

ATLAS results on Beyond the Standard Model

lain Bertram for the ATLAS Collaboration Lancaster University, 18 May 2017 13TH PATRAS WORKSHOP ON AXIONS, WIMPS AND WISPS

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

Overview

- I will present details on three recent analyses (all released since March).
 - Search for dark matter in final states containing an energetic photon and large missing transverse momentum.
 - Search for new phenomena in dijet events.
 - Search for long-lived charginos based on a disappearingtrack signature
- The first two analyses illustrate searches for Dark Matter at hadron colliders
- The third is a non-standard technique for searching for Supersymmetry.

- Proton-proton collisions at a centre-of-mass of 13 TeV.
- Presenting results from 2015/16 data taking with a data sample of approximately 37 fb⁻¹ collected by the ATLAS experiment.

 $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - n_z} \right)$

 $\eta = \ln \left[\tan(\theta/2) \right]$

Particle Identification

- Measure change and momentum of particles in the tracking detectors.
- Use energy deposition and range of particles to separate electrons, photons, hadrons and muons.

Jet Reconstruction

- Quarks and gluons produced in the hard interaction undergo fragmentation and hadronisation before entering the ATLAS detector
- Reconstructed as "Jets" via a clustering algorithm (anti-k_t) using calorimeter clusters as input.
- Combines pairs of objects recursively based on their separation:

 $\Delta R_{ij} = \sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}$

• A radius parameter defines the size of the size of the jet (standard size is 0.4).

ATLAS Missing Transverse Energy Lancaster University

- Reconstruction of particles that do not interact with the detector is crucial for searches for new phenomena.
 - Neutrinos are main cause.
- Infer from the imbalance of the total transverse momentum of all reconstructed objects
 - \rightarrow Missing transverse Energy (MET)
 - transverse momentum is given
 by $p_T = \sqrt{p_x^2 + p_y^2}$
- Effects due to additional collisions can be mitigated using information from the tracking detector.

 $Z \rightarrow \mu\mu$ with 20 "pile up" events.

- Peak luminosity achieved: L= 1.4x10³⁴ cm⁻²s⁻¹ (design: 1.0x10³⁴ cm⁻²s⁻¹)
- Approximately 10⁹ interactions per second. We need to filter out the events of interest.
 - Side Note: Many interactions per proton bunch crossing:
 On average 24 interactions.
- Technical Details
 - LHC generates 30 MHz bunch crossings
 - Hardware Trigger in detectors reduces rate to 100 kHz
 - Software Trigger (partial reconstruction) writes out 1 kHz events.

Something plus MET

- WIMPs can be recognised as a large amount of MET in the ATLAS detector.
- Need an associated recoil object in the interaction to trigger on h the event.
 - jets, W/Z, γ , Higgs are possibilities.
- Event Signatures are denoted as Mono-X DARK MATTER BENCHMARK MODELS FOR EARLY THE RUN-2 SEARCHES: $I \longrightarrow for c export of the track constraints with the Formula 39$ $\bar{t}(\bar{b})$ I the event 2.22: Representative Feynman diagram showing the pair production

φ/a

t(b)

8 0000000

diagram showing the pair production of Dark Matter particles in association clean signatures with ounds.

Lancaster

University

 γ + MET event

Photon plus MET

arXiv:1704.03848 submitted to EPJC

- Select events with one high p_T photon $p_T > 150$ GeV.
 - Veto on reconstructed electrons and muons in the event.
- MET > 150 GeV
 - at most one jet with $p_T > 30$ GeV.
- Photon and MET must not collinear
 - also jet and MET must not be aligned
 - remove backgrounds due to missmeasurement.
- Main Backgrounds
 - $\text{ SM } Z \rightarrow (\nu\nu)\gamma$
 - Irreducible and identical kinematics to the signal.

Photon plus MET

- Strategy:
 - Use data to confirm simulation (MC) of backgrounds.
 - Dominant background $Z \rightarrow (vv)\gamma$ is scaled by $Z \rightarrow (II)\gamma$ rates.
 - Extract signal by fitting to MET distributions.
- Use events with one muon, two muons, two electrons and a photon plus jet to check/correct the simulation.

Photon plus MET

- Event yield consistent with background.
- Calculate upper limits on the visible cross section.
 - sensitivity limited by statistical uncertainty in the control regions.

$\sigma \times A$ limit [fb]						
Region	SRI1	SRI2	SRI3			
95% CL observed 95% CL expected 95% CL expected $(\pm 1\sigma)$ A [%] ϵ [%]	$7.0 \\ 10.6 \\ 14.5, 7.7 \\ 14-48 \\ 84-95$	$3.7 \\ 4.5 \\ 6.2, 3.3 \\ 5-31 \\ 73-86$	$2.3 \\ 3.0 \\ 4.2, 2.2 \\ 2-19 \\ 64-85$			

Photon plus MET: Limits

med

 $\bar{\chi}$

- Use binned fit to MET -distribution to interpret results in terms of DM models
- Limits given in plane of DM and mediator mass (CL=95%)
- Model dependent (Axial Vector or Axial mediator, $g_q=0.25$, $g_x=1.0$, $g_l=0$, or $g_q=0.1$, $g_x=1.0$, $g_l=0.01$)

Model dependent (Axial Vector or Axial mediator, $g_q=0.25$, $g_x=1.0$, $g_l=0$, or $g_q=0.1$, $g_x=1.0$, $g_l=0.01$)

Photon plus MET: Limits

 Model dependent
 Axial Vector or Axial mediator, g_q=0.25, g_x=1.0, g_l=0.

