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Abstract

Let N1 denote the restricted nullcone of the Lie algebra g of a simple algebraic group in char-

acteristic p > 0, i.e. the set of x ∈ g such that x[p] = 0. For representatives e1, . . . , en of the

nilpotent orbits of g we find the irreducible components of gei ∩ N1 for g = G2 and F4 in good

characteristic p. We do the same for g = E6 with the exception of three nilpotent orbits. We use

this information to determine the irreducible components of the restricted nilpotent commuting

variety Cnil1 (g) = {(x, y) ∈ N1 ×N1 : [x, y] = 0} for g = G2 and F4. We do the same for g = E6

with the exception of when p = 7 where we describe Cnil1 (g) as the union of an irreducible set of

dimension 78 and one of dimension 76 which may or may not be an irreducible component.
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6.2 Orbit Ã1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Orbit A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Irreducible Components of Cnil1 (G2) . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 F4 Results 66

7.1 Orbits F4, F4(a1), F4(a2) and F4(a3) . . . . . . . . . . . . . . . . . . . . . . . . . 66
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Chapter 0

Introduction

Over the last 30 years, support varieties have been a strong theme of research literature on

representation theory of finite groups, Lie algebras and finite group schemes . For background

on support varieties for finite groups see [Ben98] and see [Far12] for group schemes. There have

been several major applications of support varieties including Premet’s proof of the Kac-Weisfeiler

conjecture [Pre95].

Let G be a reductive algebraic group over an algebraically closed field k of characteristic p > 0

with Lie algebra g. Denote by N the nilpotent variety of g and let N1 be the set of elements

x ∈ g such that x[p] = 0. This is the restricted nullcone of g which is a Zariski closed subset of

N . The representation theory of G is captured by its Frobenius kernels. For GLn the Frobenius

morphisms are given by Fr : GLn → GLn which sends (xi,j) 7→ (xp
r

i,j). The r-th Frobenius kernel

of G is Gr = {M : Fr(M) = I}. For more details on Frobenius kernels see [Jan03]. It was shown

in [SFB97] that for G the support variety of the trivial module over the r-th Frobenius kernel is

isomorphic to

Cnilr−1(g) = {(x1, . . . , xr) ∈ N1 × · · · × N1 : [xi, xj ] = 0}

A lot is known about the case r = 1. For example the dimension and nilpotent orbits of

Cnil0 (g) = N1 are known, see [CLNP03]. However very little is known when r ≥ 2.

It was proved in [MT55] and [Ger61] that the set of all pairs of commuting n× n matrices over

an algebraically closed field is an irreducible variety. This is a special case of the commuting

variety of g given by

C(g) = {(x, y) ∈ g× g : [x, y] = 0}

It was shown by Richardson in [Ric79] that when char(k) = 0 the commuting variety C(g) is

irreducible. This was extended to good positive characteristic by Levy in [Lev02], under certain

mild conditions on G.
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The nilpotent commuting variety for a Lie algebra is given by

Cnil(g) = {(x, y) ∈ N ×N : [x, y] = 0}.

It was shown in [Bar01] that Cnil(sln) is irreducible for char(k) = 0 and char(k) > n. A more

general result was established for an arbitrary reductive algebraic group G (under some mild

conditions) in [Pre03a]. This showed that Cnil(g) is equidimensional, i.e that the irreducible

components of Cnil(g) all have the same dimension. Specifically, Premet showed that for a nilpo-

tent element e, with centralizer ge, the set ge ∩N is irreducible and the irreducible components

of Cnil(g) are given by C(Oe) = G · (e, ge ∩N ) for distinguished elements e.

When the characteristic p is greater than or equal to the Coxeter number h of g then N = N1,

hence Cnil(g) = Cnil1 (g). Therefore by Premet’s work the irreducible components of Cnil1 (g) are

known for p large enough. It is also known that when p = 2 then Cnil1 (sln) is equidimensional

and its irreducible components are found in [Lev07].

The aim of this thesis is to consider the irreducible components of the restricted nilpotent com-

muting variety Cnil1 (g). In particular we consider when g is an exceptional type Lie algebra.

Unlike the classical types, there are only finitely many cases to consider so a computational

approach can help to obtain a complete answer. Also since the exceptional types greatly differ

from sln, then considering these cases may giver a broader picture. Specifically we consider the

following two questions for g = G2, F4 and E6:

Question 1 Find the irreducible components of gei ∩ N1, where Oe1 , . . . ,Oen are the nilpotent

orbits of g.

Question 2 Find the irreducible components of the restricted nilpotent commuting variety Cnil1 (g).

The irreducible components found by answering the first question allow us to determine some of

the components of Cnil1 (g) and therefore help to answer the second question.

In Chapter 1 we start with an introduction to simple Lie algebras in characteristic zero. This is

followed by a discussion of nilpotent orbits which includes the Jacobson-Morozov Theorem. This

allows us to embed any nilpotent element of a simple Lie algebra into a triple {e, f, h} satisfying

the relations of the standard basis of sl2. Then we present the details of three methods to classify

nilpotent orbits, namely by partition types, weighted Dynkin diagrams and via the Bala-Carter

Theorem. This lays the groundwork for the more complicated situation in positive characteristic.

In the positive characteristic case sl2-triples are less helpful. Instead we define an associated

cocharacter which is in some way analogous to the element h in an sl2-triple. This is presented

in Chapter 2 along with the classification of nilpotent orbits in positive characteristic. These

classifications are important for answering Question 1.

Chapter 3 gives more details of some specific simple Lie algebras that are of particular interest.

This includes some structural information for the simple Lie algebras G2, F4 and E6 along with

some classical Lie algebras which are helpful for our calculations. For each of these Lie algebras

we examine some properties of their nilpotent orbits, including the Bala-Carter labels and the
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Hasse diagrams of the nilpotent orbits.

In Chapter 4 we introduce some specialist topics which are necessary for our (partial) answer

to Question 2, beginning with Lusztig-Spaltenstein induction. This is subsequently related to a

description of the nilpotent commuting variety and some results from [Pre03a].

In Chapter 5 we present the research questions we wish to answer along with an outline of the

basic methods we used to answer these questions. This includes some results which enable us to

calculate the dimension of each of the irreducible components of ge ∩ N1. We then have all of

the tools we require to answer Questions 1 and 2.

We automate part of the calculations to these questions by using [GAP12]. The details of the

calculations for G2 are presented in Chapter 6. This leads to the following result:

Result 1 For p = 5 the variety Cnil1 (G2) is irreducible of dimension 14 = dim(g) where

Cnil1 (G2) = C1(G2(a1)).

The details of these calculations for F4 are presented in Chapter 7. This leads to the following

result:

Result 2 The variety Cnil1 (F4) is equidimensional of dimension 52 = dim(g) with respectively 1,

2, and 3 components given by

p = 5 : Cnil1 (F4) = C1(F4(a3))

p = 7 : Cnil1 (F4) = C1(F4(a3)) ∪ C1(F4(a2))

p = 11 : Cnil1 (F4) = C1(F4(a3)) ∪ C1(F4(a2)) ∪ C1(F4(a1)).

In Chapter 8 we answer Question 1 for all the nilpotent orbits of E6 with the exception of A1, A2
1

and A3
1. Finally Chapter 9 presents most of the details of the calculations for answering Question

2 for E6 with the exception of when p = 7. In this case we show Cnil1 (E6) = C(E6(a3))∪C(D4(a1));

however we do not know if C(D4(a1)) ⊂ C(E6(a3)). Therefore we have:

Result 3 For p = 5 (resp. 11) the variety Cnil1 (E6) is equidimensional of dimension 76 (resp.

78) with respectively 3 and 2 components.

p = 5 : Cnil1 (E6) = G · (e,X1) ∪G · (e,X2) ∪ C1(D4(a1));

p = 11 : Cnil1 (E6) = C1(E6(a3)) ∪ C1(E6(a1)).

Here X1 and X2 are the two irreducible components of ge∩N1 for the nilpotent orbit Oe = A4A1.

For p = 7, Cnil1 (E6) has one irreducible component of dimension 78 and perhaps one further

component of dimension 76.

The results of all these calculations are summarised in Chapter 10 along with some suggestions

for further work. A detailed description of the [GAP12] code used throughout is presented in

the Appendix.
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Notation

Throughout, G is an algebraic group defined over an algebraically closed field k of characteristic

p ≥ 0.

• k× is the multiplicative group of the field k.

• Lie(G) is the Lie algebra of G, often denoted by g.

• Z(G) is the centre of G.

• (A,B) is the group generated by the commutators aba−1b−1 for closed subgroups A and B

in G and a ∈ A, b ∈ B. The commutator subgroup is closed and connected if either A or

B are connected [Bor91, §2.3 Corollary]. In particular (G,G) is always closed.
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Chapter 1

Simple Lie Algebras in

Characteristic Zero

1.1 Preliminaries

In this chapter we discuss a few different methods for classifying nilpotent orbits in a simple Lie

algebra. We assume basic knowledge of algebraic geometry, algebraic groups and Lie algebras.

For more information on these areas refer to [Hum75] and [Hum72]. We start with some defi-

nitions and results about algebraic groups and Lie algebras and then go on to define nilpotent

orbits in characteristic zero. Finally we discuss three methods for classifying these nilpotent

orbits, namely via partitions, weighted Dynkin diagrams and the Bala-Carter Theorem.

Simple Algebraic Groups and Lie Algebras

Let G be an algebraic group over k with identity 1. A morphism of algebraic groups φ : G→ G′

is a group homomorphism which is also a morphism of varieties. The identity component of G

is the unique irreducible component that contains 1 [Hum75, p.53]. We denote this by G◦. We

say G is connected if G = G◦. The derived series of G is defined inductively by

D0G = G, Di+1G = (DiG,DiG)

We say G is solvable if Dn(G) = {1} for some n. For all i, Di(G) is a closed normal subgroup

of G and is connected if G is connected. It can be shown that any connected algebraic group

G contains a unique largest closed normal solvable subgroup [Hum75, Cor 7.4, Lemma 17.3(c)].

The identity component of this subgroup is known as the radical of G and denoted by R(G).

Then R(G) is the largest connected normal solvable subgroup of G.

The set of unipotent elements in a connected solvable linear algebraic group is a closed connected

normal subgroup, [Hum75, Thm 19.3]. Let Ru(G) denote the set of unipotent elements in R(G);
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we call this the unipotent radical of G. It is easy to see that Ru(G) is normal in G. The group

G is reductive if Ru(G) = {1}. If G is reductive then the derived subgroup is semisimple [CM93,

§1.2]. Throughout this chapter let G be a connected reductive algebraic group over C.

We say that G is simple if it has no closed connected normal subgroups other than itself and

{1}, and semisimple if the maximal connected solvable normal subgroup is {1}. Similarly a Lie

algebra is simple if it has no non-zero proper ideals and semisimple if its unique maximal solvable

ideal is zero. Therefore any simple Lie algebra is semisimple. It is shown in [Hum75, §13], that

G is simple (resp. semisimple) if and only if Lie(G) is simple (resp. semisimple). Note that this

is not the case if char(k) > 0, which is discussed in Chapter 2.

Examples 1.1.1

Here are some examples of algebraic groups and their Lie algebras. All are simple, with

the exception of the first case.

1. GLn is the set of n×nmatrices with non-zero determinant. Then Lie(GLn) = gln consists

of all n× n matrices.

2. The algebraic group SLn is the set of n × n matrices with determinant equal to 1. The

Lie algebra sln consists of matrices with zero trace.

3. On = {A ∈ GLn : AtA = In} and SOn = {A ∈ SLn : AtA = In} are simple algebraic

groups and Lie(SOn) = son = {x ∈ gln : xt = −x} consists of skew symmetric matrices.

4. Sp2n = {A ∈ GL2n : AtJnA = Jn} where Jn =
(

0 In
−In 0

)
and sp2n is given by{(

A1 A2

A3 A4

)
: Ai ∈Matn×n, A1 = −At4 and A2, A3 are symmetric

}
.

These examples are the classical groups.

For an element x ∈ g, the adjoint endomorphism is the map

adx : g→ g

y 7→ [x, y].

The adjoint representation of G is given by the homomorphism Ad : G → Aut(g) ⊂ GL(g)

where v 7→ Adv. Then we can define the map Adv : g→ g where y 7→ Adv(y). In each example

in 1.1.1 we have Adv(y) = vyv−1. For a subset K in g denote the centralizer of K in g as

gK = {x ∈ g : [x,K] = 0}, similarly for a subset H in G the centralizer of H in G is given by

GH = {v ∈ G : vh = hv ∀h ∈ H}. If H is a closed subgroup of G then GH is also a closed

subgroup of G [Hum75, Cor 8.2]. For an element x ∈ g, we have gx = Lie(Gx) [Hum75, Thm

13.4]. From now on all subgroups are assumed to be closed unless otherwise specified.

A Borel subgroup of an algebraic group G is a maximal connected solvable subgroup of G. For
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example if G = GLn, then

B =




b1,1 . . . . . . b1,n

b2,2
...

. . .
...

0 bn,n

 :
bi,j ∈ k for 1 ≤ i ≤ j ≤ n

bi,i ∈ k× for 1 ≤ i ≤ n


is a Borel subgroup. Any subgroup of G which is conjugate to a Borel subgroup is also a Borel

subgroup. Conversely given a Borel subgroup B then any other Borel subgroup is conjugate to

B [Hum75, Theorem 21.3]. A closed subgroup of G that contains a Borel subgroup is a parabolic

subgroup of G. For a fixed Borel subgroup B then any parabolic subgroup in G is conjugate to

one that contains B. A subgroup T of G is a torus if it is connected and contains only semisimple

elements. We say T is a maximal torus if it is not properly contained in any other torus. In GLn

T =




t1 0

t2
. . .

0 tn

 : ti ∈ k×


is a maximal torus. A Cartan subgroup is a subgroup of the form GT where T is a maximal

torus. If G is reductive then GT = T [Hum75, Cor 26.2 A].

Now consider the Lie algebra g = Lie(G). A Borel subalgebra of g is a maximal solvable subal-

gebra. For example when g = gln then

b =




b1,1 . . . . . . b1,n

b2,2
...

. . .
...

0 bn,n

 : bi,j ∈ k for 1 ≤ i ≤ j ≤ n


is a Borel subalgebra of g. As a consequence of our assumption on the characteristic, the Borel

subalgebras are the subalgebras of the form Lie(B) where B is a Borel subgroup of G. For a

parabolic subgroup P of G then p = Lie(P ) is a parabolic subalgebra of g. If T is a torus in G

then t = Lie(T ) is a toral subalgebra of g. For example if T is as above then

t =




a1 0

a2

. . .

0 an

 : ai ∈ k


is a toral subalgebra of gln. A Cartan subalgebra of g is hT = Lie(GT ) where T is a maximal

torus of G. When G is reductive Lie(GT ) = gT therefore in this case hT = Lie(T ) [Bor91, Prop

9.1].
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Roots of a Simple Lie Algebras

For the remainder of this chapter let g be a simple Lie algebra. We may assume that g = Lie(G)

for some complex Lie group G.

Let h be a Cartan subalgebra of g with dual space h∗. Then for an element α ∈ h∗ let

gα = {x ∈ g : [h, x] = α(h)x ∀h ∈ h}.

The roots of g relative to h are the set of non-zero α ∈ h∗ where gα 6= {0}. We say gα is a root

space of α in g. The root system of g is the set Φ of roots of g, then

g = h⊕
⊕
α∈Φ

gα.

A basis of Φ is a subset ∆ where each root β ∈ Φ can be written uniquely as β =
∑
α∈∆

kαα

where kα ∈ Z such that either all the kα are non-negative or non-positive. A basis always

exists and any two bases are conjugate by the action of the normalizer NG(T ) of T , where

NG(H) = {x ∈ G : x−1Hx = H} for a subgroup H of G. The elements in ∆ are the simple

roots of g. We denote by Φ+ all the positive roots of g, i.e. all the roots β ∈ Φ such that

kα ≥ 0 for all α ∈ ∆. The height of a root (relative to ∆) is given by ht(β) =
∑
α∈∆

kα. We can

relate roots in Φ to elements in g. For a root α in Φ+ we can choose eα ∈ gα, and fα ∈ g−α

such that {eα, fα, hα = [eα, fα]} satisfy the relations of the standard basis of sl2. We can write

e−α and fα interchangeably. Throughout, the elements eα, fα and hα are given in their natural

upper-triangular, lower-triangular, and diagonal forms respectively.

Example 1.1.2

Let g = sl3, ∆ = {α1, α2}, Φ = {α1, α2, α1 + α2,−α1,−α2,−(α1 + α2)} and

Φ+ = {α1, α2, α1 + α2}.

We can represent these roots via the following diagram.

α1

α2 α1 + α2

−α2

−α1

−α1 − α2

For a root αi ∈ Φ, we can find elements eαi , fαi , hαi ∈ sl3 with the conditions described

above. In this case gα1
=
{(

0 a 0
0 0

0

)
: a ∈ k

}
therefore let eα1

=
(

0 1 0
0 0

0

)
, here we are using

the convention that blank entries in a matrix are zero. We use this convention throughout.

For all α ∈ Φ+ we have
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eα1
=


0 1 0

0 0

0

 eα2
=


0 0 0

0 1

0

 eα1+α2
= [eα1

, eα2
] =


0 0 1

0 0

0



fα1 =


0

1 0

0 0 0

 fα2 =


0

0 0

0 1 0

 fα1+α2 = [fα2 , fα1 ] =


0

0 0

1 0 0



hα1 =


1

−1

0

 hα2 =


0

1

−1

 hα1+α2 =


1

0

−1



The Killing form on g is the bilinear form κ : g × g → k defined by κ(x, y) = Tr((adx)(ady))

where x, y ∈ g and where adx is the adjoint endomorphism of x.

Example 1.1.3

Let g = sl2 with a basis given by

e =

 0 1

0

 h =

 1

−1

 f =

 0

1 0


Then

ade(e) = 0 ade(h) =

 0 −2

0

 = −2e ade(f) =

 1

−1

 = h

Therefore we can represent ade relative to the basis {e, h, f} so ade =
(

0 −2 0
0 0 1
0 0 0

)
; similarly

adf =
(

0 0 0
−1 0 0
0 2 0

)
. So κ(e, f) = Tr((ade)(adf )) = Tr

(
2

2
0

)
= 4

The following results can be found in [Hum72, §5.1].

Theorem 1.1.4 A Lie algebra g is semisimple if and only if its Killing form is non-degenerate

i.e. if κ(x, y) = 0 for all y ∈ g then x = 0.

In fact κ is a symmetric bilinear form and is G-invariant which means for any v ∈ G we have

κ(Adv(x), Adv(y)) = κ(x, y).

For any α ∈ h∗ there exists a unique element tα ∈ h such that α(h) = κ(h, tα) for all h ∈ h.

Then for α, β ∈ h∗ let (α, β) = κ(tα, tβ). We say α ∈ Φ has length ‖α‖ =
√

(α, α). For a simple

Lie algebra there are only two possible root lengths [Hum72, Lemma 10.4 C]. Therefore we can

split Φ into long roots and short roots. If there is only one root length then by convention we

say all the roots are long.

14



Al (l ≥ 1)
α1 α2 α3 αl−1 αl

Bl (l ≥ 2)
α1 α2 αl−2 αl−1 αl

Cl (l ≥ 3)
α1 α2 αl−2 αl−1 αl

Dl (l ≥ 4)
α1 α2 αl−3 αl−2

αl−1

αl

El (l = 6, 7, 8)
α1 α3 α4 α5 αl

α2

F4 α1 α2 α3 α4

G2 α1 α2

Figure 1.1: The Dynkin diagrams for all the simple Lie algebras

For two roots α, β ∈ Φ let

〈β, α〉 = 2
(β, α)

(α, α)

If α and β are linearly independent the α-string (or α-chain) through β is the maximal sequence

of roots of the form β−rα, . . . , β, . . . , β+qα for non-negative integers r and q where r−q = 〈β, α〉

[Hum72, §9.4].

Each simple Lie algebra g can be represented by a Dynkin diagram. This graph contains a node

corresponding to each simple root αi of g. The nodes αi and αj are joined by 〈αi, αj〉 · 〈αj , αi〉

number of edges. Finally if two roots of different lengths have a connecting edge then we mark

that edge with an arrow pointing to the short root. The Dynkin diagrams for all the simple Lie

algebras are given in Figure 1.1.

Example 1.1.5

In reference to Example 1.1.1, we have that SLn is of type An−1, Sp2n is of type Cn and

SOn is of type Dn
2
if n is even and of type Bn−1

2
if n is odd.

For a semisimple Lie algebra g with Cartan subalgebra h, the simple roots {α1, . . . , αn} form a

basis of h∗. There is another basis, the fundamental basis, {ω1, . . . , ωn} of h∗ such that

ωi(hαj ) = 〈ωi, αj〉 =

1 if i = j

0 otherwise

15



We define a Chevalley basis of g to be a basis {eβ : β ∈ Φ} ∪ {hαi : i = 1, . . . , n} such that

(i) [hαi , hαj ] = 0 for all 1 ≤ i, j ≤ n,

(ii) [hαi , eβ ] = 〈β, αi〉eβ = β(hαi)eβ for all 1 ≤ i ≤ n and β ∈ Φ i.e. eβ ∈ gβ ,

(iii) [eβ , e−β ] = hβ =
m∑
j=1

〈ωj , β〉hαi ,

(iv) If α, β are linearly independent roots and β − rα, . . . , β + qα the α-string through β

then

[eα, eβ ] =

0 if q = 0

±(r + 1)eα+β if α+ β ∈ Φ

For a simple Lie algebra g a Chevalley basis always exists, this is shown in [Hum72, §25].

Example 1.1.6

Let g = sl3 and ∆ = {α1, α2}. Then g has Chevalley basis

{hα1
, hα2

, eα1
, eα2

, eα1+α2
, fα1

, fα2
, fα1+α2

}

where eαi , fαi and hαi are given in Example 1.1.2.

We are particularly interested in the exceptional type Lie algebras. Below is a table which states

the dimension, the number of positive roots and the highest root of each of these Lie algebras.

Lie Algebra Dimension
Number of

Positive Roots
Highest Root

G2 14 6 3α1 + 2α2

F4 52 24 2α1 + 3α2 + 4α3 + 2α4

E6 78 36 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

E7 133 63 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

E8 248 120 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8

For the exceptional Lie algebras we can label the element ea1α1+···+anαn ∈ Φ+ by e subscripted

with the Dynkin diagram of g with the node corresponding to αi labelled ai. For example the

highest root in E6 can be expressed as e 12321
2

. To express the negative roots we replace an e

with an f , for example f 12321
2

.

Weyl Groups

Let G be an algebraic group with maximal torus T where h = Lie(T ) is a Cartan subalgebra of

g = Lie(G). The Weyl group is given by

W =
NG(T )

T

The following result is a consequence of [Hum75, Cor 16.3].
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Theorem 1.1.7 The Weyl group is finite.

The restriction κ(·, ·)|h×h is W-invariant which means κ(w(h1), w(h2)) = κ(h1, h2) for w ∈ W

and h1, h2 ∈ h. Since this restriction is non-degenerate it induces an isomorphism

h→ h∗

h 7→ (h,−)

This isomorphism still holds when restricting to hR = {h ∈ h : αi(h) ∈ R}. In particular the map

hR → h∗R sends h 7→ (h,−) where (h, h′) ∈ R for any h, h′ ∈ hR. By this isomorphism, w ∈ W

acts on h∗ by

(w · λ)(h) = λ(w−1(h)) for λ ∈ h∗, h ∈ h

The isomorphism π : h→ h∗ satisfies

w(h) 7→ (w(h),−) = (h,w−1(−))

since (w(h), w(x)) = (h, x) so (w(h), x) = (w(h), w(w−1x)) = (h,w−1(x)). Therefore π is also

W-invariant.

The Weyl group W is generated by elements sα. When W acts on h∗R then these elements are

given by sα(λ) = λ−λ(hα)α where sα(λ) sends α to −α and fixes {λ ∈ h∗R : λ(hα) = 0}. Similarly

if W acts on h then sα(h) = h− α(h)hα sends hα to −hα and fixes the set {h ∈ hR : α(h) = 0}.

For more details see [Hum75, §27.1]

Example 1.1.8

Consider the Lie algebra g = sl3. The element sα on h∗R fixes the hyperplane Pα given by

{λ ∈ h∗R : λ(hα) = 0}. This can be represented by

α1

α2 α1 + α2

Pα1

Pα2

Pα1+α2
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As can be seen in the diagram, W creates finitely many regions of h∗R which are called Weyl

chambers. These chambers are permuted transitively by the action ofW on g. The positive Weyl

chamber is the chamber where λ(hαi) > 0 for all simple roots αi.

Example 1.1.9

For the case when g = sl3, the positive Weyl chamber is represented by

α1

α2 α1 + α2

Pα1

Pα2

Pα1+α2

Positive Weyl Chamber

The horizontally hashed area is where λ(hα1
) > 0 and the diagonally hashed area is where

λ(hα2
) > 0. Therefore the Weyl chamber with both hashes is the positive Weyl chamber.

Similarly the Weyl group partitions hR into finitely many Weyl chambers. Then the positive

Weyl chamber is given by h ∈ hR such that α(h) > 0 for all simple roots α.

Theorem 1.1.10 [Hum75, §10.4] Every element in h ∈ hR is conjugate by the Weyl group to a

unique element in the closure of the positive Weyl chamber.

Highest Weight Modules

Let V be a finite dimensional g-module for a Lie algebra g. Then V is simple if V 6= {0} and

has no proper non-zero submodules.

Let g = sl2 with the usual basis {e, f, h}. Then h = kh is a Cartan subalgebra of g. A linear map

µ : h → k, in the dual space h∗, is completely defined by µ(h) since µ(ξh) = ξµ(h). Therefore

we can express µ as µ(h)ω where ω ∈ h∗ and ω(h) = 1. Let V be a simple finite dimensional

sl2-module and, for any µ ∈ h∗, let V (µ, h) = {v ∈ V : h.v = µ(h)v}. Then µ is a weight and

V (µ, h) is a weight space of V if V (µ, h) 6= 0. Now V can be expressed as

V =
⊕
µ∈h∗

V (µ, h)
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In fact since µ = ξω for some ξ ∈ k then

V =
⊕
ξ∈k

V (ξ, h)

where V (ξ, h) = {v ∈ V : h.v = ξv}. Therefore we refer to ξ as a weight of V if V (ξ, h) 6= 0.

Any non-zero vector v ∈ V (ξ, h) such that e.v = 0 is a maximal vector of weight ξ.

Lemma 1.1.11 If v ∈ V (ξ, h) then e.v ∈ V (ξ + 2, h) and f.v ∈ V (ξ − 2, h)

Proof. Consider the following

h.(e.v) = [h, e].v + e.h.v

= 2e.v + ae.v

= (ξ + 2)e.v

Therefore e.v ∈ V (ξ + 2, h). Similarly f.v ∈ V (ξ − 2, h)

Since V is finite dimensional there exists an n such that V (n, h) 6= 0 and V (n + 2, h) = 0. The

following two results are presented in [Hum72, §7.2].

Theorem 1.1.12 Let V be an irreducible module for g = sl2 such that dim(V ) = m+ 1. Then

V is a direct sum of the weight spaces V (m,h), V (m− 2, h), . . . , V (−m+ 2, h), V (−m,h) and

dim(V (i, h)) = 1 for i = m,m − 2, . . . ,−m. Also V has a unique maximal vector v (up to

non-zero scalar multiples), this vector has weight m.

Theorem 1.1.13 For g = sl2 there exists exactly one irreducible sl2-module of each possible

dimension m+ 1, m ≥ 0 (up to isomorphism)

An irreducible module V for sl2 of dimension m+ 1 can be represented pictorially as follows.

vm−2
vm−4

v−m+2
v−mvm

f

e

f

e

f

e

We denote the unique (up to isomorphism) irreducible sl2-modules of dimension m+1 as L(mω)

with maximal vector vm of weight m. Then we call vm the highest weight vector of L(mω) and

m the highest weight.

Examples 1.1.14

1. The sl2-module L(2ω) has highest weight vector v2. Moreover, there is an isomorphism

of L(2ω) with the adjoint representation sending v2 to e.

v2 v0 v−2

f

e

f

e
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2. L(ω) ∼= k2 has highest weight vector v1 = ( 1
0 ).

v1 v−1

f

e

For a sl2-module V let Sn(V ) be the symmetric tensor where Sn(V ) is the subspace of the nth

power tensor V ⊗n which contains all elements v1⊗v2⊗· · ·⊗vn ∈ V ⊗n such that v1⊗v2⊗· · ·⊗vn =

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n) for every permutation σ of {1, 2, . . . , n}. Then for any g ∈ g,

g(v1 ⊗ · · · ⊗ vn) = (g · v1)⊗ v2 ⊗ · · · ⊗ vn + v1 ⊗ (g · v2)⊗ v3 ⊗ · · · ⊗ vn

+ · · ·+ v1 ⊗ · · · ⊗ vn−1 ⊗ (g · vn)

Theorem 1.1.15 Sn(L(ω)) = L(nω)

Proof. The module L(ω) of sl2 has basis {v1, v−1} where v1 = ( 1
0 ) and v−1 = ( 0

1 ) with the

action of sl2 by (left) matrix multiplication. Then Sn(L(ω)) is spanned by v⊗n1 , v⊗n−1
1 ⊗ v−1,

v⊗n−2
1 ⊗ v⊗2

−1 , . . . , v
⊗n
−1 . Then consider h =

(
1 0
0 −1

)
∈ g,

h(v⊗n−m1 ⊗ v⊗m−1 ) =(h · v1)⊗ v⊗n−m−1
1 ⊗ v⊗m−1 + · · ·+ v⊗m−n−1

1 ⊗ (h · v1)⊗ v⊗m−1 +

v⊗n−m1 ⊗ (h · v−1)⊗ v⊗m−1
−1 + · · ·+ v⊗n−m1 ⊗ v⊗m−1

−1 (h · v−1)

=(n−m)(v⊗n−m1 ⊗ v⊗m−1 )−m(v⊗n−m1 ⊗ v⊗m−1 )

=(n− 2m)(v⊗n−m1 ⊗ v⊗m−1 )

Then Sn(L(ω)) has weights n, n− 2, . . . ,−n. Therefore by Theorem 1.1.13 the result holds.

We shall now consider the general case. Let g be a simple Lie algebra with root system Φ with

basis ∆ = {α1, . . . , αn} and Cartan subalgebra h. Let V be a finite dimensional g-module and

let Vµ = {v ∈ V : h.v = µ(h)v ∀h ∈ h}. Then we have V =
⊕
µ∈h∗

Vµ. When Vµ 6= 0 we say Vµ is a

weight space and µ is a weight of V . A non-zero vector v ∈ Vµ is a maximal vector of weight µ

if x.v = 0 for all x ∈ gαi , αi ∈ ∆. The g-module V has at least one maximal vector v.

For a weight µ of V and αi ∈ ∆ the α-string through µ is the maximal sequence of weights

µ− rαi, . . . , µ, . . . , µ+ qαi where r − q = 〈µ, αi〉.

Let V be an irreducible g-module with maximal vector v of weight µ. Then every maximal vector

of V has weight µ. We say that µ is the highest weight of V . The submodule of V generated

by a maximal vector of v is equal to V . A proof of the following result is presented in [Hum72,

§21.1].

Theorem 1.1.16 If V is a finite dimensional irreducible g-module of highest weight µ then

µ(hαi) is a non-negative integer. In fact for any weight µ of V then µ(hαi) = 〈µ, αi〉 ∈ N0.
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Let L(µ) be the irreducible g-module with maximal vector vµ in the weight space L(µ)µ. A

module of a Lie algebra g is faithful if the corresponding map g→ gl(V ) is injective. Every non-

trivial module of a simple Lie algebra is faithful. We can describe the minimal (dimensional)

faithful modules for the exceptional types. Specifically L(ω1) is the minimal faithful module of

G2 and has dimension 7. For F4 this module is L(ω4) of dimension 26. For E6 we have L(ω1) or

L(ω6) both of dimension 27. The minimal faithful module of E7 is L(ω7) of dimension 56 and

finally the minimal faithful module of E8 is L(ω8) of dimension 248, this is the adjoint module

of E8.

1.2 Nilpotent Orbits

Let g = Lie(G) be a simple Lie algebra. Then an element e ∈ g is ad-nilpotent if the map

ade : g→ g is a nilpotent endomorphism, specifically if (ade)
m = 0 for some m > 0. For example

an element x ∈ sln is nilpotent if and only if the m-th matrix power xm = 0 for some integer

m. The set of nilpotent elements of g, denoted N (g) or simply N , is invariant under the adjoint

action of G. For a nilpotent element e ∈ g the nilpotent orbit of e is

Oe = {Ady(e) : y ∈ G}

Theorem 1.2.1 Let g be a simple Lie algebra. Then there are finitely many nilpotent orbits in

g.

Proof. When g = gln then any nilpotent element is conjugate to an element in Jordan normal

form which has Jordan blocks of the form
0 1 0

. . .
. . .

. . . 1

0

 .

Nilpotent elements with the same Jordan normal form (up to re-ordering the blocks) are in the

same nilpotent orbit. Since there are finitely many possible Jordan normal forms of this type

then there are finitely many nilpotent orbits of gln. The method for the other classical types are

similar, see §1.3. For the exceptional types we can use the Bala-Carter theorem to find all the

nilpotent orbits of g, this is described in §1.5. For more details see [Ric67, Theorem 8.2].

For a Lie algebra g then {e, f, h} ⊂ g is an sl2-triple if

[h, e] = 2e, [h, f ] = −2f, and [e, f ] = h.

Theorem 1.2.2 (Jacobson-Morozov Theorem) Let g be a simple Lie algebra and let e ∈ g

be a nilpotent element. Then there is an sl2-triple {e, f, h} in g.
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Proof. The following method constructs an sl2-triple for a given nilpotent element e in gln.

Suppose e has a single Jordan block of size n. Then we can form an sl2-triple {e, f, h} where

f =



0

µ1 0

µ2
. . .

. . .
. . .

µn−1 0


, h =



n− 1 0

n− 3

n− 5

. . .

0 −(n− 1)


where µi = i(n− 1) for i ∈ {1, . . . , n− 1}.

If e has multiple Jordan blocks e1, . . . er where ei is a λi × λi Jordan block, then e has the form

e =


e1

e2

. . .

er


The block diagonal matrices

f =


f1

f2

. . .

fr

 and h =


h1

h2

. . .

hr


form an sl2-triple if {ei, fi, hi} is an sl2-triple for each i. Therefore every nilpotent element of

gln can be embedded in an sl2-triple by Theorem 1.2.5 given below. A similar construction can

be found for the other Lie algebras. For more details see [Car85, Theorem 5.3.2].

Example 1.2.3

For g = gl5 and e =



0 1

0 1 0

0

0
0 1

0


we can form an sl2-triple {e, f, h} as follows:

f =



0

2 0 0

2 0

0
0

1 0


, h =



2

0

−2

1

−1


.

For a nilpotent element e ∈ g with sl2-triple {e, f, h} and for ξ ∈ k, let

g(ξ, h) = {x ∈ g : [h, x] = ξx}.
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Clearly e ∈ g(2, h) and by the Jacobi identity we have [g(ξ), g(ξ′)] ⊂ g(ξ + ξ′). The following

theorem means we can express g as the direct sum of these eigenspaces. For more details refer

to [CM93, §3.4].

Theorem 1.2.4 Let g be a simple Lie algebra and let {e, f, h} ⊂ g be an sl2-triple. Then

g =
⊕
ξ∈Z

g(ξ, h)

ge =
⊕
ξ∈N0

ge(ξ, h)

Where ge(ξ, h) = ge ∩ g(ξ, h).

