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Abstract

Non-parametric estimation of the transition probabilities in multi-state models is considered for non-
Markov processes. Firstly, a generalization of the estimator of Pepe et al, 1991 (Statistics in Medicine)
is given for a class of progressive multi-state models based on the difference between Kaplan-Meier
estimators. Secondly, a general estimator for progressive or non-progressive models is proposed based
upon constructed univariate survival or competing risks processes which retain the Markov property. The
properties of the estimators and their associated standard errors are investigated through simulation. The
estimators are demonstrated on datasets relating to survival and recurrence in patients with colon cancer
and prothrombin levels in liver cirrhosis patients.

1 Introduction

Multi-state models provide a way of describing event history data that are in the form of transition times
between a finite set of states. In biostatistical contexts the states may represent the presence, absence or
severity of disease or diseases (Andersen and Keiding (2002)). Often death is included as an absorbing state,
or states, within the model and the approach can be considered as a generalization of both standard and
competing risk survival analysis. In many cases the transition probabilities, representing the probability of
occupying a particular state at a given time given occupancy of the same or a different state at an earlier
time, are of particular interest.
Under a Markov assumption, the Aalen-Johansen (AJ) estimator (Aalen and Johansen (1978)) provides
non-parametric estimates of the transition probabilities, Pij(s, t) = P (X(t) = j|X(s) = i) of a multi-state
process, {X(t), t > 0}, X(t) ∈ {0, 1, . . . , R} observed up to right-censoring. If we are only interested in
obtaining the marginal state occupation probabilities, i.e. estimates of quantities of the form Pij(0, t) or
pj(t) =

∑
i πiPij(0, t) where πi are the initial state occupancies, then the AJ estimator has been shown to

remain consistent for non-Markov models (Datta and Satten (2001, 2002); Glidden (2002)). If instead we are
interested in Pij(s, t) for some s > 0, the AJ estimator may be biased for a general non-Markov model. An
intuitive explanation for this bias is that the estimate of the transition probability depends on Nelson-Aalen
estimates of the transition intensities which use the data from all subjects in a particular state at a particular
time regardless of those subject’s state occupancy at time s.
Pepe et al. (1991) and Pepe (1991) developed a robust estimator of occupancy in the illness state of a
three-state illness-death model based on the difference between Kaplan-Meier estimators of survival in the
healthy state and overall survival. Meira-Machado et al. (2006) considered non-parametric estimation of the
transition probabilities for a non-Markov three-state illness-death model based on multi-time-dimensional
Kaplan-Meier estimates. Allignol et al. (2014) constructed a simplified representation of the estimator in

This is the peer reviewed version of the following article:
Titman, A.C. (2015) Transition Probability Estimates for Non-Markov Multi-State Models. Biometrics.

DOI:10.111/biom.12349,
which has been published in final form at
http://onlinelibrary.wiley.com/doi/10.1111/biom.12349/abstract.
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

1



terms of the limiting probability of a particular competing risks process. Both estimators have the drawback
of requiring that the support of the time to absorption (e.g. death) in the illness-death model is contained
within the right-censoring distribution.
In this paper, alternative estimators are proposed for the transition probabilities of non-Markov models.
Firstly, a generalisation of the robust estimator of Pepe et al. (1991), applicable to a class of progressive
models is proposed. Secondly, a general estimator, similar to that of Allignol et al. (2014) in being based
on a constructed competing risks process, is proposed which is applicable to any multi-state model with a
defined initiation population, including models where recovery is possible or there are an arbitrary number
of absorbing states.
The remainder of the paper is organised as follows. Section 2 presents the conditional Pepe estimator and
also illustrates the principle by which more efficient estimates than the estimator of Allignol et al. (2014)
can be obtained for the progressive illness-death model. Section 3 details the general estimation procedure
for an arbitrary multi-state process. Section 4 uses simulation to compare the performance of the proposed
estimator for the illness-death model with those of existing estimators and also to investigate the finite
sample properties of the proposed estimator and asymptotic standard errors for a range of models. Section
5 presents data examples to illustrate the proposed estimator, firstly with progressive illness-death model
on an example dataset involving patients with colon cancer and subsequently with a reversible illness-death
model on data relating to liver cirrhosis. The paper concludes with a discussion.

