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Abstract 

A major problem for many organisational forecasters is to choose the appropriate forecasting 

method for a large number of time series. Various selection rules have been proposed in order 

to enhance forecasting accuracy. The simpler approach for model selection involves the 

identification of a single method, which is applied to all data series in an aggregate manner, 

without taking into account the specific characteristics of a single series. On the other hand, 

individual selection includes the identification of the best method for each series, though it is 

more computationally intensive. Moreover, a simple combination of methods also provides 

an operational benchmark. The current study explores the circumstances under which 

individual model selection is beneficial and when this approach should be preferred to 

aggregate selection or combination. The superiority of each approach is analysed in terms of 

data characteristics, existence or not of a dominant method and stability of the competing 

methods’ comparative performance. In addition, the size and composition of the pools of 

methods under consideration are examined. In order to assess the efficacy of individual 

model selection in the cases considered, simple selection rules are proposed, based on within-

sample best fit or best forecasting performance for different forecast horizons. The analysis 

shows that individual selection works best when specific sub-populations of data are 

considered (e.g. trended or seasonal series), but also when the alternative methods’ 
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comparative performance is stable over time. A case study demonstrates the efficiency of the 

recommended selection strategy. 

Keywords: automatic model selection, comparative methods, extrapolative methods, 

combination, stability. 
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1. Introduction and literature review 

Forecasters regularly face the question of choosing from a set of alternative forecasting 

methods. Where the task the forecaster faces is one of forecasting many series repetitively 

automatic approaches to selecting the appropriate method are needed – the forecaster has 

insufficient time to devote to selection for each time series in any one time period. The 

forecasting methods usually considered are simple, one of a limited range of extrapolative 

methods including such standbys as exponential smoothing. Two distinct approaches have 

been proposed for dealing with this problem: aggregate selection where the totality of data 

series are analysed and a method chosen and then applied subsequently to all the time series 

and individual selection, where, for a particular series, each method is compared and the best 

chosen to produce forecasts for that series (Fildes, 1989). Aggregate selection has the benefit 

of simplicity but in principle each different time series with its different characteristics (e.g. 

trend and seasonality, stability) would be better forecast by an individual model that matches 

those characteristics.  Does individual selection generate these expected benefits in terms of 

improved accuracy? Fildes (2001) shows that if selection could be done perfectly then the 

gains would be substantial. So the question is worth asking – can practical model selection 

algorithms, that will lead to forecasting accuracy gains, be implemented? Is the additional 

effort and added complexity of adopting an individual selection process worthwhile? 

Additionally, the question is important because simple selection algorithms are implemented 

in commercial software such as SAP APO-DP. 

     The task of selecting an appropriate forecasting method is first conditioned by the problem 

context and the data available. Armstrong (2001), and Ord & Fildes (2013) providing a 

simplified version, have proposed selection trees that aim to guide the forecaster to an 

appropriate set of methods. The current study considers the more limited case of choosing 

between extrapolative forecasting methods where substantial data are available on which to 
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base the choice. This problem has a long history of research, primarily by statisticians. 

Broadly, the approach adopted is to assume a particular class of model where selection is to 

take place within that class, for example within the class of ARIMA models. Accuracy 

measures based on within-sample fit to the available data are used in the selection, modified 

in various ways to take into account the number of estimated parameters in each of the 

models, penalising more complex models. AIC and BIC are two widely used information 

criteria. Both are based on the likelihood, including a penalty depending on the number of 

model parameters. As such, AIC and BIC deal with the trade-off between complexity and 

goodness of fit of the model. Assuming normal errors, minimizing the AIC is asymptotically 

equivalent to minimizing the one-step-ahead forecast Mean Squared Error. 

     From the early days of forecasting comparisons, the issue of the strength of the 

relationship between out-of-sample forecasting accuracy (on the test data) and in-sample fit 

has been controversial with first Makridakis & Winkler (1989) and then Pant & Starbuck 

(1990) arguing that little if any relationship exists. Pant & Starbuck examine three different 

measures of fit and corresponding measures of  forecasting performance with mean squared 

fitted error proving a particularly inadequate guide. But the other measures were not much 

better. If in-sample fit is inadequate as these authors have argued, then an alternative 

approach to selection is clearly needed. In response, the forecasting literature became 

increasingly satisfied with the naïve principle that what has forecast the most accurately, will 

forecast the most accurately on the out-of-sample data. To operationalize selection based on 

out-of-sample performance, the available data should be broken into the data used to fit the 

model (often called the training data), the data used to provide an estimate of out-of-sample 

fit (the validation data) and the test data where various selection approaches can then be 

compared.  
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     Beyond the examination of in-sample measures of fit and their link to performance on test 

data, earlier empirical research has been sparse. One distinct approach has been to use the 

data characteristics of the series to predict performance with Shah (1997) and Meade (2000) 

demonstrating some success, but such selection rules are complex. Collopy & Armstrong 

(1992) also use series characteristics to develop rules that combine various extrapolative 

models depending on the data conditions. Rule-based forecasting has shown promising 

performance in various empirical comparisons. A contrasting approach which benefits from 

simplicity is to consider past performance as the critical factor predicting future performance. 

A recent contribution is from Billah, King, Snyder & Koehler (2006) who consider selection 

within the class of exponential smoothing models where an overarching general model exists. 

Their results for a subset of the M3 data demonstrated that information criteria outperform 

the use of the validation data in selection: but as they remark, the sample of out-of-sample 

validation forecasts is small, which, they conjecture, might explain their findings. The 

differences are also small between selection methods so a reasonable conclusion to draw 

might be that selection is not worthwhile – but that only applies to their particular data set 

and the extrapolative forecasting methods they considered. However, with the M3 data, 

automatic individual selection based on Forecast Pro’s algorithm (Goodrich, 2000) had 

earlier proved effective, beating most aggregate selection approaches post hoc. Further work 

has been reported by Crone & Kourentzes (2011) who, using a different data set, demonstrate 

the benefits of using out-of-sample error measures compared with in-sample. In short, earlier 

research has produced conflicting results. 

     The contradictory findings leads to the following observations: individual selection can 

never be worthwhile if a dominant aggregate forecasting method is identified in the data set. 

Moreover, selecting the best method individually will not provide significant benefits if the 

methods under consideration produce similar forecasts. 
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     This paper aims to provide evidence on the effectiveness of the various selection criteria 

introduced. Following on from the above argument, there is the need to vary the methods 

considered for selection and also the data sets on which selection algorithms are tested. In 

section 2 the forecasting methods considered in the selection comparisons and the error 

measures being used to assess their accuracy are introduced. Section 3 considers the meta-

data set (part of the M3 database), introduces the simple selection rules and also explains the 

rationale behind the different segments examined. Section 4 contains the empirical results 

and provides a discussion of the results. Section 5 comments on the practical implications and 

limitations of the current research, including a brief case study. The conclusions are drawn 

out in section 6. The key question to be addressed is under which circumstances can 

individual selection rules generate accuracy benefits. 

 

2. Forecasting methods and accuracy metrics 

2.1 Extrapolative forecasting methods 

In this evaluation of selection methods typical practice is emulated such as that embedded in 

forecasting software. The forecasting methods considered are therefore chosen broadly to 

represent standard approaches but are not themselves nested in an overall model, such as in 

the exponential smoothing class of Billah et al. (2006). They have been chosen from those 

considered in the forecasting competitions, in particular the M3 competition (Makridakis & 

Hibon, 2000) in which larger numbers of series have been analysed and a large number of 

extrapolation methods have been compared. All are practical alternatives in commercial 

applications. Computer intensive methods such as neural networks have been excluded. 