Theorem 1.2.5 Let g be a simple Lie algebra and let e ∈ g be a nilpotent element. Then any

two sl2-triples containing e are Ge-conjugate.

Proof. Suppose there are two sl2-triples {e, f, h} and {e, f ′, h′}. Then

[h′ − h, e] = [h′, e]− [h, e] = 0

So h′ − h ∈ ge. Also [e, f ′ − f ] = h′ − h so h′ − h ∈ [e, g], therefore by [CM93, Lemma 3.4.7]

there exists an x ∈ Ge such that x · h = h′ and x · e = e. Similarly x · f − f ′ ∈ ge since

[e, x · f − f ′] = [x · e, x · f ]− [e, f ′] = x · h− h′ = 0. Then

[h′, x · f − f ′] = [h′, x · f ]− [h′, f ′]

= x · [h, f ]− [h′, f ′]

= −2(x · f − f ′)

By Theorem 1.2.4 we must have x · f − f ′ = 0. Therefore {e, f, h} and {e, f ′, h′} are Ge-

conjugate.

1.3 Partitions

As we have seen in the previous section a nilpotent orbit in gln is completely determined by

the sizes of its Jordan blocks. Therefore we can associate a partition of n with each nilpotent

orbit and vice-versa where a partition of n is a sequence of integers [λ1, λ2, . . . , λm] such that

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 1 and λ1 + λ2 + · · · + λm = n. Since a classical simple group G embeds

in some GLn there is a map from the set of nilpotent orbits in g to partitions of n. This map

turns out to be injective if G = SLn, Sp2n or On.

If g = sln then the map between nilpotent orbits of sln and partitions of n is bijective. For sp2n

the map from nilpotent orbits to partitions of 2n is injective but not surjective. The partitions

of 2n in the image of this map are those in which odd parts occur with even multiplicity. For

example [2, 1, 1] corresponds to a nilpotent orbit in sp4 but [3, 1] does not.
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Finally if g = son then the partitions of n in the image of this map are those where even parts

occur with even multiplicity. For example [4, 4] corresponds to a nilpotent orbit in so8 but [6, 2]

does not. However for so2n the very even partitions, those which only have even parts, correspond

to two nilpotent orbits for the action of SO2n but only a single O2n-orbit. For example for so8

there are ten partitions of 8 where the even parts occur with even multiplicity. The very even

partitions of 8 are [4, 4] and [2, 2, 2, 2], so so8 has twelve nilpotent orbits. For these statements

above we refer to [CM93].

Given two partitions [p1, . . . , pr] and [q1, . . . , qs] of n. If s ≥ r then let pr+1, . . . , ps = 0 or vice

versa. Then we define [p1, . . . , pr] ≥ [q1, . . . , qs] if

p1 ≥ q1

p1 + p2 ≥ q1 + q2

...

p1 + p2 + · · ·+ ps ≥ q1 + q2 + · · ·+ qs

This is known as the dominance ordering on partitions. A partition [λ1, . . . , λm] of n can be

represented by a Young diagram. A Young diagram is an arrangement of blocks with λi blocks

in the i-th row. For example the partition [2, 2, 1] for n = 5 has the following Young diagram.

For two partitions λ and µ, then λ ≥ µ if the Young diagram of µ can be obtained from that of

λ by moving some blocks downwards. For example [4, 1, 1] ≥ [3, 2, 1] since

The ordering of partitions of n can be represented via a Hasse diagram in which the relation

λ > µ is represented by a series of edges connecting λ downwards to µ. For example the partitions

of 3 are [3] > [2, 1] > [1, 1, 1]. Therefore the corresponding Hasse diagram is

[3]

[2,1]

[1,1,1].
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Let e and e′ be nilpotent elements with corresponding partitions λ and µ. Then λ ≥ µ if and

only if G.e ⊃ G.e′ [CM93, Theorem 6.2.5]. Therefore the closure of a nilpotent orbit is contained

in the closure of the nilpotent orbit which is connected to it above in the Hasse diagram.

For the classical Lie algebras the dimension of a nilpotent orbit can be calculated using the corre-

sponding partition. Consider the orbit Oe in g which corresponds to the partition [λ1, λ2, . . . , λm]

of n. Let ri be the number of rows of length i in the Young diagram and let si be the number

of rows of length greater than or equal to i. Then it is shown in [CM93] that

dim(Oe) =



n2 −
∑
i s

2
i if g = sln

2n2 + n− 1
2

∑
i s

2
i + 1

2

∑
i odd ri if g = so2n+1

2n2 + n− 1
2

∑
i s

2
i − 1

2

∑
i odd ri if g = sp2n

2n2 − n− 1
2

∑
i s

2
i + 1

2

∑
i odd ri if g = so2n

Example 1.3.1

Consider the orbit corresponding to [4, 12] in sp6. Then r1 = 2, r2 = r3 = 0 and r4 = 1 so∑
i odd

ri = 2. Also s1 = 3 and s2 = s3 = s4 = 1 so
∑
i

s2
i = 32 + 1 + 1 + 1 = 12. Therefore

the dimension of this orbit is 2n2 + n− 1
2

∑
i

s2
i − 1

2

∑
i odd

ri = 18 + 3− 6− 1 = 14.

Alternatively for g = sln we can inductively calculate the dimensions of the nilpotent orbits

by considering Young diagrams. Consider two Young diagrams λ and µ which are adjacent in

the dominance ordering such that λ > µ . Then let N be the number of rows a block moves

in transforming λ to µ. Then the dimension of the nilpotent orbit corresponding to λ is the

dimension of the orbit corresponding to µ plus 2N . This can be seen from the fact that we have

replaced an adjacent pair si and si+1 = si −N − 1 of µ by si − 1 and si −N . For example

N = 2

µ λ

In this case the dimension of the nilpotent orbit corresponding to µ is 18. Therefore dim(λ) is

equal to dim(µ) + 2N = 22.

1.4 Weighted Dynkin Diagrams

Another method for classifying nilpotent orbits in g is by a unique labelling of the nodes of the

corresponding Dynkin diagram.

In the Lie algebra g = sln, the set of diagonal matrices with trace zero forms a Cartan subalgebra

of g. Let this subalgebra be denoted by h. Then for a given nilpotent element e there is an

sl2-triple where we may assume, after conjugating if necessary, that h ∈ h. Let h̃ have the
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same diagonal entries as h but re-ordered so that they decrease from top left to bottom right.

The weighted Dynkin diagram is produced by labelling the node of the Dynkin diagram of sln

corresponding to αi by αi(h̃) = λi (where [h̃, eαi ] = λieαi).

Example 1.4.1

Let g = sl6 and consider the nilpotent element e with partition [4, 2]. Then we can form

an sl2-triple with h of the form

h =



3

1

−1

−3

1

−1


so h̃ =



3

1

1

−1

−1

−3


.

Then

[h̃, eα1
] = (3− 1)eα1

= 2eα1

[h̃, eα2 ] = (1− 1)eα2 = 0eα2

...

[h̃, eα5
] = (−1− (−3))eα5

= 2eα5

Therefore the weighted Dynkin diagram corresponding to the nilpotent orbit e is

2 0 2 0 2

For an arbitrary simple Lie algebra g we have a choice of Cartan subalgebra h. For a nilpotent

element e there is an sl2-triple {e, f, h} such that, after conjugation if necessary, h ∈ h. Then

we can apply w ∈ W to h giving an element h̃ in the closure of the positive Weyl chamber, i.e.

such that αi(h̃) ≥ 0 for all i. Then the node on the Dynkin diagram of g corresponding to αi is

labelled by αi(h̃). A proof for the next result can be found in [BC76a].

Theorem 1.4.2 Let e, e′ be nilpotent elements in a simple Lie algebra g. Then the weighted

Dynkin diagrams of e and e′ are the same if and only if e and e′ are conjugate. Therefore there

is a unique weighted Dynkin diagram for each nilpotent orbit in g.

It was shown by Dynkin that αi(h̃) = {0, 1, 2} (see [Car85, Proposition 5.6.6]). However not

every possible way of labelling a Dynkin diagram with 0, 1, 2 corresponds to a nilpotent orbit.
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1.5 Bala-Carter Theorem

The final method for classifying nilpotent orbits is via the Bala-Carter theorem. This method

utilizes distinguished nilpotent orbits. A nilpotent element e in a simple Lie algebra g is dis-

tinguished if e does not commute with any non-zero semisimple element of g. For example

a nilpotent element e ∈ sln is distinguished if it is regular (an n × n matrix A is regular if

dim(gA) = n− 1).

Let hT be a Cartan subalgebra of g corresponding to a maximal torus T of G. Let ∆ be a basis

for the root system Φ of g and for a subset I ⊂ ∆ let ΦI = ZI ∩ Φ. Now let pI be

pI = hT ⊕
∑
α∈ΦI

gα ⊕
∑
α∈Φ+

gα

Clearly pI ⊃ b = hT ⊕
∑

α∈Φ+

gα. The subalgebras pI with I ⊂ ∆ are the standard parabolic

subalgebras.

Example 1.5.1

Let g = gl3, ∆ = {α1, α2} and hT =
{
t =

( t1
t2
t3

)
: ti ∈ k

}
. Then [t, eα1

] = (t1− t2)eα1

so α1(t) = t1 − t2 and similarly α2(t) = t2 − t3. For I = {α1} then ΦI = {α1,−α1} so

pI = hT ⊕ gα1 ⊕ g−α1 ⊕ gα2 ⊕ gα1+α2 . This gives

pI =




t1 a b

d t2 c

0 0 t3

 : ti, a, b, c, d ∈ k


Proposition 1.5.2 [CM93, Lemma 3.8.1] Let G be a simple algebraic group and let g = Lie(G).

Then any parabolic subalgebra of g is conjugate to at least one standard parabolic pI for some

I ⊂ ∆.

Let g be a Lie algebra with basis ∆ and let I ⊂ ∆. Then the standard Levi subalgebra and

unipotent radical of pI are respectively

lI = hT ⊕
∑
α∈ΦI

gα

uI =
∑

α∈Φ+\ΦI

gα.

Then pI = lI ⊕ uI . Consider the pI in Example 1.5.1 then lI =
{( t1 a 0

d t2 0
0 0 t3

)
: a, d, ti ∈ k

}
and

uI =
{(

0 0 b
0 0 c
0 0 0

)
: b, c ∈ k

}
. Then lI ∼= gl2⊕k is reductive. We can now state the first Bala-Carter

Theorem from [BC76b, Theorem 6.1].

Theorem 1.5.3 (Bala-Carter Theorem I) Any nilpotent element of a Lie algebra g is con-

jugate to a distinguished nilpotent element of some standard Levi subalgebra of g.
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For example consider g = gl3 as above; then the nilpotent element
(

0 1 0
0 0

0

)
is distinguished in

l{α1}.

For I ⊂ ∆ there is an associated grading of g. Let g(I; 0) = lI and let g(I; 2m) be spanned by

all gα where α =
∑
i aiαi and

∑
αi∈∆\I

ai = m.

Example 1.5.4

Let g = G2, ∆ = {α, β} and let I = {α}. Then gα ⊂ g(I; 0) and gβ ⊂ g(I; 2). Therefore

gα+β has degree 2, g3α+2β has degree 4 etc. We can represent the roots of G2 as in Figure

1.2.

α

β
α+ β

3α+ 2β

2α+ β
3α+ β

−β
−α− β

−3α− 2β

−2α− β
−3α− β

−α
Then the grading

corresponding to

I = {α} can be

represented as

0

2
2

4

2 2

0

−2 −2

−4

−2 −2

Figure 1.2: Positive Roots of G2

Since g =
⊕
i∈Z

g(I; i) and [g(I; i), g(I; j)] ⊂ g(I; i + j), then pI =
∑
i≥0 g(I; i), lI = g(I; 0) and

uI =
∑
I;i>0 g(i). A nilpotent orbit Oe is distinguished in g if the only Levi subalgebra of g

containing e is g itself. Equivalently, e is distinguished if it does not commute with any non-

zero semisimple elements of [g, g]. For a simple Lie algebra g, pI is a distinguished parabolic if

dim g(I; 2) = dim g(I; 0) in the grading corresponding to I. The second Bala-Carter Theorem

from [BC76a] is as follows.

Theorem 1.5.5 (Bala-Carter Theorem II) Let g be a simple Lie algebra. Then there is a

bijective map between distinguished nilpotent orbits in g and distinguished parabolic subalgebras

of g up to conjugacy given by

pI 7→ G · eI

where eI is a nilpotent element contained in the dense PI orbit on uI .

Example 1.5.6

When g = G2, there are four standard parabolics. These are g, pα, pβ and p∅ = b. For

the proper parabolic subgroups the regular nilpotent orbits of lα, lβ and l∅ correspond
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to three nilpotent orbits in G2 which we denote A1, Ã1 and 0 respectively. Therefore

all that remains is to find the distinguished parabolic subalgebras of G2. Now g is not

a distinguished parabolic because dim g({α, β}; 2) = 0 and dim g({α, β}; 0) = dim(g).

Alternatively b is a distinguished parabolic because g(∅; 2) =
∑
α∈∆ gα. In fact for any

semisimple g we always have that b is a distinguished parabolic and g is not. Therefore

it only remains to check pα and pβ .

First consider pα then by the previous example we have

g({α}; 0) = hT ⊕ gα ⊕ g−α

g({α}; 2) = gβ ⊕ gα+β ⊕ g2α+β ⊕ g3α+β .

Therefore dim g({α}; 2) = dim g({α}; 0) = 4 so pα is distinguished. Finally for pβ the

associated grading is indicated in the following diagram:

2

0
2

6

4 6

−2

−6 −4

−6

−2 0

So

g({β}; 2) = gα ⊕ gα+β

g({β}; 0) = hT ⊕ gβ ⊕ gβ

Since dim g({β}; 0) = 4 and dim g({β}; 2) = 2 then pβ is not distinguished. Therefore

G2 has two distinguished nilpotent orbits. The Borel subalgebra b always corresponds

to the regular nilpotent orbit in g. The non-regular distinguished nilpotent orbit in G2

associated to pα is labelled G2(a1) and has representative eα + e2α+β . Therefore G2 has

five nilpotent orbits.

This gives us another method for labelling nilpotent orbits in g, by considering I ⊂ ∆. For

example if g = E6 with ∆ = {α1, . . . , α6}. The Dynkin diagram of g is

α1 α3 α4 α5 α6

α2
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Now I = {α2, α3, α4, α5} is of type D4 which can be seen by the sub-diagram of the Dynkin

diagram

α3 α4 α5

α2

The nilpotent orbit corresponding to the regular nilpotent orbit of lI is labelled D4. The orbit

which is subregular in the Levi subalgebra of type D4 is denoted D4(a1). (In so8 the regular

orbit has partition [7, 1] and the subregular has partition [5, 3]). Similarly for g = F4 the regular

nilpotent elements in l{α1,α2} and l{α3,α4} correspond to different nilpotent orbits in F4. Since

both are of type A2 then the label of the orbit corresponding to l{α1,α2} is denoted as A2 and

l{α3,α4} as Ã2, since {α1, α2} are long roots and {α3, α4} are short roots.

For example F4 has the following standard Levi subalgebras up to conjugacy (with the number

of distinguished orbits in parentheses):

∅(1)

A1(1), Ã1(1)

A2(1), A1 + Ã1(1), Ã2(1), B2(1)

B3(1), A2 + Ã1(1), A1 + Ã2(1), C3(2)

F4(4)

Therefore there are 16 nilpotent orbits in F4.
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Chapter 2

Classification of Nilpotent Orbits in

Positive Characteristic

2.1 Preliminaries

In this chapter we discuss the positive characteristic analogues of the classifications of nilpotent

orbits which were shown in the previous chapter. This is followed by an introduction to transverse

slices.

LetG be a connected reductive algebraic group over an algebraically closed field k of characteristic

p > 0. Then let g = Lie(G). The examples of simple algebraic groups in characteristic zero are

still simple in positive characteristic p. However, the Lie algebra of a simple algebraic group need

not be simple. The Lie algebra sln is not simple when p|n; all other classical Lie algebras are

simple if p > 2. Similarly the exceptional type Lie algebras are simple if p > 3. Also there are

new simple Lie algebras that arise which we do not consider (see [BW84]). Most of Section 1.1

still holds in positive characteristic, however some definitions need to change.

The definitions of a Borel subgroup, parabolic subgroup and maximal torus are the same as the

definitions given in Chapter 1. However a Borel subalgebra of g is defined to be a subalgebra

b where b = Lie(B) for some Borel subgroup B of G. Unlike when the characteristic is zero,

a Borel subalgebra is not necessarily a maximal solvable subalgebra of g. A standard example

is a Borel subalgebra in sl2 when p = 2. A parabolic subalgebra p and torus t of g are defined

similarly. Specifically p = Lie(P ) (resp. t = Lie(T )) for some parabolic subgroup P of G (resp.

for some maximal torus T of G). All of the statements about conjugacy of Borel subgroups and

Cartan subalgebras now hold.
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Roots of Simple Lie Algebras

In positive characteristic the root system is generally defined in relation to a maximal torus T in

G. LetX(T ) be the set of morphisms λ : T → k×. InX(T ) we use additive notation, therefore for

λ, µ ∈ X(T ) then (λ+ µ)(t) = λ(t)µ(t) for t ∈ T . Now let gλ = {g ∈ g : Adt(g) = λ(t)g ∀t ∈ T}.

Then the root system Φ of g is the set of non-trivial α ∈ X(T ) such that gα is not trivial. Any

element α ∈ Φ is a root of g. Then we have that

g = t⊕
⊕
α∈Φ

gα where t = Lie(T )

When G is semisimple and simply connected (defined in the next section) then a Chevalley basis

{eαi , fαi , hαi : αi ∈ Φ} still exists and is defined in the same way as for characteristic zero

[BGP09, §2.2]. A proof of the following result is presented in [Hum75, §26.3].

Theorem 2.1.1 Let G be a reductive group with a maximal torus T and let α ∈ Φ.

(i) There exists a unique connected T -stable subgroup Uα of G with Lie(Uα) = gα.

(ii) G is generated by T and the subgroups Uα, where α runs over all elements of Φ.

For a root α ∈ Φ there exists an isomorphism Eα : k → Uα such that t(Eα(ξ))t−1 = Eα(α(t)ξ)

and dEα|0(1) = eα where dEα|0(1) denotes the differential of the morphism Eα at 0 evaluated at

1. If we consider G = SLn then Eα(ξ) = I + ξeα for ξ ∈ k.

The definition of the Weyl group is the same as in characteristic zero, specificallyW = NG(T )/T .

Let nα be the map given by Eα(1)E−α(−1)Eα(1), which is an element of NG(T ). This is a

representative of the element sα inW which reflects elements in the hyperplane Pα, in particular

sα = nαT . To see this observe that the subgroup of G generated by Uα, U−α is isomorphic to

either SL2 or PGL2. Then the result is given by the following matrix calculation. 1 1

0 1

 1 0

−1 1

 1 1

0 1

 =

 0 1

−1 0

 .

Highest Weight Modules

Let G be a reductive algebraic group with a maximal torus T and simple roots ∆ = {α1, . . . , αm}.

The roots α ∈ Φ give rise to coroots α∨ : k× → T such that dα∨|1(1) = hα. Let Φ∨ be the set

of coroots of G.

Example 2.1.2

Let G = SL3 with maximal torus T =

{(
t 0
s

0 (st)−1

)
: s, t ∈ k×

}
and simple roots

α1, α2 ∈ Φ. Then

α∨1 (t) =


t

t−1

1

 α∨2 (t) =


1

t

t−1
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Now let Y (T ) be the set of morphisms φ : k× → T then a1α
∨
1 + · · ·+ amα

∨
m ∈ Y (T ) for ai ∈ Z

where (a1α
∨
1 + · · · + amα

∨
m)(t) = α∨1 (t)a1α∨2 (t)a2 . . . α∨m(t)am . If all the elements of Y (T ) have

this form then Y (T ) = ZΦ∨ and so G is (semisimple and) simply connected.

Examples 2.1.3

1. Let G = SL2 with maximal torus T =
{(

t 0
0 t−1

)
: t ∈ k×

}
and α∨ =

(
t
t−1

)
. Now

Z ∼= Y (T ) where

a 7→

 ta 0

0 t−a

 .

We have Y (T ) = Zα∨ where α is the unique positive root, hence G is simply connected.

2. Let G = SO3 with maximal torus T =
{(

t
1
t−1

)
: t ∈ k×

}
. Now α∨(t) =

(
t2

1
t−2

)
so

Y (T ) = Z
(

1
2α
∨). Therefore SO3 is not simply connected.

A finite dimensional G-module V is rational if ρ : G→ GL(V ) is a morphism of algebraic groups.

From now on all G-modules are assumed to be rational. Then for a finite dimensional G-module

V

V =
⊕

µ∈X(T )

Vµ where Vµ = {v ∈ V : ρ(t)v = µ(t)v ∀t ∈ T}

If Vµ is non-trivial then µ is a weight of V and Vµ is a weight space. For every αi ∈ ∆, let

ωi ∈ X(T ) be such that ωi(α∨j ) = δij Then every weight µ ∈ X(T ) we can express as

µ = 〈µ, α∨1 〉ω1 + 〈µ, α∨2 〉ω2 + · · ·+ 〈µ, α∨m〉ωm

A weight µ is dominant if 〈µ, α∨i 〉 ≥ 0 for all i.

A non-zero vector v ∈ Vµ for some weight µ is a maximal vector of weight µ if it is fixed by

all ρ(Uαi). Given a Borel subgroup B of G, if V is irreducible then there is a unique B-stable

1-dimensional subspace spanned by a maximal vector with dominant weight µ. We say µ is the

highest weight of V . All the other weights of V are of the form µ−
∑
ciαi for αi ∈ Φ+, ci ∈ Z+.

An irreducible G-module V ′ of highest weight µ′ is isomorphic to V if and only if µ = µ′. For

every dominant weight µ ∈ X(T ) there exists an irreducible G-module with highest weight µ.

For more details and other standard results refer to [Hum75, §31].

Let L(µ) denote the unique irreducible G-module with a maximal vector vµ in the weight space

L(µ)µ. Any rationalG-module is also a g-module by differentiation of the morphismG→ GL(V ).

However an irreducible G-module is not necessarily irreducible as a g-module. This leads to the

next result, for details see [Jan03, Chap II §3.15].

Theorem 2.1.4 For a G-module L(µ) then L(µ)|g is simple if 〈µ, α∨i 〉 ∈ {0, . . . , p − 1} for

1 ≤ i ≤ m.
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Example 2.1.5

For n < p, the sl2-module L(nω) is simple as a g-module.

L(nω) = Sn(V ) = 〈w⊗m1 ⊗ w⊗n−m−1 : 0 ≤ m ≤ n〉 where w1 = ( 1
0 ) and w−1 = ( 0

1 ) .

Then

e · (w⊗m1 ⊗ w⊗(n−m)
−1 ) = (e · w1)⊗ w⊗(m−1)

1 + · · ·+ w⊗m1 ⊗ w⊗(n−m−1)
−1 ⊗ (e · w−1)

= (n−m)(w
⊗(m+1)
1 ⊗ w⊗(n−m−1)

−1 )

Therefore if we let v2m−n = w⊗m1 ⊗ w⊗(n−m)
−1 ; then L(nω) = 〈vn, vn−2, . . . , v−n〉 where

e · v2m−n = (n−m)v2m−n+2 f · v2m−n = mv2m−n−2.

We can depict this by the following diagram

vn−2
vn−4

v−n+2
v−nvn

f

e

f

e

f

e

If n ≥ p then L(nω) is not simple over g. For example if n = p then e · v−p = 0 so kv−p

is a (trivial) submodule of L(pω)

Let V be an irreducible G-module with highest weight µ. The length of the α-chain of weights

in V given by {µ, µ − α, µ − 2α, . . . } is 〈µ, α∨〉. For example if µ = ωi is the highest weight of

V then µ − αi is a weight of V but µ − 2α is not and neither is µ − αj for i 6= j. For example

L(pω) is 2-dimensional and consists of just vp and v−p.

The following lemma utilizes the exponential map given by the usual power series exp(x) =
∞∑
0

xn

n! .

Note that for positive characteristic p, this map is not defined if xp 6= 0.

Lemma 2.1.6 Let G = SLn with highest weight module L(rω) = Sr(L(ω)) for r < p. Then

AdEα(ξ) = exp(ad(ξeα)) for ξ ∈ k×.

Proof. In this case Eβ(ξ) = (I + ξeβ). Then for u1 ⊗ · · · ⊗ ur ∈ Sr(L(ω)) we have

Eβ(ξ) · (u1 ⊗ · · · ⊗ ur) =(I + ξeβ)u1 ⊗ · · · ⊗ (I + ξeβ)ur

=(u1 ⊗ · · · ⊗ ur) + ξeβ · (u1 ⊗ · · · ⊗ ur) +
ξ2

2
eβ · (eβ · (u1 ⊗ · · · ⊗ ur))+

· · ·+ ξr

r!
eβ · (eβ · (. . . (eβ · (u1 ⊗ · · · ⊗ ur)) . . . ))

=exp(ξeβ) · (u1 ⊗ · · · ⊗ ur)

Since ξr+1

r+1!eβ · (eβ · (. . . (eβ · (u1 ⊗ · · · ⊗ ur)) . . . )) = 0.
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If p > 3 then the exceptional type Lie algebras g are simple. Then every non-trivial module

of g is faithful. We can form modules which correspond to the minimal faithful modules in

characteristic zero. Although we call these the minimal faithful modules it is not clear if these

modules have the smallest dimension. If we form the modules over Z, then the root elements

act via integer matrices. We can now reduce these modules mod p. Once the action of roots

elements is determined, this can then be extended by linearity and the bracket.

2.2 Nilpotent Orbits

The p-operation on a Lie algebra g is a map x 7→ x[p] satisfying

i) adx[p] = (adx)p for x ∈ g

ii) (λx)[p] = λpx[p] for x ∈ g, λ ∈ k

iii) (x+ y)[p] = x[p] + y[p] +
∑p−1
i=i

si(x,y)
i for x, y ∈ g

where si(x, y) is the coefficient of ti−1 in the expression ad(tx+y)p−1(x). For example when g is

a classical Lie algebra then the p-operation is the p-th power of matrices. We denote by N1 the

subset of g of elements satisfying x[p] = 0. The iterated p-th power (((x[p])[p]) . . . )[p] is denoted

x[pi]. By definition x is nilpotent if x[pn] for some n > 0. Note that if x ∈ N1 then x is nilpotent.

A nilpotent element e is distinguished if (Ge)◦ contains no non-trivial semisimple elements. Here

a non-trivial semisimple element is a semisimple element not contained in Z(G).

For the remainder of this chapter we consider the classifications of nilpotent orbits of simple Lie

algebras g over an algebraically closed field of characteristic p. There are a few primes p for

which the following classifications do not hold. Let g be the simple Lie algebra of a simple group

G with simple roots ∆ = {α1, . . . αn}, and highest root α̂ =
n∑
i=1

miαi for mi ∈ k. A prime p is

bad if p divides some mi, otherwise p is good [SS70].

The bad primes for the simple groups are as follows:

Lie Algebra g Bad Primes p

An No bad primes

Classical types (except An) 2

Exceptional types (except E8) 2,3

E8 2,3,5

If p is good then the partition classification of nilpotent orbits given in the previous chapter still

holds for the classical types. Note that any p is good for sln and for the other classical types

p > 2 is good. The following is from [NPV02, Theorem 6.3.1].

Theorem 2.2.1 Let p be a good prime and let G be a reductive group. Then N1 is irreducible.
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Let G be simple but not of type SLn and let p be good. Then for x ∈ G we have Lie(Gx) = gx

[SS70]. The following classifications of nilpotent orbits do not hold when p is bad, therefore for

the remainder of the chapter we assume that p is good.

2.3 Weighted Dynkin diagrams

For the weighted Dynkin diagram classification to hold we require a few more conditions on G.

Let G be a reductive algebraic group and g = Lie(G). We require that the derived subgroup of

G is simply connected and that there exists a non-degenerate symmetric bilinear G-equivariant

form κ : g × g → k. We assume these hold throughout this section. In positive characteristic

embedding nilpotent elements into sl2-triples is less helpful. This is because a nilpotent element

of g need not lie in N1. In the case where p is greater than the Coxeter number then we

have N1 = N , otherwise we need to find an alternative. We recall that the Coxeter number is

(1 +
∑
mi) where the highest root is given by

∑
miαi for simple roots αi.

A cocharacter is a morphism λ : k× → G. Let

g(λ; i) = {x ∈ g : Adλ(t)(x) = tix ∀t ∈ k×}.

For an element e ∈ g, a cocharacter λ is an associated cocharacter for e if

(i) e ∈ g(λ; 2)

(ii) ge ⊂
⊕
i≥0

g(λ; i)

(iii) There exists a Levi subgroup L of G such that λ(k×) ⊂ (L,L) and e is a distinguished

nilpotent element of Lie(L).

An associated cocharacter of a nilpotent element e is in some ways analogous to h in an sl2-triple

containing e. The following result was proved by Pommerening in [Pom77] and [Pom80]. A

uniform proof is also given in [Pre03b, Theorem A].

Theorem 2.3.1 Let g = Lie(G) with the above assumptions on G. Then any nilpotent element

e ∈ g has an associated cocharacter. Any two such cocharacters are Ge-conjugate.

Any parabolic subgroup of G can be decomposed as P = L · U where L is a Levi subgroup and

U is the unipotent radical. There is a parabolic subgroup P (λ) = L(λ)U(λ) where U(λ) is the

unique connected T -stable unipotent subgroup of G such that L(λ) = Gλ, Lie(U(λ)) =
∑
i>0

g(λ; i)

and Lie(P (λ)) = p(λ) =
∑
i≥0

g(λ; i). The following two results are from [Pre03b, Theorem A].

Theorem 2.3.2 Let G be a reductive algebraic group such that the above assumptions hold.

Then for any nilpotent element e ∈ g and any associated cocharacter λ we have Ge = C n U

where C = L(λ) ∩Ge and U = U(λ) ∩Ge.
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Lemma 2.3.3 Let G be a reductive algebraic group and g = Lie(G). Then for e ∈ g, with

associated cocharacter λ ∑
i≥2

g(λ; i) = P (λ) · e

For any nilpotent element e of g we have ge = ge(λ; 0) ⊕
⊕
i≥1

ge(λ; i). Let the reductive part of

ge be c = ge(λ; 0) and the unipotent part of ge be ue =
⊕
i≥1

ge(λ; i); then ge = c + ue. With our

assumption on G we have c = Lie(C) and ue = Lie(U). Thus if e is distinguished then c = z(g).

Lemma 2.3.4 Let e be a distinguished nilpotent element in the Lie algebra of a simple group.

If e ∈ N1 then ge ⊂ N1.

Lemma 2.3.5 Let Oe be a nilpotent orbit of g. If c, c′ ∈ c ∩ N1 are such that C · c ⊃ C · c′ and

c+ ue ⊂ N1, then C · (c+ ue) ⊃ C · (c′ + ue).

Proof. If C · c′ ⊂ C · c and c + ue ⊂ N1 then c′ + ue ⊂ N1. Since ue is C-stable then

C · c′ + ue ⊂ C · c+ ue.

Consider a homomorphism ρ : SL2 → G where dρ : sl2 → g and dρ ( 0 1
0 0 ) = e. We say ρ is an

optimal SL2-homomorphism if

ρ

 t 0

0 t−1

 = λ(t) ∀t ∈ k×

for some associated cocharacter λ of e [McN05]. The image of an optimal homomorphism is called

a good SL2 subgroup of G (see [McN05] and [Sei00]). A proof for the following proposition can

be found in [McN05, Prop 33] and [Sei00, Theorem 1.1].

Proposition 2.3.6 Let e ∈ N1 with associated cocharacter λ. There is an optimal homomor-

phism ρ for e where ρ
(
t 0
0 t−1

)
= λ(t).

For an element e ∈ N1 with associated cocharacter λ we have that g =
∑
i∈Z g(λ; i). Each

vi ∈ ge(λ; i) generates an SL2-submodule L(iω). If i < p then this submodule is irreducible

by Theorem 2.1.4. If all the weights of λ on ge are less than p then g =
p−1⊕
i=0

L(iω)ni where

dim(ge(λ; i)) = ni.

Let e be a nilpotent element of g with associated cocharacter λ : k× → T . Then we associate a

weight 〈λ, αi〉 to each αi ∈ ∆, where

Adλ(t)(eαi) = t〈λ,αi〉eαi for t ∈ k×

After conjugating by some element of W we may assume 〈λ, αi〉 ≥ 0 for all αi ∈ ∆ by Theorem

1.1.10. Then the weighted Dynkin diagram corresponding to e is given by the Dynkin diagram

of g where the node corresponding to αi is labelled with 〈λ, αi〉. As before the weighted Dynkin

diagrams of nilpotent elements e and e′ are the same if and only if e and e′ are conjugate.

Therefore there is a unique weighted Dynkin diagram for each nilpotent orbit in g.
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2.4 Generalization of the Bala-Carter Theorem

The Bala-Carter theorem holds in positive characteristic p as well as in characteristic zero. When

p� 0 and p = 0 the proof presented in [BC76b] holds. For p good, this is shown in [Pom80] and

a uniform proof is given in [Pre03b]. There is also a generalization of the Bala-Carter theorem

which can be helpful for describing representatives of nilpotent orbits. This generalization was

shown in [Som98, Thm 13] for char(k) = 0 and in [MS03] or [Pre03b, Thm 3.7] for char(k) = p.

For this we require the same assumptions on G as mentioned at the beginning of Section 2.3.

A subgroup H of G is a pseudo Levi subgroup if H = (Gs)o for some semisimple element s ∈ G.

Similarly a subalgebra h ⊂ g is a pseudo Levi subalgebra if h = gs. Since Lie((Gs)o) = gs [Bor91,

§9] then the pseudo Levi subalgebras in g correspond to pseudo Levi subgroups of G.

Let Φ be the root system of g with basis ∆ = {α1, . . . , αl} and let α̂ be the highest root in Φ+.

Then we denote ∆̃ = ∆∪ {α0} where α0 = −α̂. Let J be a proper subset of {0, 1, . . . , l} and let

ΦJ be the set of all roots in Φ of the form
∑
i∈J

aiαi for ai ∈ Z. For a torus T of G then lJ is a

standard pseudo Levi subalgebra of g where

lJ = t⊕
∑
α∈ΦJ

gα

Then we define a subgroup LJ of G generated by T and Uα for α ∈ ΦJ , where Lie(LJ) = lJ .

Then LJ is a standard pseudo-Levi subgroup of G. For details of the next proposition see [Pre03b,

Proposition 3.1].

Proposition 2.4.1 A subgroup H ⊂ G is a pseudo Levi subgroup of G if and only if it is

G-conjugate to a standard pseudo Levi subgroup.

For a nilpotent element e in g the component group of e is A(e) = Ge/((Ge)◦Z(G)).

Theorem 2.4.2 (Generalization of Bala-Carter Theorem) There is a bijection between G-

conjugacy classes of pairs (L, e) where L is a pseudo Levi subgroup of G and e is a distinguished

nilpotent element in l = Lie(L), and G-conjugacy classes (e,D) where e is a nilpotent element

in g and D is a conjugacy class in A(e).

Example 2.4.3

Consider g = sp6 and nilpotent orbit O[4,2]. This orbit has Bala-Carter labelling C3(a1).

However we can consider the following representative e of O[4,2]:

e =



0 1

0 1

0 1

0 −1

0

0 0


.
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Then the inner block corresponds to a distinguished nilpotent element in sp4. The outer

corners form a block which corresponds to a distinguished element in sl2. Therefore e is

distinguished in the pseudo-Levi subalgebra sp4 ⊕ sl2, of type C2 ×A1.