2 Estimators for the progressive illness-death
model

2.1 Conditional Pepe estimator

Suppose we are interested in estimation of the transition probabilities in a progressive three-state illness-
death model, {X(t), t > 0} where X(t) ∈ {0, 1, 2}. Here, state 0 represents a healthy state, state 1 represents
illness from which recovery to state 0 is not possible and state 2 represents death which is assumed to be
directly reachable from either state 0 or state 1.
A simple robust estimator of the marginal transition probabilities in a progressive three-state illness-death
model can be constructed by following the approach of Pepe et al. (1991) of using the difference between
two Kaplan-Meier estimates. Let T0 be the time of exit from state 0 and T the time of entry into state 2.
Also suppose that subjects are independently right-censored at a time C, if C < T .
If we are interested in estimating P01(s, t), we can consider the subset of patients for which T0 > s and
C > s, i.e. those under observation at time s and still in state 0. We can identify survival processes; time
to first exit from state 0 and time to entry into state 2. Define sN0(t) to be the counting process of exits
from state 0 among subjects in state 0 at time s and let sȲ0(t) be the number at risk of exit from state 0 at
time t among subjects in state 0 at time s. Similarly let sN1(t) be the counting process of entries into state
2 among subjects in state 0 at time s and let sȲ1(t) be the number under observation and not in state 2
among subjects in state 0 at time s. A conditional Pepe-type estimator of the transition probability is then
given by

P̂01(s, t) = Ŝ1(t)− Ŝ0(t)

= Rv∈[s,t)

(
1− dsN1(v)

sȲ1(v)

)
−Rv∈[s,t)

(
1− dsN0(v)

sȲ0(v)

)
.

Note that this estimator has the same form as that of the estimator of the marginal state occupancy proba-
bilities in Pepe et al. (1991) except that only patients still healthy at time s are used in the estimation. It
is also the estimator recently independently proposed by Uña-Álvarez and Meira-Machado (2015).
The estimator depends on two correlated Markov processes. As a consequence, standard martingale based
methods for obtaining variance estimates are not applicable. Uña-Álvarez and Meira-Machado (2015) used
a simple bootstrap to obtain variance estimates. However, asymptotic estimates are also possible using
moment-type variance estimators as developed by Pepe (1991). The form of these variance estimates for P̂01

in the three-state illness-death model is given in Appendix A1.

2



Estimators of the transition probabilities from more general progressive multi-state models can also be
constructed from Pepe-type estimates. Uña-Álvarez and Meira-Machado (2015) showed that to estimate
the transition probability from state i to state j it is necessary to define the set of states Xj which are
reachable from i and from which j is reachable. An estimator for Pij(s, t) can then be found by considering
the difference between Kaplan-Meier estimates of the sojourn distribution in Xj and the sojourn distribution
in Xj ∪ {j}.

2.2 Allignol et al estimator

Allignol et al. (2014) also considered the estimation of transition probabilities in a progressive three-state
illness-death model. Their approach involves constructing a competing risks process defined as

κs(u) =


0 if X(u) ∈ {0, 1}
1 if X(u) = 2 and I(s < T0 ≤ t, t < T ) = 1

2 if X(u) = 2 and I(s < T0 ≤ t, t < T ) = 0,

(1)

note that the times s and t are fixed and a separate process needs to be constructed for each distinct pair of
times (s, t).
Since this competing risks process involves at most one event for each patient, it is trivially Markov and
hence the AJ estimator can be used to estimate the transition probabilities of this process. Moreover, we
have that

