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ABSTRACT1

Mobility and transportation are two of the leading indicators of economic growth of a society.2

As cities around the world grow rapidly and more people and modes compete for limited urban3

space to travel, there is an increasing need to understand how this space is used for transportation4

and how it can be managed to improve accessibility for everyone. In a recent paper, Daganzo5

and Geroliminis (1) explored the connection between network structure and a network’s MFD6

for urban neighborhoods with cars controlled by traffic signals and derived an analytical theory7

for the MFD using Variational Theory. Information needed to estimate this network MFD’s are8

average network (total length of roads in lane-km, number of lanes, length of links), control (signal9

offsets, green phase and cycle time) and traffic (free flow speed, congested wave speed, jam density,10

capacity) characteristics. However in previous studies, Variational Theory has been applied only11

in cities with deterministic values of the above variables for the whole network and by ignoring12

the effect of turns. In our study we are aiming to generate an MFD for streets with variable link13

lengths and signal characteristics and understand the effect of variability for different cities and14

signal structures. Furthermore, this variability gives the opportunity to mimic the effect of turning15

movements and heterogeneity in drivers’ behavior. This will be a key issue in planning the signal16

regimes such a way that maximizes the network capacity and/or the density range of the capacity.17
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INTRODUCTION1

The first theoretical proposition of a macroscopic relationship between average network flow and2

density with an optimum accumulation belongs to Godfrey (2). Earlier studies looked for macro-3

scale traffic patterns in data of lightly congested real-world networks (Ardekani & Herman (3);4

Olszewski et al. (4)) or in data from simulations with artificial routing rules and static demand5

(Mahmassani et al. (5); Mahmassani & Peeta (6)). However, the data from all these studies6

were too sparse or not investigated deeply enough to demonstrate the existence of an invariant7

macroscopic relation for real urban networks. Later, Daganzo (7) conjectured (as part of an urban8

traffic dynamics model) that a well-defined relationship between flow and density must arise if a9

network is "uniformly loaded" in space and demand changes slowly with time.10

The empirical verification of its existence with dynamic features is recent (8) (9). The ex-11

periments and simulations in these references suggest that under some conditions this macroscopic12

relation is indeed a reproducible curve named as the ’Macroscopic Fundamental Diagram’ (MFD).13

These references also showed that the MFD is a property of the network infrastructure and control14

and not of the demand, i.e. space-mean flow is maximum for the same value of vehicle density15

independently of time-dependent origin-destination tables. Despite these and other recent findings16

for the existence of well-defined macroscopic fundamental diagrams (MFDs) for urban areas, it is17

not obvious whether the MFDs would be universal or network-specific. More real-world exper-18

iments are needed to identify the types of networks and demand conditions, for which invariant19

MFD’s with low scatter exist.20

To evaluate topological or control-related changes of the network (e.g. a re-timing of21

the traffic signals or a change in infrastructure), Daganzo and Geroliminis (1) and Helbing (10)22

have derived analytical theories for the urban fundamental diagram, using a density-based and a23

utilization-based approach respectively. The first reference proved, using Variational Theory (7),24

that an MFD must arise for single-route networks with a fixed number of vehicles in circulation25

(periodic boundary conditions and no turns). The same reference also gives explicit formulae for26

the single-route MFD with deterministic topology, control and traffic characteristics (i.e. all in-27

tersections have common control patterns, the length of its links and their individual fundamental28

diagrams are all the same. The reference conjectured that these MFD formulae should approxi-29

mately expected to hold for homogeneous, redundant networks with slow-changing demand.30

In this paper we provide several extensions and refinements of the analytical model for an31

MFD. We explore how network parameters (topology and signal control) affect two key character-32

istics of an MFD, (i) the network capacity and (ii) the density range for which the network capacity33

is maximum. We also investigate how sensitive are these two characteristics in small changes of34

the parameters. Afterwards, we relax the deterministic character of the parameters and we inves-35

tigate how variations in the signal offsets and the link lengths affect network capacity and density36

range. These results can be utilized to develop efficient control strategies for a series of signalized37

intersections as these variations can describe not only differences in network parameters, but also38

different characteristics in driver behavior. Later, we imitate the effect of incoming turns in a long39

arterial and we show that these turns can significantly decrease the network capacity. To precisely40

describe all the above phenomena we initially provide some analytical proofs for a simplification41

of the Variational Theory approach and then we develop a simulator to study the non-deterministic42

effects.43
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A NOTE ON VARIATIONAL THEORY1

Daganzo and Geroliminis (1) used a moving observer method to show that the average flow-density2

states of any urban street without turning movements must be bounded from above by a concave3

curve. The section also shows that, under the assumptions of variational theory, this curve is the4

locus of the possible (steady) traffic states for the street; i.e., it is its MFD.5

Their method builds on a recent finding of Daganzo (7), which showed that kinematic wave6

theory traffic problems with a concave flow-density relation are shortest (least cost) path problems.7

