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A weak∗-topological dichotomy with applications
in operator theory
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Abstract

Denote by [0, ω1) the locally compact Hausdorff space consisting of all countable ordinals,
equipped with the order topology, and let C0[0, ω1) be the Banach space of scalar-valued,
continuous functions which are defined on [0, ω1) and vanish eventually. We show that a weak∗-
compact subset of the dual space of C0[0, ω1) is either uniformly Eberlein compact, or it contains
a homeomorphic copy of a particular form of the ordinal interval [0, ω1].

This dichotomy yields a unifying approach to most of the existing studies of the Banach
space C0[0, ω1) and the Banach algebra B(C0[0, ω1)) of bounded, linear operators acting on it,
and it leads to several new results, as well as to stronger versions of known ones. Specifically,
we deduce that a Banach space which is a quotient of C0[0, ω1) can either be embedded in a
Hilbert-generated Banach space, or it is isomorphic to the direct sum of C0[0, ω1) and a subspace
of a Hilbert-generated Banach space; and we obtain several equivalent conditions describing the
Loy–Willis ideal M , which is the unique maximal ideal of B(C0[0, ω1)), including the following:
an operator belongs to M if and only if it factors through the Banach space (

⊕
α<ω1

C[0, α])c0 .
Among the consequences of these characterizations of M is that M has a bounded left
approximate identity; this resolves a problem left open by Loy and Willis.

1. Introduction and statement of main results

The main motivation behind this paper is a desire to deepen our understanding of the
Banach algebra B(C0[0, ω1)) of bounded, linear operators acting on the Banach space C0[0, ω1)
of scalar-valued, continuous functions which are defined on the locally compact ordinal
interval [0, ω1) and vanish eventually. Our strategy is to begin at a topological level, where
we establish a dichotomy for weak∗-compact subsets of the dual space of C0[0, ω1), and then
use this dichotomy to obtain information about C0[0, ω1) and the operators acting on it, notably
several equivalent conditions characterizing the unique maximal ideal of B(C0[0, ω1)).

The Banach space C0[0, ω1) is of course isometrically isomorphic to the hyperplane
{f ∈ C[0, ω1] : f(ω1) = 0} of the Banach space C[0, ω1] of scalar-valued, continuous functions
on the compact ordinal interval [0, ω1], and C0[0, ω1) and C[0, ω1] are isomorphic. Since our
focus is on properties that are preserved under Banach-space isomorphism, we shall freely
alternate between these two spaces in the following summary of the history of their study.

Semadeni [34] was the first to realize that C[0, ω1] is an interesting Banach space, showing
that it is not isomorphic to its Cartesian square. This resolved an open problem going back
to Banach; another such example is given by James’s quasi-reflexive Banach space, as Bessaga
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and Pe�lczyński [7] showed around the same time. The Banach-space structure of C0[0, ω1)
was subsequently explored in much greater depth by Alspach and Benyamini [2], whose main
conclusion is that C0[0, ω1) is primary, in the sense that whenever C0[0, ω1) is decomposed into a
direct sum of two closed subspaces, one of these subspaces is necessarily isomorphic to C0[0, ω1).

Loy and Willis [26] initiated the study of the Banach algebra B(C[0, ω1]) from an automatic-
continuity point of view, proving that each derivation from B(C[0, ω1]) into a Banach
B(C[0, ω1])-bimodule is automatically continuous. Their result was subsequently generalized
by Ogden [29], who established the automatic continuity of each algebra homomorphism
from B(C[0, ω1]) into a Banach algebra.

Loy and Willis’s starting point is the clever identification of a maximal ideal M of
codimension 1 in B(C[0, ω1]) (see equation (2.4) for the precise definition of M ), while their
main technical step [26, Theorem 3.5] is the construction of a bounded right approximate
identity in M . The first- and third-named authors [21] recently showed that M is the unique
maximal ideal of B(C[0, ω1]), and named it the Loy–Willis ideal. We shall here give a new
proof of this result, together with several new characterizations of the Loy–Willis ideal. As a
consequence, we obtain that M has a bounded left approximate identity, thus complementing
Loy and Willis’s key result mentioned above.

The tools that we shall use come primarily from point-set topology and Banach space theory,
and several of our results may be of independent interest to researchers in those areas, as well
as to operator theorists.

Before entering into a more detailed description of this paper, let us introduce four notions
that will play important roles throughout.

(i) A topological space K is Eberlein compact if it is homeomorphic to a weakly compact
subset of a Banach space; and K is uniformly Eberlein compact if it is homeomorphic to a
weakly compact subset of a Hilbert space.

(ii) A Banach space X is weakly compactly generated if it contains a weakly compact subset
whose linear span is dense in X; and X is Hilbert-generated if there exists a bounded, linear
operator from a Hilbert space onto a dense subspace of X.

These notions are relevant for our purposes primarily because the ordinal interval [0, ω1] is
one of the ‘simplest’ compact spaces which is not Eberlein compact. They are related as
follows: uniform Eberlein compactness clearly implies Eberlein compactness, and likewise
Hilbert generation implies weakly compact generation. A much deeper result, due to Amir
and Lindenstrauss [3], states that a compact space K is Eberlein compact if and only if the
Banach space C(K) is weakly compactly generated; and the other two notions enjoy a similar
relationship, as detailed in Theorem 2.6. The class of Hilbert-generated Banach spaces was
first studied systematically in [11].

We shall now outline how this paper is organized and state its main conclusions precisely.
Section 2 contains details of our notation, key elements of previous work and some preliminary
results. In Section 3, we proceed to study the weak∗-compact subsets of the dual space of
C0[0, ω1), proving in particular the following topological dichotomy.

Theorem 1.1 (Topological dichotomy). Exactly one of the following two alternatives holds
for every weak∗-compact subset K of C0[0, ω1)∗ :

(I) K is uniformly Eberlein compact;
(II) K contains a homeomorphic copy of [0, ω1] of the form

{ρ+ λδα : α ∈ D} ∪ {ρ}, (1.1)

where ρ ∈ C0[0, ω1)∗, λ is a non-zero scalar, δα denotes the Dirac measure at α and D
is a closed and unbounded subset of [0, ω1).
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Remark 1.2. We are grateful to Ondřej Kalenda for showing us how the following weak
version of the dichotomy, above, can be deduced from known results:

a weak∗-compact subset K of C0[0, ω1)∗ is either Eberlein compact, or it contains
a homeomorphic copy of [0, ω1].

Indeed, combining [18, Proposition 3.3 and Theorems 3.5 and 3.7], we see that K is
the continuous image of a Valdivia compact space. Hence, by [17], either K contains a
homeomorphic copy of [0, ω1], or K is Corson compact, and in the latter case K is Eberlein
compact by [30] because it is Radon–Nikodým compact. (We refer the reader to, for example,
[12] for details of the undefined terminology used here.)

It should be stressed that this dichotomy is weaker than Theorem 1.1, not only because
Eberlein compactness is weaker than its uniform counterpart, but also because the copy of
[0, ω1] found in Theorem 1.1(II) has the specific form (1.1). The latter fact will play a key
role in our operator-theoretic applications of Theorem 1.1 because it enables us to understand
exactly how distinct copies of [0, ω1] obtained in this way interact. We do not know whether such
results can be deduced solely from Kalenda’s dichotomy, since it offers no explicit description
of the copies of [0, ω1] that can be found in the non-Eberlein case. We note, however, that
Theorem 1.1 implies that inside any homeomorphic copy of [0, ω1] in C0[0, ω1)∗, there is one
which has the form (1.1).

Remark 1.3. We are grateful to the referee for pointing out that, combining Theorem 1.1
with known results, we obtain the equivalence of the following six conditions concerning a
weak∗-compact subset K of C0[0, ω1)∗ :

(i) K is not angelic (see, for example, [12, Definition 4.48] for the definition of this notion);
(ii) K is not Corson compact (see, for example, [12, Definition 12.44] for the definition);

(iii) K is not Eberlein compact;
(iv) K is not uniformly Eberlein compact;
(v) there are ρ ∈ K, a non-zero scalar λ and a closed and unbounded subset D of [0, ω1)

such that ρ+ λδα ∈ K for each α ∈ D;
(vi) K contains a homeomorphic copy of [0, ω1].

Indeed, a proof of (i)⇒(ii) can be found, for example, in [12, Exercise 12.55]; (ii)⇒(iii) is a
standard consequence of the work of Amir and Lindenstrauss [3]; (iii)⇒(iv) is trivial; (iv)⇒(v)
follows immediately from Theorem 1.1; (v)⇒(vi) is easy (see Lemma 3.1 for details), and finally
(vi)⇒(i) is a consequence of the fact that ω1 is not the limit of any sequence of countable
ordinals.

In Section 4, we turn our attention to the structure of operators acting on C0[0, ω1). In
the case where T is a bounded, linear surjection from C0[0, ω1) onto an arbitrary Banach
space X, the adjoint T ∗ of T induces a weak∗-homeomorphism of the unit ball of X∗ onto a
bounded subset of C0[0, ω1)∗ and hence the above topological dichotomy leads to the following
operator-theoretic dichotomy.

Theorem 1.4 (Operator-theoretic dichotomy). LetX be a Banach space, and suppose that
there exists a bounded, linear surjection T : C0[0, ω1) → X. Then exactly one of the following
two alternatives holds:

(I) X embeds in a Hilbert-generated Banach space;
(II) the identity operator on C0[0, ω1) factors through T, and X is isomorphic to the direct

sum of C0[0, ω1) and a subspace of a Hilbert-generated Banach space.
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As another consequence of Theorem 1.1, we obtain the following result.

Theorem 1.5. For each bounded, linear operator T on C0[0, ω1), there exist a unique
scalar ϕ(T ) and a closed and unbounded subset D of [0, ω1) such that

(Tf)(α) = ϕ(T )f(α) (f ∈ C0[0, ω1), α ∈ D). (1.2)

Moreover, the mapping T �→ ϕ(T ) is linear and multiplicative, and it is thus a character on
the Banach algebra B(C0[0, ω1)).

We shall call this mapping ϕ the Alspach–Benyamini character because, after having
discovered the above theorem, we found out that it can also be deduced from [2, page 76,
line 6 from below].

Theorem 1.5 is the key step towards our main operator-theoretic result, which gives a list of
equivalent conditions, each describing the Loy–Willis ideal M of B(C0[0, ω1)).

Theorem 1.6. The following eight conditions are equivalent for each bounded, linear
operator T on C0[0, ω1) :

(i) T belongs to the Loy–Willis ideal M ;
(ii) there is a closed and unbounded subset D of [0, ω1) such that T ∗(δα)({α}) = 0 for each

α ∈ D, where δα denotes the Dirac measure at α;
(iii) ϕ(T ) = 0, where ϕ denotes the Alspach–Benyamini character introduced in

Theorem 1.5;
(iv) T factors through the Banach space (

⊕
α<ω1

C[0, α])c0 , where C[0, α] denotes the
Banach space of scalar-valued, continuous functions on the set of ordinals not
exceeding α, equipped with the order topology;

(v) the range of T is contained in a Hilbert-generated subspace of C0[0, ω1);
(vi) the range of T is contained in a weakly compactly generated subspace of C0[0, ω1);

(vii) T does not fix an isomorphic copy of C0[0, ω1);
(viii) the identity operator on C0[0, ω1) does not factor through T .

Remark 1.7. (1) The equivalence of conditions (i) and (viii) of Theorem 1.6 is the main
result of a recent paper by the first- and third-named authors [21]. Our proof of Theorem 1.6
will not depend on that result, and it will thus provide an alternative proof of this equivalence.

(2) The equivalence of conditions (i) and (iv) of Theorem 1.6 disproves the conjecture stated
immediately after [21, Equation (5.4)].

