|m|≤n+1

(1− |m|
n+ 1

)ωmk

The following fundamental approximation theorem indicates the explicit construction of the
Bochner–Fejér kernels K ′n for h as coordinate-wise products of appropriate Fejér sequences.

Theorem 2. Let h be a sequence in AP (Z,C); let α1, α2, . . . be a maximal subset of the Bohr spectrum
Λ(h), which is independent over Q, and for n = 1, 2, . . . let:

K ′n =
n∏

k=1

K(n.n!−1,αk/n!)

Then, h is the uniform limit of the sequence g1, g2, . . . of trigonometric sequences in AP (Z,C) given by:

gn(k) = [h,RkK
′
n]Z, k ∈ Z
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The main ingredient in the proof of the theorem is that the Bohr spectrum is nonempty if h 6= 0, and
the arguments for this depend on the equivalence of Bohr almost periodicity with the Bochner condition
that the set of translates of h is precompact for the uniform norm (see [15]).

The arguments leading to Theorem 2 can be generalised to obtain an exact counterpart theorem for
AP (Zd,Cr). The approximating trigonometric sequences, g, now have a finite sum form:

g =
∑

ω∈F⊂Td
aω ⊗ eω

where aω ∈ Cr and eω, for ω = (ω1, . . . , ωd) in Td, is the pure frequency sequence eω1 ⊗ · · · ⊗ eωd in
AP (Zd,C) with:

eω(k) = ωk11 . . . ωkdd

The Bohr spectrum, Λ(h), is similarly defined and is a countable subset of points ω in Td, which we
freely identify with a countable subset of points, λ, in [0, 2π)d. For notational convenience, we state the
general theorem only in the case d = 2.

The metric that is appropriate in our context for the approximation of velocity fields is the uniform
metric or norm ‖ · ‖∞; for velocity fields h, h′, we have:

‖h− h′‖∞ = sup
k,κ
{‖h(k, κ)− h′(k, κ)‖2}

Theorem 3. Let h be a sequence in AP (Z2,Cr), let (α1, β1), (α2, β2), . . . be a maximal subset of
Λ(h) ⊂ [0, 2π)2, which is independent over Q, and for n = 1, 2, . . . let:

K(2)
n = (

n∏

k=1

K(n.n!−1,αk/n!))(
n∏

k=1

K(n.n!−1,βk/n!)) ∈ AP (Z2,C)

Then, h is the uniform limit of the sequence g1, g2, . . . of trigonometric sequences in AP (Z2,Cr)

given by:
gn(k) = [h,RkK

(2)
n ]Z2 , k ∈ Z2

Note that here, [·, ·]Z2 is the natural well-defined sesquilinear map from AP (Z2,Cr) × AP (Z2,C)

to Cr.
We remark that the theory of uniformly almost periodic multi-variable functions on Rd and on Zd

is part of the abstract theory of almost periodic functions on locally compact abelian groups, due to
Bochner and von Neumann [18]. For further details, see also Levitan and Zhikov [19], Loomis [20]
and Shubin [21].

3.2. Almost Periodic Rigidity

We now characterise when a crystal framework admits no nontrivial almost periodic infinitesimal
flexes, and in this case, we say that it is almost periodically rigid. This is evidently a form of rigidity,
which is independent of any choice of translation group.

For a crystal framework, C, with full rank translation group T , various linear transformations may be
associated with the rigidity matrix, R(C). These transformations are restrictions of the induced linear
transformation:

R(C) : CZd×|Fv | ⊗ Cd → CZd×|Fe| ⊗ C
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where CZd×|Fv | ⊗ Cd is the vector space of all velocity fields on p(V ), that is, the space of functions
h : Zd × |Fv| → Cd. The codomain of R(C) is the vector space of complex-valued functions on the set
of edges.