Let g be a simple Lie algebra with highest root α̂. The affine Dynkin diagram of g is the Dynkin

diagram of g with an extra node attached corresponding to α0. This node is attached to the αi

where −α̂+αi is a root. (In type An, α0 is attached to both α1 and αn. In other types it is only

connected to one αi). If this αi is a short root element then we draw a double bond between α0

and αi.

Example 2.4.4

The highest root of sp6 is α̂ = 2α1 + 2α2 + α3. Then the affine Dynkin diagram of sp6 is

α1 α2 α3α0

This is because −(α0 +α1) and −(α0 +2α1) are roots in sp6. The arrow from α0 is present

because α0 is long but α1 is not. Then by Example 2.4.3 we can represent the nilpotent

orbit O[4,2] by the sub-diagram

α2 α3α0

A1 C2

The regular orbit in A1 × C2 can be represented by the element eαo + eα2
+ eα3

.

2.5 Transverse Slices

Throughout this section let X be an affine variety with coordinate ring k[X] where k is an

algebraically closed field of arbitrary characteristic. For a multiplicative set U of k[X], the

localization of k[X] at U , denoted U−1k[X], is the set of equivalence classes f/g for f ∈ k[X]

and g ∈ U , where f1/g1 ∼ f2/g2 if and only if there exists an u ∈ U such that u(f1g2−f2g1) = 0

(see [Lan93, Chap II §4]). For a point x ∈ X the set UX,x = {g ∈ k[X] : g(x) 6= 0} is a

multiplicative set of k[X] and the local ring of X at x is the localization OX,x = U−1
X,xk[X].

There is a unique maximal ideal mx of OX,x which consists of all elements which vanish at x.

For example let X = A1 with coordinate ring k[t] then the local ring of X at 0 is given by

OX,0 = {f(t)/g(t) : g(0) 6= 0} and m0 = {f(t)/g(t) : g(0) 6= 0, f(0) = 0}. The dimension of a

local ring is the Krull dimension, i.e. dim(OX,x) is the largest r such that there exists a chain

p0 ⊂ p1 ⊂ · · · ⊂ pr of prime ideals of OX,x.

Proposition 2.5.1 Let X be an affine variety with point x ∈ X. Then dim(OX,x) = dimx(X),

where dimx(X) is the largest dimension of an irreducible component of X passing through x.

39



Proof. Consider the prime ideal p = {g ∈ k[X] : g(x) = 0} of k[X], then by [AM69, Cor 3.13]

there is a one-to-one correspondence between chains of prime ideals q0 ( q1 ( · · · ( qr of OX,x
and chains p0 ( p1 ( · · · ( pr of prime ideals of k[X] which contain p. Therefore dimOX,x is

equal to the maximum length of such a chain of prime ideals of k[X] containing p. There is also

a one-to-one correspondence between chains p0 ( p1 ( · · · ( pr of prime ideals of k[X] which

contain p and chains X0 ) X1 ) · · · ) Xr of irreducible closed subsets of X which contain x.

Therefore dim(OX,x) = dimx(X).

Consider the sequence

· · · → OX,x/m3
x → OX,x/m2

x → OX,x/mx ∼= k

The isomorphism OX,x/mx ∼= k is a consequence of the weak Nullstellensatz. In particular since

OX,x is a finitely generated k-algebra and mx is a maximal ideal then OX,x/mx is a field which

is a finitely generated k-algebra. Hence by the Weak Nullstellensatz OX,x/mx is an algebraic

extension of k. Since k is algebraically closed then OX,x/mx ∼= k (see [AM69, Cor 7.10]). In

the case where X = An and x = (0, 0, . . . , 0), every element of OX,x/mrx can be represented

by a polynomial truncated at rth-degree. The completion of OX,x is given by the limit of this

sequence. This is denoted by

ÔX,x = lim
←

(OX,x/mrx)

In particular an element of ÔX,x is given by a sequence (f1, f2, f3, . . . ) where fr ∈ mrx and

fr = fr−1 mod mr−1
x . In the case X = A1 and x = 0 the completion ÔX,x is isomorphic to the

formal power series denoted k[[t]]. By [AM69, Cor 11.19] we have the following proposition.

Proposition 2.5.2 Let OX,x be the local ring of x ∈ X. Then dim(OX,x) = dim(ÔX,x).

We say OX,x is regular if dimk(mx/m
2
x) = dim(OX,x). A point x is smooth in X if OX,x is

regular, otherwise we say x is singular. An affine variety X is smooth if every point in X is

smooth.

Example 2.5.3

Consider the irreducible affine variety X ⊂ A2 defined by the polynomial y2 = x2(x+ 1),

as depicted in Figure 2.1. Then the point p = (−1, 0) in X is smooth. To see this first

note that dim(OX,p) = dim(X) = 1 by Proposition 2.5.1. Now mp and m2
p are generated

by (x + 1), y and (x + 1)2, y2, (x + 1)y respectively. Since x2(x + 1) ≡ y2 ≡ 0 mod m2
p

then

x+ 1 ≡ x+ 1− x2(x+ 1) = (1 + x)2(1− x) ≡ 0 mod m2
p

Therefore dim(mp/m
2
p) = 1. The point q = (0, 0) is singular since dim(mq/m

2
q) = 2. In

fact X is smooth at every point except at (0, 0).
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y

x

Figure 2.1: X = {(x, y) : y2 = x2(x+ 1)}

A proof for the following results is presented in [ZS60, Chap VIII, §11 and §12].

Theorem 2.5.4 Let X be a variety and let the local ring OX,x for x ∈ X have dimension n.

(i) OX,x is regular if and only if ÔX,x is regular

(ii) ÔX,x is regular if and only if ÔX,x ∼= k[[x1, . . . xn]] where k[[x1, . . . , xn]] denotes the

formal power series ring.

Proposition 2.5.5 Let x ∈ X and y ∈ Y be points in varieties X and Y , and let f : X → Y be

a morphism such that f(x) = y. Then there exists a homomorphism ÔX,x → ÔY,y.

Proof. There exists a homomorphism f∗ : k[Y ] → k[X], g 7→ g ◦ f . Now consider the multi-

plicative set UY,y = {g ∈ k[Y ] : g(y) 6= 0} of k[Y ], then g ∈ UY,y if and only if f∗(g) ∈ UX,x =

{h ∈ k[X] : h(x) 6= 0}. Therefore we get a homomorphism given by

OY,y = U−1
Y,yk[Y ]→ f∗(UY,y)−1k[X]→ U−1

X,xk[X] = OX,x

This homomorphism maps my to mx so the homomorphism OY,y/mry → OX,x/mrx is well defined.

Therefore we get the following diagram

. . . // OY,y/mry //

��

OY,y/mr−1
y

//

��

. . . // OY,y/my ∼= k

��
. . . // OX,x/mrx // OX,x/mr−1

x
// . . . // OX,x/mx ∼= k

So we have the morphism ÔY,y → OX,x/mrx for all r such that the following diagram commutes.

ÔY,y

&&��
OX,x/mrx // OX,x/mr−1

x

Therefore by the universal property of the limit there exists a morphism ÔY,y → ÔX,x.
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Let f : X → Y be a morphism of affine varieties such that for points x ∈ X and y ∈ Y we

have f(x) = y. Then (X,x) and (Y, y) are locally analytically isomorphic if the homomorphism

induced by f as described in Proposition 2.5.5 is an isomorphism ÔY,y ∼= ÔX,x. Suppose that

dim(X) = n and dim(Y ) = n − r. Then f is smooth of relative dimension r if the comorphism

f∗ : OY,y → OX,x can be extended to an isomorphism

ÔY,y[[t1, . . . , tr]] ∼= ÔX,x

Examples 2.5.6

1. If X and Y are both smooth varieties then any morphism f : X → Y is smooth.

2. Let X be as in Example 2.5.3 and let Y ⊂ A3 be defined by the polynomial y2 = x2(x+1)

as depicted in Figure 2.2. Then the morphism f : Y → X where (x, y, z) 7→ (x, y) is

smooth at all points.

z

x

y

Figure 2.2: Y = {(x, y, z) : y2 = x2(x+ 1)}

Let G be an algebraic group which acts on X. A subvariety S of X is locally closed if it is the

intersection of an open set with a closed set. A transverse slice in X (to G · x) at x ∈ X is a

locally closed subvariety S of X such that

(i) x ∈ S,

(ii) the morphism G× S → X where (g, s) 7→ g · s is smooth at (e, x) where e is the identity

of G,

(iii) the dimension of S is minimal given (i) and (ii) (see [Slo80]).

Let e be a nilpotent element of g = Lie(G) and suppose that Lie(Ge) = ge. This holds when

char(k) = 0 and G is simple, or when char(k) is good and G is simple but not of type SLn.
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Consider the map φ : G→ g where v 7→ Adv(e). Then dφ1 : g→ Te(g) sends y 7→ e+ [y, e] (note

that Tx(X) denotes the tangent space of X at x). Let E denote the image of dφ1 so E = e+[g, e].

Now let v be some linear (C-stable) complement to E in Te(g) = e+ g. So

[g, e]⊕ v = g and [g, e] ∩ v = {0} (2.1)

Let S be the preimage of v under the map π : g → Te(g) which sends y 7→ e + y. Then, by the

proof of [Slo80, Chap III, §5.1, Lemma 1], S = e+ v is a transverse slice of e in g.

Let g be a Lie algebra of characteristic zero; then for a nilpotent element e of g there exists an

sl2-triple {e, f, h}. The Slodowy slice at e given by Se = e + gf is a transverse slice of e in g

[Slo80, §7.4]. In the case when char(k) > 0 then e ∈ N1 has an associated cocharacter λ with

good SL2-subgroup {e, f, h} of G. If the weights of λ are between −(p− 1) and p− 1 then the

Slodowy slice Se = e+ gf is a transverse slice.

Example 2.5.7

Let g = sl3 with p ≥ 3. Consider e =
(

0 0 1
0 0

0

)
which is contained in N1. Now e has

associated cocharacter λ(t) =
(
t

1
t−1

)
which has weights {−2,−1, 0, 1, 2}. Therefore

there is a good SL2 subgroup of G given by {e, f, h} where f =
(

0
0 0
1 0 0

)
. The Slodowy

slice Se = e+ gf is a transverse slice when p ≥ 3 where

Se =




a 0 1

c −2a 0

d c a

 : a, b, c, d ∈ k


A proof of the following proposition is presented in [Slo80, §5 Lemma 2].

Proposition 2.5.8 Let G be an algebraic group which acts on a variety X. Let Sx be a transverse

slice at x in X and let Y be a closed G-stable subvariety of X such that x ∈ Y . Then Sx ∩ Y is

a transverse slice at x in Y .

Let O be a nilpotent orbit of g and let e be contained in O with transverse slice Se in g. For a

nilpotent orbit O′ such that O < O′ we have e ∈ O′. Then by Proposition 2.5.8, Se ∩ O′ is a

transverse slice of e at O′.

Example 2.5.9

In Example 2.5.7, e is contained in O[2,1], therefore a transverse slice of e in O[3] is given

by

Se ∩ O[3] = Se ∩N =




a 0 1

b −2a 0

−3a2 c a

 : 4a3 + bc = 0
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Lemma 2.5.10 Let O be a nilpotent orbit in g with e ∈ O. Let Se be the Slodowy slice of e in

g which is also transverse. Then Se ∩ O = {e}.

Proof. Let e have associated cocharacter λ with good SL2 subgroup {e, f, h} of G such that

f ∈ g(−2;λ). Consider the element

e+ x0 + x−1 + x−2 + · · · ∈ (e+ gf ) ∩ O

where x−i ∈ g(−i;λ). There is a scaling action on Se which preserves the intersection with every

nilpotent orbit, this is given by the following two steps:

Adλ(t)(e+ x0 + x−1 + x−2 + . . . ) = t2e+ x0 + t−1x−1 + t−2x−2 + · · · ∈ (t2e+ gf ) ∩ O

t−2(t2e+ x0 + t−1x−1 + t−2x−2 + . . . ) = e+ t−2x0 + t−3x−1 + · · · ∈ (e+ gf ) ∩ O

So we obtain a 1-dimensional subset of elements belonging to Se∩O. By [Slo80, Chap 5, Remark

2] we get

dime(Se ∩ O) ≤ dime(O)− dim(G · e)

So if O = G · e then Se ∩ O is finite. Therefore we cannot have anything in Se ∩ O of the form

e+ x0 + x−1 + . . . with (x0, x−1, . . . ) 6= (0, 0, . . . ).

Corollary 2.5.11 Let O < O′ be nilpotent orbits in g such that there is no orbit O′′ where

O < O′′ < O′, and let e ∈ O. Then all elements of Se ∩ O′ are contained in O′ except e.

Proof. Let x ∈ Se ∩ O′ such that x 6= e. Then G · x ⊂ G · O′ and so G · x ⊂ O′. Similarly, by

the scaling action described in Lemma 2.5.10, we have e ∈ G · x, therefore O ⊂ G · x. By proof

of Lemma 2.5.10 we have dim(G · x) > dim(G · e) therefore x ∈ O′.

Hence in Example 2.5.9 all the elements in Se ∩ N such that (a, b, c) 6= (0, 0, 0) are contained

in O[3]. This property means that transverse slices can help to describe points of O′ which are

close to e. This is utilized in [FJLS15].

We can parametrize the Slodowy slice in Example 2.5.9. We have Se ∩N ∼= k[a, b, c]/(4a3 + bc).

There is a surjective map from this ring to k[st,−4s3, t3] by sending a 7→ st, b 7→ −4s3 and

c 7→ t3. This map is well-defined since the images of a, b and c satisfy the polynomial 4a3+bc = 0.

Because this polynomial is irreducible then both of these rings are integral domains. Since these

rings also have the same dimension they are isomorphic. A similar process of parametrization

can often be applied to transverse slices making it easier to describe their elements.
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Chapter 3

Special Cases

3.1 Classical Types

In this chapter we consider in detail a few simple Lie algebras that are helpful for subsequent

calculations. Throughout this chapter we assume that char(k) = p is good. We start by looking

at sl2, sl3, sl4 and sl6. Below are the Hasse diagrams of the nilpotent orbits of these Lie algebras

labelled by the corresponding partition along with the dimension of each orbit.

O[2] dim(O[2]) = 2

O[12] dim(O[12]) = 0

O[3] dim(O[3]) = 6

O[2,1] dim(O[2,1]) = 4

O[13] dim(O[13]) = 0

O[4] dim(O[4]) = 12

O[3,1] dim(O[3,1]) = 10

O[22] dim(O[22]) = 8

O[2,12] dim(O[2,12]) = 6

O[14] dim(O[14]) = 0

Figure 3.1: Hasse Diagram of Nilpotent Orbits of sl2, sl3 and sl4 respectively.

O[6] dim(O[6]) = 30

O[5,1] dim(O[5,1]) = 28

O[4,2] dim(O[4,2]) = 26

O[3,3] O[4,12] dim(O[3,3]) = dim(O[4,12]) = 24

O[3,2,1] dim(O[3,2,1]) = 22

O[3,13] O[23] dim(O[3,13]) = dim(O[6]) = 18

[22, 12] dim(O[22,11]) = 16

[2, 14] dim(O[2,14]) = 10

O[16] dim(O[16]) = 0

Figure 3.2: Hasse Diagram of Nilpotent Orbits of sl6
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Consider the nilpotent orbit Oe of sln with partition type [λ1, . . . , λm], then Oe has Bala-Carter

label Aλ1−1 × · · · ×Aλm−1, for more details see [Pan99, §3].

The other classical cases we are interested in are so5, so7 and sp6. Below are the Hasse diagrams

with each nilpotent orbit labelled by the corresponding partition type and Bala-Carter label.

Alongside this is also the dimension of each nilpotent orbit.

B2 O[5] dim(O[5]) = 8

Ã1 O[3,12] dim(O[3,12]) = 6

A1 O[22,1] dim(O[22,1]) = 4

0 O[15] dim(O[15]) = 0

B3 O[7] dim(O[7]) = 18

B2 O[5,12] dim(O[5,12]) = 16

A2 O[32,1] dim(O[32,1]) = 14

A1 + Ã1 O[3,22] dim(O[3,22]) = 12

Ã1 O[3,14] dim(O[3,14]) = 10

A1 O[22,13] dim(O[22,13]) = 8

0 O[17] dim(O[17]) = 0

Figure 3.3: Hasse Diagram of Nilpotent Orbits of so5 and so7 respectively

O[6]

O[4,2]

O[4,12] O[32]

O[23]

O[22,11]

O[2,14]

O[16]

dim(O[6]) = 18

dim(O[4,2]) = 16

dim(O[4,12]) = dim(O[32]) = 14

dim(O[23]) = 12

dim(O[22,12]) = 10

dim(O[2,14]) = 6

dim(O[16]) = 0

C3

C3(a1)

C2

Ã1 ×A1

Ã1

A1

0

Ã2

Figure 3.4: Hasse Diagram of Nilpotent Orbits of sp6

If a nilpotent orbit Oe of sp2n has a partition of distinct even parts then Oe is distinguished.

If it is the regular orbit then its Bala-Carter label is Cn. The first example of a distinguished

non-regular orbit is [4, 2] in sp6 which has label C3(a1). Otherwise the partition of Oe has a

pair of elements [λi, λi] which are equal. For each such pair there is a component Ãλi−1 in the

Bala-Carter label. Removing these pairs leaves a partition with at most one even part. The final

part of the Bala-Carter labelling is Ci in which this new partition is distinguished (or A1 if we
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are left with a single part of length 2). The method is same for a nilpotent orbit in son with the

pairs of elements [λi, λi] in the partition corresponding to an Aλi−1 component instead of Ãλi−1.

(These results are presented in [Pan99, §3]).

We are interested in some highest weight modules of G. For G = SL2 the highest weight

module L(nω) has dimension n + 1. When G = SLn then L(ωi) = Λi(kn) where Λi represents

the alternating product. Therefore the highest weight module L(ω2) = Λ2(k4) for SL4 and

so has dimension 6. Both L(ω1) and L(ω3) have dimension 4. For SL6 we are interested in

L(ω3) = Λ3(k6) which has dimension 20. Also SL3 has an 8 dimensional highest weight module

given by L(ω1+ω2). Similarly we are interested in L(ω2) and L(ω1) of SO5 which have dimensions

4 and 5 receptively. Finally L(ω1) of SO7 has dimension 8 and L(ω3) of Sp6 has dimension 14.

3.2 Exceptional Types

The main focus is the exceptional Lie algebras G2, F4 and E6. There are five nilpotent orbits of

G2, two of which are distinguished. Similarly F4 has sixteen nilpotent orbits, four of which are

distinguished. Finally E6 has twenty two orbits, three of which are distinguished.

Let ρ be a minimal faithful representation of g. For G2, F4 and E6 respectively, ρ has dimension

7, 26 and 27 respectively. For a nilpotent element e, the sizes of the Jordan blocks of ρ(e) are

calculated by considering the successive powers of ρ(e). An element x ∈ g is contained in Oe if

and only if the Jordan blocks of ρ(x) are the same size as those of ρ(e). The following result is

shown in [CLNP03, §4.4].

Theorem 3.2.1 For g = G2, F4 and respectively E6 we have N1(G2) = OG2(a1) when p = 5

and

N1(F4) =


OF4(a1) when p = 11

OF4(a2) when p = 7

OF4(a3) when p = 5

and N1(E6) =


OE6(a1) when p = 11

OE6(a3) when p = 7

OA4+A1
when p = 5

The Tables 3.2, 3.4 and 3.6 give details of the non-zero nilpotent orbits of G2, F4 and E6. These

are labelled using the Bala-Carter labelling which is described in Section 1.5. The tables also

include the weighted Dynkin diagram of each orbit Oe and the sizes of the Jordan blocks of ρ(e).

These tables are followed by the corresponding Hasse diagram of the nilpotent orbits.
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Orbit
Weighted Dynkin

diagram

Size of Jordan blocks in

Characteristic p

p = 5 p ≥ 7

G2 2 2 - [7]

G2(a1) 0 2 [32, 1]

Ã1 1 0 [3, 22]

A1 0 1 [22, 13]

Table 3.2: Nilpotent Orbits of G2

G2

G2(a1)

Ã1

A1

0

Figure 3.5: Hasse Diagram of

Nilpotent Orbits of G2

Orbits Weighted Dynkin Diagram Size of Jordan blocks in Characteristic p

p = 5 p = 7 p = 11 p = 13 p ≥ 17

F4 2 2 2 2 - - - [132] [17, 9]

F4(a1) 2 2 0 2 - - [11, 9, 5, 1]

F4(a2) 0 2 0 2 - [73, 5] [9, 7, 52]

B3 2 2 0 0 - [73, 15]

C3 1 0 1 2 - [72, 62] [9, 62, 5]

F4(a3) 0 2 0 0 [53, 33, 12]

C3(a1) 1 0 1 0 [52, 42, 3, 22, 1]

Ã2A1 0 1 0 1 [5, 42, 32, 22]

B2 2 0 0 1 [5, 44, 15]

A2Ã1 0 0 1 0 [42, 33, 24, 1]

Ã2 0 0 0 2 [5, 37]

A2 2 0 0 0 [36, 18]

A1Ã1 0 1 0 0 [33, 26, 15]

Ã1 0 0 0 1 [3, 28, 17]

A1 1 0 0 0 [26, 114]

Table 3.4: Table of Nilpotent Orbits of F4
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Orbits Weighted Dynkin Size of Jordan blocks in Characteristic p

Diagram p = 5 p = 7 p = 11 p = 13 p ≥ 17

E6
2 2 2 2 2

2
- - - [132, 1] [17, 9, 1]

E6(a1)
2 2 0 2 2

2
- [13, 72] [112, 5] [13, 9, 5]

D5
2 0 2 0 2

0
- - [11, 9, 5, 12]

E6(a3)
2 0 2 0 2

0
- [73, 5, 1] [9, 7, 52, 1]

D5(a1)
1 1 0 1 1

2
- [73, 3, 2, 1] [8, 7, 6, 3, 2, 1]

A5
2 1 0 1 2

1
- [72, 62, 1] [9, 62, 5, 1]

A4A1
1 1 0 1 1

1
[55, 2] [7, 6, 5, 4, 3, 2]

D4
0 0 2 0 0

2
- [73, 16]

A4
2 0 0 0 2

2
[55, 1] [7, 53, 3, 12]

D4(a1)
0 0 2 0 0

0
[53, 33, 13]

A3A1
0 1 0 1 0

1
[52, 42, 3, 22, 12]

A2
2A1

1 0 1 0 1

0
[5, 42, 33, 22, 1]

A3
1 0 0 0 1

2
[5, 44, 16]

A2A
2
1

0 1 0 1 0

0
[42, 33, 24, 12]

A2
2

2 0 0 0 2

0
[5, 37, 1]

A2A1
1 0 0 0 1

1
[4, 34, 24, 13]

A2
0 0 0 0 0

2
[36, 19]

A3
1

0 0 1 0 0

0
[33, 26, 16]

A2
1

1 0 0 0 1

0
[3, 28, 18]

A1
0 0 0 0 0

1
[26, 115]

Table 3.6: Table of Nilpotent Orbits of E6
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F4

F4(a1)

F4(a2)

B3 C3

F4(a3)

C3(a1)

Ã2A1 B2

A2Ã1

Ã2 A2

A1Ã1

Ã1

A1

0

Hasse Diagram of Nilpotent Orbits of F4

E6

E6(a1)

D5

E6(a3)

A5

D5(a1)

A4A1 D4

A4

D4(a1)

A3A1

A2
2A1

A2
2

A3

A2A
2
1

A2A1

A2

A3
1

A2
1

A1

0

Hasse Diagram of Nilpotent Orbits of E6
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Chapter 4

The Nilpotent Commuting Variety

and Induced Nilpotent Orbits

In this chapter we discuss Lusztig-Spaltenstein induction, which induces a nilpotent orbit in a

Lie algebra g from a nilpotent orbit of a Levi subalgebra of g. This is followed by a description

of the nilpotent commuting variety including some results from [Pre03a] which utilize induced

orbits. Throughout this chapter we assume that G be a connected reductive algebraic group over

an algebraically closed field k of good characteristic p.

4.1 Lusztig-Spaltenstein Induction

Let p be a parabolic subalgebra of a simple Lie algebra g with Levi decomposition p = l ⊕ u

where l is a Levi subalgebra and u is the unipotent radical. For a nilpotent orbit Ol in l there

is a unique nilpotent orbit O in g such that O ∩ (Ol + u) is dense in Ol + u. This orbit is the

induced orbit and denoted Indgl (Ol). This process is called Lusztig-Spaltenstein induction. This

procedure was introduced by [LS79] for unipotent orbits in G with parabolic subgroup P = LnU .

This is equivalent to our description in good characteristic by considering the homeomorphism

U(G)→ N (g) given in [SS70, Thm 3.12] where U(G) is the set of unipotent elements in G. For

characteristic zero a proof is presented in [CM93, Theorem 7.1.1]. The following result is from

[LS79, Theorem 2.2]

Theorem 4.1.1 Let p = l ⊕ u and p′ = l ⊕ u′ be two parabolic subalgebras of g with the same

Levi subalgebra l. For a nilpotent orbit Ol of l we have Indgp(Ol) = Indgp′(Ol).

Not all the orbits of g can be induced from proper Levi subalgebras. Those that cannot are

called rigid orbits. The following gives a sufficient condition for an orbit to be induced, see

[LS79, Proposition 1.9].
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Proposition 4.1.2 Let g be a simple Lie algebra with root system ∆ = {α1, . . . αn} and nilpotent

orbit O with weighted Dynkin diagram D. Let the vertices αi1 , . . . αis of D be the those labelled

with a 2 and let I = {1, . . . , n}\{i1, . . . , is}. Then O = IndgpI (OlI ) for some nilpotent orbit OlI

of lI . Let D′ be the subdiagram of D which only contains the nodes corresponding to I. If D′

corresponds to a nilpotent orbit O′ in l then O = Indgl (O′).

Suppose l1 and l2 are Levi subalgebra of g such that l1 ⊂ l2 then Indgl2(Indl2l1(Ol1)) = Indgl1(Ol1).

This is shown in [LS79, §1.7].

Example 4.1.3

Let g = D5 with maximal torus t and simple roots ∆ = {α1, . . . , α5} and positive roots

Φ+. Consider the parabolic subalgebra pα3 , then pα3 = lα3 + uα3 where

lα3 = t⊕ g±α3

uα3
=

∑
α∈Φ+\{α3}

gα

Now let Ol be the zero nilpotent orbit in l. The induced orbit of Ol is an orbit O of g

such that O ∩ uα3
is dense in uα3

.

Consider the orbitOD5(a1) of g then there exists an e ∈ OD5(a1) such that there is an associ-

ated cocharacter λ where 〈λ, α3〉 = 0 and 〈λ, αi〉 = 2 when i 6= 3. Now G(λ, 0) · e = g(λ; 2)

and since pα3
=
∑
i≥0 g(λ; i) then Pα3

· e =
∑
i≥2 g(λ; i) = uα3

. Therefore OD5(a1) ∩ uα3

is dense in uα3 . So Ind
g
lα3

({0}) = OD5(a1).

This can also be seen by considering the weighted Dynkin diagram of D5(a1) which is

2 2 0

2

2

Then the subdiagram given by removing the nodes labelled by 2 leaves the single node α3

which is labelled by 0. This corresponds to the zero orbit in lα3
.

4.2 Nilpotent Commuting Varieties

Let G be a connected reductive algebraic group with Lie algebra g = Lie(G). The nilpotent

commuting variety of g is

Cnil(g) = {(x, y) ∈ N ×N : [x, y] = 0}

It was proved in [Pre03a] that Cnil(g) is equidimensional where equidimensional means that

all the irreducible components have the same dimension. For a nilpotent orbit Oe of g let

C(Oe) = G · (e, ge ∩N ).

52



Theorem 4.2.1 [Pre03a] Let e1, . . . , er be representatives of the distinguished nilpotent orbits

of g. Then the sets C(ei) are pairwise distinct and all have dimension equal to dim(G,G) and

Cnil(g) = C(e1) ∪ · · · ∪ C(er)

Suppose g is a simple Lie algebra with simple roots ∆ = {α1, . . . , αm}. A nilpotent element

e in g is almost distinguished if ge(0) is a torus. Therefore all distinguished elements are also

almost distinguished. For example a representative of the nilpotent orbit D4(a1) of E6 is almost

distinguished.

For a subset I in {1, . . . ,m}, let lI (resp. pI) be the standard Levi (resp. parabolic) subalgebra

of g corresponding to I. For a subset J ⊂ I let pI,J be the standard parabolic subalgebra of

lI associated to J . Let λI,J be a cocharacter contained in
∑
i∈I Zα∨i such that αi(λI,J(t)) = 1

when i ∈ J and αi(λI,J(t)) = t2 when i ∈ I\J . Denote by λJ the cocharacter λI,J where

I = {1, . . . ,m}.

Let e be an almost distinguished element. We may assume that e is distinguished in a standard

Levi subalgebra lI for some subset I of {1, . . . ,m} by Theorem 1.4.2 and that λI is an associated

cocharacter for e. Let ẽ be an element of pI in g(λI ; 2) such that [pI , ẽ] = uI , this is a Richardson

element of pJ . We may assume that ẽ is contained in e +
∑

α∈Φ\Φ+
I

gα = e + uI and so ẽ is in

IndglI (L · e).

This is equivalent to extending the weighted Dynkin diagram of e in lI to a weighted Dynkin

diagram for g with the new nodes labelled by 2. We can let ẽ be a representative to the nilpo-

tent orbit in g given by this extended Dynkin diagram. It can be observed that ẽ is always a

distinguished element of g. The following proposition is shown by combining [Pre03a, Prop 3.6]

and the proof of [Pre03a, Theorem 3.7].

Proposition 4.2.2 Let e be an almost distinguished element in g and define ẽ as above. Let

ẽ1, . . . , ẽq be representatives of distinguished nilpotent orbits in g such that G · ẽi ⊂ G · ẽ. Then

C(e) ⊂
⋃

1≤i≤q

C(ẽi)

Example 4.2.3

Consider the case when g = E6. A representative e of OD4(a1) is almost distinguished.

We may assume that e is distinguished in lI where I = {2, 3, 4, 5}. Now e is subregular

in lI and so has corresponding weighted Dynkin diagram

2 0 2

2

Therefore let J = {4} and the extended weighted Dynkin diagram is
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2 2 0 2 2

2

This weighted Dynkin diagram corresponds to the nilpotent orbit E6(a1) in E6, therefore

let ẽ be a representative of E6(a1). Then Proposition 4.2.2 gives

C(D4(a1)) ⊂ C(E6(a1)) ∪ C(E6(a3)).
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Chapter 5

Research Question and Methodology

In this chapter we state the two questions we wish to answer and give an outline of the methods

we use to answer them. Throughout let G be a reductive algebraic group over an algebraically

closed field k of characteristic p and let g = Lie(G).

5.1 Research Questions

For p good the commuting variety C(g) = {(x, y) ∈ g × g : [x, y] = 0} is irreducible. This

was shown in [Ric79] for p = 0 and later extended to all good characteristic in [Lev02]. As

was discussed in Section 4.2, the irreducible components of the nilpotent commuting variety

were found in [Pre03a] for good characteristic p. The aim of this thesis is to consider a similar

question for the restricted nilpotent commuting variety given by

Cnil1 (g) = {(x, y) ∈ N1 ×N1 : [x, y] = 0}.

First we consider the following lemma.

Lemma 5.1.1 Suppose Oe1 , . . . ,Oen are the nilpotent orbits of g contained in N1 with repre-

sentatives e1, . . . , en. Let the irreducible components of gei ∩N1 be X(1)
i , . . . , X

(ni)
i . Then

Cnil1 (g) =
⋃
i,j

G · (ei, X(j)
i ) for i = 1, . . . ,m, j = 1, . . . , ni.

Proof. Consider e ∈ N1 then clearly (e, ge ∩ N1) ⊂ Cnil1 (g), therefore G · (e, ge ∩N1) ⊂ Cnil1 (g).

We can express the restricted nilpotent commuting variety by the following union

Cnil1 (g) =
⋃

1≤i≤n

G · (ei, ge ∩N1)

Hence the result holds.

Thus every irreducible component of Cnil1 (g) is of the form G · (ei, X(j)
i ) for some i, j. Our aim

is to answer the following two questions.
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Question 1 For g = G2, F4 and E6 with nilpotent orbits Oe1 , . . . ,Oen and p good, find the

irreducible components of gei ∩N1.

Question 2 Find the irreducible components of Cnil1 (g) for g = G2, F4 and E6 and p good.

When p ≥ h, where h is the Coxeter number, then N1 = N and so ge∩N1 = g∩N is irreducible

[Pre03a]. Under this condition on the characteristic we have Cnil1 (g) = Cnil(g) and therefore the

irreducible components of Cnil1 (g) are given by Theorem 4.2.1. Since the Coxeter number for G2

is 6 and p good implies that p > 3 then only p = 5 needs to be considered for Questions 1 and

2. The Coxeter number for both F4 and E6 is 12 therefore we need to consider p = 5, 7 and 11.

The following two sections give an outline of the method we used to answer these questions. The

details of the computations for answering these questions for g = G2, F4 and E6 are given in

Chapters 6 to 9.

5.2 Methodology for Question 2

The irreducible components found in Question 1 give us the form of the components of Cnil1 (g)

as given by Lemma 5.1.1. Then all that remains is to eliminate some of the sets G · (ei, X(j)
i ).

To achieve this the following result from [Lev07, Lemma 1.1] is useful.

Proposition 5.2.1 Let G · (ei, X(j)
i ) be an irreducible component of Cnil1 (g) for some irreducible

component X(j)
i of gei ∩N1. Then X(j)

i ⊂ (G · ei).

Therefore some components can be eliminated by finding elements in X(j)
i that are not contained

in G · ei. We do this by computing the Jordan normal form of the minimal faithful representation

of an element in X(j)
i to show it is in a nilpotent orbit which is not contained in G · ei. For the

remaining components we need to check whether they are contained in any other component

using transverse slice arguments and Proposition 4.2.2.

If ge ∩ N1 is irreducible for a nilpotent orbit Oe then let C1(Oe) = G · (e, ge ∩N1). Now

dim(C1(Oe)) ≤ dim(g) and equality holds when e is distinguished. This is because when e

is distinguished then G · (e, ge ∩N1) is irreducible of dimension dim(G,G)−rank(Ge) = dim(g).

Therefore, when e is distinguished, C1(Oe) is an irreducible component of Cnil1 (g). Note that

rank(Ge) = rank(C) and rank(C) is the dimension of maximal torus in C.

5.3 Methodology for Question 1

To answer Question 1 let e be a representative of a nilpotent orbit of g. Then by Theorem 2.3.2

there exists an associated cocharacter λ of e and

ge = c⊕ ge(λ; 1)⊕ ge(λ; 2)⊕ . . .
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where c is the reductive part of ge and is isomorphic to a direct sum of Lie algebras. For an

element c+ x1 + x2 + . . . of ge to be contained in N1 then c must belong in N1(c). Therefore let

c1, . . . , cn be representatives of the nilpotent orbits of c. Then defineM(j)
i to be the irreducible

components of (ci + ge(λ;> 0)) ∩ N1. Every irreducible component of ge ∩ N1 is of the form

M̃i

(j)
= C · M(j)

i for some j and C = Ge ∩ Gλ. This holds by the following two results, for

detail see [Hum75, §1.3 and §1.4]

Proposition 5.3.1 A product of two irreducible affine varieties is irreducible.