Theorem 1.6 has a number of interesting consequences, as we shall now explain. The proofs
of these results will be given in the final part of Section 4. We begin with what is arguably the
most important consequence of Theorem 1.6. It relies on the following notion.

Definition 1.8. A net (eγ)γ∈Γ in a Banach algebra A is a bounded left approximate
identity if supγ∈Γ ‖eγ‖ <∞ and the net (eγa)γ∈Γ converges to a for each a ∈ A . A bounded
right approximate identity is defined analogously, and a bounded two-sided approximate
identity is a net which is simultaneously a bounded left and right approximate identity.



A TOPOLOGICAL DICHOTOMY WITH APPLICATIONS 5

A well-known theorem of Dixon [10, Proposition 4.1] states that a Banach algebra which
has both a bounded left and a bounded right approximate identity has a bounded two-sided
approximate identity. As already mentioned, Loy and Willis constructed a bounded right
approximate identity in M . Although they did not state it formally, their result immediately
raises the question whether M has a bounded left (and hence two-sided) approximate identity.
We can now provide a positive answer to this question.

Corollary 1.9. The Loy–Willis ideal M contains a net (QD)D∈Γ of projections, each
having norm at most 2, such that, for each operator T ∈ M , there isD0 ∈ Γ for whichQDT = T
whenever D � D0. Hence, (QD)D∈Γ is a bounded left approximate identity in M .

When discovering this result, we were surprised to find that the net (QDT )D∈Γ does not just
converge to T , but it actually equals T eventually. We have, however, subsequently realized
that the even stronger, two-sided counterpart of this phenomenon occurs in the unique maximal
ideal of the C∗-algebra B(H), where H denotes the (non-separable) Hilbert space which has
an orthonormal basis of cardinality ℵ1; see Example 4.6 for details.

Further consequences of Theorem 1.6 include generalizations of two classical Banach-space-
theoretic results. The first is Semadeni’s seminal theorem [34], which states that C0[0, ω1) is
not isomorphic to its square.

Corollary 1.10. Let m,n ∈ N, and suppose that C0[0, ω1)m is isomorphic to either a
subspace or a quotient of C0[0, ω1)n. Then m � n.

The other is Alspach and Benyamini’s main theorem [2, Theorem 1] as it applies to C0[0, ω1):
this Banach space is primary.

Corollary 1.11. For each bounded, linear projection P on C0[0, ω1), either the kernel
of P is isomorphic to C0[0, ω1) and the range of P is isomorphic to a subspace of the Banach
space (

⊕
α<ω1

C[0, α])c0 , or vice versa.

To state another Banach-space-theoretic consequence of Theorem 1.6, we require the
following notion. A Banach space X is complementably homogeneous if, whenever W is a
closed subspace of X such that W is isomorphic to X, there exists a closed, complemented
subspace Y of X such that Y is isomorphic to X and Y is contained in W .

Corollary 1.12. The Banach space C0[0, ω1) is complementably homogeneous.

This conclusion may also be deduced from [2, Lemma 1.2 and Proposition 2].
Combining Theorem 1.6 with the techniques developed by Willis [36], we obtain a very short

proof of Ogden’s main theorem [29, Theorem 6.18] as it applies to the ordinal ω1.

Corollary 1.13 (Ogden). Each algebra homomorphism from B(C0[0, ω1)) into a Banach
algebra is automatically continuous.

Our final result relies on a suitable modification of work of the third-named author [25] and
involves the following two purely algebraic notions. The commutator of a pair of elements a
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and b of an algebra A is given by [a, b] = ab− ba. A trace on A is a scalar-valued, linear
mapping τ defined on A such that τ(ab) = τ(ba) for each pair a, b ∈ A .

Corollary 1.14. Every operator belonging to the Loy–Willis ideal is the sum of at most
three commutators. Hence, a scalar-valued, linear mapping τ defined on B(C0[0, ω1)) is a trace
(if and) only if τ is a scalar multiple of the Alspach–Benyamini character. In particular, each
trace on B(C0[0, ω1)) is automatically continuous.

Remark 1.15. Building on Corollary 1.14, one can prove that the K0-group of the Banach
algebra B(C0[0, ω1)) is isomorphic to Z by arguments similar to those given in [23, Section 4].
A full proof of this result will be given in [20].

2. Preliminaries

2.1. General conventions

Our notation and terminology are fairly standard. We shall now outline our most important
conventions. Let X be a Banach space, always supposed to be over the scalar field K, where
K = R or K = C. We write BX for the closed unit ball of X, and denote by 〈 · , · 〉 the duality
bracket between X and its dual space X∗; we identify X with its canonical image in the bidual
space X∗∗.

By an operator, we understand a bounded, linear mapping between Banach spaces. We write
B(X) for the Banach algebra of all operators on X, and B(X,Y ) for the Banach space of all
operators from X to some other Banach space Y . For an operator T ∈ B(X,Y ), we denote by
T ∗ ∈ B(Y ∗,X∗) its adjoint, while IX is the identity operator on X. We say that an operator
T ∈ B(X,Y ) is bounded below by a constant c > 0 if ‖Tx‖ � c‖x‖ for each x ∈ X.

Given Banach spaces W , X, Y and Z and operators S ∈ B(W,X) and T ∈ B(Y,Z), we
say that S factors through T if S = UTR for some operators R ∈ B(W,Y ) and U ∈ B(Z,X).
The following elementary characterization of the operators that the identity operator factors
through is well known and easy to verify directly, or it can be deduced from [24, Lemma 3.6].

Lemma 2.1. Let X,Y and Z be Banach spaces, and let T : Y → Z be an operator. Then
the identity operator on X factors through T if and only if Y contains a closed subspace W
such that:

(i) W is isomorphic to X;
(ii) the restriction of T to W is bounded below;

(iii) the image of W under T is complemented in Z.

For a Hausdorff space K, we write C(K) for the vector space of scalar-valued, continuous
functions on K. In the case where K is locally compact, C0(K) denotes the subspace
consisting of those functions f ∈ C(K) which vanish eventually, in the sense that the set
{x ∈ K : |f(x)| � ε} is compact for each ε > 0. Then C0(K) is a Banach space with respect to
the supremum norm. Alternatively, one may define C0(K) as C0(K) = {f ∈ C(K̃) : f(∞) = 0},
where K̃ = K ∪ {∞} is the one-point compactification of K. By the Riesz Representation
Theorem, we may identify the dual space of C0(K) with the Banach space of scalar-valued,
regular Borel measures on K, and we shall therefore freely use measure-theoretic terminology
and notation when dealing with functionals on C0(K). Given x ∈ K, we denote by δx the Dirac
measure at x.
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Lower-case Greek letters such as α, β, γ, ξ, η and ζ denote ordinals. The first infinite ordinal
is ω, while the first uncountable ordinal is ω1. By convention, we consider 0 a limit ordinal.
Given a pair of ordinals α � β, we write [α, β] and [α, β) for the sets of ordinals γ such that
α � γ � β and α � γ < β, respectively.

For a non-zero ordinal α, we equip the ordinal interval [0, α) with the order topology, which
turns it into a locally compact Hausdorff space that is compact if and only if α is a successor
ordinal. (According to the standard construction of the ordinals, the interval [0, α) is equal
to the ordinal α; we use the symbol [0, α) to emphasize its structure as a topological space.)
Since [0, α) is scattered, a classical result of Rudin [33] states that each regular Borel measure
on [0, α) is purely atomic, so that the Riesz Representation Theorem implies that the dual
space of C0[0, α) is isometrically isomorphic to the Banach space �1([0, α)) of scalar-valued,
absolutely summable functions defined on [0, α) via the mapping

g �−→
∑
β<α

g(β)δβ , �1([0, α)) → C0[0, α)∗. (2.1)

This implies in particular that we can associate with each operator T on C0[0, α) a scalar-
valued [0, α) × [0, α)-matrix (Tβ,γ)β,γ<α which has absolutely summable rows. The βth row of
this matrix is simply the Rudin representation of the functional T ∗δβ ; that is, (Tβ,γ)γ<α is the
uniquely determined element of �1([0, α)) such that

T ∗δβ =
∑
γ<α

Tβ,γδγ . (2.2)

This matrix representation plays an essential role in the original definition of the Loy–Willis
ideal, which is our next topic.

2.2. The Loy–Willis ideal

Suppose that α = ω1 + 1 in the notation of the previous paragraph, and note that
C0[0, ω1 + 1) = C[0, ω1]. Using the fact that every scalar-valued, continuous function on [0, ω1]
is eventually constant, Loy and Willis [26, Proposition 3.1] showed that, for each operator T
on C[0, ω1], the function corresponding to the final column of its matrix,

kT
ω1

: β �−→ Tβ,ω1 , [0, ω1] → K, (2.3)

is continuous on [0, ω1), and the limit limβ→ω1 Tβ,ω1 always exists. (This is clearly the best
possible conclusion because the function corresponding to final column of the matrix associated
with the identity operator is equal to the indicator function 1{ω1}, which is discontinuous at ω1.)
Hence, as Loy and Willis observed, the set

M = {T ∈ B(C[0, ω1]) : kT
ω1

is continuous} (2.4)

is a subspace of B(C[0, ω1]) of codimension 1. Since the composition of operators on C[0, ω1]
corresponds to matrix multiplication, in the sense that

(ST )α,γ =
∑

β�ω1

Sα,βTβ,γ (S, T ∈ B(C[0, ω1]), α, γ ∈ [0, ω1]),

M is a left ideal, named the Loy–Willis ideal in [21]. Having codimension 1, M is automatically
a maximal and two-sided ideal of B(C[0, ω1]).

Consequently, the Banach algebra B(C0[0, ω1)) also contains a maximal ideal of codimension
1 because it is isomorphic to B(C[0, ω1]). Loy and Willis’s definition (2.4) does not carry over
to B(C0[0, ω1)) because the matrix of an operator on C0[0, ω1) has no final column. Instead
we may define the Loy–Willis ideal of B(C0[0, ω1)) as follows. (A more explicit definition will
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emerge after Proposition 2.5.) Choose an isomorphism U of C[0, ω1] onto C0[0, ω1), and declare
that an operator T on C0[0, ω1) belongs to the Loy–Willis ideal of B(C0[0, ω1)) if and only if
the operator U−1TU on C[0, ω1] belongs the original Loy–Willis ideal (2.4). Since the latter is
a two-sided ideal, this definition is independent of the choice of the isomorphism U . We shall
denote by M the Loy–Willis ideal of B(C0[0, ω1)) defined in this way; this should not cause
any confusion with the original Loy–Willis ideal given by (2.4).

2.3. The ideal of Semadeni operators

The purpose of this section is to introduce a new closed operator ideal (in the sense of Pietsch),
which generalizes Loy and Willis’s definition (2.4) to operators between arbitrary Banach
spaces.

For a Banach space X, Semadeni [34, p. 82] considered the subspace

Xs = {F ∈ X∗∗ : 〈fn, F 〉 → 0 as n→ ∞ for each weak∗-null sequence (fn)n∈N in X∗}
consisting of the weak∗-sequentially continuous functionals on X∗. This is clearly a closed
subspace of X∗∗, and it contains the canonical copy of X.

Lemma 2.2. Let X and Y be Banach spaces. Then T ∗∗[Xs] ⊆ Ys for each operator
T : X → Y .

Proof. Given F ∈ Xs and a weak∗-null sequence (fn)n∈N in Y ∗, the weak∗-continuity
of T ∗ implies that the sequence (T ∗fn)n∈N is weak∗-null in X∗. Therefore, the sequence
(〈T ∗fn, F 〉)n∈N = (〈fn, T

∗∗F 〉)n∈N tends to 0, which shows that T ∗∗F ∈ Ys.