The right shift operators on the domain and codomain of R(C) for the integral vector, l in Zd, are
denoted by RV

l and RE
l , respectively. Here, the right shift of a sequence, h(k, κ), by l is the sequence,

h(k − l, κ). We note that:
R(C) ◦RV

l = RE
l ◦R(C)

Definition 4. Let h : Zd × Fv → Cd be a velocity field.

1. An integral vector, l in Zd, is an ε-translation vector for h if ‖RV
l (h)− h‖∞ < ε.

2. The velocity field, h, is Bohr almost periodic if for every ε > 0, the set of ε-translation vectors, l,
is relatively dense in Rd.

Lemma 1. Let g be the vector-valued trigonometric multi-sequence with finite sum representation:

g =
∑

ω∈F⊂Td
aω ⊗ eω

with nonzero coefficients, aω in Cd|Fv |. If g is a nonzero infinitesimal flex for C, then each component
sequence aω ⊗ eω is a nonzero ω-phase-periodic infinitesimal flex.

Proof. For ω = (ω1, . . . , ωd) ∈ Td and N ∈ N, let RV (ω,N) be the linear map on the normed space
`∞(Zd × Fv,Cd) given in terms of the right shift operators, RV

k , k ∈ Zd, by:

RV (ω,N) =
1

(N + 1)d

∑

k:0≤ki≤N
ω̄kRV

−k

Similarly, let RE(ω,N) be the linear map on `∞(Zd × Fe,C) given by,

RE(ω,N) =
1

(N + 1)d

∑

k:0≤ki≤N
ωkRE

−k

The sequenceR(ω′, N)(aω⊗eω) converges uniformly to aω⊗eω, when ω′ = ω, and to the zero sequence
otherwise, since for each (l, vκ) ∈ Zd × Fv,

lim
N→∞

RV (ω′, N)(aω ⊗ eω)(l, vκ) = lim
N→∞

1

(N + 1)d

∑

k:0≤ki≤N
ω′
k
RV
−k(aω ⊗ ew)(l, vκ)

= lim
N→∞

1

(N + 1)d

∑

k:0≤ki≤N
ω′
k
ωl+kaω

=

(
lim
N→∞

1

(N + 1)d

∑

k:0≤ki≤N
ω′
k
ωk

)
ωlaω

and

lim
N→∞

1

(N + 1)d

∑

k:0≤ki≤N
ω′
k
ωk =

{
1 if ω = ω′

0 if ω 6= ω′
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Note also that R(C) is a bounded linear transformation from `∞(Zd×Fv,Cd) to `∞(Zd×Fe,C), which
commutes with the right shift operators. Thus, if ω is a multi-frequency for g, then:

R(C)(aω ⊗ eω) = lim
N→∞

R(C)(RV (ω,N)g) = lim
N→∞

RE(ω,N)R(C)g = 0

Lemma 2. Let K be a trigonometric polynomial in AP (Zd × Fv,C), and let h be an infinitesimal flex
for C in AP (Zd × Fv,Cd). Then, the mean convolution multi-sequence g : Zd × Fv → Cd given by
g(k, vκ) = [h,Rk(K)]Zd is an infinitesimal flex for C.

Proof. By linearity, it suffices to assume thatK is the elementary multi-sequence, eω, so thatK(k) = ωk

for k ∈ Zd. Then, g is the uniform limit of the sequence (gN), where:

gN(k, vκ) =
1

(N + 1)d

∑

1≤si≤N
ω̄s(R−sh)(k, vκ)

To see this, note that the convergence is uniform if h is a trigonometric sequence. Since the linear maps,
h→ gN , are contractive for the uniform norm, uniform convergence holds for a general almost periodic
velocity sequence. Thus, since the vector space of infinitesimal flexes is invariant under translation, it
follows that R(C)gN = 0 for each N and, hence, that R(C)g = 0.

The following theorem shows that a crystal framework is almost periodically rigid if and only if it is
periodically rigid and the RUM spectrum is trivial.