Therefore, the focus is on simple extrapolation methods, methods widely used in practice, 

and also including some that have demonstrated significant performance in past forecasting 
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exercises. The simplest forecasting technique, Random Walk or  Naïve, where the forecast is 

the latest observation, is therefore included along with widely used models from the 

exponential smoothing family (ETS, Hyndman, Koehler, Snyder & Grose, 2002), namely 

Simple Exponential Smoothing (SES), Holt, Holt-Winters, Damped Trend and Damped with 

multiplicative seasonality. Moreover, despite their limited use in practice, ARIMA models 

have been included as they remain a standard statistical benchmark.  

     The exponential smoothing methods are estimated using the forecast package for R 

statistical software (Hyndman & Khandakar, 2008). The Automatic ARIMA function 

(auto.arima) implemented in the same package is used to identify and estimate the ARIMA 

models. The auto.arima function conducts a stepwise selection over possible models and 

returns the best ARIMA model. One could argue that this advantages ARIMA over other 

methods (such as SES or Holt), as the Automatic ARIMA function already aims to choose the 

best model from within a broad class of models. Hyndman &Athanasopoulos (2012) describe 

how the auto.arima function works, with details on the options allowed in the ARIMA 

modelling. 

     In all cases mentioned above, the methods are applied directly to the raw data. However, 

in previous large forecasting exercises, such as the M3-Competition (Makridakis & Hibon, 

2000), the non-seasonal methods were applied to the deseasonalized data. Deseasonalisation 

of the data is usually conducted with multiplicative classical decomposition, where the 

seasonal indices calculated are used for the reseasonalization of the final forecasts. More 

details on how the deseasonalization is applied in the current research can be found in the 

Appendix. In order to be in line with the results of this research, simple and widely used 

models (Naive, SES, Holt and Damped) applied to the seasonally adjusted data, instead of the 

raw data, are considered. Lastly, the Theta model (Assimakopoulos & Nikolopoulos, 2000), 
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which was the top performer in M3-Competition, is considered. More details on the Theta 

model can be found in the Appendix. 

     The full set of methods considered in this paper, along with the respective short names, is 

presented in Table 1. 

Table 1 here. 

2.2 Measuring Forecast Error 

Measurement of each method’s forecasting performance is needed in two distinct phases of 

this research. Firstly, the forecasting performance of each method can be calculated over the 

validation data set (which is defined rigorously in Section 3.1), and these measures can then 

be used in the selection of an appropriate method. This can be achieved by calculating the 

past forecasting performance (PFP) over the available validation data and across single or 

multiple lead times (full definitions are provided in the Appendix). The fit of the models in-

sample can also be calculated.  Secondly, metrics for measuring the performance of the 

methods and the selection rules are necessary in order to assess the efficacy of the latter. The 

mean out-of-sample performance is averaged over forecast origins (and potentially over 

forecast horizons). The general formulae are given in the Appendix. 

     A wide range of different error measures are available. A summary of the arguments 

surrounding their differences has recently been given by Davydenko & Fildes (2013). The 

majority of results reported in this paper are based on Median Absolute Percentage Error 

(MdAPE), where the arithmetic mean of the absolute percentage errors  across horizons and 

origins is calculated for each series, and the median value over all series is selected.  

     However, the validity of the results is confirmed based on two more measures, Mean 

Absolute Percentage Error (MAPE) and a relative error measure. MAPE is averaged over all 
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series, forecast horizons, and all available forecast origins. MAPE has been included here as 

the most widely adopted in practice (Fildes & Goodwin, 2007). Relative error measures have 

the advantage of negating the effects of outliers somewhat showing how a forecasting method 

compares to a benchmark (such as the random walk). Summarizing relative errors across 

series using geometric mean has proved to be robust and more normally distributed than 

alternative measures, while also being easily interpretable as showing the average percentage 

improvement (as measured by the MAE) from using one method compared to the benchmark 

method. In the current study, the AvgRelMAE, as defined by Davydenko & Fildes (2013), is 

used. 

  

3. Experimental design 

3.1 Forecasting procedure and database 

Let T denotes the number of observations of an individual time series. Each series considered 

in this paper is divided in three time intervals. The first interval contains all observation from 

origin 1 to origin T1, having a length of T1, and acts as an initialisation interval, that is the 

training data. Observations from origins T1+1 to T2 are included in the second interval, the 

validation data, while the third interval contains observations between origins T2+1 to T. The 

second and the third intervals have respectively length (T2- T1) and (T-T2). Both 

corresponding sets of data are used as hold-out samples, meaning that forecasts are produced 

without prior knowledge of these values. Once the first set of forecasts is produced, using just 

the T1 in-sample observations, one additional observation, the first observation of the 

validation data, is added to the in-sample data, the estimated models updated and new 

forecasts are calculated. This procedure is repeated until every single observation of the 

validation and test intervals is embodied into the in-sample vector. In other words, rolling 
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forecasting is employed, where the forecasts (and selected models) are updated at every 

single origin. As a result, (T2- T1) + (T-T2) = T-T1 sets of forecasts are calculated, each one 

containing h point forecasts, where h denotes the forecasting horizon considered.  

     The second interval is used only as validation data, in terms of evaluating single 

extrapolation methods and selecting the most appropriate one for forecasting each series 

(individual model selection) or a method to apply to all series (aggregate model selection). 

The third interval is used as both test data for the final evaluation of the selection rules 

proposed later in this paper, and, as the forecast origin is rolled forward, the associated 

validation data set is also extended. Multiple lead-time forecasting enables the set-up of 

simple selection rules that apply to the various forecasting horizons. 

     The data series selected for this study are a sub-set of the monthly M3-Competition data 

set, where the total length of available observations is equal to or greater than T=126, giving 

a total of 998 series. Data series longer than the desired 126 observations are truncated. T1 is 

set to 48 and T2 to 90. Thus, the first set of forecasts is calculated from time origin T1 (=48).  

The forecasting horizon was set to h=18 periods ahead, to correspond with earlier analyses of 

the same data (Makridakis & Hibon, 2000).  

     Upon the calculation of the point forecasts for each method using the first 48 data points, 

an additional point is added and a new set of point forecasts are calculated for each approach. 

This procedure is repeated until the origin 108, where the last 1-18 steps-ahead forecasts are 

produced. The remaining data points (observations 109 to 126) are only used in the 

evaluation of the last origin’s forecasts. So, in total, 18 point forecasts are produced for each 

origin (origins 48-108, 61 origins in total) and for each method (12), while the out-of-sample 

performance of all methods plus the model selection rules are evaluated through observations 

T2+1 to T, the test data. The selection of the most appropriate method, based on past forecast 
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performance of the methods in hand as calibrated over the validation data set, takes place at 

observations T1+1 (=49) through  T2+k (periods 90 to 108 with k =0 to 18 indexing the test 

data). These 998 series provide the meta data set within which subsets of the data will be 

examined. 

 

3.2 Choosing a best method 

The objective of any selection rule is to choose the method at time t with the most promising 

performance. For the purposes of the current research, various simple selection rules are 

considered, based on the past forecasting performance (PFP) of each method (for different 

lead times). Assuming that model selection will be performed at the T2+k origin, the PFP is 

measured between origins T1 to T2+k as is the fitted performance. The method to be selected 

is the one with the most promising past performance. The four simple rules implemented and 

examined in this research are defined as follows: 

Rule 1. Use the method with best fit as measured by the minimum one-step ahead in-

sample Mean Squared Error (using all the data up to the forecast origin). 

Rule 2. Use the method with the best out-of-sample 1-step-ahead forecast error, in 

terms of Mean Absolute Percentage Error, and apply that method to forecast for all lead 

times. 

Rule 3. Use the method with best out-of-sample h-step-ahead forecast, in terms of 

Mean Absolute Percentage Error, and apply this method to forecast for the same lead time. 

Rule 4. Use the best out-of-sample method to forecast for all lead times as measured 

by Mean Absolute Percentage Error averaged over forecast horizons, 1 through h. 

