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Motivation

Parameters estimation is a key element of forecasting.

Poor estimation → poor forecasts.

Correct estimation leads to more accurate forecast.

It also decreases the uncertainty.
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Conventional Estimation methods

The conventional estimation methods is based on MSE:

MSE =
1

T

T∑
t=1

e2t+1|t (1)

where et+1|t = yt+1 − ŷt+1

MSE – “Mean Squared Error”.
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If the errors in the model are distributed normally, than using (1) is
equivalent to maximising the following log-likelihood function
(Hyndman et al., 2008):

`(θ, σ̂2|Y) = −T
2

(
log(2πe) + log σ̂2

)
(2)

where σ̂2 is the estimated variance of residuals of the model, θ is a
vector of parameters of the model.

This implies that we look at conditional distribution of
one-step-ahead forecast error.
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Advanced estimation methods

Sometimes the forecasting task is aligned to estimation:

MSEh =
1

T

T∑
t=1

e2t+h|t (3)

or:

MSTFE =
1

T

T∑
t=1

h∑
j=1

e2t+j|t (4)

MSTFE – “Mean Squared Trace Forecast Error”.
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These cost functions imply that we produce h-steps ahead
forecasts from each observation:

y
t

t0

e
t+1|t

e
t+2|t

e
t+3|t e

t+4|t
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MSEh produces robust estimates of parameters.
(???)

The forecast accuracy increases.
(????)

MSTFE is consistent.
(?)

BUT!
The efficiency of estimates of MSEh is low.
(?)

? demonstrate on a set of 170 time series that the forecast
accuracy using MSEh is lower than using MSE.
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Problems:

• The results are ambiguous;

• Estimates of parameters are inefficient;

• Estimates of parameters could be unstable;

• Nobody has ever explained why MSEh and MSTFE work /
don’t work;

• There is no likelihood function for both MSEh and MSTFE;

• Model selection using MSEh and MSTFE is really tricky (??);
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Why they work

It can be shown that MSE is proportional to variance of
one-step-ahead error.

MSEh is then proportional to variance of h-step-ahead error.

MSTFE is in fact the sum of MSEh .

Using state-space approach (Snyder, 1985), variance of h-step-ahead
error is:

σ2h = σ21

1 +

h−1∑
j=1

c2j

 . (5)
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This means that minimising MSEh (or MSTFE) in general leads to:

1. decrease of variance of one-step-ahead error,

2. shrinkage of values of smoothing parameters towards zero,

Examples:

ETS(A,N,N): cj = α; σ2h = σ21
(
1 + (h− 1)α2

)
.

ETS(A,A,N): cj = α+ βj; σ2h = σ21

(
1 +

∑h−1
j=1 (α+ βj)2

)
.
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This is root of the problem and main advantage of MSEh and
MSTFE.

If model is wrong, shrinkage allows to get rid of redundant
parameters.

If model is correct, the parameters “overshrink”.

The shrinkage effect becomes stronger when h increases.
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Solution – Trace Forecast Likelihood (TFL)

Let’s derive likelihood for multistep cost function.
We need to study multivariate distribution of errors:

Figure: Multivariate normal distribution.
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Based on multivariate normal distribution, we have (skipping
derivations):

`(θ, Σ̂|Y) = −T
2

(
h log(2πe) + log |Σ̂|

)
(6)

Looks similar to:

`(θ, σ̂1
2|Y) = −T

2

(
log(2πe) + log σ̂1

2
)

(7)

Model selection can now be done using AIC, AICc, BIC, . . .
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Σ is covariance matrix that has the structure:

Σ =


σ21 σ1,2 . . . σ1,h
σ1,2 σ22 . . . σ2,h

...
...

. . .
...

σ1,h σ2,h . . . σ2h

 , (8)

Note that MSEh ∝ σ2h, which makes it a special case of Σ.

And MSTFE is just the trace of Σ.
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What does min of |Σ| mean?

Example with h = 2:

|Σ| =
∣∣∣∣ σ21 σ1,2
σ1,2 σ22

∣∣∣∣ = σ21σ
2
2 − σ21,2 (9)

Minimising determinant of |Σ| will:

1. decrease variances,

2. increase covariances.
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Covariance between i and j errors is equal to:

σi,j = σ21

(
ci,j +

i−1∑
l=1

cl,jcl,i

)
. (10)

So log |Σ| can be rewritten as a function of variances and
parameters:

log |Σ| = h log σ21 + log |C| (11)

C depends on cj only (thus depends on smoothing parameters).

This means that we shrink parameters...

...but shrinkage effect is weakened.
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We have conducted a simulation experiment:

• Generated data using ARIMA(0,1,1).

• Applied correct model and wrong model.

• Applied MSE, MSEh, MSTFE and TFL.

• With h={1, 10, 20, 30, 40, 50}.

• Wrote down the parameters...
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Simulations. ARIMA(0,1,1). Correct model, MSEh
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Simulations. ARIMA(0,1,1). Correct model, MSTFE
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Simulations. ARIMA(0,1,1). Correct model, TFL
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Conclusions

• Multiple steps ahead objective functions imply shrinkage of
parameters;

• Parameters of ETS and ARIMA shrink, parameters of
regressions do not;

• This gives robustness to models and help in long-term
forecasting;

• Parameters may overshrink when estimated using MSEh and
MSTFE;
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Conclusions

• Trace Forecast Likelihood (TFL) do not overshrink the
parameters;

• TFL gives consistent, efficient and unbiased estimates of
parameters;

• Model selection with TFL is possible.

TFL is brilliant in theory!

How to make it work in practice?. . .
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Simulations. ARIMA(0,1,1). Wrong model, MSEh
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Simulations. ARIMA(0,1,1). Wrong model, MSTFE
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Simulations. ARIMA(0,1,1). Wrong model, TFL
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