Theorem 4. Let C be a crystallographic bar-joint framework in Rd. The following statements
are equivalent:

(i) Every almost periodic infinitesimal flex of C is trivial;

(ii) Every strictly periodic infinitesimal flex of C is trivial, and Ω(C) = {1̂}.

Proof. (i) ⇒ (ii) This follows, since every phase-periodic infinitesimal flex is also an almost periodic
infinitesimal flex.

(ii)⇒ (i) Let u be an almost periodic infinitesimal flex. Then, by Theorem 3, for d dimensions, u is
a uniform limit of the sequence, (gn), of trigonometric sequences in AP (Zd × Fv,Cd) given by:

gn(k, vκ) = [h,Rk(K
(d)
n )]Zd , k ∈ Zd

where K
(d)
n , n = 1, 2, . . ., is the sequence of Bochner–Fejér kernels for u. By Lemma 2, each

trigonometric sequence, gn, is an infinitesimal flex of C, and so, by Lemma 1, each gn is a finite
linear combination of phase-periodic infinitesimal flexes of C. By hypothesis, the RUM spectrum, Ω(C),
contains the single multi-phase, 1̂, and so, every phase-periodic infinitesimal flex is strictly periodic. In
particular, gn is strictly periodic. It follows that u is strictly periodic and, hence, trivial, as desired.

We note that it follows from the proof of the theorem that any almost periodic infinitesimal flex is
approximable by a sequence of finite linear combinations of phase-periodic flexes, with approximation
in the sense of uniform convergence for the uniform norm given before in Theorem 3. For supercell
periodic flexes, one can be more specific, as in the following proposition, which essentially follows from
Theorem 1 and Lemma 1 (see also [8]).
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Proposition 5. Let C be a crystallographic bar-joint framework in Rd. Then, the space of supercell
periodic infinitesimal flexes for m-fold periodicity with m = (m1, . . . ,md) is equal to the linear span of:

{b⊗ eω : Φ(ω)b = 0, ω ∈ Ωm(C)}

where Ωm(C) is the finite subset of the RUM spectrum given by the multi-phases ω, whose k-th component
is an mk−th root of unity.

In particular, every supercell periodic infinitesimal flex for C is an almost periodic infinitesimal
flex for C.

The Bohr spectrum of an almost periodic infinitesimal flex, u, of the crystal framework, C, is the finite
or countable set given by:

Λ(u,C) = {λ ∈ [0, 1)d : [u, eω]Zd 6= 0, for ω = e2πiλ ∈ Td}

It follows from Theorem 3, Lemmas 1 and 2, as in the proof above, that Λ(u,C) is contained in the
RUM spectrum of C. Furthermore, since phase-periodic flexes are almost periodic, it follows that the
RUM spectrum as a subset of [0, 1)d is the union of the Bohr spectra of all almost periodic infinitesimal
flexes. Note that the spectra here depend on the translation group in the following manner. If C ′ has the
same underlying bar-joint framework as C, but full rank translation group T ′ ⊆ T , then the infinitesimal
flex, u, is represented anew as a sequence in AP (Zd × F ′v,Cd), where F ′v is a vertex motif for T ′. The
Bohr spectrum, Λ(u, C ′), is then the image of Λ(u, C) under the surjective map, Td → Td, induced by
the inclusion, T ′ ⊆ T . This follows the same relationship as that for the RUM spectrum noted in [8].
It also follows from this that the dimension of Ω(C), as a topological space or as an algebraic variety,
is independent of the translation group, and we refer to this integer, which takes values between zero and
d, as the RUM dimension of C.