Thus, the centerpiece of variational theory (as is the fundamental diagram for kinematic wave8

theory) is a relative capacity ("cost") function (CF), r (u), that describes each homogeneous portion9

of the street. This function is related to the known FD of kinematic wave theory Q. Physically, the10

CF gives the maximum rate at which vehicles can pass an observer moving with speed u and not11

interacting with traffic; i.e., the street’s capacity from the observer’s frame of reference. Linear CFs12

correspond to triangular FDs. Daganzo and Geroliminis (7) assumed a linear CF characterized by13

the following parameters: k0 (optimal density), uf (free flow speed), κ (jam density), w (backward14

wave speed), s (capacity), and r (maximum passing rate). CF line crosses points (uf , 0), (0, s),15

(−w, r) and has a slope equal to −k0. Other applications of Variational Theory in modeling traffic16

phenomena can be found in (11).17

A second element of VT is the set of "valid" observer paths on the (t, x) plane starting from18

arbitrary points on the boundary at t = 0 and ending at a later time, t0 > 0. A path is "valid" if the19

observer’s average speed in any time interval is in the range [−w, uf ]. If P is one such path, uP be20

the average speed for the complete path, and ∆(P) is the path’s cost which is evaluated with r (u),21

∆(P) bounds from above the change in vehicle number that could possibly be seen by observer22

P . Thus, the quantity:23

lim
to→∞

inf
P

{∆(P) : uP = u} /to (1)24

is an upper bound to the average rate at which traffic can overtake any observer that travels with25

average speed u for a long time. Note that (1) is a shortest path problem, and that R (0) is the26

system capacity. Building on Equation (1), Daganzo and Geroliminis (1) proved that a ring’s MFD27

with periodic characteristics in time and space (traffic signals every L meters with common green28

duration G and cycle C and no turns), Q = Q (k), is concave and given by Equation (2). Figure29

(1a) illustrates that Equation (2) is the lower envelope of the 1-parameter family of lines on the30

(k, q) plane defined by q = ku + R (u) with u as the parameter. Note this equation also describes31

the passing rate of an observer moving with constant speed u in a stationary traffic stream with32

flow q and density k. The main difference is that traffic signals create non-stationary conditions as33

vehicles stop at traffic signals and this relation does not apply in all cases. We call these lines "cuts"34

because they individually impose constraints of the form: q ≤ ku+R (u) on the macroscopic flow-35

density pairs that are feasible on a homogeneous street.36

q = inf
u
{ku+R (u)} (2)37

Because evaluating R (u) in Equation (2) for all u can be tedious, Daganzo and Geroliminis38

(1) proposed instead using three families of "practical cuts" that jointly bound the MFD from39

above, albeit not tightly. It has been shown (7) that for linear CF’s, an optimal path always exists40

that is piece-wise linear: either following an intersection line or else slanting up or down with41

slope uf or −w. The practical cuts are based on observers that can move with only 3 speeds:42
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u = uf , 0, or w and stop at intersections during red times and possibly during green periods as1

well. Recall that an observer’s cost rate (maximum passing rate) is qB (t) if the observer is standing2

at intersection with capacity qB (t) ≤ s and otherwise it is given by a linear CF, i.e. it is either 0, s3

or r depending on the observer’s speed.4
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Figure 1: The MFD defined by a 1-parameter family of "cuts" (1) and both forward, backward and

stationary observers

Figure (1b) provides an explanation how the "practical cuts" are estimated for a series of5

intersections with common length and signal settings (green G, cycle C and offset δ). For offset is6

the time difference between the starting of the green phase for two consecutive signals. Case (4, F )7

shows the fastest moving observer, who runs with speed uf and stops only at red phases once every8

4 signals. No vehicles are passing her, the first "cut" crosses the q − k plane at (0, 0) and has a9

slope equal to the average speed of the observer. The 2nd observer (3, F ) still runs at uf but stops10

during the green period every third signal. Thus, she has a smaller average speed and vehicles are11

passing her at rate s when waiting in green phases. This passing rate is shown in the second "cut"12

as the constant of the line that crosses axis q at q > 0. The 3rd observer (2, F ) stops in every two13
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signals whereas the fourth (1, F ) stops in every signal, while the fifth observer named as (S) is the1

stationary observer with zero speed. Cases (3, B)-(1, B) show the backward moving observers,2

who are passed at rate r when moving in the opposite direction and at rate s when waiting in green3

phases. The lower envelope of all these "cuts" produces the MFD.4

The authors conjectured that the following regularity conditions should ensure a good an-5

alytical approximation of the MFD: (i) a steady and distributed demand; (ii) a redundant network6

ensuring that drivers have many route choices and that most links are on many desirable routes;7