Definition 2.3. Let X and Y be Banach spaces. An operator T : X → Y is a Semadeni
operator if T ∗∗ maps Xs into the canonical copy of Y in Y ∗∗. We write Sem(X,Y ) for the set
of Semadeni operators from X to Y .

Proposition 2.4. The class Sem is a closed operator ideal which contains the ideal of
weakly compact operators.

Proof. Let W , X, Y and Z be Banach spaces. We see immediately that Sem(X,Y ) is
a closed subspace of B(X,Y ) because Y is a closed subspace of Y ∗∗. Moreover, given R ∈
B(W,X), S ∈ Sem(X,Y ) and T ∈ B(Y,Z), we may apply Lemma 2.2 to obtain

(TSR)∗∗[Ws] ⊆ T ∗∗[S∗∗[Xs]] ⊆ T ∗∗[Y ] = T [Y ] ⊆ Z,

which shows that TSR ∈ Sem(W,Z). Finally, Gantmacher’s characterization of the weakly
compact operators as those operators T : X → Y for which T ∗∗[X∗∗] ⊆ Y (see, for example,
[28, Theorem 3.5.8]) implies that every weakly compact operator is a Semadeni operator.

Proposition 2.5. The Loy–Willis ideal M defined by (2.4) is equal to Sem(C[0, ω1]).

Proof. By (2.1), we may identify C[0, ω1]∗∗ with the Banach space �∞([0, ω1]) of scalar-
valued, bounded functions defined on [0, ω1]. Under this identification, we have

C[0, ω1]s = C[0, ω1] ⊕ K1{ω1}. (2.5)
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This may be deduced from [34, Theorem 1], but for completeness we shall give a short
argument. Each function F ∈ C[0, ω1]s is sequentially continuous, and hence continuous at
each countable ordinal. Consequently, the net (F (α))α<ω1 is Cauchy and thus convergent, and
the function F + (limα→ω1 F (α) − F (ω1))1{ω1} is continuous on [0, ω1], which shows that F
belongs to the right-hand side of (2.5).

Conversely, it suffices to verify that 1{ω1} ∈ C[0, ω1]s. To this end, suppose that (μn)n∈N is
a weak∗-null sequence in C[0, ω1]∗. By (2.1), each μn has countable support, so that we can
choose a countable ordinal α such that μn({β}) = 0 for each n ∈ N and each β ∈ [α+ 1, ω1).
Then we have 〈μn,1{ω1}〉 = 〈1[α+1, ω1], μn〉 → 0 as n→ ∞ by the continuity of 1[α+1, ω1], and
the conclusion follows.

For each T ∈ B(C[0, ω1]), T ∗∗ leaves the canonical copy of C[0, ω1] invariant, so that (2.5)
implies that T ∈ Sem(C[0, ω1]) if and only if T ∗∗1{ω1} ∈ C[0, ω1], which in turn is equivalent
to T ∈ M because kT

ω1
= T ∗∗1{ω1} by (2.2), where kT

ω1
is the function given by (2.3).

Since the Banach spaces C0[0, ω1) and C[0, ω1] are isomorphic, Propositions 2.4 and 2.5
imply that Sem(C0[0, ω1)) is equal to the Loy–Willis ideal M of B(C0[0, ω1)), thus providing
a more explicit definition of this ideal than the one given above.

2.4. Uniform Eberlein compactness

Recall from the second page of the Introduction that a topological space is uniformly Eberlein
compact if it is homeomorphic to a weakly compact subset of a Hilbert space. There are many
equivalent ways to describe this notion. We have collected those that are most relevant for our
purposes in the following theorem, which combines work of Benyamini, Rudin and Wage [5]
and Benyamini and Starbird [6].

Theorem 2.6 (Benyamini–Rudin–Wage and Benyamini–Starbird). The following four
conditions are equivalent for a compact Hausdorff space K:

(i) K is uniformly Eberlein compact;
(ii) the Banach space C(K) is Hilbert-generated;

(iii) the unit ball of C(K)∗ is uniformly Eberlein compact in the weak∗-topology;
(iv) there exists a family F =

⋃
n∈N

Fn of open Fσ-subsets of K such that:
(1) whenever x, y ∈ K are distinct, some G ∈ F separates x and y, in the sense that

either (x ∈ G and y /∈ G) or (y ∈ G and x /∈ G);
(2) supx∈K |{G ∈ Fn : x ∈ G}| is finite for each n ∈ N.

Another important theorem that we shall require is the following internal characterization
of the Banach spaces which embed in a Hilbert-generated Banach space. It is closely related
to the equivalence of conditions (ii) and (iii) of Theorem 2.6. We refer the reader, for example,
to [15, Theorem 6.30] for a proof.

Theorem 2.7. A Banach space X embeds in a Hilbert-generated Banach space if and only
if the unit ball of X∗ is uniformly Eberlein compact in the weak∗-topology.

In contrast, we have the following well-known result for C0[0, ω1).

Theorem 2.8. The Banach space C0[0, ω1) does not embed in any weakly compactly
generated Banach space.
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Proof (Sketch). Every weakly compactly generated Banach space is weakly Lindelöf (see,
for example, [12, Theorem 12.35]), and this property is inherited by closed subspaces. However,
C0[0, ω1) is not weakly Lindelöf (see, for example, [12, Theorem 12.40]).

Combining this result with Amir and Lindenstrauss’s theorem that a compact space K is
Eberlein compact if and only if C(K) is weakly compactly generated, we obtain the following
conclusion, which can also be proved directly by more elementary means (see, for example,
[12, Exercises 12.58–59]).

Corollary 2.9. The ordinal interval [0, ω1] is not Eberlein compact.

2.5. c0-direct sums and the Banach space Eω1

By the c0-direct sum of a family (Xj)j∈J of Banach spaces, we understand the Banach space⎛
⎝⊕

j∈J

Xj

⎞
⎠

c0

=

⎧⎨
⎩f : J →

⋃
j∈J

Xj : f(j) ∈ Xj (j ∈ J) and the set

{j ∈ J : ‖f(j)‖ � ε} is finite for each ε > 0

⎫⎬
⎭ .

In the case where Xj = X for each j ∈ J , we write c0(J,X) instead of (
⊕

j∈J Xj)c0 . We note
that, for any index set M , the formula

(Uf)(j)(m) = f(m)(j) (m ∈M, j ∈ J) (2.6)

defines an isometric isomorphism U of c0(M, (
⊕

j∈J Xj)c0) onto (
⊕

j∈J c0(M,Xj))c0 , as is easy
to verify. The notion of a c0-direct sum is relevant for our purposes mainly due to the central
role that the Banach space

Eω1 =

(⊕
α<ω1

C[0, α]

)
c0

(2.7)

plays. We shall now record some of its basic properties for later reference.

Lemma 2.10. Let (Xj)j∈J be a family of Hilbert-generated Banach spaces. Then the
Banach space (

⊕
j∈J Xj)c0 is Hilbert-generated.

Proof. For each j ∈ J , choose a Hilbert space Hj and an operator Tj : Hj → Xj of norm
1 such that the range of Tj is dense in Xj . The formula (xj)j∈J �→ (Tjxj)j∈J then defines an
operator of norm 1 from the Hilbert space (

⊕
j∈J Hj)�2 onto a dense subspace of (

⊕
j∈J Xj)c0 .

Corollary 2.11. The Banach space Eω1 is Hilbert-generated.

Proof. This follows immediately from Lemma 2.10 because, for each countable ordinal α,
the Banach space C[0, α] is separable, and it is thus Hilbert-generated.
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Lemma 2.12. The Banach space Eω1 is isomorphic to the c0-direct sum of countably many
copies of itself.

Proof. It is known that C[0, α] is isomorphic to c0(N, C[0, α]) for each α ∈ [ω, ω1), with
the Banach–Mazur distance bounded uniformly in α (see, for example, [32, Theorem 2.24]).
Hence, using the isomorphism (2.6), we have

c0(N, Eω1) ∼=
(⊕

α<ω1

c0(N, C[0, α])

)
c0

∼=
(⊕

α<ω1

C[0, α]

)
c0

= Eω1 ,

as desired.

Remark 2.13. Let L be the disjoint union of a family (Lj)j∈J of locally compact Hausdorff
spaces. Then L is a locally compact Hausdorff space, and C0(L) is isometrically isomorphic
to (

⊕
j∈J C0(Lj))c0 (see, for example, [9, Exercise 9, p. 191]). Hence, the Banach space Eω1

given by (2.7) is isometrically isomorphic to C0(L0), where L0 denotes the disjoint union of
the compact ordinal intervals [0, α] for α < ω1.

2.6. Club subsets

A closed and unbounded subset of [0, ω1) is called a club subset. Hence, a subset D of [0, ω1)
is a club subset if and only if D is uncountable and D ∪ {ω1} is closed in [0, ω1]. The collection

D = {D ⊆ [0, ω1) : D contains a club subset of [0, ω1)}
is a filter on the set [0, ω1), and D is countably complete, in the sense that

⋂
C belongs to D

for each countable subset C of D .
The following lemma is a variant of [2, Lemma 1.1(c)–(d)], tailored to suit our applications.

Its proof is fairly straightforward, so we omit the details.

Lemma 2.14. Let D be a club subset of [0, ω1).

(i) The order isomorphism ψD : [0, ω1) → D is a homeomorphism, and hence the composi-
tion operator UD : g �→ g ◦ ψD is an isometric isomorphism of C0(D) onto C0[0, ω1).

(ii) The mapping

πD : α �−→ min(D ∩ [α, ω1)), [0, ω1) → D, (2.8)

is an increasing retraction, and hence the composition operator SD : g �→ g ◦ πD is a linear
isometry of C0(D) into C0[0, ω1).

(iii) Let ιD : D → [0, ω1) denote the inclusion mapping. Then the composition operator RD :
f �→ f ◦ ιD is a linear surjection of norm 1 of C0[0, ω1) onto C0(D), and RDSD = IC0(D).

(iv) The operator PD = SDRD ∈ B(C0[0, ω1)) is a projection of norm 1 such that

kerPD = {f ∈ C0[0, ω1) : f(α) = 0 (α ∈ D)}, (2.9)

and the range of PD,

RD = {f |D ◦ πD : f ∈ C0[0, ω1)}, (2.10)

is isometrically isomorphic to C0[0, ω1).
(v) Suppose that D �= [0, ω1). Then [0, ω1) \D =

⋃
α<γ [ξα, ηα) for some ordinal γ ∈ [1, ω1]

and some sequences (ξα)α<γ and (ηα)α<γ , where ξα is either 0 or a countable successor
ordinal, ηα ∈ D and ξα < ηα < ξα+1 for each α, and kerPD is isometrically isomorphic
to (

⊕
α<γ C0[ξα, ηα))c0 .
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Corollary 2.15. For each club subset D of [0, ω1), kerPD is Hilbert-generated and
isometrically isomorphic to a complemented subspace of Eω1 .

Proof. The result is trivial if D = [0, ω1) because kerPD = {0} in this case. Otherwise
Lemma 2.14(v) applies, and the conclusion follows from Lemma 2.10 and (2.7).

Corollary 2.16. There exists a club subset D of [0, ω1) such that kerPD is isometrically
isomorphic to Eω1 .

Proof. We can inductively define a strictly increasing transfinite sequence (ξα)α<ω1 of
countable ordinals by ξ0 = 0 and ξα = supβ<α(ξβ + β) + 2 for each α ∈ [1, ω1). Then the
ordinal interval [ξα, ξα + α] is open for each α < ω1, so that D = [0, ω1) \⋃α<ω1

[ξα, ξα + α]
is a proper club subset of [0, ω1). In the notation of Lemma 2.14(v), we have γ = ω1 and
ηα = ξα + α+ 1 for each α < ω1, and hence the conclusion follows.