We see in the next section that Ω(C), as a subset of [0, 1)d, often decomposes as a union of linear
components. This is the case, for example, in two dimensions if ΦC(z) is a square matrix function,
whose determinant polynomial, det ΦC(z), either vanishes identically or factorises into simple factors
of the form (zn − λwm) with |λ| = 1. It follows that each almost periodic flex, u, of C admits a finite
sum decomposition u1 + · · · + ur in which each component, ui, is an almost periodic flex, whose Bohr
spectrum lies in the i-th linear component. Such component flexes are partially periodic, being periodic
in certain directions of translational symmetry.

4. Gallery of Crystal Frameworks

We now exhibit a number of illustrative examples. The first two of these show two extreme cases:
firstly, where the RUM spectrum is a singleton, and secondly, where the RUM spectrum is Td.

Example 1. Let C = (G, p) be the crystallographic bar-joint framework with motif (Fv, Fe) and
translation group T indicated in Table 1. Simplifying earlier notation, the motif vertex is labelled v
and the motif edges are labelled e0 = v(0, 0)v(1, 0), e1 = v(1, 0)v(0, 1) and e2 = v(0, 0)v(0, 1). The
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translation group is T = {k1a1 + k2a2 : k1, k2 ∈ Z}, where a1 = (1, 0) and a2 = (1
2
,
√
3
2

). The symbol
function for C is,

ΦC(z, w) =




vx vy

e0 z̄ − 1 0

e1
1
2
(z̄ − w̄)

√
3
2

(w̄ − z̄)

e2
1
2
(w̄ − 1)

√
3
2

(w̄ − 1)




Note that ΦC(z, w) has rank two unless z = w = 1, and so, the RUM spectrum of C is the singleton,
(1, 1) ∈ T2. Furthermore, there are no non-trivial strictly periodic infinitesimal flexes of C, and so, by
Theorem 4, C is almost periodically infinitesimally rigid.

In fact, C is sequentially infinitesimally rigid in the sense that there exists an increasing chain of
finite subgraphs G1 ⊂ G2 ⊂ · · · of G, such that every vertex of G is contained in some Gn and each
sub-framework (Gn, p) is infinitesimally rigid. For example, for each n, take Gn to be the vertex-induced
subgraph on {v(k1, k2) : (k1, k2) ∈ Z2, |ki| ≤ n}. It follows that C admits no nontrivial infinitesimal
flexes and, so, is (absolutely) infinitesimally rigid as a bar-joint framework. In [22], we obtain a general
characterisation of countable simple graphs, G, whose locally generic placements are infinitesimally
rigid in this sense. The condition is that G should contain a vertex-complete chain of (2, 3)-tight
subgraphs. The crystal framework, C, may be viewed as a non-generic placement of such a graph,
which remains infinitesimally rigid despite the crystallographic symmetry.

Table 1. An infinitesimally rigid crystal framework.

Motif Translation group Crystal framework

v

e1

e0

e2

(1, 0)

(12 ,
√
3
2 )

If the symbol function, ΦC(z), is a square matrix, then the determinant of ΦC(z) gives rise to the crystal
polynomial, pC(z) (see [8]). It is shown in [6] that such a crystal framework has a local infinitesimal flex
if and only if the crystal polynomial, pC(z), is identically zero.

Example 2. Consider the crystal framework, C, with the motif and translation group shown in Table 2.
The motif vertices are v0 = (0, 0) and v1 = (1

2
, 1
2
). The motif edges are e0 = v0(0, 0)v0(1, 0),

e1 = v0(0, 0)v0(0, 1), e2 = v0(0, 1)v1(0, 0) and e3 = v0(1, 0)v1(0, 0). Note that the symbol function,
ΦC(z, w), is a square matrix,

ΦC(z, w) =




v0,x v0,y v1,x v1,y

e0 z̄ − 1 0 0 0

e1 0 w̄ − 1 0 0

e2 −1
2
w̄ 1

2
w̄ 1

2
−1

2

e3
1
2
z̄ −1

2
z̄ −1

2
1
2
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The determinant of ΦC(z, w) vanishes identically, and so, the RUM spectrum of C is T2. A local
infinitesimal flex of C is evident by defining u(v1) = (1, 1) and uv = 0 for all v 6= v1. A phase-periodic
infinitesimal flex of C for ω = (ω1, ω2) is obtained by taking u(v0, k) = 0 and u(v1, k) = ωk11 ω

k2
2 (1, 1)

for each k = (k1, k2) ∈ Z2. In particular, any finite linear combination of such phase-periodic flexes
will be an almost periodic infinitesimal flex for C.