Proposition 5.3.2 Let X be a topological space. Then a subspace Y of X is irreducible if and

only if its closure Y is irreducible. Also dim(Y ) = dim(Y ).

Therefore C×X is irreducible if X is irreducible. Now C ·X is the image of the map C×X → ge

and therefore is irreducible since the image of a morphism from an irreducible variety is irreducible

[Hum75, §1.3]. Once the M(j)
i have been found, all that remains is to establish the inclusions

M̃i

(j)
⊂ M̃i′

(j′)
.

To do this we consider [LT11] which gives a complete description of ge in terms of the grading

ge(λ, i) for a given associated cocharacter λ for e. The cocharacter λ is presented diagrammati-

cally in [LT11] by a Dynkin diagram with the node corresponding to αi labelled by the λ-weight

of αi. From now on we denote g(λ, i) = g(i). Also [LT11] specifies the precise structure of c via

a system of simple root elements. Similarly the maximal weight vectors in ge(i) for the action

of c are specified. This allows one to construct bases u1, . . . , us for each of the ge(i). Therefore

every element in ge can be expressed as the following finite sum for some ai, bi, · · · ∈ k

c︸︷︷︸+ a1u1 + · · ·+ asus︸ ︷︷ ︸+ b1v1 + · · ·+ btvt︸ ︷︷ ︸+ · · · ∈ ge for all ai, bi, · · · ∈ k, c ∈ c

c ge(1) ge(2)

Consider the minimal faithful representation ρ of g as calculated by [GAP12]. Let γi = ρ(ci),

Ui = ρ(ui), etc. and letMi = {γi+a1U1+· · ·+apUp+b1V1+· · ·+bqVq+· · · : ai, bi · · · ∈ k}. Testing

when an element Mi ∈ Mi satisfies Mp
i = 0 gives polynomial conditions on the coefficients

ai, bi, · · · ∈ k. These polynomial conditions can be found using the [GAP12] code presented in

the Appendix. Now let M̃i = C · {γi + a1U1 + · · · : Mp
i = 0} which is contained in N1. We can

now determine the irreducible components M̃(1)
i , M̃(2)

i , . . . of M̃i. Every irreducible component

of ge ∩ N1 is equal to one of the sets M̃(j)
i . We just need to establish inclusions M̃ (j)

i ⊂ M̃
(j′)
i′

which are calculated case by case. The [GAP12] code used throughout this thesis, including the

set up of each nilpotent orbit and the tests to verify the code is correct, can be found in the

Lancaster University repository.

To calculate the dimension of each irreducible component ge∩N1 we can use the following results,

see [Sha72, Ch1 §6 and Thm 7]
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Proposition 5.3.3 If X, Y are irreducible then dim(X × Y ) = dim(X) + dim(Y ).

A fibre of a morphism Φ : X → Y is the closed set Φ−1(y) for some y ∈ Y . If X is irreducible

then we say Φ is dominant if Φ(X) is dense in Y .

Theorem 5.3.4 Let Φ : X → Y be a morphism of irreducible varieties such that Φ(X) = Y .

Then dim(Y ) ≤ dim(X) and

(i) dim(Φ−1(y)) ≥ dim(X)− dim(Y ) for every y ∈ Y

(ii) in Y there exists a non-empty open set W such that dim(Φ−1(y)) = dim(X)−dim(Y )

for y ∈W .

Lemma 5.3.5 Let G be a reductive algebraic group and let e ∈ N1; then by Theorem 2.3.2,

Ge = C n Ue. Let ci ∈ N1(c) and V = {u ∈ ue : ci + u ∈ N1} where c = Lie(C) and

ue = Lie(Ue). Finally let X be an irreducible component of V . Then

dim(C · (ci +X)) = dim(X) + dim(C · ci)

⇒ dim(C · (ci +X)) = dim(X) + (dim(c)− dim(cci))

Proof. To see this first note that since X is a component of V then it must also be a component

of Cci ·X. Moreover, all component of Cci ·X must be translates of X therefore dim(Cci ·X) is

equal to dim(X). Now consider the following commuting diagram where π(g · (ci + x)) = g · ci
for g ∈ C and x ∈ X.

c⊕X

����

C · (ci +X)? _oo

π

����
c C · ci? _oo

Now π(g·(ci+z)) = ci ⇔ g ∈ Cci , therefore π−1(ci) = ci+(Cci ·X). Since dim(Cci ·X) = dim(X)

then dim(π−1(ci)) = dim(X). Moreover π−1(g · ci) = g · π−1(ci) for any g ∈ C, therefore

dim(π−1(g · ci)) = dim(X) for all g ∈ Cci . By Theorem 5.3.4 there is a subset W which is open

in C · ci such that dim(π−1(w)) = dim(C · (ci +X))− dim(C · ci). Now let w = g · ci ∈W ; then

dim(π−1(g · ci)) = dim(C · (ci +X))− dim(C · ci)

⇒ dim(X) = dim(C · (ci +X))− dim(C · ci)

⇒ dim(C · (ci +X)) = dim(X) + dim(C · ci)

By the definition of C = Gλ ∩ Ge, it is clear that ge(i) is C-stable. A description of the

submodules of ge(i) with respect to the action of C is given in [LT11]. These submodules are

always irreducible for G2, F4 and E6; although this is not the case for E7 and E8. One example
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of when ge(i) does not decompose into irreducible submodules is when e is contained in the

nilpotent orbit A3A2A1 of E6 when the char(k) = 5. For more details see [LT11, §8].

We can represent the action of C on the positive part of ge diagrammatically. An irreducible

submodule is represented by a connected graph with the highest weight vectors at the top. Let C

have simple roots β1, . . . , βn. Then [LT11] specifies the highest weight vectors of the submodules

of ge(i) for the action of C. Then if two elements vp, vq in a submodule are such that vp = [eβk , vq]

then this can be represented by

vp

vq

βk

Example 5.3.6

Consider the Ã1 orbit of F4 which has representative e = e0001. The reductive part c = sl4

has three simple roots where eβ1 = e1000, eβ2 = e0100 and eβ3 = e1242. Then ge(2) has

two submodules with maximal weight vectors v1 = e1222 and w1 = e0001. Then these

submodules can be represented pictorially via

v1

v2

v3 v4

v5

v6

β2

β1β3

β3β1

β2

w1

Example 5.3.7

Let g = F4 with characteristic p = 11. Consider the nilpotent orbit denoted C3 which has

representative e = e0001 + e0010 + e0100. Then [LT11] tells us that c = sl2 with simple root

eβ1
= e2342 and gives us the elements of ge(i) as follows.

ge(2) ge(3) ge(6) ge(9) ge(10)

u1 = e0

v1 = e1231 − e1222

v2

β1

w1 = e0120 − e0111

x1 = e1342

x2

β1

y1 = e0122

Now sl2 has one non-zero nilpotent orbit O[2] with representative c1 = eβ1
. Then we have

M0 = a1u1 + b1v1 + b2v2 + c1w1 + d1x1 + d2x2 + g1y1

M1 =M0 + eβ1
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for ai, bi, · · · ∈ k. By consideringM11
0 andM11

1 we can show thatM0 ⊂ N1 andM1 ⊂ N1.

In this case we have M̃1
∼= N (sl2) × M̃0; however in general the relationship is more

complicated. In fact in this case ge∩N1 = ge∩N and by Lemma 2.3.4 it is irreducible. Now

dim(M̃0) = dim(M0) = 7 and since the dimension of the nilpotent orbit corresponding

to [2] in sl2 is 2 then dim(M̃1) = 7 + 2 = 9. Therefore g ∩ N1 = M̃1 is irreducible of

dimension 9.
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Chapter 6

G2 Results

In this chapter we give the details of the computations to answer Questions 1 and 2 for G2. Each

section presents the details of a nilpotent orbit Oe of G2. For each nilpotent orbit a representative

e, as given by [LT11], is stated along with the form of c and its simple root elements eβl . For the

cocharacter λ, as given by [LT11], the highest weight vectors of ge(λ; j) = ge(j) for the action of

C on the positive part of ge are stated. Then we construct bases u1, . . . , us for each ge(j). We

represent this diagrammatically where an irreducible submodule is represented by a connected

graph with the highest weight vectors at the top.

For each nilpotent orbit Oci of c, we give an explicit description of each Mi as discussed in

Chapter 5. We defineMi = {γi+a1U1 + · · ·+apUp : ai ∈ k} where γi = ρ(ci) and Ui = ρ(ui) for

the minimal faithful representation ρ of g. We denote the set corresponding to the zero orbit in c

asM0, thereforeMi = γi +M0 for each nilpotent orbit Oci in c. We denote the representative

of the regular orbit of c as c1.

For Mi ∈ Mi, we also present the conditions on the coefficients given by Mp
i = 0 which are

calculated using [GAP12]. Then M̃i = C · {γi + a1U1 + . . . aqUq · · · : Mp
i = 0}. At the end of

each section the arguments to determine the irreducible components of ge ∩ N1 are presented.

The chapter concludes by presenting the arguments for determining the irreducible components

of Cnil1 (G2).

6.1 Orbits G2 and G2(a1)

Since these orbits are distinguished, then by Corollary 2.3.4, if e ∈ N1 then ge ⊂ N1 and so

ge ∩ N1 = ge. For these orbits c is trivial therefore ge ∩ N1 = M̃0 and so ge ∩ N1 has one

irreducible component M̃0.

Below is a table which contains a representative for each orbit, the characteristics p for which

e ∈ N1 and the dimension of M̃0. A basis for ue is not stated but can be found in [LT11].
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Orbit Representative e Characteristic p Dimension of M̃0

G2(a1) e01 + e31 p ≥ 5 4

G2 e10 + e01 p ≥ 7 2

6.2 Orbit Ã1

For this orbit ge ∩N1 has one irreducible component M̃1.
e = e10

c ∼= sl2

eβ1 = e32

ge(2) ge(3)

u1 = e
v1 = e31

v2

M0 = a1U1 + b1V1 + b2V2

M1 = eβ1
+M0

M5
1 = 0 dim(M̃1) = 2 + 3 = 5

M5
0 = 0 dim(M̃0) = 3

For any ci, cj ∈ c ∩ N1 such that cj + ue ∈ N1, Lemma 2.3.5 states that if C · ci ⊂ C · cj then

C · (ci + ue) ⊂ C · (cj + ue). Since M1 corresponds to the unique maximal orbit in N1(c) and

eβ1 + ue ⊂ N1 then by Lemma 2.3.5 we have ue ⊂ eβ1 + ue. ThereforeM0 ⊂ M̃1.

6.3 Orbit A1

For this orbit we have ge ∩N1 = M̃1.
e = e01

c ∼= sl2

eβ1
= e21

ge(1) ge(2)

u1 = e32

u2

u3

u4

v1 = e
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M0 = a1U1 + · · ·+ a4U4 + b1V1

M1 = eβ1
+M0

M5
1 = 0⇔ a4 = 0 dim(M̃1) = 2− 1 + 5 = 6

M5
0 = 0 dim(M̃0) = 5

To showM0 ⊂ M̃1 we first note that, by identifying C with SL2, the cocharacter β∨1 : k× → C,

is given by β∨1 (t) =
(
t 0
0 t−1

)
. Now consider the set eβ1

+ {u ∈ ue : a4 = 0} ⊂ M̃1 then

Adβ∨1 (t)(eβ1
+ {u ∈ ue : a4 = 0}) ⊂ M̃1. By considering the action of β∨1 on ge(1), which is a

4-dimensional irreducible C-module and so is isomorphic to S3(k2), we get:

t2eβ1 + {u ∈ ue : a4 = 0} ⊂ M̃1

⇒ {u ∈ ue : a4 = 0} ⊂ M̃1

We can denote an element of {u ∈ ue : a4 = 0} by a series of column vectors as follows:


a1

a2

a3

0

 , b1


We can view kn as the symmetric tensor Sn−1(k2). Let ω1 = ( 1

0 ) and ω2 = ( 0
1 ). Then we consider

g(1) as S3(k2). To do this we identify u1 (respectively u2, u3 and u4) with the symmetric tensor

ω1⊗ω1⊗ω1 (respectively ω1⊗ω1⊗ω2, ω1⊗ω2⊗ω2 and ω2⊗ω2⊗ω2). This may require scaling

the ui by some (possibly different) factors. Now consider the element ( 1 0
λ 1 ) ∈ C, we want to

calculate ( 1 0
λ 1 ) ·

(
a1
a2
a3
0

)
. Since ( 1 0

λ 1 ) · ω1 = ω1 + λω2 and ( 1 0
λ 1 ) · ω2 = ω2 then

 1 0

λ 1

 (ω1 ⊗ ω1 ⊗ ω1) = (ω1 + λω2)⊗ (ω1 + λω2)⊗ (ω1 + λω2)

= (ω1 ⊗ ω1 ⊗ ω1) + 3λ(ω1 ⊗ ω1 ⊗ ω2)+

3λ2(ω1 ⊗ ω2 ⊗ ω2) + λ3(ω2 ⊗ ω2 ⊗ ω2) 1 0

λ 1

 (ω1 ⊗ ω1 ⊗ ω2) = (ω1 + λω2)⊗ (ω1 + λω2)⊗ ω2

= (ω1 ⊗ ω1 ⊗ ω2) + 2λ(ω1 ⊗ ω2 ⊗ ω2) + λ2(ω2 ⊗ ω2 ⊗ ω2) 1 0

λ 1

 (ω1 ⊗ ω2 ⊗ ω2) = (ω1 + λω2)⊗ ω2 ⊗ ω2

= (ω1 ⊗ ω2 ⊗ ω2) + λ(ω2 ⊗ ω2 ⊗ ω2) 1 0

λ 1

 (ω2 ⊗ ω2 ⊗ ω2) = ω2 ⊗ ω2 ⊗ ω2
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Therefore

 1 0

λ 1

 ·


a1

a2

a3

0

 =


a1

3λa1 + a2

3λ2a1 + 2λa2 + a3

λ3a1 + λ2a2 + λa3

.

Hence 


a1

3λa1 + a2

3λ2a1 + 2λa2 + a3

λ3a1 + λ2a2 + λa3

 , b1

 ⊂ M̃1

For all but finitely many a′1, a′2, a′3 and a′4 in k we can find λ, a1, a2 and a3 such that a′1 = a1,

a′2 = 3λa1 + a2 etc. Hence M̃1 contains a dense subset ofM0, soM0 ⊂ M̃1.

6.4 Irreducible Components of Cnil
1 (G2)

In this section we calculate the irreducible components of Cnil1 (G2). If Oe ⊂ N1 is distinguished

then C1(Oe) is an irreducible component of Cnil1 (g). For the remaining orbits Oei of G2 there

is an element in each irreducible component of gei ∩ N1 that is not contained in G · ei. In each

case ge ∩ N1 is irreducible. To show that an element e′ ∈ ge ∩ N1 is not contained in (G · e)

we find its Jordan normal form. This is done by considering the rank of successive powers of

its 7-dimensional representation. For the orbit A1 the element e01 + e21 in ge ∩ N1 has Jordan

normal form [32, 1] and so is contained in orbit G2(a1). Similarly for Ã1 the element e10 + e32

also has Jordan normal form [32, 1] and so also contained in G2(a1). Therefore in both cases

ge ∩N1 6⊂ G · e and so by Proposition 5.2.1 the irreducible components of Cnil1 (G2) are given by

p = 5 : Cnil1 (G2) = C1(G2(a1)).
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Chapter 7

F4 Results

In this chapter we give the details of the computations to answer Questions 1 and 2 for F4. We

group the nilpotent orbits of F4 into sections; for each orbit in a given section the arguments

used to find the irreducible components of ge ∩N1 are similar.

For each nilpotent orbit a representative e, as given by [LT11], is stated along with the form of

c and its simple root elements eβl . For the cocharacter λ, as given by [LT11], the highest weight

vectors of ge(λ; j) = ge(j) for the action of C on the positive part of ge are stated. We represent

this diagrammatically where an irreducible submodule is represented by a connected graph with

the highest weight vectors at the top. There is also be an explicit description of each Mi as

discussed in Chapter 5. At the end of each section the arguments to determine the irreducible

components of ge ∩N1 are presented.

The chapter concludes by presenting the arguments for determining the irreducible components

of Cnil1 (F4) for each characteristic p = 5, 7, 11.

7.1 Orbits F4, F4(a1), F4(a2) and F4(a3)

First we consider the distinguished orbits of F4. Since each of these orbits is distinguished, then

by Corollary 2.3.4 if e ∈ N1, then ge ⊂ N1 and so ge ∩ N1 = ge. For these orbits c is trivial

therefore ge ∩N1 = M̃0 and so ge ∩N1 has one irreducible component.

Below is a table which contains a representative for each orbit, the characteristics p for which

e ∈ N1 and the dimension of M̃0. A basis for ue is not stated but can be found in [LT11].

Orbit Representative e Characteristic p Dimension of M̃0

F4(a3) e0100 + e1120 + e1111 + e0121 p ≥ 5 12

F4(a2) e1110 + e0001 + e0120 + e0100 p ≥ 7 8

F4(a1) e0100 + e1000 + e0120 + e0001 p ≥ 11 6

F4 e1000 + e0100 + e0010 + e0001 p ≥ 13 4
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7.2 Orbits A2, Ã2, B2, C3(a1), B3 and C3

For each of these orbits ge∩N1 has one irreducible component with the exception of A2 for p = 5

and Ã2 for p = 7. The Ã2 case for p = 7 is considered in Section 7.4. In the A2 case for p = 5,

the irreducible components of ge ∩ N1 are M̃1 and M̃2 (see below for details). Otherwise the

method to show that M̃i ⊂ M̃j is the same and is considered at the end of this section.

Orbit A2

e = e1000 + e0100, f = 2f1000 + 2f0100

c ∼= sl3

eβ1
= e0001, eβ2

= e1231, eβ3
= [eβ1

, eβ2
].

ge(2) ge(4)

u1 = e1222

u2

u3 u4

u5

u6

β1

β1 β2

β2 β1

β2

v1 = e2342

v2

v3 v4

v5

v6

β2

β1 β2

β2 β1

β1

w1 = e x1 = e1100

M0 = a1U1 + · · ·+ a6U6 + b1V1 + · · ·+ b6V6 + c1W1 + d1X1

M1 = eβ1
+ eβ2

+M0

M2 = eβ3
+M0

Characteristic p = 5:

M5
1 = 0⇔ a6 = b6 = 0 dim(M̃1) = 6− 2 + 14 = 18

M5
2 = 0 dim(M̃2) = 4 + 14 = 18

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 6 + 14 = 20

For p = 5 we have dim(M̃1) = dim(M̃2) and clearly M̃1 6= M̃2. Therefore ge ∩ N1 has two

irreducible components M̃1 and M̃2 .

Orbit Ã2

e = e0010 + e0001, f = 2f0010 + 2f0001

c ∼= G2

eβ1
= e0111 − e0120, eβ2

= e1000
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ge(2) ge(4)

u1 = e

v1 = e1242

v2

v3

v4

v5

v6

v7

β1

β2

β1

β1

β2

β1

M0 = a1U1 + b1V1 + b2V2 + b3V3 + b4V4 + b5V5 + b6V6 + b7V7

Nilpotent Orbit in c Representative e of nilpotent orbit Mi label of e+M0

G2 eβ1 + eβ2 M1

G2(a1) eβ2
+ e3β1+β2

M2

Ã1 eβ1
M3

A1 eβ2
M4

Characteristic p = 5:

Since N (G2) = OG2(a1) for p = 5, we do not consider the regular orbit.

M5
2 = 0 dim(M̃2) = 10 + 8 = 18

Characteristic p = 7:

M7
1 = 0⇔ b7 = 0 dim(M̃1) = 12− 1 + 8 = 19

M5
2 = 0 dim(M̃2) = 10 + 8 = 18

Characteristic p = 11:

M11
1 = 0 dim(M̃1) = 12 + 8 = 20

Orbit B2

e = e0100 + e0010, f = 4f0100 + 3f0010

c ∼= sl2 ⊕ sl2

eβ1
= e0122, eβ2

= e2342

ge(2) ge(3) ge(4) g0(6)

u1 = e y1 = e0120

v1 = e1231

v2

w1 = e0121

w2

x1 = e1342

x2 x3

x4

β2 β1

β1 β2

β2 β1
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M0 = a1U1 + b1V1 + b2V2 + c1W1 + c2W2 + d1X1 + · · ·+ d4X4 + g1Y1

M1 = eβ1
+ eβ2

+M0

M2 = eβ1 +M0

M3 = eβ2 +M0

Characteristic p ≥ 5:

Mp
1 = 0 dim(M̃1) = 2 + 2 + 10 = 14

Orbit C3(a1)

e = e0001 + e0120 + e0100, f = 3f0001 + 4f0120 + f0100

c ∼= sl2

eβ1
= e2342

ge(2) ge(3)

s1 = e0110 + e0011 t1 = e0100 u1 = e

v1 = e1242 − e1222

v2

w1 = e1232

w2

ge(4) ge(5) ge(6)

x1 = e0111

y1 = e1342

y2

z1 = e0122

M0 = a1S1 + b1T1 + c1U1 + d1V1 + d2V2 + g1W1 + g2W2 + i1X1 + j1Y1 + j2Y2 + k1Z1

M1 = eβ1
+M0

Characteristic p ≥ 5:

Mp
1 = 0 dim(M̃1) = 11 + 2 = 13

Orbit B3

e = e1000 + e0100 + e0010, f = 6f1000 + 10f0100 + 6f0010

c ∼= sl2

eβ1
= e1111 − e0121
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ge(2) ge(6) ge(10)

u1 = e

v1 = e2342

v2

v3

v4

v5

w1 = e1220

M0 = a1U1 + b1V1 + · · ·+ b5V5 + c1W1

M1 = eβ1
+M0

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 2 + 7 = 9

Orbit C3

e = e0001 + e0010 + e0100, f = 5f0001 + 8f0010 + 9f0100

c ∼= sl2

eβ1
= e2342

ge(2) ge(3) ge(6) ge(9) ge(10)

u1 = e

v1 = e1231 − e1222

v2

w1 = e0120 − e0111

x1 = e1342

x2

y1 = e0122

M0 = a1U1 + b1V1 + b2V2 + c1W1 + d1X1 + d2X2 + g1Y1

M1 = eβ1 +M0

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 2 + 7 = 9

In each of these cases we haveMj = cj + ue ⊂ N1 for each j. If C · ci ⊂ C · cj then by Lemma

2.3.5 we have C · (ci + ue) ⊂ C · (cj + ue) i.e. M̃i ⊂ M̃j . In particular sinceM1 corresponds to

the unique maximal orbit in N1(c), (with the exception of Ã2 for p = 5 whereM2 is the maximal

orbit), it follows that in each case ge ∩N1 = M̃1, except for Ã2 for p = 5 where ge ∩N1 = M̃2.
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7.3 Orbits A2Ã1 and Ã2A1

For these orbits we have ge∩N1 = M̃1 with the exception of A2Ã1 for p = 5, 7 where ge∩N1 has

two irreducible components M̃0 and M̃1. For the cases Ã2A1 for p = 11 and A2Ã1 for p = 5, 7

the arguments are the same as in the previous section. For the remaining cases the required

results can be shown using the same argument as in Section 6.3.

Orbit A2Ã1

e = e1000 + e0100 + e0001, f = 2f1000 + 2f0100 + f0001

c ∼= sl2

eβ1
= 2e0122 + e1220 − e1121

ge(1) ge(2) ge(3) ge(4)

w1 = e

u1 = e1232

u2

u3

u4

v1 = e2342

v2

v3

v4

v5

x2

x1 = e1111

y1 = e1222

y2

y3

M0 = a1U1 + · · ·+ a4U4 + b1V1 + · · ·+ b5V5 + c1W1 + d1X1 + d2X2 + g1Y1 + · · ·+ g3Y3

M1 = eβ1
+M0

Characteristic p = 5, 7:

Mp
1 = 0⇔ a4 = 0, b5 = a2

3 dim(M̃1) = 2− 2 + 15 = 15

Mp
0 = 0 dim(M̃0) = 15

Characteristic p = 11:

M11
1 = 0⇔ a4 = 0 dim(M̃1) = 2− 1 + 15 = 16

Mp
0 = 0 dim(M̃0) = 15

Orbit Ã2A1

e = e0010 + e0001 + e1000, f = 2f0010 + 2f0001 + f1000.

c ∼= sl2

eβ1
= e1222 − e1231
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ge(1) ge(2) ge(3) ge(4) ge(5)

v1 = e1000 w1 = e

u1 = e2342

u2

u3

u4

x1 = e1121 − 2e0122

x2

y1 = e1242

y2

y3

z1 = e1122

z2

M0 = a1U1 + · · ·+ a4U4 + b1V1 + c1W1 + d1X1 + d2X2 + g1Y1 + · · ·+ g3Y3 + i1Z1 + i2Z2

M1 = eβ1
+M0

Characteristic p = 5:

M5
1 = 0⇔ a4 = 0 dim(M̃1) = 2− 1 + 13 = 14

M5
0 = 0 dim(M̃0) = 13

Characteristic p = 7:

M7
1 = 0⇔ a4 = 0 or d2 = 0 M̃1 has two irreducible components of dimension 2-1+13=14

M5
0 = 0 dim(M̃0) = 13

Characteristic p = 11:

M11
1 = 0 dim(M̃1) = 2 + 13 = 15

For Ã2A1 for p = 7 we have that M̃1 is the union of two irreducible components X1 and X2 of

dimension 14, where

X1 = C · (eβ1
+ {u ∈ ue : a4 = 0})

X2 = C · (eβ1
+ {u ∈ ue : d2 = 0})

By the argument in Section 6.3 we can show M̃0 ⊂ X1, and therefore M̃0 ⊂ M̃1. Hence ge∩N1

has two irreducible components X1 and X2.

7.4 Orbits A1Ã1, Ã2 when p = 7, A1 and Ã1.

For these remaining orbits each case is considered separately.

Orbit A1Ã1

e = e1000 + e0001, f = f1000 + f0001

c ∼= sl2 ⊕ sl2

eβ1 = e1242, eβ2 = e1110 − e0111.
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ge(1) ge(2) ge(3)

u1 = e2342

u5

u6

u10

u3

u8

u2

u7

u4

u9

β2

β2

β2

β2

β1
v1 = e1222

v2

v3

v4

v5

β2

β2

β2

β2

w = e

y1 = e1122

y2

β1

M0 = a1U1 + · · ·+ a10U10 + b1V1 + · · ·+ b5V5 + c1W1 + d1Y1 + d2Y2

M1 = eβ1
+ eβ2

+M0

M2 = eβ2
+M0

M3 = eβ1
+M0.

Characteristic p = 5:

M5
1 = 0⇔ a10 = 0, a5 = a9, b5 = a3a5 + 4a4a8 + 4a2

8 dim(M̃1) = 2 + 2− 3 + 18 = 19

M5
2 = 0⇔ a10 = a5 = 0, b5 = a3a9 − a4a8 dim(M̃2) = 2− 3 + 18 = 17

M5
3 = 0⇔ 4a6a8a10 + a6a

2
9 + a2

7a10 + 3a7a8a9 + a3
8 = 0 dim(M̃3) = 2− 1 + 18 = 19

M5
0 = 0 dim(M̃0) = 18

Characteristic p = 7, 11:

Mp
1 = 0⇔ a10 = 0 dim(M̃1) = 2 + 2− 1 + 18 = 21

Mp
2 = 0 dim(M̃2) = 2 + 18 = 20

Mp
3 = 0 dim(M̃3) = 2 + 18 = 20

Characteristic p = 5

Since M̃1 and M̃3 have the same dimension we only need to check if M̃2 ⊂ M̃1 and M̃0 ⊂ M̃3.

Note that M̃3 is irreducible as M3 is a hypersurface determined by an irreducible polynomial

in k[a1, . . . , a10] . This polynomial is irreducible because it is linear in a10 and the coefficient of

a10 has no common factors with the constant term. An element in C which is contained in the

copy of SL2 with root element eβ1
(resp. eβ2

) is subscripted by eβ1
(resp. eβ2

).

Firstly consider elements of M̃1 which have the form

eβ1
+ eβ2

+ {u ∈ ue : a5 = a9, a10 = 0, b5 = a3a5 − a4a8 − a2
8}.

Then applying Adβ∨1 (t) gives:

t2eβ1
+ eβ2

+ {u ∈ ue : a5 = t2a9, ta10 = 0, b5 = a3a9 − a4a8 − t2a2
8} ⊂ M̃1 ∀t 6= 0
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Therefore it we take the formal limit as t→ 0 we get

eβ2
+ {u ∈ ue : a5 = a10 = 0, b5 = a3a9 − a4a8} ⊂ M̃1

⇒ M̃2 ⊂ M̃1

To show that M̃0 ⊂ M̃3 let P (a1, . . . , a10) = 4a6a8a10 + a6a
2
9 + a2

7a10 + 3a7a8a9 + a3
8. Consider

elements in M̃3 of the form eβ1
+ {u ∈ ue : P (a1, . . . , a10) = 0}. Then applying Adβ∨1 (t) gives

t2eβ1
+ {u ∈ ue : t3P (a1, . . . , a10) = 0} ⊂ M̃3

⇒ {u ∈ ue : P (a1, . . . , a10) = 0} ⊂ M̃3

Let this set be X. Then X is an irreducible subset ofM0 of codimension 1. Then the dimension

of the set

{
Ad( 1 0

λ 1 )
eβ1

(X) : λ ∈ k

}
is strictly greater than the dimension of X. Therefore its

closure is equal to M̃0 and so M̃0 ⊂ M̃3. Therefore ge ∩ N1 has two irreducible components

M̃1 and M̃3, both of dimension 19.

Characteristic p = 7, 11

We just need to show that M̃2 ⊂ M̃1 and M̃3 ⊂ M̃1. The set eβ1
+ eβ2

+ {u ∈ ue : a10 = 0} is

contained in M̃1. We can denote elements of g(1) via ( a1 a2 ... a5
a6 a7 ... a10 ). For eβ1 + eβ2 + ( a1 ... a5

a6 ... a10 )

to be in N1 we require

(adeβ1 )(adeβ2 )4

 a1 . . . a5

a6 . . . a10

 = 0.

Therefore for any non-zero nilpotent element x ∈ Oeβ1 the condition for x+eβ2 +( a1 ... a5
a6 ... a10 ) ∈ N1

is given by

(adx)(adeβ2 )4

 a1 . . . a5

a6 . . . a10

 = 0.

Now

(adeβ2 )4

 a1 . . . a5

a6 . . . a10

 =

 24a5 0 . . . 0

24a10 0 . . . 0


So let x ∈ Oeβ1 be of the form x =

(
a5a10 −a25
a210 −a5a10

)
. Then

adx

 24a5 0 . . . 0

24a10 0 . . . 0

 = 0.

Therefore since ξx is also in Oeβ1 then ξx+ eβ2
+ ( a1 ... a5

a6 ... a10 ) is contained in M̃1 for any ξ 6= 0.

Taking the closure givesM2 ⊂ M̃1.

To show that M̃3 ⊂ M̃1 first we consider

Adβ∨2 (t)(eβ1 + eβ2 + {u ∈ ue : a14 = 0}) ⊂ M̃1

⇒ eβ1
+ t2eβ2

+ {u ∈ ue : t4a10 = 0} ⊂ M̃1

⇒ eβ1 + {u ∈ ue : a10 = 0} ⊂ M̃1
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Let this set be X. Then X is an irreducible subset of M3 of codimension 1. Then the dimension

of the set

{
Ad( 1 0

λ 1 )
eβ2

(X) : λ ∈ k

}
is strictly greater than the dimension of X. Therefore its

closure is equal to M̃3 and so M̃3 ⊂ M̃1. Therefore ge ∩ N1 has one irreducible component of

dimension 21.

Orbit Ã2 with p = 7

The details of this orbit are presented in section 7.4. By the methods used in Section 7.2 we

can see that M̃0 ⊂ M̃4 ⊂ M̃3 ⊂ M̃2, then ge ∩N1 has one irreducible component of dimension

20. All that remains to be shown is M̃2 ⊂ M̃1. To do this we consider a transverse slice to

e′ = eβ2 + e3β1+β2 in c. By embedding c = g2 in so7 via the action on the 7−dimensional module

we get

e′ =



0 0 0 0 1 0 0

0 −1 0 0 0 0

0 0 0 0 1

0 0 0 0

0 1 0

0 0

0


f ′ =



0

0 0

0 −2 0

0 0 0 0

2 0 0 0 0

0 0 0 0 2 0

0 0 2 0 0 0 0


Then the Slodowy slice to e′ in g2 is (by a computer calculation):

A = (cf
′
+ e′) ∩N1 =





0 0 0 0 1 0 0

0 0 −1 0 0 0 0

b 0 0 0 0 0 1

c −b 0 0 0 0 0

0 −c 0 0 0 1 0

d 0 c −2b 0 0 0

0 d 0 −2c b 0 0


: d2 = 4(b3 + c3)


We can now parametrize A. There is a surjective map given by

k[b, c, d]

(d2 − 4(b3 + c3))
→ k[3s4 + 6s2t2 − t4, 3s4 − 6s2t2 − t4, st(3s4 + t4)]

which sends b 7→ 3s4 + 6s2t2− t4 etc. To see this we just have to check that these polynomials in

s, t satisfy the equation d2− 4(b3 + c3) = 0. Since the two k-algebras are integral domains of the

same Krull dimension, the kernel of this map must be trivial and so the rings are isomorphic.

Therefore let As,t be the element of A with b = 1
4 (3s4 + 6s2t2 − t4), c = − 1

4 (3s4 − 6s2t2 − t4)

and d = 3
2st(3s

4 + t4) for s, t ∈ k. For (s, t) 6= (0, 0) we can show that As,t is contained in OG2

by considering its Jordan normal form. Hence As,t is conjugate to eβ1
+ eβ2

for all (s, t) 6= (0, 0).

The reductive part c of ge acts on ge(4). For x ∈ ge(4) the condition b7 = 0 is equivalent to
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(ad(eβ1
+ eβ2

))6(x) = 0. By considering v = (b1, b2, . . . , b7)t as a vector this condition becomes

ρ(eβ1 + eβ2)6(v) = 0, where ρ is the representation of c on ge(4).

Therefore we have

As,t + {u ∈ ue : A6
s,t(v) = 0, s, t ∈ k, (s, t) 6= (0, 0)} ⊂ M̃1

Then by a computation using [GAP12], the condition A6
s,t(v) = 0 gives us the following polyno-

mial

Ps,t : (s2 + 2st+ 3t2)2(s2 + 5st+ 3t2)2b1 + (s2 + st+ 3t2)2(s2 − st+ 3t2)b2

− st(s+ 2t)(s+ 5t)(s2 + 4t2)b4 + (s2 + st+ 3t2)(s2 − st+ 3t2)b6

+ (s2 + 2st+ 3t2)(s2 + 5st+ 3t2)b7 = 0

Now Ps,t is an irreducible polynomial in k[s, t, a1, b1, . . . , b7] since Ps,t is linear in the bi’s and

their coefficients have no common factors. Therefore the set X = {(s, t, a1, b1, . . . , b7) : Ps,t = 0}

is an irreducible hypersurface in A10 of dimension 9. Now {(0, 0, a1, b1, . . . , b7)} ⊂ X is a closed

subset of codimension 1 and so X\{(0, 0, a1, b1, . . . , b7) is a non-empty open subset of X. Since all

non-empty open subsets of an irreducible variety are dense then X\{(0, 0, a1, b1, . . . , b7)} = X.

Therefore A0,0 +X ⊂ M̃1 and so M̃2 ⊂ M̃1.

