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LU I Z EDUARDO OL IVE IRA CRUZ ARAGÃO 6 , 7 , P L�IN IO BARBOSA DE CAMARGO8 ,

CARLOS EDUARDO CERR I 9 , MAR IANA DUR IGAN9 , RA IMUNDO COSME DE OL IVE IRA
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Abstract

Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of

efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitiga-

tion actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast

areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an

urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests com-

pare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the

results of the largest field study to date on the impacts of human disturbances on above and belowground carbon

stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that

experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undis-

turbed forests and were structurally similar to secondary forests. Edge effects also played an important role in

explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery

of the dead wood and litter carbon pools, while soil stocks (0–30 cm) appeared to be resistant to the effects of logging

and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in green-

house gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian

government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions

could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation pro-

grams aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in

their success unless they effectively avoid degradation as well as deforestation.
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Introduction

Anthropogenic forest degradation is the reduction in

the overall capacity of a forest to supply goods and ser-

vices including carbon storage, climate regulation, and

biodiversity conservation. It can result from various

types of human disturbances, such as selective logging,

understory fires, fragmentation, and overhunting

(Parrotta et al., 2012). These disturbances are known to

impact vast areas of the tropics: for example, around 20

million hectares of humid tropical forests burned in

1997–1998 (Cochrane, 2003), while selective logging

affected more than 20% of the world’s tropical forests

between 2000 and 2005 (Asner et al., 2009). In 2007, at

its 13th Conference of the Parties, the UN Framework
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Convention on Climate Change (UNFCCC) recognized

forest degradation as an important contributor to global

carbon emissions by incorporating it into the Reducing

Emissions from Deforestation and Forest Degradation

(REDD+) mechanism (UNFCCC, 2008). However, lim-

ited progress has been made in quantifying carbon

losses due to human disturbances (Parrotta et al., 2012)

and, as a consequence, degradation remains largely

overlooked by governments and civil society when

compared to deforestation (e.g. Greenpeace, 2009;

MCT, 2010).

In tropical forests, the degree of degradation of car-

bon stocks depends on the type of disturbance (e.g. log-

ging, understory fires, edge effects), the intensity and

frequency of disturbance events, and the time elapsed

since their occurrence (Laurance et al., 2006; Barlow

et al., 2012; Arag~ao et al., 2014). However, a lack of field

data from disturbed forests means that our knowledge

of the relative importance of these different factors in

explaining changes in overall carbon stocks is very poor

(Aguiar et al., 2012). Existing studies have focused on

alterations of individual components of the total forest

stocks (e.g. large trees, dead wood), or on the effects of

single types of disturbance in relatively small areas

(e.g. Barlow et al., 2003; Feldpausch et al., 2005; Balch

et al., 2011; Paula et al., 2011). As a result, we still have

a limited understanding of the combined effects of mul-

tiple forms of disturbance on different carbon pools,

which constrains our ability to identify management

priorities for avoiding further losses and restoring

already degraded forests.

The Amazon is the world’s largest tropical rainforest

and stores approximately 86 Pg of carbon above and

belowground, thereby playing a crucial role in global

climate regulation (Saatchi et al., 2007; Betts et al., 2008).

More than 60% of the Amazon lies within Brazil, mak-

ing this country the world’s largest repository of forest

carbon (FAO, 2010). Recent government efforts to curb

deforestation have led to a sharp decrease in rates of

forest clearance, with annual deforestation falling by

79% from 2005 to 2013 (INPE, 2013a). Despite the good

news, additional measures are urgently needed to

reduce widespread forest degradation due (principally)

to selective logging and wildfires: between 2007 and

2010, at least 6.4 million hectares of the region’s forests

were classified as newly degraded (INPE, 2013b). In

2008 alone, the area affected by logging and wildfires

was more than twice the size of the area deforested in

the same year (INPE, 2013a,b). Furthermore, the extent

of forests disturbed by understory fires can be greatly

exacerbated in years of El Ni~no or other severe drought

episodes, due to increased flammability of forests

(Alencar et al., 2006; Arag~ao et al., 2007; Silvestrini et al.,

2011).

Here, we present the largest field study to date detail-

ing the effects of anthropogenic forest disturbance

(from selective logging, fire, and fragmentation) on the

aboveground, dead wood, litter, and soil carbon pools.

We use data from 225 forest plots distributed across

two regions of the Brazilian Amazon, which together

cover an area of more than 3 million hectares and repre-

sent different histories of human occupation and associ-

ated land-use change (see Gardner et al., 2013). We

compare carbon stocks from disturbed primary forests

(i.e. forests affected by logging and/or fire, but that do

not exhibit any signs of having been clear-felled) to two

contrasting reference states: undisturbed primary for-

ests (stands with no detectable evidence of past anthro-

pogenic disturbance) and secondary forests (forests

regenerating after complete clearance). Specifically, we

address the following questions: (i) What are the carbon

stocks of human-modified tropical forests, and how do

different types of disturbance affect individual carbon

pools? (ii) Do different types of disturbance alter forest

structure, and, if so, how? (iii) To what extent can vari-

ability in carbon stocks in primary forests be explained

by differences in the history of forest disturbance, land-

scape context and topography? We use our results to

discuss some of the challenges facing the long-term

maintenance of carbon stocks in human-modified

tropical forests.

