Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Age-related clonal haemopoiesis is associated with increased epigenetic age
AU - Robertson, N.A.
AU - Hillary, R.F.
AU - McCartney, D.L.
AU - Terradas-Terradas, M.
AU - Higham, J.
AU - Sproul, D.
AU - Deary, I.J.
AU - Kirschner, K.
AU - Marioni, R.E.
AU - Chandra, T.
PY - 2019/8/19
Y1 - 2019/8/19
N2 - Age-related clonal haemopoiesis (ARCH) in healthy individuals was initially observed through an increased skewing in X-chromosome inactivation [1]. More recently, several groups reported that ARCH is driven by somatic mutations [2], with the most prevalent ARCH mutations being in the DNMT3A and TET2 genes, previously described as drivers of myeloid malignancies. ARCH is associated with an increased risk for haematological cancers [2]. ARCH also confers an increased risk for non-haematological diseases, such as cardiovascular disease, atherosclerosis, and chronic ischemic heart failure, for which age is a main risk factor 3, 4. Whether ARCH is linked to accelerated ageing has remained unexplored. The most accurate and commonly used tools to measure age acceleration are epigenetic clocks: they are based on age-related methylation differences at specific CpG sites [5]. Deviations from chronological age towards an increased epigenetic age have been associated with increased risk of earlier mortality and age-related morbidities 5, 6. Here we present evidence of accelerated epigenetic age in individuals with ARCH.
AB - Age-related clonal haemopoiesis (ARCH) in healthy individuals was initially observed through an increased skewing in X-chromosome inactivation [1]. More recently, several groups reported that ARCH is driven by somatic mutations [2], with the most prevalent ARCH mutations being in the DNMT3A and TET2 genes, previously described as drivers of myeloid malignancies. ARCH is associated with an increased risk for haematological cancers [2]. ARCH also confers an increased risk for non-haematological diseases, such as cardiovascular disease, atherosclerosis, and chronic ischemic heart failure, for which age is a main risk factor 3, 4. Whether ARCH is linked to accelerated ageing has remained unexplored. The most accurate and commonly used tools to measure age acceleration are epigenetic clocks: they are based on age-related methylation differences at specific CpG sites [5]. Deviations from chronological age towards an increased epigenetic age have been associated with increased risk of earlier mortality and age-related morbidities 5, 6. Here we present evidence of accelerated epigenetic age in individuals with ARCH.
U2 - 10.1016/j.cub.2019.07.011
DO - 10.1016/j.cub.2019.07.011
M3 - Journal article
VL - 29
SP - R786-R787
JO - Current Biology
JF - Current Biology
SN - 0960-9822
IS - 16
ER -