Orbit A1

e = e1000, f = f1000

c ∼= sp6

eβ1
= e0010, eβ2

= e0001, eβ3
= e1220.

ge(1) ge(2)

v1 = e2342

v2

v3

v4 v5

v6 v7

v8 v9

v10 v11

v12

v13

v14

β3

β2

β1β2

β3

β1

β2

β2

β1

β3

β1 β2

β2

β3

β1

β3

β1

u1 = e
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M0 = a1V1 + a2V2 + · · ·+ a14V14 + b1U1

Nilpotent Orbit in c Representative e of nilpotent orbit Mi label e+M0

[6] eβ1
+ eβ2

+ eβ3
M1

[4, 2] eβ2
+ eβ3

+ e2β1+2β2+β3
M2

[4, 12] eβ2
+ eβ3

M3

[32] eβ1 + eβ2 M4

[23] eβ1
+ eβ3

M5

[22, 12] eβ1+2β2+β3
M6

[2, 14] e2β1+2β2+β3
M7

Characteristic p = 5:

Since N1(sp6) = O[4,2] we do not consider the regular orbit for p = 5.

M5
2 = 0⇒ a14 = a10 = 0, a13 = 2a6 dim(M̃2) = 16− 3 + 15 = 28

M5
3 = 0⇒ a7 = a10 = a14 = 0 dim(M̃3) = 14− 3 + 15 = 26

M5
4 = 0⇒ a9 = a13 = 0 dim(M̃4) = 14− 2 + 15 = 27

M5
5 = 0⇒ a11 = 0 dim(M̃5) = 12− 1 + 15 = 26

M5
6 = 0 dim(M̃6) = 10 + 15 = 25

Characteristic p = 7:

M7
1 = 0⇒ a14 = 0, a11 = 4a10 dim(M̃1) = 18− 2 + 15 = 31

M7
2 = 0⇒ a14 = 0 dim(M̃2) = 16− 1 + 15 = 30

M7
3 = 0 dim(M̃3) = 14 + 15 = 29

M7
4 = 0 dim(M̃4) = 14 + 15 = 29

Characteristic p = 11:

M11
1 = 0⇒ a14 = 0 dim(M̃1) = 18− 1 + 15 = 32

M11
2 = 0 dim(M̃2) = 16 + 15 = 31

Characteristic p = 5

We claim that ge ∩ N1 = M̃2. To see this we need to show that M̃6 ⊂ M̃5 ⊂ M̃4 ⊂ M̃2 and

M̃3 ⊂ M̃2. The inclusion M̃7 ⊂ M̃6 holds by the same methods as demonstrated in Section

7.2.

To show that M̃3 ⊂ M̃2 consider

eβ2
+ eβ3

+ e2β1+2β2+β3
+ {u ∈ ue : a10 = a14 = 0, a13 = 2a6} ⊂ M̃2.

Now let β∨(t) = β∨1 (t)β∨2 (t)β∨3 (t) for t 6= 0. By considering γ-chains of weights in ge(1) = L(ω3)

where γ = 2β1 + 2β2 + β3 we get

Adβ∨(t)(eβ2
+ eβ3

+ e2β1+2β2+β3
+ {u ∈ ue : a10 = a14 = 0, a6 = 3a13}) ⊂ M̃2

⇒ eβ2
+ eβ3

+ t2e2β1+2β2+β3
+ {u ∈ ue : a10 = a14 = 0, a6 = 3t2a13} ⊂ M̃2
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By taking the limit as t→ 0 we get

eβ2
+ eβ3

+ {u ∈ ue : a6 = a10 = a14 = 0} ⊂ M̃2

⇒M3 ⊂ M̃2

To show that M̃4 ⊂ M̃2 we consider a transverse slice of e′ = eβ1
+ eβ2

in c. Specifically, we

consider e′ + cf
′
. With respect to the standard representation of elements of sp6 as six-by-six

matrices, we have

e′ =



0 1

0 1

0

0 −1

0 −1

0


, f ′ =



0

2 0

2 0

0

−2 0

−2 0


∈ c ∼= sp6

A GAP computation shows that:

A = (e′ + cf
′
) ∩N1 =





a 1 0 d 0 0

0 a 1 0 −d 0

0 0 a 0 0 d

b 0 0 −a −1 0

0 −b 0 0 −a −1

0 0 b 0 0 −a


: a2 + db = 0


We get an isomorphism of k[a, b, d]/(2a2 + 2db) with k[st,−t2, s2] since a2 + db is irreducible.

Therefore let As,t be the element in A with a = st, d = s2 and b = −t2 for (s, t) 6= (0, 0), so

As,t =



st 1 0 s2 0 0

0 st 1 0 −s2 0

0 0 st 0 0 s2

−t2 0 0 −st −1 0

0 t2 0 0 −st −1

0 0 −t2 0 0 −st


Note that the calculation of the transverse slice and parametrization are independent of charac-

teristic greater than or equal to 5.

The reductive part c acts on ge(1), so for x ∈ ge(1), the conditions a14 = a10 = 0 and a13 = 2a6

are equivalent to

ad(eβ2
+ eβ3

+ e2β1+2β2+β3
)4(x) = 0

[ad(eβ2 + eβ3 + e2β1+2β2+β3)3(x), x] = 0
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Then considering v = (a1, a2, . . . , a14)t as a vector these conditions become

ρ(eβ2
+ eβ3

+ e2β1+2β2+β3
)4(v) = 0

〈ρ(eβ2 + eβ3 + e2β1+2β2+β3)3(v), v〉 = 0

where 〈· , ·〉 is the unique alternating C-equivariant form on ge(1) = k14. Here ρ is the represen-

tation of c on ge(1). Let T = ρ(As,t); then by a [GAP12] calculation T 4(v) = 0 implies

a9 = s2a12 − sta7 (7.1)

a13 = sta12 − t2a7 (7.2)

Now after substituting (7.1) and (7.2) then

T 3(v) =



s6a14 + 2s5ta10 + 4s5ta11 + 3s4t2a4 + 2s4t2a5 + 2s3t3a1

2s2a10 + 2s2a11 + sta4 + 3sta5 + a7

4s2a12 + sta7

s5ta14 + 2s4t2a10 + 4s4t2a11 + 3s3t3a4 + 2s3t3a5 + 2s2t4a1

3s5ta14 + s4t2a10 + 2s4t2a11 + 4s3t3a4 + s3t3a5s
2t4a1

2sta10 + 2sta11 + t2a4 + 3t2a5 + a12

0

4sta12 + t2a7

0

2s4t2a14 + s3t3a10 + 2s3t3a11 + 4s2t4a4 + s2t4a5st
5a1

0

0

3s3t3a14 + s2t4a10 + 2s2t4a11 + 4st5a4 + st5a5 + t6a1


So 〈T 3(u), u〉 = 0 implies

4s6a2
14 + 4s5ta10a14 + 2s5ta11a14 + 4s4t2a5a14 + 2s4t2a2

10 + s4t2a10a14 + 4s4t2a2
11

+ s3t3a1a14 + 2s3t3a4a11 + 4s3t3a5a10 + s3t3a5a11 + 3s2t4a1a10 + 4s2t4a1a11 + s2t4a2
4

+ 2s2t4a4a5 + 2s2t4a2
5 + 3st5a1a14 + 3st5a1a5 + t6a2

1 + s2a2
12 + 3sta7a12 + t2a2

7 = 0

Letting t = ξs gives a13 = ξs2a12 − ξs2a7, a9 = s2a12 − ξs2a7 and

s2a2
12 − 2ξs2a7a12 + ξ2s2a2

7 + s6(4a2
14 + 4ξa10a14 + . . . ) = 0

⇒ a2
12 − 2ξa7a12 + ξ2a2

7 + s4(4a142 + 4ξa10a14 + . . . ) = 0

Therefore

As,ξs + {u ∈ ue : a13 = ξs2a12 − ξs2a7,a9 = s2a12 − ξs2a7,

(a12 − ξa7)2 + s4(4a142 + 4ξa10a14 + . . . ) = 0} ⊂ M̃2
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Taking the limit at s→ 0 we get

A0,0 + {u ∈ ue : a9 = a13 = 0, a12 = ξa7} ⊂ M̃2

Therefore as ξ varies then a12 can take any value as long as a7 does not equal zero. Hence

A0,0 + {u ∈ ue : a9 = a13 = 0} ⊂ M̃2

⇒ M̃4 ⊂ M̃2

Next we show that M̃5 ⊂ M̃4. It is straightforward to see by looking at the weight graph of L(ω3)

that if e′ is of type [32] then the condition e′+x ∈ N1 for x ∈ ge(1) is equivalent to ad(e′)4(x) = 0.

In particular, if we have e′ = eβ1+β2+β3 + e2β2+β3 then this holds for x = a1u1 + . . . if and only

if a14 = 0. Now

e′ =

 0 I3

0 0

 f ′ =

 0 0

I3 0


then by a computer calculation a transverse slice of e′ in c is given by

A = (cf
′
+ e′) ∩N1 =





a b 0 1 0 0

d 0 −b 0 1 0

0 −d −a 0 0 1

3bd 2ab 3b2 a b 0

2ad 4bd 2ab d 0 −b

3d2 2ad 3bd 0 −d −a


: a2 + 2bd = 0


We get an isomorphism of k[a, b, d]/(a2+2bd) with k[st, 1

2s
2,−t2] since a2+2bd = 0 is irreducible.

Therefore let As,t be the element in A with a = st, b = 1
2s

2, d = −t2 and (s, t) 6= (0, 0) giving

As,t =



st 1
2s

2 0 1 0 0

−t2 0 − 1
2s

2 0 1 0

0 t2 −st 0 0 1

− 3
2s

2t2 s3t 3
4s

4 st 1
2s

2 0

−2st3 −2s2t2 s3t −t2 0 − 1
2s

2

3t4 −2st3 − 3
2s

2t2 0 t2 −st


Let ρ be the representation of L(ω3) ∼= k14 and let Ts,t = ρ(As,t) and u = (a1, a2, . . . , a14)t. Now

the condition ad(e′)4(x) = 0 is equivalent to T 4(u) = 0. A computer calculation using [GAP12]

shows that T 4(u) = 0 if and only if

P1 : t4a7 + 2st3a9 + s2t2a10 + 4s2t2a11 + 4s3ta12 + 4s4a13 = 0

P2 : 3st5a2 + 4s2t4a3 + 2s3t3a4 + 3s3t3a5 + 3s4t2a6 + t4a7 + 2s5ta8 + st3a9

+ 3s3ta12 + s4a13 + 2sta14 = 0
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By rearranging and letting t = ξs for some ξ ∈ k× considered as a constant, gives

Q1,ξ : a13 = ξ4a7 + 2ξ3a9 + ξ2a10 + 4ξ2a11 + 4ξa12

Q2,s,ξ : a14 = 2s2(ξ3a7 + 2ξa9 + ξa10 + 4ξa11 + 4a12 + 3a12 + ξa9 + ξ3a7)

+ 2s4(2a8 + 3ξa6 + 3ξ2a5 + 2ξ2a4 + 4ξ3a3 + 3ξa2).

Therefore

As,ξs + {u ∈ ue : Q1,ξ = Q2,s,ξ = 0} ⊂ M̃4

⇒ A0,0 + {u ∈ ue : a14 = 0, a13 = ξ4a7 + · · · : ξ ∈ k×} ⊂ M̃4

As ξ varies, a13 can take on any value (assuming a7, a9, . . . , a12 are not all zero) and so taking

the closure we obtainM5 ⊂ M̃4.

Next we want to show that M̃6 ⊂ M̃5. Elements of the form eβ1 + eβ3 + {u ∈ ue : a11 = 0} are

contained in M̃3. Then

Adβ∨3 (t)(eβ1
+ eβ3

+ {u ∈ ue : a11 = 0}) = eβ1
+ t2eβ3

+ {u ∈ ue : a11 = 0} ⊂ M̃5

⇒ eβ1 + {u ∈ ue : a11 = 0} ⊂ M̃5 as t→ 0

Now let ξ ∈ k and consider

AdE−β3 (ξ)(eβ1
+ {u ∈ ue : a11 = 0}) = eβ1

+ {u ∈ ue : a11 = ξa9} ⊂ M̃5

Then as ξ varies a11 can take any value (assuming a9 is not zero). Therefore eβ1 + ue ⊂ M̃1.

Since eβ1
∈ Oeβ1+2β2+β3

then M̃6 ⊂ M̃5.

Characteristic p = 7

In this case we claim that ge ∩ N1 = M̃1 which requires us to show that M̃3 and M̃2 are

contained in M̃1 and M̃4 is contained in M̃2. The other inclusions can be shown using similar

methods to Section 7.2.

To show that M̃2 ⊂ M̃1 consider a transverse slice for e′ = 3eβ2
+ 4eβ3

+ e2β1+2β2+β3
in c. We

consider this element of the subregular orbit in c instead of the representative e to make the

calculation slightly easier. Let

e′ =



0 0 0 0 0 1

0 0 3 0 0 0

0 0 0 4 0 0

0 0 0 0 −3 0

0 0 0 0 0 0

0 0 0 0 0 0


f ′ =



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

1 0 0 0 0 0


∈ c ∼= sp6
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Then by a computer calculation we get:

A = (cf
′
+e′)∩N1 =





0 a 0 0 0 1

0 0 3 0 0 0

0 c 0 4 0 0

a 0 c 0 −3 0

j 7
9a

2 + 91
36c

2 0 −c 0 −a

−10c j a 0 0 0


: 160a2c+ 250c3 + 2j9 = 0


We get an isomorphism of k[a, c, j]/(160a2c+250c3 +2j9) with k[ 1

4s
2t2,− 2

5 (s4− t4), 2
3st(s

t+ t4)]

since −a2c − 2c3 + 2j2 is irreducible. Therefore let As,t be the element in A with c = s2t2,

a = 2(s4 − t4) and j = 3st(s4 + t4) for s, t ∈ k and (s, t) 6= (0, 0).

As,t =



0 1
4 (s4 − t4) 0 0 0 1

0 0 3 0 0 0

0 − 2
5s

2t2 0 4 0 0

1
4 (s4 − t4) 0 − 2

5s
2t2 0 −3 0

2
3st(s

4 + t4) 7
144 (s4 − t4) + 91

225s
2t2 0 2

5s
2t2 0 − 1

4 (s4 − t4)

4s2t2 2
3st(s

4 + t4) 1
4 (s4 − t4) 0 0 0


Note that the computation of the intersection (cf

′
+e′)∩N1 and parametrization are independent

of characteristic greater than or equal to 7 although some coefficients disappear modulo 7.

The conditions a14 = 0 and a11 = 4a10 are easily seen to be equivalent to the condition ad(eβ1
+

eβ2
+eβ3

)6(x) = 0 for x ∈ ge(1). By considering (a1, . . . , a14)t as a vector this condition becomes

ρ(e′)6(u) = 0 where ρ is the representative of c of ge(1). Using [GAP12], the condition T 6(u) = 0,

where T = ρ(As,t), gives the polynomials

P1 : (4s9t2 + 3s5t6 + 5st10)a1 + (2s8t+ s4t5 + 4t9)a2 + (2s7 + 5s3t4)a3 + 3s6t3a4

+ (2s2t3)a5 + (s5t2 + 6st6)a6 + (3st2)a7 + (4s8t+ 3s4t5)a8

+ (5s4t+ 2t5)a9 + (s7 + s3t4)a10 + 3s3a11 + st2a13 + 5ta14 = 0

P2 : (2s10t+ 4s6t5 + 3s2t9)a1 + (4s9 + s5t4 + 2st8)a2 + (2s4t3 + 5t7)a3 + 4s3t6a4

+ 2s3t2a5 + (6s6t+ s2t5)a6 + 4s2ta7 + (3s5t4 + 4st8)a8 + (5s5 + 2st4)a9

+ (6s4t3 + 6t7)a10 + 3t3a11 + 6s2ta13 + 5sa14 = 0

Let Q1 = stP1+P2

s2−t2 and Q2 = stP1−P2

s2+t2 and set t = ξs. By considering Q1−Q2

s2 we get

a14 = −1

5
s2(6ξa13 + 3ξ3a11 + (6s4ξ7 + 6s4ξ3)a10 + . . . )

Similarly by considering ξ2(Q1−Q2)−(Q1+Q2)
s4ξ we get

a13 = − 1

5ξ2
(ξa7 + 3ξ4a11 + 4a11 + s4((6ξ8 + 5ξ4)a10 + (4s2ξ9 + 3s2ξ)a8 + . . . ))
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Therefore

Ts,ξs + {u ∈ ue : a14, a13 are as above } ⊂ M̃1 ∀ξ 6= 0

As ξ varies a13 can take any value (assuming a11 and a7 are not both zero), therefore taking the

closure we obtain T0,0 + {u ∈ ue : a14 = 0} ⊂ M̃1 and soM2 ⊂ M̃1.

Next we want to show that M̃3 ⊂ M̃2. By conjugating eβ2
+eβ3

+e2β1+2β2+β3
+{u ∈ ue : a14 = 0}

by (2β1+2β2+β3)∨(t), as we did for p = 5, we can show that eβ2
+eβ3

+{u ∈ ue : a14 = 0} ⊂ M̃2.

Then for ξ ∈ k×

AdE−2β1−2β2−β3 (ξ)(eβ2 + eβ3 + {u ∈ ue : a14 = 0}) ⊂ M̃2 for any ξ ∈ k×

⇒ eβ2
+ eβ3

+ {u ∈ ue : a14 = 2ξa6} ⊂ M̃2 for any ξ

⇒ M̃3 ⊂ M̃2

Finally we need to show that M̃4 ⊂ M̃2. To do this we need to consider the transverse slice of

e′ = eβ1 + eβ2 which is given in the p = 5 case. Now it is easy to see that the condition a14 = 0 is

equivalent to ad(eβ2
+ eβ3

+ e2β1+2β2+β3
)5(x) = 0. Therefore for v = (a1, . . . , a14)t this condition

is equivalent to ρ(eβ2
+ eβ3

+ e2β1+2β2+β3
)5(v) = 0 where ρ is the representation of c on ge(1).

Therefore we need to consider T 5(v) = 0, for T = ρ(As,t), which gives

2ta8 = sa13

Therefore for ξ ∈ k×

As,t + {u ∈ ue : 2ta8 = sa13} ⊂ M̃2

⇒ As,ξs + {u ∈ ue : 2ξsa8 = sa13} ⊂ M̃2 by t = ξs

⇒ As,ξs + {u ∈ ue : 2ξa8 = a13} ⊂ M̃2

Then as ξ varies a13 can take any value as long as a8 does not equal zero. Therefore taking the

closure givesM4 ⊂ M̃2.

Characteristic p = 11

In this case we only need to show M̃2 ⊂ M̃1 since the other inclusions can be shown by the same

method as in Section 7.2, then ge ∩ N1 has one irreducible component of dimension 32. To do

this we find the transverse slice of e′ = 3eβ2
+ 4eβ3

+ e2β1+2β2+β3
in c. The computation of this

slice from the p = 7 case is also valid here. The condition that a14 = 0 implies that T 9
s,t(u) = 0

which gives the condition

Ps,t : st(4s12 + s8t4 − s4t8 + 7t12)a1 + 8(s4 + t4)(s4 − t4)2a2 + 7s3t3(s4 − t4)a3

+ 3s2t2(s4 + t4)(s4 − t4)a4 + 8s2t2(s4 + t4)a5 + st(8t8 + s4t4 + 8s8)a6 + 5st(s4 − t4)a7

+ 5(s4 + 2t4)(s4 + 5t4)a9 + s3t3a11 + s2t2a12 + 7st(s4 − t4)a13 + 3(s4 + t4)a14 = 0
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Now Ps,t is an irreducible polynomial in k[s, t, a1, . . . , a14] as it is linear in the ai’s and its coef-

ficients have no common factors. Therefore X = {(s, t, a1, . . . , a14) : Ps,t = 0} is an irreducible

hypersurface with dimension 15. The subset (0, 0, a1, . . . , a14) has codimension 1 in X, so its

complement is dense in X. Then it follows that A0,0 + ue =M2 is contained in M̃1.

Orbit Ã1

e = e0001, f = f0001

c ∼= sl4

eβ1 = e1000, eβ2 = e0100, eβ3 = e1242.

ge(1) ge(2)

u1 = e1111

u2

u3

u4

β1

β2

β3

v1 = e1232

v2

v3

v4

β3

β2

β1

w1 = e1222

w2

w3 w4

w5

w6

β2

β1β3

β3β1

β2

z1 = e

M0 = a1U1 + · · ·+ a4U4 + b1V1 + · · ·+ b4V4 + c1W1 + · · ·+ c6W6 + d1Z1

M1 = eβ1
+ eβ2

+ eβ3
+M0

M2 = eβ1 + eβ2 +M0

M3 = eβ1 + eβ3 +M0

M4 = eβ1
+M0

Characteristic p = 5:

M5
1 = 0⇒ b4 = a4 = 0, c6 = a2

3 + b23 dim(M̃1) = 12− 3 + 15 = 24

M5
2 = 0⇒ a3 = b4 = 0 dim(M̃2) = 10− 2 + 15 = 23

M5
3 = 0 dim(M̃3) = 8 + 15 = 23

Characteristic p = 7:

M7
1 = 0⇒ a2

4 + b24 = 0 dim(M̃1) = 12− 1 + 15 = 26

M7
2 = 0 dim(M̃2) = 10 + 15 = 25

Characteristic p = 11:

Mp
1 = 0 dim(M̃1) = 12 + 15 = 27

By similar methods as demonstrated in Section 7.2 we can show that ge∩N1 = M̃1 when p = 11.
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Characteristic p = 5

We have M̃0 ⊂ M̃4 ⊂ M̃3 by the same method in Section 7.2. Therefore we only need to show

M̃3 ⊂ M̃1 and M̃2 ⊂ M̃1. Then ge ∩N1 has one irreducible component of dimension 24.

To show M̃2 ⊂ M̃1 then we consider the transverse slice of e′ = eβ1 + eβ2 where

e′ =


0 1 0 0

0 1 0

0 0

0

 f ′ =


0

2 0

0 2 0

0 0 0 0


Then by a computer calculation

A = (e′ + cf
′
) ∩N1 =




j 1 0 0

−3j2 j 1 0

−3j2 20j3 j k

l 0 0 −3j

 : 81j4 + kl = 0 ∈ k


We get an isomorphism of k[j, k, l]/(81j4 + kl) with k[st,−81s4, t4] since 81j4 + kl = 0 is ir-

reducible. Therefore let As,t be the element in A with j = st, k = −81s4 and l = t4 for

(s, t) 6= (0, 0).

As,t =




st 1 0 0

−3s2t2 st 1 0

20s3t3 −3s2t2 st −81s4

t4 0 0 −3st

 s, t ∈ k


Let ε = eβ1 + eβ2 + eβ3 ; for any u, v ∈ ge(1) and w ∈ ge(2), the conditions a4 = b4 = 0 and

c6 = a2
3 + b23 are equivalent to

ad(ε)3(u) = 0

ad(ε)3(v) = 0

1

2
ad(ε)4(w) = [ad(ε)2(u), ad(ε)(u)] + [ad(ε)2(v), ad(ε)(v)]

Consider u = (a1, a2, a3, a4)t, v = (b4, b3, b2, b1)t and w = (c1, . . . , c6)t as vectors, the sl4 acts on

the left of u so ad(ε)(u) = ε · u. Similarly sl4 acts on the right of v given by ad(ε)(v) = v(−ε).

The conditions above, on replacing ε by As,t, are equivalent to

A3
s,t(u) = 0 (7.3)

(v)(−A3
s,t) = 0 (7.4)

1

2
T 4
s,t(w) = A2

s,t(u) ∧As,t(u) + (v)A2
s,t ∧ (v)(−As,t) (7.5)

where Ts,t = Λ2(As,t). A computer calculation using [GAP12] shows that the conditions (7.3)
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and (7.4) hold if and only if

4s2t3a1 − st2a2 + ta3 − 27s3a4 = 0

3sb4 − 3s2tb3 + 12s3t3b2 + t3b1 = 0

If we let a4 = tx4 and b1 = sx1 these become

a3 = −4s2t2a1 + sta2 + 27s3x4

3b4 = 3stb3 − 12s2t2b2 − t3x1

Next we find the condition which is implied by equation (7.5). First let U be the irreducible

module of ge(1) with highest weight ω1, and let the other module of ge(1) be V . Then the basis

for Λ2U and Λ2V respectively are given by the diagrams below.

u1 ∧ u2

u1 ∧ u3

u1 ∧ u4 u2 ∧ u3

u2 ∧ u4

u3 ∧ u4

fβ2

fβ1fβ3

fβ3
fβ1

fβ2

v1 ∧ v2

−v1 ∧ v3

v2 ∧ v3 v1 ∧ v4

−v2 ∧ v4

v3 ∧ v4

−fβ2

−fβ1
−fβ3

−fβ3
−fβ1

−fβ2

Hence vA2
s,t ∧ v(−As,t) and A2

s,tu ∧As,tu are respectively

(−2st2a1 + ta2 + 9s2x4)2(−s2u1 ∧ u2 + 2s3tu1 ∧ u3 − t2u1 ∧ u4 + 2s4t2u2 ∧ u3

− 2st3u2 ∧ u4 + 2s2t4u3 ∧ u4)

(t2x1 + 18s2tb2 − 9sb3)2(−s2u1 ∧ u2 + 2s3tu1 ∧ u3 − t2u1 ∧ u4 + 2s4t2u2 ∧ u3

+ 3st3u2 ∧ u4 + 2s2t4u3 ∧ u4)

Finally we need to calculate the matrix Ts,t for As,t acting on w. Let W be the irreducible 6-

dimensional module of ge(2). Then we can considerW as Λ2U with basis given by: w1 = u1∧u2,

w2 = u1 ∧ u3, w3 = u1 ∧ u4, w4 = u2 ∧ u3, w5 = u2 ∧ u4 and w6 = u3 ∧ u4. Then

As,t · w1 = (As,t · u1) ∧ u2 + u1 ∧ (As,t · u2)

= (stu1 + 2s2t2u2 + t4u4) ∧ u2 + u1 ∧ (u1 + stu2 + 2s2t2u3)

= 2stw1 + 2s2t2w2 − t4w5

As,t · w2 = w1 + 2stw2 + 2s2t2w4 − t4w6

As,t · w3 = −s4w2 + 3stw3 + 2s2t2w6

As,t · w4 = w2 + 2stw4
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As,t · w5 = w3 − s4w4 + 3stw5 + 2s2t2w6

As,t · w6 = w5 + 3stw6

So let

Ts,t =



2st 1 0 0 0 0

2s2t2 2st −s4 1 0 0

0 0 3st 0 1 0

0 2s2t2 0 2st −s4 0

−t4 0 2s2t2 0 3st 1

0 −t4 0 0 2s2t2 3st


Then

T 4
st(w) = (2s2t4c1 + 2st3c2 + 2s4t2c3 + 4t2c4 + 3s3tc5 + 4s2c6)

(2s2w1 + s3tw2 + 2t2w3 + s4t2w4 + 4st3w5 + s2t4w6)

Therefore the condition (7.5) gives

Ps,t : 2s2t4c1 + 2st3c2 + 2s4t2c3 + 4t2c4 + 3s3tc5 + 4s2c6 =

− (t2x1 + 18s2tb2 − 9sb3)2 − (−2st2a1 + ta2 + 9s3x4)2

Letting t = ξs gives the conditions

a3 = s2(−4ξ2s2a1 + ξa2 + 27s3x4)

3b4 = ξs2(3b3 − 12s2ξb2 − ξ2sx1)

1

s2
Ps,ξs : 4c6 = −4ξ2c4 − 81b23 − ξ2a2

2 + s2(−2ξ4s4c1 − 2ξ2s2c2 + . . . )

Therefore

As,ξs + {u ∈ ue : a3 = s2(−4ξ2s2a1 + ξa2 + 27s3x4),

3b4 = ξs2(3b3 − 12s2ξb2 − ξ2sx1),Ps,ξs} ⊂ M̃1

Taking the limit at s→ 0 gives

A0,0 + {u ∈ ue : a3 = b4 = 0, 4c6 = −4ξ2c4 − 81b23 − ξ2a2
2} ⊂ M̃1

As ξ varies then c6 can take any value, (assuming that c4 and a2 are not both zero). Therefore

taking the closure we obtain

A0,0 + {u ∈ ue : a3 = b4 = 0} ⊂ M̃1

⇒ M̃2 ⊂ M̃1

86



Finally we want to show that M̃3 ⊂ M̃1. To do this let

e′ =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , f ′ =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


Then (f ′ + ce

′
) = {(A B

I A ) : A,B ∈ SL2} and so

(f ′ + ce
′
) ∩N =


 A B

I A

 :
det(B) = −3(detA)2, trace(B) = 2det(A),

[A, [A,B]] = −4(detA)(B +A2)


Now

A =




x 0 −x2 4x4/y

0 −x y −x2

1 0 x 0

0 1 0 −x

x, y 6= 0 ∈ k


⊂ (f ′ + ce

′
) ∩N

Then (f ′+ ce
′
)∩N =

{
AdλA : λ =

( g 0
0 g

)
, g ∈ SL2

}
since the conditions to define (f ′+ ce

′
)∩N

are invariant under Ad(G). When x 6= 0 then it is easy to check that the elements of this set are

contained in Oreg(sl4). Let As,t be the element in A with x = st and y = 2s4 where s 6= 0 giving

As,t =


st 0 −s2t2 2t4

0 −st 2s4 −s2t2

1 0 st 0

0 1 0 −st


As in the previous calculation, the conditions a4 = b4 = 0 and c6 = a2

3 + b23 are equivalent to

ad(e)3(u) = 0 (7.6)

ad(e)3(v) = 0 (7.7)

1

2
ad(e)4(w) = ad(e)2(v) ∧ ad(e) + ad(e)2(u) ∧ ad(e)(v). (7.8)

for e = eβ1 + eβ2 + eβ3 . Therefore the conditions A3
s,t(u) = 0 and (v)A3

s,t = 0 give respectively

a1 =
−t2

s2
a2 + sta3 −

t3

s
a4

b1 =
t3

s
b4 − stb3 −

t2

s3
b2

Now by the same method as the previous argument we can find the matrix Ts,t for As,t acting

on w.

Ts,t =



0 2s4 −s2t2 s2t2 −2t4 0

0 2st 0 0 0 −2t4

1 0 0 0 0 −s2t2

−1 0 0 0 −2st 2s4

0 0 1 −1 0 0
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Therefore

T 4
s,t(w) = 8(−stc1 + s4c2 + t4c5 − s3t3c6)(s3t3w1 + t4w2 + s4w5 + stw6)

Finally T 2
s,t(u) ∧ Ts,t(u) and (v)T 2

s,t ∧ (v)Ts,t are as follows:

−4(s3a3 − ta2)2(st3u1 ∧ u2 +
t4

s2
u1 ∧ u3 + s3u2 ∧ u4 +

t

s
u3 ∧ u4)

−4(s3b3 + tb2)2(st3u1 ∧ u2 +
t4

s2
u1 ∧ u3 + s2u2 ∧ u4 +

t

s
u3 ∧ u4)

So the condition (7.8) is equivalent to

Ps,t : s3t3(−stc1 + s4c2 + t4c5 − s3t3c6) = −st3(s3a3 − ta2)2 − st3(s3b3 + tb2)2

Let t = ξs; then we get

a1 = −ξ2a2 + ξs2a3 − ξ3s2a4

b1 = −ξ2sb4 − ξs2b3 − ξb2

Ps,ξs : ξs2c1 + s4c2 + ξ4s4c5 − ξ3s6c6 = −(s2a3 − ξa2)2 − (s2b3 + ξb2)2

Therefore

As, ξs+ {u ∈ ue : a1 = −ξ2a2 + ξs2a3 − ξ3s2a4, b1 = −ξ2sb4 − ξs2b3 − ξb2, Ps,ξs} ⊂ M̃1

⇒ A0,0 + {u ∈ ue : a1 = −ξ2a2, b1 = −ξ2b2, a
2
2 = −b22} ⊂ M̃1

⇒ Ad

 g 0

0 g

(A0,0 + {u ∈ ue : a1 = −ξ2a2, b1 = −ξ2b2, b2 = 2a2}
)
⊂ M̃1

for g ∈ SL2. Since
{( g 0

0 g

)
: g ∈ SL2

}
centralizes A0,0 = f ′ then to showM3 ⊂ M̃1 it suffices to

show thatAd
 0 g

g 0

 : g ∈ SL2

 · {u ∈ ue : a1 = −ξ2a2, b1 = −ξ2b2, b2 = 2a2} = ue

Let x = a2, y = −ξa2 and let π be the map π : SL2 × k2 → k2 × (k2)∗ which sends (g, ( xy )) to(
g ( xy ) , 2 ( y x ) g−1

)
, where (k2)∗ represents the dual of k2. Then the fibre

π−1

 x

y

 , 2
(
y x

) =


 α 0

0 1/α

 ,

 1/αx

αy


The dimension of this fibre is 1 so by Theorem 5.3.4 the dimension of the image of π is greater

than or equal to 5− 1 = 4. Since k2 × (k2)∗ has dimension 4 then the dimension of the image of

π equals 4.

As we did in Section 6.3, we can represent an element in ue such that a1 = −ξ2a2, b1 = −ξ2b2
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and b2 = 2a2 by a series of matrices as follows:


−ξ2a2

a2

a3

a4

 ,
(
b4 b3 2a2 −2ξ2a2

)
,



c1

c2

c3 c4

c5

c6


Therefore

Ad

 g 0

0 g





−ξ2a2

a2

a3

a4

 ,
(
b4 b3 2a2 −2ξ2a2

)
,



c1

c2

c3 c4

c5

c6





=


g

 −ξ2s

a2


g

 a3

a4



 ,
( (

b4 b3

)
g−1 2

(
a2 −ξ2a2

)
g−1

)
+

Ad

 g 0

0 g




c1

c2

c3 c4

c5

c6


Then by the fibre argument this has dimension 14 and so is equal to ue.

Characteristic p = 7

Now eβ1 + eβ2 + eβ3 + {u ∈ ue : a2
4 + b24 = 0} ⊂ M̃1 and let β∨(t) = β∨1 (t)β∨2 (t2)β∨3 (t3). Then

Adβ∨(t) gives

eβ1 + eβ2 + t2eβ3 + {u ∈ ue : t6a2
4 + t2b24 = 0} ⊂ M̃1

⇒ eβ1
+ eβ2

+ t2eβ3
+ {u ∈ ue : t4a2

4 + b24 = 0} ⊂ M̃1

Taking the limit at t→ 0 gives eβ1 +eβ2 +{u ∈ ue : b4 = 0} ⊂ M̃1. Then for ξ ∈ k×, AdEβ2+β3
(ξ)

gives

eβ1
+ eβ2

+ {u ∈ ue : b4 = ξb3} ⊂ M̃1

Then by taking the closure we getM2 ⊂ M̃1.
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7.5 Irreducible Components of Cnil1 (F4)

In this section we calculate the irreducible components of Cnil1 (F4). Above we have calculated

the irreducible components X(j)
i of gei ∩N1 for each nilpotent orbit Oei of F4. Then by Lemma

5.1.1 we have

Cnil1 (g) =
⋃
G · (ei, X(j)

i ) for i = 1, . . . ,m, j = 1, . . . , ni.

By Proposition 5.2.1, a necessary condition for G · (ei, X(j)
i ) to be an irreducible component of

Cnil1 (F4) is that X(j)
i ⊂ (G · ei). Now if Oei ⊂ N1 is distinguished then C1(Oei) is an irreducible

component of Cnil1 (g). For the remaining orbits Oei of F4 we can verify computationally that

there is an element in each irreducible component of gei ∩ N1 that is not contained in G · ei.