     While the mathematical expressions are complex (as shown in the appendix) the ideas 

behind them are simple. Rule 1 selects the method that has fitted the data best (in-sample) 
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and applies this method to forecasting from forecast origin t over the next forecast horizons. 

Rules 2 to 4 select the best method depending on how the methods performed as measured on 

past forecast performance over the validation data set up to the forecast origin. Rules 1, 2 and 

4 ignore any horizon effects while only Rule 3 attempts to match selection to the forecast 

horizon. The selections derived from these rules are updated over the test data set (i.e. as k 

increases), including all available errors from origins T1 to T2+k-1. Moreover, the proposed 

rules can be applied to aggregate selection where the error measures are summarized over all 

series and the best method is applied to all series, or to individual selection where a particular 

method is chosen for each series. 

  

3.3 Research questions and preliminary analysis 

The main objective of the current research is to investigate the conditions under which model 

selection may be beneficial. In order to achieve this objective, three primary segmentations of 

the available time series are considered. Firstly, data are classified as trended or not trended 

and seasonal or not seasonal. These categorisations have been chosen a priori based on the 

fact that some of the models are designed to incorporate trend and seasonal etc (e.g. ARIMA, 

Holt-Winters) whilst others (e.g. Random walk, Simple Exponential Smoothing) will 

introduce unnecessary error when applied to series with these characteristics. A further 

feature, believed to affect relative performance, is the predictability of the time series. A 

specific time series is defined as unpredictable if the performance of the non-seasonal 

Random Walk forecasting method (method 1) is better than the median performance of all 

other methods under investigation as defined by Mean Absolute Error in the validation data 

(from origins T1 to T2) for all forecasting horizons. Note that this classification is available to 

us ex ante and does not use the test data. 
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     In terms of trend, the robust Cox-Stuart test is performed on the 12-period centred moving 

average, to remove any contamination from seasonality. Lastly, the potential seasonal 

behaviour of the monthly series considered is tested by Friedman’s non-parametric test. As a 

result, six segments of the time series data set are considered, namely “predictable”, 

“unpredictable”, “trended”, “non-trended”, “seasonal” and “non-seasonal” and this suggests 

the first research question. 

RQ1. Is individual model selection more effective when applied to groups of time series with 

specific characteristics?  

A second factor that may limit the value of individual selection is the number of models 

included in the pool of alternatives. Effectively a variant of over-fitting, the more models 

included, the higher the probability that the wrong model is chosen due to the randomness in 

the data. Given that the largest pool can be structured with all methods introduced in Section 

2.1 (twelve in total), every possible combination of smaller pools of two (2) up to twelve (12) 

methods is also examined. For example, in the case of a pool of methods equal to four (4), all 

495 possible pools of methods are checked, the number of 4-combination in a set of 12 or 

(
12
4

). This leads to the second research question: 

RQ2. What are the effects on individual selection of including more methods in the pool 

under consideration? 

     Many of the methods included in typical extrapolative selection competitions produce 

similar forecasts which may be difficult to distinguish using a selection rule. An analysis of 

the correlation of errors produced by the methods revealed that many methods are highly 

correlated, most obviously those with similar seasonality components. Holt and Holt Winters 

have the fewest high correlations with the remaining methods. Selection between methods 
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that produce similar forecasts cannot prove valuable. On the other hand, when selecting 

among methods that produce uncorrelated forecasting errors, rules have better chance of 

discriminating to deliver the best result. Including more uncorrelated options in the selection 

and letting the rules decide based on the past forecasting performance of each option is 

intuitively appealing. In that sense, selecting among methods with low to medium correlated 

outputs and similar levels of accuracy (e.g. DampMult and ARIMA) is more promising. The 

average error correlation from the various methods participating in a specific pool is therefore 

examined. In order to measure the effect of similarity between the methods included in a 

specific combination, the combinations in each pool size are separated into high and low 

correlated; a certain combination is considered as highly correlated if the average correlation 

of the methods’ outputs is equal to or greater than 0.7. Thus, the following research question 

deals with the effect of correlation among methods.  

RQ3. Do pools of methods with low correlation, in terms of forecast error, provide better 

forecasting performance when individual selection rules are considered compared to more 

highly correlated pools? 

     Individual selection would be unlikely to be beneficial when a single method is dominant 

for the obvious reason that if a single method was appropriate for all series, selection rules 

would be dominated by the effects of noise. A second segmentation is, therefore, considered: 

to divide the data series into two groups in terms of the performance of one of the best 

methods. The aim here is identify sub-populations where a dominant method exists (or not). 

For this purpose, the Theta method is chosen. In the M3 Competition Theta had the best 

performance over the 1,428 monthly series and also performs well over the subset of 998 

series. The threshold for a specific time series to be grouped in one of the two groups will be 

the Theta model’s achievement to be ranked (or not) among the top three (out of twelve) 
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methods. In other words, past forecasting performance, as measured by Mean Absolute Error 

for the validation data, must be lower (or higher) than the value of the first quartile, that is: 

1
st
 Group (Dominant method): Theta’s performance in the top three (measured by 

MAE) 

2
nd

 Group (Non-dominant method):  Theta’s performance outside the top three 

Note that the selection of Theta method as the base method for segmenting the data is data set 

dependent.  

RQ4. Individual method selection is of most value when no dominant method is identified 

across the population. 

     The performance of the different methods is also analysed for their stability. Using the 

validation data, the error can be calculated for each data point. Then, stability in a specific 

series can be measured by the average (across time origins) Spearman’s rank correlation 

coefficient where the ranked performance of methods at each forecast origin is correlated to 

the rank of the average performance of the method summarized across all origins. A value of 

1 implies the rankings of all methods remain the same over time. The median of the stability 

measure is 0.45 with range 0.01 to 0.91. Thus, the 998 series may be further segmented in 

regards to the stability of methods’ performance. A series is defined as stable when its 

Spearman’s rho falls in the top quartile of the data set. As a result, a final research question is 

suggested: 

RQ5. Individual selection is only effective compared to aggregate selection when relative 

performance in the pool of methods under consideration is stable. 

     In total, segmentations of data considered in the current research are summarized in Table 

2, where the respective populations of the groups are displayed. 
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Table 2 here. 

 

4. Empirical results 

4.1 Out-of-sample performance of methods  

Firstly, the out-of-sample performance of the forecasting methods is examined using error 

measures averaged across all origins (T2 to T2+18) and lead times (1 to 18). This is achieved 

by using a rolling origin design with forecasts made for each point in the validation and test 

data sets.. Table 3 presents the results when MdAPE is selected as error measure. Each row 

refers to a single extrapolation method (please, refer to Table 1 for the abbreviations). At the 

same time, each column refers to a specific segmentation of the data, as described in Table 2. 

     Even a quick view of this table unveils some very interesting observations. Firstly, across 

all segments, the best performance, in terms of accuracy is recorded for Theta followed by 

SES, when applied on the seasonally adjusted data, and seasonal versions of Damped. Theta 

and Deseasonalized exponential smoothing, correlated at 0.98, perform very similarly for all 

segments. Over all series, Holt and Naive demonstrate the worst performance, neglecting as 

they do seasonality and, for the case of Naive, trend. The largest differences across the 

methods are recorded for predictable and seasonal series, where methods with specific 

features, such as the ability to handle seasonality, perform much better than benchmark 

methods. On the other hand, simpler methods catch up with more complex ones when 

unpredictable or non-seasonal series are considered. The presence of trend or seasonality 

naturally favour methods with the ability to capture these features, when they persist. SES on 

deseasonalized data (DExpsmoo) performs well and better than ARIMA.  