Lemma 2.17. Let D1 and D2 be club subsets of [0, ω1). Then

kerPD1 ∩ kerPD2 = kerPD1∪D2 and RD1 ∩ RD2 = RD1∩D2 .

Proof. The first identity is an immediate consequence of (2.9).
To verify the second, suppose first that f ∈ RD1 ∩ RD2 . Given α ∈ [0, ω1), an easy transfinite

induction shows that f(β) = f(α) for each β ∈ [α, πD1∩D2(α)], so that in particular we have
f(α) = f(πD1∩D2(α)), and hence f ∈ RD1∩D2 .

Conversely, for each α ∈ [0, ω1), we see that D1 ∩ [πD1(α), ω1) = D1 ∩ [α, ω1). Conse-
quently, D1 ∩D2 ∩ [πD1(α), ω1) = D1 ∩D2 ∩ [α, ω1), so that πD1∩D2(πD1(α)) = πD1∩D2(α),
and therefore, for each f ∈ C0[0, ω1), we have

(PD1PD1∩D2f)(α) = f(πD1∩D2(πD1(α))) = f(πD1∩D2(α)) = (PD1∩D2f)(α).

This proves that RD1∩D2 ⊆ RD1 . A similar argument shows that RD1∩D2 ⊆ RD2 .

3. The proof of Theorem 1.1

Lemma 3.1. Let D be a club subset of [0, ω1), and let ρ ∈ C0[0, ω1)∗ and λ ∈ K \ {0}.
Then the mapping σρ,λ : D ∪ {ω1} → C0[0, ω1)∗ given by σρ,λ(α) = ρ+ λδα for α ∈ D and
σρ,λ(ω1) = ρ is injective and continuous with respect to the weak∗-topology on its codomain.
Hence, its range, which is equal to {ρ+ λδα : α ∈ D} ∪ {ρ}, is homeomorphic to [0, ω1].

Proof. It is a standard and easily verifiable fact that the mapping τ : D ∪ {ω1} → C0[0, ω1)∗

given by τ(α) = δα for α ∈ D and τ(ω1) = 0 is a continuous injection with respect to the
weak∗-topology on its codomain, and hence the same is true for σρ,λ. The final clause follows
because the compact space D ∪ {ω1} is homeomorphic to [0, ω1] by (an easy modification of)
Lemma 2.14(i), and the weak∗-topology on C0[0, ω1)∗ is Hausdorff.

Definition 3.2. A subset S of [0, ω1) is stationary if S ∩D �= ∅ for each club subset D
of [0, ω1).
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Stationary sets have many interesting topological and combinatorial properties, as detailed
in [16, 22], for instance. We shall require only the following result, which is due to Fodor [13].

Theorem 3.3 (Pressing Down Lemma). Let S be a stationary subset of [0, ω1), and let
f : S → [0, ω1) be a function which satisfies f(α) < α for each α ∈ S. Then S contains a
subset S′ which is stationary and for which f |S′ is constant.

We can now explain how the proof of Theorem 1.1 is structured: it consists of three parts,
set out in the following lemma. Theorem 1.1 follows immediately from it, using Lemma 3.1.

Lemma 3.4. Let K be a weak∗-compact subset of C0[0, ω1)∗.

(i) Exactly one of the following two alternatives holds:
(I) there is a club subset D of [0, ω1) such that

μ([α, ω1)) = 0 (μ ∈ K, α ∈ D); (3.1)

(II) the set

{α ∈ [0, ω1) : μ([α, ω1)) �= 0 for some μ ∈ K} (3.2)

is stationary.
(ii) Condition (I) is satisfied if and only if K is uniformly Eberlein compact.

(iii) Condition (II) is satisfied if and only if there exist ρ ∈ K, λ ∈ K \ {0} and a club
subset D of [0, ω1) such that ρ+ λδα ∈ K for each α ∈ D.

In the proof, we shall require the following elementary observations. The first of these is an
easy consequence of the isomorphism (2.1), and so we omit its proof.

Lemma 3.5. Let μ ∈ C0[0, ω1)∗, and let α ∈ [ω, ω1) be a limit ordinal. Then, for each ε > 0,
there exists an ordinal α0 < α such that |μ([β, α))| < ε whenever β ∈ [α0, α).

Lemma 3.6. (i) Let {Sn : n ∈ N} be a countable family of subsets of [0, ω1) such that⋃
n∈N

Sn is a stationary subset of [0, ω1). Then Sn is stationary for some n ∈ N.

(ii) Let S be a stationary subset of [0, ω1), and let D be a club subset of [0, ω1). Then S ∩D
is stationary.

Proof. (i) Suppose contrapositively that, for each n ∈ N, the set Sn is not stationary, and
take a club subset Dn of [0, ω1) such that Sn ∩Dn = ∅. Then D =

⋂
n∈N

Dn is a club subset
of [0, ω1) such that (

⋃
n∈N

Sn) ∩D = ∅, which shows that
⋃

n∈N
Sn is not stationary.

(ii) We have (S ∩D) ∩D′ = S ∩ (D ∩D′) �= ∅ for each club subset D′ of [0, ω1) because
D ∩D′ is a club subset, and hence S ∩D is stationary.

Lemma 3.7. Let K be a scattered, locally compact space. Then the unit ball of C0(K)∗ is
weak∗-sequentially compact.

In particular, the unit ball of C0[0, ω1)∗ is weak∗-sequentially compact.

Proof. This is essentially known, see, for example, [12, Exercise 12.12], so we shall only
outline a short argument, based on standard results; alternatively, one can give a more
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elementary, but longer, proof using (2.1). Since K is scattered, C0(K) is an Asplund space
by [12, Theorem 12.29]. Consequently, the unit ball of C0(K)∗ in its weak∗-topology is
Radon–Nikodym compact, and it is thus weak∗-sequentially compact.

Proof of Lemma 3.4. Let S denote the set given by (3.2). Since weak∗-compact sets are
bounded, we may suppose that K is contained in the unit ball of C0[0, ω1)∗.

Part (i) is clear because (II) is simply the negation of (I).
The proofs of (ii) and (iii) are organized as follows. First, we establish the forward implication

of (ii), and then we observe that it has the backward implication of (iii) as an immediate
consequence. Next, we prove the forward implication of (iii), and finally we deduce the backward
implication of (ii) from it.

(ii), ⇒. Suppose that D is a club subset of [0, ω1) such that (3.1) holds. Replacing D with its
intersection with the club subset of limit ordinals in [ω, ω1), we may additionally suppose thatD
consists entirely of infinite limit ordinals. In the case of real scalars, let Δ be the collection of
open intervals (q1, q2) ⊆ R, where q1 < q2 are rational and 0 /∈ (q1, q2). Otherwise K = C, in
which case we define Δ as the collection of open rectangles (q1, q2) × (r1, r2) ⊆ C, where q1 < q2
and r1 < r2 are rational and 0 = (0, 0) /∈ (q1, q2) × (r1, r2). In both cases, Δ is countable, so
that we can find a bijection δ : N → Δ. Moreover, we shall fix a bijection σ : N → N × N.

For technical reasons, it is convenient to introduce a new limit ordinal which is the
predecessor of 0, and which we shall therefore suggestively denote by −1. Set D′ = D ∪ {−1}.
For each α ∈ D′, we define α+ = πD(α+ 1) = min(D ∩ [α+ 1, ω1)) ∈ D, using the notation
of Lemma 2.14(ii). Let Γα denote the set of ordered pairs (ξ, η) of ordinals such that
α � ξ < η < α+, and choose a bijection γα : N → Γα. We can then define a bijection by

τα = (γα × δ) ◦ σ : N → Γα × Δ (α ∈ D′).

Hence, for each n ∈ N and α ∈ D′, we can express τα(n) as τα(n) = (ξ, η,R), where (ξ, η) ∈ Γα

and R ∈ Δ, and R depends only on n, not on α. With (ξ, η,R) thus determined by α and n,
we define

Gn
α = {μ ∈ K : μ([ξ + 1, η]) ∈ R}.

This is a relatively weak∗-open Fσ-subset of K because R is an open Fσ-subset of K and the
indicator function 1[ξ+1,η] is continuous. Let Fn = {Gn

α : α ∈ D′}. We shall now complete the
proof of the forward implication of (ii) by verifying that the family F =

⋃
n∈N

Fn satisfies
conditions (1)–(2) of Theorem 2.6(iv).

(1). Suppose that μ, ν ∈ K are distinct. Since μ and ν are purely atomic, we can choose
α ∈ [0, ω1) such that μ({α}) �= ν({α}). There are two separate cases to consider.

Suppose first that α belongs to D. Then, as α+ also belongs to D, (3.1) implies that

μ([α+ 1, α+)) = μ([α, ω1)) − μ({α}) − μ([α+, ω1)) = −μ({α}),

and similarly ν([α+ 1, α+)) = −ν({α}). Hence, using Lemma 3.5, we can find η ∈ [α+ 1, α+)
such that μ([α+ 1, η]) �= ν([α+ 1, η]). By interchanging μ and ν if necessary, we may suppose
that μ([α+ 1, η]) �= 0. Then there is R ∈ Δ such that μ([α+ 1, η]) ∈ R and ν([α+ 1, η]) /∈ R.
Since (α, η) ∈ Γα, we may define n = τ−1

α (α, η,R) ∈ N. It now follows that μ ∈ Gn
α and ν /∈ Gn

α,
as desired.

Secondly, in the case where α /∈ D, we can take β ∈ D′ such that β < α < β+. (This is where
the introduction of the new ordinal −1 is useful.) We claim that there is an ordinal ξ ∈ [β, α)
such that μ([ξ + 1, α]) �= ν([ξ + 1, α]). Indeed, if α is the successor of some ordinal ξ ∈ [−1, ω1),
then [ξ + 1, α] = {α}, and so the claim follows from the choice of α. Otherwise α is an infinite
limit ordinal, in which case we can find ξ ∈ [β, α) such that

max{|μ([ξ + 1, α))|, |ν([ξ + 1, α))|} < |μ({α}) − ν({α})|
2

,
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by Lemma 3.5. This implies that

|μ([ξ + 1, α]) − ν([ξ + 1, α])| � |μ({α}) − ν({α})| − |μ([ξ + 1, α))| − |ν([ξ + 1, α))| > 0,

which establishes the claim. As before, we may suppose that μ([ξ + 1, α]) �= 0 by interchang-
ing μ and ν if necessary, so that we can choose R ∈ Δ such that μ([ξ + 1, α]) ∈ R and
ν([ξ + 1, α]) /∈ R. Since (ξ, α) ∈ Γβ , we may define n = τ−1

β (ξ, α,R) ∈ N, and then μ ∈ Gn
β and

ν /∈ Gn
β , as desired.