(iii) a homogeneous network with similar links; (iv) links with an approximate FD that is not sig-8

nificantly affected by turning movements when flow is steady. Conditions (i)-(iii) should create a9

near-equilibrium as in Wardrop (12) with similar average speeds on all links; and, since the links10

are similar, with similar (i.e., optimal) densities too. Condition (iv) implies that the VT method,11

applied to a single link with many efficient cuts, yields a tight MFD. The estimated MFD (despite12

its simplistic approach) fits well empirical and simulated data for Yokohama and San Francisco,13

two networks that only roughly meet the regularity conditions.14

DETERMINISTIC15

In this part of the paper, we will show that, the range of an MFD graph created by variational16

theory can be found analytically for the case where L/uf + L/w < C. In Lemma (1) we will find17

the regions in which there are only one forward and/or backward moving observers. Lemma (2)18

will prove a mathematical inequality. Lemma (3), proves that the slowest forward and backward19

moving observers are the two observers which makes the tightest cuts in stationary observer line.20

We will end up the section with three corollaries which give equations of the ranges for most of21

the regions. The reader can omit these proofs without loss of continuity.22

Lemma 1 For L/uf−nC ≤ δ < L/uf−G+(1− n)C, the fastest forward moving observer will23

hit the first red signal which results in one forward moving observer only. Similarly, nC+G− L
w
<24

δ ≤ −L
w
+ (n− 1)C shows the regions where the fastest backward moving observer hits the25

first red. For the remaining regions, there are more than one forward and/or backward moving26

observers.27

Proof The analytical proof of this lemma is straightforward. It can be done by stating γf
max = 128

in the equation:29

γf
max = 1 +max

{

γ :
γ (L/uf − δ)

C
−

⌊

γ (L/uf − δ)

C

⌋

≤
G

C

}

(3)30

and γb
max = 1 in the following equation31

γb
max = 1 +max

{

γ :
γ (L/w − δw)

C
−

⌊

γ (L/w − δw)

C

⌋

≤
G

C

}

(4)32

which is stated by Daganzo and Geroliminis (1). However, it is trivial that for n ∈ N,33

δ − C +G+ nC <
L

uf

≤ δ + nC ⇒
L

uf

− nC ≤ δ <
L

uf

−G+ (1− n)C (5)34
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the observer will hit the nth cycles red of the second signal and there will only be one forward1

moving observer. Similarly, for backward moving observers we can say that, for n ∈ N,2

nC +G−
L

w
< δ ≤ −

L

w
+ (n− 1)C, (6)3

if there is only one backward moving observer. Obviously if the observers do not hit the first red,4

there will be at least two observers. ���5
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Figure 2: Regions according to Lemma (1) for L/uf < C − L/w.

Lemma 2 For f(x) = 1
x
(⌈xt⌉ − 1) where t ∈ R, f(1) ≤ f(x) for x ∈ Z+.6

Proof Assume k < t ≤ k + 1 for k ∈ Z. Note that, this assumption includes all real values of t.7

From this assumption:8

k < t ≤ k+1⇒ kx < tx ≤ kx+x⇒ ⌈tx⌉ ≤ kx+x⇒ f(x) =
1

x
(⌈tx⌉ − 1) ≤ k+1−

1

x
. (7)9

If we calculate f(1)10

k < t ≤ k + 1⇒ ⌈t⌉ = k + 1⇒ f(1) = k, (8)11

which means f(1) ≤ f(x) for x ∈ Z+. ���12

Lemma 3 For L/uf < C and L/w < C slowest forward and backward moving observers has the13

tightest cuts on the stationary moving observer.14

Proof We provide the proofs separately for the forward and backward moving observers separately.15

Since both parts use similar steps, in order not to repeat same things, the proof for the forward16

moving observers will be more detailed than the backward moving observers’.17
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(FORWARD) We start the proof by writing the equations of the intersection points of sta-1

tionary observers with the forward moving observers:2

Cut (γ, F ) ∩ Cut (S) =

(

q
G− C

L

[

1

γ

(⌈

γ (L/uf − δ)

C

⌉

− 1

)

+
δ

C

]

+
q

uf

, q
G

C

)

(9)3

Cut
(

γf
max, F

)

∩ Cut (S) =

(

q
G

L

(

1

γf
max

⌈

γf
max (L/uf − δ)

C

⌉

+
δ

C

)

, q
G

C

)

(10)4

5

Note that, the equations for the fastest forward moving observer and the rest is different. We start6

by comparing the not-fastest forward moving observers. We seek for γ which gives the tightest7

cut. This problem can be defined as:8

argmax
γ

{

q
G− C

L

[

1

γ

(⌈

γ (L/uf − δ)

C

⌉

− 1

)

+
δ

C

]

+
q

uf

: γ ∈ Z+

}

(11)9

Since we know that G < C, q > 0 and L > 0, the above problem is equivalent to:10

argmin
γ

{

1

γ

(⌈

γ
(L/uf − δ)

C

⌉

− 1

)

: γ ∈ Z+

}

(12)11

which is the same as the function given in Lemma (2). The value of γ ∈ Z+ that minimizes this12

function is 1. It is proved that among all not-fastest forward moving observers, slowest one has the13

tighter cut on stationary observer line.14

In order to complete the proof of the forward moving part, we will compare the slowest15

and the fastest forward moving observers. Define, ε as the differences of the abscissa between the16

fastest and slowest cuts. More rigorously,17

ε = {Cut (1, F ) ∩ Cut (S)}x −
{

Cut
(

γf
max, F

)

