Rights statement: This is the author’s version of a work that was accepted for publication in Microchemical Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Microchemical Journal, 184, Part A, 2023 DOI: 10.1016/j.microc.2022.108151
Accepted author manuscript, 3.79 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Confocal Raman spectroscopy assisted by chemometric tools
T2 - A green approach for classification and quantification of octyl p-methoxycinnamate in oil-in-water microemulsions
AU - do Nascimento, D.S.
AU - Volpe, V.
AU - Fernandez, C.J.
AU - Oresti, G.M.
AU - Ashton, L.
AU - Grünhut, M.
N1 - This is the author’s version of a work that was accepted for publication in Microchemical Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Microchemical Journal, 184, Part A, 2023 DOI: 10.1016/j.microc.2022.108151
PY - 2023/1/30
Y1 - 2023/1/30
N2 - This work proposes a green analytical method based on confocal Raman spectrometry and chemometrics tools for the qualitative and quantitative analysis of oil in water microemulsions loaded with the UVB filter octyl p-methoxycinnamate (OMC). The method does not use reagents and only 10 µL of sample are needed. The analyzed microemulsion samples were synthetized in the laboratory using decaethylene glycol mono-dodecyl ether (21.9 %) as non-ionic surfactant, ethyl alcohol (7.3 %) as co-surfactant, oleic acid (1.5 %) as oil phase and water (69.3 %). A physicochemical characterization of the samples was carried out obtaining expected values for droplet size (<20 nm), polydispersity index (<0.290) and conductivity (0.04–0.07 mS cm−1), among others. Linear discriminant analysis (LDA) after selection of variables using the successive projections algorithm (SPA) and soft independent modelling of class analogy (SIMCA) were employed to classify microemulsions with different concentrations of OMC (1.0 to 10.0 %). In the case of LDA, seven Raman spectral variables were previously selected by SPA and after this SPA-LDA model resulted in one error in the prediction set achieving an accuracy of 97.8 %. The SIMCA model (α = 0.05) presented an explained variance higher 97 % using four principal components and it allowed the correct classification of 100 % of the samples (N = 15). In the quantitative analysis, partial least squares (PLS) was used to determine OMC in a range according to international legislation. The model presented optimal statistical parameters (R2 = 0.9699; RMSEP = 0.54 %) and the prediction of samples were in close agreement with HPLC method. Moreover, the greenery of the method was estimated using the AGREE metric and an optimal value of 0.85 was obtained demonstrating the proposed analytical method results environmentally friendly.
AB - This work proposes a green analytical method based on confocal Raman spectrometry and chemometrics tools for the qualitative and quantitative analysis of oil in water microemulsions loaded with the UVB filter octyl p-methoxycinnamate (OMC). The method does not use reagents and only 10 µL of sample are needed. The analyzed microemulsion samples were synthetized in the laboratory using decaethylene glycol mono-dodecyl ether (21.9 %) as non-ionic surfactant, ethyl alcohol (7.3 %) as co-surfactant, oleic acid (1.5 %) as oil phase and water (69.3 %). A physicochemical characterization of the samples was carried out obtaining expected values for droplet size (<20 nm), polydispersity index (<0.290) and conductivity (0.04–0.07 mS cm−1), among others. Linear discriminant analysis (LDA) after selection of variables using the successive projections algorithm (SPA) and soft independent modelling of class analogy (SIMCA) were employed to classify microemulsions with different concentrations of OMC (1.0 to 10.0 %). In the case of LDA, seven Raman spectral variables were previously selected by SPA and after this SPA-LDA model resulted in one error in the prediction set achieving an accuracy of 97.8 %. The SIMCA model (α = 0.05) presented an explained variance higher 97 % using four principal components and it allowed the correct classification of 100 % of the samples (N = 15). In the quantitative analysis, partial least squares (PLS) was used to determine OMC in a range according to international legislation. The model presented optimal statistical parameters (R2 = 0.9699; RMSEP = 0.54 %) and the prediction of samples were in close agreement with HPLC method. Moreover, the greenery of the method was estimated using the AGREE metric and an optimal value of 0.85 was obtained demonstrating the proposed analytical method results environmentally friendly.
KW - Confocal Raman Spectroscopy
KW - Green Analytical Chemistry
KW - Linear Discriminant Analysis
KW - Microemulsions
KW - Octyl p-methoxycinnamate
KW - Partial Least Squares
KW - Soft Independent Modelling by Class Analogy
KW - Successive Projections Algorithm
KW - UV filters
U2 - 10.1016/j.microc.2022.108151
DO - 10.1016/j.microc.2022.108151
M3 - Journal article
VL - 184
JO - Microchemical Journal
JF - Microchemical Journal
IS - Part A
M1 - 108151
ER -