Methodology

Study areas

This study was conducted in two different regions in

the eastern Amazon: the municipalities of Santar�em-

Belterra and Paragominas (Fig. 1a). In each region, 18

study catchments (c. 5000 ha each) were distributed

along a gradient of remaining forest cover (Fig. 1b). In

each catchment, the number and location of the study

plots (10 9 250 m, 0.25 ha) followed a stratified-ran-

dom sampling design, with the number of plots being

proportional to the forest cover of each study catch-

ment, but without prior knowledge of the history of

human-induced disturbance or clearance of the sites.

Plots were located in evergreen nonflooded forests and

were placed at least 1500 m aside from each other and

no less than 100 m away from forest edges (Fig. 1c).

The 225 sampled plots encompassed undisturbed pri-

mary forests, secondary forests of different ages (from 6

to over 22 years old), and a gradient of primary forests

that have been exposed to different levels of distur-

bance from logging, fire, and fragmentation. Study

plots were separated into five different classes (Table 1)

based on a combination of physical evidence of selec-

tive logging (debris and stumps) and understory fires

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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(charcoal and fire scars on stems; following Barlow

et al., 2010) found during field surveys, together with a

visual inspection of a chronosequence of Landsat

images (described below). Physical evidence of human-

driven disturbance can remain in the environment for a

long period after its occurrence: fire scars and charcoal

can be found in forests even after 300 years of the fire

event (Heinselman, 1973; Romme, 1982; Yocom & Ful�e,

2012), while logging debris of tropical hardwoods may

take up to 90 years to decompose (Harmon et al., 1995;

Filho et al., 2004). As such, our ground surveys of

human-driven disturbance cover a period of time

longer than the existence of Paragominas (founded in

1965) and of the migratory boom to Santar�em in the

1960s and 1970s. Finally, our extensive soil sampling

found no evidence of pre-Columbian settlements (e.g.

terra preta) in any of our study plots.

Sampling and estimation of carbon stocks

The Intergovernmental Panel on Climate Change

(IPCC) guidelines for national greenhouse gas invento-

ries recommend that carbon assessments in forested

lands should quantify five functionally distinct carbon

pools (IPCC, 2006). We estimated carbon stocks in four

of these pools (Fig. 1d): aboveground carbon (live trees,

palms and lianas), dead wood (coarse woody debris

and standing dead trees and palms), litter (fine woody

debris and leaf litter), and soil (upper 30 cm; the default

sampling depth established by the IPCC). Belowground

biomass (i.e. coarse roots) is the only IPCC carbon pool

that we did not sample. Carbon was assumed to be

50% of total biomass in the aboveground, dead wood,

and litter pools (IPCC, 2006). As plots were laid out on

(a) (b)

(c)
(d)

Fig. 1 Sampling design. (a) Location of the two study regions, Paragominas and Santar�em, within the Amazon biome (in light gray),

(b) Distribution of study catchments (in white outline) in Paragominas, (c) Plots distribution in a study catchment, (d) Carbon stocks

assessment: Large dark gray rectangle – survey of live and dead trees, lianas, and palms ≥ 10 cm DBH. All individuals were identified

to species level by experienced local parabotanists. Gray rectangles and small light gray rectangles attached – 5 9 20 m subplots for

identification and measurement of all live and dead trees, lianas, and palms ≥2–10 cm DBH. Also, measurement of coarse woody debris

(≥10 cm diameter in at least one extremity) was carried out in these subplots. Small light gray rectangles – 2 9 5 m subplots for fine

woody debris sample (≥2–10 cm diameter in at least one extremity). Squares – 0.5 9 0.5 m quadrats for leaf litter sample. Underneath

the first row of litter sampling (5 m away from the plot), composite soil samples were collected at three different depths: 0–10, 10–20,

and 20–30 cm. Star – 30 9 30 cm trench for sampling of soil bulk density to calibrate soil carbon stocks. More details of sampling

design can be found in the supporting information.

Table 1 Number of sampled plots (0.25 ha) per region

according to forest class. In specific analysis where the full

dataset could not be used, the sample size is indicated

Forest class Paragominas Santar�em

Undisturbed 13 17

Logged 44 26

Burned 0 7

Logged-and-burned 44 24

Secondary 16 34

Total 117 108

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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the ground, we slope-corrected estimates of above-

ground carbon stocks based on the percent incline of

each individual study plot. However, results were not

sensitive to slope as the relationship between slope-cor-

rected and uncorrected estimates of aboveground car-

bon yielded a R2 > 0.99. In total, we measured 70 293

stems of trees, palms, and lianas; 8 611 large pieces of

coarse woody debris; and undertook 1 125 samples of

fine woody debris, 2 250 litter samples, and 4 725 soil

samples. Further details on the sampling and estima-

tion of carbon stocks can be found in the supplemen-

tary online material.

