Home > Research > Researchers > Plamen Angelov
Profile photo

Plamen Angelov

Academic, Academic Managers

  • Computing and Communications
  • Security Lancaster Secure (Machine Learning and Intelligence)
  • Cyber Security Research Centre (Data)
  • Fundamentals of IRAS
  • Centre for Technological Futures
  • Lancaster Intelligent, Robotic and Autonomous Systems Centre
  • Digital Health Group
  • Data Science Institute
  • DSI - Foundations
  • SCC (Data Science)
  • Security Lancaster (Academic Centre of Excellence)
  • Security Lancaster
  • Security Lancaster (Systems Security)
Postal address:
Lancaster University
InfoLab21
LA1 4WA
Lancaster
Postal address:
Lancaster University
Faraday Building
LA1 4YB
Lancaster
United Kingdom
Postal address:
B24
InfoLab21
Lancaster University
Bailrigg
Lancaster
LA1 4WA
United Kingdom

Email: p.angelov@lancaster.ac.uk

Phone: +44 1524 510391

Research output

Person Identification from Fingernails and Knuckles Images using Deep Learning Features and the Bray-Curtis Similarity Measure

Alghamdi, M., Angelov, P. & Lopez Pellicer, A., 16/09/2022, (Accepted/In press) In: Neurocomputing.

Multi-Class Fuzzily Weighted Adaptive Boosting-based Self-Organizing Fuzzy Inference Ensemble Systems for Classification

Gu, X. & Angelov, P., 1/09/2022, In: IEEE Transactions on Fuzzy Systems. 30, 9, p. 3722-3735 14 p.

On-line estimators for ad-hoc task execution: learning types and parameters of teammates for effective teamwork

Shafipour Yourdshahi, E., do Carmo Alves, M. A., Varma, A., Soriano Marcolino, L., Ueyama, J. & Angelov, P., 31/10/2022, In: Autonomous Agents and Multi-Agent Systems. 36, 2, 49 p., 45.

Statistically Evolving Fuzzy Inference System for Non-Gaussian Noises

Yang, Z. X., Rong, H-J., Angelov, P. & Yang, Z. X., 31/07/2022, In: IEEE Transactions on Fuzzy Systems. 30, 7, p. 2649 - 2664 16 p.

Delve into Neural Activations: Towards Understanding Dying Neurons

Jiang, Z., Wang, Y., Li, C-T., Angelov, P. & Jiang, R., 9/06/2022, (E-pub ahead of print) In: IEEE Transactions on Artificial Intelligence. 13 p.

A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis

Gu, X., Angelov, P., Zhang, C. & Atkinson, P., 31/05/2022, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 44, 5, p. 2281-2292 12 p.

Self-Organizing Fuzzy Belief Inference System for Classification

Gu, X., Angelov, P. & Shen, Q., 30/05/2022, (E-pub ahead of print) In: IEEE Transactions on Fuzzy Systems. p. 1-11 11 p.

A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification

Gu, X., Zhang, C., Shen, Q., Han, J., Angelov, P. & Atkinson, P., 1/04/2022, In: Information Fusion. 80, p. 179-204 26 p.

A Novel Multiple Feature-based Engine Knock Detection System using Sparse Bayesian Extreme Learning Machine

Yang, Z. X., Rong, H-J., Wong, P. K., Angelov, P., Vong, C. M., Chiu, C. W. & Yang, Z-X., 31/03/2022, In: Cognitive Computation. 14, 2, p. 828-851 24 p.

Ensemble-Based Bounding Box Regression for Enhanced Knuckle Localization

Vyas, R., Williams, B. M., Rahmani, H., Boswell-Challand, R., Jiang, Z., Angelov, P. & Black, S., 17/02/2022, In: Sensors. 22, 4, 18 p., 1569.

An Improved eXplainable Point Cloud Classifier (XPCC)

Arnold, N., Angelov, P. & Atkinson, P., 15/02/2022, (E-pub ahead of print) In: IEEE Transactions on Artificial Intelligence. 10 p.

Automated Person Identification Framework Based on Fingernails and Dorsal Knuckle Patterns

Alghamdi, M., Angelov, P. & Williams, B., 24/01/2022, 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 8 p.

Detecting and Learning from Unknown by Extremely Weak Supervision: eXploratory Classifier (xClass)

Angelov, P. & Almeida Soares, E., 30/11/2021, In: Neural Computing and Applications. 33, 22, p. 15145-15157 13 p.

Particle Swarm Optimized Autonomous Learning Fuzzy System

Gu, X., Shen, Q. & Angelov, P., 30/11/2021, In: IEEE Transactions on Cybernetics. 51, 11, p. 5352-5363 12 p.

RADNN: ROBUST TO IMPERCEPTIBLE ADVERSARIAL ATTACKS DEEP NEURAL NETWORK

Almeida Soares, E. & Angelov, P., 30/09/2021, In: TechRxiv. p. 1 7 p.

Explainable artificial intelligence: an analytical review

Angelov, P., Almeida Soares, E., Jiang, R., Arnold, N. & Atkinson, P., 1/09/2021, In: WIREs Data Mining and Knowledge Discovery. 11, 5, 13 p., e1424.

Explaining Deep Learning Models Through Rule-Based Approximation and Visualization

Almeida Soares, E., Angelov, P., Costa, B., Castro, M., Nageshrao, S. & Filev, D., 31/08/2021, In: IEEE Transactions on Fuzzy Systems. 29, 8, p. 2399-2407 9 p.

Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World

Firouzi, F., Farahani, B., Daneshmand, M., Grise, K., Song, J., Saracco, R., Wang, L. L., Lo, K., Angelov, P., Almeida Soares, E., Po-Shen Loh, Talebpour, Z., Moradi, R., Mohsen Goodarzi, Haleh Ashraf, Mohammad Talebpour, Alireza Talebpour, Luca Romeo, Rupam Das, Hadi Heidari & 12 others, Dana Pasquale, James Moody, James Moodys, Chris Woods, Erich S. Huang, Payam Barnaghi, Sarrafzadeh, M., Ron Li, Kristen L Beck, Olexandr Isayev, Nakmyoung Sung & Alan Luo, 31/08/2021, In: IEEE Internet of Things Journal. 8, 16, p. 12826-12846 21 p.

Multi-Branch with Attention Network for Hand-Based Person Recognition.

Baisa, N. L., Williams, B. M., Rahmani, H., Angelov, P. P. & Black, S., 4/08/2021, In: arXiv. abs/2108.02234

Self-Evolving Data Cloud-Based PID-Like Controller for Nonlinear Uncertain Systems

Yang, Z-X., Rong, H-J., Wong, P. K., Angelov, P. & Wang, H., 1/05/2021, In: IEEE Transactions on Industrial Electronics. 68, 5, p. 4508-4518 11 p.

Automatic Extraction and Labelling of Memorial Objects From 3D Point Clouds

Arnold, N., Angelov, P., Viney, T. & Atkinson, P., 23/04/2021, In: Journal of Computer Applications in Archaeology. 4, 1, p. 79-93 15 p.

Self-organizing fuzzy inference ensemble system for big streaming data classification

Gu, X., Angelov, P. & Zhao, Z., 22/04/2021, In: Knowledge-Based Systems. 218, 13 p., 106870.

Explainable-by-design Deep Learning

Angelov, P., 03/2021.

Hand-Based Person Identification using Global and Part-Aware Deep Feature Representation Learning

Baisa, N. L., Jiang, Z., Vyas, R., Williams, B., Rahmani, H., Angelov, P. & Black, S., 13/01/2021, In: arXiv.

An Explainable approach to Deep Learning from CT-scans for Covid Identification

Almeida Soares, E., Angelov, P. & Zhang, Z., 2021, In: TechRxiv.

Human action recognition using deep rule-based classifier

Bux, A., Gu, X., Angelov, P. & Habib, Z., 1/11/2020, In: Multimedia Tools and Applications. 79, 41-42, p. 30653-30667 15 p.

Towards Deep Machine Reasoning: A Prototype-based Deep Neural Network with Decision Tree Inference

Angelov, P. & Soares, E., 11/10/2020, 2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020. Institute of Electrical and Electronics Engineers Inc., Vol. October. p. 2092-2099 8 p. 9282812

Concept Drift Detection Using Autoencoders in Data Streams Processing

Jaworski, M., Rutkowski, L. & Angelov, P., 7/10/2020, Artificial Intelligence and Soft Computing: 19th International Conference, ICAISC 2020, Zakopane, Poland, October 12-14, 2020, Proceedings, Part I. Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R. & Zurada, J. M. (eds.). Cham: Springer, p. 124-133 10 p. (Lecture Notes in Computer Science; vol. 12415 ).

Towards explainable deep neural networks (xDNN)

Angelov, P. & Soares, E., 1/10/2020, In: Neural Networks. 130, p. 185-194 10 p.

Autonomous Learning Multiple-Model Zero-Order Classifier for Heart Sound Classification

Almeida Soares, E., Angelov, P. P. & Gu, X., 1/09/2020, In: Applied Soft Computing. 94, 9 p., 106449.

A Novel Self-Organizing PID Approach for Controlling Mobile Robot Locomotion

Gu, X., Khan, M., Angelov, P., Tiwary, B., Shafipour Yourdshahi, E. & Yang, Z., 26/08/2020, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, p. 1-10 10 p.

Deep Learning based Automated Forest Health Diagnosis from Aerial Images

Chiang, C., Angelov, P., Barnes, C. & Jiang, R., 28/07/2020, In: IEEE Access. 8, p. 144064 - 144076 13 p.

AI-enabled Microscopic Blood Analysis for Microfluidic COVID-19 Hematology

Xia, T., Fu, Y. Q., Jin, N., Chazot, P., Angelov, P. & Jiang, R., 21/06/2020, p. 98-102. 5 p.

Preface

Maglogiannis, I., Angelov, P., Macintyre, J., Iliadis, L., Kolias, S. & Pimenidis, E., 5/06/2020, Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part I. Maglogiannis, I., Iliadis, L. & Pimenidis, E. (eds.). Cham: Springer, p. v-ix 5 p. (IFIP Advances in Information and Communication Technology; vol. 583).

Preface

Maglogiannis, I., Angelov, P., Macintyre, J., Iliadis, L., Kolias, S. & Pimenidis, E., 5/06/2020, Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part II. Maglogiannis, I., Iliadis, L. & Pimenidis, E. (eds.). Cham: Springer, p. v-ix 5 p. (IFIP Advances in Information and Communication Technology; vol. 584).

Preface

Maglogiannis, I., Angelov, P., Macintyre, J., Iliadis, L., Kolias, S. & Pimenidis, E., 5/06/2020, Artificial Intelligence Applications and Innovations. AIAI 2020 IFIP WG 12.5 International Workshops: MHDW 2020 and 5G-PINE 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings. Maglogiannis, I., Iliadis, L. & Pimenidis, E. (eds.). Cham: Springer, p. v-vi 2 p. (IFIP Advances in Information and Communication Technology; vol. 585).

A Self-Adaptive Synthetic Over-Sampling Technique for Imbalanced Classification

Gu, X., Angelov, P. & Almeida Soares, E., 1/06/2020, In: International Journal of Intelligent Systems. 35, 6, p. 923-943 21 p.

An evolving approach to data streams clustering based on typicality and eccentricity data analytics

Bezerra, C. G., Costa, B. S. J., Guedes, L. A. & Angelov, P. P., 31/05/2020, In: Information Sciences. 518, p. 13-28 16 p.

Interpretable policies for reinforcement learning by empirical fuzzy sets

Huang, J., Angelov, P. P. & Yin, C., 31/05/2020, In: Engineering Applications of Artificial Intelligence. 91, 13 p., 103559.

On-line Estimators for Ad-hoc Task Allocation: Extended Abstract

Shafipour Yourdshahi, E., Do Carmo Alves, M., Soriano Marcolino, L. & Angelov, P., 9/05/2020, Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020). ACM, p. 1999–2001 3 p.

Decentralised Task Allocation in the Fog: Estimators for Effective Ad-hoc Teamwork

Shafipour Yourdshahi, E., Do Carmo Alves, M., Soriano Marcolino, L. & Angelov, P., 8/05/2020.

SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification

Angelov, P. & Almeida Soares, E., 29/04/2020, In: medRxiv. 8 p.

Highly interpretable hierarchical deep rule-based classifier

Gu, X. & Angelov, P., 20/04/2020, (E-pub ahead of print) In: Applied Soft Computing. 92

Towards Deep Machine Reasoning: a Prototype-based Deep Neural Network with Decision Tree Inference

Angelov, P. & Soares, E., 2/02/2020, In: arXiv.

ICDS 2019 Preface

Angelov, P., Boumhidi, J., Hagras, H., Nfaoui, E. H., Oubenaalla, Y., Loqman, C., Mestari, M. & Mousannif, H., 26/12/2019, 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, 1 p.

Explainable Density-based Approach for Self-driving Actions Classification

Almeida Soares, E., Angelov, P., Filev, D., Costa, B., Castro, M. & Nageshrao, S., 16/12/2019, p. 1-6. 6 p.