∩ Cut (S)
}

x
(13)18

= q (G− C)

[

1

L

(⌈

(L/uf − δ)

C

⌉

− 1

)

+
δ

CL

]

+
q

uf

−

[

q
G

γf
maxL

⌈

γf
max (L/uf − δ)

C

⌉

+ q
Gδ

CL

] (14)19

20

It suffices to show that ε ≥ 0. Since, L/uf < C and −1 < (L/uf − δ) /C < 1, ⌈(L/uf − δ) /C⌉21

can take either 1 or 0. For 0 < (L/uf − δ) /C < 1 ⇒ ⌈(L/uf − δ) /C⌉ = 1, after some22

manipulations:23

ε = q

(

1

uf

−
δ

L
−

G

Lγf
max

⌈

γf
max (L/uf − δ)

C

⌉)

. (15)24

From Equation (3), we can state that,25

⌈

γf
max (L/uf − δ)

C

⌉

=

⌊

γf
max (L/uf − δ)

C

⌋

+ 1 > γf
max

(

L

uf

− δ

)

/C −
G

C
+ 1 (16)26

which yields to:27

ε > q

(

1−
G

C

)(

1

uf

−
δ

L
−

G

Lγf
max

)

(17)28
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Given that 0 < L/uf − δ < C and after some manipulations we get,1

1

uf

−
δ

L
−

G

γf
maxL

>
C

L

(

1

γf
max

⌊

γf
max (L/uf − δ)

C

⌋)

≥ 0 (18)2

which shows that ε > 0.3

For ⌈(L/uf − δ) /C⌉ = 0, after some calculations we get4

ε = q

(

1−
G

C

)(

C

L
−

δ

L
+

1

uf

−
G

Lγf
max

)

. (19)5

Similar to Equation (18), we can write:6

1

uf

−
δ

L
−

G

γf
maxL

>
C

L

(

1

γf
max

⌊

γf
max (L/uf − δ)

C

⌋)

≥ −
C

L
(20)7

If we combine Equations (19) and (20), we get8

ε = q

(

1−
G

C

)(

C

L
−

δ

L
+

1

uf

−
G

γf
maxL

)

> 0. (21)9

(BACKWARD) Let us start by finding the intersection points of backward moving ob-10

servers and the stationary observer. After some manipulations,11

Cut (γ,B) ∩ Cut (S) =

(

q
C −G

L

[

1

γ

(⌈

γ (L/w − δw)

C

⌉

− 1

)

+
δw
C

]

+
q

uf

, q
G

C

)

(22)12

Cut
(

γb
max, B

)

∩ Cut (S) =

(

q

(

1

w
+

1

uf

)

−
qG

L

(

δw
C

+
1

γb
max

⌈

γb
max

(

L
w
− δw

)

C

⌉)

, q
G

C

)

. (23)13

14

By using the Lemma (2) and following minimization problem,15

argmin
γ
{Cut (γ,B) ∩ Cut (S)}x = argmin

γ

{

1

γ

(⌈

γ (L/w − δw)

C

⌉

− 1

)}

(24)16

we can state that slowest backward moving observer is the tightest among all other not-fastest17

backward moving observer.18

Define ε as the difference between the cuts of slowest and fastest backward moving ob-19

servers and assume −C < L/w − C + δ ≤ 0. After some calculations,20

ε = q

(

1

w
−

G

γb
maxL

⌈

γb
max (L/w − δw)

C

⌉

−
G

L
+

δ

L
.

)

(25)21

After some manipulations by using Equation (4)22

ε > q

(

1−
G

C

)(

1

w
+

δ

L
−

G

γb
maxL

)

≤ 0 (26)23

which shows that the slowest observer cuts the stationary observer on a point whose abscissa is24

smaller.25
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For 0 < L/w − C + δ < C, Equation (4) give the inequality1

ε > q

(

1−
G

C

)(

1

w
−

C

L
+

δ

L
−

G

γb
maxL

)

, (27)2

whose right hand side is non-negative, i.e. ε > 0. ���3

Corollary 1 If L/uf + L/w < C, the regions which are bounded by either δ < L/uf or δ >4

C − L/w and have either one forward and many backward, or many forward and one backward5

moving observers have a range which is a linear function of δ and G.6

Proof. We should examine four different regions.7

I. δ > C − L/w, δ < C + L/uf −G and δ < G+ C − L/w. In this region there are one8

forward and many backward observers. Using Equations (10) and (22) range is:9

RI = q
C −G

L

[

1

γ

(⌈

γ (L/w − δw)

C

⌉

− 1

)

+
δw
C

]

+
q

uf

−

[

q
G

L

(⌈

L/uf − δ

C

⌉

+
δ

C

)]

(28)10

From the region boundaries given above we can state that:11

−C < G− C <
L

uf

− δ <
L

uf

+
L

w
− C < 0⇒

⌈

L/uf − δ

C

⌉

= 0 (29)12

0 <
L

w
− C + δ < G < C ⇒

⌈

γ (L/w − δw)