16 

 

 
 

     The segment of data series containing the non-trended series suffers from relatively high 

levels of inaccuracy (an average MdAPE across methods of 16.9% compared with 8.3% 

overall). As expected, Holt performs second worst (following Naive), failing to estimate the 

zero trend. When segmented on the stability in the methods’ relative performance, non-

seasonal methods performed uniformly poorly suggesting stability in performance is related 

to the ability of a method to capture persistent seasonality. For the 749 unstable series 

differences in performance are much smaller.  

     Finally, the last row presents MdAPE values for perfect information, meaning that the best 

method is selected for each series (individual selection) in an ex-post manner after the 

comparative accuracy results are known. Possible margins of improvements (perfect 

information) are between 25 to 30% for all segments, compared to the best method in each 

segment applied to all series (ex-post aggregate selection). Therefore, individual model 

selection is worth investigating, as Fildes (2001) had previously argued. In addition, 

segmentation of the series emphasizes the importance of trend, seasonality and stability. 

     The out-of-sample performance analysis was performed for two more error measures, 

MAPE and AvgRelMAE. The use of MAPE results in significantly higher errors, as expected. 

Increases across the different methods on each segment are consistent, resulting in stable 

ratios of MAPE/MdAPE. AvgRelMAE confirms the superiority of Theta and DExpsmoo 

across all series and for most of the segments, with Naive being among the best methods for 

unpredictable and non-seasonal series (recall that the unpredictable series are defined ex ante 

where naïve performs well). 

Table 3 here. 

4.2 Performance of selection rules 
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In this section, the performance of the various selection rules are presented. The empirical 

results focus on the number of  cases improved by performing individual selection versus two 

simple benchmarks: 

(i) Aggregate selection; this uses the single best method per segment based on the one-step-

ahead out-of-sample performance on the validation sample. 

(ii) Combination of methods using equal weights.  

Thus, the accuracy gains (or losses) by using simple individual selection rules are examined 

through the percentage of cases where individual selection rules performed better than the 

above benchmarks.      Accuracy is measured through the percentage of cases where 

forecasting accuracy is improved by individual selection as measured by MdAPE. 

Improvements in more than 50% of the cases are presented with bold typeface. The results 

are segmented by the sizes of the pools of methods under consideration and by the correlation 

of methods in a specific pool (e.g. ARIMA and Expsmoo have a low correlation).  

     Table 4 presents the percentage of cases improved in terms of accuracy when all series are 

considered. Recall that Rule 1 uses in-sample one-step-ahead fit, Rule 2, one period ahead 

past forecast performance, Rule 3 matches the lead time in individual selection while Rule 4 

takes a more aggregate approach with selection based on average performance over all lead 

times. So, for example, of the 611 cases of selection using between 2 and 4 low correlated 

methods, individual selection using Rule 4 was more accurate than aggregate selection (using 

Rule 4) in 88.1% of these case comparisons and in 90% of cases when compared to simple 

combinations of the corresponding methods. 

     The first observation is that the relative number of cases improved by individual selection 

is higher when the rules are applied to low correlated or uncorrelated methods, especially 

when small pools are considered. Also as the pools’ size increases, individual selection 
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generally becomes better. At the same time, these improvements are only achieved for Rules 

2 to 4, with Rule 1 (best in-sample fit) having the worst performance. Moreover, individual 

selection always outperforms both aggregate selection and combination in more than 80% of 

the cases when Rule 4 is applied to methods identified as low correlated. 

     Table 5 shows the percentage of cases that for each segment individual selection performs 

better when compared to aggregate selection or combination. For predictable series, 

aggregate selection works generally better than individual selection, with combination being 

efficient for medium pools of high correlated methods. Recall the definition of a predictable 

series is made on the validation data and therefore offers guidance on whether to use 

individual selection. In addition, for predictable series, individual selection works better than 

combination only low correlated methods, while higher improvements are observed for larger 

pools of methods, since in most combinations consistently poorer methods are included. On 

the other hand, individual selection (with Rule 4) is the best option for unpredictable series. 

Table 4 here. 

     When trended data are examined, individual selection (compared to aggregate selection) 

seems to work reliably only for Rule 4. Rules 2, 3 and 4 result in significant improvements 

when contrasting individual selection to a simple combination of methods. One plausible 

explanation is the ability of selection to identify methods that include trend. As expected, 

excluding non-trended methods when extrapolating trended series results in better forecasts 

for simple combinations, though individual selection is still best for smaller pools of 

methods. On the other hand, when non-trended data are considered, improvements from 

individual selection in more than 50% of the cases are limited to only low correlated pools of 

methods.  
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     Improvements for seasonal data are substantial, especially when Rules 3 and 4 are applied, 

suggesting reliance on 1-step ahead forecasts for seasonal forecasting is unwise. Essentially, 

selection is capturing the persistent seasonality in the series. Improvements are higher against 

aggregate selection in the case of highly correlated pools of methods, while, as expected, the 

reverse is true against the combination of methods. Individual selection does not usually 

perform well when non-seasonal series are examined. 

     The results are also analysed by segmenting the series using the performance of a 

dominant method. The segment containing the series that Theta was in the top three 

performers is first examined. Unsurprisingly aggregate selection is the best option (although 

recall Theta is not necessarily included in each case). The advantages of using individual 

selection against aggregate selection are more apparent when applied to the ‘non-dominant 

method’ segment. At the same time, individual selection is a good choice against 

combination for both ‘dominant method’ and ‘non-dominant method’ segments, especially in 

the case of low correlated methods. 

Table 5 here. 

     Finally, the series are segmented with regards to the stability of methods’ ranked 

performance. With stability in a method’s performance it is of course easier to identify the 

best individual selection. When series with unstable methods’ performance are considered, 

combination typically outperforms selection. Individual selection does, however, improve 

over aggregate selection especially for low correlated methods, while Rule 4 performs 

marginally better against combination for high correlated methods. 

     The same analysis was performed for the two other measures considered (MAPE and 

AvgRelMAE). Insights generally hold for most of the segments, with individual selection 

being preferable over aggregation or combination under the same conditions; however, 
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differences in the percentage of cases improved are noticeable. Moreover, in some segments 

(for example, entire data set, predictable and seasonal segments) the number of cases where 

individual selection is better than aggregate selection or combination decreases, an effect 

arising mostly when larger pools of methods considered. 

     So far, the analysis of the results focused on the percentage of cases improved when 

individual selection is preferred over aggregate selection or combination. However, from a 

practical viewpoint, it is very important to identify the best approach in terms of absolute 

performance for each segment. Table 6 presents the best practices for each segment, in terms 

of the most appropriate approach (individual selection, aggregate selection or combination). 

Thus, for the entire data set it would be best to apply individual selection (using rule 4) based 

on a pool of large number of low correlated methods. The specific recommendations are 

based on the minimization of the MdAPE across all possible strategies (selection rules, 

number of methods and inter-method correlation) within the given segment 

 Table 6 here. 

     The relative efficiency of the best practices for each segment is further examined in Table 

7. The performance of the best practice is contrasted with the performance of each approach 

(individual selection with Rule 4, aggregate selection or combination). In addition, the 

performance of Damped (a suitable benchmark from the various competitions, Fildes, Hibon, 

Makridakis & Meade, 1998) applied on the deseasonalized data is presented, along with the 

percentage improvement against this benchmark, if the best practice for each segment were to 

be applied. In all cases, the performance of alternatives is measured by MdAPE. Results 

indicate that, even if individual selection is the most promising approach for most of the 

cases, in some segments aggregate selection or combination should be adopted. However, the 

forecast error of individual selection has in all cases the smallest interquartile ranges, 
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rendering the forecasts more robust. The suitable selection of the best practice offers 

improvements over all single-pronged approaches in most of the cases. For example, focusing 

on the unpredictable segment, if individual selection (Rule 4) is applied, as recommended in 

Table 6, to a high number of high correlated methods then the resulting MdAPE is 8.5%, 

improved by 11.5%, 3.4% and 2.8% compared to the median performance of aggregate 

selection, combination and individual selection (Rule 4) respectively. Moreover, best 

practices for each case, as proposed in Table 6, can lead to significant accuracy 

improvements against the benchmark (11% for unpredictable series, 5.3% for stable series, 

and 4.7% for the entire data set). 