Self-Organising and Self-Learning Model for Soybean Yield Prediction

Alghamdi, M., Angelov, P., Rufino, M., Gimenez, R. & Almeida Soares, E., 16/12/2019, 2019 6th International Conference on Social Networks Analysis, Management and Security, SNAMS 2019. Alsmirat, M. & Jararweh, Y. (eds.). IEEE, p. 441-446 6 p.

Towards Explainable Deep Neural Networks (xDNN)

Angelov, P. & Soares, E., 5/12/2019, In: arXiv. p. 1-9 9 p.

Local Optimality of Self-Organising Neuro-Fuzzy Inference Systems

Gu, X., Angelov, P. P. & Rong, H., 30/11/2019, In: Information Sciences. 503, p. 351-380 30 p.

A Self-Adaptive Synthetic Over-Sampling Technique for Imbalanced Classification

Gu, X., Angelov, P. P. & Soares, E. A., 25/11/2019, In: arXiv.

Novelty Detection and Learning from Extremely Weak Supervision

Almeida Soares, E. & Angelov, P., 1/11/2019

An Odometer-Free Approach for Unmanned Ground-Based Vehicle Simultaneous Localization and Mapping

Gu, X., Angelov, P. & Khan, M., 26/10/2019.

Actively Semi-Supervised Deep Rule-based Classifier Applied to Adverse Driving Scenarios

Almeida Soares, E., Angelov, P. P., Costa, B. S. J. & Castro, M., 30/09/2019, 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, p. 1-8 8 p.

Deep Rule-Based Aerial Scene Classifier using High-Level Ensemble Feature Descriptor

Gu, X. & Angelov, P. P., 30/09/2019, 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 7 p. 8851838

A Semi-Supervised Deep Rule-Based Approach for Remote Sensing Scene Classication

Gu, X. & Angelov, P. P., 3/04/2019, The 2019 INNS Big Data and Deep Learning (INNSBDDL 2019) conference. Springer, p. 257-266 10 p.

A Distance-Type-Insensitive Clustering Approach

Gu, X., Angelov, P. P. & Zhao, Z., 1/04/2019, In: Applied Soft Computing. 77, p. 622-634 13 p.

Self-boosting first-order autonomous learning neuro-fuzzy systems

Gu, X. & Angelov, P. P., 1/04/2019, In: Applied Soft Computing. 77, p. 118-134 17 p.

Scalable Database Indexing and Fast Image Retrieval Based on Deep Learning and Hierarchically Nested Structure Applied to Remote Sensing and Plant Biology

Sadeghi-Tehran, P., Angelov, P. P., Virlet, N. & Hawkesford, M., 1/03/2019, In: Journal of Imaging. 5, 3, p. 1-21 21 p., 33.

How best to Design Fuzzy Sets and Systems: In memory of Prof. Lotfi A. Zadeh

Angelov, P. P., 23/02/2019, Fuzzy Logic and Applications: 12th International Workshop, WILF 2018, Genoa, Italy, September 6–7, 2018, Revised Selected Papers. Fullér, R., Giove, S. & Massulli, F. (eds.). Cham: Springer, p. 236-239 4 p. (Lecture Notes in Artificial Intelligence; vol. 11291).

Towards Evolving Cooperative Mapping for Large-Scale UAV Teams

Shafipour Yourdshahi, E., Angelov, P. P., Soriano Marcolino, L. & Tsianakas, G., 31/01/2019, 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, p. 2262-2269 8 p.

Empirical Approach—Introduction

Angelov, P. P. & Gu, X., 1/01/2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Cham: Springer-Verlag, p. 103-133 31 p. (Studies in Computational Intelligence; vol. 800).

Preface

Angelov, P. P. & Gu, X., 1/01/2019, Empirical Approach to Machine Learning. Cham: Springer, p. xv-xviii 4 p. (Studies in Computational Intelligence; vol. 800).

Anomaly Detection—Empirical Approach

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. P. & Gu, X. (eds.). Cham: Springer, p. 157-173 17 p. (Studies in Computational Intelligence; vol. 800).

Applications of Autonomous Anomaly Detection

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 249-259 11 p. (Studies in Computational Intelligence; vol. 800).

Applications of Autonomous Data Partitioning

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 261-276 16 p. (Studies in Computational Intelligence; vol. 800).

Applications of Autonomous Learning Multi-model Systems

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 277-293 17 p. (Studies in Computational Intelligence; vol. 800).

Applications of Deep Rule-Based Classifiers

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 295-319 25 p. (Studies in Computational Intelligence; vol. 800).

Applications of Semi-supervised Deep Rule-Based Classifiers

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 321-340 20 p. (Studies in Computational Intelligence; vol. 800).

Autonomous Learning Multi-model Systems

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 199-222 24 p. (Studies in Computational Intelligence; vol. 800).

Brief Introduction to Computational Intelligence

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 69-99 31 p. (Studies in Computational Intelligence; vol. 800).

Brief Introduction to Statistical Machine Learning

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 17-67 51 p. (Studies in Computational Intelligence; vol. 800).

Data Partitioning—Empirical Approach

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 175-198 24 p. (Studies in Computational Intelligence; vol. 800).

Empirical Approach to Machine Learning

Angelov, P. P. & Gu, X., 2019, Cham: Springer International Publishing. 437 p. (Studies in Computational Intelligence; vol. 800)

Empirical Fuzzy Sets and Systems

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 135-155 21 p. (Studies in Computational Intelligence; vol. 800).

Epilogue: Studies in Computational Intelligence

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 341-346 6 p. (Studies in Computational Intelligence; vol. 800).

Fair-by-design explainable models for prediction of recidivism

Almeida Soares, E. & Angelov, P., 2019, Arxiv.

Introduction

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 1-14 14 p. (Studies in Computational Intelligence; vol. 800).

Transparent Deep Rule-Based Classifiers

Angelov, P. P. & Gu, X., 2019, Empirical Approach to Machine Learning. Angelov, P. & Gu, X. (eds.). Springer-Verlag, Vol. 800. p. 223-245 23 p. (Studies in Computational Intelligence; vol. 800).

Foreign Currency Exchange Rate Prediction using Neuro-Fuzzy Systems

Yong, Y. L., Lee, Y., Gu, X., Angelov, P. P., Ling Ngo, D. C. & Shafipour Yourdshahi, E., 1/12/2018, Procedia Computer Science. Elsevier, Vol. 144. p. 232-238 7 p. (Procedia Computer Science; vol. 144).

Preface

Corrales, J. C., Iglesias, J. A. & Angelov, P., 11/2018, Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II: Proceedings of the 2nd International Conference of ICT for Adapting Agriculture to Climate Change (AACC’18), November 21–23, 2018, Cali, Colombia. Corrales, J. C., Angelov, P. & Iglesias, J. A. (eds.). Cham: Springer, p. v-vi 2 p. (Advances in Intelligent Systems and Computing; vol. 893).

Automatic detection of computer network traffic anomalies based on eccentricity analysis

Martins, R. S., Angelov, P. & Costa, B. S. J., 15/10/2018, 2018 IEEE International Conference on Fuzzy Systems, FUZZ 2018 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 8 p. 8491507

A Deep Rule-based Approach for Satellite Scene Image Analysis

Gu, X. & Angelov, P. P., 7/10/2018, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, p. 2778-2783 6 p. (2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)).

A Generalized Methodology for Data Analysis

Angelov, P. P., Gu, X. & Principe, J., 10/2018, In: IEEE Transactions on Cybernetics. 48, 10, p. 2981-2993 13 p.

Deep rule-based classifier with human-level performance and characteristics

Angelov, P. P. & Gu, X., 10/2018, In: Information Sciences. 463-464, p. 196-213 18 p.

Stability of Evolving Fuzzy Systems based on Data Clouds

Rong, H., Angelov, P. P., Gu, X. & Bai, J., 10/2018, In: IEEE Transactions on Fuzzy Systems. 26, 5, p. 2774-2784 11 p.

Towards Large Scale Ad-hoc Teamwork

Shafipour Yourdshahi, E., Pinder, T., Dhawan, G., Soriano Marcolino, L. & Angelov, P. P., 13/09/2018, 2018 IEEE International Conference on Agents (ICA). IEEE, 6 p.

A Method for Autonomous Data Partitioning

Gu, X., Angelov, P. P. & Principe, J., 09/2018, In: Information Sciences. 460-461, p. 65-82 18 p.

Towards Anthropomorphic Machine Learning

Angelov, P. P. & Gu, X., 09/2018, In: IEEE Computer. 51, 9, p. 18-27 10 p.

Autonomous learning multi-model systems from data streams

Angelov, P. P., Gu, X. & Principe, J., 1/08/2018, In: IEEE Transactions on Fuzzy Systems. 26, 4, p. 2213-2224 12 p.

Semi-supervised deep rule-based approach for image classification

Gu, X. & Angelov, P. P., 07/2018, In: Applied Soft Computing. 68, p. 53-68 16 p.

Correntropy-Based Evolving Fuzzy Neural System

Bao, R., Rong, H., Angelov, P. P., Chen, B. & Wong, P. K., 06/2018, In: IEEE Transactions on Fuzzy Systems. 26, 3, p. 1324-1338 14 p.

Self-Organising Fuzzy Logic Classifier

Gu, X. & Angelov, P. P., 06/2018, In: Information Sciences. 447, p. 36-51 16 p.

Anomalous behaviour detection based on heterogeneous data and data fusion

Mohd Ali, A. & Angelov, P., 05/2018, In: Soft Computing. 22, 10, p. 3187-3201 15 p.

The 16th Annual UK Workshop on Computational Intelligence PREFACE

Angelov, P., Shang, C. & Chao, F., 05/2018, In: Soft Computing. 22, 10, p. 3123-3124 2 p.

A novel algorithm for the modelling of complex processes

Rubio, J. D. J., Lughofer, E., Angelov, P. P., Novoa, J. F. & Meda-Campana, J. A., 1/04/2018, In: Kybernetika. 54, 1, p. 79-95 17 p.

Parsimonious random vector functional link network for data streams

Pratama, M., Angelov, P. P., Lughofer, E. & Joo Er, M., 1/03/2018, In: Information Sciences. 430-431, p. 519-537 19 p.

A Massively Parallel Deep Rule-Based Ensemble Classifier for Remote Sensing Scenes

Gu, X., Angelov, P. P., Zhang, C. & Atkinson, P. M., 03/2018, In: IEEE Geoscience and Remote Sensing Letters. 15, 3, p. 345-349 5 p.

Parsimonious Random Vector Functional Link Network for Data Streams

Pratama, M., Angelov, P. P., Lughofer, E. & Joo Er, M., 03/2018, In: Information Sciences. 430-431, p. 519-537 19 p.

Special issue of Big Data Research Journal on "Big Data and Neural Networks"

Angelov, P., Manolopoulos, Y. & Papadopoulos, A., 03/2018, In: Big data research. 11, p. III-IV 2 p.

Empirical Fuzzy Sets

Angelov, P. P. & Gu, X., 02/2018, In: International Journal of Intelligent Systems. 33, 2, p. 362-395 34 p.

Preface

Corrales, J. C., Iglesias, J. A. & Angelov, P., 1/01/2018, Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change: Proceedings of the International Conference of ICT for Adapting Agriculture to Climate Change (AACC'17), November 22-24, 2017, Popayán, Colombia. Angelov, P., Iglesias, J. A. & Corrales, J. C. (eds.). Cham: Springer, p. v-vi 2 p. (Advances in Intelligent Systems and Computing; vol. 687).

Self-organised direction aware data partitioning algorithm

Gu, X., Angelov, P. P., Kangin, D. & Principe, J., 01/2018, In: Information Sciences. 423, p. 80-95 16 p.

Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change: Proceedings of the International Conference of ICT for Adapting Agriculture to Climate Change AACC'17, November 22-24, 2017, Popayan, Colombia)

Angelov, P. P. (ed.), Iglesias, J. A. (ed.) & Carlos Corrales, J. (ed.), 17/12/2017, 1st ed. Cham: Springer. 265 p. (Advances in Intelligent Systems and Computing; vol. 687)

Empirical data analytics

Angelov, P. P., Gu, X. & Kangin, D., 12/2017, In: International Journal of Intelligent Systems. 32, 12, p. 1261-1284 24 p.

A cascade of deep learning fuzzy rule-based image classifier and SVM

Angelov, P. P. & Gu, X., 5/10/2017, Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on: Human Intelligence for Systems and Cybernetics. IEEE, p. 746-751 6 p.

A new type of distance metric and its use for clustering

Gu, X., Angelov, P. P., Kangin, D. & Principe, J., 09/2017, In: Evolving Systems. 8, 3, p. 167-177 11 p.

Real-time Recognition of Calling Pattern and Behaviour of Mobile Phone users through Anomaly Detection and Dynamically Evolving Clustering

Iglesias, J. A., Ledezma, A., Sanchis, A. & Angelov, P. P., 5/08/2017, In: Applied Sciences. 7, 8, p. 1-14 14 p., 798.

Soft Computing Applied to Swarm Robotics

Nedjah, N., Angelov, P., Castillo, O., de Macedo Mourelle, L. & Wang, C., 08/2017, In: Applied Soft Computing. 57, p. 696-697 2 p.

