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Introduction
• Exponential Smoothing methods are very popular in 

forecasting

• They performed very well in many competitions:

– M-Competitions in 1982 and 2000,

– Competition on telecommunication data in 1998 and 2008,

– Tourism forecasting competition in 2011.



Introduction
• Hyndman et al., 2008 proposed a taxonomy that includes:

– 2 types of error terms (additive and multiplicative);

– 5 types of trend components (none, additive, multiplicative, 
damped additive and damped multiplicative);

– 3 types of seasonality (none, additive, multiplicative).

• In theory it leads to 30 types of ETS models

• Model selection procedure based on IC is widely used



Introduction
• Kolassa, 2011 demonstrated that combination of ETS 

models based on AIC outperforms single ETS

• Kourentzes et al., 2014 proposed MAPA, combining 
different ETS models across temporal aggregation levels

• The underlying model may be more complex than single 
ETS

• Model selection procedure may not work properly



Introduction
• We proposed Complex Exponential Smoothing 

(Svetunkov, Kourentzes, 2015)

• Now we propose a modification of CES for seasonal data



CES method
• CES is based on idea that any time series consists of:

• Using complex variables theory we derived the original 
CES method:

y t+ i p t

ŷ t+1+i p̂t+1=(α0+i α1 ) ( y t+i pt )+(1−α0+i−i α1 ) ( ŷ t+i p̂ t )



CES model
• Information potential needs to be approximated:

• Splitting CES into components allows to derive the 
following state-space model:

pt=εt

y t= l t−1+εt

(l tct)=(1 −(1−α1)

1 1−α0
)( l t−1c t−1)+(

α0−α1
α0+α1 )εt



CES trajectories



CES trajectories



Simple seasonal CES model
• Using t-m instead of t-1 leads to simple seasonal model:

• This model can produce all the trajectories seasonally 
when level is close to zero

• It retains all the properties of the original CES

y t= l t−m+εt

(l tct)=(1 −(1−α1)

1 1−α0
)( l t−mc t−m)+(β0−β1

β0+β1 )εt



General seasonal CES model
• Combining the original CES with the simple seasonal:

• This model can produce all trend and seasonality types

y t= l 0, t−1+ l1, t−m+εt

(l 0,tc0, t)=(1 −(1−α1)

1 1−α0 )(l 0, t−1c0,t−1)+(
α0−α1
α0+α1 ) εt

(l 1,tc1, t)=(1 −(1−β1)

1 1−β0 )( l1, t−mc1, t−m)+(β0−β1
β0+β1 )εt



General seasonal CES model
• The model has the same structure as state-space ETS:

• where:

y t=w ' x t−1+ε t
x t=F x t−1+ g εt

x t=(
l 0, t
c0, t
l 1, t
c1, t

) x t−1=(
l 0, t−1
c0,t−1
l 1, t−m
c1, t−m

) F=(
1 −(1−α1) 0 0
1 (1−α0) 0 0
0 0 1 −(1−β1)

0 0 1 (1−β0)
)

g=(
α0−α1
α0+α1

β0−β1
β0+β1

)w=(
1
0
1
0
)



Model selection in CES
• Likelihood function can be derived:

• Any IC can be used. For example, AIC:

• The number of coefficients for these models are:
– non-seasonal CES: 2 + 2,

– general seasonal CES: 2 + 4 + 2m

L (g ,σ2
∣y)=( 1

σ√2 π )
T

exp(−12∑t=1
T

(
εt
σ )

2

)

AIC=2k−2 log (L( g ,σ2
∣y))



Simulation experiment
• ETS was used as DGP,

• 100 observations in each of the 9 groups,

• ETS, CES and ARIMA were applied to the data,

• “ets” and “auto.arima” from “forecast” package in R,

• “ces.auto” from “CES” package for R (https://github.com/config-i1/CES)

• Number of successfully identified characteristics was calculated.

https://github.com/config-i1/CES


Simulation experiment



Experiment on monthly M3 data
• Rolling origin on 1428 monthly series,

• Forecasting horizon – 18 observations,

• RO horizon – 24 observations,

• ETS, CES and ARIMA were applied to the data,

• MASE was calculated for each observation.



Experiment on monthly M3 data

• The difference was statistically significant.



Experiment on monthly M3 data



Experiment on monthly M3 data



Conclusions
• CES

– can forecast seasonal and non-seasonal data,

– is able to approximate big variety of trends,

– can produce additive and multiplicative seasonality,

– can produce a new type of seasonality,

– has an efficient model selection mechanism,

– performs better than ETS and ARIMA on monthly 
data from M3,

– makes accurate forecasts on longer horizons.
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