Table 7 here. 

4.3 Discussion 

The empirical findings of this study provide some interesting evidence on the efficiency of 

selection rules. First, segmenting the series helps us to identify suitable sub-populations of 

data with specific characteristics, where the application of individual selection is more 

effective (RQ1) compared to the simplest rules of aggregate selection or combination. 

Individual selection is particularly effective against the two benchmarks for seasonal, 

trending and ‘non-dominant method’ series. Individual selection with Rules 1 to 3 does not 

work well against combination for unstable segments, where the risk averaging aspect of 

combinations proves, as expected, to work well. Also, its performance is limited when highly 

correlated methods are used for predictable and non-trended series. Aggregate selection 

works more effectively than individual approach where a dominant stable method exists, as 

Fildes (1989) shows in analysing a method, robust trend, designed for the specific non-

seasonal trending data set. 
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     RQ2 questioned the effects of including more methods in the pool under consideration. In 

most cases, when MdAPE is considered, improvements for individual selection are recorded 

when more methods are considered in the selection pool. This was especially evident against 

combination, because of the incorporation of poorly performing methods, while the selection 

pool benefits are not disadvantaged by the inclusion of poorer methods.  

     Low correlated methods offer the foundation of more efficient individual selection 

compared to aggregate selection or combination. Specifically, when individual selection is 

contrasted against combination, the number of cases improved from selecting pools 

containing methods identified as low correlated reaches double the score of the respective 

highly correlated pools (e.g., Table 5, predictable, non-trended or stable series, Rules 3 and 

4). In answer to RQ3 therefore, pools of methods with low correlation generally provide a 

better foundation for individual model selection. However, in some cases differences are, on 

average, small (unpredictable and trended series). This leads to the obvious conjecture about 

whether methods that exclude trend or seasonal should be included in selection schemes for 

the corresponding segments (i.e. trend or seasonal). Their inclusion does have the advantage 

of being ‘conservative’ (Armstrong, Green & Graefe, this issue). Nevertheless, it should be 

noted that while low correlated pools offer the grounds for individual model selection to 

improve over aggregate selection or combination, this does not exclude high correlated pools 

from having the lowest MdAPE within a segment (for example, Table 6, stable series). 

     Aggregate selection is expected to produce better results than individual selection, when a 

single method displays dominant performance across a specific sample of series (RQ4). The 

hypotheses is supported through segmenting the data into series where the dominant method 

achieved (or not) a ranking among the top three methods (out of twelve in total): aggregate 

selection is better than individual selection in 66% of the cases and is the recommended 

practice for this segment. The exact opposite is true for the ‘non-dominant method’ series, 
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while individual selection outperforming aggregate selection in 74% of the cases. In addition, 

individual selection displays significant gains over combination (whether a specific method is 

dominant or not).  

     Lastly, as expected, when stability in methods’ ranked performance is used as a basis of 

segmentation, individual selection produces more accurate forecasts especially for Rule 4 

(RQ5). Stability in performance of methods enables the accurate selection of the most 

appropriate method individually, with performance improvements of 1% and 8.7% against 

aggregate selection and combination respectively. This is a direct result from the great 

differences in the performance of methods over these series (Table 3). On the other hand, for 

the unstable segment, the combination of methods is the most robust choice, while individual 

selection with Rule 4 proves to be equally effective when applied to pools of high correlated 

methods. 

     In the introduction, no assumption was made as to the effectiveness of the different 

selection rules, merely noting the existing evidence was conflicting. Empirical results suggest 

that Rule 1 based on a measure of fit is uniformly ineffective compared to rules based on the 

validation sample and in particular Rule 4 which looks at aggregate performance averaged 

over lead times.  

  

5. Case study, practical implications and limitations  

5.1 Case Study 

In order to demonstrate the practical use of the proposed rules, a case study is presented. 

Empirical data from a UK based company providing private label household and personal 

care products developing are examined. In total 251 monthly time series are considered, each 

one containing a 40-month history. T1 is set to 24, T2 is set to 36 and forecasting horizon is 
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equal to three months. So, the out-of-sample accuracy of the best practices is measured over 

two sets of forecasts (origins 36 and 37) in a rolling manner, while the past forecasting 

performance of the methods previously considered is calculated over 12 rolling origins for 

the first origin, increasing to 13 origins for the second origin.  

Table 8 here. 

     Table 8 presents the performance of the best practice, as defined in Table 6. When the 

generally low correlation of methods did not allow for selection of a best practice due to the 

absence of any (high correlated methods) cases, then the appropriate selection approaches for 

low correlated methods were considered. This performance is compared against the 

performance of Damped method applied on the deseasonalized data (acting as the 

benchmark). Across all series, where individual selection (Rule 4) is applied on a high 

number of low correlated methods, an improvement of 5% is recorded. Improvements are 

also identified for half of the segments, for example unpredictable series (10.8%), non-

trended series (18%), and dominant method (5.8%). However, some segments (most 

predominantly the seasonal series) result in inferior forecasting performance compared to the 

benchmark. This is due to three reasons: a) the limited historical information which renders 

the identification of seasonality difficult, b) the limited number of series featuring in seasonal 

and stable segments of series, and c) the overall limited forecasting performance of the 

aggregate selection approach, in contrast to the performance of individual selection and 

combination on this specific data set. In this case study combination performed very well 

against both aggregate and individual selection.  

5.2 Practical implications and limitations  

The insights provided to the use of extrapolative methods can be directly applied to widely 

used ERPs and Forecasting Support Systems (e.g. SAP), as to further enhance the integrated 
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automatic selection procedures they have in place. Table 6 presents the appropriate protocol 

that should be followed, based on the analysis of the long monthly series coming from the 

M3-Competition. Even if in half of the cases simple and easy to apply approaches should be 

followed (selection of the appropriate method across all series or the combination of a set of 

methods), five cases indicate the use of a more complicated selection scheme, where the most 

appropriate method should be identified for each series separately. 

     Rules 2, 3 and 4 of individual selection specify a rolling forecasting evaluation for the 

selection of the optimum method. Coupled with the fact that some real life applications 

include the extrapolation of many thousands of series, this means that applying individual 

selection rules could be very computationally intensive. The problem is exacerbated when the 

frequency of updating forecasts is very high (e.g. daily data). Therefore, the adoption of a 

specialized system design is important. Such a system would allow the storage of the past 

forecasting performances of each method and each origin in the purpose-designed database, 

so that they can be recalled efficiently.  

     Other drawbacks, when applying these rules in practice, would be the limited data history 

available. Also, series coming from a specific industry would appear more homogenous in 

nature and therefore the conclusions of this research might not apply. In order to overcome 

these problems, the proposed experimental design would need adjustment. In addition,  

segmentations should be carried out where appropriate. For example, the 48 observations 

used for initialization purposes could be significantly lessened, as demonstrated in the case 

study, if the available historical information is limited. Moreover, past forecasting 

performance could be checked in a smaller rolling window. With regard to defining useful 

segments, the method that would serve as the cut-off for segmenting the data into ‘dominant’ 

and ‘non-dominant’ method series should be defined appropriately, based on the rolling out-
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of sample performance of all methods. However, limited historical information is always a 

problem when seasonal data are examined. 