P01(s, t) = lim
u→∞

P (κs(u) = 1)

and therefore P̂01(s, t) may be taken to be the estimate of limu→∞ P (κs(u) = 1).
A disadvantage of this construction is that, in order to identify this limiting probability, it is necessary for
the support of T , the times of absorption, to be contained within the support of right-censoring times. This
requirement is rather restrictive. In particular, it would preclude any study of a fixed length shorter than the
maximum possible lifetime. It is also a much stronger requirement than is necessary for the AJ estimator,
which only requires the time of interest, t, to be contained in the support of right-censoring times.
A further drawback of the construction is that no distinction can be made between patients who are censored
before reaching death, regardless of whether the condition I(s < T0 ≤ t < T ) is met or not, since in either
case the subject will be censored as κs = 0. The extent of information lost due to the need for subjects to
reach the absorbing state will depend on the censoring rate and the particular t of interest.
Regardless of assumptions about the nature (Markov or non-Markov) of X(t), the transition probability
P01(s, t) has no dependence on the underlying transition intensities,

λij(u;Fu) = lim
δu↓0

P (X(u+ δu) = j|X(u) = i,Fu)

δu
,

where Fu is the history or filtration of X(t) up to but not including time u, for times u > t. As a conse-
quence we can construct a process X∗(u) for which the transition intensities, λ∗ij(u;Fu) have the property
λ∗i2(u;Fu) = λi2(u;Fu) for u ≤ t and λ∗i2(u;Fu) > λi2(u;Fu) for u > t.
Note that, by construction, P ∗01(s, t) = P (X∗(t) = 1|X∗(s) = 0) = P01(s, t). However, for identical censoring
distributions, the estimate of P ∗01(s, t) via κ∗s(u) based on X∗(u) will be more efficient than the estimate of
P01(s, t) for X(u) because a greater proportion of subjects will reach the absorbing state. Moreover, the most
efficient estimate will occur for a process, X∗(t), that takes arbitrarily large transition intensities, λi2, at all
times u > t, which is equivalent to assuming all patients reach the absorbing state at time t+. The estimator
developed in the remainder of this paper works on the basis that estimates of the transition probabilities can
be obtained through the behaviour of the process up to t− and information on the observed state occupancy
of subjects at risk at time t.

3 Proposed estimator

In this section an estimator for the transition probability between states, or sets of states, in a general
multi-state model is developed.
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Let {X(t), t > 0} be a multi-state process where X(t) ∈ S = {1, 2, . . . , R}. Suppose that the set of
inadmissible direct transitions, i.e. the (i, j) such that λij(t;Ft) = 0 for all t within the range of times of
interest (0, τ) and all possible histories, Ft, is taken to be known. For additional generality, suppose we
are interested in estimation of PIJ (s, t) = P (X(t) ∈ J |X(s) ∈ I), where I and J are non-empty, but not
necessarily disjoint, subsets of S.
We can identify two important sets of states:

• RJ - the set of states reachable from I from which J cannot be reached.

• AJ - the set of states from which entry at time t implies X(t′) ∈ J for all t′ ≥ t.

AJ will equal J if J consists of a single, or multiple, absorbing states, or if J consists of states from which
it is only possible to enter other states in J . In contrast if, for instance, J consists of an illness state from
which recovery is possible and a death state, then AJ will include only the death state.
Having defined these sets we can then define a competing risks process, {Zs(u), u ≥ s}, as follows:

Zs(u) =


0 if X(u) 6∈ {RJ ∪ AJ }
1 if X(u) ∈ AJ
2 if X(u) ∈ RJ .

This process can be related back to the probability of interest through the identity

P (X(t) ∈ J |X(s) ∈ I) = P (Zs(t) = 1|X(s) ∈ I) +

P (Zs(t) = 0|X(s) ∈ I)P (X(t) ∈ J |Zs(t) = 0, X(s) ∈ I).