Anthropogenic and natural drivers of carbon stocks

To further understand patterns of aboveground carbon

stocks, we selected a suite of topographic, edaphic,

landscape context and human disturbance variables,

which have been previously shown to significantly

influence aboveground stocks elsewhere in the Amazon

(Castilho et al., 2006; Laurance et al., 2011; Barlow et al.,

2012). Climate variables were assumed to be similar

between and within regions and were not included in

these analyses. Topographic variables included the

average elevation and slope of all pixels in a 100 m buf-

fer surrounding a study plot, obtained using a digital

elevation model (STRM 90 m). Soil texture of each plot

was assessed by estimating clay content (g kg�1) of all

soil samples through the densimeter method (Camargo

et al., 2009). Variables related to the landscape context

of the sampled plots included the average distance of

all pixels that comprise a plot to the nearest forest edge

(hereafter distance to edge) and the density of forest

edges in a buffer of 250 m surrounding a plot. Both

variables were estimated using ArcGIS 9.3 and a 2010

classified Landsat image. The history of human distur-

bance in the study plots covered by primary forest was

estimated using five variables derived from both field

and remote sensing information (using a 100 m buffer

around the plot area): (i) the percent of total forest area

that had been disturbed by logging or fire at least once,

(ii) the time-since the last fire event, (iii) the time-since

the last logging event, (iv) the number of fire events

and (v) the number of logging events. Remote sensing

analyses were carried out using a chronosequence of

georeferenced 30 m spatial resolution Landsat images

from 1988 to 2010 in Paragominas and 1990–2010 in

Santar�em. Images were first corrected for atmospheric

haze and smoke interference and then classified using a

decision tree algorithm (see Gardner et al., 2013). Where

there was evidence of either fire or selective logging in

the ground assessment but not in the time-series analy-

ses, we attributed default values of 1 and 25 years for

the number and time-since the event, respectively.

Assigning a default time-since value of 25 assumes that

the event occurred before the baseline of the satellite

images and was not missed due to obstruction by

clouds. For plots that did not experience a particular

type of disturbance (e.g. undisturbed plots or logged

but not burned plots), we attributed an arbitrary large

default value of 50 years for the time elapsed since the

last disturbance event. Finally, using the corrected

Landsat images in the chronosequence, we also per-

formed a visual inspection of the area around each

study plot to help distinguish highly disturbed primary

forests (never clear-cut) from secondary forests (previ-

ously cleared), as these can be confounded in ground

surveys.

Data analysis and variable selection

We summed the carbon content of all sampled pools in

each individual plot to estimate total carbon stocks and

then averaged values by forest class (i.e. undisturbed,

logged, burned, logged-and-burned, and secondary).

Standard error of total stocks was estimated through

the root of the sum of the squares of the error of each

carbon pool (Pearson et al., 2005). We used one way

ANOVA with post hoc Tukey tests to evaluate differences

in the size of each carbon pool and their individual

components between the different forest classes. We

used t-tests on arcsine-transformed data to assess dif-

ferences in the percentage of carbon stored in each of

the aboveground components in disturbed primary for-

ests in relation to the two reference states (i.e. undis-

turbed primary forests and secondary forests). To select

explanatory variables for modeling aboveground car-

bon stocks, we first examined the correlation structure

between all variables using Pearson’s correlation coeffi-

cients and Variance Inflation Factors (VIF). When vari-

ables presented a high correlation (r ≥ 0.7 and VIF ≥ 3),

we only retained the variable that presented the strong-

est relationship with live aboveground carbon, exclud-

ing the others from the models (Zuur et al., 2009). This

process resulted in the exclusion of edge density, num-

ber of fire events, and number of logging events from

candidate models. We used generalized linear mixed-

effect models (GLMMs) with a Gaussian error distribu-

tion to model differences in aboveground stocks. The

nested sampling design (plots within catchments) was

taken into consideration by setting catchment as a ran-

dom effect. The distribution of the residuals of the glo-

bal model (i.e. the model that contains all explanatory

variables) was evaluated to confirm model validity.

Subsequently, we ran all possible models using differ-

ent combinations of the explanatory variables and

ranked them by their AICc weights (Burnham &

Anderson, 2002). Secondary forests were excluded from

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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this analysis as we were only interested in the

responses of aboveground carbon stocks in primary for-

ests (disturbed or not) to the selected explanatory

variables. The relative importance of each explanatory

variable was calculated by summing the AICc weights

of all models that included the variable of interest

(Burnham & Anderson, 2002). The direction of the

effect of individual explanatory variables on the above-

ground pool was based only on models with a ΔAICc

<2. Finally, to assess the recovery through time of the

dead wood, litter, and soil carbon pools in primary for-

ests, we used GLMMs with time-since the last distur-

bance (either fire or logging) as the only fixed factor

and set catchment as the random effect. All analyses

were done in R version 2.15.1 (R Core Development

Team, 2012). We used the ‘AED’ package to examine

the correlation structure between all variables, the

‘nlme’ package to build the global model, and the

‘MuMin’ package to generate the complete subset of

models, as well as to assess models’ AICc scores and

the relative importance of each explanatory variable.

