Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Creating and analysing a multimodal corpus of news texts with Google Cloud Vision's automatic image tagger
AU - Baker, Paul
AU - Collins, Luke
PY - 2023/4/30
Y1 - 2023/4/30
N2 - This study describes the creation and analysis of a small multimodal corpus of British news articles about obesity, where tags were assigned to images in the articles using the automatic tagger Google Cloud Vision. In order to illustrate the potential for analysis of image tags, the corpus analysis tool WordSmith was used to identify differences between newspapers in the ways that obesity was framed. Three forms of analysis were carried out – the first simply compared keywords across the newspapers, the second examined key visual tags and their collocates associated with each newspaper, while the third incorporated a combined analysis of words and image tags. The three analyses produced complementary findings, indicating the value in using Google Cloud Vision in creating and analysing multimodal corpora. The paper ends by reflecting on the method undertaken, while considering how additional research could improve our understanding of image tagging.
AB - This study describes the creation and analysis of a small multimodal corpus of British news articles about obesity, where tags were assigned to images in the articles using the automatic tagger Google Cloud Vision. In order to illustrate the potential for analysis of image tags, the corpus analysis tool WordSmith was used to identify differences between newspapers in the ways that obesity was framed. Three forms of analysis were carried out – the first simply compared keywords across the newspapers, the second examined key visual tags and their collocates associated with each newspaper, while the third incorporated a combined analysis of words and image tags. The three analyses produced complementary findings, indicating the value in using Google Cloud Vision in creating and analysing multimodal corpora. The paper ends by reflecting on the method undertaken, while considering how additional research could improve our understanding of image tagging.
KW - news
KW - annotation
KW - visual
KW - Image
KW - obesity
KW - discourse
U2 - 10.1016/j.acorp.2023.100043
DO - 10.1016/j.acorp.2023.100043
M3 - Journal article
VL - 3
JO - Applied Corpus Linguistics
JF - Applied Corpus Linguistics
SN - 2666-7991
IS - 1
M1 - 100043
ER -