Table 2. A crystal framework with the full rigid unit mode (RUM) spectrum.

Motif Translation group Crystal framework

v0

v1

e0

e1

e2

e3

(0, 1)

(1, 0)

Recall that a velocity vector u is supercell periodic for a crystal framework, C, if u(vκ, 0) = u(vκ, k)

for each motif vertex, vκ, and all k in a full rank subgroup of Zd.

Example 3. Let C be the crystallographic bar-joint framework with motif (Fv, Fe) and translation group
T indicated in Table 3. Note that C has symbol function,

ΦC(z, w) =




v0,x v0,y v1,x v1,y

e0 −1 0 z̄w 0

e1 0 −1 0 1

e2 z̄ − 1 z̄ − 1 0 0

e3 z̄ 0 −1 0

e4 0 w̄ 0 −1




The RUM spectrum of C is Ω(C) = {(1, 1), (−1, 1)}. Note that C does not admit any non-trivial
infinitesimal flexes, which are strictly periodic with respect to T . However, C does admit non-trivial
supercell periodic infinitesimal flexes, which may be constructed from the motif and RUM spectrum.
Assign velocity vectors u(v0, 0) and u(v1, 0) to the motif vertices and consider the multi-phase
ω = (ω1, ω2) = (−1, 1) ∈ Ω(C). Define for each k = (k1, k2) ∈ Z2,

u(v0, k) = ωku(v0, 0) = (−1)k1u(v0, 0)

u(v1, k) = ωku(v1, 0) = (−1)k1u(v1, 0)

Then, u is supercell periodic with respect to the full rank subgroup 2Z × Z. If, for example, we set
u(v0, 0) = (1,−1) and u(v1, 0) = (−1,−1), then u is also an infinitesimal flex for C. Note that u
consists of alternating rotational motions. In the notation of Proposition 5, u has m-fold periodicity,
where we have taken m = (2, 1); the multi-phase ω = (−1, 1) is contained in,

Ωm(C) = {ω ∈ Ω(C) : ω2
1 = 1, ω2 = 1}



Symmetry 2014, 6 320

and u is the ω-phase-periodic velocity vector, b⊗ eω, where b = (u(v0, 0), u(v1, 0)) ∈ ker ΦC(ω̄).

Table 3. A crystal framework with the RUM spectrum Ω(C) = {(1, 1), (−1, 1)}.

Motif Translation group Crystal framework

v0

v1

e0

e1 e2

e3
e4

(1, 1)

(0, 2)

Example 4. Let C be the crystallographic bar-joint framework in R2, which is indicated in Table 4.
The motif vertices are p(v0) = (0, 0) and p(v1) = (1

3
,−2

3
). The symbol function, ΦC(z, w) is,

ΦC(z, w) =




v0,x v0,y v1,x v1,y

e0 −1
3

2
3

1
3

−2
3

e1 z̄ − 1 0 0 0

e2 0 w̄ − 1 0 0

e3 z̄ − w̄ w̄ − z̄ 0 0

e4 0 0 z̄ − 1 0

e5 0 0 0 w̄ − 1

e6 0 0 z̄ − w̄ w̄ − z̄




The RUM spectrum, Ω(C), is the singleton, (1, 1) ∈ T2. However, every strictly periodic velocity field, u,
with (p(v0)−p(v1))·(u(v0)−u(v1)) = 0 and u(v0) 6= u(v1) is a non-trivial strictly periodic infinitesimal
flex of C.