C

⌉

= 1 (30)13

14

By using Equations (29) and (30) we will end up with:15

RI =
q

L

(

L

uf

+ C −G− δ

)

(31)16

II. δ > C − L/w, δ > C + L/uf − G and δ > G + C − L/w. Using Equations (9) and17

(23), and after some manipulations:18

RII =
q

L

(

L

w
+G− δ

)

(32)19

III. δ < L/uf , δ > L/uf −G and δ > G− L/w. In a similar way,20

RIII =
q

L

(

L

w
+ δ −G

)

. (33)21

IV. δ < L/uf , δ < L/uf −G and δ < G−L/w ⇒ 0 ≤ δ < L/uf −L/w < 0 which is a22

contradiction. This region does not exist. ���23

Corollary 2 If L/uf + L/w < C, the regions which are bounded by either δ < L/uf or δ >24

C − L/w and have more than one forward and backward moving observers, have range equal to25

0.26
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Proof. The range of regions with more than one forward and backward moving observers is,1

R (δ,G) = q
G− C

L

(⌈

L/uf − δ

C

⌉

+

⌈

L/w − C + δ

C

⌉

− 1

)

. (34)2

We must show that this equation equals to 0 for the cases defined above. In order to do this we3

need to find values which satisfy4

⌈

L/uf − δ

C

⌉

+

⌈

L/w − C + δ

C

⌉

= 1. (35)5

L/uf < C and 0 ≤ δ ≤ C, it is obvious that −C < L/uf − δ < C. In other words,
⌈

L/uf−δ

C

⌉

can6

take only two values, 0 or 1. When the first ceiling function is zero the second one should be one7

and vice versa. For the first case:8

0 <
L

uf

− δ < C and − C <
L

w
− C + δ ≤ 0⇒ δ <

L

uf

and δ < C −
L

w
⇒ δ <

L

uf

, (36)9

and similarly for the latter case:10

−C <
L

uf

− δ ≤ 0 and 0 <
L

w
− C + δ ≤ C ⇒ δ >

L

uf

and δ > C −
L

w
⇒ δ > C −

L

w
, (37)11

which is what we want. ���12

Corollary 3 If there exist one forward and one backward moving observers, range does not depend13

on δ.14

Proof. Using Equations (10) and (23) the range for one forward and backward moving observer15

regions can be formulated as:16

R(δ,G) = q

(

1

w
+

1

uf

)

− q
G

L
− q

G

L

(⌈

L/w − δw
C

⌉

+

⌈

L/uf − δ

C

⌉)

. (38)17

According to Lemma 1, there are two regions with only one forward and backward moving ob-18

servers, which means there are four intersections that we should investigate.19

I. (δ < L/uf −G) ∩ (G− L/w < δ < C − L/w) = G− L/w < δ < L/uf −G:20

If we calculate the values of ceiling functions,21

L

w
− C + δ <

L

uf

+G+
L

w
− C < −G and

L

w
− C + δ > −C ⇒

⌈

L/w − δw
C

⌉

= 0 (39)22

23

L

uf

−G > δ ⇒
L

uf

− δ > G and
L

uf

< C ⇒
L

uf

− δ < C ⇒

⌈

L/uf − δ

C

⌉

= 1. (40)24

Then after calculations, our function value RI(δ,G) will be,25

RI(δ,G) = q

(

1

w
+

1

uf

−
2G

L

)

(41)26
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II. (δ < L/uf −G) ∩ (δ > C − L/w +G) = ∅ since L/uf −G ≯ C − L/w +G1

III. (L/uf < δ < L/uf + C −G) ∩ (G− L/w < δ < C − L/w) After some manipula-2

tions, we will end up with:3

RIII(δ,G) = q

(

1

w
+

1

uf

−
G

L

)

(42)4

IV. (L/uf < δ < C + L/uf −G) ∩ (δ > C − L/w +G) = C − L/w + G < δ < C +5

L/uf −G The range equation for this region can be found as6

RIV(δ,G) = q

(

1

w
+

1

uf

−
2G

L

)

. (43)7

These three range equations show that range is independent of δ for given criteria. ���8

SIMULATION9

In the previous section we assumed deterministic values of all parameters (link lengths, green du-10

rations, offsets) and no turns. However, real life networks contain some variability in the network11

parameters and also drivers’ decisions contain stochasticity. By introducing a degree of variability,12

analytical solutions are not anymore obtainable. Thus, we develop a simulation platform to esti-13

mate the passing rates and average speeds of forward and backward observers running a series of14

many intersections with variable characteristics.15

While variational theory allows for changes in the network parameters, it does not give the16

ability to introduce drivers with different characteristics (free flow speed, capacity headway etc)17

and turning movements. But, we can mimic the effect of driver stochasticity and small amount18

of incoming turns by adjusting offsets and green durations. For example, consider an arterial’s19

signal plan, which has been designed for a prefect progression, a "green wave", with offsets equal20