Human action recognition using transfer learning with deep representations

Bux, A., Wang, X., Angelov, P. P. & Habib, Z., 3/07/2017, 2017 International Joint Conference on Neural Networks (IJCNN). IEEE

MICE: Multi-layer multi-model images classifier ensemble

Angelov, P. P. & Gu, X., 22/06/2017, The 3rd IEEE International Conference on Cybernetics. IEEE, p. 436-443 8 p.

Gender and Age Classification of Human Faces for Automatic Detection of Anomalous Human Behaviour

Wang, X., Mohd Ali, A. & Angelov, P. P., 21/06/2017, 2017 IEEE International Conference on Cybernetics, CYBCONF2017. IEEE, p. 1-6 6 p.

Robust Evolving Cloud-based Controller (ReCCo)

Andonovski, G., Angelov, P. P., Blazic, S. & Skrjanc, I., 2/06/2017, 2017 Evolving and Adaptive Intelligent Systems (EAIS). IEEE, p. 1-6 6 p.

Autonomous anomaly detection

Gu, X. & Angelov, P. P., 31/05/2017, IEEE Conference on Evolving and Adaptive Intelligent Systems. p. 1-8 8 p.

Autonomous Learning Multi-Model Classifier of 0-Order (ALMMo-0)

Angelov, P. P. & Gu, X., 31/05/2017, IEEE Conference on Evolving and Adaptive Intelligent Systems 2017. p. 1-7 7 p.

A randomized neural network for data streams

Pratama, M., Angelov, P. P., Lu, J., Lughofer, E., Seera, M. & Lim, C. P., 19/05/2017, Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN). USA: IEEE, p. 3423-3430 8 p.

Fast feedforward non-parametric deep learning network with automatic feature extraction

Angelov, P. P., Gu, X. & Principe, J., 14/05/2017, p. 534-541. 8 p.

AURORA: autonomous real-time on-board video analytics

Angelov, P., Sadeghi Tehran, P. & Clarke, C., 05/2017, In: Neural Computing and Applications. 28, 5, p. 855-865 11 p.

Cybernetics of the mind: learning individual's perceptions autonomously

Angelov, P. P., Gu, X., Iglesias, J., Ledezma, A., Sanchis, A., Sipele, O. & Ramezani, R., 04/2017, In: IEEE Systems, Man, and Cybernetics Magazine. 3, 2, p. 6-17 12 p.

Fully online clustering of evolving data streams into arbitrarily shaped clusters

Hyde, R., Angelov, P. & MacKenzie, A. R., 03/2017, In: Information Sciences. 382-383, p. 96-114 19 p.

A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition

Bux, A., Angelov, P. P. & Habib, Z., 23/01/2017, In: Applied Sciences. 7, 1, 37 p., 110.

Applying computational intelligence to community policing and forensic investigations

Ali, A. M. & Angelov, P., 1/01/2017, Advanced Sciences and Technologies for Security Applications. Springer, p. 231-246 16 p. (Advanced Sciences and Technologies for Security Applications).

Preface

Angelov, P., Gegov, A., Jayne, C. & Shen, Q., 1/01/2017, Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK. Angelov, P., Gegov, A., Jayne, C. & Shen, Q. (eds.). Springer, p. v-vi 2 p. (Advances in Intelligent Systems and Computing; vol. 513).

Co-ordinated Airborne Studies in the Tropics (CAST)

Harris, N. R. P., Carpenter, L. J., Lee, J. D., Vaughan, G., Filus, M. T., Jones, R. L., OuYang, B., Pyle, J. A., Robinson, A. D., Andrews, S. J., Lewis, A. C., Minaeian, J., Vaughan, A., Dorsey, J. R., Gallagher, M. W., Le Breton, M., Newton, R., Percival, C. J., Ricketts, H. M. A., Baugitte, S. J-B. & 17 others, Nott, G. J., Wellpott, A., Ashfold, M. J., Flemming, J., Butler, R., Palmer, P. I., Kaye, P. H., Stopford, C., Chemel, C., Boesch, H., Humpage, N., Vick, A., MacKenzie, A. R., Hyde, R., Angelov, P., Meneguz, E. & Manning, A. J., 01/2017, In: Bulletin of the American Meteorological Society. 98, 1, p. 145-162 18 p.

Look-a-like: a fast content-based image retrieval approach using a hierarchically nested dynamically evolving image clouds and recursive local data density

Angelov, P. & Sadeghi Tehran, P., 01/2017, In: International Journal of Intelligent Systems. 32, 1, p. 82-103 22 p.

Local modes-based free-shape data partitioning

Angelov, P. P. & Gu, X., 9/12/2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 8 p.

An evolving approach to unsupervised and Real-Time fault detection in industrial processes

Gomes Bezerra, C., Costa, B. S. J., Guedes, L. A. & Angelov, P. P., 30/11/2016, In: Expert Systems with Applications. 63, p. 134-144 11 p.

A practical implementation of Robust Evolving Cloud-based Controller with normalized data space for heat-exchanger plant

Andonovski, G., Angelov, P. P., Blazic, S. & Skrjanc, I., 11/2016, In: Applied Soft Computing. 48, p. 29-38 10 p.

Parallel computing TEDA for high frequency streaming data clustering

Gu, X., Angelov, P. P., Gutierrez, G., Iglesias, J. A. & Sanchi, A., 23/10/2016, Advances in Big Data: Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece. Angelov, P., Manolopoulos, Y., Iliadis, L., Roy, A. & Vellasco, M. (eds.). Cham: Springer, p. 238-253 16 p.

Human action recognition from multiple views based on view-invariant feature descriptor using support vector machines

Bux, A., Angelov, P. P. & Habib, Z., 21/10/2016, In: Applied Sciences. 6, 10, 14 p., 309.

Autonomously evolving classifier TEDAClass

Kangin, D., Angelov, P. & Iglesias, J. A., 20/10/2016, In: Information Sciences. 366, p. 1-11 11 p.

Autonomous data-driven clustering for live data stream

Gu, X. & Angelov, P. P., 9/10/2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016). IEEE, p. 1128-1135 8 p. 1303

Empirical data analysis: a new tool for data analytics

Angelov, P. P., Gu, X., Principe, J. & Kangin, D., 9/10/2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, p. 52-59 8 p. 1008

Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK

Angelov, P. P., Shen, Q., Jayne, C. & Gegov, A., 7/09/2016, Springer. 508 p. (Advances in Intelligent Systems and Computing; vol. 513)

Detecting anomalous behaviour using heterogeneous data

Mohd Ali, A., Angelov, P. P. & Gu, X., 7/09/2016, Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK. Angelov, P., Gegov, A., Jayne, C. & Shen, Q. (eds.). Springer, p. 253-276 24 p. (Advances in Intelligent Systems and Computing; vol. 513).

Vision based human activity recognition: a review

Bux, A., Angelov, P. P. & Habib, Z., 7/09/2016, Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK. Angelov, P., Gegov, A., Jayne, C. & Shen, Q. (eds.). Springer, p. 341-371 30 p. (Advances in Intelligent Systems and Computing; vol. 513).

A general purpose intelligent surveillance system for mobile devices using deep learning

Antoniou, A. & Angelov, P. P., 24/07/2016, 2016 International Joint Conference on Neural Networks (IJCNN). Vancouver Canada: IEEE, p. 2879-2886 8 p. (Neural Networks (IJCNN), 2016 International Joint Conference on).

Autonomous data density based clustering method

Angelov, P. P., Gu, X., Gutierrez, G., Iglesias, J. A. & Sanchis, A., 24/07/2016, p. 2405-2413. 9 p.

Unsupervised classification of data streams based on typicality and eccentricity data analytics

Costa, B. S. J., Bezerra, C. G., Guedes, L. A. & Angelov, P. P., 24/07/2016, 2016 IEEE International Conference on Fuzzy Systems (FUZZ). Vancouver Canada: IEEE, p. 58-63 6 p.

Online evolving fuzzy rule-based prediction model for high frequency trading financial data stream

Gu, X., Angelov, P. P., Mohd Ali, A., Gruver, W. A. & Gaydadjiev, G., 25/05/2016, Evolving and Adaptive Intelligent Systems (EAIS), 2016 IEEE Conference on. IEEE, p. 169-175 7 p.

A new evolving clustering algorithm for online data streams

Bezerra, C. G., Costa, B. S. J., Guedes, L. A. & Angelov, P. P., 23/05/2016, 2016 IEEE International Conference on Evolving and Adaptive Intelligent Systems, EAIS2016. IEEE, p. 162-168 7 p.

Challenges in deep learning

Angelov, P. & Sperduti, A., 27/04/2016, ESANN 2016 - 24th European Symposium on Artificial Neural Networks. i6doc.com publication, p. 489-496 8 p. (ESANN 2016 - 24th European Symposium on Artificial Neural Networks).

Handbook in computational intelligence

Angelov, P. (ed.), 21/03/2016, World Scientific. 964 p.

Prediction of the attention area in ambient intelligence tasks

Shafi, J., Angelov, P. P. & Umair, M., 3/02/2016, Innovative issues in intelligent systems. Sgurev, V., Yager, R., Kacprzyk, J. & Jotsov, V. (eds.). Berlin: Springer, p. 33-56 24 p. (Studies in Computational Intelligence; vol. 623).

ARTOD: Autonomous Real Time Objects Detection by a moving camera using recursive density estimation

Sadeghi Tehran, P. & Angelov, P., 28/01/2016, Novel applications of intelligent systems. Hadjiski, M., Kasabov, N., Filev, D. & Jotsov, V. (eds.). Cham: Springer Verlag, p. 123-138 16 p. (Studies in Computational Intelligence; vol. 586).

Imprecision and uncertainty in information representation and processing: new tools based on intuitionistic fuzzy sets and generalized nets

Angelov, P. P. (ed.) & Sotirov, S. (ed.), 01/2016, Springer. 425 p.

Preface

Sayed-Mouchaweh, M., Fleury, A., Angelov, P., Lughofer, E. & Iglesias, J. A., 29/12/2015, 2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE, p. 1-2 2 p.

Analysis of adaptation law of the robust evolving cloud-based controller

Andonovski, G., Blazic, S., Angelov, P. P. & Skrjanc, I., 3/12/2015, Proceedings 2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE, p. 1-7 7 p.

Program and abstracts of 2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)

Sayed-Mouchaweh, M. (ed.), Fleury, A. (ed.), Angelov, P. P. (ed.), Lughofer, E. (ed.) & Iglesias, J. A. (ed.), 3/12/2015, IEEE. 26 p.

An overview on fault diagnosis and nature-inspired optimal control of industrial process applications

Precup, R-E., Angelov, P., Jales Costa, B. S. & Sayed-Mouchaweh, M., 12/2015, In: Computers in Industry. 74, p. 75-94 20 p.

Synergy of computers, cognition, communication and control with industrial applications

Precup, R-E. (ed.), Hellendoorn, H. (ed.) & Angelov, P. (ed.), 12/2015, In: Computers in Industry. 74, p. 71-74 4 p.

Edge flow

Morris, G. & Angelov, P. P., 9/10/2015, Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, p. 1942-1948 7 p.

SYSTEM STATE CLASSIFIER: United States Patent Application 20150278711

Angelov, P. P., Kolev, D. G. & Markarian, G., 1/10/2015, IPC No. G06N99/00; G06N7/00 , Patent No. 14/677269, Priority date 10/10/2012, Priority No. GB1218209.3

Robust evolving cloud-based controller in normalized data space for heat-exchanger plant

Andonovski, G., Blazic, S., Angelov, P. & Skrjanc, I., 09/2015, Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on. IEEE, p. 1-7 7 p.

A nested hierarchy of dynamically evolving clouds for big data structuring and searching

Angelov, P. & Sadeghi Tehran, P., 8/08/2015, In: Procedia Computer Science. 53, p. 1-8 8 p.

A comparative study of autonomous learning outlier detection methods applied to fault detection

Bezerra, C. G., Costa, B. S. J., Guedes, L. A. & Angelov, P. P., 08/2015, Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) . IEEE, p. 1-7 7 p.

Evolving classifier TEDAClass for big data

Kangin, D., Angelov, P. P., Iglesias, J. A. & Sanchis, A., 08/2015, In: Procedia Computer Science. 53, p. 9-18 10 p.

Evolving clustering, classification and regression with TEDA

Kangin, D. & Angelov, P. P., 12/07/2015, Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, p. 1-8 8 p.

Online fault detection based on typicality and eccentricity data analytics

Costa, B. S. J., Bezerra, C. G., Guedes, L. A. & Angelov, P. P., 12/07/2015, Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, p. 1-6 6 p.

Typicality distribution function: a new density-based data analytics tool

Angelov, P., 12/07/2015, Neural Networks (IJCNN), 2015 International Joint Conference on. IEEE, p. 1-8 8 p.

Comparison of approaches for identification of all-data cloud-based evolving systems

Blažič, S., Angelov, P. & Škrjanc, I., 1/07/2015, In: IFAC-PapersOnLine. 28, 10, p. 129-134 6 p.