(2). Assume towards a contradiction that supμ∈K |{G ∈ Fn : μ ∈ G}| is infinite for some
n ∈ N, and write (n1, n2) = σ(n) ∈ N2. We shall focus on the case of complex scalars as it
is slightly more complicated than the real case. Let R = δ(n2) = (q1, q2) × (r1, r2) ∈ Δ. Since
(0, 0) /∈ R, either 0 /∈ (q1, q2) or 0 /∈ (r1, r2). Suppose that we are in the first case, and choose
m ∈ N such that m · min{|q1|, |q2|} > 1. By the assumption, we can find μ ∈ K and ordinals
α1 < α2 < · · · < αm in D′ such that μ ∈ ⋂m

j=1G
n
αj

. Letting (ξj , ηj) = γαj
(n1) ∈ Γαj

for each
j ∈ {1, . . . ,m}, we have ταj

(n) = (ξj , ηj , R), so that μ([ξj + 1, ηj ]) ∈ R because μ ∈ Gn
αj

. The
fact that

α1 � ξ1 < η1 < α+
1 � α2 � ξ2 < η2 < α+

2 � · · · � αm � ξm < ηm < α+
m

implies that the intervals [ξ1 + 1, η1], [ξ2 + 1, η2], . . . , [ξm + 1, ηm] are disjoint, and hence

1 � ‖μ‖ �

∣∣∣∣∣∣μ
⎛
⎝ m⋃

j=1

[ξj + 1, ηj ]

⎞
⎠
∣∣∣∣∣∣ =

∣∣∣∣∣∣
m∑

j=1

μ([ξj + 1, ηj ])

∣∣∣∣∣∣ �
∣∣∣∣∣∣Re

m∑
j=1

μ([ξj + 1, ηj ])

∣∣∣∣∣∣
� m · min{|q1|, |q2|} > 1,

which is clearly absurd. The case where 0 /∈ (r1, r2) is very similar: we simply replace
min{|q1|, |q2|} and the real part with min{|r1|, |r2|} and the imaginary part, respectively.

The case where K = R is also similar, but easier, because there is no need to pass to the real
part in the above calculation.

(iii), ⇐, is an easy consequence of the previous implications. Suppose contrapositively
that condition (II) is not satisfied. Then, by (i), condition (I) holds, so that K is uniformly
Eberlein compact by what we have just proved. Every weak∗-closed subset of K is therefore
also uniformly Eberlein compact, and hence Corollary 2.9 implies that no subset of K is
homeomorphic to [0, ω1]. The desired conclusion now follows from Lemma 3.1.

(iii), ⇒. Suppose that the set S given by (3.2) is stationary. Since

S =
⋃
n∈N

{
α ∈ [0, ω1) : |μ([α, ω1))| > 1

n
for some μ ∈ K

}
,

Lemma 3.6(i) implies that the set

S0 = {α ∈ [0, ω1) : |μ([α, ω1))| > ε0 for some μ ∈ K}
is stationary for some ε0 > 0. Replacing S0 with its intersection with the club subset of limit
ordinals in [ω, ω1), we may in addition suppose that S0 consists entirely of infinite limit ordinals
by Lemma 3.6(ii). For each α ∈ S0, take μα ∈ K such that |μα([α, ω1))| > ε0. Lemma 3.5
implies that |μα|([f(α), α)) < ε0/3 for some ordinal f(α) ∈ [0, α), where |μα| denotes the total
variation of μα, that is, the positive measure on [0, ω1) given by |μα|(B) =

∑
β∈B |μα({β})| for

each B ⊆ [0, ω1). By Theorem 3.3, S0 contains a subset S′ which is stationary and for which
f |S′ is constant, say f(α) = ζ0 for each α ∈ S′.

Define L = Q if K = R and L = {q + ri : q, r ∈ Q} if K = C, so that L is a countable, dense
subfield of K. For each α ∈ S′ and k ∈ N, choose a non-empty, finite subset Fα,k of [0, ω1) and
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scalars qβ
α,k ∈ L for β ∈ Fα,k such that

μα,k =
∑

β∈Fα,k

qβ
α,kδβ ∈ C0[0, ω1)∗ (3.3)

has norm at most 1 and satisfies

‖μα,k − μα‖ < min
{
ε0
3
,

1
k

}
. (3.4)

Suppose that (αk)k∈N is a sequence in S′ such that (μαk,k)k∈N weak∗-converges to a limit
ν ∈ C0[0, ω1)∗. Then we claim that

ν = w∗- lim
k
μαk

, (3.5)

a conclusion which we shall require towards the end of the proof. Indeed, for each ε > 0 and
g ∈ C0[0, ω1), we can choose k0 ∈ N such that k0 > 2‖g‖/ε and |〈g, μαk,k − ν〉| < ε/2 whenever
k � k0, and hence

|〈g, μαk
− ν〉| � |〈g, μαk

− μαk,k〉| + |〈g, μαk,k − ν〉| < ‖g‖
k

+
ε

2
< ε (k � k0).

For each k ∈ N, {Fα,k : α ∈ S′} is an uncountable collection of finite sets, so by the Δ-system
Lemma (see [35], or [16, Theorem 9.18] for an exposition), we can find a subset Δk of [0, ω1)
and an uncountable subset Ak of S′ such that

Fα,k ∩ Fβ,k = Δk (α, β ∈ Ak, α �= β). (3.6)

Set ζ1 = sup({ζ0} ∪
⋃

k∈N
Δk) + 1 ∈ [1, ω1), and fix k ∈ N for a while. We shall now repeatedly

pass to suitably chosen uncountable subsets of Ak in order to arrange that the elements have
certain useful additional properties.

The fact that Ak =
⋃

n∈N
{α ∈ Ak : |Fα,k| = n} implies that, for some nk ∈ N, there

is an uncountable subset A′
k of Ak such that |Fα,k| = nk for each α ∈ A′

k. Let
θα,k : {1, . . . , nk} → Fα,k be the unique order isomorphism for each α ∈ A′

k, and recall
from (3.3) that qβ

α,k ∈ L for β ∈ Fα,k are the coefficients of μα,k. Since L is countable and

A′
k =

⋃
q1,...,qnk

∈L

{α ∈ A′
k : qθα,k(j)

α,k = qj for each j ∈ {1, . . . , nk}},

we can find q1,k, . . . , qnk,k ∈ L and an uncountable subset A′′
k of A′

k such that

q
θα,k(j)
α,k = qj,k (j ∈ {1, . . . , nk}, α ∈ A′′

k). (3.7)

Set A′′′
k = A′′

k ∩ [ζ1, ω1), which is an uncountable subset of A′′
k , and assume towards a

contradiction that Δk = Fα,k for some α ∈ A′′′
k . Then, by (3.3), μα,k is supported on Δk,

which is contained in [0, ζ1), so that μα,k([α, ω1)) = 0. Hence, we have

‖μα − μα,k‖ � |(μα − μα,k)([α, ω1))| = |μα([α, ω1))| > ε0.

This, however, contradicts (3.4), and therefore we conclude that

Δk � Fα,k (α ∈ A′′′
k ). (3.8)

For each β ∈ [0, ω1), the set

Bβ
k = {α ∈ A′′′

k : min(Fα,k \ Δk) � β < α} =
⋃

γ∈[0,β]\Δk

{α ∈ A′′′
k ∩ [β + 1, ω1) : γ ∈ Fα,k}

is countable because each of the sets on the right-hand side contains at most one element
by (3.6). Hence, A′′′

k ∩ [β + 1, ω1) \Bβ
k is uncountable, and it is thus non-empty; that is, for each

β ∈ [0, ω1), we can find α ∈ A′′′
k ∩ [β + 1, ω1) such that min(Fα,k \ Δk) > β. A straightforward
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induction based on this observation yields a strictly increasing transfinite sequence (αξ)ξ<ω1

in A′′′
k such that sup({ζ1} ∪

⋃
η<ξ(Fαη,k \ Δk)) < min(Fαξ,k \ Δk) for each ξ ∈ [0, ω1), and

consequently A′′′′
k = {αξ : ξ ∈ [0, ω1)} is an uncountable subset of A′′′

k such that

sup

⎛
⎝{ζ1} ∪

⋃
β∈A′′′′

k ∩[0,α)

(Fβ,k \ Δk)

⎞
⎠ < min(Fα,k \ Δk) (α ∈ A′′′′

k ). (3.9)

Set mk = |Δk|, so that mk < nk by (3.8), and define λk =
∑nk

j=mk+1 qj,k ∈ L. By (3.3), (3.7)
and (3.9), we have λk = μα,k([ζ1, ω1)) for each α ∈ A′′′′

k , and hence

1 � ‖μα,k‖ � |λk| � |μα([ζ1, ω1))| − ‖μα,k − μα‖
� |μα([α, ω1))| − |μα|([ζ1, α)) − ‖μα,k − μα‖ > ε0 − ε0

3
− ε0

3
=
ε0
3
.

Therefore, after passing to a subsequence, we may suppose that (λk)k∈N converges to a limit
λ ∈ K, where 1 � |λ| � ε0/3 > 0. (We must of course also pass to the same subsequence of all
the other objects (including Fα,k, μα,k, Δk, Ak, A′

k, . . .) that we have chosen dependent on k.
This does not affect any of the identities, above; indeed, (3.4) is the only one which depends
explicitly on k, and it clearly remains true after we pass to a subsequence.)

Choose ordinals β1,k < · · · < βmk,k such that Δk = {β1,k, . . . , βmk,k}, and define

ρk =
mk∑
j=1

qj,kδβj,k
∈ C0[0, ω1)∗. (3.10)

Since ‖ρk‖ �
∑nk

j=1 |qj,k| = ‖μα,k‖ � 1 for each α ∈ A′′′′
k , Lemma 3.7 implies that, by passing

to subsequences once more, we may suppose that (ρk)k∈N weak∗-converges to a limit
ρ ∈ C0[0, ω1)∗.

Our next aim is to show that, for each sequence (αk)k∈N which belongs to the set

D =

{
(αk)k∈N : αk ∈ A′′′′

k , αk < αk+1 and max(Fαk,k \ Δk) < min(Fαk+1,k+1 \ Δk+1)

for each k ∈ N, and sup
k∈N

αk = sup
⋃
k∈N

(Fαk,k \ Δk)

}
, (3.11)

the sequence (μαk
)k∈N weak∗-converges to ρ+ λδα, where α = supk∈N αk ∈ [0, ω1). By (3.5),

it suffices to show that (μαk,k)k∈N weak∗-converges to ρ+ λδα. To verify this, let ε > 0 and
g ∈ C0[0, ω1) be given. We may suppose that ‖g‖ � 1. Choose k1 ∈ N such that |λ− λk| < ε/3
and |〈g, ρ− ρk〉| < ε/3 whenever k � k1. Since g is continuous at α, which is a limit ordinal, we
can find β0 ∈ [0, α) such that |g(β) − g(α)| < ε/3 for each β ∈ [β0, α]. By the definition of D, we
can take k2 ∈ N such that Fαk,k \ Δk ⊆ [β0, α] whenever k � k2, and thus |g(β) − g(α)| < ε/3
for each β ∈ ⋃k�k2

(Fαk,k \ Δk). Now we have

|〈g, μαk,k − ρ− λδα〉| � |〈g, μαk,k − ρk − λkδα〉| + |〈g, ρ− ρk〉| + |〈g, (λ− λk)δα〉|,

where the second and third terms are both less than ε/3 provided that k � k1. To estimate the
first term, we observe that θαk,k(j) = βj,k for each j ∈ {1, . . . ,mk}. Consequently (3.3), (3.7)
and (3.10) imply that μαk,k − ρk =

∑nk

j=mk+1 qj,kδθαk,k(j), where θαk,k(j) ∈ Fαk,k \ Δk for each
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j ∈ {mk + 1, . . . , nk}, and therefore we have

|〈g, μαk,k − ρk − λkδα〉| =

∣∣∣∣∣∣
nk∑

j=mk+1

qj,kg(θαk,k(j)) −
nk∑

j=mk+1

qj,kg(α)

∣∣∣∣∣∣
�

nk∑
j=mk+1

|qj,k| · |g(θαk,k(j)) − g(α)| < ε

3

provided that k � k2. Hence, we conclude that (μαk
)k∈N weak∗-converges to ρ+ λδα.