Results

Carbon stocks in human-modified tropical forests

Combining the four carbon pools we assessed, total

carbon stocks (Mg C ha�1 � SE) in undisturbed,

logged, logged-and-burned, and secondary forests in

Paragominas were 275.58 � 14.09, 238.53 � 7.62,

187.06 � 7.50, and 125.58 � 7.57, respectively. In San-

tar�em, total stocks were 274.35 � 21.72, 238.13 � 13.05,

236.87 � 28.74, 222.24 � 18.17, and 132.66 � 11.42 in

undisturbed, logged, burned, logged-and-burned, and

secondary forests, respectively.

The aboveground pool was particularly affected by

human disturbance, exhibiting the largest decrease in

stocks (Fig. 2a, Table S1). This was most notable in

Paragominas where the amount of aboveground carbon

in logged and logged-and-burned forests was 35% and

57% respectively lower than in undisturbed forests. In

this region, logged-and-burned forests stored on aver-

age 116 Mg C ha�1 less than undisturbed forests and

only 39 Mg C ha�1 more than secondary forests. The

dead wood and litter carbon pools were seemingly

unaffected by the type of forest disturbance in our com-

parisons in both study regions (Fig. 2b, c). The soil pool

was significantly larger in logged forests than in undis-

turbed ones in Paragominas (Fig. 2d, Table S1), which

was probably due to our undisturbed plots being con-

centrated in areas where soils were sandier (Figure S1).

In Santar�em, the soil pool did not present significant

differences between forest classes (Fig. 2d). Despite

undergoing the greatest reduction, the aboveground

pool still held more carbon than any of the other pools

across all forest disturbance classes (not considering

deep soils).

Effects of disturbance on forest structure

Both selective logging and understory fires had a

severe effect on trees ≥10 cm DBH in Paragominas,

especially in the largest size class (≥50 cm DBH).

Logged and logged-and-burned forests stored 47%

and 75% respectively less carbon in trees this size,

when compared to undisturbed primary forests

(Fig. 3a). All size classes of trees ≥20 cm DBH in this

region held significantly more carbon in undisturbed

forests than the equivalent size class in disturbed

primary forests (Fig. 3). Conversely, there was no sig-

nificant difference in the amount of carbon stored in

logged-and-burned vs. secondary forests for most tree

size classes. In contrast to the patterns found in

Paragominas, carbon stocks in all size classes of trees

≥10 cm DBH in Santar�em were similar between

primary forests, regardless of disturbance (Fig. 3).

The relative contribution of individual components

to the aboveground carbon pool differed significantly

between disturbance classes: trees ≥50 cm DBH

were responsible for storing the largest fraction of

aboveground carbon in undisturbed forests, but their

contribution was markedly lower in logged and

logged-and-burned forests. This decline was accom-

panied by an increase in the relative contribution of

smaller trees and lianas (Fig. 4). For example, trees

between 2 and 10 cm DBH increased their average

contribution to aboveground stocks by 119% and 38%

in logged-and-burned forests when compared to

undisturbed forests in Paragominas and Santar�em,

respectively. When comparing disturbed primary

forests with secondary forests, the latter stored signif-

icantly less carbon in trees ≥50 cm DBH than the

former in both regions. The contribution of trees

20–50 cm DBH to aboveground stocks became

increasingly similar between secondary and disturbed

forests, as well as that of lianas ≥10 cm DBH (Figure

S2). The structural similarity of disturbed primary

and secondary forests was most pronounced in

logged-and-burned forests in Paragominas, where six

of 11 components of the aboveground pool had a sta-

tistically similar contribution to aboveground stocks

to that of secondary forests (Figure S2).

Drivers of change in aboveground carbon stocks in
primary forests

Distance to edge was the most important explanatory

variable influencing aboveground carbon stocks in

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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primary forests of both regions and was positively asso-

ciated with this pool (i.e. the highest aboveground

stocks were recorded the furthest from forest edges;

Fig. 5). In Paragominas, time-since the last fire event,

terrain slope, and time-since the last logging event also

had a strong influence on aboveground carbon (all had

relative importance values >0.85; Fig. 5) and were all

present in the best model (AICc weight of 0.54; Table

S2). In Santar�em, terrain slope was the second most

important variable (relative importance value of 0.74),

(a)

(b)

(c)

(d)

Fig. 2 Variation in the (a) Aboveground, (b) Dead wood, (c) Litter, and (d) Soil carbon pools in both study regions. Unless shown

otherwise, sample sizes follow Table 1. Letters indicate forest classes with significantly different means following Tukey post hoc tests