to L/uf . By introducing some randomness in the offset, e.g. L/uf ± 5 sec we can imitate the21

variability in the free flow travel time of the first vehicles in the platoon.22

The simulation platform includes a time-space diagram with many links (~1000). The23

network parameters (lengths, offsets and greens) are specified from the user in the beginning of24

the simulation in column or matrix forms. (next paragraph continues here, not a new one). After25

creating the simulation environment, we send different types of observers at the start time of a26

green phase running at the free flow speed from the upstream in the direction of flow and with the27

backward wave speed from downstream in the direction against flow. Every observer on the same28

direction has equal (free flow or backward wave) speeds but they have different behavior than the29

deterministic case at extended red phases, as there is not a repetitive deterministic pattern (e.g. an30

observer stop every 3 signals).31

In simulation, this pattern becomes stochastic by giving probabilities that an observer will32

stop if she meets an extended red phase. According to (1) an extended red phase is used to make33

observers stop every 1, 2..., gmax − 1 traffic signals. Each observer, which enters the simulation34

is assigned with a probability of stopping each time she meets a green phase. Faster observers35

are assigned with smaller probability and slower observers with higher one. For instance, if the36

probability assigned to this observer is 0, this observer will only stop when it hits red whereas the37

observer with probability 1 will stop in every signal. If we consider an observer with probability38

p, it will pass on green phases with probability (1− p). For each observer we have to estimate two39

values, the average speed and the average passing rate. Average speed can be found by dividing40
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the sum of link lengths to the total travel time. Similarly, we track the number of passing/passed1

vehicles for each observer during the simulation and divide them by the total travel time. An2

informal pseudocode for a single forward moving observer can be seen above. The one for the3

backward moving observer is the same. The only difference is the speed, the start and the direction4

of the movement:5

Note that in the pseudocode given above, green phase matrix G is represented as a set of6

unions of real number intervals Gi to be consistent with mathematical notations. They represent7

the same parameter set. Figure (3b) shows a time space diagram with the forward and backward8

observers with different values of stopping probabilities.9

Incoming Turns10

(a) (b)

x  

L

t

F
 

w

F

 
1

 
2

x

L

t

 ! 
"

w

 
4

 
3

(c) (d)

Figure 4: Integrating the effect of incoming turns within VT: Time-space Diagrams for forward and

backward moving observers with (F and B) and without turns (Fτ and Bτ ).

Reference (1) showed that an MFD must arise for single-route networks with a fixed number of11

vehicles in circulation (i.e., periodic boundary conditions and no turns). The authors also conjec-12

ture that the MFD formulae should apply to a network of intersecting routes if the the numbers13

of vehicles in these routes are similar and roughly constant over time. We now address the effect14

of incoming turns in a single-route network by introducing bottlenecks of variable capacity in the15

proximity of the traffic signals.16

Incoming turns from cross streets can significantly decrease the performance of a signalized17
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input: n (number of traffic signals), l (link length vector), Gi (green set for signal i),
p (extended red phase probability) and uf (free flow speed)

output: v (average speed) and PR (average passing rate)

1. Set time t to first green signals start time t0 and total passing rate TPR to 0.1

2. Repeat if current traffic signal counter i < n2

(a) Advance the time by travel time on that link: t← t+ L[i]
uf

3

(b) Update the current traffic signal counter i← i+ 1.4

(c) If it hits a green (t ∈ Gi)5

i. If it is an extended red phase (p > RAND (0, 1))6

A. Find extended red phase duration k.7

B. Update total passing rate: TPR← TPR + kq8

C. Advance time t to next green.9

ii. If it is not an extended red phase (p ≤ RAND (0, 1))10

A. Do nothing.11

(d) else if hits a red (t /∈ Gi)12

i. Advance time t to next green.13

3. Calculate the average speed v ←
∑n

i=1 Li

t−t0
and the average passing rate PR = TPR

t−t0
14

Figure 3: Simulation platform: (a) pseudocode (b) time-space diagram
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intersection as they (i) interrupt the progression of green waves for properly timed signals and (ii)1

decrease the available storage capacity of the link and can cause the occurrence of spillbacks. We2

address the above phenomena by changing the signal and cost function characteristics for forward3

and backward moving observers. To be consistent with variational theory, these turns should not4

significantly change the link density from one link to another, i.e. the incoming turns are considered5

as local link phenomena and these vehicles do not advance in the downstream links.6

Consider now a queue of incoming vehicles from cross streets, Q, which entered when the7

signal was red for the through movement (Figure (4a)). If these vehicles did not exist a forward8

moving vehicle would follow trajectory F (Figure (4a)) and would stop for some time at the traf-9

fic signal stopline. Because of the queue of incoming turns, the upstream vehicle needs to stop10

between points X1 and X2, follow trajectory Fτ and cross the intersection τ seconds later, where11