As we have noted, the RUM dimension of a crystal framework, C, is the dimension of the RUM
spectrum, Ω(C), as a real algebraic variety (see [8]).

Table 4. A crystal framework with Ω(C) = {(1, 1)} and nontrivial strictly periodic flexes.

Motif Translation group Crystal framework

v0

v1

e0
(1, 0)

(0, 1)
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Example 5. The crystal framework, C, illustrated in Table 5 has motif vertices v0 = (0, 0), v1 = (1
2
,
√
3
2

)

and v2 = (0, 1). The symbol function is a square matrix,

Φ(z, w) =




v0,x v0,y v1,x v1,y v2,x v2,y

e0 −1
2
−
√
3
2

1
2

√
3
2

0 0

e1 0 −1 0 0 0 1

e2
1
2
w̄

√
3
2
w̄ 0 0 −1

2
−
√
3
2

e3 0 w̄ 0 −1 0 0

e4 −1
2

√
3
2

0 0 1
2
wz̄ −

√
3
2
wz̄

e5
1
2
z̄ −

√
3
2
z̄ −1

2

√
3
2

0 0




The crystal polynomial factors in to linear parts,

pC(z, w) = (z − 1)(w − 1)(z − w)

and so, the RUM spectrum is a proper subset of T2, whose representation in [0, 1)2 consists of the points
(s,t) in the line segments given by:

s = 0, t = 0, s = t

In particular, C is almost periodically infinitesimally flexible, but has no local infinitesimal flexes.
Furthermore, the RUM dimension of C is one. It follows that every almost periodic infinitesimal flex
decomposes as a sum u1 + u2 + u3 of three almost periodic flexes corresponding to this ordered
decomposition. Furthermore, u1, with the Bohr spectrum in the line s = 0, is periodic in the direction
of the period vector a1 = (1, 0), while u2, with the Bohr spectrum in the line t = 0, is periodic in the
direction of the period vector a2 = (1/2, (2 +

√
3)/2), and u3, with the Bohr spectrum, in the line s = t

is periodic in the direction a1 − a2.

Table 5. A crystal framework with RUM dimension one.

Motif Translation group Crystal framework

v0

v1
v2

e0
e1

e2 e3

e4

e5

(1, 0)

(12 ,
2+
√
3

2 )
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Example 6. Let C be the crystal framework illustrated in Table 6. The symbol function, Φ(z, w), is the
square matrix,




v1,x v1,y v2,x v2,y v3,x v3,y v4,x v4,y v5,x v5,y v6,x v6,y

e1 0 0 0 0 0 0 z̄ 1
2
z̄ 0 0 −1 −1

2

e2 −1
2
−1 0 0 1

2
1 0 0 0 0 0 0

e3 0 0 1
2

0 0 0 −1
2

0 0 0 0 0

e4 0 0 0 0 −1
2

0 1
2
z̄ 0 0 0 0 0

e5 0 0 0 0 0 0 −1 1
2

0 0 1 −1
2

e6 0 1
2
w̄ 0 0 0 0 0 0 0 −1

2
0 0

e7 0 0 0 0 0 0 −1 −1
2

1 1
2

0 0

e8 0 0 0 0 0 0 z̄ −1
2
z̄ −1 1

2
0 0

e9
1
2
w̄ w̄ −1

2
−1 0 0 0 0 0 0 0 0

e10 −1
2
w̄ w̄ 0 0 1

2
−1 0 0 0 0 0 0

e11 0 −1
2

0 0 0 0 0 0 0 0 0 1
2

e12
1
2

−1 −1
2

1 0 0 0 0 0 0 0 0




The crystal polynomial is:

pC(z, w) = (z − 1)(z + 1)(w − 1)(w + 1)

As in the last example, the RUM spectrum decomposes as a union of linear subsets. In the [0, 1)2

representation, it yields two horizontal and two vertical lines. From this, it follows that any almost
periodic infinitesimal flex decomposes as a sum of two flexes, each of which is supercell periodic in one
of the axial directions.