This implies in particular that ρ+ λδα ∈ K for each α belonging to the set

D0 =
{

sup
k∈N

αk : (αk)k∈N ∈ D

}
. (3.12)

To prove that D0 is unbounded, let β ∈ [0, ω1) be given. For each k ∈ N, (3.9) implies that the
transfinite sequence (min(Fα,k \ Δk))α∈A′′′′

k
is strictly increasing, and it is thus unbounded. We

can therefore inductively construct a sequence (αk)k∈N in [β, ω1) such that αk ∈ A′′′′
k and

max({αk} ∪ (Fαk,k \ Δk)) < min({αk+1} ∪ (Fαk+1,k+1 \ Δk+1)) (k ∈ N).

We claim that this sequence (αk)k∈N belongs to D. Of the conditions in (3.11), only the final
one is not immediately obvious; it, however, follows from the intertwining relation

αk < min(Fαk+1,k+1 \ Δk+1) � max(Fαk+1,k+1 \ Δk+1) < αk+2 (k ∈ N).

Consequently, we have supD0 � supk∈N αk � β, as desired.
Hence, the closure D of D0 in [0, ω1) is a club subset. The unboundedness of D0 implies that

the net (δα)α∈D0 is weak∗-null, so that ρ = w∗- limα(ρ+ λδα) ∈ K. Since each α ∈ D is the
limit of a sequence (γn)n∈N in D0, we have ρ+ λδα = w∗- limn(ρ+ λδγn

) ∈ K. This completes
the proof of the forward implication of (iii).

(ii), ⇐, now follows easily by contraposition, just as (iii), ⇐, did. Indeed, suppose that
condition (I) is not satisfied. Then, by (i), condition (II) is satisfied, so that Lemma 3.1 and
the forward implication of (iii) imply that K contains a subset which is homeomorphic to [0, ω1].
Hence, K is not (uniformly) Eberlein compact by Corollary 2.9.

Remark 3.8. We completed the proof of (Lemma 3.4(iii)). ⇒). by passing to the closure D
of the set D0 given by (3.12). In fact, D0 is already closed, so that D0 = D. To verify
this, we observe that each β in the closure of D0 is countable, and it is thus the limit of
a sequence (βj)j∈N in D0. We may suppose that (βj)j∈N is strictly increasing. For each j ∈ N,
take (αj

k)k∈N ∈ D such that βj = supk∈N α
j
k. The sequence (min({αj

k} ∪ (Fαj
k,k \ Δk)))k∈N then

increases strictly to the limit βj , so we may inductively choose a strictly increasing sequence
(kj)j∈N of integers such that k1 = 1 and

βj < min({αj+1
kj+1

} ∪ (Fαj+1
kj+1

,kj+1
\ Δkj+1)) (j ∈ N). (3.13)

We now claim that the sequence (γ�)�∈N given by

(α1
1, α

1
2, . . . , α

1
k2−1, α

2
k2
, α2

k2+1, . . . , α
2
k3−1, α

3
k3
, . . . , αj−1

kj−1, α
j
kj
, αj

kj+1, . . . , α
j
kj+1−1, α

j+1
kj+1

, . . .)

belongs to D. Indeed, for � ∈ N, let j ∈ N be the unique number such that kj � � < kj+1.
We then have γ� = αj

� ∈ A′′′′
� . If � �= kj+1 − 1, then γ�+1 = αj

�+1, in which case the inequali-
ties γ� < γ�+1 and max(Fγ�,� \ Δ�) < min(Fγ�+1,�+1 \ Δ�+1) are both immediate from (3.11).
Otherwise � = kj+1 − 1, and by (3.13), we find

γ� = αj
� < sup

k∈N

αj
k = βj < αj+1

kj+1
= γ�+1
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and

max(Fγ�,� \ Δ�) < βj < min(Fαj+1
kj+1

,kj+1
\ Δkj+1) = min(Fγ�+1,�+1 \ Δ�+1).

These intertwining relations imply that sup�∈N γ� = β = sup
⋃

�∈N
(Fγ�,� \ Δ�), which shows

that (γ�)�∈N ∈ D, and hence β ∈ D0, as required.

The idea that a result like Theorem 1.1 might be true was inspired by a note from Richard
Smith (private communication). The following corollary confirms a conjecture that he proposed
therein.

Corollary 3.9. Let K be a weak∗-compact subset of C0[0, ω1)∗ such that there exists a
continuous surjection from K onto [0, ω1]. Then K contains a homeomorphic copy of [0, ω1].

Proof. By a classical result of Benyamini, Rudin and Wage [5], the continuous image of an
Eberlein compact space is Eberlein compact. Since [0, ω1] is not Eberlein compact, K cannot
be Eberlein compact, and we are therefore in case (II) of Theorem 1.1.

Example 3.10. The purpose of this example is to show that the dichotomy stated in
Lemma 3.4(i) is no longer true if condition (II) is replaced with the condition

(II′) the set S = {α ∈ [0, ω1) : μ([α+ 1, ω1)) �= 0 for some μ ∈ K} is stationary.

Indeed, let Λ be the set of all countable limit ordinals. Then K = {δα − δα+1 : α ∈ Λ} ∪ {0}
is a bounded and weak∗-closed subset of C0[0, ω1)∗, and it is thus weak∗-compact. Moreover,
K satisfies condition (I) because (3.1) holds for the club subset D = Λ (and K is therefore
uniformly Eberlein compact by Lemma 3.4(ii)), but K also satisfies (II′) because Λ ⊆ S, and
each club subset D′ of [0, ω1) intersects Λ, so that S ∩D′ �= ∅; that is, S is stationary. Hence,
conditions (I) and (II′) are not mutually exclusive.

Finally in this section we shall show that Theorem 1.1 is optimal in the following precise
sense: the dichotomy would no longer be true if, in condition (I), we replace the collection of
all uniformly Eberlein compact subsets of C0[0, ω1)∗ with a strictly smaller family.

Proposition 3.11. Every uniformly Eberlein compact space which contains a dense subset
of cardinality at most ℵ1 is homeomorphic to a weak∗-compact subset of C0[0, ω1)∗.

Proof. As in Example 3.10, denote by Λ the set of all countable limit ordinals. Then every
uniformly Eberlein compact space which contains a dense subset of cardinality at most ℵ1

embeds in the closed unit ball B�2(Λ) of the Hilbert space

�2(Λ) =

{
f : Λ → K :

∑
α∈Λ

|f(α)|2 <∞
}
,

endowed with the weak topology. Hence, it will suffice to prove that the mapping given by

θ : f �−→
∑
α∈Λ

f(α)|f(α)|(δα − δα+1), B�2(Λ) → C0[0, ω1)∗, (3.14)

is a weak–weak∗-continuous injection. The injectivity is easy to verify. Suppose that the net
(fj)j∈J in B�2(Λ) converges weakly to f , and let ε > 0 and g ∈ C0[0, ω1) be given. Since the
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indicator functions 1[0,α] for α ∈ [0, ω1) span a norm-dense subspace of C0[0, ω1), it suffices to
consider the case where g = 1[0, α] for some α ∈ [0, ω1). Now

〈1[0, α], θ(h)〉 =

{
h(α)|h(α)| if α ∈ Λ
0 otherwise

(h ∈ B�2(Λ)),

so that we may suppose that α ∈ Λ. Choosing j0 ∈ J such that |f(α) − fj(α)| < ε/2 whenever
j � j0, we obtain

|〈1[0, α], θ(f) − θ(fj)〉| = |f(α)|f(α)| − fj(α)|fj(α)||
� 2 max{|f(α)|, |fj(α)|}|f(α) − fj(α)| < ε (j � j0),

which proves that (θ(fj))j∈J weak∗-converges to θ(f).

Remark 3.12. One may wonder whether a more operator-theoretic approach is possible in
the proof of Proposition 3.11. The natural extension to �2(Λ) of the mapping θ given by (3.14)
is clearly not linear. This is no coincidence because in fact no weak–weak∗-continuous, linear
mapping T : �2(Λ) → C0[0, ω1)∗ is injective. To verify this, we first observe that T is weakly
compact because its domain is reflexive, and hence T is compact because its codomain has
the Schur property. Moreover, using the reflexivity of �2(Λ) once more, we see that the weak–
weak∗-continuity of T implies that T = S∗ for some operator S : C0[0, ω1) → �2(Λ). Schauder’s
theorem shows that S is compact, so that its range is separable. In particular, the range of S
is not dense in �2(Λ), and therefore T = S∗ is not injective.

4. Operator theory on C0[0, ω1)

The following lemma represents the core of our proof of Theorem 1.4.

Lemma 4.1. Let X be a Banach space, and suppose that there exists a surjective operator
T : C0[0, ω1) → X. Then exactly one of the following two alternatives holds:

(I) X embeds in a Hilbert-generated Banach space;
(II) there exists a club subset D of [0, ω1) such that the restriction of T to the subspace RD

given by (2.10) is bounded below, and T [RD] is complemented in X.

Proof. Let BX∗ be the closed unit ball of X∗. The weak∗-continuity of T ∗ implies that the
subset K = T ∗[BX∗ ] of C0[0, ω1)∗ is weak∗-compact, so by Theorem 1.1, we have

(I′) K is uniformly Eberlein compact;
(II′) there exist ρ ∈ K, λ ∈ K \ {0}, and a club subset D of [0, ω1) such that ρ+ λδα ∈ K

for each α ∈ D.

Since T ∗ is injective by the assumption, its restriction to BX∗ is a weak∗ homeomorphism
onto K. Hence, in case (I′), BX∗ is uniformly Eberlein compact in its weak∗-topology, and
so X embeds in a Hilbert-generated Banach space by Theorem 2.7.

Otherwise we are in case (II′), so that there are functionals g, gα ∈ BX∗ such that
T ∗g = ρ and T ∗gα = ρ+ λδα for each α ∈ D. Given x ∈ X, we define a mapping
Sx : [0, ω1) → K by

(Sx)(α) = 〈x, gπD(α) − g〉 (α ∈ [0, ω1)), (4.1)
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where πD : [0, ω1) → D is the retraction defined by (2.8). Choosing f ∈ C0[0, ω1) such that
Tf = x, we have

(Sx)(α) = 〈Tf, gπD(α) − g〉 = 〈f, T ∗gπD(α) − T ∗g〉 = λf(πD(α)) = λ(PDf)(α) (4.2)

for each α ∈ [0, ω1), so that Sx = λPDf , where PD is the projection defined in Lemma 2.14(iv).
Since λPDf ∈ C0[0, ω1), we see that (4.1) defines a mapping S : X → C0[0, ω1), which is linear
by the linearity of the functionals gπD(α) and g. Moreover, S is bounded because the Open
Mapping Theorem implies that there exists a constant C > 0, dependent only on the surjective
operator T , such that, for each x ∈ X, there exists f ∈ C0[0, ω1) with ‖f‖ � C‖x‖ and Tf = x.
Then we have Sx = λPDf by (4.2), and hence ‖Sx‖ = |λ| ‖PDf‖ � |λ| ‖f‖ � |λ|C‖x‖, as
desired. Another application of (4.2) shows that S(T (PDf)) = λPD(PDf) = λPDf for each
f ∈ C0[0, ω1), so that STPD = λPD. Consequently, ‖Tf‖ � |λ| ‖S‖−1‖f‖ for each f ∈ RD,
and the operator λ−1TPDS ∈ B(X) is a projection with range T [RD]; thus (II) is satisfied.

Finally, the conditions (I) and (II) are mutually exclusive because (II) implies that T
induces an isomorphic embedding of RD

∼= C0[0, ω1) in X, and hence (I) cannot be satisfied
by Theorem 2.8.

Proof of Theorem 1.4. Suppose that (I) is not satisfied. Then, by Lemma 4.1, we can find
a club subset D of [0, ω1) and a projection Q ∈ B(X) such that T |RD

is bounded below and
Q[X] = T [RD]. Hence, the identity operator on C0[0, ω1) factors through T by Lemma 2.1
because RD is isomorphic to C0[0, ω1) by Lemma 2.14(iv).