Suppose we have a sample of subjects, continuously observed up to independent left-truncation and right-
censoring. For notational simplicity the subject subscript is omitted. Let sY (u) be the at risk indicator for
the process Zs(u) for a given subject and let NI(s) denote the set of subjects satisfying X(s) ∈ I, sY (s) = 1.
Moreover, denote sȲ (u) =

∑
sY (u) as the number of subjects at risk for the process Zs(u) at time u, where

the summation here and in subsequent summations is over subjects in NI(s).
Under independent left-truncation and right-censoring, but without any other assumptions regarding the
process, P (Zs(t) = 0|X(s) ∈ I) and P (Zs(t) = 1|X(s) ∈ I) can be estimated by considering the AJ
estimator of the transition probabilities for Zs(t) amongst the patients in NI(s). A natural estimator for
P (X(t) ∈ J |Zs(t) = 0, X(s) ∈ I) is simply the observed proportion of subjects with X(t) ∈ J amongst all
patients with Zs(t) = 0, sY (t) = 1 and X(s) ∈ I, which we can denote p̂J |I(t).
Specifically we denote sN1(t) to be the counting process of observed events of type 1 in the competing risks
model and sN(t) to be the counting process of observed events of all types among the patients in NI(s).
The relevant quantities of the competing risks process can be estimated by

F̂0(t) = P̂ (Zs(t) = 0|X(s) ∈ I) = Rv∈[s,t]

(
1− dsN(v)

sȲ (v)

)
and

F̂1(t) = P̂ (Zs(t) = 1|X(s) ∈ I) =

∫ t

s
Rv∈[s,t)

(
1− dsN(v)

sȲ (v)

)
dsN1(u)

sȲ (u)
,

while

p̂J |I(t) =

∑
I(X(s) ∈ I, X(t) ∈ J , sY (t) = 1)∑

I(X(s) ∈ I, sY (t) = 1)
.

The overall estimator is then defined as

P̂IJ (s, t) = F̂1(t) + F̂0(t)p̂J |I(t).

Note that this estimator is only defined for s such that sȲ (s) > 0, meaning there is at least one patient still
under observation satisfying X(s) ∈ I.
A delta-method based approach for obtaining variance estimates of the proposed estimator is given in the
Appendix A2.
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3.1 Estimates of transitions between pairs of states

Usually we will only be interested in estimating the transition probabilities between a pair of distinct states
i and j. In which case the general formulation simplifies somewhat.
If j is an absorbing state then it follows that P (X(t) = j|Zs(t) = 0) = 0 and hence the estimate of the
transition probability is just P̂ij(s, t) = F̂1(t).
Alternatively, when j is a transient state, the competing risks process reduces to a simple survival process

Zs(t) =

{
0 if X(t) 6∈ {Rj ∪ Aj}
1 if X(t) ∈ Rj

.

and then
P (X(t) = j|X(s) = i) = P (Zs(t) = 0|X(s) = i)P (X(t) = j|Zs(t) = 0, X(s) = i),

meaning P̂ij(s, t) = F̂0(t)p̂j|i(t).
When all states within the process are transient such that RJ = ∅, no additional information can be
inferred from subjects who are censored before the time of interest t. The estimator in this case reduces
to the observed proportion of subjects in the set of states J amongst all patients still under observation at
time t with X(s) = i.

3.2 Three-state illness-death model

Returning to the progressive three-state illness-death model considered in Section 2, under the proposed
method, estimation of P01(s, t) is based on a constructed survival process

Zs(u) =

{
0 if X(u) ∈ {0, 1}
1 if X(u) = 2

(2)

and the estimated quantity

P̂ (X(t) = 1|X(t) ∈ {0, 1}) =

∑
I(X(t) = 1, X(s) = 0, sY (s) =s Y (t) = 1)∑

I(X(s) = 0, sY (s) = sY (t) = 1)
(3)

where we take P̂01(s, t) = P̂ (Zs(t) = 0|X(s) = 0)P̂ (X(t) = 1|Zs(t) = 0, X(s) = 0).
The difference between this estimator and that of Allignol et al. (2014) will be most pronounced for estimates
of P01(s, t) when t is small in relation to the typical times-to-death of the process or when there is a maximum
follow-up time in the study which is before the time at which all subjects will have reached state 2.
The proposed general estimator differs from the Pepe-type estimator of Section 2.1 only in the way in which
the conditional probability of occupancy in state 1 given occupancy in state 0 or 1 is estimated. In the Pepe
estimator this is estimated via 1 − Ŝ0(t)/Ŝ1(t) whereas the general estimator uses the moment estimate in
(3). Since the Pepe-type estimator uses information from subjects censored before time t to estimate the
quantity we would expect some improvement in efficiency. Whether this improved efficiency outweighs the
more complicated procedures required for variance estimation will be considered in the simulation study in
Section 4.