The following two examples, shown in Tables 7 and 8, have the same underlying graph and the same
crystallographic point group, the dihedral group, C2v. However, the former has RUM dimension one
and is linearly indecomposable while the latter has RUM dimension zero. Note that four-regular crystal
frameworks such as these have a square symbol function.

Table 6. A crystal framework with supercell periodic flexes.

Motif Translation group Crystal framework
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Example 7. Let C be the crystal framework with |Fe| = d|Fv| illustrated in Table 7. The symbol function,
ΦC(z, w), is,

Symmetry 2014, 6 16

Table 6. A crystal framework with supercell periodic flexes.

Motif Translation group Framework

Example 7. Let C be the crystal framework with |Fe| = d|Fv| illustrated in Table 7. The symbol function
ΦC(z, w) is,



−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1
2 −

√
3

2
1
2

√
3

2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2 −

√
3

2 −1
2

√
3

2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

√
3

2 −1
2 −

√
3

2 0 0 0 0 0 0

1
2 −

√
3

2 0 0 0 0 0 0 0 0 −1
2

√
3

2 0 0 0 0 0 0

−1
2

√
3

2 0 0 0 0 0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0

0 0 1
2

√
3

2 0 0 0 0 0 0 0 0 −1
2 −

√
3

2 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 z̄ 0 0 0

0 0 0 0 −1
2

√
3

2 0 0 0 0 0 0 0 0 z̄
2 −

√
3z̄
2 0 0

0 0 0 0 −1
2 −

√
3

2 0 0 0 0 0 0 0 0 0 0 z̄
2

√
3z̄
2

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 z̄ 0

0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0 − w̄
2

√
3w̄
2 0 0 0 0

0 0 0 0 0 0 0 0 −1
2 −

√
3

2 0 0 w̄
2

√
3w̄
2 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0 −1
2

√
3

2

0 0 0 0 0 0 0 0 0 0 1
2

√
3

2 0 0 −1
2 −

√
3

2 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0




The crystal polynomial factorizes in to linear factors,

pC(z, w) = (z + 1)(z − 1)3

The crystal polynomial factorizes in to linear factors,

pC(z, w) = (z + 1)(z − 1)3

Table 7. A crystal framework with the linearly decomposable RUM spectrum.

Motif Translation group Crystal framework

π
3
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Example 8. Let C be the crystal framework illustrated in Table 8. The framework motif satisfies
|Fe| = d|Fv|, and so, the symbol function, ΦC(z, w), is a square matrix,
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Table 7. A crystal framework with linearly decomposable RUM spectrum.

Motif Translation group Crystal framework

π
3

Example 8. Let C be the crystal framework illustrated in Table 8. The framework motif satisfies |Fe| =
d|Fv| and so the symbol function ΦC(z, w) is a square matrix,




−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −b −a b a 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b −a −b a 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 b a −b −a 0 0 0 0 0 0