A new online clustering approach for data in arbitrary shaped clusters

Hyde, R. & Angelov, P., 24/06/2015, Cybernetics (CYBCONF), 2015 IEEE 2nd International Conference on . IEEE, p. 228-233 6 p. 78

Comparison approaches for identification of all-data cloud-based evolving systems

Blazic, S., Angelov, P. & Skrjanc, I., 22/06/2015, IFAC ESCIT. IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control ESCIT, 5 p.

Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier

Costa, B. S. J., Angelov, P. & Guedes, L. A., 20/02/2015, In: Neurocomputing. 150, A, p. 289-303 15 p.

A robust evolving cloud-based controller

Angelov, P., Skrjanc, I. & Blazic, S., 2015, Springer Handbook of Computational Intelligence . Kacprzyk, J. & Pedrycz, W. (eds.). Berlin: Springer, Vol. G. p. 1435-1449 15 p.

ATDT: Autonomous Template-based Detection and Tracking of objects from airborne camera

Sadeghi Tehran, P. & Angelov, P., 2015, Intelligent Systems 2014: Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, September 24‐26, 2014, Warsaw, Poland, Volume 2: Tools, Architectures, Systems, Applications. Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P. & Zadrozny, S. (eds.). Springer, p. 555-565 11 p. (Advances in Intelligent Systems and Computing; vol. 323).

Incremental anomaly identification in flight data analysis by adapted one-class SVM method

Kolev, D., Suvorov, M., Morozov, E., Markarian, G. & Angelov, P., 2015, Artificial neural networks: methods and applications in bio-/neuroinformatics. Koprinkova-Hristova, P., Mladenov, V. & Kasabov, N. K. (eds.). Springer, p. 373-391 19 p. (Springer Series in Bio-/Neuroinformatics; vol. 4).

Intelligent Systems' 2014: Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, September 24‐26, 2014, Warsaw, Poland

Angelov, P. (ed.), T. Atanassov, K. (ed.), Doukovska, L. (ed.), Hadjiski, M. (ed.), Jotsov, V. (ed.), Kacprzyk, J. (ed.), Kasabov, N. (ed.), Sotirov, S. (ed.), Szmidt, E. (ed.) & Zadrozny, S. (ed.), 2015, Springer. 863 p. (Advances in Intelligent Systems and Computing; vol. 322)

RDE with forgetting: an approximate solution for large values of k with an application to fault detection problems

Bezerra, C. G., Costa, B., Guedes, L. A. & Angelov, P., 2015, Statistical learning and data sciences: Third International Symposium, SLDS 2015, Egham, UK, April 20-23, 2015, Proceedings. Gammerman, A., Vovk, V. & Papadopoulos, H. (eds.). Springer, p. 169-178 10 p. (Lecture Notes in Computer Science; vol. 9047).

Recursive SVM based on TEDA

Kangin, D. & Angelov, P., 2015, Statistical learning and data sciences: Third International Symposium, SLDS 2015, Egham, UK, April 20-23, 2015, Proceedings. Gammerman, A., Vovk, V. & Papadopoulos, H. (eds.). Cham: Springer, p. 156-168 13 p. (Lecture Notes in Computer Science; vol. 9047).

A fully autonomous data density based clustering algorithm

Hyde, R. & Angelov, P., 9/12/2014, Evolving and Autonomous Learning Systems (EALS), 2014 IEEE Symposium on. Piscataway, N.J.: IEEE, p. 116-123 8 p.

RTSDE: recursive total-sum-distances-based density estimation approach and its application for autonomous real-time video analytics

Angelov, P. & Wilding, A., 9/12/2014, 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS). Orlando, FL, USA: IEEE, p. 81-86 6 p.

A real-time approach for autonomous detection and tracking of moving objects from UAV

Sadeghi Tehran, P., Clarke, C. & Angelov, P. P., 12/2014, 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS). Piscataway, N. J.: IEEE, p. 43-49 7 p.

Anomaly detection based on eccentricity analysis

Angelov, P., 12/2014, 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS). Orlando, FL, USA: IEEE Press, p. 1-8 8 p.

Data structuring and searching method and apparatus

Angelov, P. & Sadeghi Tehran, P., 8/10/2014, (Unpublished) Patent No. GB1417807.3, priority date 8 October 2014, Priority date 8/10/2014, Priority No. GB1417807.3

Real-time novelty detection in video using background subtraction techniques: state of the art a practical review

Morris, G. & Angelov, P., 8/10/2014, 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE Press, p. 537-543 7 p.

Data density based clustering

Hyde, R. & Angelov, P., 8/09/2014, Computational Intelligence (UKCI), 2014 14th UK Workshop on. IEEE, p. 1-7 7 p.

DEC: dynamically evolving clustering autonomous and its application to structure

Dutta Baruah, R. & Angelov, P., 14/08/2014, In: IEEE Transactions on Cybernetics. 44, 9, p. 1619-1631 13 p.

Real-time fault detection using recursive density estimation

Costa, B. S. J., Angelov, P. & Guedes, L. A., 08/2014, In: Journal of Control, Automation and Electrical Systems. 25, 4, p. 428-437 10 p.

Dynamically evolving fuzzy classifier for real-time classification of data streams

Dutta Baruah, R., Angelov, P. & Baruah, D., 6/07/2014, Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, p. 383-389 7 p.

A new unsupervised approach to fault detection and identification

Costa, B., Angelov, P. & Guedes, L. A., 07/2014, Neural Networks (IJCNN), 2014 International Joint Conference on. IEEE, p. 1557-1564 8 p.

Dynamically evolving clustering for data streams

Dutta Baruah, R., Angelov, P. & Baruah, D., 2/06/2014, Proceedings 2014 IEEE Symposium on Evolving and Intelligent Systems, EAIS2014. IEEE Xplore, p. 1-6 6 p.

Robust evolving cloud-based PID control adjusted by gradient learning method

Skrjanc, I., Blazic, S. & Angelov, P., 2/06/2014, Proceedings 2014 IEEE Symposium on Evolving and Intelligent Systems, EAIS-2014. IEEE Xplore, p. 1-8 8 p.

Proceedings of the 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems

Angelov, P. (ed.), Filev, D. (ed.), Kasabov, N. (ed.), Lughofer, E. (ed.), Klement, E. P. (ed.) & Saminger-Platz, S. (ed.), 06/2014, Piscataway, N.J.: IEEE. 150 p.

Symbol recognition with a new autonomously evolving classifier autoclass

Angelov, P., Kangin, D., Xiaowei, Z. & Kolev, D., 06/2014, 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems. 9781479933471: IEEE, p. 1-6 6 p.

Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy

Trevisan, J., Park, J., Angelov, P., Ahmadzai, A., Gajjar, K., Scott, A. D., Carmichael, P. L. & Martin, F., 04/2014, In: Journal of Biophotonics. 7, 3-4, p. 254-265 12 p.

Outside the box: an alternative data analytics frame-work

Angelov, P., 04/2014, In: Journal of Automation, Mobile Robotics and Intelligent Systems. 8, 2, p. 29-35 7 p.

Preface

Chen, X., Qu, G., Angelov, P., Ferri, C., Lai, J. H. & Wani, A., 5/02/2014, 2014 13th International Conference on Machine Learning and Applications. IEEE, p. xiv 1 p.

Preface

Angelov, P., Filev, D., Kasabov, N., Lughofer, E., Klement, E. P., Saminger-Platz, S., Iglesias, J. A. & Sayed-Mouchaweh, M., 1/01/2014, 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE, 2 p. 6867453

PANFIS: a novel incremental learning machine

Pratama, M., G. Avanatti, S., Angelov, P. & Lughofer, E., 01/2014, In: IEEE Transactions on Neural Networks. 25, 1, p. 55-68 14 p.

SARIVA: Smartphone App for Real-time Intelligent Video Analytics

Clarke, C., Angelov, P., Sadeghi Tehran, P. & Yusuf, M., 2014, In: Journal of Automation, Mobile Robotics and Intelligent Systems. 8, 4, p. 15-19 5 p.

Towards an autonomous resilience strategy the implementation of a self evolving rate limiter

Ali, A., Hutchinson, D., Angelov, P. & Smith, P., 09/2013, 13th UK Workshop on Computational Intelligence (UKCI), 2013 . Guildford, UK: UKCI 2013, p. 299-304 6 p.

Incremental anomaly identification by adapted SVM method

Suvorov, M., Ivliev, S., Markarian, G., Kolev, D., Zvikhachevskiy, D. & Angelov, P., 08/2013, International Joint Conference on Neural Networks, IJCNN-2013, Dallas, TX, USA, 3-9 August, 2013. Piscataway, N.J.: IEEE, p. 1-8 8 p.

Proceedings of the IEEE Conference on Cybernetics 2013

Angelov, P. (ed.), Filev, D. (ed.), MIllan, J. D. R. (ed.) & Abraham, A. (ed.), 07/2013, IEEE.

IRootLab: A free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis

Trevisan, J., Angelov, P. P., Scott, A. D., Carmichael, P. L. & Martin, F. L., 15/04/2013, In: Bioinformatics. 29, 8, p. 1095-1097 3 p.

Proceedings of the 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems

Angelov, P. (ed.), Kasabov, N. (ed.) & Filev, D. (ed.), 04/2013, IEEE. 120 p.

Towards generic human activity recognition for ubiquitous applications

Andreu, J. & Angelov, P., 04/2013, In: Journal of Ambient Intelligence and Humanized Computing. 4, 2, p. 155-156 2 p.

Density-based averaging - a new operator for data fusion

Angelov, P. & Yager, R., 10/02/2013, In: Information Sciences. 222, p. 163-174 12 p.

A practical implementation of self-evolving cloud-based control of a pilot plant

Costa, B., Skrjanc, I., Blazic, S. & Angelov, P., 2013, 2013 IEEE International Conference on Cybernetics, CYBCONF-2013, Lausanne, Switzerland13-15 June, 2013. Piscataway, N.J.: IEEE, p. 7-12 6 p.

An evolving machine learning method for human activity recognition systems

Andreu, J. & Angelov, P., 2013, In: Journal of Ambient Intelligence and Humanized Computing. 4, 2, p. 195-206 12 p.

Analysis of evolving social network: methods and results from cell phone data set case study

Dutta Baruah, R. & Angelov, P., 2013, In: International Journal of Social Network Mining. 1, 3-4, p. 254-279 26 p.

ARFA: automated real-time flight data analysis using evolving clustering, classifiers and recursive density estimation

Kolev, D., Angelov, P., Markarian, G., Suvorov, M. & Lysanov, S., 2013, Evolving and Adaptive Intelligent Systems (EAIS), 2013 IEEE Conference on. Piscataway, N.J.: IEEE Press, p. 91-97 7 p.

Online learning and prediction of data streams using dynamically evolving fuzzy approach

Dutta Baruah, R. & Angelov, P., 2013, Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013). Piscataway, N.J.: IEEE, p. 1-6 6 p.

OSA: one-class recursive SVM algorithm with negative samples for fault detection

Suvorov, M., Ivliev, S., Markarian, G., Kolev, D., Zvikhachevskiy, D. & Angelov, P., 2013, Artificial neural networks and machine learning – ICANN 2013: 23rd International Conference on Artificial Neural Networks Sofia, Bulgaria, September 10-13, 2013. Proceedings. Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A. E. P., Appollini, B. & Kasabov, N. (eds.). Berlin: Springer Verlag, p. 194-207 14 p. (Lecture Notes in Computer Science; vol. 8131).

Proceedings of the 2013 International Joint Conference on Neural Networks

Angelov, P. (ed.), Levine, D. (ed.) & Erdi, P. (ed.), 2013, Piscataway, N.J.: IEEE. 3000 p.

Robust evolving cloud-based controller for a hydraulic plant

Angelov, P., Skrjanc, I. & Blazic, S., 2013, Proceedings of the 2013 IEEE Symposium Series on Computational Intelligence, SSCI-2013,16-19 April 2013, Singapore. Piscataway, N.J.: IEEE, p. 1-8 8 p.

Vehicle plate recognition using improved neocognitron neural network

Kangin, D., Kolev, G. & Angelov, P., 2013, Artificial Neural Networks and Machine Learning – ICANN 2013: 23rd International Conference on Artificial Neural Networks Sofia, Bulgaria, September 10-13, 2013. Proceedings. Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A. E. P., Appollini, B. & Kasabov, N. (eds.). Berlin: Springer Verlag, p. 628-640 13 p. (Lecture Notes in Computer Science; vol. 8131).

Autonomous Learning Systems: From Data to Knowledge in Real Time

Angelov, P., 1/12/2012, Chichester: John Willey and Sons. 288 p.

Evolving fuzzy systems

Angelov, P., 1/11/2012, Computational Complexity: Theory, Techniques, and Applications. Springer New York, Vol. 9781461418009. p. 1053-1065 13 p.

Advances in Fourier-transform infrared spectroscopy analysis to characterise chemical-induced alterations in the Syrian hamster embryo assay-towards biomarkers stability

Trevisan, J., Angelov, P. P., Carmichael, P. L., Scott, A. & Martin, F. L., 11/2012, In: Mutagenesis. 27, 6, p. 792-792 1 p.

Adaptive Resilience for Computer Networks

Ali, A., Hutchison, D., Angelov, P. & Smith, P., 4/10/2012. 0 p.