4 Simulation study

4.1 Illness-death model without recovery

To assess the performances of the proposed general estimator and the Pepe-type estimator and to compare
them to the AJ estimator and the Allignol et al. (2014) estimator for realistically sized datasets, data are
first simulated from a three-state illness-death model without recovery. Three processes are considered: a
Markov process such that the AJ estimator will be consistent; a non-Markov process induced via a shared
Gamma frailty and a pathological non-Markov process where future transition intensities depend on the
state occupied at a fixed point in time. For the Markov process a time-homogeneous process with intensities
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α01 = 0.12, α02 = 0.03, α12 = 0.1 is used. The frailty model has the same baseline intensities but the
individual intensities for the 0→ 1 and 1→ 2 transitions are of the form αijV where V ∼ Γ(1/2, 1/2). The
non-Markov process also has the same intensities except that

α12(t) =

{
0.05 if X(4) = 0

0.1 if X(4) 6= 0.

For each process, data are generated under two censoring scenarios: independent exponentially distributed
right-censoring times, where C ∼ Exp(0.04), and uniformly distributed censoring times where C ∼ U [5, 40].
Each scenario is also generated with sample sizes of N = 200 and N = 500 where N is the number of subjects
in state 0 at time 0.
Table 1 gives the bias and empirical standard deviation across 1000 simulations for the three estimators for
each of the scenarios when assessing the transition probabilities between τ.15 and τ.45, corresponding to the
15th and 45th percentiles of the time-to-absorption distribution T , respectively. Both the Pepe-type and the
proposed general estimator give close to unbiased estimates in all the scenarios considered. The bias and
standard deviation of the proposed estimator is generally lower than the estimator of Allignol et al. (2014).
Note that the estimator of Allignol et al. (2014) exhibits quite considerable bias under the shared Gamma
frailty model, even with an exponential censoring distribution. This is presumably due to the heaviness of
the tail of the marginal survival distribution of the frailty illness-death process and the higher censoring rate
for the scenario considered.
As would be expected, the AJ estimator performs better than the proposed estimator and the Pepe-type
estimator when the true process is Markov. In particular, it is more efficient. For instance, in the scenario
considered the empirical standard deviation is around 80% that of the proposed estimator. When the process
is not Markov, the AJ estimator is biased. The bias is much more marked for the pathological non-Markov
process than for the Gamma frailty.
Broadly similar results were found for other transition probability estimates. Web Tables 2 and 3 give results
for analogous transition probabilities between times corresponding to the 15th and 30th and 15th and 60th
percentiles of T . The Pepe-type estimator performs slightly better than the proposed estimator tending to
have comparable empirical bias but slightly lower variance. The apparent improvement in efficiency was
more marked for estimates of P01(τ.15, τ.60), which has a greater proportion of subjects who are censored
before the upper time point.
Table 1 also gives the estimated standard error and the resulting empirical coverage of nominal 95% confidence
intervals for each of the scenarios and estimators. The Greenwood-type estimates of variance were close to
being unbiased and confidence intervals based on them had reasonably close to nominal coverage. The
asymptotic variance estimator for the Pepe-type estimator is known to underestimate the true variance to
greater extent than standard Greenwood-type estimates (Pepe, 1991). However, in the scenarios considered
there was little evidence of this resulting in coverage further from the nominal 95% level than the Greenwood-
type estimates.