(P < 0.05). Dots represent outliers. UF = Undisturbed forests, LF = Logged forests, BF = Burned forests, LBF = Logged-and-burned

forests, SF = Secondary forests.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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(a)

(b)

(c)

(d)

(e)

Fig. 3 Variation in the carbon content of the main components of the aboveground pool in Paragominas and Santar�em. The main com-

ponents are: (a) Trees ≥50 cm DBH, (b) Trees 40–50 cm DBH, (c) Trees 30–40 cm DBH, (d) Trees 20–30 cm DBH, and (e) Trees 10–

20 cm DBH. DBH = 1.3 m from the ground. Letters represent significant differences (P < 0.05) in carbon stored between forest classes.

Dots represent outliers. UF = Undisturbed forests, LF = Logged forests, BF = Burned forests, LBF = Logged-and-burned forests,

SF = Secondary forests.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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whereas percentage of area disturbed had a greater

effect on aboveground stocks than either time-since the

last fire or logging events (Fig. 5). Soil texture and plot

elevation had a weak effect on the aboveground carbon

pool of both Paragominas and Santar�em. Model results

were much less clear in Santar�em as all the top nine

ranked models had a ΔAICc <2 (Table S2).

Assessing the recovery through time of other carbon pools

As disturbance type had no effect on the dead wood,

litter, and soil carbon pools (Fig. 2), we built GLMMs to

investigate whether this lack of response could be

attributed to a rapid recovery following disturbance.

There was no effect of time-since the last disturbance

(a)

(b)

Fig. 4 Mean percentage contribution of 11 different components to the aboveground carbon pool. Results are separated by forest class

in (a) Paragominas and (b) Santar�em. Error bars indicate standard error. Black bars represent significant differences (P < 0.05) from

undisturbed forests within the same region.

Fig. 5 The relative importance of edaphic, topographic, landscape context, and disturbance variables in determining differences in the

size of the aboveground carbon pool. Edaphic and topographic variables (black bars) encompassed Clay = Mean soil clay content per

plot, Elev = Mean plot elevation, and Slope = Mean plot slope. Landscape context (dark gray bar) included Edge = Average distance

of the plot to the nearest forest edge. Anthropogenic disturbance variables (light gray bars) were Area = % of the plot that was

degraded at least once in the satellite image analysis, Fire = Time-since the last wildfire occurrence, Logging = Time-since the last

logging event. Signs indicate the direction of the effect of each variable on aboveground stocks.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 20, 3713–3726
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on any of these three pools in either Paragominas or

Santar�em: the null model (intercept only) was consis-

tently the highest ranked one, while the models includ-

ing time-since the last disturbance always presented a

ΔAICc >2 (Tables S3–S5).

Discussion

Most ecological research on carbon stocks of tropical

rainforests has either focused on monitoring change in

relatively undisturbed primary forests (e.g. Malhi et al.,

2006; Phillips et al., 2008; Lewis et al., 2009) or on quan-

tifying deforestation and the effects of forest fragmenta-

tion on aboveground biomass (Laurance et al., 2011;

Paula et al., 2011). We present the first large-scale

ground study of changes in carbon stocks across multi-

ple pools in human-modified tropical forests. We show

that forest disturbance, particularly when resulting

from a combination of both fire and logging, can

severely alter forest structure (Fig. 3; Fig. 4), resulting

in acute degradation of carbon stocks, with losses being

more pronounced in live aboveground carbon than in

dead organic matter or soil (Fig. 2). Alongside distur-

bance type, edge effects also play a major role in influ-

encing aboveground stocks in primary forests (Fig. 5).

Despite significant reductions in the carbon stored in

disturbed forests, even the most degraded primary for-

ests (i.e. logged-and-burned) still hold more carbon

than secondary forests. We examine these findings in

terms of the specific effects of disturbance on forest car-

bon stocks and structure, considering their implications

for assessing and monitoring forest carbon, before

finally discussing the prospects for carbon conservation

in human-modified tropical forests.

Degradation of carbon stocks from anthropogenic
disturbance

Human-modified forests are increasingly prevalent in

the humid tropics (Achard et al., 2002; Broadbent et al.,

2008; Melo et al., 2013), hence understanding the effects

of human disturbances on forest carbon stocks is crucial

for better practices of forest management and conserva-

tion measures. The aboveground carbon pool was the

most sensitive to human disturbances with disturbed

primary forests containing between 18% and 57% less

carbon than we observed in undisturbed forests

(Fig. 2). Combining this observed range with Brazilian

government remote sensing estimates of the extent of

forest degradation (INPE, 2013b) suggests that, in 2010

alone, the Brazilian Amazon could have lost between

0.03 and 0.08 Pg of carbon from the 7 51 000 ha of

forest impacted by fire and/or logging – c.40% of the

loss from deforestation in the same year (INPE, 2013a).