b −a 0 0 0 0 0 0 0 0 −b a 0 0 0 0 0 0

−1
2

√
3

2 0 0 0 0 0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0

0 0 1
2

√
3

2 0 0 0 0 0 0 0 0 −1
2 −

√
3

2 0 0 0 0

0 0 −a b 0 0 0 0 0 0 0 0 0 0 az̄ −bz̄ 0 0

0 0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 0 0 z̄√
2
− z̄√

2
0 0

0 0 0 0 − 1√
2
− 1√

2
0 0 0 0 0 0 0 0 0 0 z̄√

2
z̄√
2

0 0 0 0 0 0 −a b 0 0 0 0 0 0 0 0 az̄ −bz̄

0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0 − w̄
2

√
3w̄
2 0 0 0 0

0 0 0 0 0 0 0 0 −1
2 −

√
3

2 0 0 w̄
2

√
3w̄
2 0 0 0 0

0 0 0 0 0 0 0 0 a b 0 0 0 0 0 0 −a −b

0 0 0 0 0 0 0 0 0 0 1√
2
− 1√

2
0 0 0 0 − 1√

2
1√
2

0 0 0 0 0 0 0 0 0 0 1√
2

1√
2

0 0 − 1√
2
− 1√

2
0 0

a −b 0 0 0 0 0 0 0 0 0 0 0 0 −a b 0 0




where a =
√
3+1
2
√
2

and b =
√
3−1
2
√
2

. The crystal polynomial takes the form,

pC(z, w) = z4w − 1√
3
z3w2 +

(√
3

2
− 2

)
z3w − 1

2
√

3
z3 +

(
1

2
+

1

2
√

3

)
z2w2

+
1

2
√

3
z2w − 1√

3
z2 − 1

2
zw2 +

(
3

2
− 1√

3

)
zw +

1√
3
z − 1

2
w

which leads to a finite RUM spectrum.

Table 8. A crystal framework with finite RUM spectrum.

Motif Translation group Crystal framework

5π
12
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Example 9. The crystal framework illustrated in Table 9 is based on a motif consisting of a regular
octagon of equilateral triangles. The crystal polynomial is,

pC(z, w) = p1(z, w)p2(z, w)

where
p1(z, w) = (

√
3−
√

2)z2w − zw2 + 2(
√

2−
√

3 + 1)zw + (
√

3−
√

2)w − z

p2(z, w) = (
√

3 +
√

2)z2w − zw2 − 2(
√

2 +
√

3− 1)zw + (
√

3 +
√

2)w − z

The RUM spectrum consists of points (z, w) ∈ T2 that satisfy <(w) = a<(z) + (1 − a) for either
a =
√

3−
√

2 or a =
√

3 +
√

2. This set is illustrated in Figure 1 as a subset of the torus [0, 1)2, which
consists of four closed curves with the common intersection point (0, 0).

Table 9. A crystal framework with the linearly indecomposable RUM spectrum.

Motif Translation group Crystal framework

Let C̃ be the basic one-dimensional grid framework for the lattice, Z in R. For any crystal
framework, C in Rd, one may construct a product framework C̃ = C × CZ in Rd+1, whose intersection
with the hyperplanes Rd × {n} are copies of C and where these copies are connected by the edges
((p(v), n), (p(v), n + 1)). In the case that C has square matrix symbol function ΦC(z1, . . . , zd), it is
straightforward to verify that:

pC̃(z1, . . . , zd+1) = (zd+1 − 1)|Fv |pC(z1, . . . , zd)

This leads readily to the identification of the RUM spectrum in T3 of such frameworks. Further,
three-dimensional examples not of this product form may be found in Power [8] and Wegner [12].

Example 10. Let C̃ be the three-dimensional framework derived from the regular octagon framework of
Example 9. Then the crystal polynomial admits a three-fold factorisation and it follows that the RUM
spectrum has the topological structure of four two-dimensional tori connected over the common circle
of points (1, 1, z) in T3.
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Figure 1. The RUM spectrum for Example 9.

Further Work

The examples above and the foregoing analysis suggest a number of intriguing lines of investigation.
On the computational side, it would be of interest to explore the variation of the RUM spectrum with

respect to parameters determining distinct placements, as in the pair given in Tables 7 and 8. Parameter
curves of constant RUM dimension and their connections with crystallographic symmetry would be of
particular interest.

On the theoretical side, it is natural now to seek characterisations of almost periodic infinitesimal
rigidity and flexibility for frameworks that are almost periodic or quasicrystallographic. One class
of such frameworks would require a vertex set that is an almost periodic perturbation (or even
an incommensurate periodic perturbation) of a periodic framework vertex set, with the bar lengths
adjusted accordingly.
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