4.2 Illness-death model with recovery

To assess the performance of the proposed estimator in situations where backward transitions are possible,
scenarios based around a three-state illness-death model with recovery are simulated. Once again, three
processes are considered: a Markov process; a non-Markov process induced via a shared Gamma frailty and
a pathological non-Markov process. For this model, the Pepe-type estimator and Allignol et al estimators
are not applicable so we only consider a comparison between the proposed general estimator and the AJ
estimator.
Table 2 shows the bias, empirical standard deviation, standard error and coverage of 95% confidence intervals
for each of the estimators for P01(τ.15, τ.45). The proposed estimator is shown to be close to unbiased in
each scenario considered. In contrast, though not unexpectedly, the Aalen-Johansen estimator exhibits
considerable bias. The constructed asymptotic 95% confidence intervals for the proposed estimator were
found to have reasonably close to nominal coverage in most scenarios, the exception being in the case of the
frailty model for N = 200. Similarly results were also found for other transition probabilities. Full results
are given in Web Tables 5 and 6.
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Table 2: Comparison of estimates of P01(τ.15, τ.45) for simulated illness-death with recovery model datasets.
Bias and empirical standard deviation ×102

Scenario Proposed Aalen-Johansen
N Model Cens Bias SD SE Cov Bias SD SE Cov

200 Markov Unif 0.077 4.633 4.754 0.947 0.065 3.358 3.469 0.953
200 Markov Exp 0.016 5.574 5.265 0.928 -0.034 3.854 3.844 0.935
500 Markov Unif 0.199 2.975 3.020 0.951 0.091 2.164 2.199 0.956
500 Markov Exp 0.185 3.394 3.355 0.944 0.092 2.502 2.443 0.942
200 Non-Markov Unif -0.036 5.006 4.827 0.936 -2.169 3.644 3.603 0.885
200 Non-Markov Exp 0.030 5.508 5.364 0.948 -2.020 4.100 4.009 0.905
500 Non-Markov Unif -0.073 3.217 3.067 0.940 -2.154 2.377 2.287 0.816
500 Non-Markov Exp 0.050 3.380 3.406 0.950 -2.044 2.483 2.540 0.858
200 Frailty Unif 0.125 5.371 5.270 0.943 8.388 3.647 3.789 0.393
200 Frailty Exp -0.182 5.907 5.826 0.927 8.226 4.225 4.199 0.518
500 Frailty Unif 0.071 3.210 3.350 0.956 8.389 2.302 2.400 0.043
500 Frailty Exp 0.088 3.783 3.733 0.939 8.468 2.573 2.672 0.096

5 Data examples

5.1 Example 1: Adjuvant chemotherapy for colon cancer

As a first example, the proposed estimator is applied to data relating to patients with colon cancer. The
data originate from a trial assessing the efficacy of different forms of adjuvant chemotherapy. Here the subset
of 315 patients who were randomised to observation is considered. Note that, considering the full dataset
without adjusting for treatment may result in an apparent lack of Markovianity.
Patient follow-up was between 5 and 9 years. The date of recurrence of colon cancer was known if it occurred
within the follow-up period. A three-state progressive illness-death model can be formulated by considering
pre-recurrence, post-recurrence and death states. The data have a relatively high censoring rate. 168 patients
died within the follow-up period, of whom 13 died before recurrence. 125 were censored after recurrence,
with the remaining 22 being censored before recurrence.
Figure 1 shows estimates of P01(365, t) for the Aalen-Johansen, Allignol, conditional Pepe and general non-
Markov estimates, where t is measured in days. There is close agreement between the proposed general
estimator and the Pepe-type estimator, with divergence only at late follow-up times where the censoring
rate is high. There is considerable disagreement between these estimates and the Allignol estimator. Note
that unlike the example considered in Allignol et al. (2014), the colon cancer dataset has a relatively high
censoring rate (49% reach the absorbing state) and it is not reasonable to assume the support of the censoring
distribution contains the support of the absorption time distribution. There is some disagreement between
the AJ estimator and the non-Markov estimates with the AJ estimate having a lower peak. However, there
is relatively little evidence against the Markov assumption. This can also be verified by considering the
Kendall’s τ based tests of Markovianity proposed by Rodŕıguez-Girondo and Uña-Álvarez (2012) in which
estimated values of τ different from zero indicate departures from a Markov process. In this case, neither
the local test at t = 365 (|τ̂ | = 0.12, p = 0.17) nor the global supremum based test (|ˆ̂τ | = 0.21, p = 0.28)
suggest a significant departure.
Web Figure 1 shows the estimated standard errors. The standard errors of the estimates are generally
lower for the AJ estimator, as might be expected. For the conditional Pepe and proposed non-Markov
estimators the standard errors are very similar until around 5 years, with the conditional Pepe estimator
giving slightly lower standard errors after this time. The Allignol et al estimator’s standard errors are also
broadly comparable up to 5 years but thereafter decrease to zero because P̂01(365, t) goes to zero.