Therefore the irreducible components of Cnil1 (F4) are given by

p = 5 : Cnil1 (F4) = C1(F4(a3))

p = 7 : Cnil1 (F4) = C1(F4(a3)) ∪ C1(F4(a2))

p = 11 : Cnil1 (F4) = C1(F4(a3)) ∪ C1(F4(a2)) ∪ C1(F4(a1))

An element in each irreducible component of ge∩N1 which is not contained in G · e is specified in

Table 7.1. To show that an element is not contained in (G · e) we found its Jordan normal form.

This was done by considering the rank of successive powers of its 26-dimensional representation.
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Orbit Characteristic

Irreducible

Component

X

Element x in X JNF of x

Nilpotent Orbit

which

contains x

A1

5 M̃2 eβ2 + eβ3 + e2β1+2β2+β3 [52, 42, 3, 22, 1] C3(a1)

7 M̃1 eβ1 + eβ2 + eβ3 [72, 62] C3

≥ 11 M̃1 eβ1
+ eβ2

+ eβ3
[9, 62, 5] C3

Ã1 ≥ 5 M̃1 e0 + eβ1 [33, 26, 17] A1Ã1

A1Ã1 ≥ 5
M̃1 eβ1 + eβ2 [5, 42, 33, 22] Ã2A1

M̃3 eβ1 + e1100 [36, 18] A2

A2 ≥ 5
M̃1 eβ1 + eβ2 [5, 37] Ã2

M̃2 eβ1 + e1110 [5, 37] Ã2

Ã2

5 M̃2 e0 + eβ2 + e3β1+β2 [53, 33, 12] F4(a3)

≥ 7 M̃1 eβ1 + eβ2 [73, 15] B3

A2Ã1 ≥ 5
M̃1 e0 + eβ1 [53, 33, 12] F4(a3)

M̃0 e0 + e1110 + e0111 [52, 42, 3, 22, 1] C3(a1)

B2 ≥ 5 M̃1 e0 + eβ1 + eβ2 [53, 33, 12] F4(a3)

Ã2A1

5, 11 M̃1 e0 + eβ1
[53, 33, 12] F4(a3)

7 X1, X2 ∈ M̃1 e0 + eβ1 [53, 33, 12] F4(a3)

C3(a1) ≥ 5 M̃1 e0 + eβ1
[53, 33, 12] F4(a3)

C3

7 M̃1 e0 + eβ1
[73, 5] F4(a2)

≥ 11 M̃1 e0 + eβ1
[9, 7, 52] F4(a2)

B3

7 M̃1 e0 + eβ1
[73, 5] F4(a2)

≥ 11 M̃1 e0 + eβ1
[9, 7, 52] F4(a2)

Table 7.1: Example of an element in each irreducible component of gei ∩N1

which is not contained in (G · ei)
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Chapter 8

E6 Results

In this chapter we give the details of the computations for answering Question 1 for E6 (with the

exception of the last few cases). As in Chapter 7, we group the nilpotent orbits of E6 into sections

where for each orbit in a given section the arguments for finding the irreducible components of

ge ∩N1 are similar.

8.1 Orbits E6(a3), E6(a1) and E6

These orbits are all distinguished therefore by Corollary 2.3.4 we have ge ⊂ N1 when e ∈ N1.

Since c is trivial then ge ∩ N1 = M̃0. Below is a table with contains a representative for each

orbit, the characteristic for which e ∈ N1 and the dimension of M̃0. A basis for ue is not stated

but can be found in [LT11].

Orbit Representative e Characteristic p Dimension of M̃0

E6(a3)
e 01100

1
+ e 10000

0
+ e 01110

0

+e 00001
0

+ e 00110
1

+ e 00100
0

p ≥ 7 12

E6(a1)
e 10000

0
+ e 00001

0
+ e 01000

0
+ e 00010

0

+e 00110
0

+ e 01100
0

+ e 00000
1

p ≥ 11 8

E6

e 10000
0

+ e 00000
1

+ e 01000
0

+e 00100
0

+ e 00010
0

+ e 00001
0

p ≥ 13 6

8.2 Orbits D4(a1), D5(a1), D5 and A4A1

In each of these cases it is clear that ge ∩N1 = M̃0. In all of these casesM0 is irreducible with

the exception of A4A1 in characteristic 5 and 7. In fact these orbits are almost distinguished

which means that c is a torus.
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Orbit D4(a1)

e = e 01000
0

+ e 00100
1

+ e 00110
0

+ e 00000
1

+ e 00010
0

c ∼= k2

ge(2): v1 = f 11111
1
− f 11211

1
, v2 = e 12221

1
+ e 12321

1
, v3 = f 00011

0
− f 00111

0
,

v4 = e 01111
1
− e 01211

1
, v5 = f 11100

0
, v6 = e 11110

1
,

v7 = 2e 00000
1
− e 00100

1
+ e 01100

0
+ e 00110

0
, v8 = e 00000

1
+ e 00010

0
, v9 = e

ge(4): v10 = f 11111
0

, v11 = e 12321
2

, v12 = f 00001
0

, v13 = e 01221
1

, v14 = f 10000
0

,

v15 = e 12210
1

, v16 = 2e 00110
1

+ e 01100
1
− e 01110

0

ge(6): v17 = e 01110
1

, v18 = e 01210
1

M0 = a1V1 + · · ·+ a18V18

Characteristic p ≥ 5:

Mp
0 = 0 dim(M̃0) = 18

Orbit A4A1

e = e 10000
0

+ e 01000
0

+ e 00100
0

+ e 00000
1

+ e 00001
0

c ∼= k

ge(1): v1 = f 01110
1

+f 00111
1
−f 01111

0
−2f 11110

0
, v2 = e 01111

1
−e 01210

1
−e 11110

1
−2e 11111

0

ge(2): v3 = e 00001
0

, v4 = e

ge(3): v5 = f 01110
0
− f 00110

1
, v6 = e 01211

1
+ e 11111

1

ge(4): v7 = f 01221
1

, v8 = e 12321
2

, v9 = e 11000
0

+ e 01100
0
− e 00100

1

ge(5): v10 = f 00110
0

+ f 00011
0

, v11 = e 11211
1

+ e 12210
1

ge(6): v12 = e 11100
0
− e 01100

1

ge(7): v13 = f 00010
0

, v14 = e 12211
1

ge(8): v15 = e 11100
1

M0 = a1V1 + · · ·+ a15V15

Characteristic p = 5, 7;

Mp
0 = 0⇒ a1 = 0 or a2 = 0 M̃0 has two irreducible components of dimension 14

Characteristic p ≥ 11:

Mp
0 = 0 dim(M̃0) = 15
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Orbit D5(a1)

e = e 10000
0

+ e 01000
0

+ e 00100
1

+ e 00110
0

+ e 00000
1

+ e 00010
0

c ∼= k

ge(1): v1 = f 11111
0
− f 01211

1
, v2 = e 11111

1
+ e 01221

1

ge(2): v3 = e 00000
1

+ e 00010
0

, v4 = e

ge(4): v5 = e 11100
0

+ e 01110
0
− e 01100

1
− 2e 00110

1

ge(5): v6 = f 00011
0
− f 00111

0
, v7 = e 12221

1
+ e 12321

1

ge(6): v8 = e 11100
1
− e 11110

0
+ 2e 01110

1
, v9 = e 11100

1
+ e 01110

1
− e 01210

1

ge(7): v10 = f 00001
0

, v11 = e 12321
2

ge(8): v12 = e 11110
1

ge(10): v13 = e 12210
1

M0 = a1V1 + · · ·+ a13V13

Characteristic p ≥ 7:

Mp
0 = 0 dim(M̃0) = 13

Orbit D5

e = e 10000
0

+ e 01000
0

+ e 00100
0

+ e 00000
1

+ e 00010
0

c ∼= k

ge(2): v1 = e

ge(4): v2 = f 01111
0
− f 00111

1
, v3 = e 12211

1
+ e 11221

1

ge(6): v4 = e 01100
1
− e 01110

0
− e 11100

0
+ 2e 00110

1

ge(8): v5 = e 11110
0

+ e 11100
1

ge(10): v6 = f 00001
0

v7 = e 12321
2

v8 = e 11110
1

+ e 01210
1

ge(14): v9 = e 12210
1

M0 = a1V1 + · · ·+ a9V9

Characteristic p ≥ 11:

Mp
0 = 0 dim(M̃0) = 9
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8.3 Orbits A3, D4 and A5

All of these orbits require similar arguments as those in Section 7.2. In each case ge∩N1 = M̃1 is

irreducible with the exception of A3 when p = 5 where ge ∩N1 has three irreducible components

of dimension 21.

Orbit A3

e = e 10000
0

+ e 01000
0

+ e 00100
0

c ∼= so5 ⊕ k

eβ1 = e 00001
0

, eβ2 = e 11110
1

+ e 01210
1

ge(2) ge(3) ge(4) ge(6)

t1 = e

u1 = e 11100
1

u2

u3

u4

β2

β1

β2

v1 = e 12321
1

v2

v3

v4

β2

β1

β2

w1 = e 12211
1

w2

w3

w4

w5

β1

β2

β2

β1

x1 = e 11100
0

M0 = a1T1 + b1U1 + · · ·+ b4U4 + c1V1 + · · ·+ c4V4 + d1W1 + · · ·+ d5W5 + g1X1

M1 = eβ1 + eβ2 +M0

M2 = eβ2 +M0

M3 = eβ1
+M0

Characteristic p = 5:

M5
1 = 0⇒ d5 = 0 and (b4 = 0 or c4 = 0)

M̃1 has two irreducible

components of dimension 8-2+15=21

M5
2 = 0 dim(M̃2) = 6 + 15 = 21

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 8 + 15 = 23

Orbit D4

e = e 01000
0

+ e 00100
0

+ e 00000
1

+ e 00010
0

c ∼= sl3

eβ1 = e 11100
1

+ e 11110
0

, eβ2 = e 00111
1
− e 01111

0
, eβ1+β2 = [eβ1 , eβ2 ]
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ge(2) ge(6) ge(10)

The dashed ellipse indicates that v4 and

v5 span the zero weight space

u1 = e
w1 = e 01210

1

v1 = e 12321
2

v3v2

v5v4

v7v6

v8

β1β2

β1 β2

β2 β1

β2β1

β1β2

M0 = a1U1 + b1V1 + · · ·+ b8V8 + c1W1

M1 = eβ1
+ eβ2

+M0

M2 = eβ1+β2
+M0

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 6 + 10 = 16

Orbit A5

e = e 10000
0

+ e 01000
0

+ e 00100
0

+ e 00010
0

+ e 00001
0

c ∼= sl2

eβ1
= e 12321

2

ge(2) ge(3) ge(4)

s1 = e

t1 = e 12210
1

+ e 11211
1

+ e 01221
1

t2

u1 = e 11000
0

+ e 01100
0

+ e 00110
0

+ e 00011
0

ge(5) ge(6) ge(8)

v1 = e 12211
1

+ e 11221
1

v2

w1 = e 11100
0

+ e 01110
0

+ e 00111
0

x1 = e 11110
0

+ e 01111
0
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ge(9) ge(10)

y1 = e 12321
1

y2

z1 = e 11111
0

M0 = a1S1 + b1T1 + b2T2 + c1U1 + d1V1 + d2V2 + g1W1 + h1X1 + i1Y1 + i2Y2 + j1Z1

M1 = eβ1
+M0

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 2 + 11 = 13

8.4 Orbits A2
2A1, A3A1, A4 and A2A

2
1

The arguments for A2A
2
1, A2

2A1 for p = 7, and A4, A3A1 for p ≥ 7 are the same as in Section

7.2. Otherwise we use similar methods to those in Section 6.3 with the exception of A2A
2
1,

A3A1 and A2
2A1 when p = 5. In the A2A

2
1 case, M̃1 is a union of three irreducible components

of dimension 22 and M̃0 has dimension 24. Clearly M̃0 6⊂ M̃1 and therefore ge ∩ N1 has

4 irreducible components. This is the first example we have found for which ge ∩ N1 is not

equidimensional. For the A3A1 case, ge ∩ N1 has three components, two of dimension 18 and

one of dimension 19. The final case A2
2A1 is considered in Section 8.6.

Orbit A2
2A1

e = e 10000
0

+ e 01000
0

+ e 00010
0

+ e 00001
0

+ e 00000
1

c ∼= sl2

eβ1 = e 12210
1

+ e 11211
1

+ e 01221
1

ge(1) ge(2)

q1 = e 12321
2

q2

q3

q4

r1 = e 11100
1

+ e 11110
0

+ e 01111
0
− e 00111

1

r2

s1 = e 12211
1
− e 11221

1

s2

s3

t1 = e 00000
1 u1 = e

ge(3) ge(4)

v1 = e 11110
1

+ e 01111
1

v2

w1 = e 11110
1

+ e 11111
0

w2

x1 = e 12221
1

x2

x3

y1 = e 11000
0

+ e 00011
0
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ge(5)

z1 = e 11111
1

z2

M0 = a1Q1 + · · ·+ a4Q4 + b1R1 + b2R2 + c1S1 + c2S2 + c3S3 + d1T1 + g1U1 +h1V1 +h2V2 +

i1W1 + i2W2 + j1X1 + j2X2 + j3X3 + k1Y1 + l1Z1 + l2Z2

M1 = eβ1
+M0

Characteristic p = 5:

M5
0 = 0⇒2a2

1a4b
2
2 + a1a2a3b

2
2 + 2a1a2a4b1b2 + 2a1a

2
3b1b2 + a1a3a4b

2
1 − a1b1b

3
2+

2a3
2b

2
2 + 3a2

2a3b1b2 + a2
2a4b

2
1 − a2a

2
3b

2
1 + a2b

2
1b

2
2 − a3b

3
1b2 + a4b

4
1 = 0,

− a1a2a4b
2
2 − a1a

2
3b

2
2 + 3a1a3a4b1b2 + 3a1a

2
4b

2
1 − a1b

4
2 + a2

2a3b
2
2+

3a2
2a4b1b2 + 2a2a

2
3b1b2 − a2a3a4b

2
1 + a2b1b

3
2 + 3a3

3b
2
1 − a3b

2
1b

2
2 + a4b

3
1b2 = 0

M5
1 = 0⇒a4 = b2 = 0, c3 = −a3b1

In this case M̃0 has four components of dimension 19 (see §8.6) and M̃1 has dimension 2-

3+21=20. This case is considered in Section 8.6.

Characteristic p = 7:

M7
0 = 0

M7
1 = 0⇒ b2 = 0 and either a4 = 0 or 5a2a4b

2
1 + a2

3b
2
1 + 5a3b1c3 + 2a4b1c2 − a4i2 + c23 = 0

Now dim(M̃0) = 21 and M̃1 has two irreducible components of dimension 2-2+21=21.

The final polynomial is irreducible in k[a1, . . . , a4, b1, b2, . . . , l1, l2] because it is linear in a4 and

the coefficients of a4 has no common factors with the constant term. Therefore ge∩N1 has three

irreducible components of dimension 21.

Characteristic p = 11:

M11
0 = 0 dim(M0) = 21

M11
1 = 0⇒ b2 = 0 or a4 = 0 M̃1 has two irreducible components of dimension 2-1+21=22

In this case we only need to show that M̃0 ⊂ M̃1. This can be done with similar methods to

Section 6.3. Specifically

Adβ∨1 (t)(eβ1
+ {u ∈ ue : b2 = 0}) ⊂ M̃1

⇒ t2eβ1 + {u ∈ ue : tb2 = 0} ⊂ M̃1
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Then by taking the limit as t→ 0 we get

{u ∈ ue : b2 = 0} ⊂ M̃1

⇒ AdE−β1 (ξ){u ∈ ue : b2 = 0} ⊂ M̃1 for ξ ∈ k×

⇒ {u ∈ ue : b2 = ξb1} ⊂ M̃1

As ξ varies, b2 can take any value (assuming that b1 is not zero). Therefore taking the closure

gives M̃0 ⊂ M̃1 so ge ∩N1 has one irreducible component of dimension 20.

Orbit A3A1

e = e 10000
0

+ e 01000
0

+ e 00100
0

+ e 00001
0

c ∼= sl2 ⊕ k

eβ1
= e 12321

2

ge(1)

l1 = e 11111
1

+ e 01211
1

l2

ge(2)

n1 = f 00110
0

+ f 00011
0

p1 = e 01111
0

+ e 11110
0

q1 = e 00001
0 r1 = e

ge(3)

s1 = e 11100
1

s2

t1 = e 11211
1

+ e 12210
1

t2

u1 = e 12321
1

u2

ge(4)

v1 = f 00010
0

w1 = e 11111
0

x1 = e 11000
0

+ e 01100
0

ge(5) ge(6)

y1 = e 12211
1

y2

z1 = e 11100
0
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M0 = a1L1 +a2L2 + b1N1 + c1P1 +d1Q1 +g1R1 +h1S1 +h1S2 + i1T1 + i2T2 + j1U1 + j2U2 +

k1V1 + l1W1 +m1X1 + n1Y1 + n2Y2 + p1Z1

M1 = eβ1 +M0

Characteristic p = 5:

Mp
0 = 0 dim(M̃0) = 18

Mp
1 = 0⇒ (a2 = 0) or (i2 = b1 = 0) or (i2 = c1 = 0)

In this case M̃1 has three components, two of dimension 18 and one of dimension 19. Let M̃(1)
1

be the component of dimension 19. Then by the same argument as A2
2A1 for p = 11 we can show

M0 ⊂ M̃(1)
1 . Therefore ge ∩N1 has three irreducible components.

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 2 + 18 = 20

In this case we can showM0 ⊂ M̃1 by the same argument as presented in Section 7.2. Therefore

ge ∩N1 has one irreducible component of dimension 20.

Orbit A2A
2
1

e = e 00000
1

+ e 00100
0

+ e 10000
0

+ e 00001
0

c ∼= sl2 ⊕ k

eβ1
= 2e 11111

0
+ e 01210

1
+ e 11110

1
− e 01111

1

ge(1) ge(2)

s1 = e 12211
1

s2

s3

s4

t1 = e 11221
1

t2

t3

t4

u1 = e 12321
2

u2

u3

u4

u5

v1 = e 01211
1

+ e 11210
1

v2

v3

w1 = e

ge(3) ge(4)

x1 = e 11100
1

x2

y1 = e 00111
1

y2

z1 = e 11211
1

z2

z3
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M0 = a1S1 + · · ·+ a3S3 + b1T1 + · · ·+ b3T3 + c1U1 + · · ·+ c5U5 + d1V1 + · · ·+ d3V3 + g1W1 +

h1X1 + h2X2 + i1Y1 + i2Y2 + j1Z1 + · · ·+ j3Z3

M1 = eβ1 +M0

Characteristic p = 5:

M5
0 = 0

M5
1 = 0 ⇒ (a4 = b4 = 0, c5 = 4a3b3, d3 = 3a2b3 − 3a3b2) or

(a4 = 0, c5 = 3a2b4 + 4a3b3, d3 = 4a1b4 + 3a2b3 + 2a3b2,

h2 = 3a2
1b4 + 3a1a3b2 + a2

2b2 + a1c4 + a2c3 + a2d2 + a3c2 + 4a3d1) or

(b4 = 0, c5 = 4a3b3 + 3a4b2, d3 = 3a2b3 + 2a3b2 + a4b1,

i2 = 2a2b1b3 + 4a2b
2
2 + 2a4b

2
1 + 4b1c4 + 4b2c3 + b2d2 + 4b3c2 + 4b3d1)

In this case we have dim(M̃0) = 24 and M̃1 has three irreducible components of dimension

2-4+24=22.

Characteristic p = 7:

M7
1 = 0⇒ (b4 = 0 and c5 = −a3b3 + 4a4b2) or (a4 = 0 and c5 = 4a2b4 − a3b3)

M7
0 = 0

Then dim(M0) = 24 and M̃1 has two irreducible components of dimension of 2-2+24=24.

Characteristic p = 11:

M11
1 = 0⇒ a4 = 0 or b4 = 0 M̃1 has two irreducible components of dimension 2-1+24=25

M11
0 = 0 dim(M0) = 24

In the cases when p = 5, 7 then ge ∩ N1 = M̃1 ∪ M̃0. For p = 11 we can show thatM0 ⊂ M̃1

by the same method as for A2
2A1.

Orbit A4

e = e 10000
0

+ e 01000
0

+ e 00100
0

+ e 00000
1

c ∼= sl2 ⊕ k

eβ1 = e 00001
0

ge(2)

q1 = f 01110
0
− f 00110

1

q2

r1 = e 11111
1

+ e 01210
1

r2

s1 = e
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ge(4)

t1 = f 01221
1

u1 = e 12321
2

v1 = e 11000
0

+ e 01100
0
− e 00100

1

g(6) g(8)

w1 = f 00010
0

w2

x1 = e 12211
1

x2

y1 = e 11100
0
− e 01100

1
z1 = e 11100

1

M0 = a1Q1 + a2Q2 + b1R1 + b2R2 + c1S1 + d1T1 + g1U1 + h1V1 + i1W1 + i2W2 +

j1X1 + j2X2 + k1Y1 + l1Z1

M1 = eβ1
+M0

Characteristic p = 5:

M5
0 = 0 dim(M̃0) = 14

M5
1 = 0⇒ a2 = 0 or b2 = 0 M̃1 has two irreducible components of dimension 2-1+14=15

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 2 + 14 = 16

When p = 5 the method to showM0 ⊂ M̃1 is the same as for A2
2A1 for p = 11. Whereas when

p ≥ 7 then the argument required is the same as that in Section 7.2.

8.5 Orbits A2A1 and A2

For both of these orbits when p ≥ 7 the methods are similar to those in Section 7.2. Otherwise

the methods are very similar and are considered below.

Orbit A2A1

e = e 10000
0

+ e 01000
0

+ e 00000
1

c ∼= sl3 ⊕ k

eβ1
= e 00010

0
, eβ2

= e 00001
0

, eβ1+β2
= [eβ1

, eβ2
]
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ge(1)

p1 = f 01100
0
− f 00100

1

p2

p3

β1

β2

q1 = e 11111
0
− e 01111

1

q2

q3

β2

β1

r1 = f 12321
1

s1 = e 12321
2

ge(2)

t1 = f 01210
1

t2

t3

β2

β1

u1 = e 12221
1

u2

u3

β1

β2

v1 = e 00000
1 w1 = e

ge(3) ge(4)

x1 = f 00100
0

x2

x3

β1

β2

y1 = e 11111
1

y2

y3

β2

β1

z1 = e 11000
0

M0 = a1P1 + · · · + a3P3 + b1Q1 + · · · + b3Q3 + c1R1 + d1S1 + g1T1 + · · · + g3T3 + h1U1 +

· · ·+ h3U3 + i1V1 + j1W1 + k1X1 + · · ·+ k3X3 + l1Y1 + · · ·+ l3Y3 +m1Z1

M1 = eβ1 + eβ2 +M0

M2 = eβ1+β2
+M0

Characteristic p = 5:

M5
0 = 0 dim(M̃0) = 23

M5
1 = 0⇒ b3 = a3 = 0 dim(M̃1) = 6− 2 + 23 = 27

M5
2 = 0⇒ b3 = 0 or a3 = 0 M̃2 has two irreducible components of dimension 4-1+23=26

Characteristic p = 7:

M7
1 = 0⇒ (a3 = b3 = 0) or (a3 = c1 = 0) or (b3 = d1 = 0)

M7
2 = 0

Here M̃1 has three irreducible components of dimension 6-2+23=27 and dim(M̃2) = 4+23 = 27.

Characteristic p = 11:

M11
1 = 0 dim(M̃1) = 6 + 23 = 29

For p = 7, ge ∩ N1 has 4 irreducible components of dimension 27 and for p = 11 it has one

irreducible component of dimension 29. The case when p = 5 is considered below.
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Orbit A2

e = e 10000
0

+ e 01000
0

c ∼= sl3 ⊕ sl3

eβ1
= e 00010

0
, eβ2

= e 00001
0

, e3 = e 00000
1

, e4 = e 12321
1

, eβ1+β2
= [eβ1

, eβ2
], eβ3+β4

= [eβ3
, eβ4

]

ge(2)

ge(4)

u1 = e 11111
1

u4 u2

u7 u5 u3

u8 u6

u9

β3 β2

β4
β3 β1

β2

β4 β1
β3β2

β1 β4

v1 = e 12221
1

v4 v2

v7 v5 v3

v8 v6

v9

β1 β4

β2 β1 β3β4

β2 β3
β1β4

β3 β2

w1 = e

x1 = e 11000
0

M0 = a1U1 + · · ·+ a9U9 + b1V1 + · · ·+ b9V9 + c1W1 + d1X1

Nilpotent Orbits of c Representative e of nilpotent orbit Mi label of e+M0

[3] + [3] eβ1
+ eβ2

+ eβ3
+ eβ4

M1

[3] + [2, 1] eβ1
+ eβ2

+ eβ3+β4
M2

[2, 1] + [3] eβ1+β2
+ eβ3

+ eβ4
M3

[3] + [13] eβ1 + eβ2 M4

[13] + [3] eβ3
+ eβ4

M5

[2, 1] + [2, 1] eβ1+β2
+ eβ3+β4

M6

[2, 1] + [13] eβ1+β2
M7

[13] + [2, 1] eβ3+β4 M8

Characteristic p = 5:

M5
1 = 0⇒ a9 = b9 = 0 dim(M̃1) = 6 + 6− 2 + 20 = 30

M5
2 = 0⇒ a9 = 0 or b9 = 0 M̃2 has two irreducible components of dimension 6+4-1+20=29

M5
3 = 0⇒ a9 = 0 or b9 = 0 M̃3 has two irreducible components of dimension 4+6-1+20=29

M5
4 = 0 dim(M̃4) = 6 + 20 = 26

M5
5 = 0 dim(M̃5) = 6 + 20 = 26

M5
6 = 0 dim(M̃6) = 4 + 4 + 20 = 28

Characteristic p ≥ 7:

Mp
1 = 0 dim(M̃1) = 6 + 6 + 20 = 32

When p ≥ 7 the ge ∩N1 has one irreducible component of dimension 32.
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Characteristic p = 5:

We start with A1A2 for p = 5; we need to show that M̃2 ⊂ M̃1 and M̃0 ⊂ M̃2. The setM2 is

the union of two sets X1 and X2 where

X1 = eβ1+β2
+ {u ∈ ue : b3 = 0}

X2 = eβ1+β2 + {u ∈ ue : a3 = 0}

To show that X1 ⊂ M̃1 consider eβ1 + eβ2 + {u ∈ ue : a3 = b3 = 0} ⊂ M̃1 and consider

β∨(t) = β∨1 (t)β∨2 (t2). Then

Adβ∨(t)(eβ1
+ eβ2

+ {u ∈ ue : a3 = b3 = 0}) ⊂ M̃1

⇒ eβ1
+ t3eβ2

+ {u ∈ ue : a3 = b3 = 0} ⊂ M̃1

Taking the limit as t→ 0 gives

eβ1
+ {u ∈ ue : a3 = b3 = 0} ⊂ M̃1

As we did in Section 6.3, we can represent an element in eβ1
+ {u ∈ ue : a3 = b3 = 0} by a series

of matrices as follows: 
0 1 0

0 0

0

 ,




a1

a2

0

 ,
(

0 b2 b1

)
, . . .


Now consider nβ2 =

(
1 0 0
0 0 1
0 −1 0

)
∈ C = SL3. Then

Ad


1 0 0

0 0 1

0 −1 0





0 1 0

0 0

0

 ,




a1

a2

0

 ,
(

0 b2 b1

)
, . . .


 ⊂ M̃1

⇒


0 0 −1

0 0

0

 ,




a1

0

−a2

 ,
(

0 b1 −b2
)
, . . .

 ⊂ M̃1

For ξ ∈ k then conjugating by Eβ2
(ξ) gives

Ad


1 0 0

1 ξ

1





0 0 −1

0 0

0

 ,




a1

0

−a2

 ,
(

0 b1 −b2
)
, . . .


 ⊂ M̃1

⇒


0 0 −1

0 0

0

 ,




a1

−ξa2

−a2

 ,
(

0 b1 −(ξb1 + b2)
)
, . . .

 ⊂ M̃1
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As ξ varies then ξa2 can take any value as long as a2 does not equal zero. Therefore taking the

closure gives X1 ⊂ M̃1.

For A2A1 all that remains is to show thatM0 ⊂ M̃2 and X2 ⊂ M̃1.

For the A2 orbit, elements in C or c corresponding to the copy of SL3 with root elements eβ1

and eβ2
is subscripted with a 1 otherwise it is subscripted with a 2. BothM2 andM3 have two

irreducible components, one with a9 = 0 and one with b9 = 0. These are denoted as M2(a9)

and M2(b9) (resp. M3(a9) and M3(b9)). For this orbit we have M̃0 ⊂ M̃8, M̃7 ⊂ M̃6 and

M̃8 ⊂ M̃6 by the arguments in Section 7.2. We still need to show thatM4 ⊂ M̃2,M6 andM5

are contained in M̃3 andM2(a9),M2(b9),M3(a9) andM3(b9) are contained in M̃1.

All these remaining inclusions can be shown using a similar method X1 ⊂ M̃1. In each case we

conjugate by a cocharacter then by 1 or 2 elements in C. These elements are presented in the

following table for each inclusion argument.

Orbit Inclusion Cocharacter Elements in Centralizer

A2A1

X1 ⊂ M̃1 β∨1 (t)β∨2 (t2) nβ2 and Eβ2(ξ)

X2 ⊂ M̃1 β∨1 (t2)β∨2 (t) nβ1
and Eβ1

(ξ)

M0 ⊂ M̃2 Ad(β∨1 (t)) Eβ2(ξ)

A2

M6 ⊂ M̃3 β∨3 (t)β∨4 (t2) nβ4
and Eβ4

(ξ)

M4 ⊂ M̃2 β∨3 (t) Eβ3
(ξ)

M5 ⊂ M̃3 β∨1 (t) Eβ3(ξ)

M2(a9) ⊂ M̃1 β∨1 (t)β∨2 (t2) nβ2 and Eβ2(ξ)

M2(b9) ⊂ M̃1 β∨1 (t2)β∨2 (t) nβ1
and Eβ1

(ξ)

M3(a9) ⊂ M̃1 β∨3 (t)β∨4 (t2) nβ4
and Eβ4

(ξ)

M3(b9) ⊂ M̃1 β3(t2)β4(t) nβ3 and Eβ3(ξ)

Therefore for each orbit when p = 5 then ge ∩N1 has one irreducible component.

8.6 Orbits A2
2A1 when p = 5 and A2

2

Each of these cases is considered separately.

Orbit A2
2A1 when p = 5

Recall that in this case M̃0 is the zero set of two complicated polynomials (which are stated in

Section 8.4). By considering the prime decomposition of the ideal definingM0 we can show that

M0 has four irreducible components. This was achieved using the MAGMA online calculator.

The dimension of each of these components is 19 and they are defined as follows:
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M(1)
0 ={u ∈ ue : a2

1a
2
4 + a1a2a3a4 + 2a1a

3
3 + 2a3

2a4 + 2a2
2a

2
3 = 0,

a1a3b2 + a1a4b1 + 3a2
2b2 + a2a3b1 = 0,

a1a
2
4b1 + 3a2

2a4b2 + 4a2a
2
3b2 + 2a3

3b1 = 0, a1a4b2 + a2a3b2 + a2a4b1 + 3a2
3b1 = 0,

a1b
2
2 + a2b1b2 + 2a3b

2
1 = 0, a2b

2
2 + 3a3b1b2 + 3a4b

2
1 = 0}

M(2)
0 ={u ∈ ue : a1a3 + 3a1b2 + 3a2

2 + 4a2b1 + b21 = 0, a1a4 + a2a3 + 4a2b2 + a3b1 + 4b1b2 = 0,

a2a4 + 3a2
3 + a3b2 + 2a4b1 + b22 = 0}

M(3)
0 ={u ∈ ue : a1a3 + 2a1b2 + 3a2

2 + a2b1 + b21 = 0, a1a4 + a2a3 + a2b2 + 4a3b1 + 4b1b2 = 0,

a2a4 + 3a2
3 + 4a3b2 + 3a4b1 + b22 = 0}

M(4)
0 ={u ∈ ue : b1 = 0, b2 = 0}

The conditions forM5
1 = 0 are a4 = b2 = 0 and c3 = −a3b1, so

eβ1
+ {u ∈ ue : a4 = b2 = 0, c3 = −a3b1} ⊂ M̃1

Then considering Adβ∨1 (t) gives

t2eβ1
+ {u ∈ ue : t3a4 = tb2 = 0, t2c3 = −a3b1} ⊂ M̃1

⇒ {u ∈ ue : a4 = b2 = 0, a3b1 = 0} ⊂ M̃1

Let b1 = 0; by considering Ad−β1(ξ) for ξ ∈ k×, we get

{u ∈ ue : a4 = ξ3a1 − ξ2a2 + ξa3, b1 = b2 = 0} ⊂ M̃1 (by same method as §6.3)

⇒ {u ∈ ue : b1 = b2 = 0} =M(4)
0 ⊂ M̃1

Alternatively if a3 = 0 then

X1 = {u ∈ ue : a3 = a4 = b2 = 0} ⊂ M̃1

Now X1 ⊂ M(1)
0 and it is easy to check that X1 is not contained in M(2)

0 ,M(3)
0 and M(4)

0 .

Since the set X1 is not stabilized by C and dim(X1) = 18 then dim(C · X1) > 18. Therefore

C ·X1 = M̃(1)
0 because dim(M(1)

0 ) = 19, so M̃(1)
0 ⊂ M̃1.

Now we show that M(2)
0 and M(3)

0 are not contained in M̃1. Let the 4-dimension irreducible

submodule of ge(1) be U and the 2-dimensional submodule be V . We can consider U as S3V ,

where u1 = ω1 ⊗ ω1 ⊗ ω1, u2 = ω1 ⊗ ω1 ⊗ ω2, . . . for ω1 = ( 1
0 ) and ω2 = ( 0

1 ). If e+ u+ v + . . .

is contained in M̃1 then the following conditions hold.

u = ω1 ⊗ (a1ω1 ⊗ ω1 + a2ω1 ⊗ ω2 + a3ω2 ⊗ ω2) for some a1, a2, a3 ∈ k

e · v = 0
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Note that eβ1
= ( 0 1

0 0 ) and eβ1
ω1 = 0.

We can parametrize the set of nilpotent elements in sl2 by e′ =
(

st s2

−t2 −st

)
. The non-zero elements

are all conjugate to eβ1 . Therefore for (s, t) 6= (0, 0), ad(e′)(v) = 0 if and only if tb1 + sb2 = 0,

in which case v can be expressed as b1

b2

 = ξ

 s

−t

 for some ξ ∈ k

Similarly we require u = ω′1 ⊗ (a1ω
′
1 ⊗ ω′1 + a2ω

′
1 ⊗ ω′2 + a3ω

′
2 ⊗ ω′2) where e′ω′1 = 0. Therefore

letting ω′1 = sω1 − tω2 gives

u = (sω1 − tω2)⊗ (µ1ω1 ⊗ ω1 + µ2ω1 ⊗ ω2 + µ3ω2 ⊗ ω2) for some µi ∈ k

Therefore we require 
a1

a2

a3

a4

 =


µ1s

µ2s− tµ1

sµ3 − tµ2

−µ3t


⇒ t3a1 + st2a2 + s2ta3 + s3a4 = 0

⇒ −a1b
3
2 + a2b1b

2
2 − a3b

2
1b2 + a4b

3
1 = 0 (8.1)

Therefore e′ + u + v · · · ∈ M̃1 if equation (8.1) holds. By a MAGMA calculation we can show

that (8.1) is not contained in the ideals generated by the by the polynomials definingM(2)
0 and

M(3)
0 . Since the idealsM(2)

0 andM(3)
0 are prime they cannot be contained in M̃1. Hence ge∩N1

has three irreducible components namely M̃1, M(2)
0 and M(3)

0 with dimensions 20, 19 and 19

respectively.

