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Introduction

* Exponential Smoothing methods are very popular in
forecasting

* They performed very well in many competitions:
-  M-Competitions in 1982 and 2000,

— Competition on telecommunication data in 1998 and 2008,

— Tourism forecasting competition in 2011.
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Introduction

* Hyndman et al., 2008 proposed a taxonomy that includes:

- 2 types of error terms (additive and multiplicative);

- b5 types of trend components (none, additive, multiplicative,
damped additive and damped multiplicative);

- 3 types of seasonality (none, additive, multiplicative).

* In theory it leads to 30 types of ETS models

* Model selection procedure based on IC is widely used
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Introduction

* Kolassa, 2011 demonstrated that combination of ETS
models based on AIC outperforms single ETS

* Kourentzes et al., 2014 proposed MAPA, combining
different ETS models across temporal aggregation levels

* The underlying model may be more complex than single
ETS

* Model selection procedure may not work properly
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Introduction

* We proposed Complex Exponential Smoothing
(Svetunkov, Kourentzes, 2015)

* Now we propose a modification of CES for seasonal data
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CES method

* CES is based on idea that any time series consists of:
Virip,

* Using complex variables theory we derived the original
CES method:
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CES model

* Information potential needs to be approximated:
P:—¢

- Splitting CES into components allows to derive the
following state-space model:

v =1, +¢g,
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Simple seasonal CES model

* Using t-m instead of -7 leads to simple seasonal model:

)

* This model can produce all the trajectories seasonally
when level is close to zero

* It retains all the properties of the original CES
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General seasonal CES model

* Combining the original CES with the simple seasonal:
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* This model can produce all trend and seasonality types
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General seasonal CES model

* The model has the same structure as state-space ETS:
yt:W ’xt—1+8t
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Model selection in CES

* Likelihood function can be derived:
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* Any IC can be used. For example, AIC:

L(g,o’y)= é)

AIC=2k-2log(L(g,o’ly))

* The number of coefficients for these models are:
- non-seasonal CES: 2 + 2,

— general seasonal CES: 2 + 4 + 2m
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Simulation experiment

* ETS was used as DGP,

* 100 observations in each of the 9 groups,

- ETS, CES and ARIMA were applied to the data,

* “ets” and “auto.arima” from “forecast” package in R,

* “ces.auto” from “CES” package for R (https://github.com/config-i1/CES)

- Number of successfully identified characteristics was calculated.
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https://github.com/config-i1/CES

Simulation experiment

ETS ARIMA

DGF G Overall Trend Seasonal | Overall Trend Seasonal
N(5000,50%) | 100 99 99 100 56 97 57
ETS(ANN) | 100 48 91 05 27 44 51
ETS(MNN) | 100 50 94 98 27 50 38
ETS(AAN) 100 67 90 88 45 99 45
ETS(MMN) | 100 51 90 93 DA 92 31
ETS(ANA) 100 49 82 100 47 47 98
ETS(AAA) 100 80 95 100 88 88 100
ETS(MNM) | 100 30 57 100 59 59 96
ETS(MMM) | 100 32 91 100 79 79 90
Average 100 56 88 97 51 73 67

Table 1: The percentage of the forecasting models chosen correctly for each data generating
process (DGP).
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Experiment on monthly M3 data

* Rolling origin on 1428 monthly series,

* Forecasting horizon — 18 observations,

* RO horizon — 24 observations,

- ETS, CES and ARIMA were applied to the data,

* MASE was calculated for each observation.
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Experiment on monthly M3 data

CES ETS ARIMA

Minimum 0.134 0.084  0.098
25% quantile | 0.665 0.664  0.703
Median 1.049 1.058 1.093

75% quantile | 2.178  2.318  2.224
Maximum 28.440 53.330 59.343
Mean 1.922 1.934 1.967

Table 2: MASE values of competing methods. The smallest values are in bold.

* The difference was statistically significant.
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Experiment on monthly M3 data
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Experiment on monthly M3 data
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Conclusions

* CES

— can forecast seasonal and non-seasonal data,

- is able to approximate big variety of trends,

— can produce additive and multiplicative seasonality,
— can produce a new type of seasonality,

- has an efficient model selection mechanism,

- performs better than ETS and ARIMA on monthly
data from M3,

— makes accurate forecasts on longer horizons.
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Thank you!

lvan Svetunkov,

Lancaster University Management School,
Lancaster Centre for Forecasting

email: i.svetunkov@lancaster.ac.uk
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