  

6. Conclusions 

When forecasting a population of time series, individual selection of the most appropriate 

method is intuitively appealing and may result in substantial gains. In the current research the 

circumstances under which selection of an individualized method per series should be 

preferred to selecting a single method (aggregate selection) for the whole population of series 

or by a combination of methods were analysed. To explore the conditions when individual 

selection is most likely to be of benefit, the entire data set was segmented into sub-

populations with regard to basic series characteristics (predictability, trend and seasonality). 

Moreover, the efficacy of individual selection was examined in the case that a specific 

method is dominant or when the methods’ performance are stable across forecast origins. 

Lastly, the effect of the number of methods taking part in selection (pool size) and the 

correlation between methods was considered. Based on the above, a protocol for selecting the 

best possible rule for each segment was proposed and a simplified version evaluated through 

a case study. 

     Empirical results, based on the long monthly series of the M3-Competition provided 

insights with regards to the effectiveness of individual selection versus the simple rules of 

aggregate selection or combination. When a population of series is divided in sub-populations 

with specific characteristics, then selection per series is more effective, especially for series 

identified as seasonal, unpredictable or trended. In addition, individual selection is superior 

when methods’ ranked performance in each series is stable. On the other hand, aggregate 

selection is the best choice when one single method is dominant across a sub-population of 
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series, while combination is efficient for predictable and non-trended series when high 

correlated methods are included in the method set. Finally, with some exceptions, individual 

selection works better (compared to aggregate selection and combination) when pools of low 

correlated methods are available. 

     Of the various individual selection rules considered, Rule 4, which relied on aggregated 

forecast performance over horizons, proved better than relying on 1-step ahead rules, or even 

Rule 3 which matched selection to the corresponding horizon. Simply relying on past in-

sample performance over the fitted data proved inadequate. This analysis has allowed various 

practical implications and limitations to be drawn, while a case study on real  company data 

set supported the efficiency of the proposed protocol. 

     A natural path for future research is to extend the range of methods to include ones with 

distinctive performance characteristics, such as Neural Networks. Moreover, the selection 

rules used in this study are only based on model fit and past forecast performance of methods 

across single or multiple lead times. These could be enhanced by a large number of variables 

proposed in the literature to characterize a time series (Shah, 1997; Meade, 2000; Adya, 

Collopy, Armstrong & Kennedy, 2001). Lastly, the current research does not fully take into 

account the specific features of each extrapolative  method, with all pools of possible 

methods being handled in the same manner. This is done in an attempt to gain a holistic view 

on the effectiveness of the individual selection rules over the aggregate selection and simple 

combination of methods (an approach adopted also in commercial software). However, in an 

operational set up, the inclusion in the selection pool of only the appropriate methods that 

will match the characteristics of a specific sub-population of data (e.g. trended or seasonal 

series) seems important. Although an obvious point to a statistician, this principle is not 

embedded in commercial selection software. Lastly, future work is needed to theoretically 
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explore why in some segments high correlated pools of methods led to the minimum MdAPE 

and, thus, being the recommended “best practice”. 

     For many applications selection rules are likely to deliver improved forecast accuracy. 

While for most sub-populations the gains are not usually large, the reliability is improved. 

While aggregate selection, perhaps the standard simple rule in application, can clearly deliver 

where a specific structure characterizes  the time series population (e.g. the telecoms data of 

Fildes (1989)), where the data are more heterogeneous as here in both the M3 and company 

data sets, individual selection is needed. A final note, the simple rule of combining proved 

ineffective for most of the segmented data sets, but proved its worth in the case study. 
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Appendices 

A1. Deseasonalization of the raw data 

Deseasonalization of the raw data is achieved by applying a multiplicative classical 

decomposition (Makridakis, Wheelwright & Hyndman, 1998). Monthly seasonal indices are 
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stored. The core extrapolative forecasting methods are then applied to the deseasonalized 

data. Finally, statistical forecasts derived from this procedure are reseasonalized by 

multiplying each point forecast with the corresponding seasonal index. The steps of this 

procedure are presenting in the following: 

1. Deseasonalize the raw data using multiplicative classical decomposition. 

2. Store the seasonal indices. 

3. Apply statistical forecasting models on the deseasonalized data. 

4. Reseasonalize the final forecast using the stored indices.  

A2. The Theta model 

The Theta model (Assimakopoulos & Nikolopoulos, 2000) proposed the decomposition of 

the data in two or more so-called “Theta lines”. The decomposition itself takes place to a 

seasonally adjusted series and is based on the modification of the local curvature by using a 

dedicated coefficient (θ). Upon the selection of a unique θ coefficient, a Theta line can be 

calculated, maintaining the mean and the slope of the data. At the same time, the selection of 

appropriate coefficients enables the improvement of the short or the long-term behaviour of 

the series. Originally, just two Theta lines were used, with θ values 0 and 2. Theta line (0) is 

nothing more than a straight line, representing the series slope without any curvatures. This 

line is extrapolated by simple linear regression. Theta Line (2) describes a line with double 

the curvatures from the original data. This line is forecasted using Simple Exponential 

Smoothing. The forecasts derived from the two Theta Lines are then combined with equal 

weights. Finally, forecasts are reseasonalized. Hyndman & Billah (2003) proved that the 

classic Theta model, where only two Theta Lines (0 and 2) are used, is equivalent to Simple 

Exponential Smoothing plus a deterministic trend, equal to half the trend of the original 

series.  
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     While more general forms of the Theta model have been considered (e.g. Petropoulos & 

Nikolopoulos, 2013), by introducing more Theta Lines or unequal weights for combining the 

final forecasts, the current research uses the classic form of the Theta model, as implemented 

by Hyndman & Billah (2003), using the thetaf() function of the forecasting package for R 

statistical software. 

A3. Error measures 

Let 𝑦𝑡(𝑖) be the actual value of series i for time period t and �̂�𝑡
𝑚(𝑖|ℎ) be the point forecast of 

the same series for method m at forecast origin t for lead time h, then 𝐸𝑀𝑡
𝑚(𝑖|ℎ) is the error 

measure of series i for method m at origin t for lead time h. Error Measure (EM) may be one 

of the following: 

 Signed Error (E): 𝐸𝑡
𝑚(𝑖|ℎ) = 𝑦𝑡+ℎ(𝑖) − �̂�𝑡

𝑚(𝑖|ℎ) 

 Squared Error (SE):   𝑆𝐸𝑡
𝑚(𝑖|ℎ) = 𝐸𝑡

𝑚(𝑖|ℎ)2 

 Absolute Error (AE):   𝐴𝐸𝑡
𝑚(𝑖|ℎ) = |𝐸𝑡

𝑚(𝑖|ℎ)| 

 Absolute Percentage Error (APE):   𝐴𝑃𝐸𝑡
𝑚(𝑖|ℎ) = |

𝐸𝑡
𝑚(𝑖|ℎ)

𝑦𝑡+ℎ(𝑖) 
| ∙ 100 (%) 

Let us define the error made in forecasting series from time origins t1 to t2 averaged over 

horizons h1 to h2 as:  

𝑀𝑒𝑎𝑛 𝐸𝑀𝑡1,𝑡2

𝑚 (𝑖|ℎ1, ℎ2)𝑖 =
1

ℎ2 − ℎ1 + 1
∑ (

1

𝑡2 − 𝑡1 + 1
∑ 𝐸𝑀𝑡

𝑚(𝑖|ℎ)

𝑡2

𝑡=𝑡1

)

ℎ2

ℎ=ℎ1

 

     Mean Absolute Percentage Error (MAPE) is the Mean APE summarized across all N time 

series, as: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ 𝑀𝑒𝑎𝑛 𝐴𝑃𝐸𝑡1,𝑡2

𝑚 (𝑖|ℎ1, ℎ2)

𝑁

𝑖=1
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that is the mean absolute percentage error averaged over series, forecast horizons and origins. 