Orbit A2
2

e = e 10000
0

+ e 01000
0

+ e 00010
0

+ e 00001
0

c ∼= g2

eβ1
= e 11100

0
+ e 01110

0
+ e 00111

0
, eβ2

= e 00000
1

, e3β1+β2
= e 12321

1

ge(2) ge(4)
u1 = e 12211

1
+ e 11221

1

u2

u3

u4

u5

u6

u7

β1

β2

β1

β1

β2

β1

v1 = e

w1 = e 12221
1

w2

w3

w4

w5

w6

w7

β1

β2

β1

β1

β2

β1

x1 = e 11000
0

+ e 00011
0
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M0 = a1U1 + · · ·+ a7U7 + b1V1 + c1W1 + · · ·+ c7W7 + d1X1

Nilpotent Orbit of c Representative e of nilpotent orbit Mi label of e+M0

G2 eβ1
+ eβ2

M1

G2(a1) eβ2 + e3β1+β2 M2

Ã1 e2β1+β2 M3

A1 eβ2
M4

Characteristic p = 5:

Since N (g2) = OG2(a1) for p = 5 we do not consider the regular orbit.

M5
2 = 0⇒ a6 = a7 = 0 dim(M̃2) = 10− 2 + 16 = 24

M5
3 = 0⇒ a7 = 0 dim(M̃3) = 8− 1 + 16 = 23

M5
4 = 0 dim(M̃4) = 6 + 16 = 22

Characteristic p = 7:

M7
1 = 0⇒ a7 = 0, c7 = 2a4a6 + 6a2

5 dim(M̃1) = 12− 2 + 16 = 26

M7
2 = 0 dim(M̃2) = 10 + 16 = 26

Characteristic p = 11:

M11
1 = 0⇒ a7 = 0 dim(M̃1) = 12− 1 + 16 = 27

For p = 7 the methods to find the irreducible components are the same as Section 7.2, in this

case ge ∩ N1 has two irreducible components of dimension 26. For p = 11 the method to show

that ge ∩N1 has one irreducible component, is the same as in Section 7.4. Below are the details

to show that ge ∩N1 has one irreducible component of dimension 24 when p = 5.

Characteristic p = 5

The inclusion M̃0 ⊂ M̃4 holds by the same method as in Section 7.2. Therefore we need to show

M̃4 ⊂ M̃3 ⊂ M̃2.

Let e′ be a nilpotent element in the orbit OG2(a1). Let u ∈ ue; then for e′ + u to be contained in

M̃2 we require [e′, [e′, u′]] = 0 where u′ is the component of u in ge(2). To showM3 ⊂ M̃2, we

consider M = e2β1+β2 + sthβ2 + s2eβ2 − t2fβ2 . This is because for (s, t) 6= (0, 0), M is conjugate

to e2β1+β2 + eβ2 ∈ OG2(a1). Let ρ be the representation of c on the highest weight module of G2
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of dimension 7. A [GAP12] computation gives

Ms,t = ρ(M) =



0 0 0 2 0 0 0

0 st −s2 0 −1 0 0

0 t2 −st 0 0 1 0

0 0 0 0 0 0 −1

0 0 0 0 st s2 0

0 0 0 0 −t2 −st 0

0 0 0 0 0 0 0


By considering u = (u1, . . . , u7)t as a vector then M2

s,t(u) = 0 implies

a7 = 0 ta5 + sa6 = 0

Then Ms,t + {u ∈ ue : a7 = 0, ta5 + sa6 = 0} ⊂ M̃2. For fixed a5 = c and a6 = d, let t = −ξd

and s = ξc for some ξ ∈ k×. Then the condition ta5 + sa6 = 0 holds and

Mξc,−ξd + {u ∈ ue : a7 = 0} ⊂ M̃2

Therefore by taking the closure we get M̃3 ⊂ M̃2.

To show that M4 ⊂ M̃3 firstly note that f3β1+2β2 + ue ⊂ M̃4. Let f ′ = f3β1+2β2 and e′ =

e3β1+2β2
. Then consider the transverse slice:

A = (f ′ + ce
′
) ∩ O

Ã1
=





st s2 2st2 4s2t 2s3 0 0

−t2 −st −2t3 −4st2 −2s2t 0 0

0 0 2st 2s2 0 2s2t 2s3

0 0 −t2 0 s2 −2st2 −2s2t

0 0 0 −2t2 −2st 2t3 2st2

1 0 0 0 0 st s2

0 1 0 0 0 −t2 −st


: s, t ∈ k


Let u ∈ ue; then for e′ + u to be contained in M̃3 we require [e′, [e′, u′]] = 0 where u′ is the

component of u ∈ ge(2). Then for an element As,t in A with (s, t) 6= (0, 0), A2
s,t(u) = 0 implies

2ta1 + 2sa2 + 2t2a3 + 4sta4 + 2s2a5 = 0

⇒ 2ξa1 + 2a2 + s(2ξ2a3 + 4ξ2a4 + 2a5) = 0 for t = ξs, ξ ∈ k×

Therefore

As,ξs + {u ∈ ue : 2ξa1 + 2a2 + s(2ξ2a3 + 4ξ2a4 + 2a5) = 0} ⊂ M̃3

Then by taking the limit as s→ 0 gives

A0,0 + {u ∈ ue : a2 = −ξa1} ⊂ M̃3

As ξ varies, a2 can take any value as long as a1 is not zero. Therefore taking the closure gives

M4 ⊂ M̃3.

110



8.7 Orbits A3
1, A2

1 and A1

For these cases the irreducible components of ge∩N1 have not been found, but we have expressed

ge∩N1 as a union of possible irreducible components Xi. Some of the possible components have

been eliminated, however the remaining cases are more complicated and the standard methods

we have used throughout do not work. Due to time constraints we were unable to find alternative

methods for these cases. Note that not establishing the irreducible components of ge ∩ N1 for

these orbits did not obstruct our work to find the irreducible components of Cnil1 (E6). This

is because each possible component of Cnil1 (E6) corresponding to Xi can be eliminated using

Proposition 5.2.1.

Orbits A3
1

e = e 10000
0

+ e 00100
0

+ e 00001
0

c ∼= sl3 ⊕ sl2

eβ1
= e 11000

0
+ e 01100

0
, eβ2

= e 00110
0

+ e 00011
0

, eβ3
= e 12321

2
, eβ1+β2

= [eβ1
, eβ2

]

ge(1)

u11 = e 12321
1

u13u12

u15u14

u17u16

u18

β2β1

β2

β1

β1

β2

β1β2

β2β1

u21

u23u22

u25u24

u27u26

u28

β2β1

β2 β1

β1 β2

β1β2

β2β1

β3

β3
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ge(2) ge(3)

v1 = e 11111
0

v3v2

v5v4

v7v6

v8

β2β1

β2 β1

β1 β2

β1β2

β2β1

w1 = e

x1 = e 11211
1

x2

β3

M0 = a1U11 + · · ·+ a8U18 + a9U21 + · · ·+ a16U28 + b1V1 + · · ·+ b8V8 + c1W1 + d1X1 + d2X2

Nilpotent Orbits of c Representative e of nilpotent orbit Mi label of e+M0

[3] + [2] eβ1
+ eβ2

+ eβ3
M1

[2, 1] + [2] eβ1+β2
+ eβ3

M2

[3] + [12] eβ1 + eβ2 M3

[2, 1] + [12] eβ1+β2 M4

[13] + [2] eβ3
M5

Characteristic p = 5:

M5
0 = 0

M5
1 = 0⇒ a28 = 0, a18 = a26 = a27, b8 = a14a18 + a15a18 + 4a16a24 + 4a17a25 + a24a25

M5
2 = 0⇒ a28 = 0 then either

(a26 = 0 and either a18 = −a25 or (a24+a25)(a24−a18)+a27(a16−a22) = 0) or

(a27 = 0, and either a18 = a24, or (a25 + a24)(a25 + a18)− a26(a17 + a23) = 0)

M5
3 = 0⇒ a28 = a18 = 0, b8 = a14a26 + a15a27 + 4a16a24 + 4a17a25

M5
4 = 0⇒ (a18 = a28 = 0) or

(a18a27 = a28a17 and a14a28 + a15a28 − a18a24 − a18a25 = a16a27 − a17a26) or

(a18a26 = a28a16 and a14a28 + a15a28 − a18a24 − a18a25 = a17a26 − a16a27)

M5
5 = 0⇒ 3a21a24a28 + 3a21a25a28 + 2a21a26a27 + 2a22a23a28 + 3a22a25a27 + 3a23a24a26 +

2a2
24a25 + 2a24a

2
25 = 0

Then we have dim(M̃0) = 27, dim(M̃1) = 6 + 2 − 4 + 27 = 31, M̃2 has four irreducible

components of dimension 4 + 2 − 3 + 27 = 30, dim(M̃3) = 6 − 3 + 27 = 30, M̃4 has three
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irreducible components of dimension 4− 2 + 27 = 29 and dim(M̃5) = 2− 1 + 27 = 28.

Characteristic p = 7:

M7
1 = 0⇒ a28 = 0, a26 = a27 dim(M̃1) = 6 + 2− 2 + 27 = 33

M7
2 = 0⇒ a28 = 0 or 2a24a28 + 2a25a28 + 5a26a27 = 0

M̃2 has two irreducible

components of dimension 4+2-1+27=32

M7
3 = 0⇒ a18(a26 − a27)− a28(a16 − a17) = 0 dim(M̃3) = 6− 1 + 27 = 32

M7
4 = 0 dim(M̃4) = 4 + 27 = 31

M7
5 = 0 dim(M̃5) = 2 + 27 = 29

Characteristic p = 11:

M11
1 = 0⇒ a28 = 0 dim(M̃1) = 6 + 2− 1 + 27 = 34

M11
2 = 0 dim(M̃2) = 4 + 2 + 27 = 33

M11
3 = 0 dim(M̃3) = 6 + 27 = 33

Characteristic p = 5

We can show thatM3 ⊂ M̃1 by considering

eβ1
+ eβ2

+ eβ3
+ {u ∈ ue :a28 = 0, a18 = a26 = a27,

b8 = a14a26 + a15a26 + 4a16a24 + 4a17a25 + a24a25} ⊂ M̃1

Then applying Adβ∨3 (t) gives

eβ1 + eβ2 + t2eβ3 + {u ∈ ue :ta28 = 0, t−1a18 = ta26 = ta27,

b8 = a14a26 + a15a26 + 4a16a24 + 4a17a25 + t2a24a25} ⊂ M̃1

Taking the limit as t→ 0 gives

eβ1
+ eβ2

+ {u ∈ ue :a18 = a28 = 0, a26 = a27,

b8 = a14a26 = a15a26 + 4a16a24 + 4a17a25} ⊂ M̃1

Then AdE−β3 (ξ) for ξ ∈ k×, gives

eβ1
+ eβ2

+ {u ∈ ue : a18 = a28 = 0, a27 − ξa17 = a26 − ξa16,

b8 = a14(a26 − ξa16) + a15(a26 − ξa16) + 4a16(a24 − ξa14) + 4a17(a25 − ξa15)} ⊂ M̃1

⇒ eβ1
+ eβ2

+ {u ∈ ue : a18 = a28 = 0, a27 = a26 − ξa16 + ξa17,

b8 = a14a26 + a15a27 + 4a16a24 + 4a17a25} ⊂ M̃1

⇒ eβ1 + eβ2 + {u ∈ ue : a18 = a28 = 0,

b8 = a14a26 + a15a27 + 4a16a24 + 4a17a25} ⊂ M̃1

⇒M3 ⊂ M̃1

The possible components of ge ∩ N1 are M̃0, M̃5, M̃1, the three components of M̃4 and the

four components of M̃2.
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Characteristic p = 7

The possible irreducible components of ge ∩ N1 are M̃3, M̃1 and the two components of M̃2.

The arguments to show that M̃5 and M̃4 are not components are given below.

To show M̃5 ⊂ M̃2 consider eβ1+β2 + eβ3 + {u ∈ ue : a28 = 0} which is contained in M̃2. Then

Adβ∨1 (t) gives

teβ1+β2
+ eβ3

+ {u ∈ ue : a28 = 0} ⊂ M̃2

⇒ eβ3
+ {u ∈ ue : a28 = 0} ⊂ M̃2

AdE−β1 (ξ)(eβ3
+ {u ∈ ue : a28 = 0}) ⊂ M̃2

⇒ eβ3 + {u ∈ ue : a28 = ξa27} ⊂ M̃2

⇒ M̃5 ⊂ M̃2

Similarly we can show that M̃4 ⊂ M̃2 by considering Adβ∨3 (t) then AdE−β3 (ξ).

Characteristic p = 11

Most of the inclusions can be shown using the same methods as Section 7.2 with the exception

of M̃3 ⊂ M̃1 and M̃2 ⊂ M̃1. Therefore ge ∩N1 has one irreducible component. Firstly to show

that M̃3 ⊂ M̃1 consider

eβ1
+ eβ2

+ eβ3
+ {u ∈ ue : a28 = 0} ⊂ M̃1

Then applying Adβ∨3 (t) gives

eβ1 + eβ2 + t2eβ3 + {u ∈ ue : a28 = 0} ⊂ M̃1

⇒ AdE−β3 (ξ)(eβ1
+ eβ2

+ {u ∈ ue : a28 = 0} ⊂ M̃1

⇒ eβ1
+ eβ2

+ {u ∈ ue : a28 = ξa18} ⊂ M̃1

As ξ varies a18 can take any value as long as a27 does not equal zero. Therefore taking the

closure givesM3 ⊂ M̃1.

Similarly to show that M̃2 ⊂ M̃1 let β∨(t) = β∨1 (t2)β∨2 (t). Then

Adβ∨(t)(eβ1
+ eβ2

+ eβ3
+ {u ∈ ue : a28 = 0}) ⊂ M̃1

⇒ t3eβ1 + eβ2 + eβ3 + {u ∈ ue : a28 = 0} ⊂ M̃1

⇒ eβ2
+ eβ3

+ {u ∈ ue : a28 = 0} ⊂ M̃1

⇒ AdE−β1(ξ)
(eβ2

+ eβ3
+ {u ∈ ue : a28 = 0}) ⊂ M̃1

⇒ eβ2
+ eβ3

+ {u ∈ ue : a28 = ξa27} ⊂ M̃1

⇒ eβ2
+ eβ3

+ ue ⊂ M̃1

Applying the reflection nβ1
∈ SL3 ⊂ C givesM2 ⊂ M̃1.
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Orbits A2
1

e = e 10000
0

+ e 00001
0

c = so7 ⊕ k

eβ1
= e 00100

0
, eβ2

= e 00000
1

, eβ3
= e 11110

0
+ e 01111

0

ge(1) ge(2)

u1 = e 12211
1

u2

u3

u4 u5

u6

u7

u8

β3

β2

β3β1

β3 β1

β2

β3

v1 = e 11221
1

v2

v3

v4 v5

v6

v7

v8

β3

β2

β3β1

β3 β1

β2

β3

w1 = e 11211
1

w2

w3

w4

w5

w6

w7

β1

β2

β3

β3

β2

β1

x1 = e

M0 = a1U1 + · · ·+ a8U8 + b1V1 + · · ·+ b8V8 + c1W1 + · · ·+ c7W7 + d1X1

Nilpotent Orbit of c◦ Representative e of nilpotent orbit Mi label of e+M0

[7] eβ1 + eβ2 + eβ3 M1

[5, 12] eβ2 + eβ3 M2

[32, 1] eβ1
+ eβ2

M3

[3, 22] eβ3
M4

[3, 14] eβ2 M5

[22, 13] eβ1
M6

Characteristic p = 5:

We do not consider the regular orbit since N1(so7) = O[5,12] for p = 5.

M5
2 = 0⇒ (a8 = a5 = 0, c6 = 4a2b8 + a3b7 + 4a6b5 + a7b3) or

(b8 = b5 = 0, c6 = a3b7 + 4a5b6 + a7b3 + 4a8b2)

M5
3 = 0⇒ (a4 = 0 or b4 = 0) and (a7 = 0 or b7 = 0)

M5
4 = 0

Here we have that M̃2 has two irreducible components of dimension 16-3+24=37, M̃3 has four

irreducible components of dimension 14-2+24=36 and dim(M̃4) = 12 + 24 = 36.
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Characteristic p = 7:

M7
1 = 0⇒ a8 = b8 = 0, c7 = a4b7 + 6a6b6 + a7b4 dim(M̃1) = 18− 3 + 24 = 39

M7
2 = 0⇒ a5b8 + a8b5 = 0 dim(M̃2) = 16− 1 + 24 = 39

M7
3 = 0 dim(M̃3) = 14 + 24 = 38

Characteristic p = 11:

M11
1 = 0⇒ a8 = 0 or b8 = 0 M̃1 has two irreducible components of dimension 18-1+24=41

M11
2 = 0 dim(M̃2) = 16 + 24 = 40

When p = 5 the possible irreducible components of ge ∩N1 are M̃4, the four components of M̃3

and the two components of M̃2. Similarly the possible components of ge ∩N1 when p = 7 (resp.

p = 11) are M̃3, M̃2 and M̃1 (resp. the two components of M̃1 and M̃2). The other inclusions

all hold by the argument in Section 7.2.

Orbit A1

e = e 10000
0

c = sl6

eβ1
= e 00000

1
, eβ2

= e 00100
0

, eβ3
= e 00010

0
, eβ4

= e 00001
0

, eβ5
= e 12210

1

ge(1) ge(2)

u1 = e 11221
1

u2

u3 u4

u5
u6 u7

u8 u9
u10

u11
u12 u13

u14 u15
u16

u17 u18

u19

u20

β3

β2 β4

β1

β4

β3

β2

β5

β5

β2

β3

β4

β1

β3

β3

β4 β2

β1 β5

β1β5

β5β1

β5 β1

β2 β4

β4 β2

β3

v1 = e

M0 = a1U1 + · · ·+ a20U20 + b1V1
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Nilpotent Orbit of c Representative e of nilpotent orbit Mi label of e+M0

[6] eβ1
+ eβ2

+ eβ3
+ eβ4

+ eβ5
M1

[5, 1] eβ1
+ eβ2

+ eβ3
+ eβ4

M2

[4, 2] eβ1 + eβ2 + eβ3 + eβ5 M3

[4, 12] eβ1 + eβ2 + eβ3 M4

[32] eβ1
+ eβ2

+ eβ4
+ eβ5

M5

[3, 2, 1] eβ1
+ eβ2

+ eβ4
M6

[3, 13] eβ1 + eβ2 M7

[23] eβ1 + eβ3 + eβ5 M8

[22, 12] eβ1
+ eβ3

M9

[2, 14] eβ1
M10

Characteristic p = 5:

Since N1(sp6) = O[5,1] for p = 5 we do not consider the regular orbit.

M5
2 = 0⇒ a14 = a20 = 0, a8 = a9, a17 = a18 dim(M̃2) = 28− 4 + 21 = 45

M5
3 = 0⇒ a17 = 0, a14 = a15, then either a5 = 0 or a20 = 0

M5
4 = 0⇒ a14 = a17 = 0, then either a5 = 0 or a20 = 0

M5
5 = 0⇒ a19 = a12 = 0 dim(M̃5) = 24− 2 + 21 = 43

M5
6 = 0⇒ a8 = 0 or a19 = 0 dim(M̃6) = 22− 1 + 21 = 42

M5
7 = 0 dim(M̃7) = 18 + 21 = 39

M5
8 = 0⇒ a15 = 0 dim(M̃8) = 18− 1 + 21 = 38

In this case M̃3 has two irreducible components of dimension 26-3+21=44 and M̃4 has two

irreducible components of dimension 24-3+21=42.

Characteristic p = 7:

M7
1 = 0⇒ a20 = 0, a16 = 6a14 + a15, a17 = a18 dim(M̃1) = 30− 3 + 21 = 48

M7
2 = 0⇒ a14 = a20 = 0 dim(M̃2) = 28− 2 + 21 = 47

M7
3 = 0⇒ a17 = 0 dim(M̃3) = 26− 1 + 21 = 46

M7
4 = 0 dim(M̃4) = 24 + 21 = 45

M7
5 = 0 dim(M̃5) = 24 + 21 = 45

Characteristic p = 11:

M11
1 = 0⇒ a20 = 0 dim(M̃1) = 30− 1 + 21 = 50

M11
2 = 0 dim(M̃2) = 28 + 21 = 49

Characteristic p = 5

The possible components of ge ∩ N1 are M̃8, M̃6, M̃5, M̃2, the two components of M̃4 and

the two components of M̃3. The inclusions M̃10 ⊂ M̃9 ⊂ M̃7 hold by the same argument in
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Section 7.2. To show that M̃7 ⊂ M̃6 consider eβ1 + eβ2 + eβ4 + {u ∈ ue : a19 = 0} which is

contained in M̃6. Then Adβ∨4 (t) gives

eβ1 + eβ2 + t2eβ4 + {u ∈ ue : a19 = 0} ⊂ M̃6

eβ1
+ eβ2

+ {u ∈ ue : a19 = 0} ⊂ M̃6

Then AdE−β4 (ξ) for ξ ∈ k× gives

eβ1
+ eβ2

+ {u ∈ ue : a19 = ξa17} ⊂ M̃6

⇒ M̃7 ⊂ M̃6

Characteristic p = 7, 11

When p = 7 the possible components of ge ∩ N1 are M̃5, M̃4, M̃3, M̃2 and M̃1. Similarly

when p = 11 the possible irreducible components are M̃1 and M̃2. The other components can

be eliminated using the argument in Section 7.2.
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Chapter 9

Irreducible Components of Cnil1 (E6)

In this chapter we calculate the irreducible components of Cnil1 (E6) for p = 5 and 11. In the

p = 7 case we show that Cnil1 (E6) = C1(D4(a1)) ∪ C1(E6(a3)). However we do not know whether

C1(D4(a1)) ⊂ C1(E6(a1)).

When p = 5 and e ∈ A4A1, the set ge∩N1 has two irreducible components X1 and X2. We then

show that

Cnil1 (E6) = G · (e,X1) ∪G · (e,X2) ∪ C1(D4(a1))

All of these components have dimension 76. Finally in the p = 11 case we have that Cnil1 (E6)

has two irreducible components, namely

Cnil1 (E6) = C1(E6(a3)) ∪ C1(E6(a1))

For all but three of the remaining orbits Oe in E6 we can verify computationally that there is an

element in each irreducible component Xi of ge ∩ N1 that is not contained in G · e. Therefore,

by Proposition 5.2.1, G · (e,Xi) is not an irreducible component of Cnil1 (E6). These elements are

presented in Table 9.2 at the end of the chapter. The three remaining orbits are D5 and D4(a1)

for p = 11 and A4A1 for p = 7. For each of these orbits we show that they are contained in

another component of Cnil1 (E6) case by case.

9.1 Argument to show C1(D4(a1)) ⊂ C1(E6(a1))∪C1(E6(a3)) for

p = 11

Note that for p = 11, C1(D4(a1)) = C(D4(a1)). The same equality also holds for the distinguished

orbits of E6. Therefore we use Proposition 4.2.2 to show this inclusion. A representative e of

orbit D4(a1) in E6 is almost distinguished. We may assume that e is distinguished in lI where

I = {2, 3, 4, 5}. Then Oe is subregular in lI and has corresponding weighted Dynkin diagram
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2 0 2

2

Therefore let J = {4} and the extended weighted Dynkin diagram is

2 2 0 2 2

2

This weighted Dynkin diagram corresponds to the nilpotent orbit E6(a1) in E6, therefore let ẽ be

a representative of E6(a1). Note that for p = 11, ẽ ⊂ N1. When p = 5, 7 then ẽ 6⊂ N1, therefore

this method only works for p = 11. Then by Theorem 4.2.2

C(D4(a1)) ⊂ C(E6(a1)) ∪ C(E6(a3))

Hence C1(D4(a1)) is not an irreducible component of Cnil1 (E6).

9.2 Argument to show C1(D5) ⊂ C1(E6(a1)) for p = 11

We want to show that C(OD5
) is not an irreducible component of Cnil1 (E6). To do this we

show that C(OD5
) ⊂ C(Osr) i.e. G · (eD5

, geD5 ∩ N1) ⊂ G · (esr, gesr ∩N1) where Osr is the

subregular orbit of E6. Since ge ∩ N1 = ge ∩ N for both e = eD5 and esr then this is the same

as G · (eD5 , g
eD5 ∩ N ) ⊂ G · (esr, gesr ). To do this we consider a transverse slice to OD5 at f ′,

where f ′ is given by

f ′ = 8fα1
+ 14fα3

+ 18fα4
+ 10fα5

+ 10fα2

e′ = eα1
+ eα3

+ eα4
+ eα5

+ eα2

We consider f ′+ ge
′
rather than e′+ gf

′
because we have a known basis of ge

′
from [LT11]. The

centralizer of e′ as given by [LT11] has basis h ∈ g(0) along with

h = 2hα1
+ 3hα2

+ 4hα3
+ 6hα4

+ 5hα5
+ 4hα6

∈ c

v1 = e′ ∈ g(2)

v2 = f 01111
0
− f 00111

1
, v3 = e 12211

1
+ e 11221

1
∈ g(4)

v4 = e 01100
1
− e 01110

0
− e 11100

0
+ 2e 00110

1
∈ g(6)

v5 = e 11110
0

+ e 11100
1

∈ g(8)

v6 = f 00001
0

v7 = e 12321
2

v8 = e 11110
1

+ e 01210
1

∈ g(10)

v9 = e 12210
1

∈ g(14)
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Then the centralizer of f ′ is given by

h, f ′, ∈ g(−2)

u2 = 2e 01111
0
− 5e 00111

1
, u3 = 5f 12211

1
+ 2f 11221

1
∈ g(−4)

u4 = 6f 01100
1

+ 5f 01110
0

+ 4f 11100
0
− 4f 00110

1
∈ g(−6)

u5 = f 11110
0

+ f 11100
1

∈ g(−8)

u6 = f 12321
2

, u7 = e 00001
0

, u8 = 3f 11110
1

+ 4f 01210
1

∈ g(−10)

u9 = f 12210
1

∈ g(−14) .

We cannot use the usual Slodowy slice f ′+ ge
′
because ge

′ ∩ [f ′, g] 6= {0} (see below). Therefore

we need to find an alternative linear space V ∈ g of dimension 10 such that V ∩ [f ′, g] = {0}. To

do this consider the following basis of g(8) :

w1 = v5 w2 = [f ′, v6] w3 = [f ′, v8] w4 = [f ′, v7] w5 = [f ′, [f ′, [f ′, v9]]]/6

This basis for g(8) generates a subspace of g(6) i.e.

z1 = −[f ′, w1]/8 z2 = [f ′, w2]/180 z3 = [f ′, w3]/20 z4 = [f ′, w4]/180 z5 = [f ′, w5]/336

(We divide by the constants in order to make the corresponding elements more manageable).

When p = 11 then −4z5 = v4 therefore ge
′ ∩ [f ′, g] 6= {0}. Therefore we let V be similar to

ge
′
but replacing the element v4. Consider the element e 11100

0
∈ g(6)\〈w1, w2, w3, w4, w5〉 where

[h, e 11100
0

] = 6e 11100
0

. Therefore let

M = {f ′ + x0h+ x1e
′ + x2v2 + x3v3 + x4e 1 1 1 0 0

0
+ x5v5 + · · ·+ x9v9 : x0, . . . , x9 ∈ k}

We want to know when an element of M belongs to OE6(a1). Let M be the 27 × 27 matrix

representation of an element ofM with coordinates x0, . . . , x9. Using [GAP12], we show:

Tr(M2) = 0⇒ x1 = x2
0

Tr(M5) = 0⇒ x5 = 2x5
0 − x0x4

Then for M to be contained in OE6(a1) we require M11 = 0. This holds if and only if

x4 = x6 = x7 = x8 = 0

x9 = 4x2
0x2x3

x6
0 = x2x3

Now let x0 = st, x2 = s6, x3 = t6 for s, t 6= 0. Therefore the set M∩OE6(a1) is the set of all

Ms,t for s, t ∈ k, where

Ms,t = f ′ + sth+ s2t2e′ + s6v2 + t6v3 + 2s5t5v5 + 4s8t8v9
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It is easy to check in [GAP12] that Ms,t ∈ Osr if (s, t) 6= (0, 0). We now want to provide some

information about gMs,t . If y = yr + yr+2 + · · · ∈ gMs,t (where yi is the part of y with degree i)

such that [y,Ms,t] = 0 then

[y,Ms,t] = [yr, f
′]︸ ︷︷ ︸+ [yr+2, f

′] + [yr, sth]︸ ︷︷ ︸+ . . .

deg(r − 2) deg(r)

Therefore yr ∈ gf
′
. We want to show that (f ′, gf

′ ∩ N1) ⊂ {(e, ge) : e ∈ E6(a1)}. We show this

by studying the lowest degree terms yr of elements of gMs,t . In the discussion which follows we

assume that (s, t) 6= (0, 0).

Lemma 9.2.1 For an element y ∈ gMs,t , h is not the lowest degree term of y.

Proof. Suppose that y = h+ y2 + y4 + · · · ∈ gMs,t where yi ∈ g(i). Then each part of [Ms,t, y]

with degree i must equal zero. The part of [Ms,t, y] with degree zero is given by

[f ′, y2] + [sth, h] = 0

Since [sth, h] = 0, then we must have that [f ′, y2] = 0, specifically y2 ∈ gf
′
. Therefore, because

gf
′ ⊂

∑
i≤0

g(i), we have y2 = 0

Now the part of [Ms,t, y] with degree 2 is given by

[f ′, y4] + [sth, y2] + [s2t2e0, h] = 0

Since [sth, y2] = 0 and [s2t2e′, h] = 0 then by the same argument as above y4 = 0.

Finally the part of degree 4 is given by

[f ′, y6] + [sth, y4] + [s2t2e′, y2] + [s6v2 + t6v3, h] = 0

[f ′, y6] + s6[v2, h] + t6[v3, h] = 0

[f ′, y6] + 3s6v2 − 3t6v3 = 0

⇒ [f ′, y6] = −3(s6v2 − t6v3)

Since [f ′, g] ∩ 〈h, e′, v2, v3, e 11100
0

, v5, . . . v9〉 = {0}, we cannot have [f ′, y6] = −3(s6v2 − t6v3)

unless s = t = 0. So h cannot be the lowest degree term of an element in gMs,t .

Lemma 9.2.2 If the lowest degree term of y ∈ gMs,t is au2 + bu3 then (a, b) is a multiple of

(t6, s6).

Proof. Let y = au2 + bu3 + y−2 + y0 + y2 + . . . for a, b ∈ k with (a, b) 6= (0, 0). We want to know

when y ∈ gMs,t . Therefore consider the part of [Ms,t, y] with degree −4.

[f ′, y−2] + [sth, au2 + bu3] = 0

[f ′, y−2] + 3stau2 − 3stbu3 = 0

⇒ [f ′, y−2] = 3st(bu3 − au2)
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Since [f ′, [e′, bu3 − au2]] = 4(bu3 − au2) then y−2 = 3
4st[e

′, bu3 − au2] + ξ, where ξ ∈ gf
′
(−2).

Since gf
′
(−2) = kf ′, we can assume after subtracting a multiple of Ms,t that ξ = 0. Therefore

y−2 = 3
4st[e

′, bu3 − au2].

Next we consider the part of [Ms,t, y] with degree −2.

[f ′, y0] + [sth, y−2] + [s2t2e′, au2 + bu3] = 0

[f ′, y0]− 9

4
s2t2[e′, bu3 + au2] + [s2t2e′, au2 + bu3] = 0

[f ′, y0]− 5

4
s2t2[e′, au2 + bu3] = 0

Since au2 + bu3 belongs to an irreducible highest weight module U for 〈h′, e′, f ′〉 with highest

weight 4 then we have

y0 =
1

6
[e′,

5

4
s2t2[e′, au2 + bu3]] + λh

=
5

24
s2t2[e′, [e′, au2 + bu3]] + λh

Finally we consider the part of [Ms,t, y] with degree zero,

[f ′, y2] + [sth, y0] + [s2t2e′, y−2] + [s6v2 + t6v3, au2 + bu3] = 0

[f ′, y2] +
5

8
s3t3[e′, [e′, bu3 − au2]] +

3

4
s3t3[e′, [e′, bu3 − au2]] + [s6v2 + t6v3, au2 + bu3] = 0

[f ′, y2] + [s6v2 + t6v3, au2 + bu3] = 0

Therefore [s6v2+t6v3, au2+bu3] = as6[v2, u2]+bt6[v3, u3] ∈ [f ′, g(2)]. Now by direct computation

[v2, u2] = −7hα2 − 5α3 − 12(hα4 + hα5 + hα6)

[v3, u3] = 12(hα1
+ hα2

+ hα6
) + 19hα3

+ 17hα5
+ 24hα4

Now hα1 , hα2 , hα3 , hα4 , hα5 ∈ [f ′, g] and so [f ′, g] ∩ h = 〈hα1 , . . . , hα5〉. Therefore an element of

h belongs to [f ′, g] if and only if the coefficient of hα6
is zero. Therefore [s6v2 + t6v3, au2 + bu3]

can only belong to [f ′, g(2)] if 12(as6 − bt6) = 0. Therefore (a, b) is a multiple of (t6, s6).

Basis of gMs,t

Since dim(gf
′
) = dim(ge

′
) = 10 and dim(gMs,t) = dim(geE6(a1)) = 8 then it follows that for any

yi ∈ gf
′
(i) with i = −6,−8,−10,−14 there exists an element of gMs,t of the form yi+ yi+2 + . . . .
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Therefore gMs,t has a basis of the form

Xs,t
1 = Ms,t = f ′ + . . .

Xs,t
2 = t6u2 + s6u3 + . . .

Xs,t
3 = u4 + . . .

Xs,t
4 = u5 + . . .

...

Xs,t
8 = u9 + . . .

Note that it is a consequence of our description of Ms,t that in the expression for Xs,t
i when

i 6= 2, all the higher degree terms are at least quadratic in s, t. In Xs,t
2 all higher degree terms

are at least degree 8 in s, t.

For a1, . . . , a8 ∈ k we want to show that (f ′, a1f
′ + a2u2 + a3u3 + a4u4 + . . . ) is contained in⋃

(s,t)6=(0,0)

(Ms,t, gMs,t). Now assume that a2 6= 0 and let µ ∈ k be such that µ6a2 = a3. Consider

(Mµt,t, g
Mµt,t) then

Xµt,t
1 = f ′ + t2(. . . )

Xµt,t
2 = t6u2 + µ6t6u3 + t8(. . . )

⇒ Xµt,t
2

t6
= u2 + µ6u3 + t2(. . . )

Xµt,t
3 = u4 + t2(. . . )

...

Then let Y be

Y = a1X
µt,t
1 +

a2

t6
Xµt,t

2 + a4X
µt,t
3 + a5X

µt,t
4 + . . .

= a1f0 + a2u2 + a2µ
6u3 + a4u4 + · · ·+ t2(. . . )

= a1f0 + a2u2 + a3u3 + a4u4 + · · ·+ t2(. . . )

Therefore the set {(Mµt,t, a1X
µt,t
1 + . . . ) : t 6= 0} includes (f ′, a1f

′ + a2u2 + . . . ) in its closure.

So (f ′, a1f
′ + . . . ) ⊂ C1(E6(a1)).