ARTOT: Autonomous Real-Time Object detection and Tracking by a moving camera

Angelov, P., Gude, C., Sadeghi-Tehran, P. & Ivanov, T., 09/2012, Intelligent Systems (IS), 2012 6th IEEE International Conference. IEEE, p. 446-452 7 p.

Preface

Angelov, P., Filev, D., Kasabov, N. & Iglesias, J. A., 15/08/2012, 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems. IEEE, p. iii-iv 2 p.

Evolving local means methods for clustering of streaming data

Dutta Baruah, R. & Angelov, P., 10/06/2012, Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on. IEEE Press, p. 2161-2168 8 p.

ALMA for evolving systems

Angelov, P., 8/06/2012, 12th NCEI, Auckland, New Zealand. Auckland

Creating evolving user behavior profiles automatically

Iglesias, J., Angelov, P., Ledezma, A. & Sanchis, A., 1/05/2012, In: IEEE Transactions on Knowledge and Data Engineering. 24, 5, p. 854-867 14 p.

Automatic mobile photographer and picture diary

Angelov, P., Andreu, J. & Vong, T., 05/2012, Evolving and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on. IEEE, p. 102-107

Autonomous visual self-localization in completely unknown environment

Sadeghi-Tehran, P., Behera, S., Angelov, P. & Andreu, J., 05/2012, Evolving and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on. IEEE, p. 90-95 6 p.

Sense and Avoid in UAS: Research and Applications

Angelov, P., 1/04/2012, Hoboken, NJ: John Wiley and Sons. 384 p.

Towards adaptive, self learning resilience strategies

Ali, A., Angelov, P. & Hutchinson, D., 15/03/2012, 6th International Workshop on Self Organizing Systems IWSOS-2012. Delft, The Netherlands

A new type of simplified fuzzy rule-based systems

Angelov, P. & Yager, R., 01/2012, In: International Journal of General Systems. 41, 2, p. 163-185 23 p.

Designing open, multi-class computational strategies to classify infrared spectroscopy data derived from the Syrian hamster embryo (SHE) assay

Trevisan, J., Angelov, P. P., Carmichael, P. L., Scott, A. D. & Martin, F. L., 01/2012, In: Mutagenesis. 27, 1, p. 111-111 1 p.

2012 IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS-2012

Angelov, P. (ed.), Filev, D. (ed.), Kasabov, N. (ed.) & Iglesias, J. A. (ed.), 2012, IEEE. 107 p.

A Real-time Approach for Novelty Detection and Trajectories Analysis for Anomaly Recognition in Video Surveillance Systems

Sadeghi-Tehran, P. & Angelov, P., 2012, Evolving and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on . IEEE, p. 108-113 6 p.

Design and tuning of fuzzy systems

Angelov, P. & Iglesias, J. A., 2012

Evolving social network analysis: A case study on mobile phone data

Dutta Baruah, R. & Angelov, P., 2012, Evolving and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on. IEEE, p. 114-120 7 p.

Extracting biological information with computational analysis of Fourier transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives

Trevisan, J., Angelov, P., Carmichael, P. L., Scott, A. & Martin, F., 2012, In: Analyst. 137, 14, p. 3202-3215 14 p.

Self-evolving parameter-free Rule-based Controller: SPARC

Sadeghi-Tehran, P., Cara, A., Angelov, P., Pomares, H., Rojas, I. & Prieto, A., 2012, Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on. IEEE, p. 754-761 8 p.

Evolving fuzzy systems for data streams: A Survey

Dutta Baruah, R. & Angelov, P., 28/11/2011, In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1, 6, p. 461-476 16 p.

Simpl_eClass: simple potential-free evolving fuzzy rule-based on-line classifiers

Angelov, P., Dutta Baruah, R. & Andreu, J., 9/10/2011, Proceedings of 2011 IEEE International Conference on Systems, Man and Cybernetics, SMC 2011, Anchorage, Alaska, USA, 7-9 Oct, 2011. IEEE, p. 2249-2254 6 p.

Autonomous Machine Learning (ALMA): generating rules from data streams

Angelov, P., 19/09/2011, Proceedings of the Special International Conference on Complex Systems, COSY-2011: 16-19 September 2011. Ohrid, FYR of Macedonia, p. 249-256 8 p.

Towards an adaptive resilience strategy for future computer networks

Ali, A., Angelov, P. & Hutchison, D., 9/09/2011, Proceedings of the UKCI 2011, 7-9 Spetember, 2011, Manchester, UK. Manchester: University of Manchester, p. 201-206 6 p.

Real-time recognition of human activities from wearable sensors by evolving classifiers

Andreu, J., Dutta Baruah, R. & Angelov, P., 1/09/2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ). IEEE, p. 2786-2793 8 p.

Automatic scene recognition for low-resource devices using evolving classifiers

Andreu, J., Dutta Baruah, R. & Angelov, P., 09/2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ). IEEE, p. 2779-2785 7 p.

Fuzzily Connected Multimodel Systems Evolving Autonomously From Data Streams

Angelov, P., 08/2011, In: IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics. 41, 4, p. 898-910 13 p.

Evolving Human Activity Classifier from Sensor Streams

Iglesias, J. A., Angelov, P., Ledezma, A. & Sanchis, A., 04/2011, Evolving and Adaptive Intelligent Systems (EAIS), 2011 IEEE Workshop on. IEEE, p. 139-146 8 p.

Online Self-Evolving Fuzzy Controller for Autonomous Mobile Robots

Sadeghi-Tehran, P. & Angelov, P., 04/2011, Evolving and Adaptive Intelligent Systems (EAIS), 2011 IEEE Workshop on . IEEE, p. 100-107 8 p.

Simplified Fuzzy Rule-based Systems using Non-parametric Antecedents and relative Data Density

Angelov, P. & Yager, R., 04/2011, Proceedings IEEE Symposium Series on Computational Intelligence, SSCI-2011, Paris. IEEE, p. 62-69 8 p.

An approach to automatic real-time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi–Sugeno fuzzy systems

Angelov, P., Sadeghi-Tehran, P. & Ramezani, R., 03/2011, In: International Journal of Intelligent Systems. 26, 3, p. 189-205 17 p.

An uniformly stable backpropagation algorithm to train a feedforward neural network

Rubio, J. D. J., Angelov, P. & García, E., 03/2011, In: IEEE Transactions on Neural Networks. 22, 3, p. 356-366 11 p.

Handling drifts and shifts in on-line data streams with evolving fuzzy systems.

Lughofer, E. & Angelov, P., 03/2011, In: Applied Soft Computing. 11, 2, p. 2057-2068 12 p.

Intelligent leader follower behaviour for unmanned ground-based vehicles

Sadeghi Tehran, P., Andreu, J., Angelov, P. & Zhou, X., 2011, In: Journal of Automation, Mobile Robotics and Intelligent Systems. 5, 1, p. 36-47 11 p.

Using Evolving Fuzzy Models to predict Crude Oil Distillation Side Streams

Macias-Hernandez, J. J., Angelov, P. & Zhou, X., 2011, Computer-Aided Design, Manufacturing, Modeling and Simulation . He, X., Hua, E., Lin, Y. & Liu, X. (eds.). Zurich: Trans-Tech Publications, p. 432-437 6 p.

Evolving intelligent systems

Angelov, P., Filev, D. & Kasabov, N., 1/12/2010, Proceedings of the International Symposium on Evolving Intelligent Systems - A Symposium at the AISB 2010 Convention. AISB, (Proceedings of the International Symposium on Evolving Intelligent Systems - A Symposium at the AISB 2010 Convention).

Preface EIS -10

Angelov, P., Filev, D. & Kasabov, N., 1/12/2010, Proceedings of the International Symposium on Evolving Intelligent Systems - A Symposium at the AISB 2010 Convention. AISB

A mathematical framework for spectroscopy data analysis to characterize chemical-induced alterations in the SHE assay

Trevisan, J., Angelov, P. P., Carmichael, P. L., Scott, A. D. & Martin, F. L., 11/2010, In: Mutagenesis. 25, 6, p. 658-658 1 p.

Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass

Kerns, J., Angelov, P. P., Trevisan, J., Vlachopoulou, A., Paraskevaidis, E., Martin-Hirsch, P. L. & Martin, F. L., 11/2010, In: Analytical and Bioanalytical Chemistry. 398, 5, p. 2191-2201 11 p.

Syrian hamster embryo (SHE) assay (pH 6.7) coupled with infrared spectroscopy and chemometrics towards toxicological assessment

Trevisan, J., Angelov, P. P., Patel, I. I., Najand, G. M., Cheung, K. T., Llabjani, V., Pollock, H. M., Bruce, S. W., Pant, K., Carmichael, P. M., Scott, A. D. & Martin, F. L., 11/2010, In: Analyst. 135, 12, p. 3266-3272 7 p.

Evolving classification of agents' behaviours : a general approach.

Iglesias, J. A., Angelov, P., Ledezma, A. & Sanchis, A., 10/2010, In: Evolving Systems. 1, 3, p. 161-171 11 p.

Human activity recognition based on evolving fuzzy systems.

Iglesias, J. A., Angelov, P., Ledezma, A. & Sanchis, A., 10/2010, In: International Journal of Neural Systems. 20, 5, p. 355-364 10 p.

A simple fuzzy rule-based system through vector membership and kernel-based granulation.

Angelov, P. & Yager, R., 9/07/2010, 5th IEEE International Conference Intelligent Systems (IS), 2010 . IEEE, p. 349-354 6 p.

A Fast Recursive Approach to Autonomous Detection, Identification and Tracking of Multiple Objects in Video Streams under Uncertainties

Sadeghi-Tehran, P., Angelov, P. & Ramezani, R., 07/2010, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications : 13th International Conference, IPMU 2010, Dortmund, Germany, June 28–July 2, 2010. Proceedings, Part II. Hüllermeier, E., Kruse, R. & Hoffmann, F. (eds.). Berlin: Springer, p. 30-43 14 p. (Communications in Computer and Information Science; vol. 81).

Real-time human activity recognition from wireless sensors using evolving fuzzy systems.

Andreu, J. & Angelov, P., 07/2010, IEEE International Conference on Fuzzy Systems (FUZZ), 2010 . IEEE, p. 2652-2659 8 p.

User modeling : through statistical analysis and an evolving classifier

Iglesias, J., Angelov, P., Ledezma, A. & Sanchis, A., 07/2010, IEEE International Conference on Fuzzy Systems (FUZZ), 2010 . IEEE, p. 3226-3233 8 p.

Evolving Inferential Sensors in the Chemical Process Industry

Angelov, P. & Kordon, A., 14/04/2010, Evolving Intelligent Systems: Methodology and Applications. Angelov, P., Filev, D. P. & Kasabov, N. (eds.). John Wiley and Sons, p. 313-336 24 p.

Evolving Takagi-Sugeno Fuzzy Systems from Streaming Data (eTS+)

Angelov, P., 14/04/2010, Evolving Intelligent Systems: Methodology and Applications. Angelov, P., Angelov, D. & Kasabov, N. (eds.). John Wiley and Sons, p. 21-50 30 p.

Preface

Angelov, P., Filev, D. P. & Kasabov, N., 14/04/2010, Evolving Intelligent Systems: Methodology and Applications. Angelov, P., Filav, D. P. & Kasabov, N. (eds.). John Wiley and Sons, p. VII-XIV 8 p.

Clustering as a tool for self-generation of intelligent systems : a survey.

Dutta Baruah, R. & Angelov, P., 1/04/2010, p. 34-41. 9 p.

Adaptive inferential sensors based on evolving fuzzy models

Angelov, P. & Kordon, A., 04/2010, In: IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics. 40, 2, p. 529-539 11 p.

Applications of evolving intelligent systems to oil and gas industry.

Macias Hernandez, J. & Angelov, P., 04/2010, Evolving intelligent systems : methodology and applications. Angelov, P., Filev, D. & Kasabov, N. (eds.). New York, USA: John Wiley and Sons and IEEE Press, p. 401-422 22 p. (IEEE Press series in Computational Intelligence).

Evolving intelligent sensors in chemical industry.

Angelov, P. & Kordon, A., 04/2010, Evolving intelligent systems : methodology and applications. Angelov, P., Filev, D. & Kasabov, N. (eds.). New York, USA: John Wiley and Sons and IEEE Press, p. 313-336 24 p. (IEEE Press series in Computational Intelligence).

Evolving intelligent systems : methodology and applications.

Angelov, P., Filev, D., Kasabov, N., Angelov, P. (ed.), Filev, D. (ed.) & Kasabov, N. (ed.), 04/2010, New York: Wiley-Blackwell. 444 p. (IEEE Press Series on Computational Intelligence)

Evolving Takagi-Sugeno fuzzy systems from data streams (eTS+).

Angelov, P., 04/2010, Evolving intelligent systems : methodology and applications. Angelov, P., Filev, D. & Kasabov, N. (eds.). New York, USA: John Wiley and Sons and IEEE Press, p. 21-50 30 p. (IEEE Press series in Computational Intelligence).

Evolving Takagi Sugeno modelling with memory for slow processes.

McDonald, S. & Angelov, P., 02/2010, In: International Journal of Knowledge-Based and Intelligent Engineering Systems. 14, 1, p. 11-16 6 p.