We shall complete the proof that (II) is satisfied by showing that kerQ embeds in a Hilbert-
generated Banach space. Assume the contrary, and apply Lemma 4.1 to the surjective operator
U : f �→ (IX −Q)Tf, C0[0, ω1) → kerQ, to obtain a club subset D′ of [0, ω1) such that U |RD′
is bounded below by c > 0, say. Then we have

c‖f‖ � ‖Uf‖ = ‖(IX −Q)Tf‖ = 0 (f ∈ RD ∩ RD′),

so that RD ∩ RD′ = {0}. This, however, contradicts Lemma 2.17.
Theorem 2.8 shows that conditions (I) and (II) are mutually exclusive.

Remark 4.2. Not all quotients of C0[0, ω1) are subspaces of C0[0, ω1). This follows from a
result of Alspach [1], which says that C[0, ωω] has a quotient X which does not embed in C[0, α]
for any countable ordinal α. Since C0[0, ω1) contains a complemented copy of C[0, ωω], X is also
a quotient of C0[0, ω1). However, X does not embed in C0[0, ω1) because X is separable (being
a quotient of a separable space), and each separable subspace of C0[0, ω1) embeds in C[0, α]
for some countable ordinal α (see, for example, [21, Lemma 4.2]).

Lemma 4.3. Let θ be a continuous mapping from [0, ω1] into a Hausdorff space K. Then
exactly one of the following two alternatives holds:

(I) [0, ω1] contains a closed, uncountable subset F1 such that θ|F1 is constant;
(II) [0, ω1] contains a closed, uncountable subset F2 such that θ|F2 is injective, and θ|F2 is

thus a homeomorphism onto θ[F2].

Proof. Suppose that K contains a point x whose pre-image under θ is uncountable. Then (I)
is satisfied for F1 = θ−1[{x}].

Otherwise the pre-image under θ of each point of K is at most countable. In this case, we
shall inductively construct a strictly increasing transfinite sequence (αξ)ξ<ω1 in [1, ω1) such
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that

{β ∈ [0, ω1) : θ(β) = θ(ω1) or θ(β) = θ(αη) for some η < ξ} ⊆ [0, αξ) (ξ ∈ [0, ω1)) (4.3)

and

sup
η<ξ

αη ∈ {αη : η � ξ} (ξ ∈ [1, ω1)). (4.4)

To start the induction, let α0 = (sup θ−1[{ω1}]) + 1 ∈ [1, ω1).
Now assume inductively that, for some ξ ∈ [1, ω1), a strictly increasing sequence (αη)η<ξ of

countable ordinals has been chosen in accordance with (4.3) and (4.4), and define

αξ = sup{β + 1 : θ(β) = θ(αη) for some η < ξ} ∈
[

sup
η<ξ

(αη + 1), ω1

)
.

Then (4.3) is certainly satisfied for ξ. To verify (4.4), let γ = supη<ξ αη. The conclusion is
clear if this supremum is attained. Otherwise ξ is a limit ordinal, and we claim that γ = αξ.
Since γ � αξ, it suffices to show that β + 1 � γ whenever β ∈ [0, ω1) satisfies θ(β) = θ(αζ)
for some ζ < ξ. Now ζ + 1 < ξ because ξ is a limit ordinal, so that (4.3) holds when ξ is
replaced with ζ + 1 by the induction hypothesis; consequently, β + 1 � αζ+1 < γ, and the
induction continues.

Let F2 = {αξ : ξ < ω1} ∪ {ω1}; this set is uncountable because (αξ)ξ<ω1 is strictly increasing,
and it is closed by (4.4). Moreover, θ|F2 is injective by (4.3), so that (II) is satisfied.

Finally, to see that conditions (I) and (II) are mutually exclusive, assume towards a
contradiction that [0, ω1] contains closed, uncountable subsets F1 and F2 such that θ|F1

is constant and θ|F2 is injective. Then F1 ∩ F2 is uncountable and contains ω1, so that
θ(α) = θ(ω1) for each α ∈ F1 ∩ F2 by the choice of F1. This, however, contradicts the injectivity
of θ|F2 .

Proof of Theorem 1.5. Let T ∈ B(C0[0, ω1)). The following ‘function-free’ reformulation
of (1.2) will enable us to simplify certain calculations somewhat:

T ∗δα = ϕ(T )δα (α ∈ D). (4.5)

To prove that there exist ϕ(T ) ∈ K and a club subset D of [0, ω1) such that this identity is
satisfied, we consider the composite mapping θ given by

[0, ω1] θ �������������

σ0,1 ������������
C0[0, ω1)∗

C0[0, ω1)∗,
T ∗

�������������

where both copies of C0[0, ω1)∗ are equipped with the weak∗-topology, and σ0,1 is the injection
defined in Lemma 3.1, that is, σ0,1(α) = δα for α ∈ [0, ω1) and σ0,1(ω1) = 0. Since σ0,1 and T ∗

are continuous, so is θ. We may therefore apply Lemma 4.3 to conclude that [0, ω1] contains
a closed, uncountable subset F such that either θ|F is constant, or θ|F is injective. Note that
ω1 ∈ F , and F \ {ω1} is a club subset of [0, ω1).

If θ|F is constant, then we have

T ∗δα = (T ∗ ◦ σ0,1)(α) = θ(α) = θ(ω1) = (T ∗ ◦ σ0,1)(ω1) = T ∗0 = 0 (α ∈ F \ {ω1}),

so that (4.5) is satisfied for D = F \ {ω1} and ϕ(T ) = 0.
Otherwise θ|F is injective, in which case θ̃ : α �→ θ(α), F → θ[F ], is a homeomorphism.

Since F is homeomorphic to [0, ω1], which is not Eberlein compact, Theorem 1.1 implies that
there exist ρ ∈ θ[F ], ϕ(T ) ∈ K \ {0} and a club subset D′ of [0, ω1) such that ρ+ ϕ(T )δα ∈ θ[F ]
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for each α ∈ D′; let ηα = θ̃−1(ρ+ ϕ(T )δα) for α ∈ D′. Then (ηα)α∈D′ is an uncountable net of
distinct elements of F , and it converges to θ̃−1(ρ). The only possible limit of such a net is ω1,
so that ρ = θ(ω1) = 0, and we have

T ∗δηα
= θ(ηα) = ϕ(T )δα (α ∈ D′). (4.6)

We shall now show that D = {α ∈ [0, ω1) : T ∗δα = ϕ(T )δα} is a club subset of [0, ω1); this
will complete the existence part of the proof because (4.5) is evidently satisfied for this choice
of D.

Suppose that the net (αj)j∈J in D converges to α ∈ [0, ω1). Then the net (δαj
)j∈J weak∗-

converges to δα, and therefore, by the weak∗-continuity of T ∗, we have

T ∗δα = w∗- lim
j
T ∗δαj

= w∗- lim
j
ϕ(T )δαj

= ϕ(T )δα.

Hence, α ∈ D, so that D is closed.
To prove that D is unbounded, let γ ∈ [0, ω1) be given. For each β ∈ [0, ω1), the sets

D′ ∩ [0, β] and {α ∈ D′ : ηα � β} are both countable, so that the complement in D′ of their
union, which is equal to {α ∈ D′ ∩ [β + 1, ω1) : ηα > β}, is uncountable, and it is thus non-
empty. Using this, we can inductively construct a sequence (αn)n∈N in D′ ∩ [γ + 1, ω1) such
that

max{αn, ηαn
} < min{αn+1, ηαn+1} (n ∈ N).

Let α = supn∈N αn. Then α ∈ D′ ∩ [γ + 1, ω1), and both of the sequences (αn)n∈N and (ηαn
)n∈N

converge to α. Hence, (δαn
)n∈N and (δηαn

)n∈N both weak∗-converge to δα, so that

T ∗δα = w∗- lim
n
T ∗δηαn

= w∗- lim
n
ϕ(T )δαn

= ϕ(T )δα,

by the weak∗-continuity of T ∗ and (4.6). This proves that α ∈ D, and so D is unbounded.
We shall next prove that the scalar ϕ(T ) is uniquely determined by the operator T . Suppose

that ϕ1(T ) and ϕ2(T ) are scalars such that

(Tf)(α) = ϕj(T )f(α) (α ∈ Dj , f ∈ C0[0, ω1), j = 1, 2),

for some club subsets D1 and D2 of [0, ω1). Then D1 ∩D2 is a club subset, and it is thus non-
empty. Choosing α ∈ D1 ∩D2, we obtain (T1[0,α])(α) = ϕj(T )1[0,α](α) = ϕj(T ) for j = 1, 2,
so that ϕ1(T ) = ϕ2(T ), as required.

Consequently, we can define a mapping ϕ : T �→ ϕ(T ),B(C0[0, ω1)) → K, which is non-
zero because ϕ(IC0[0,ω1)) = 1. To see that ϕ is an algebra homomorphism, let λ ∈ K and
T1, T2 ∈ B(C0[0, ω1)) be given, and choose club subsets D1 and D2 of [0, ω1) such that

T ∗
j δα = ϕ(Tj)δα (α ∈ Dj , j = 1, 2).

Then, for each α belonging to the club subset D1 ∩D2 of [0, ω1), we have

(λT1 + T2)∗δα = λT ∗
1 δα + T ∗

2 δα = (λϕ(T1) + ϕ(T2))δα

and

(T1T2)∗δα = T ∗
2 (T ∗

1 δα) = T ∗
2 (ϕ(T1)δα) = ϕ(T1)ϕ(T2)δα,

so that ϕ(λT1 + T2) = λϕ(T1) + ϕ(T2) and ϕ(T1T2) = ϕ(T1)ϕ(T2) by the definition of ϕ.

Proof of Theorem 1.6. We begin by showing that conditions (ii) and (iii) are equivalent.
Suppose that D is a club subset of [0, ω1) such that T ∗(δα)({α}) = 0 for each α ∈ D. By

Theorem 1.5, we can find a club subset D′ of [0, ω1) such that T ∗δα = ϕ(T )δα for each α ∈ D′.
Then, choosing α ∈ D ∩D′ (which is possible because D ∩D′ is a club subset, and it is thus
non-empty), we obtain 0 = T ∗δα({α}) = ϕ(T )δα({α}) = ϕ(T ), which establishes (iii).
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Conversely, suppose that ϕ(T ) = 0, so that there exists a club subset D of [0, ω1) such that
T ∗δα = 0 for each α ∈ D. Then clearly T ∗(δα)({α}) = 0 for each α ∈ D, so that (ii) is satisfied.

We shall next prove that conditions (iii)–(viii) are equivalent.
(iii)⇒(iv). Suppose that ϕ(T ) = 0, and choose a club subset D of [0, ω1) such that

(Tf)(α) = 0 for each f ∈ C0[0, ω1) and each α ∈ D. Then (2.9) shows that the range of T
is contained in kerPD, so that T factors through Eω1 by Corollary 2.15.

(iv)⇒(v). Suppose that T = SR, where R ∈ B(C0[0, ω1), Eω1) and S ∈ B(Eω1 , C0[0, ω1)).
Then the range of T is contained in the range of S, and the closure of the range of S is
Hilbert-generated because the domain of S is Hilbert-generated by Corollary 2.11.

The implication (v)⇒(vi) is clear because every Hilbert-generated Banach space is weakly
compactly generated.

The implications (vi)⇒(vii)⇒(viii)⇒(iii) are all proved by contraposition.
(vi)⇒(vii). Suppose that, for some U ∈ B(C0[0, ω1)), the composite operator TU is an

isomorphism onto its range. Then Theorem 2.8 shows that the range of TU , and hence the
range of T , cannot be contained in any weakly compactly generated Banach space.