This substantial loss of carbon stocks remains unac-

counted for in inventories of greenhouse gas emissions

(e.g. MCT, 2010).

Previous studies have shown an increase in carbon

stored in the dead wood and litter pools following

human disturbances, but most sampling was carried

out shortly after the disturbance had taken place (Uhl

& Kauffman, 1990; Cochrane et al., 1999; Gerwing,

2002; Keller et al., 2004; Palace et al., 2007). Surprisingly,

our results do not show any significant difference

between the dead wood and litter carbon pools found

in undisturbed and disturbed primary forests. In addi-

tion, time-since the last disturbance event had no clear

effect on the observed variability in these pools. Our

findings could indicate a rapid recovery of both the

dead wood and litter pools in disturbed forests, which

happened over a shorter period of time than the one

analyzed in our study.

The soil carbon pool is known to undergo significant

change after tropical forest conversion into other land

uses such as pastures (Cerri et al., 2003), but little is

known about its response to disturbances in standing

forests. Our results show that the first 30 cm of the soil

pool in disturbed primary forests contain a comparable

amount of carbon as that of undisturbed areas of forest,

suggesting that this pool is resistant to impacts from

selective logging and understory fires. While impacts of

human disturbances on the soil pool may be of particu-

lar concern in tropical forests located in peatlands (Page

et al., 2002), they appear less important in the nonpeat

soils of the Amazon. However, it still remains unclear

whether human-induced disturbances affect deeper

soils.

Understanding changes in aboveground carbon stocks

In tropical forests, aboveground carbon stocks are influ-

enced by a range of climatic, edaphic, topographic, and

human-associated factors. Our understanding of the

relative importance of these factors is highly dependent

on both the spatial scale of the carbon assessment and

the number of variables used to model changes in

stocks (Baraloto et al., 2011). At a regional scale

(1000s km), variables known to be key in determining

differences in plant biomass include total annual pre-

cipitation, dry season length, and soil fertility (Malhi

et al., 2006; Quesada et al., 2012). At the landscape scale

(10s km), elevation, terrain slope, soil texture, and soil

fertility have been found to be significant predictors of

aboveground carbon (Laurance et al., 1999; Castilho

et al., 2006; Paoli et al., 2008; Marshall et al., 2012). Most

research looking at the effects of anthropogenic distur-

bances on aboveground carbon has focused on

landscape and plot-scale analysis, finding negative
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effects of selective logging (Lindsell & Klop, 2013),

understory fires (Barlow et al., 2012), distance to edge,

fragment size (Laurance et al., 1997), and hunting

(Poulsen et al., 2013) on this pool.

We assessed carbon stocks at the meso-scale

(100s km) with sample sites distributed across more

than one million hectares in each study region. Given

the scale of our assessment and the similarities of cli-

mate both between and within our study regions, we

expected that variables related to past plot-level human

disturbances would outweigh both measures of land-

scape context and differences in topography. However,

we found that distance to the nearest forest edge (a

landscape context variable) was the most important

predictor of aboveground carbon in primary forests of

both regions (Fig. 5; Table S2). This result is probably

because distance to edge acts as a proxy for a multitude

of different effects that have negative impacts on plant

biomass, such as increase in air temperature and in

wind disturbance (Laurance et al., 2002; Ewers &

Banks-Leite, 2013). In addition, given the ease of access,

forests close to edges are more susceptible to relatively

low-intensity and small-scale selective logging and

understory fires (Alencar et al., 2006), which could have

been cryptic to our remote sensing analysis. Although

explanatory variables related to plot-level disturbances

were more important in Paragominas than in Santar�em,

the main results were consistent between regions:

aboveground carbon was lower in plots with a more

recent history of fire or logging events (Figure S3), as

well as in plots where a larger area was disturbed.

Context matters: regional differences in the effects of
human disturbance on forest carbon stocks

Although there were some similarities across regions,

such as the increase in contribution of small trees to

aboveground stocks in highly degraded forests, there

were also some important differences. For example, in

Santar�em only logged-and-burned forests stored signif-

icantly less aboveground carbon than undisturbed for-

ests, compared to the situation in Paragominas where

all disturbed forests had significantly less carbon. These

regional differences are likely explained by their dis-

tinct histories and trajectories of human occupation (see

Gardner et al., 2013): Paragominas has a more recent

history of severe forest disturbance and, in the 1980s,

was one of the largest timber extraction centers in the

world with 238 operating sawmills (Verissimo et al.,

1992). By contrast, 31% of the selective logged plots in

Santar�em were inside a national reserve where tech-

niques of reduced-impact logging have been used.

Although a simple on-the-ground classification of

historical disturbance by type (i.e. logged, burned or

logged-and-burned) can be of significant help in esti-

mating changes in carbon stocks and forest structure, it

also masks important differences regarding the inten-

sity of past disturbances.