5.2 Example 2: Liver cirrhosis data

In the second example, we consider the liver cirrhosis data set considered by Andersen et al. (1993) and
subsequently by many other authors. The data are available in the R package mstate de Wreede et al. (2011).
The data consist of 488 patients from a randomized clinical trial and consider abnormal prothrombin levels
as a reversible illness state in an illness-death model with recovery.
Patients were randomized to either to a treatment of prednisone (251 patients) or a placebo (237 patients).
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Figure 1: Comparison of estimated transition probabilities from the no recurrence to recurrence states in
the colon cancer dataset
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The natural time scale in the model is time since randomization. Patients can enter the study with either
normal or elevated prothrombin levels. 51% of patients died before the end of follow-up, with the remainder
right-censored. We wish to compare estimates of P10(s, t), representing the transition probabilities from
elevated to normal prothrombin levels, using the AJ estimator which makes a Markov assumption, and
the proposed estimator. Note that, since the model allows recovery from the illness state, the constructed
Markov process has AJ = ∅ and RJ = {2}.
Estimates of the transition probabilities via the AJ estimator are performed using the R package etm (Allignol
et al. (2013)). Estimates of P10(1000, t) are produced for each trial arm via an Aalen-Johansen estimator and
also by the proposed non-Markov estimator and given in Figure 2. A starting point of 1000 days is chosen,
in the absence of any specific clinical milestone, because it roughly coincides with the median follow-up time
in the dataset. From this particular starting point, the Aalen-Johansen estimates suggest little difference
between placebo and prednisone. In contrast, the estimates based on the non-Markov estimate suggest a
reasonably marked difference between the two treatments, with a higher proportion of patients on prednisone
returning to normal levels of prothrombin. The conclusions about the efficacy of continued treatment beyond
1000 days may therefore be different if the non-Markov estimate is considered compared to the AJ estimator.
The discrepancy between the estimates may be due to unobserved heterogeneity in the data. Note that,
even if the process is conditionally Markov given some covariates, the marginal process will be non-Markov
if those covariates are unobserved. Some patients make substantially more transitions between the normal
and elevated prothrombin states than expected.

6 Discussion

In the case of a progressive three-state illness-death model, both the conditional Pepe estimator and the
proposed general estimator are more efficient than the Allignol et al estimator and remain unbiased even if the
support of the censoring distribution does not encompass the support of the time-to-absorption distribution.
The Pepe-type estimator is slightly more efficient than the general estimator, but the simpler form of variance
estimates for the general estimator may make it more attractive in practice. The general estimator also has
the advantage of offering a single form of estimator that is applicable to a wide range of multi-state models
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Figure 2: Estimated transition probabilities from elevated to normal prothrombin levels for placebo and
prednisone groups using the Aalen-Johansen estimator (left-panel) and proposed non-Markov estimator
(right-panel).
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including models permitting recovery.
An obvious extension to the proposed methods would be the incorporation of regression models for the
effect of explanatory variables. It is not possible to use a traditional approach of regression of the individual
transition intensities. However, methods based upon pseudo-observations of quantities of interest (Andersen
et al. (2003)) should be applicable.
Only an informal indication of the sensitivity to the Markov assumption can be obtained by comparing the
AJ and non-Markov transition probability estimates. In particular, the discrepancy may be dependent on
an often arbitrary choice of starting time, s. It would therefore be useful to devise formal tests of global
Markovianity, similar to those of Rodŕıguez-Girondo and Uña-Álvarez (2012), for the case of processes with
recovery.
The proposed estimator assumes that the left-truncation and right-censoring times are independent of the
multi-state process X(t). In situations where censoring is dependent on the current state or the history of
the multi-state process, the estimates will be biased. A further investigation of the impact of state dependent
censoring in the case of the progressive illness-death model is given in the Web Appendix which indicates
that all the non-Markov estimators are to some extent biased, with the Pepe-type estimates appearing more
robust in the cases considered. It may be possible to obtain unbiased estimates in this situation by adopting
an inverse-probability-of-censoring weights approach, similar to that used by Datta and Satten (2002) for
the state occupancy probabilities.