The MdAPE values given in the text are the 𝑀𝑒𝑑𝑖𝑎𝑛(𝑀𝑒𝑎𝑛 𝐴𝑃𝐸𝑡1,𝑡2

𝑚 ). 

     The relative Mean Absolute Error for a series i can be defined as: 

𝑟𝑖 =
𝑀𝐴𝐸𝑖

𝑀𝐴𝐸𝑖
𝑏 

where 𝑀𝐴𝐸𝑖
𝑏 – MAE for baseline forecast for series 𝑖, 𝑀𝐴𝐸𝑖

𝑚 – MAE for method m for 

series 𝑖. 𝑀𝐴𝐸𝑖
𝑏 and MAE𝑖

𝑚 can be obtained from the arithmetic mean absolute error averaged 

across all forecast origins and forecast horizons h1 to h2  for series i: 

𝑀𝐴𝐸𝑖
𝑏 = 𝑀𝑒𝑎𝑛 𝐴𝐸𝑡1,𝑡2

𝑏 (𝑖|ℎ1, ℎ2) 

𝑀𝐴𝐸𝑖
𝑚 = 𝑀𝑒𝑎𝑛 𝐴𝐸𝑡1,𝑡2

𝑚 (𝑖|ℎ1, ℎ2) 

     Davydenko & Fildes (2013) showed that when making comparisons between methods, the 

use of arithmetic means rather than geometric can lead to misinterpretations. Instead, they 

proposed the use of a geometric average relative MAE. 

𝐴𝑣𝑔𝑅𝑒𝑙𝑀𝐴𝐸 = (∏ 𝑟𝑖

𝑚

𝑖=1
)

1/𝑚

 

     As is standard practice, Absolute Percentage Errors and Squared Errors are also used in 

the simple selection approaches in order to select the most promising single forecasting 

approach from a specific pool of methods. The average Past Forecast Performance (PFP) of 

series i for a method m for origins t1 through t2 may be calculated as the performance over a 

fixed lead time (h) or multiple lead times (h1 to h2) measured by an EM as follows: 

Single lead time: 𝑃𝐹𝑃𝐸𝑀 𝑡1,𝑡2

𝑚 (𝑖|ℎ) =
1

𝑡2−𝑡1
∑ 𝐸𝑀𝑡

𝑚(𝑖|ℎ)𝑡2−ℎ
𝑡=𝑡1

 

Multiple lead times: 𝑃𝐹𝑃𝐸𝑀 𝑡1,𝑡2

𝑚 (𝑖|ℎ1, ℎ2) =
1

ℎ2−ℎ1+1
∑ 𝑃𝐹𝑃𝐸𝑀 𝑡1,𝑡2

𝑚 (𝑖|ℎ)ℎ2
ℎ=ℎ1
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     Note that in the special case of single horizon, h1=h2, the second equation is equivalent to 

the first one. 

A4. Model Selection Rules 

Assuming that model selection will be performed at the T2+k origin, the PFP is measured 

between origins T1 to T2+k as is the fitted performance. The method to be selected is the one 

with the most promising performance. To this direction, the method with the minimum error 

(the smallest PFP), for the different lead times, is selected: 

Single lead time: 𝐵𝑒𝑠𝑡 𝑀𝑒𝑡ℎ𝑜𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛[ 𝑃𝐹𝑃𝐸𝑀 𝑇1,𝑇2+𝑘
𝑚 (𝑖|ℎ), 𝑚] 

Multiple lead times: 𝐵𝑒𝑠𝑡 𝑀𝑒𝑡ℎ𝑜𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛[ 𝑃𝐹𝑃𝐸𝑀 𝑇1,𝑇2+𝑘
𝑚 (𝑖|ℎ1, ℎ2), 𝑚] 

     Argmin is a function (here of m, the alternative forecasting methods) which identifies the 

method whose past forecast performance for series i and horizon h (PFP(i|h)) is the 

minimum. 

     In the following, the four simple rules implemented and examined in this research are 

defined. These rules are applied, as previously mentioned, in a rolling origin matter. As such, 

the most appropriate method identified and applied for the calculation of the forecasts for the 

next origin may change over time. Nevertheless, in each origin h point forecasts are 

calculated. Note that in all cases m is the index referring to each one of the methods examined 

by a specific rule. 

Rule 1. Use the method with best fit as measured by the minimum one-step ahead in 

sample Mean Squared Error: 

𝐵𝑒𝑠𝑡 𝑀𝑒𝑡ℎ𝑜𝑑𝑇2+𝑘
 (𝑖|𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑠) = 𝑎𝑟𝑔𝑚𝑖𝑛[ 𝑃𝐹𝑃𝑆𝐸 𝑇1,𝑇2+𝑘

𝑚 (𝑖|1), 𝑚] 
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Rule 2. Use the method with the best out-of-sample one-step-ahead forecast error, in 

terms of Mean Absolute Percentage Error, and apply that method to forecast for all lead 

times: 

𝐵𝑒𝑠𝑡 𝑀𝑒𝑡ℎ𝑜𝑑𝑇2+𝑘
(𝑖|𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑠) = 𝑎𝑟𝑔𝑚𝑖𝑛[ 𝑃𝐹𝑃𝐴𝑃𝐸 𝑇1,𝑇2+𝑘

𝑚 (𝑖|1), 𝑚] 

Rule 3. Use the method with best out-of-sample h-step-ahead forecast, in terms of 

Mean Absolute Percentage Error, and apply this method to forecast for just the same lead 

time: 

𝐵𝑒𝑠𝑡 𝑀𝑒𝑡ℎ𝑜𝑑𝑇2+𝑘
(𝑖|𝑓𝑜𝑟 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛[ 𝑃𝐹𝑃𝐴𝑃𝐸 𝑇1,𝑇2+𝑘

𝑚 (𝑖|ℎ), 𝑚] 

Rule 4. Use the best out-of-sample 1-18-steps-ahead, in terms of Mean Percentage 

Absolute Error, method to forecast for all lead times: 

𝐵𝑒𝑠𝑡 𝑀𝑒𝑡ℎ𝑜𝑑𝑇2+𝑘
(𝑖|𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑠) = 𝑎𝑟𝑔𝑚𝑖𝑛[ 𝑃𝐹𝑃𝐴𝑃𝐸 𝑇1,𝑇2+𝑘

𝑚 (𝑖|1,18), 𝑚] 
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Table 1. Forecasting methods included in the experiment 

# Method Short Name Applied to 

1 Naive Naive Raw data 

2 Naive 2 DNaive Deseasonalized data 

3 SES Expsmoo Raw data 

4 SES 2 DExpsmoo Deseasonalized data 

5 Holt Holt Raw data 

6 Holt 2 DHolt Deseasonalized data 

7 Holt-Winters HoltWint Raw data 

8 Damped Damp Raw data 

9 Damped 2 DDamp Deseasonalized data 

10 Damped with multiplicative 

seasonality 

DampMult Raw data 

11 Theta Theta Deseasonalized data 

12 ARIMA ARIMA Raw data 

 

Table 2. Segmenting the data set: number of time series per segment 

Segment Number of series 

Entire data set 998 

Predictable 694 

Unpredictable 304 

Trended 894 

Non-trended 104 
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Seasonal 608 

Non-seasonal 390 

Dominant Method 428 

Non-dominant method 570 

Stable performance 249 

Unstable performance 749 

 

Table 3. Forecasting accuracy measured by MdAPE (%) averaged across all lead times and 

by series segments  for the test data 

  

E
n
ti

re
 d

at
a 

se
t 

P
re

d
ic

ta
b
le

 

U
n
p
re

d
ic

ta
b
le

 

T
re

n
d
ed

 

N
o
n
-t

re
n
d
ed

 

S
ea

so
n
al

 

N
o
n
-s

ea
so

n
al

 