Secondarization of disturbed primary forests

In tropical rainforests, large trees are responsible for

storing the greatest amount of aboveground carbon

(Clark & Clark, 2000; Paula et al., 2011; Marshall et al.,

2012). However, they are also exceptionally vulnerable

to impacts from logging (Blanc et al., 2009), fire (Barlow

et al., 2003), and fragmentation (Laurance et al., 2000).

The loss of large trees from disturbed primary forests

affects forest structure (Fig. 4) and creates new open-

ings in the canopy (Saatchi et al., 2013), allowing more

sunlight to penetrate the forest interior. Following

anthropogenic disturbance and the subsequent collapse

of vertical structure, there is a proliferation of small

lianas and fast-growing pioneer tree species, and as a

result, degraded Amazonian forests can shift from

high-carbon environments to forests with dense under-

story and low-carbon content (Figure S4). Our results

support previous studies that identified a similar ‘sec-

ondarization’ process, whereby increasingly disturbed

primary forests become more and more similar to

young secondary forests (Barlow & Peres, 2008; Santos

et al., 2008). In fact, our results are likely to be conserva-

tive, with large trees in disturbed forests storing even

less carbon than reported here as the allometric equa-

tions used to estimate vegetation carbon stocks were

developed in undisturbed forests, where trees present

less crown damage (Clark & Kellner, 2012). Such severe

changes in forest structure are likely to have detrimen-

tal impacts on biodiversity, potentially leading to cas-

cading effects on ecosystem functions and services

beyond carbon storage (Parrotta et al., 2012). Neverthe-

less, on average these highly degraded primary forests

still hold significantly more carbon than secondary for-

ests. Investments in avoiding further disturbance (e.g.

fire breaks) in low-disturbed forests can avoid struc-

tural shifts and ensure permanence of carbon in

human-modified forests, hence constituting a great

conservation opportunity.

Assessing and monitoring carbon stocks in degraded
forests

Assessing and monitoring changes in forest carbon

stocks following disturbance is fraught with difficulty

(Parrotta et al., 2012). Major challenges include a poor

overall understanding of the responses of carbon stocks

to forest disturbance, a lack of appropriate reference

levels for deforestation and forest degradation, and
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uncertainty on how to effectively incorporate forest

degradation when designing REDD+ projects (Aguiar

et al., 2012; Mertz et al., 2012). The development of reli-

able, yet simple, protocols to assess and monitor

changes in forest carbon is a critical step in addressing

these challenges. These protocols should prioritize com-

ponents of the stocks that both store the most carbon

and are the most sensitive to human-associated distur-

bances and environmental change. Our data demon-

strate that the aboveground pool meets both these

criteria: it stores by far the largest amount of carbon in

tropical forests (when deep soils are not considered)

and it is also the most vulnerable carbon pool to human

impacts (Fig. 2). Therefore, we recommend this pool to

be the focus of initial forest inventories and subsequent

monitoring procedures, even in landscapes not yet dis-

turbed. By just measuring aboveground carbon, sam-

pling protocols can account for virtually all the change

in total forest stocks following disturbances, as well as

assessing over 45% of total carbon stocks even in highly

degraded areas (when excluding both roots stocks and

soil carbon below 30 cm in depth). Moreover, the

aboveground pool is relatively quick to measure

when compared to others (Marshall et al., 2012) and, if

resources are severely limited, field assessments of

stocks can focus only on trees ≥10 cm DBH: this

involves identifying and measuring a smaller number

of individuals, greatly reducing costs and time.

Assessment of historical disturbances should be

viewed as a key component of any forest carbon

inventory, as once-disturbed forests are more vulnera-

ble to further disturbances, compromising the long-

term permanence of stocks (Cochrane et al., 1999;

Alencar et al., 2004; Ray et al., 2005; Barlow et al.,

2012). However, to date implementation of REDD+
projects and monitoring of carbon stocks rely heavily

on remote sensing analysis, given the impracticability

of ground assessments over vast areas (e.g. country-

wide). Even though remote sensing techniques to

estimate anthropogenic disturbance in tropical forests

are improving all the time (Asner, 2009), they will

always be limited by the time period over which that

sensor has been available. Despite using a 20 year

time-series of Landsat images, our remote sensing

estimates of fire and logging events are likely to have

missed small-scale and low-intensity disturbances

(e.g. nonmechanized logging), as well as events that

occurred prior to our baseline year. In fact, careful

visual inspection of the satellite image time-series

was able to accurately match only 55% and 19% of

the disturbance events identified through ground

assessments in Paragominas and Santar�em, respec-

tively. Ground surveys of disturbance signals are

therefore invaluable tools for providing basic infor-

mation on the past disturbance regime in a given

area of forest and can help decision makers to evalu-

ate areas more likely to maintain carbon stocks in the

long term.

The future of aboveground carbon stocks in human-
modified Amazonian forests

In this century, the Amazon region is likely to experi-

ence a rise in temperature and an increase in the fre-

quency and extent of drought events (Betts et al., 2013).