A computational protocol and software implementation (as a MATLAB application) for biomaker identification in infrared spectroscopy datasets

Trevisan, J., Angelov, P. & Martin, F., 2010, In: Nature Protocols.

Forecasting Time-Series for NN GC1 using Evolving Takagi-Sugeno (eTS) Fuzzy Systems with On-line Inputs Selection

Andreu, J. & Angelov, P., 2010, 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010). New York: IEEE, p. 1479-1483 5 p.

Human Activity Recognition in Intelligent Home Environments: An Evolving Approach

Antonio Iglesias, J., Angelov, P., Ledezma, A. & Sanchis, A., 2010, ECAI 2010 - 19th European Conference on Artificial Intelligence. Coelho, H., Studer, R. & Wooldridge, M. (eds.). Amsterdam: IOS Press, p. 1047-1048 2 p.

Derivation of a computational approach to iteratively discriminate a transformation phenotype in Syrian hamster embryo (SHE) cells

Trevisan, J., Angelov, P. & Martin, F., 11/2009, In: Mutagenesis. 24, 6, p. 543-543 1 p.

2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems, ESDIS 2009 - Proceedings: Welcome Message

Angelov, P., Filev, D. & Kasabov, N., 20/07/2009, 2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems. IEEE, p. v 1 p.

Detecting and reacting on drifts and shifts in on-line data streams with evolving fuzzy systems.

Lughofer, E. & Angelov, P., 06/2009, Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20-24, 2009.. Carvalho, J. P., Dubois, D., Kaymak, U. & da Costa Sousa, J. M. (eds.). Lisbon: IFSA, p. 931-937 7 p.

Evolving Fuzzy Systems.

Angelov, P., 06/2009, Encyclopedia of Complexity and System Science. Mayers, R. (ed.). Berlin/Heidelberg: Springer, Vol. Articl. 10370 p.

Modelling evolving user behaviours

Iglesias, J., Angelov, P., Ledezma, A. & Sanchis, A., 04/2009, IEEE Workshop on Evolving and Self-Developing Intelligent Systems, 2009. ESDIS '09. . IEEE, p. 16-23 8 p.

Evolving Fuzzy Rule-based Classifiers from Data Streams

Angelov, P. & Zhou, X., 22/12/2008, In: IEEE Transactions on Fuzzy Systems. 16, 6, p. 1462-1475 14 p.

A predictive controller for object tracking of a mobile robot

Zhou, X., Angelov, P. & Wang, C., 1/12/2008, Intelligent Vehicle Control Systems - Proceedings of the 2nd International Workshop on Intelligent Vehicle Control Systems, IVCS 2008; In Conjunction with ICINCO 2008. SciTePress, p. 73-82 10 p. (Intelligent Vehicle Control Systems - Proceedings of the 2nd International Workshop on Intelligent Vehicle Control Systems, IVCS 2008; In Conjunction with ICINCO 2008).

Evolving fuzzy classifiers using different model architectures.

Angelov, P., Lughofer, E. & Zhou, X., 1/12/2008, In: Fuzzy Sets and Systems. 159, 23, p. 3160-3182 23 p.

Guest Editorial : Evolving Fuzzy Systems : preface to the special section.

Angelov, P., Filev, D. & Kasabov, N., 12/2008, In: IEEE Transactions on Fuzzy Systems. 16, 6, p. 1390-1392 3 p.

A fast approach to novelty detection in video streams using recursive density estimation.

Ramezani, R., Angelov, P. & Zhou, X., 8/09/2008, Intelligent Systems, 2008. IS '08. 4th International IEEE Conference. IEEE, p. 14-2 - 14-7 6 p.

Decision Support Systems: Improving Levels of Care and Lowering costs in anticoagulation therapy

McDonald, S., Xydeas, C. & Angelov, P., 09/2008, Electronic healthcare: First International Conference, eHealth 2008, London, UK, September 8-9, 2008. Revised Selected Papers. Weerasinghe, D. (ed.). Berlin: Springer, p. 175-178 4 p. (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; vol. 1).

On line learning fuzzy rule-based system structure from data streams.

Angelov, P. & Zhou, X., 06/2008, IEEE International Conference on Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). . IEEE, p. 915-922 8 p.

A retrospective comparative study of three data modelling techniques in anticoagulation therapy.

McDonald, S., Angelov, P. & Xydeas, C., 28/05/2008, BMEI 2008. International Conference on BioMedical Engineering and Informatics, 2008.. Sanya, China: IEEE, p. 219-225 7 p.

A Predictive Controler for Object Tracking of a Mobile Robot

Zhou, X., Angelov, P. & Wang, C., 11/05/2008, p. 73-82. 10 p.

A Passive Approach to Autonomous Collision Detection and Avoidance in Uninhabited Aerial Systems.

Angelov, P., Bocaniala, C. D., Xydeas, C., Pattchett, C., Ansell, D., Everett, M. & Leng, G., 04/2008, Tenth International Conference on Computer Modeling and Simulation, 2008. UKSIM 2008. . IEEE, p. 64-69 6 p.

Evolving Fuzzy Inferential Sensors for Process Industry.

Angelov, P., Kordon, A. & Zhou, X., 7/03/2008, 3rd International Workshop on Genetic and Evolving Systems, 2008. GEFS 2008. . IEEE, p. 41-46 6 p.

GEFS: 2008 3rd international workshop on genetic and evolutionary fuzzy systems

Hoffmann, F., Cordon, O., Angelov, P., Klawonn, F., Hoffmann, F. (ed.), Cordon, O. (ed.), Angelov, P. (ed.) & Klawonn, F. (ed.), 03/2008, Witten-Bomerholz: IEEE Press. 107 p.

A Comparative Study of two Approaches for Data-Driven Design of Evolving Fuzzy Systems: eTS and FLEXFIS

Angelov, P. & Lughofer, E., 02/2008, In: International Journal of General Systems. 37, 1, p. 45-67 23 p.

Evolutionary Synthesis of HVAC System Configurations: Algorithm Development.

Wright, J. A., Zhang, Y., Angelov, P., Hanby, V. I. & Buswell, R. A., 01/2008, In: HVAC and R Research. 14, 1, p. 33-55 23 p.

A Self-Learning Fuzzy Classifier with Feature Selection for Intelligent interrogation of mid-IR spectroscopy data from exfoliative cervical cytology using selflearning classifier eClass.

Kelly, J. G., Angelov, P. P., Walsh, M. J., Pollock, H. M., Pitt, M. A., Martin-Hirsch, P. L. & Martin, F. L., 2008, In: International Journal of Computational Intelligence Research. 4, 4, p. 392-401 10 p.

Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system.

Angelov, P., Ramezani, R. & Zhou, X., 2008, IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). . IEEE, p. 1456-1463 8 p.

Evolving fuzzy systems.

Angelov, P., 2008, In: Scholarpedia. 3, 2, p. 6274

Architectures of evolving fuzzy rule-based classifiers

Angelov, P., Zhou, X., Filev, D. & Lughofer, E., 9/10/2007, Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on. IEEE, p. 2050-2055 6 p.

Soft sensor for predicting crude oil distillation side streams using Takagi Sugeno evolving fuzzy models

Macias-Hernandez, J. J., Angelov, P. & Zhou, X., 9/10/2007, Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on. IEEE, p. 3305-3310 6 p.

UAV collision avoidance - state of the art and possible solutions.

Angelov, P., Xydeas, C., Bocaniala, C. D., Ansell, D., Patchett, C. & Everett, M., 4/10/2007, (Unpublished).

Evolving single- and multi-model fuzzy classifiers with FLEXFIS-class

Lughofer, E., Angelov, P. & Zhou, X., 24/07/2007, Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International. IEEE, p. 363-368 6 p.

Evolving fuzzy classifier for novelty detection and landmark recognition by mobile robots

Angelov, P. & Zhou, X., 2/05/2007, Mobile Roots: The Evolutionary Approach. Nedjah, N., Macedo Mourelle, L. & Santos Coelho, L. (eds.). p. 89-118 30 p. (Studies in Computational Intelligence; vol. 50).

An Approach to Autonomous Self-localization of a Mobile Robot in Completely Unknown Environment using Evolving Fuzzy Rule-based Classifier

Zhou, X. & Angelov, P., 2/04/2007, Computational Intelligence in Security and Defense Applications, 2007. CISDA 2007. IEEE Symposium on. IEEE, p. 131-138 8 p.

Evolving fuzzy rule-based classifiers

Angelov, P., Zhou, X. & Klawonn, F., 2/04/2007, p. 220-225. 6 p.

Algorithms for Real-Time Clustering and Generation of Rules from Data

Filev, D. & Angelov, P., 2007, Advances in Fuzzy Clustering and Its Applications. de Oliveira, J. V. & Pedrycz, W. (eds.). Chichester: John Willey and Sons, p. 353-370 18 p.

Evolving Fuzzy Classifier for Real-time Novelty Detection and Landmark Recognition by a Mobile Robot

Angelov, P. & Zhou, X., 2007, Mobile Robots: The Evolutionary Approach. Nedja, N., Coelho, L. & Mourelle, L. (eds.). Berlin/Heidelberg: Springer, Vol. 50. p. 95-124 30 p. (Studies in Computational Intelligence).

Evolving extended naive Bayes classifiers

Klawonn, F. & Angelov, P., 12/2006, Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on. IEEE, p. 643-647 5 p.

On-line Evolving Clustering of Web Documents

Evans, A., Angelov, P. & Zhou, X., 12/2006. 6 p.

Machine learning (collaborative systems)

Angelov, P. & P. Angelov (Patent applicant), 1/11/2006, Patent No. GB-06.21734.3

Evolving fuzzy rule-based systems for modelling of non-linear non-stationary processes

Angelov, P., 2/10/2006, IFAC Workshop on Energy Saving Control in Plants and Buildings (2006). Erbe, H-H. & Nikolov, E. K. (eds.). IFAC, p. 43-50 8 p.

Advances in classification of EEG signals via evolving fuzzy classifiers and dependant multiple HMMs.

Xydeas, C., Angelov, P., Chiao, S-Y. & Reoullas, M., 10/2006, In: Computers in Biology and Medicine. 36, 10, p. 1064-1083 20 p.

A Method for Predicting Quality of the Crude Oil Distillation

Macias, J. J., Angelov, P. & Xiaowei, Z., 8/09/2006, Evolving Fuzzy Systems, 2006 International Symposium on. IEEE, p. 214-220 7 p.

An Approach to Real-Time Color-based Object Tracking

Memon, M. A., Angelov, P. & Ahmed, H., 8/09/2006, Evolving Fuzzy Systems, 2006 International Symposium on. IEEE, p. 81-87 7 p.

Recovery of LSP Coefficients in VoIP Systems using Evolving Takagi-Sugeno Fuzzy MIMO Models

Jones, E., Angelov, P. & Xydeas, C., 8/09/2006, Evolving Fuzzy Systems, 2006 International Symposium on. IEEE, p. 208-214 7 p.

Evolving fuzzy systems from data streams in real-time

Angelov, P. & Zhou, X., 7/09/2006, Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems. Angelov, P. (ed.). England: IEEE, p. 29-35 7 p.

Evolving Fuzzy Systems

Angelov, P., Filev, D., Kasabov, N., Cordon, O., Angelov, P. (ed.), Filev, D. (ed.), Kasabov, N. (ed.) & Cordon, O. (ed.), 09/2006, Ambleside, UK: IEEE Press. 372 p.

Evolving Fuzzy Systems, Proc. of the 2006 International Symposium on Evolving Fuzzy Systems EFS'06.

Angelov, P., Filev, D., Kasabov, N., Cordon, O., Angelov, P. (ed.), Filev, D. (ed.), Kasabov, N. (ed.) & Cordon, O. (ed.), 09/2006, UK: IEEE Press. 372 p.

Real-Time joint Landmark Recognition and Classifier Generation by an Evolving Fuzzy System.

Zhou, X. & Angelov, P., 17/07/2006. 1205 p.

An Approach to Model-based Fault Detection in Industrial Measurement Systems with Application to Engine Test Benches.

Angelov, P., Giglio, V., Guardiola, C., Lughofer, E. & Lujan, J. M., 07/2006, In: Measurement Science and Technology. 17, 7, p. 1809-1818 10 p.

Fuzzy Systems Design: Direct and Indirect Approaches.

Angelov, P. & Xydeas, C., 07/2006, In: Soft Computing. 10, 9, p. 836-849 14 p.

Nature-inspired techniques for real-time knowledge extraction from data

Angelov, P., 8/06/2006, NiSIS Brainstorming Meeting Palma de Mallorca, Spain 08.06.2006 - 09.06.2006. NiSiS, 3 p.

Evolving Intelligent Systems, eIS

Angelov, P. & Kasabov, N., 06/2006, In: IEEE SMC eNewsLetter. 15, p. 1-13 13 p.

Novelty detection and landmark recognition by real-time evolving clustering

Zhou, X., Angelov, P. & Morris, G., 5/09/2005, The 5th annual UK Workshop on Computational Intelligence, London, Sept 5-7 2005. Mirkin, B. & Magoulas, G. (eds.). p. 155-161 7 p.