τ = sQ. According to variational theory the cost (passing rate) of a forward moving observer who12

stops in the middle of a link between X1 and X2 is s∗ (duration of stop). But, in reality no vehicles13

can overpass this observer while stopping, because in front of him there is a queue of vehicles14

entered from a cross street. Thus, we imitate this effect by increasing the red phase of the signal15

by τ . Thus, a forward moving observer in the simulation will follow trajectory Fτ instead of F.16

But, this extended red in the beginning of the green has passing rate 0 and not s. Nevertheless, the17

stationary observer in front of the traffic signal continues to count vehicles for the whole duration18

of the real green phase as the incoming turns are served in the first τ seconds of green.19

For the backward moving observer, Bτ (Figure (4b)) our approach is slightly different.20

This observer does not need to stop in the extended red phase of τ seconds. But when traveling21

backwards between points X3 and X4, its passing rate is not r, but 0. Thus, the queued vehicles22

from cross street, give her the ability to travel in this queue with zero cost.23

Based on the above, for forward moving observers both the speed and passing rate de-24

creases, for backward moving observers only the passing rate decreases, while for stationary ob-25

servers there is no change. Thus, tighter cuts are created which can decrease both the range and the26

capacity of the MFD. An example is shown in Figure (4c and d) with and without turning effects.27

Analysis of the results is provided in the next section.28

RESULTS29

In this part, we firstly investigate the deterministic cases which is solved by the analytical formulae30

given in "Deterministic" section and then continue with the simulation results. As it is defined in31

Figure (1a), capacity is the ratio of the maximum flow qmax to the flow observed by the stationary32

observer which equals to sG/C (dimensionless). Range is the the difference between maximum33

and minimum density which yields the maximum flow qmax. Since the value of the negative range34

does not mean anything and capacity equals to 1 if the range is nonnegative, it is possible to merge35

contour lines for both range and capacity at the same graph. These merged graphs can be seen in36

Figure (5)-(6). Note that, blue stands for the range whereas red stands for the capacity.37

Deterministic Network Parameters38

Figures (5a-d) show how range and capacity change with δ and G/C for three different cases (i)39

C = 60sec, L = 110m, (ii) C = 120sec, L = 180m and (iii) C = 90sec, L = 225m. The40

white area between the blue and red isoquants represents scenario with capacity 1 and range 0, i.e.41

tightest forward and backward observers intersect with the stationary one at the same point. Note42

for a range of δ (e.g. 8− 38sec in figure (5a)), density range is invariant with offset. Note also that43
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by increasing G/C after some value, it does not increase the number of vehicles that can be served1

per cycle (remember that the graphs show dimensionless capacity). Note also that the effect of bad2

coordination in the capacity of a short link is much more significant in case of short links and when3

the cycle is longer (compare figures (5c) with (5d)). Notice that not only perfect coordination in4

offset (L/uf ) but also the values between L/uf and C − L/w gives the maximum range for any5

given G/C ratio. Furthermore, in this region, range is independent of the offset which was also6

proved in Section 4. Certainly, the positive range region is larger either when L is larger or C is7

smaller. This fact can be expected from the Equations (41-43).8

Figure (5e-f) show the effect of the length on range and capacity. Range is increasing as9

the length increases in both graphs. Note that for the same value of offset, as G increases range10

decreases, as the stationary observer has a higher passing rate value. When L is large, capacity is11

always 1 for any value of offset. In this case, we can choose offset in a way to maximize the range,12

as this means that the signal can operate at capacity for a wide range of densities. Also, values in13

the white regions might not be stable as small changes in demand can create spillbacks or capacity14

decrease.15

In figures (5g-h), we investigate the effect of length, green phase and cycle duration in case16

of bad offsets (vehicles have to stop in every signal). Note that the boundary line for capacity less17

than 1, is a piecewise linear function of L and G/C (5g). For example for L = 150m, G/C ratio18

greater than 0.43, will cause not full utilization of signal capacity. Figure (5h) shows the boundary19

line as a function of cycle and green duration for a given link length. For example for C = 90sec,20

by increasing G/C from 0.5 to 0.7 (40% increase) the improvement in the maximum number of21

vehicles that can be served is too small (10% increase), 0.25vh/sec vs. 0.28vh/sec (the values22

have been obtained by multiplying the numbers of the graph with sG/C). This possibly means23

that the additional G/C can be utilized to serve cross streets with less delays.24

Stochastic Network Parameters25

We now utilize the simulation platform to identify the effect of variability when compared with26

the deterministic cases described before. The results presented assume a uniform distribution for27

offsets, U(min,max) and a triangular distribution for link length TR(min,max,mode). One28

can apply different distributions if needed. We analyze two sets of variations: (i) the mean value29

is constant and range of the variable changes and (ii) the range is constant and the mean of the30

variable changes. The next three subsections present results for variations in the effect of incoming31

turns link lengths and offsets.32

The Effect of Incoming Turns33

We now show that incoming turns from cross streets can significantly decrease the performance of34

a signalized intersection in some cases as they interrupt the progression of properly timed signals35

and decrease the available storage capacity of the link.36

In all graphs of Figure (6) the vertical axes is the amount of incoming turns (expressed as37

the extended red phase τ = sQ, which is assumed uniform between 0 and an increasing value).38