Severe droughts have already been reported in 1997–
1998, 2005, 2007, and 2010, leading to widespread

understory fires, which in turn led to an increase in tree

mortality and subsequent greenhouse gas emissions

(Arag~ao et al., 2007; Lewis et al., 2011). These fires also

induce stress responses from the vegetation, increase

fuel load on the forest floor, and render degraded for-

ests more vulnerable to new fires (Cochrane et al.,

1999). Other contemporary threats include the growing

demand for tropical timber, particularly from emerging

economies (Liu & Diamond, 2005; Fearnside et al.,

2013), continued use of fire in agriculture (Arag~ao &

Shimabukuro, 2010), and large-scale infrastructure

developments in previously remote areas of the Brazil-

ian Amazon (Fearnside et al., 2012). These environmen-

tal and economic changes are likely to result in an

expansion of degraded forests, especially if conserva-

tion efforts and policies remain predominantly focused

on avoiding further deforestation.

Our data show that disturbances from logging and

understory fires can lead to severely impoverished and

degraded forests that store substantially less carbon.

Highly degraded primary forests increasingly resemble

young secondary forests (Barlow & Peres, 2008) consti-

tuting a simplified ecosystem, dominated by few low-

stature, fast-growing pioneer species (Tabarelli et al.,

2012). To prevent further areas of remaining primary

forests being similarly degraded, there is an urgent need

to strengthen attempts to effectively incorporate avoided

degradationmeasures in forest conservation and climate

mitigation programs, such as REDD+. In addition, active

ecological restoration of degraded forests (e.g. through

enrichment planting) is a valuable but underused con-

servation strategy, which could considerably help main-

tenance of carbon stocks, as well as prevent cascading

effects following degradation, such as biodiversity loss

(Sasaki et al., 2011; Parrotta et al., 2012). The continuous

neglect of the widespread impacts of forest degradation

will result in additional, and unaccounted, greenhouse

gases emissions from tropical countries, with conse-

quent impacts on the world’s climate.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Data S1. Carbon sampling and biomass estimates.
Figure S1. Proportion of (a) coarse and (b) fine sand in the soil of primary forest plots in Paragominas. Letters indicate forest classes
with significantly different means following Tukey post hoc tests (P < 0.05). Dots represent outliers. UF = Undisturbed forests,
LF = Logged forests, LBF = Logged-and-burned forests. The methodology for estimating sand content is described elsewhere (See
Gardner et al., 2013).
Figure S2. Mean percentage contribution of all the 11 different components of the aboveground carbon pool. Results are separated
by forest class in (a) Paragominas and (b) Santar�em. Error bars indicate SE. Black bars represent significant differences (P < 0.05)
from secondary forests within the same region.
Figure S3. Relationship between the aboveground carbon pool and the time-since the last (a) logging event, and (b) fire event in pri-
mary forests of both study regions.
Figure S4. Changes in tropical rainforest structure from closed-canopy undisturbed primary forest to open forests with a dense
understory dominated by lianas and fast-growing pioneers. All photos taken 10 m away from a 2 9 2 m tarpaulin by E.B. in Para-
gominas.
Table S1. Mean carbon content (Mg C ha�1) and SE of the four carbon pools assessed in undisturbed, logged, burned, logged-and-
burned, and secondary forests across Paragominas and Santar�em.
Table S2. Top ranked models of factors driving aboveground carbon stocks in primary forests in Paragominas and Santar�em. Gen-
eralized mixed-effects models were used, with Catchment set as a random factor and Percentage area disturbed (Area), Mean soil
clay content (Clay), Distance to edge (Edge), Mean plot elevation (Elevation), Mean plot slope (Slope), Time-since the last fire event
(Fire), and Time-since the last logging event (Logging) as fixed factors. Δ - AICc differences from Model 1 (e.g. Model 2 AICc –
Model 1 AICc). Weight – Akaike weights.
Table S3. Results of generalized mixed-effects models using the dead wood carbon pool in primary forests as the response variable.
Time-since the most recent disturbance (either selective logging or understory fire) was set as the only fixed factor and Catchment
as a random factor. Results are separated by study region. Δ - AICc differences from Model 1 (e.g. Model 2 AICc – Model 1 AICc).
Weight – Akaike weights.
Table S4. Results of generalized mixed-effects models using the litter carbon pool in primary forests as the response variable. Time-
since the most recent disturbance (either selective logging or understory fire) was set as the only fixed factor and Catchment as a
random factor. Results are separated by study region. Δ - AICc differences from Model 1 (e.g. Model 2 AICc – Model 1 AICc).
Weight – Akaike weights.
Table S5. Results of generalized mixed-effects models using the soil carbon pool in primary forests as the response variable. Time-
since the most recent disturbance (either selective logging or understory fire) was set as the only fixed factor and Catchment as a
random factor. Results are separated by study region. Δ - AICc differences from Model 1 (e.g. Model 2 AICc – Model 1 AICc).
Weight – Akaike weights.
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