Lancaster 🌌

University

- **On-shell product** leads to resonan
- 8 0000000 Off-shell: Modifi t(b)distributions (\$1) distributions to the spin-0 mediators to Scattering); e.g. 4 point contaction motivates the study c states involving *b*-quarks as a complementary search to th interaction model of compositeness. models, to directly probe the *b*-quark coupling. An examp a model can be found in Ref. [BFG15] and can be obtained

xxxxx

- Note that, b qn relative to mean ι quark preduction, a $b\bar{b}$ +DM final state may only yield one experiignature in a model
 - cicated implementations of these models for the work of Forum are available at LO+PS accuracy, e of the art is set to improve on a finescale bevo un-2 DM searches as detailed by Section have been produced using a leading

en though the state hd that for early The studies in this der UFO model within MADGRAPHS AMCONLO 2.2.2 +14; All+14; Deg+12]

χ

χ

 ϕ/a

lces

 \bar{q}

 $\frac{200}{200}$ M_{jj} = 8.12 TeV, Jet₁ p_T = Jet2 p_T = 3.79 TeV 2.2.3.1 Parameter scan

The parameter scan for the dedicated $t\bar{t}+E_T$ searches has been stud-

rigule 2.22. Representative reyninan diagram showing the pair production

q''

q'

of Dark Matter on odes in a

with mittersitv

med

Dijet Bump Hunt

- Quarks and gluons lead to jets of particles in the detector.
- reconstruct energy deposition in calorimeter within a cone ("anti-k_t" clustering algorithm with R=0.4).
- we select events where at least on jet has transverse momentum > 380 GeV.
- offline we apply quality cuts to remove "detector noise"
- apply kinematic cuts to ensure that trigger is 100% efficient and to optimise signal to background.
 - p_T(jet 1) > 440 GeV
 - p_T(jet 2) > 60 GeV
 - m_{jj} > 1.1 TeV
 - |y^{*}| < 0.6 or 1.2

Dijet Bump Hunt

- Calculate the invariant mass for each event
- Fit the data to

 $f(z) = p_1(1-z)^{p_2} z^{p_3} z^{p_4 \log z}$

- Exclude \overline{a} \mathcal{M} \mathcal{A} \mathcal{A}
 - find the window with the largest excess.
 - method does not depend on a signal model.
 - the probability that fluctuations of the background model would produce an excess at least as significant as the one observed in data anywhere in the distribution is 0.63 including the look elsewhere effect.
 - Place Limits on different models

 Signal shapes depend on the decay products (quark or gluon)

Dijet Bump Hunt: Z'

 Combine results with analysis carried out using information collected by the trigger and an analysis using events tagged by initial state radiation for more extensive limits (<u>ATLAS Summary Plots</u>).

Combined DM Limits

Combined DM Limits

Effect of changing couplings

Combined DM Limits

ATLAS-CONF-2017-017

- In many supersymmetric models, the supersymmetric partners of the SM boson
 W fields, the wino fermions, are the lightest gaugino states.
- This implies that the lightest chargino is nearly mass-degenerate with the LSP, and its lifetime can be long enough to have measurable effects

- For Wino LSP generic prediction of ~160 MeV splittings, or lifetimes of ~0.2ns -> 6cm distance travelled in the detector.
 - Chargino leaves a short track!

ATLAS-CONF-2017-017

• Search for long-lived charginos based on a disappearing-track signature.

- The soft pions in the decays are not reconstructed.
- Chargino leaves a short track!

ATLAS-CONF-2017-017

lived charginos based on a disappearing-track signature.

- Background to the signal are caused by
 - hard scatters of hadrons and leptons.
 - fake trackless from noise or combinatorics from multiple tracks.