(vii)⇒(viii). Suppose that STR = IC0[0, ω1) for some operators R,S ∈ B(C0[0, ω1)). Then
the operator TR is bounded below, and it is thus an isomorphism onto its range, so that T
fixes an isomorphic copy of C0[0, ω1).

(viii)⇒(iii). Suppose that ϕ(T ) �= 0. By rescaling, we may suppose that ϕ(T ) = 1, so that
we can choose a club subset D of [0, ω1) such that (Tf)(α) = f(α) for each f ∈ C0[0, ω1) and
each α ∈ D. Then, in the notation of Lemma 2.14, we have a commutative diagram, which
implies that (viii) is not satisfied:

C0[0, ω1)
IC0[0,ω1) ��

���
�
�
�
�
�
�

U−1
D �����������

C0[0, ω1)

C0(D)
IC0(D)��

SD

�����������
C0(D)

UD

�����������

C0[0, ω1) T �� C0[0, ω1)

RD

�����������

		�
�
�
�
�
�
�

Indeed, the commutativity of the upper trapezium is clear, while for the lower one, we find

(RDTSDg)(α) = T (g ◦ πD)(α) = (g ◦ πD)(α) = g(α) (g ∈ C0(D), α ∈ D).

Finally, to see that conditions (i) and (iii) are equivalent, we note that, on the one hand,
the Loy–Willis ideal M is a maximal ideal of B(C0[0, ω1)) by its definition. On the other,
the implication (viii)⇒(iii), which has just been established, shows that the identity operator
belongs to the ideal generated by any operator which is not in kerϕ, so that kerϕ is the unique
maximal ideal of B(C0[0, ω1)). Hence, kerϕ = M .

As we have already noted in the final paragraph of the proof, above, Theorem 1.6 has the
following important consequence, which generalizes [21, Theorem 1.1].

Corollary 4.4. The ideal M = Sem(C0[0, ω1)) = kerϕ is the unique maximal ideal
of B(C0[0, ω1)).

Remark 4.5. The first-named author and Kochanek [19] have recently introduced the
notion of a weakly compactly generated operator as an operator whose range is contained
in a weakly compactly generated subspace of its codomain, and they have shown that the
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collection WCG of all weakly compactly generated operators forms a closed operator ideal in
the sense of Pietsch.

Analogously, let us say that an operator is Hilbert-generated if its range is contained in a
Hilbert-generated subspace of its codomain. An argument along the same lines as the proof
of [19, Theorem 2.1] establishes that the collection H G of all Hilbert-generated operators
defines a closed operator ideal in the sense of Pietsch, and the equivalence of conditions (i),
(v) and (vi) of Theorem 1.6 shows that

M = H G (C0[0, ω1)) = WCG (C0[0, ω1)).

Proof of Corollary 1.9. Let Γ denote the set of all club subsets of [0, ω1), ordered by
reverse inclusion. This order is filtering upward because D ∩D′ ∈ Γ is a majorant for any
pair D,D′ ∈ Γ, and hence Theorem 1.6, Lemma 2.14(iv) and Corollary 2.15 imply that

QD = IC0[0, ω1) − PD ∈ M (D ∈ Γ)

defines a net of projections, each having norm at most 2. As in the proof of Theorem 1.6,
(iii)⇒(iv), we see that, for each T ∈ M , there is a club subset D0 of [0, ω1) such that PD0T = 0.
Equation (2.9) then shows that PDT = 0 for each D ⊆ D0; that is, QDT = T whenever
D � D0.

Example 4.6. Consider the Hilbert space H = {f : [0, ω1) → K :
∑

α<ω1
|f(α)|2 <∞}.

The work of Gramsch [14] and Luft [27] shows that the set X (H) of operators on H having
separable range is the unique maximal ideal of B(H). (In fact, Gramsch and Luft proved that
the entire lattice of closed ideals of B(H) is given by

{0} ⊂ K (H) ⊂ X (H) ⊂ B(H),

but we do not require the full strength of their result.) Since B(H) is a C∗-algebra, each of
its non-zero closed ideals has a bounded two-sided approximate identity consisting of positive
operators of norm 1. The purpose of this example is to show that, in the case of X (H), we
have a bounded two-sided approximate identity (PL)L∈Γ consisting of self-adjoint projections
such that PLT = T = TPL eventually for each T ∈ X (H). We note in passing that algebras
which contain a net with this property have been studied in a purely algebraic context by Ara
and Perera [4, Definition 1.4] and Pedersen and Perera [31, Section 4].

Let Γ denote the set of all closed, separable subspaces of H, ordered by inclusion. This order
is filtering upward because L+M ∈ Γ majorizes the pair L,M ∈ Γ. For L ∈ Γ, let PL ∈ X (H)
be the orthogonal projection which has range L. Suppose that T ∈ X (H), and denote by T �

the Hilbert-space adjoint of T . We have T � ∈ X (H) because each closed ideal of a C∗-algebra
is self-adjoint, and therefore M = T [H] + T �[H] belongs to Γ. Now, for each L ∈ Γ such that
L ⊇M , we see that PLT = T and PLT

� = T �, from which the desired conclusion follows by
taking the adjoint of the latter equation.

Proof of Corollary 1.10. Assume towards a contradiction that, for some natural numbers
m > n, there exists either an operator R : C0[0, ω1)m → C0[0, ω1)n which is bounded below,
or an operator T : C0[0, ω1)n → C0[0, ω1)m which is surjective. We shall focus on the first
case; the other is very similar. The proof is best explained if we represent the operator
R : C0[0, ω1)m → C0[0, ω1)n by the operator-valued (n×m)-matrix (Rj,k)n,m

j,k=1 given by
Rj,k = Q

(n)
j RJ

(m)
k ∈ B(C0[0, ω1)), where Q(n)

j : C0[0, ω1)n → C0[0, ω1) and J (m)
k : C0[0, ω1) →

C0[0, ω1)m denote the jth coordinate projection and kth coordinate embedding, respectively.
Using elementary column operations, we can reduce the scalar-valued matrix

S = (ϕ(Rj,k))n,m
j,k=1 to column-echelon form; that is, we can find an invertible, scalar-valued
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(m×m)-matrix U such that SU has column-echelon form. Since m > n, the final column
of SU must be zero. Consequently, each operator in the final column of the matrix RU belongs
to M , which is equal to the operator ideal H G (C0[0, ω1)) introduced in Remark 4.5; hence we
have RUJ (m)

m ∈ H G (C0[0, ω1), C0[0, ω1)n). This, however, contradicts Theorem 2.8 because
the operators J (m)

m , U and R are all bounded below, and therefore the range of RUJ (n)
n is

isomorphic to its domain C0[0, ω1).

Proof of Corollary 1.11. Since P is idempotent, we have ϕ(P ) ∈ {0, 1}. We shall consider
the case where ϕ(P ) = 0; the case where ϕ(P ) = 1 is similar, just with P and IC0[0, ω1) − P
interchanged. Let X = kerP and Y = P [C0[0, ω1)]. As in the proof of Theorem 1.6, (iii)⇒(iv),
we see that Y is contained in kerPD for some club subset D of [0, ω1). By Corollary 2.15,
kerPD is isomorphic to a complemented subspace of Eω1 , so that the same is true for Y , say
Eω1

∼= Y ⊕ Z for some Banach space Z. Using Lemma 2.12, we obtain

Eω1
∼= c0(N, Eω1) ∼= c0(N, Y ⊕ Z) ∼= c0(N, Y ⊕ Z) ⊕ Y ∼= Eω1 ⊕ Y,

where we recall that c0(N,W ) denotes the c0-direct sum of countably many copies of the Banach
space W . Consequently, C0[0, ω1) ∼= C0[0, ω1) ⊕ Y because C0[0, ω1) contains a complemented
subspace isomorphic to Eω1 by Corollary 2.16. Theorem 1.4 implies that X contains a
complemented subspace which is isomorphic to C0[0, ω1), so that X ∼= W ⊕ C0[0, ω1) for some
Banach space W , and hence we have

X ∼= W ⊕ C0[0, ω1) ∼= W ⊕ C0[0, ω1) ⊕ Y ∼= X ⊕ Y = C0[0, ω1),

as required.

Proof of Corollary 1.12. Let U be an isomorphism of C0[0, ω1) onto a closed subspace W
of C0[0, ω1), and consider the operator T = JU ∈ B(C0[0, ω1)), where J : W → C0[0, ω1)
denotes the natural inclusion. Then T fixes an isomorphic copy of C0[0, ω1). Hence, by
Theorem 1.6, we can find operators R and S on C0[0, ω1) such that STR = IC0[0, ω1). This
implies that TR is an isomorphism of C0[0, ω1) onto its range Y , which is contained in W ,
and TRS is a projection of C0[0, ω1) onto Y .

Proof of Corollary 1.13. This proof follows closely that of [36, Proposition 8], where any
unexplained terminology can also be found.

We begin by showing that Willis’s ideal of compressible operators on C0[0, ω1), as defined in
[36, p. 252], is equal to the Loy–Willis ideal M . Indeed, [36, Proposition 2] and Corollary 1.10
show that the identity operator on C0[0, ω1) is not compressible, so that the ideal of
compressible operators is proper, and it is thus contained in M by Corollary 4.4. Conversely,
each operator T ∈ M is compressible by [36, Proposition 1] because T factors through a
complemented subspace X of C0[0, ω1) such that X ∼= Eω1 , and Lemma 2.12 implies that X is
isomorphic to the c0-direct sum of countably many copies of itself.

Next, we observe that null sequences in M factor, in the sense that, for each norm-null
sequence (Tn)n∈N in M , there are R ∈ M and a norm-null sequence (Sn)n∈N in M such
that Tn = RSn for each n ∈ N. This is a standard consequence of Cohen’s Factorization
Theorem (see, for example, [8, Corollary I.11.2]), which applies because M has a bounded left
approximate identity. We do not, however, need Cohen’s Factorization Theorem to draw this
conclusion. Indeed, for each n ∈ N, Theorems 1.5 and 1.6 imply that there is a club subset Dn

of [0, ω1) such that T ∗
nδα = 0 for each α ∈ Dn. Then D =

⋂
n∈N

Dn is a club subset of [0, ω1)
such that T ∗

nδα = 0 for each α ∈ D and n ∈ N. This implies that PDTn = 0 for each n ∈ N

by (2.9), so that the operator R = IC0[0, ω1) − PD satisfies RTn = Tn for each n ∈ N; and R
belongs to M by Corollary 2.15 and Theorem 1.6.
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Now consider an algebra homomorphism θ from B(C0[0, ω1)) into some Banach algebra C .
Then [36, Proposition 7] implies that the continuity ideal of θ|M contains M , so that the
mapping S �→ θ(RS), M → C , is continuous for each fixed R ∈ M . Since null sequences factor,
as shown above, this proves the continuity of θ|M , and thus of θ, because M has finite
codimension in B(C0[0, ω1)).

Proof of Corollary 1.14. Each operator in M factors through the Banach space Eω1 by
Theorem 1.6. Lemma 2.12 states that Eω1 is isomorphic to the c0-direct sum of countably
many copies of itself, so that [25, Proposition 3.7] implies that each operator on Eω1 is the
sum of at most two commutators, and therefore each operator which factors through Eω1 is
the sum of at most three commutators by [25, Lemma 4.5].

Suppose that τ is a trace on B(C0[0, ω1)). Then τ vanishes on each commutator, so that
M ⊆ ker τ by the result established in the first paragraph of the proof. Hence, we have
τ(T + λIC0[0, ω1)) = λτ(IC0[0, ω1)) = ϕ(T + λIC0[0, ω1))τ(IC0[0, ω1)) for each T ∈ M and λ ∈ K

because ϕ(T ) = 0 by Theorem 1.6. The converse implication is clear.
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