On-Line Construction and Rule Base Simplification by Replacement in Fuzzy Systems Applied to a Wastewater Treatment Plant

Victor, J., Dourado, A. & Angelov, P., 07/2005. 6 p.

Two approaches to data-driven design of evolving fuzzy systems: eTS and FLEXFIS

Angelov, P., Lughofer, E. & Klement, E. P., 22/06/2005, Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American. IEEE, p. 31-35 5 p.

Agile collaborative agents for classification of underwater targets

Carline, D., Angelov, P. & Clifford, R., 21/06/2005, Proceedings of the Undersea Defense Technology Conference 2005. Amsterdam, The Netherlands

Agile collaborative autonomous agents for robust underwater classification scenarios

Carline, D., Angelov, P. & Clifford, R., 06/2005. 6 p.

Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models

Angelov, P. & Filev, D., 22/05/2005, Fuzzy Systems, 2005. FUZZ '05. The 14th IEEE International Conference on. IEEE, p. 1068-1073 6 p.

Automatic design generation of component-based systems using GA and fuzzy optimisation

Angelov, P., Zhang, Y. & Wright, J. A., 17/03/2005, p. 95-100. 6 p.

Evolving computational intelligence systems

Angelov, P. & Kasabov, N., 03/2005, p. 76-82. 7 p.

Semantic categorization of web-based documents

Evans, T. & Angelov, P., 16/12/2004, p. 500-505. 6 p.

An approach to on-line design of fuzzy controllers with evolving structure

Angelov, P., 10/2004, Applications and Science in Soft Computing. Ahmad, L. & Garibaldi, J. M. (eds.). Berlin/Heidelberg: Springer, p. 63-68 6 p. (Advances in Soft Computing).

On-line evolution of Takagi-Sugeno fuzzy models

Angelov, P., Victor, J., Dourado, A. & Filev, D., 16/09/2004. 67 p.

On-line identification of MIMO evolving Takagi-Sugeno fuzzy models

Angelov, P., Xydeas, C. & Filev, D., 26/07/2004. 55 p.

A fuzzy controller with evolving structure.

Angelov, P., 5/04/2004, In: Information Sciences. 161, 1-2, p. 21-35 15 p.

Flexible Models with Evolving Structure

Angelov, P. & Filev, D., 04/2004, In: International Journal of Intelligent Systems. 19, 4, p. 327-340 14 p.

An Approach for Fuzzy Rule-base Adaptation using On-line Clustering.

Angelov, P., 03/2004, In: International Journal of Approximate Reasoning. 35, 3, p. 275-289 15 p.

An approach to online identification of Takagi-Sugeno fuzzy models

Angelov, P. & Filev, D., 02/2004, In: IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics. 34, 1, p. 484-498 15 p.

Optimal design synthesis of component-based systems using intelligent techniques

Angelov, P., Zhang, Y. & Wright, J. A., 2004, Do Smart Adaptive Systems Exist?. Gabrys, B., Leviska, K. & Strackelijan, J. (eds.). 173 ed. Berlin/Heidelberg: Springer, Vol. 173. p. 267-284 18 p. (Studies in Fuzziness and Soft Computing).

An evolutionary approach to fuzzy rule-based model synthesis using indices for rules

Angelov, P., 1/08/2003, In: Fuzzy Sets and Systems. 137, 3, p. 325-338 14 p.

Design and Performance of a Rule-based Controller in a Naturally Ventilated Room.

Eftekhari, M., Marjanovic, L. & Angelov, P., 08/2003, In: Computers in Industry. 51, 3, p. 299-326 28 p.

Automatic design synthesis and optimization of component-based systems by evolutionary algorithms

Angelov, P. P., Zhang, Y., Wright, J. A., Hanby, V. I. & Buswell, R. A., 07/2003, Genetic and Evolutionary Computation. Cantu-Paz, E., Foster, J. A., Deb, K., Davis, L. D., Roy, R., O'Reilly, U-M., Beyer, H. G., Standish, R., Kendall, G., Willson, S., Harman, M., Dasgupta, D., Potter, M. A., Schultz, A. C., Jonoska, N. & Miller, J. (eds.). 2724 ed. Berlin/Heidelberg: Springer, Vol. 2. p. 1938-1950 13 p. (Lecture Notes in Computer Science).

Classification of carcinoma kidney tissue status based on the data of protein expression using LS- SVM

Angelov, P., Von Eggeling, F. & Guthke, R., 9/05/2003, International Workshop on Intelligent Technologies for Gene Expression-based Individualized Medicine. Jena, Germany: International Workshop on Intelligent Technologies for Gene Expression-based Individualized Medicine

Automatic generation of fuzzy rule-based models from data by genetic algorithms.

Angelov, P. & Buswell, R., 2003, In: Information Sciences. 150, 1-2, p. 17-31 15 p.

On-line Design of Takagi-Sugeno Models.

Angelov, P. & Filev, D., 2003, Fuzzy Sets and Systems – IFSA 2003. Biglic, T., de Baets, B. & Kaynak, O. (eds.). 2715/2 ed. Berlin/Heidelberg: Springer, Vol. 2715/2. p. 576-584 9 p. (Lecture Notes in Computer Science).

Identification of Evolving Rule-based Models.

Angelov, P. & Buswell, R., 10/2002, In: IEEE Transactions on Fuzzy Systems. 10, 5, p. 667-677 11 p.

Flexible models with evolving structure

Angelov, P. & Filev, D., 10/09/2002, Intelligent Systems, 2002. Proceedings. 2002 First International IEEE Symposium. IEEE, p. 28-33 6 p.

An Approach for Rule-base Adaptation using On-line Clustering

Angelov, P., 09/2002, Proceedings of EUNITE, Albufeira, Portugal, 19-22 September 2002. EUNITE, p. 47-52 6 p.

Intelligent adaptive systems

Hadjiski, M., Angelov, P., Hadjiski, M. (ed.) & Angelov, P. (ed.), 09/2002, Varna, Bulgaria: IEEE Press. 66 p.

Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems

Angelov, P., 1/02/2002, Heidelberg, Germany: Springer Verlag. 213 p. (Studies in Fuzziness and Soft Computing)

An Approach to On-line Design of Fuzzy Controllers with Evolving Structure

Angelov, P., 2002, Proceedings 4th International Conference on Recent Advances in Soft Computing, Nottingham, 12-13 December 2002. Lofti, A. & Garibaldi, J. M. (eds.). Nottingham: Nottingham Trent University, p. 55-56 2 p.

Evolving Rule-based Control

Angelov, P., Buswell, R. A., Wright, J. & Loveday, D., 12/2001, Proceedings of EUNITE Symposium, 13-15 December 2001 . EUNITE, p. 36-41 6 p.

Evolving rule-based models: a tool for intelligent adaptation

Angelov, P. & Buswell, R., 25/07/2001. 1062 p.

Automatic generation of fuzzy rule-based models from data by genetic algorithms

Angelov, P., Hanby, V. I., Buswell, R. A. & Wright, J. A., 2001, Developments in Soft Computing. John, R. I. & Birkenhead, R. (eds.). Berlin/Heidelberg: Springer, p. 31-40 10 p. (Advances in Soft Computing).

Construction scheduling, cost optimization and management: a new model based on neurocomputing and object technologies

Angelov, P., 2001, In: Engineering, Construction and Architectural Management. 8, 3, p. 233-234 2 p.

Multi-objective optimisation in air-conditioning systems : comfort/discomfort definition by IF sets.

Angelov, P., 2001, In: Notes on Intuitionistic Fuzzy Sets. 7, 1, p. 10-23 14 p.

Supplementary Crossover Operator for Genetic Algorithms based on the Center-of-Gravity Paradigm

Angelov, P., 2001, In: Control and Cybernetics. 30, 2, p. 159-176 18 p.

Transparency and simplification of rule-based models for on-line adaptation.

Buswell, R., Angelov, P. & Wright, J., 2001, Proceedings of the 2nd International Conference in Fuzzy Logic and Technology, Leicester, United Kingdom, September 5-7, 2001.. Garibaldi, J. M. & John, R. I. (eds.). Eusflat, p. 324-327 4 p.

A centre-of-gravity-based recombination operator for genetic algorithms

Angelov, P. & Wright, J. A., 23/10/2000. 259 p.

A methodology for modeling HVAC components using evolving fuzzy rules

Angelov, P., Buswell, R. A., Hanby, V. I. & Wright, J. A., 10/2000. 247 p.

Application of univariate search methods to the determination of HVAC plant capacity

Hanby, V. I. & Angelov, P. P., 1/08/2000, In: Building Services Engineering Research and Technology. 21, 3, p. 161-166 6 p.

Hybrid modelling of biotechnological processes using neural networks

Chen, L. B., Bernard, O., Bastain, G. & Angelov, P., 07/2000, In: Control Engineering Practice. 8, 7, p. 821-827 7 p.

A center-of-gravity-based recombination operator for genetic algorithms

Angelov, P. P. & Wright, J. A., 1/01/2000, IECON Proceedings (Industrial Electronics Conference). IEEE Computer Society Press, p. 259-264 6 p. 973160. (IECON Proceedings (Industrial Electronics Conference); vol. 1).

Evolving Fuzzy Rule-based Models

Angelov, P., 2000, In: Journal of the Chinese Institute of Industrial Engineers. 17, 5, p. 459-468 10 p.

HVAC Systems Simulation: A Self-Structuring Fuzzy Rule-Based Approach

Angelov, P., Hanby, V. I. & Wright, J. A., 2000, In: International Journal of Architectural Sciences. 1, 1, p. 49-58 10 p.

Evolving fuzzy rule-based models

Angelov, P., 17/08/1999, p. 19-23. 5 p.

Hybrid modelling of biotechnological processes using neural networks

Bernanrd, O., Bastain, G. & Angelov, P., 07/1999. 145 p.

A fuzzy approach to building thermal systems optimization.

Angelov, P., 06/1999. 4 p.

Self-Learning of Fuzzy-Rule-based Models by GA

Angelov, P., 10/1998, Proceedings International Conference on Intelligent Control, Sofia, Bulgaria, 14-16 October, 1998. p. 46-49 4 p.

Hybrid modelling of biotechnological processes using neural networks

Angelov, P., Bernard, O., Bastin, G., Stentelaire, C. & Asther, M., 17/09/1998, 2nd European Symposium on Bio-Engineering Systems ESBES-2. Porto, Portugal, p. 219

A genetic-algorithm-based approach to optimization of bioprocesses described by fuzzy rules.

Angelov, P. & Guthke, R., 04/1997, In: Bioprocess and Biosystems Engineering. 16, 5, p. 299-303 5 p.

Optimization in an Intuitionistic Fuzzy Environment

Angelov, P., 16/03/1997, In: Fuzzy Sets and Systems. 86, 3, p. 299-306 8 p.

Intelligent optimal control of biotechnological processes.

Angelov, P., 09/1996. 1033 p.

Control of cell protein synthesis from kluyveromyces marxianus var. Lactis MC5

Angelov, P., Simova, E., Beshkova, D. & Frengova, G., 01/1996, In: Biotechnology and Biotechnological Equipment. 10, 1, p. 44-50 7 p.

A method for fuzzy linear dynamic programing.

Angelov, P., 1995. 5 p.

An analytical method for solving a type of fuzzy optimization problems, control and cybernetics.

Angelov, P., 1995, In: Control and Cybernetics. 24, 3, p. 363-373 11 p.

Crispification : defuzzification over intuitionistic fuzzy sets.

Angelov, P., 1995, In: Bulletin for Studies and Exchanges on Fuzziness and its AppLications, BUSEFAL. 64, p. 51-55 5 p.

Intuitionistic fuzzy optimisation.

Angelov, P., 1995, In: Notes on Intuitionistic Fuzzy Sets. 1, 1, p. 27-33 7 p.

An Approach for Training a type of Fuzzy Neural Networks as Fuzzy Optimization

Angelov, P., Petrov, M. & Tsonkov, S., 09/1994, Proceedings of 10th International Conference on Systems Engineering, Coventry, 6-8 Spetember 1994 .

Analytical approach for solving a type of fuzzy optimization problems.

Angelov, P., 09/1994. 11 p.

Fuzzy mathematical programming problem solving

Angelov, P., 4/07/1994, European Congress on Operations Research, EURO-XIII, Glasgow, Scotland, 4-6 July 1994. p. 374

A generalized approach to fuzzy optimization

Angelov, P., 1994, In: International Journal of Intelligent Systems. 9, 3, p. 261-268 8 p.

A new method for solving linear programming problems with fuzzy parameters.

Angelov, P., 1994. 5 p.

Approximate reasoning based optimization.

Angelov, P., 1994, In: Yugoslav Journal of Operations Research. 4, 1, p. 11-17 7 p.

Fuzzy optimization of laboratory fermenters

Angelov, P. & Petrov, M., 1994, In: Biotechnology and Biotechnological Equipment. 8, 2, p. 60-63 4 p.

About analytical solving fuzzy mathematical programming problem.

Angelov, P., 09/1993, Mathematical modelling methodology, software tools, and applications : proceedings of the International Conference on Mathematical Modelling and Scientific Computation, Sozopol, Bulgaria, September 14-18, 1993 . Popova, E. D. (ed.). Sofia: DATECS , 14 p.

