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* Bi-directional exchange of many oxygenated VOCs including CH,OH &  * Can a model of canopy-atmosphere exchange processes reproduce

CH;CHO has recently been observed above a number of ecosystems observed bi-directional fluxes of CH;0H & CH;CHO?
* CH;0H & CH;CHO are ubiquitous in the atmosphere and chemically * |s leaf-level stomatal control of fluxes observable at the canopy scale?
active contributing to O, and PAN formation .
* Can regional models represent canopy processes and adequately
* Their foliage emissions are known to be subject to stomatal control capture bi-directional fluxes?
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Baseline case => (a) need to include foliage emissions of both CH,OH & CH,CHO
(b) at least a proportion of the emissions are light-dependent

In all figures, measured (grey circles show mean; vertical bars +1s.d.) and modelled (lines) fluxes (left; mg m2 h!) and concentrations (right; ppbv) at 29 m for an average day in July 2012 for (a), (b) CH,0H; (c),

Stomatal control

Stomatal aperture haS been Observed to COﬂtf'Ol (d) CH;CHO for baseline (black) and perturbation (coloured) model simulations. Dashed grey vertical lines show dawn and dusk. Times are Eastern Standard Time (EST).
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/ \ 7 T Ta  Canopy models can reproduce bi-directional exchange
21 A + “Traditional” emissi dels capt top fluxes & trati
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adequately without incorporating stomatal control

Stomatal control applied to storage emissions. Top row shows baseline(a) stomatal
resistance, (b) stomatal control factor, and (c) the modified stomatal control factor

o T * Foliage emissions & dry deposition dominate CH;0H & CH;CHO production
Crosses show the canopy average weighted by foliage fraction. Bottom two rows & |OSS a nd m ust be treated hOl istica | |y in regiona | models

show the effect on R of altering the scaling factor, n.

Refe rences FORCAST: FORCAST: Bi-directional fluxes: CH3OH & CH,CHO emissions: Stomatal control: ACk“OWIngementS
Karl et al., ACP, 2005 Fall & Benson, Trends Plant Sci., 1996 Jardine et al., Biogeosci., 2008

Ashworth et al., GMD, 2015 Baldocchi et al., Atmos. Environ., 1987
Bryan et al., ACP, 2012 Guenther et al., GMD, 2012 McKinney et al., ACP, 2011 Karl et al., PCE, 2002 Nemecek-Marshall et al., Plant Physiol., 1995 This material is based upon work
Chen et al., JGR, 2005 Guenther et al., JGR, 1995 Park et al., Science, 2013 Kreuzwieser et al., Physiol. Plant., 2000 Niinemets & Reichstein., JGR, 2003 supported by the National Science

Griffin et al., JGR, 2002 Stroud et al., JGR, 2005 Foundation Grant No. AGS 1242203.