9.3 Argument to show C1(A4A1) ⊂ C1(D5(a1)) when p = 7

Now C1(A4A1) = G · (e′, ge′ ∩N1) has two components X1 = G · (e′, {u ∈ ue : a2 = 0}) and

X2 = (e′, {u ∈ ue : a1 = 0}). To show X1 ∈ C1(D5(a1)) consider

e′ = eα1
+ eα3

+ eα4
+ eα2

+ eα6

f ′ = 4fα1
+ 6fα3

+ 6fα4
+ 4fα2

+ fα6

h = 4hα1 + 6hα3 + 8hα3 + 12fα4 + 10hα5 + 4hα6
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Note that h, e′, f ′ do not form an sl2-triple. For v1 = f 01110
1

+f 00111
1
−f 01111

0
−2f 11110

0
contained

in ge
′
(1) and v7 = f 01221

1
contained in ge

′
(4) let

u1 = [f ′, v1] ∈ gf
′
(−1) u7 = [f ′, [f ′, [f ′, [f ′, v7]]]]/576 ∈ gf

′
(−4)

Mt = e′ + t3u1 − 30t6u7 for t ∈ k×

We can show that Mt is contained in OD5(a1) for any t ∈ k×.

Lemma 9.3.1 For an element y ∈ gMt , h is not the highest degree term of y.

Proof. Any element in the centralizer of Mt is of the form y = yi + yi−1 + . . . where yi ∈ ge
′
(i).

Suppose that h + y−1 + y−2 ∈ gMt . Then each part of [y,Mt] with degree i must equal zero.

Firstly the part of [y,Mt] with degree 1 gives

[y−1, e
′] = 0⇒ y−1 = 0

Similarly the part of degree 0 part gives y−2 = 0. Finally the part of [y,Mt] with degree −1 gives

[y−3, e
′] + [h, u1] = 0

⇒ [e′, y−3] = −3t3u1 since [h, t3u1] = −3t3u1 ∈ gf
′
(−1)

Since [e′, g(−3)] ∩ gf
′
(−1) = {0} we cannot have [e′, y−3] = −3t3u1 so h cannot be the highest

degree term of an element on gMt .

Lemma 9.3.2 For an element y ∈ gMt , v2 is not the highest degree term of y.

Proof. Suppose that y = v2 + y0 + y−1 + · · · ∈ gMt . Now the part of [Mt, y] with degree 2 gives

[e′, y0] = 0⇒ y0 = ξh for some ξ ∈ k

Similarly the part of [Mt, y] with degree 1 gives

[e′, y−1] = 0⇒ y−1 = 0

Finally the degree 0 part of [Mt, y] gives [e′, y−2] = [v2, t
3u1]. However by inspection [v2, t

3u1]

is not contained in [e′, g(−2)]. Therefore v2 cannot be the highest degree term of an element in

gMt .
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Basis of gMt

By a [GAP12] calculation we can show that gMt ∩N1 = gMt ∩N has basis of the form

V t1 = v1 V t8 = v8 + t3(. . . ) V t13 = v13

V t3 = v3 + t3(. . . ) V t9 = v9 + t3(. . . ) V t14 = v14 + t3(. . . )

V t4 = v4 + t3(. . . ) V t10 = v10 V t15 = v15 + t3(. . . )

V t5 = v5 + t3(. . . ) V t11 = v11 + t3(. . . )

V t7 = v7 V t12 = v12 + t3(. . . )

Now (Mt, g
Mt ∩N1) ⊂ (eD5(a1), g

eD5(a1) ∩N1) for all t 6= 0. So

(Mt, a1V
t
1 + a3V

t
3 + · · ·+ a15V

t
15) ⊂ G · (eD5(a1), g

eD5(a1) ∩N1) for all ai ∈ k

Taking the closure we obtain

(e′, a1v1 + a3v3 + · · ·+ a15v15) ⊂ G · (eD5(a1), g
eD5(a1) ∩N1) for all ai ∈ k

(e′, {u =
∑

aivi ∈ ue : a2 = a6 = 0}) ⊂
(
eD5(a1), g

eD5(a1) ∩N1

)
Now for ξ ∈ k consider exp(ad(ξv2)) ∈ Ge′ then

exp(ad(ξv2))(e′, {u ∈ ue : a2 = a6 = 0}) ⊂ G · (eD5(a1), g
eD5(a1) ∩N1)

⇒ (e′, {u ∈ ue
′

: a2 = 0, a6 = ξa3 −
ξ2

2
a1}) ⊂ G · (eD5(a1), g

eD5(a1) ∩N1)

Therefore by taking the closure we get that X1 is contained in C1(D5(a1)). By a similar argument

using the element M ′t = e′ + t3u2 + 30t6u8 we can show X2 is also contained in C1(D5(a1)).

Therefore C1(A4A1) is not an irreducible component of Cnil1 (E6).
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Orbit Characteristic (Possible) Irreducible Component X Element x in irreducible component Nilpotent Orbit x is contained in

A1

p = 5

M̃2 e0 + eα2
+ eα4

+ eα5
+ eα6

A4A1

X1, X2 ∈ M̃3 e0 + eα2
+ eα4

+ eα5
+ e 12210

1
D4(a1)

X1, X2 ∈ M̃4 e0 + eα2
+ eα4

+ eα5
A3A1

M̃5 e0 + eα2
+ eα4

+ eα6
+ e 12210

1
A2

2A1

M̃6 e0 + eα2
+ eα4

+ eα6
A2A1

M̃8 e0 + eα2
+ eα4

+ e 12210
1

A2A
2
1

p ≥ 7

M̃1 e0 + eα2
+ eα4

+ eα5
+ eα6

+ e 12210
1

E6(a3)

M̃2 e0 + eα2
+ eα4

+ eα5
+ eα6

A4A1

M̃3 e0 + eα2
+ eα4

+ eα5
+ e 12210

1
D4(a1)

M̃4 e0 + eα2
+ eα4

+ eα5
A3A1

M̃5 e0 + eα2
+ eα4

+ eα6
+ e 12210

1
A2

2A1

A2
1

p = 5

X1, X2 ∈ M̃2 e0 + eα2
+ e 11110

0
+ e 01111

0
D4(a1)

X1, . . . , X4 ∈ M̃3 e0 + eα2
+ eα4

A2A
2
1

M̃4 e0 + e 11110
0

+ e 01111
0

A2

p = 7

M̃1 e0 + eα2
+ eα4

+ e 11110
0

+ e 01111
0

D5(a1)

M̃2 e0 + eα2
+ e 11110

0
+ e 01111

0
D4(a1)

M̃3 e0 + eα2 + eα4 A2A
2
1

p = 11
X1, X2 ∈ M̃1 e0 + eα2

+ eα4
+ e 11110

0
+ e 01111

0
D5(a1)

M̃2 e0 + eα2
+ e 11110

0
+ e 01111

0
D4(a1)

127



A3
1

p = 5

M̃1 e0 + e 11000
0

+ e 01100
0

+ e 00110
0

+ e 00011
0

+ e 12321
2

D4(a1)

X1, X2 ∈ M̃2 e0 + e 11110
0

+ e 01111
0

+ e 12321
2

A2A
2
1

M̃4 e0 + e 11110
0

+ e 01111
0

A2A
2
1

M̃5 e0 + e 11110
0

+ e 01111
0

A2A
2
1

p = 7

M̃1 e0 + e 11000
0

+ e 01100
0

+ e 00110
0

+ e 00011
0

+ e 12321
2

D4(a1)

M̃2 e0 + e 11110
0

+ e 01111
0

+ e 12321
2

A2A
2
1

M̃3 e0 + e 11000
0

+ e 01100
0

+ e 00110
0

+ e 00011
0

A3A1

p = 11 M̃1 e0 + e 11000
0

+ e 01100
0

+ e 00110
0

+ e 00011
0

+ e 12321
2

D4(a1)

A2 p ≥ 5 M̃1 e0 + eα2
+ eα5

+ eα6
+ e 12321

1
D4(a1)

A2A1

p = 5, 11 M̃1 e0 + eα5
+ eα6

A3A1

p = 7
X1, X2, X3 ∈ M̃1 e0 + eα5 + eα6 A3A1

M̃2 e0 + e 00011
0

A3A1

A2
2

p = 5

M̃2 e0 + eα2
+ e 12321

1
D4(a1)

M̃3 e0 + e 11100
0

+ e 01110
0

+ e 00111
0

A3A1

M̃4 e0 + eα2 A2
2A1

p = 7
M̃1 e0 + e 11100

0
+ e 01110

0
+ e 00111

0
+ eα2

E6(a3)

M̃2 e0 + eα2 + e 12321
1

D4(a1)

p = 11 M̃1 e0 + e 11100
0

+ e 01110
0

+ e 00111
0

+ eα2
E6(a3)
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A2A
2
1

p = 5
X1, X2, X3 ∈ M̃1 e0 + 2e 11111

0
+ e 01210

1
+ e 11110

1
− e 01111

1
D4(a1)

M̃0 e0 + t2 + s2 A3A1

p = 7
X1, X2 ∈ M̃1 e0 + 2e 11111

0
+ e 01210

1
+ e 11110

1
− e 01111

1
D4(a1)

M̃0 e0 + t2 + s2 A3A1

p = 11 X1, X2 ∈ M̃1 e0 + 2e 11111
0

+ e 01210
1

+ e 11110
1
− e 01111

1
D4(a1)

A3

p = 5
X1, X2 ∈ M̃1 e0 + eα6 + e 11110

1
+ e 01210

1
A4

M̃2 e0 + e 11110
1

+ e 01210
1

D4(a1)

p ≥ 7 M̃1 e0 + eα6
+ e 11110

1
+ e 01210

1
A4

A2
2A1

p = 5
M̃1 e0 + e 12210

1
+ e 11211

1
+ e 01221

1
D4(a1)

M
(3)
0 ,M

(4)
0 ∈ M̃0 e0 + q1 + s3 D4(a1)

p ≥ 7
X1, X2 ∈ M̃1 e0 + e 12210

1
+ e 11211

1
+ e 01221

1
D4(a1)

M̃0 e0 + q1 + s3 D4(a1)

A3A1

p = 5 X1, X2, X3 ∈ M̃1 e0 + e 12321
2

D4(a1)

p ≥ 7 M̃1 e0 + e 12321
2

D4(a1)

A4

p = 5 X1, X2 ∈ M̃1 e0 + eα6
A4A1

p ≥ 7 M̃1 e0 + eα6
A4A1

D4 p ≥ 7 M̃1 e0 + e 11100
1

+ e 11110
0

+ e 00111
1

+ e 01111
0

E6(a3)

A4A1 p = 11 X1, X2 ∈ M̃0 e0 + v1 + v2 E6(a1)

A5 p ≥ 7 M̃1 e0 + e 12321
2

E6(a3)

D5(a1) p ≥ 7 M̃0 e0 + v1 + v2 + v5 E6(a3)

Table 9.2: Example of an element in each irreducible component of gei ∩N1 which is not contained in (G · ei)
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Chapter 10

Summary of Results

In this chapter we summarise the results of Questions 1 and 2 for g = G2, F4 and E6. For each

Lie algebra g we state the number of irreducible components of ge∩N1 along with the dimension

of each component in a table. This is followed by a description of the irreducible components of

Cnil1 (g).

10.1 G2

For the case when G = G2, we have found that ge ∩N1 is always irreducible. This is highlighted

by the table below.

Orbit Characteristic p
Number of Irreducible

Components
Dimensions of Components

G2(a1) ≥ 5 1 4

Ã1 ≥ 5 1 5

A1 ≥ 5 1 9

Theorem 10.1.1 Let g be of type G2 and let p = 5. Then the variety Cnil1 (G2) is irreducible of

dimension 14 = dim(g) where

Cnil1 (G2) = C1(G2(a1))
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10.2 F4

When G = F4 we have found that ge ∩ N1 is always equidimensional. In particular ge ∩ N1 is

either irreducible or it had two components of the same dimension.

Orbit Characteristic p
Number of Irreducible

Components
Dimensions of Components

A1

5 1 28

7 1 31

11 1 32

≥ 13 1 33

Ã1

5 1 24

7 1 26

≥ 11 1 27

A1Ã1

5 2 19,19

7,11 1 21

≥ 13 1 13

A2

5 2 18,18

≥ 7 1 20

Ã2

5 1 18

7 1 19

≥ 11 1 20

A2Ã1

5,7 2 15,15

11 1 16

≥ 13 1 17

B2 ≥ 5 1 14

Ã2A1

5 1 14

7 2 14,14

≥ 11 1 15

C3(a1) ≥ 5 1 13

F4(a3) ≥ 5 1 12

B3 ≥ 7 1 9

C3 ≥ 7 1 9

F4(a2) ≥ 7 1 8

F4(a1) ≥ 11 1 6

F4 ≥ 13 1 4

131



Theorem 10.2.1 The variety Cnil1 (F4) is equidimensional of dimension 52 = dim(g) with re-

spectively 1, 2, 3 components given by

p = 5 : Cnil1 (F4) = C1(F4(a3))

p = 7 : Cnil1 (F4) = C1(F4(a3)) ∪ C1(F4(a2))

p = 11 : Cnil1 (F4) = C1(F4(a3)) ∪ C1(F4(a2)) ∪ C1(F4(a1))

10.3 E6

In this case we have not found the irreducible components of ge ∩N1 for nilpotent orbits A1, A2
1

and A3
1. The case when e is contained in the orbit A2A

2
1 is the first example when ge ∩N1 is not

equidimensional. This is because c = sl2⊕ k and the dimension of the component corresponding

to the zero orbit has a higher dimension of the irreducible components corresponding to the orbit

O[2] in sl2. There are two other cases when ge ∩N1 is not equidimensional, namely orbits A2
2A1

and A3A1.

Orbit Characteristic p
Number of Irreducible

Components
Dimensions of Components

A1

5 - -

7 - -

11 - -

≥ 13 1 51

A2
1

5 - -

7 - -

11 - -

≥ 13 1 42

A3
1

5 - -

7 - -

11 1 34

≥ 13 1 35

A2

5 1 30

≥ 7 1 32

A2A1

5 1 27

7 4 27, 27, 27, 27

≥ 11 1 29
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A2
2

5 1 24

7 2 26, 26

11 1 27

13 1 28

A2A
2
1

5 3 24, 22, 22

7 3 24, 24, 24

11 2 25, 25

≥ 13 1 26

A3

5 3 21, 21, 21

≥ 7 1 23

A2
2A1

5 3 20, 19, 19

7 3 21, 21, 21

11 2 22, 22

≥ 13 1 23

A3A1

5 3 19,18,18

≥ 7 1 20

D4(a1) ≥ 5 1 18

A4

5 2 15, 15

≥ 7 1 16

D4 ≥ 7 1 16

A4A1

5,7 2 14

≥ 11 1 15

A5 ≥ 7 1 13

D5(a1) ≥ 7 1 13

E6(a3) ≥ 7 1 12

D5 ≥ 11 1 9

E6(a1) ≥ 11 1 8

E6 ≥ 13 1 6

Theorem 10.3.1 For p = 5 (resp. 11) the variety Cnil1 (E6) is equidimensional of dimension 76

(resp. 78) with respectively 3 and 2 components.

p = 5 : Cnil1 (E6) = G · (e,X1) ∪G · (e,X2) ∪ C1(D4(a1))

p = 11 : Cnil1 (E6) = C1(E6(a3)) ∪ C1(E6(a1)).

Here X1 and X2 are the two irreducible components of ge∩N1 for the nilpotent orbit Oe = A4A1.
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When p = 7 we have Cnil1 (E6) = C1(E6(a3))∪C1(D4(a1)); however we do not know if the inclusion

C1(D4(a1)) ⊂ C1(E6(a3)) holds.

10.4 Further Work

We have calculated the irreducible components of Cnil1 (E6) for p = 5 and 11. Therefore the next

step would be to find the irreducible components when p = 7. We have already shown that

Cnil1 (E6) = C1(D4(a1)) ∪ C1(E6(a3))

Therefore we would need to establish whether C1(D4(a1)) ⊂ C1(E6(a3)). The method used in

Section 9.1, which utilizes Theorem 4.2.2, does not work in this case since the induced orbit E6(a1)

is not contained in N1. For a transverse slice argument this would be the same as demonstrating

that C1(D4(a1)) ⊂ C1(D5(a1)). The difference between the dimension of D5(a1) and D4(a1) is

6, which is larger than any calculations computed in this thesis. Hence the transverse slice has

a more complex structure than others we have dealt with and therefore the methods we have

used in other cases do not apply. I expect that this inclusion does hold and that Cnil1 (E6) is

irreducible of dimension 78 when the characteristic p is 7.

Another obvious extension to this work is to consider the irreducible components of ge ∩ N1

for the nilpotent orbits A1, A2
1 and A3

1 in E6. The polynomials describing the components of

ge ∩ N1 are more complex than the other cases we considered. The standard methods we have

used throughout do not work and it is likely to be time consuming to establish these inclusions

as it was for the orbit A1 in F4. Note that not establishing the irreducible components of ge∩N1

for these orbits did not obstruct our work to find the irreducible components of Cnil1 (E6). This

is because in each case we can express ge ∩N1 as a union of possible irreducible components Xi.

Then each possible component of Cnil1 (E6) corresponding to Xi can be eliminated using Theorem

5.2.1. This is less time consuming than establishing each inclusion. For these orbits I expect that

ge ∩ N1 is equidimensional. Specifically I expect that ge ∩ N1 is irreducible for the orbit A3
1 of

dimension 31, 33 and 34 for p = 5, 7 and 11 respectively. Similarly for A2
1, I expect that ge ∩N1

has two irreducible components both of dimension 37, 39 and 41 respectively. Also for A1, I

expect ge ∩N1 has two components of dimension 45 when p = 5 and is irreducible of dimension

48 and 50 for p = 7 and p = 11 respectively.

Finally it would be interesting to consider Question 1 and 2 for E7 and E8. There are three

main factors which means there is more work involved in these cases than there was for G2, F4

and E6. The first is the number of nilpotent orbits that need to be considered. For E7 there are

45 orbits and for E8 there are 70. This is considerably more that the 16 and 21 of F4 and E6.

Also there are nilpotent orbits in E7 and E8 where ge(i) does not decompose into irreducible

submodules. Therefore a different method will be needed to tackle these cases.

The second factor is that the Coxeter number of E7 and E8 is larger than that of F4 and E6 at
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18 and 30 respectively. Therefore instead of just considering the cases when the characteristic p

is 5, 7 and 11 we would need to consider 5 different characteristics for E7 and 7 for E8. Finally

the dimension of the minimal faithful representations of E7 and E8 are larger than the cases we

considered. For E7 the dimension is 58 and for E8 it is 248. I expect that applying the same

[GAP12] code used in this thesis to an orbit in E8 will require more computing resources than

was available for this thesis.

The most time consuming work for F4 and E6 was demonstrating inclusions of irreducible closed

subsets when the standard strategies fail, for example establishing Cnil1 (D5) ⊂ Cnil1 (E6(a1)) when

p = 11. There is no reason to believe that E7 and E8 would not have any of these cases.
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Appendix A

Appendix - GAP code

Here we present the [GAP12] code we have used in some of the calculations. The calculations in

Chapters 6 to 8 frequently require us to find solutions to sets of polynomials, usually the entries

of the p-th power of a matrix. Section A.2 explains how we have automated the process of solving

a single polynomial. In Section A.3 we apply this set-up to a collection of polynomials. Before

this we consider a method for inputting elements of a Lie algebra in Section A.1.

A.1 Elements of a Lie Algebra

The following code provides a method for inputting elements of a Lie algebra g = F4. This code

was originally written by Daniel Juteau. We thank him for allowing us to publish it. Executing

e([a, b, c, d]) returns the element eaα1+bα2+cα3+dα4 in the Chevalley basis, where the roots are

labelled in the same order as given by the Dynkin diagrams in Figure 1.1. Similarly f([a, b, c, d])

(resp. h([a, b, c, d]) gives the corresponding negative root element (resp. corresponding element

in the Cartan subalgebra).

The simple root elements of F4 in [GAP12] are defined in a different order to those labelled in

the Dynkin diagram in Figure 1.1. The following code defines the matrix J , which is used to

rearrange the GAP ordering to match that of the Dynkin diagram.

We can do something similar for g = G2 and E6. For these cases the matrix J is not required.

R:=Rationals;

LF4 := SimpleLieAlgebra("F",4,R);

RF4 := RootSystem(LF4);

CF4 := CartanMatrix(RF4);

BF4 := ChevalleyBasis(LF4);

B:=Basis(LF4);

J:=[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]];

e := function(v)
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return BF4[1][Position(PositiveRoots(RF4),TransposedMat(CF4)*(J*v))];

end;

f := function(v)

return BF4[2][Position(PositiveRoots(RF4),TransposedMat(CF4)*(J*v))];

end;

h := function(i)

if i=1 then return BF4[3][2];

elif i=2 then return BF4[3][4];

elif i=3 then return BF4[3][3];

elif i=4 then return BF4[3][1];

fi;

end;

A.2 Manipulating Polynomials

In this section we consider some methods for solving a single polynomial P = 0. It is assumed

that all polynomials do not have a zero degree term.

Method 1 If the polynomial is a single univariate monomial, i.e. of the form axn = 0, then

this function returns [x, 0] otherwise it returns false.

FindIndeterminatesWhichEqualZero := function(P)

if IsUnivariateMonomial(P) then

return [IndeterminateOfUnivariateRationalFunction(P), P*0];

fi;

return false;

end;

Method 2 This function checks if the polynomial P = 0 can be rearranged so that a single

variable x can be expressed in terms of others, i.e x = Q for some polynomial Q which does not

contain the variable x. This is done by scanning over the linear univariate monomials of P , if

one exists with a variable x which is not present in any other monomial of P we can rearrange

P to find a value of x. If a value is found using this method it returns [variable, value] (i.e.

[x,Q]). Otherwise it returns false.

FindIndeterminatesInTermsOfOtherIndeterminates := function(P)

local monomials, univariateMonomials, nonUnivariateMonomials, monomial, i;

monomials := MonomialsOfPolynomial(P);

univariateMonomials := Filtered(monomials, IsUnivariateMonomialLinear);

nonUnivariateMonomials := Filtered(monomials, x-> not IsUnivariateMonomialLinear(x));

for monomial in univariateMonomials do
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i := IndeterminateOfUnivariateRationalFunction(monomial);

if ForAll(nonUnivariateMonomials, m -> not IsIndeterminateContainedInMonomial(i, m)

) then

return [i, (monomial - P) / CoefficientsOfUnivariatePolynomial(monomial)[2]];

fi;

od;

return false;

end;

Next we discuss a few methods for finding the factors of a polynomial P .

Method 3 This method checks if the monomials of a polynomial P have a common univariate

factor, i.e. if P = axnQ for some polynomial Q. If this is the case it returns a record containing

these factors in the form rec(factor:= [axn, Q]). Otherwise it returns false. Note that if P has a

single monomial it returns false.

FindHighestCommonUnivariateFactorOfPolynomial := function(P)

local gcd;

gcd := Gcd(MonomialsOfPolynomial(P));

if IsUnivariateMonomial(gcd) and Length(CoefficientsOfUnivariatePolynomial(gcd)) > 1

then

return rec( factors:= [gcd, P/gcd] );

fi;

return false;

end;

Method 4 The following function identifies whether a polynomial P is factorizable i.e. whether

P be expressed as P = Q1Q2 . . . Qn for some polynomials Qi. If this is the case it returns

a duplicate free list of these factors in the form rec(factors:= [Q1, Q2, . . . , Qn]). Otherwise it

returns false.

FindFactorsOfPolynomial := function(P)

local factors;

factors:=Factors(P);

if Length(factors) > 1 then

return rec( factors:=DuplicateFreeList(factors) );

fi;

return false;

end;

Method 5 If a polynomial P has a single monomial, then method 3 does not work. This function

checks if a polynomial P has a single monomial and factorizes it via method 4.
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FindFactorsOfMonomial := function(p)

if Length(MonomialsOfPolynomial(p)) = 1 then

return FindFactorsOfPolynomial(p);

fi;

return false;

end;

If we have a polynomial expression Q for a variable x then this function substitutes this value

for x into a polynomial P . We input the polynomial P and the substitution as [x,Q]. If P is the

zero polynomial then it returns P otherwise it returns P evaluated at x.

ApplySubstitution:=function(polynomial, substitution)

if not IsZero(polynomial) then

return Value(polynomial, [substitution[1]], [substitution[2]]);

fi;

return polynomial;

end;

A.3 Solutions for a set of Polynomials

Now we present the code to solve the set of polynomials P1 = 0, . . . , Pn = 0 using the previous

functions. This function scans over P1, . . . , Pn and identifies any variables which we can find

a substitution for. This function returns a list of the substitutions along with the polynomials

P1, . . . , Pn with these substitutions made.

The code makes use of recursion in order to be able to find all the valid substituions for the

given set of polynomials. We input a list of polynomial P1, . . . Pn and a list of substitutions of

the form [x, value]. Note that the supplied list of polynomials should already been evaluated at

the initial substitutions. Below is some pseudocode which outlines how this function works.

SubstituteIndeterminates(polynomials, substitutions)

beginning:

for each polynomial Pi in polynomials

for each substitution_method in [method1..method5]

result := substitution_method(Pi)

if result.found_single_substitution

substitutions := substitutions + result.substitution

polynomials := evaluated(polynomials) # evaluated at found substitution

goto beginning

else if result.has_factors

for each factors_found_in(result) replace Pi in polynomials with factor

SubstituteIndeterminates(polynomials, substitutions)

print polynomials + substitutions

The following is a [GAP12] implementation of the above pseudocode. This implementation adds

an optimization to avoid reprocessing polynomials for which substitutions have been found. This
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is done by supplying the position i in polynomials to start processing from.

SubstituteIndeterminatesWithKnowledge:=function(polynomials, substitutions, i)

local FindSubstitutionsUsingMethods, result;

# Copy polynomials and substitutions so we can make modifications on these

polynomials := ShallowCopy(polynomials);

substitutions := ShallowCopy(substitutions);

# Use the four substitution methods in order to attempt to find values for

# substitutions. This method either return false, indicating that it has

# found a substitution but we are not finished. This function should be

# called again to try and find more substitutions. Otherwise it returns a

# list of results, stating the substitutions found and polynomials

FindSubstitutionsUsingMethods := function()

local p, res, subMethod, results, factor;

for subMethod in [FindIndeterminatesWhichEqualZero,

FindIndeterminatesInTermsOfOtherIndeterminates,

FindFactorsOfMonomial,

FindHighestCommonUnivariateFactorOfPolynomial,

FindFactorsOfPolynomial] do

for p in [i..Length(polynomials)] do

# The zero polynomial will not yield a substitution

if not IsZero(polynomials[p]) then

# Use the current sub method to find a substitution

res := subMethod(polynomials[p]);

if IsRecord(res) then

# We have identified that the current polynomial has factors which

# may be used for finding more substitutions. What we can do is:

# - Replace the polynomial in polynomials with current factor

# - Perform a SubstituteIndeterminatesWithKnowledge with the

# modified polynomial list

# - Combine results and return

results := []; # Start with an empty list

for factor in res.factors do

polynomials[p] := factor; # Replace with the current factor

# Perform a recursive call to substitute indeterminates

Append(results, SubstituteIndeterminatesWithKnowledge(polynomials,

substitutions, p));

od;

return results;

elif IsList(res) then

Add(substitutions, res); # A single substition found. Save it

#Sub back in to all the polynomials and substitution values

polynomials := List(polynomials, p-> ApplySubstitution(p, res) );

substitutions := List(substitutions, s-> [

s[1], ApplySubstitution(s[2], res)]);
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return false;

fi;

fi;

od;

od;

return [ rec( substitutions:=substitutions, polynomials:=polynomials ) ];

end;

# Keep calling FindSubstitutionsUsingMethods until we get a result

repeat

result := FindSubstitutionsUsingMethods();

i := 1; # Reset the i to 1;

until IsRecordCollection(result); # Have I got to the end?

return result;

end;

The following function finds the solutions to a set of polynomials P1 = 0, . . . , Pn = 0 with no

initial knowledge. It first sorts the polynomials P1, . . . , Pn in increasing number of monomials so

polynomials which are likely to be easier to factorize is considered first. This function returns a

record with the substitutions and the polynomials P1, . . . , Pn with these substitutions made.

SubstituteIndeterminates:=function(polynomials)

SortBy(polynomials, p->Length(MonomialsOfPolynomial(p)));

return SubstituteIndeterminatesWithKnowledge(polynomials, [], 1);

end;

Given a set of polynomials P1, . . . , Pn and a number p, MultipleFreeList is a function which

removes any polynomials which are a multiple m of another polynomial where m is contained in

{1, 2, . . . , p− 1}.

MultipleFreeList := function(list, p)

local multipleFree,i;

multipleFree := [];

for i in list do

if not ForAny([1..p-1] * i, x-> x in multipleFree) then

Add(multipleFree, i);

fi;

od;

return multipleFree;

end;

Now let M be a matrix with polynomial entries defined over the finite field GF (p). Note that

if a matrix N is defined over the integers then to reduce N mod p let M = N ∗ One(GF (p)).

The following function gives the polynomial conditions for M = 0. This is done by producing

a multiple free list of the elements in M then applying the function SubstituteIndeterminates

defined above.

FindUniqueSolutionsOfPolynomialsInMInCharP := function(M, p)
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return DuplicateFreeList(SubstituteIndeterminates(MultipleFreeList(Flat(M),p)));

end;

# Given a list of solutions (such as those returned by SubstituteIndeterminates)

# factorize each of the polynomials in each of the solutions.

FactorizeUniqueSolutionPolynomials := function(solutions)

local i;

for i in solutions do

i.polynomials := List(i.polynomials, Factors);

od;

return solutions;

end;

The following function does the same as FindUniqueSolutionsOfPolynomialsInMCharP but then

the outputted polynomial conditions is factorized.

FindUniqueFactorizedSolutionsOfPolynomialsInMInCharP := function(M, p)

return FactorizeUniqueSolutionPolynomials(

FindUniqueSolutionsOfPolynomialsInMInCharP(M, p));

end;

Example A.3.1

Consider the orbit A2A
2
1 in E6 as discussed in Section 8.4. Then the following code finds

the polynomial conditions for M7
1 = 0.

#Set up for Lie Algebra E6, assuming already called function e,f,h as described

at the beginning of the chapter

R:=Rationals;

LE6 := SimpleLieAlgebra("E",6,R);

RE6 := RootSystem(LE6);

CE6 := CartanMatrix(RE6);

BE6 := ChevalleyBasis(LE6);

B:=Basis(LE6);

V27:=HighestWeightModule(LE6,[0,0,0,0,0,1]);

B27:=Basis(V27);;

#e0 is the representative of the orbit A_2A_1^2

e0:=e([0,1,0,0,0,0])+e([0,0,0,1,0,0])+e([1,0,0,0,0,0])+e([0,0,0,0,0,1]);

# This is the root element of the reductive part c of g^e where c=sl_2 +k

e1:=2*e([1,0,1,1,1,1])+e([0,1,1,2,1,0])+e([1,1,1,1,1,0])-e([0,1,1,1,1,1]);

f1:=f([1,0,1,1,1,1])+2*f([0,1,1,2,1,0])+f([1,1,1,1,1,0])-f([0,1,1,1,1,1]);

#Basis of g^e as given by Lawther and Testerman

s1:=e([1,1,2,2,1,1]); s2:=s1*f1; s3:=(s2*f1)/2; s4:=(s3*f1)/3;

t1:=e([1,1,1,2,2,1]); t2:=t1*f1; t3:=(t2*f1)/2; t4:=(t3*f1)/3;

u1:=e([1,2,2,3,2,1]); u2:=u1*f1; u3:=(u2*f1)/2; u4:=(u3*f1)/3; u5:=(u4*f1)/4;

v1:=e([0,1,1,2,1,1])+e([1,1,1,2,1,0]); v2:=v1*f1; v3:=(v2*f1)/2;
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x1:=e([1,1,1,1,0,0]); x2:=x1*f1;

y1:=e([0,1,0,1,1,1]); y2:=y1*f1;

z1:=e([1,1,1,2,1,1]); z2:=z1*f1; z3:=(z2*f1)/2;

#This finds representation \rho(x) for each element x where \rho is the

minimal faithful representation

E0:=MatrixOfAction(B27,e0);

E1:=MatrixOfAction(B27,e1);

S1:=MatrixOfAction(B27,s1); S2:=MatrixOfAction(B27,s2);

S3:=MatrixOfAction(B27,s3); S4:=MatrixOfAction(B27,s4);

T1:=MatrixOfAction(B27,t1); T2:=MatrixOfAction(B27,t2);

T3:=MatrixOfAction(B27,t3); T4:=MatrixOfAction(B27,t4);

U1:=MatrixOfAction(B27,u1); U2:=MatrixOfAction(B27,u2);

U3:=MatrixOfAction(B27,u3); U4:=MatrixOfAction(B27,u4);

U5:=MatrixOfAction(B27,u5);

V1:=MatrixOfAction(B27,v1); V2:=MatrixOfAction(B27,v2);

V3:=MatrixOfAction(B27,v3);

X1:=MatrixOfAction(B27,x1); X2:=MatrixOfAction(B27,x2);

Y1:=MatrixOfAction(B27,y1); Y2:=MatrixOfAction(B27,y2);

Z1:=MatrixOfAction(B27,z1); Z2:=MatrixOfAction(B27,z2);

Z3:=MatrixOfAction(B27,z3);

#Define some indeterminates

R:=GF(7);

a:=X(R,"a"); b:=X(R,"b"); c:=X(R,"c"); d:=X(R,"d"); g:=X(R,"g"); h:=X(R,"h");

i:=X(R,"i"); j:=X(R,"j"); k:=X(R,"k"); l:=X(R,"l"); m:=X(R,"m"); n:=X(R,"n");

p:=X(R,"p"); q:=X(R,"q"); r:=X(R,"r"); s:=X(R,"s"); t:=X(R,"t"); u:=X(R,"u");

v:=X(R,"v"); w:=X(R,"w"); x:=X(R,"x"); y:=X(R,"y"); z:=X(R,"z"); A:=X(R,"A");

#Define M0 and M1

M0:=a*E0+b*S1+c*S2+d*S3+g*S4+h*T1+i*T2+j*T3+k*T4+l*U1+m*U2+n*U3+p*U4+q*U5

+r*V1+s*V2+t*V3+u*X1+v*X2+w*Y1+x*Y2+y*Z1+z*Z2+A*Z3;

M1:=E1+M0;

FindUniqueFactorizedSolutionsOfPolynomialsInMInCharP(M1^7,7);

This outputs the following

rec(

polynomials := [ [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ],

[ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ] ],

substitutions := [ [ k, 0*Z(7) ], [ q, -d*j+Z(7)^4*g*i ] ] ),

rec(

polynomials := [ [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ],

[ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ] ],

substitutions := [ [ j, 0*Z(7) ], [ k, 0*Z(7) ], [ q, Z(7)^4*g*i ] ] ),
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rec(

polynomials := [ [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ],

[ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ] ],

substitutions := [ [ j, 0*Z(7) ], [ g, 0*Z(7) ], [ q, Z(7)^4*c*k ] ] ),

rec(

polynomials := [ [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ],

[ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ], [ 0*Z(7) ] ],

substitutions := [ [ g, 0*Z(7) ], [ q, Z(7)^4*c*k-d*j ] ] )

The first and last records gives that M7
1 = 0 if (k = 0 and q = −dj + 4gi) or (g = 0 and

q = 4ck − dj). The second and third records are equivalent to one of these cases. In the

notation used in Section 8.4, this is equivalent to (b4 = 0 and c5 = −a3b3 + 4a4b2) or

(a4 = 0 and c5 = 4a2b4 − a3b3).
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