An analytical approach for FMP problem solving and its application to neural networks learning.

Angelov, P., 09/1993. 0 p.

A parameterized generalization of fuzzy mathematical programming problem.

Angelov, P., 07/1993, IFSA'93 Seoul Fifth IFSA World Congress, July 4-7, 1993, Seoul, Korea. p. 612-615 4 p.

An approach to fuzzy optimal control via parameterized conjunction and defuzzification

Angelov, P. & Zamdjiev, N., 1993, In: Fuzzy Systems and Artificial Intelligence. 2, 1, p. 151-156 6 p.

Fuzzy optimal control of ethanol synthesis

Angelov, P. & Tzonkov, S., 1993, In: Fuzzy Systems and Artificial Intelligence. p. 45-51 7 p.

Optimal control of biotechnological processes

Angelov, P., Zamdzhiev, N. & Tzonkov, S., 1993, 10th Control Conference, Wroczlaw, Poland. Wroczlaw, Poland, p. 171-172 2 p.

Optimal control of biotechnological processes described by fuzzy sets

Angelov, P. & Tzonkov, S., 1993, In: Journal of Process Control. 3, 3, p. 147-152 6 p.

Fuzzy optimal control

Filev, D. & Angelov, P., 27/04/1992, In: Fuzzy Sets and Systems. 47, 2, p. 151-156 6 p.

Optimal control in a fuzzy environment.

Filev, D. & Angelov, P., 1992, In: Yugoslav Journal of Operations Research. 2, 1, p. 33-43 11 p.

Projects

2006 International Workshop EFS 06

Angelov, P.

1/07/0630/09/06

Application of Fuzzy Rule based Models in HVAC Systems Simulation

Angelov, P.

1/03/0031/08/01

Assisted carriage proposal: Intelligent leader follower algorit: Assisted carriage proposal: Intelligent leader follower algorithms for ground platforms

Angelov, P.

Ministry of Defence

1/09/0930/11/09

ASTRAEA: ASTRAEA T5 Adaptive Routing

Angelov, P.

2/01/0631/12/08

ASTRAEA: ASTRAEA, Collision Avoidance

Angelov, P.

2/01/0631/12/08

AURORA: Automated Real-time On-board video/data Analytics: AURORA: Automated Real-time On-board video/data Analytics

Angelov, P.

Ministry of Defence

1/06/1330/11/14

Thales: Autonomous Object Detection and Tracking

Angelov, P.

1/01/1330/06/16

Autonomous Remote Inspection and Repair in Hazardous Environmen: Autonomous Remote Inspection and Repair in Hazardous Environments

Angelov, P.

Innovate UK

2/01/181/01/20

Better Clinical Decisions for Less Efforts

Angelov, P.

1/01/0630/06/09

CASE: Autonomous Object Detection and Tracking in Real Time: CASE: Autonomous Object Detection & Tracking in Real Time

Angelov, P.

Thales UK Ltd

22/04/1321/10/16

CASE: Autonomous Object Detection and Tracking in Real Time: CASE: Autonomous Object Detection and Tracking in Real Time

Angelov, P.

22/04/13 → …

Collision Avoidance Algorithm Development

Angelov, P.

1/03/0628/02/07

Cordinated Airborne Studies in the Tropics (CAST): Cordinated Airborne Studies in the Tropics (CAST)

Angelov, P.

NERC

1/02/1331/07/16

SecurityLancaster_Pilot: Development of methods, algorithms and software for autonomous novelty detection by moving camera

Angelov, P.

1/06/1231/07/12

Early Detection of Insider Threats by Autonomous Analysis of Us: Early Detection of Insider Threats by Autonomous Analysis of User Behaviour Evolution

Angelov, P. & Baron, A.

GCHQ

21/07/1520/01/19

Early Detection of Insider Threats by Autonomous Analysis of User Behaviour Evolution

Angelov, P. & Baron, A.

1/10/1431/03/18

Evo MAp: EvoMap: On-Chip Implementation of Intelligent Information Modelling

Angelov, P.

1/07/0430/06/05

Forex Trends Clustering Analysis using Machine Learning: Forex Trends Clustering Analysis using Machine Learning

Angelov, P.

1/04/1730/09/17

FP7: SVETLANA: FP7: SVETLANA

Markarian, G., Angelov, P., Kolev, D. & Zvikhachevskiy, D.

European Commission

1/08/1031/12/12

FP7: GAMMA: GAMMA: Global ATM Security Management

Markarian, G. & Angelov, P.

European Commission

1/09/1330/11/17

GAMMA: Growing Autonomous System Mission Management Applications: GAMMA: Growing Autonomous System Mission Management Applications

Angelov, P.

HM Government Regional Growth Fund

1/10/1230/09/15

GAMMA: Growing Autonomous Mission Management Systems

Angelov, P.

1/10/1230/09/14

H2020 : Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization (TAILOR)

Angelov, P. & Rahmani, H.

European Commission

1/09/2031/08/23

Horizon Europe: European Lighthouse on Secure and Safe AI – ELSA

Angelov, P.

UKRI

1/09/2231/08/25

H-unique: In search of uniqueness - harnessing anatomical hand variation

Black, S., Black, S., Angelov, P., Rahmani, H., Williams, B., Williams, B., Boswell-Challand, R., Gu, X., Davies, N., Rowland, C., Hackman, L., Vyas, R., Jiang, Z., Baisa, N. & Black, S.

European Commission

1/01/1931/12/23

HVAC System Design Synthesis and Optimization

Angelov, P.

1/01/0031/12/02

Institutional Sponsorship 2015: Institutional Sponsorship 2015

Decent, S., Decent, S., Davies, N., Joyce, M., Marsden, A., Rennie, A., Angelov, P., Cooper, R., Monk, S., Eckley, I., Carrington, P., Smith, R., Harland, B., Dunn, N., Hoster, H. & Urry, J.

EPSRC

1/06/1531/03/16

Intelligent Computer Vision agents Optimising Safety and Train : Intelligent Computer Vision agents Optimising Safety and Train Dwell Times

Angelov, P. & Morris, G.

Rail Research UK Association

1/05/1730/04/18

IS 2015 - Robotics and autonomous systems: IS 2015 - Robotics and autonomous systems

Monk, S. & Angelov, P.

1/06/15 → …

Multiscale Modelling Extension (Y4-5)

Hoster, H. & Angelov, P.

EPSRC

1/03/2130/06/21

New Machine Learning Methods Paradigms to Address Big Data Streams

Angelov, P.

17/03/1516/03/17

Novel Machine Learning Paradigms to address Big Data Streams: Novel Machine Learning Paradigms to address Big Data Streams

Angelov, P.

The Royal Society

16/03/1515/06/17

Pozibot: Quantum-secured remote monitoring and data logging technology that enables a dynamic insured warranty for battery packs

Young, R., Angelov, P., Hoster, H., Csala, D. & Marnerides, A.

Innovate UK

1/03/1931/05/21

Rutherford Fund Strategic Partner Grant 2018: Rutherford Fund Strategic Partner Grant 2018

Rufino, M., Blackburn, A., Chappell, N., Dodd, I., Angelov, P. & Ni, Q.

Department for Business, Energy & Industrial Strategy

1/04/1831/03/19

STAKE: STAKE: real time spatio-temporal analysis and knowledge extraction through evolving clustering

Angelov, P.

Ministry of Defence

14/03/1131/12/13

Target-Aware High-Quality Video Generation via 3D CNN based Self-Supervised Adversary Learning

Rahmani, H., Angelov, P. & Jiang, R.

27/02/2031/07/23

TAS-S: Trustworthy Autonomous Systems Node in Security

May-Chahal, C., Deville, J., Suri, N., Angelov, P., Giotsas, V., Easton, C. & Hutchison, D.

EPSRC

1/11/2030/04/24

Towards explainable AI4EO: a new frontier to gain trust into the AI (XAI4EO)

Angelov, P.

European Space Agency

1/04/2131/03/24

Transparent Deep Learning Classifier of Driving Scenarios able to Identify and Learn from Unseen Situations

Angelov, P.

Ford Motor Company

1/10/1830/09/21

Transparent Deep Learning Classifier of Driving Scenarios able to Identify and Learn from Unseen Situations

Angelov, P. & Almeida Soares, E.

1/10/1830/09/21

UAS Passive Sense, Detect and Avoid Algorithm Development

Angelov, P.

1/10/0931/12/09

Activities

Springer (Publisher)

Plamen Angelov (Editor)

24/09/201426/09/2014

2014 IEEE World Congress on Computational Intelligence, WCCI-2014

Plamen Angelov (Chair)

2014

IEEE (Publisher)

Plamen Angelov (Editor)

2014

IEEE Press (Publisher)

Plamen Angelov (Editor)

08/2013

IEEE Press (Publisher)

Plamen Angelov (Editor)

06/2013

IEEE Press (Publisher)

Plamen Angelov (Editor)

06/2013

IEEE Press (Publisher)

Plamen Angelov (Editor)

04/2013

Evolving Hierarchical Fuzzy Systems

Plamen Angelov (Supervisor)

03/201309/2013

Applied Soft Computing Journal (Journal)

Plamen Angelov (Peer reviewer)

1/01/201331/12/2018

IEEE Computational Intelligence Society (External organisation)

Plamen Angelov (Member)

1/01/2013 → …

2013 IEEE International Conference on Cybernetics, CYBCO-2013

Plamen Angelov (Chair)

2013

2013 International Joint Conference on Neural Networks

Plamen Angelov (Chair)

2013

Autonomous Learning Machines: Evolving Neuro-Fuzzy Representation of the Dynamic Intelligence

Plamen Angelov (Speaker)

8/06/2012

2012 IEEE Conference on Evolving and Adaptive Intelligent Systems

Plamen Angelov (Chair)

05/2012

IEEE Press (Publisher)

Plamen Angelov (Editor)

05/2012

Self-evolving Gaussian processes

Plamen Angelov (Host)

03/201204/2012

IEEE Transactions on Fuzzy Systems (Journal)

Plamen Angelov (Associate Editor)

01/2012 → …

IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics (Journal)

Plamen Angelov (Associate Editor)

01/2012 → …

Soft Computing (Journal)

Plamen Angelov (Editorial board member)

01/2012 → …

Autonomous Learning - the true intelligence is evolving

Plamen Angelov (Speaker)

12/2011

Autonomous Learning Machines: Generating Rules from Data Streams

Plamen Angelov (Speaker)

11/2011

2011 IEEE Symposium Series on Computational Intelligence

Plamen Angelov (Chair)

04/2011

IEEE Press (Publisher)

Plamen Angelov (Editor)

04/2011

Self-evolving fuzzy rule-based controllers

Plamen Angelov (Supervisor)

03/201106/2011

Fuzzy Sets and Systems (Journal)

Plamen Angelov (Associate Editor)

2011 → …

IEEE (External organisation)

Plamen Angelov (Chair)

20112012

Evolving Intelligent Systems: Methods and Applications

Plamen Angelov (Speaker)

10/2010

AISB (Publisher)

Plamen Angelov (Editor)

04/2010

University Carlos III Madrid, Spain

Plamen Angelov (Speaker)

02/2010

Journal of Automation, Mobile Robotics and Intelligent Systems (Journal)

Plamen Angelov (Editorial board member)

01/2010 → …

2010 IEEE International Conference on Intelligent Systems

Plamen Angelov (Chair)

2010

Open Journal on Cybernetics and Systemics (Journal)

Plamen Angelov (Associate Editor)

2010 → …

UAV Passive Sense, Detect and Avoid Algorithm Development

Plamen Angelov (Contributor)

1/10/200931/12/2009

Evolving Systems (Journal)

Plamen Angelov (Editor)

09/2009 → …

IEEE Symposium Series on Computational Intelligence

Plamen Angelov (Chair)

04/2009

Jose Iglesias

Plamen Angelov (Host)

10/200802/2009

3rd International Workshop on Genetic and Evolving Fuzzy Systems

Plamen Angelov (Chair)

03/2008

IEEE Press (Publisher)

Plamen Angelov (Editor)

2008

IEEE Transactions on Fuzzy Systems (Journal)

Plamen Angelov (Guest editor)

2008

NTC on Autonomous Systems (External organisation)

Plamen Angelov (Member)

20082012

Evolving Systems from Data Streams

Plamen Angelov (Speaker)

09/2007

2007 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE2007

Plamen Angelov (Chair)

07/2007

Evolving Classifiers Development

Plamen Angelov (Host)

1/05/20071/06/2007

International Journal of Knowledge-Based and Intelligent Engineering Systems (Journal)

Plamen Angelov (Associate Editor)

2007 → …

University of Wolfenbuettel, Germany

Plamen Angelov (Speaker)

2007

2006 IEEE International Symposium on Evolving Fuzzy Systems

Plamen Angelov (Chair)

09/2006

Evolving Classifiers and Systems

Plamen Angelov (Host)

8/05/20064/06/2006

IEEE Press (Publisher)

Plamen Angelov (Editor)

2006

IEEE Press (Publisher)

Plamen Angelov (Editor)

2002