The first two graphs on the top show the effect of turns as the variability of offsets increases for39

good (left graph) and bad (right graph) offsets. In case of almost perfect offsets the effect of turns is40

very significant because the value of range for zero turns is very small. On the other hand, the bad41

offsets can absorb a high number of turns without capacity decrease. Notice that the values of the42

two graphs coincide for δ = 90sec as this represents the case of random offsets. A signal timing43
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Figure 6: The effect of incoming turns in capacity and range.
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with bad offsets can absorb up to 13 seconds of turning (6.5 vehicles), while even one incoming1

vehicle can create problems for good coordination. But even in case of bad offsets, large G/C is2

problematic as range is smaller even for 0 turns. Thus, in case of incoming turns, the signal plans3

should be chosen in a way that maximizes the range as capacity can be significantly decrease. For4

example in Figure (6d) one can see that a bad offset with higher range is much more robust than a5

good offset with small range. Of course if signals are undersaturated, they will operate in values6

much less than capacity and the effect of turns will be minimal. But, in this paper we mainly7

investigate signal performance in high demand conditions. Also, from Figures (6e-f) it is clear that8

as length increases the effect of incoming turns becomes smaller because it is more difficult to have9

queue spillbacks.10

Variations in Link Length11
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Figure 7: Stochastic L

In the graphs given in Figure (7), both the mean and the variance of the distribution of L is ana-12

lyzed. In Figure (7a), offset is selected as perfectly coordinated with a small variance and L has a13

symmetric triangular distribution with constant range of 100m and variable mean. It is observed14

that, the effect of G/C is more if link length is smaller. In other words, shorter link lengths are15

more sensitive to green ratio. A similar result is obtained if deterministic L is used. Thus, we are16

interested in identifying the critical length variability which changes the deterministic results.17
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In the remaining three graphs, the effect of G/C ratio and range of link length is analyzed1

for links with average length E [L] = 180 and three different offsets (perfectly coordinated signals,2

badly coordinated signals and random offsets). A small variation ±5sec has been introduced for3

good and bad offsets. Figures (7b) to (7d) are intuitive to understand, as vertical isoquants mean4

that increase in the length variability have no effect in capacity or range. Results show that length5

variability increase has no effect for values of G/C smaller than 0.45 (capacity is always 1 for6

these values). But, when capacity is less than 1 there is a range of G/C where significant decrease7

in capacity is observed for the case of bad offsets. Nevertheless, we observe that when offsets8

are correlated with the length of the link (this happens in all 3 cases), link length variance has9

minor effects. For example in case of bad offsets the maximum change is for G/C = 0.7, where10

deterministic L = 180m vs. highly variable L (varying between 80 and 280m) have a difference11

in capacity of only 4% (0.78 vs 0.81).12

Variations in Offset13
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Figure 8: Stochastic δ

We first investigate the effect of small (±5sec) and large variation (±15sec) in offset by changing14

mean offset and G/C. The results are summarized in Figures (fig:deltaa and b). If these graphs are15

compared with the deterministic graphs (Figures (5a-d)), we can say that small offset variations16

have no significant effect both in capacity and range. This means that small differences in drivers’17
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characteristics (e.g. free-flow speed, reaction time etc) cannot decrease the performance of traffic1

signals. However, in case of large offset variations (in case of poorly designed signals) the effect2

can be significant, especially in regions with capacity less than 1.3

In the remaining two graphs, the range of the offset is investigated for good (the first vehicle4

from upstream arrives 10sec after the beginning of green) and bad coordination (the first vehicle5

arrives 10sec before the end of red). All the parameters except the means of the offsets are the same6

in (c) and (d). When capacity is smaller than 1 (for L < 140m), higher offset variability improves7

the capacity value in case of bad offsets and has a negative effect in case of good offsets. This8

result is intuitive as more (less) vehicles will hit the green phase during bad (good) coordination.9

For long links, offset variability decreases the range as for a given L and G/C range is maximized10

when there are only one forward and one backward observers (Figures (5a-d)).11

CONCLUSIONS12

In this paper we have provided several extensions and refinements in the Variational Theory of traf-13

fic flow, which provides analytical formulae for the Macroscopic Fundamental Diagram of urban14

networks. In our study we investigated the effect that have in the MFD, different degrees of vari-15

ability in link lengths and signal characteristics for different city topologies and signal structures.16

We have integrated the effect of incoming turns in the estimation of the MFD and we showed that in17

many cases network capacity can significantly decrease. These results can be of great importance18

to practitioners and city managers to unveil simple and robust signal timing planning in such a way19

that maximizes the network capacity and/or the density range of the capacity. Ongoing work is20

utilizing the above findings to develop perimeter control strategies for heterogeneously congested21

cities. We are also developing analytical formulae for the MFD of cities with multimodal traf-22

fic and investigate how redistribution of urban space between cars and more efficient modes can23

improve passenger network flows.24
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