Supplementary materials

Web Appendices, Tables, and Figures referenced in Sections 4.1, 4.2, 5.1 and 6 are available with this paper
at the Biometrics website on Wiley Online Library.

Appendix

A1: Variance estimation for the conditional Pepe-estimator

Following Pepe (1991), a moment-type estimator can be obtained for the variance of the conditional Pepe
estimator of P01(s, t) for a progressive three-state illness-death model. Let ns be the number of patients
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under observation and in state 0 at time s. For the conditional Pepe-estimator

P̂01(s, t) = Ŝ1(t)− Ŝ0(t)

defined in Section 2.1, the asymptotic variance of

√
ns(P̂01(s, t)− P01(s, t))

is given by

1

ns

ns∑
j=1

(
S1(t)

{∫ t

0

1

y1(u)
dN j

1 (u)−
∫ t

0

Y j1 (u)

y1(u)
λ1(u)du

}

−S0(t)

{∫ t

0

1

y0(u)
dN j

0 (u)−
∫ t

0

Y j0 (u)

y0(u)
λ0(u)du

})2

where N j
k(t) is the counting process for event k for the jth subject and Y jk (t) is the corresponding at risk

indicator,
yk(t) = P (observed at risk for an event of type k just before t)

and λk(t) = limδ↓0 P (Tk ∈ (t, t + δ)|Tk ≥ t)/δ for k = 0, 1. It is assumed that yk(u) > 0, s ≤ u ≤ t. A

consistent-moment type variance estimator for P̂01(s, t) is then

ns∑
j=1

(
Ŝ1(t)

{∫ t

0

1

ŷ1(u)
dN j

1 (u)−
∫ t

0

Y j1 (u)

ŷ1(u)2
dN1(u)

}

−Ŝ0(t)

{∫ t

0

1

ŷ0(u)
dN j

0 (u)−
∫ t

0

Y j0 (u)

ŷ0(u)2
dN0(u)

})2

where Nk(u) =
∑ns

j=1N
j
k(u) and ŷk(u) = Yk(u)/ns, k = 0, 1.

A2: Variance estimation for the general estimator

In its most general form, the proposed estimator can be written in terms of a competing risks counting process
and a binary random variable. Let sY (t) be the subject’s at-risk indicator and let V (t) = I(X(t) ∈ J )sY (t).
We can express p̂J |I(t) =

∑
V (t)/

∑
sY (t). Note that V (t) is independent of the filtration of the competing

risks counting processes up to time t conditional on sY (t). As a consequence, p̂J |I is independent of the

cumulative incidence function estimates (F̂1(t), F̂0(t)). Standard theory for the AJ estimator of cumulative
incidence functions (Andersen et al. (1993)) can be used to obtain an estimate of the variance-covariance
matrix of (F̂1(t), F̂0(t)),

Σt =

[
Σ11 Σ12

Σ12 Σ22

]
.

In addition, p̂J |I may be considered as an independent binomial proportion, with estimated variance σ̂J =
1

sȲ (t)
p̂J |I(1 − p̂J |I). Using a delta method argument, an asymptotic approximation to the variance of the

overall estimator can then be obtained via

Var(F̂1(t) + p̂J |IF̂0(t)) = Σ11 + 2p̂J |IΣ21 + p̂2
J |IΣ22 + σ̂J F̂

2
0 .
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