D
o
m

in
an

t 

M
et

h
o
d

 
N

o
n
-

d
o
m

in
an

t 

m
et

h
o
d

 
S

ta
b
le

 

U
n
st

ab
le

 

Naive 9.8 10.1 9.6 9.1 20.2 13.1 4.4 11.6 8.3 9.8 9.8 

DNaive 7.9 7.3 9.3 7.3 15.7 9.6 4.6 9.2 7.2 6.0 9.1 

Expsmoo 9.0 8.9 9.1 8.2 18.4 12.0 4.2 10.6 7.7 8.8 9.1 

DExpsmoo 7.3 6.7 9.0 6.8 15.1 8.8 4.3 8.0 6.8 5.6 8.3 

Holt 9.8 9.5 10.1 8.6 20.1 13.3 5.0 11.7 8.1 9.5 9.8 

DHolt 8.2 7.2 10.7 7.6 16.0 10.8 5.4 8.8 7.5 5.8 9.5 

HoltWint 8.5 7.6 10.8 8.0 17.1 10.8 5.5 9.5 7.9 6.0 9.5 

Damp 9.1 8.8 9.6 8.3 18.7 11.9 4.3 10.9 7.9 8.8 9.1 

DDamp 7.5 6.6 9.5 6.9 15.1 9.2 4.5 8.2 6.8 5.4 8.7 

DampMult 7.5 6.5 9.3 7.1 15.6 9.2 4.7 7.8 7.1 5.4 8.7 

Theta 7.4 6.5 9.0 6.8 14.7 9.2 4.5 7.8 6.6 5.1 8.3 

ARIMA 7.7 7.1 9.0 7.2 15.6 9.7 4.8 8.4 7.0 5.4 8.5 
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Perfect 

Information 

5.3 4.7 6.3 4.8 10.5 6.7 2.7 5.9 4.8 3.6 5.9 

 

Table 4. Percentage (%) of cases where individual selection leads to  improved forecasting 

accuracy when compared to (i) aggregate selection and (ii) combination. 
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2-4 

Low 611 27.8 67.1 48.4 88.1 33.4 75.0 83.1 90.0 

High 170 21.2 72.4 61.2 79.4 18.8 60.6 70.6 80.6 

5-8 

Low 2712 20.7 57.4 55.0 96.1 38.6 80.7 89.5 97.5 

High 291 8.9 82.8 67.0 94.8 9.6 84.5 82.1 95.9 

9-12 

Low 295 6.4 49.5 44.7 100.0 45.1 91.2 95.3 100.0 

High 4 0.0 100.0 25.0 100.0 25.0 100.0 100.0 100.0 

 

Table 5. Percentage (%) of cases for each segment where individual selection leads to  

improved forecasting accuracy when compared to (i) aggregate selection and (ii) 

combination. 
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Predictable 

Low 3945 25.8 43.7 32.8 51.0 41.1 77.0 75.8 87.8 

High 138 26.8 59.4 26.1 36.2 22.5 47.1 32.6 38.4 

Unpredictable 

Low 51 76.5 74.5 86.3 90.2 11.8 17.6 51.0 56.9 

High 4032 55.1 76.9 92.3 89.2 3.2 23.7 45.9 52.1 

Trended 

Low 464 43.5 65.1 64.0 81.0 14.2 72.8 66.6 85.8 

High 3619 22.4 48.5 46.0 72.7 16.6 71.3 71.3 84.6 

Non-Trended 

Low 3964 35.3 45.4 76.6 67.8 35.7 68.8 85.3 83.4 

High 119 52.9 42.9 44.5 44.5 6.7 26.1 31.9 37.8 

Seasonal 

Low 3870 27.1 49.8 83.7 90.9 40.5 74.0 98.7 99.1 

High 213 23.0 52.6 91.1 93.4 10.8 31.9 82.2 83.1 

Non-Seasonal 

Low 3 33.3 0.0 33.3 33.3 0.0 33.3 0.0 0.0 

High 4080 17.5 19.7 20.4 21.7 1.5 6.3 2.3 4.4 

Dominant 

method 

Low 4002 27.2 36.4 31.7 47.9 55.4 70.0 81.2 87.7 

High 81 27.2 38.3 33.3 32.1 18.5 46.9 44.4 53.1 

Non-

dominant 

method 

Low 953 58.3 82.7 78.5 87.1 30.5 81.0 73.9 87.7 

High 3130 47.5 83.0 77.2 81.1 11.6 64.6 47.7 68.6 

Stable 

Low 4009 59.2 55.8 55.0 71.1 73.9 78.5 82.7 84.1 

High 74 35.1 32.4 56.8 58.1 13.5 20.3 40.5 41.9 

Unstable Low 115 78.3 80.9 84.3 96.5 3.5 5.2 23.5 45.2 
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High 3968 32.8 51.9 32.8 70.8 2.4 21.8 13.7 50.1 

 

Table 6. Best selection approach for each segment 

Segment Best Practice 

Entire Data 

Set 

Individual selection (Rule 4) using a high number of low correlated methods 

Predictable Combination using a medium number of high correlated methods 

Unpredictable 

Individual selection (Rule 4) using a high number of high correlated 

methods 

Trended 

Individual selection (Rule 4) using a high number of high correlated 

methods 

Non-Trended Combination using a medium number of high correlated methods 

Seasonal Individual selection (Rule 3) using a high number of low correlated methods 

Non-Seasonal Aggregate selection using a high number of high correlated methods 

Dominant 

method 

Aggregate selection using a medium number of high correlated methods  

Non-

dominant 

method 

Individual selection (Rule 4) using a high number of high correlated 

methods 

Stable 

Individual selection (Rule 4) using a medium number of high correlated 

methods 

Unstable 

Individual selection (Rule 4)  using a high number of high correlated 

methods 
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Table 7. MdAPEs (%) for aggregate selection, simple combination, individual selection and 

best practice, analysed by segments. 

Segment 
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Entire Data Set 7.4 7.6 7.2 7.1 7.5 4.7% 

Predictable 6.5 6.9 6.6 6.5 6.6 2.4% 

Unpredictable 9.6 8.8 8.7 8.5 9.5 11.0% 

Trended 6.8 7.0 6.8 6.7 6.9 2.2% 

Non-Trended 15.6 15.8 15.2 14.8 15.1 2.0% 

Seasonal 9.2 9.5 9.0 8.9 9.2 3.2% 

Non-Seasonal 4.3 4.4 4.6 4.2 4.5 5.4% 

Dominant Method 7.9 8.4 7.9 7.8 8.2 5.2% 

Non-dominant method 7.1 6.9 6.8 6.7 6.8 1.7% 

Stable 5.4 5.9 5.4 5.1 5.4 5.3% 

Unstable 8.4 8.3 8.3 8.3 8.7 4.8% 

 

Table 8. Out-of-sample performance (MdAPEs) of best practice for the case study. 
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Entire Data Set 251 31.4 27.8 29.3 28.6 30.1 5.0% 

Predictable 142 28.8 26.0 26.3 24.8 24.3 -1.9% 
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Unpredictable 109 37.5 32.7 35.4 34.1 38.2 10.8% 

Trended 126 30.7 27.4 28.5 28.4 28.6 0.8% 

Non-Trended 125 34.0 28.3 30.8 26.9 32.8 18.0% 

Seasonal 48 24.3 21.8 20.5 21.4 20.0 -6.7% 

Non-Seasonal 203 35.2 30.6 32.8 35.2 34.4 -2.4% 

Dominant Method 122 35.2 32.0 34.6 35.2 37.4 5.8% 

Non-dominant method 129 24.6 24.9 24.3 24.2 24.4 0.9% 

Stable 63 27.4 26.2 26.4 26.4 25.9 -2.0% 

Unstable 188 33.1 28.3 30.8 31.8 31.7 -0.5% 

 