- Using tracks that are only visible in the pixel detector to increase acceptance for small lifetimes by a factor of 10.
- Data Selection
 - Tracklets (signal)

 $p_T > 20$ GeV and highest in event, are isolated $(p_T^{cone(0.4)}/p_T < 0.04)$, $0.1 < |\eta| < 1.9$, all pixel layers and no additional hits

- Electroweak chargino production: MET > 140 GeV, at least one jet p_T > 140 GeV, jet and MET are not collinear ($\Delta \phi$ > 1.0)
- Strong production: MET > 150 GeV, one jet $p_T > 100$ GeV, and at least two additional jets with $p_T > 50$ GeV and the jets & MET are not collinear ($\Delta \phi > 0.4$)

- Backgrounds estimated by a simultaneous fit to the tracklet p_T distribution
 - p_T templates are built for each background category
 - No significant excess is observed

High $E_{\rm T}^{\rm miss}$ region	Electroweak channel	Strong channel						
	$(m_{\tilde{\chi}_1^{\pm}}, \tau_{\tilde{\chi}_1^{\pm}}) = (400 \text{ GeV}, 0.2 \text{ ns})$	$(m_{\tilde{g}}, m_{\tilde{\chi}_{1}^{\pm}}, \tau_{\tilde{\chi}_{1}^{\pm}}) = (1600 \text{ GeV}, 500 \text{ GeV}, 0.2 \text{ ns})$						
Number of observed events with $p_{\rm T} > 100 {\rm ~GeV}$								
Observed	9	2						
Number of expected events with $p_{T} > 100 \text{ GeV}$								
Hadron+electron backgrou	nd 6.1 ± 0.6	2.08 ± 0.35						
Muon background	0.1549 ± 0.0022	0.0385 ± 0.0005						
Fake background	5.5 ± 3.3	0.0 ± 0.8						
Total background	11.8 ± 3.1	2.1 ± 0.9						
Expected signal	10.4 ± 1.7	4.1 ± 0.5						
$\overline{\mathrm{CL}_b}$	0.39	0.702						
Observed $\sigma_{\rm vis}^{95\%}$ [fb]	0.22	0.14						
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	$0.24^{+0.10}_{-0.07}$	$0.11^{+0.06}_{-0.04}$						

Strong

• Combined with other ATLAS analyses

SUSY Summary

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	$\sqrt{s} = 13 \text{ TeV}$	Reference	_
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \overline{q}\overline{q}, \ \overline{q} \rightarrow q \overline{k}_{A}^{0} \\ \overline{q}\overline{q}, \ \overline{q} \rightarrow q \overline{k}_{1}^{0} \\ (\text{compressed}) \\ \overline{g}\overline{s}, \ \overline{s} \rightarrow q q \overline{k}_{1} \\ \overline{g}\overline{s}, \ \overline{s} \rightarrow q q \overline{k}_{1}^{1} \\ \overline{g}\overline{s}, \ \overline{s} \rightarrow q \overline{k}_{1}^{1} \\ \overline{s}\overline{s}, \ \overline{s} \rightarrow q \overline{s} \overline{s}, \ \overline{s} \rightarrow q \overline{s} \overline{s} \overline{s} \rightarrow q \overline{s} \overline{s} \overline{s} \overline{s} \rightarrow q \overline{s} \overline{s} \overline{s} \overline{s} \overline{s} \overline{s} \overline{s} \overline{s}$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets - 1 b 2 jets 2 jets 2 jets mono-jet	 b Yes Yes Yes Yes - Yes Yes	20.3 36.1 3.2 36.1 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3	\$\vec{q}\$	1.85 TeV m 1.57 TeV m 2.02 TeV r 1.7 TeV r 1.6 TeV r 2.00 TeV r 1.65 TeV r 1.65 TeV r 1.85 TeV r 1.85 TeV r	$\begin{split} & (\hat{q}) = m(\hat{g}) \\ & (\hat{r}_1^0) < 200 \text{ GeV}, \ m(1^{s^1} \text{ gen}, \hat{q}) = m(2^{ad} \text{ gen}, \hat{q}) \\ & (\hat{q}_1^0) < 200 \text{ GeV} \\ & (\hat{k}_1^0) < 500 \text{ GeV} \\ & (\hat{k}_1^0) < 500 \text{ GeV} \\ & (\text{NLSP}) < 0.1 \text{ mm} \\ & (\hat{k}_1^0) > 580 \text{ GeV}, \ cT(\text{NLSP}) < 0.1 \text{ mm}, \ \mu > 0 \\ & (\hat{k}_1^0) > 680 \text{ GeV} \\ & (\text{ILSP}) < 430 \text{ GeV} \\ & (G) > 1.8 \times 10^{-4} \text{ eV}, \ m(\hat{g}) = m(\hat{q}) = 1.5 \text{ TeV} \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05879 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518	Inclusive
3 rd gen ĝ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	98, 98, 98,	1.92 TeV r 1.97 TeV r 1.37 TeV r	$(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600	_
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow d\tilde{x}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow b\tilde{x}_{1}^{2} \\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow b\tilde{x}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow c\tilde{x}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow c\tilde{x}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{2}\tilde{r}_{2},\tilde{r}_{2}\rightarrow \tilde{r}_{1}+A \\ \tilde{r}_{2}\tilde{r}_{2},\tilde{r}_{2}\rightarrow \tilde{r}_{1}+A \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 .7/13.3 20.3 3.2 20.3 36.1 36.1	b1 840 GeV b1 325-685 GeV c1 117-170 GeV c205-950 GeV 205-950 GeV c1 90-323 GeV c1 150-600 GeV c2 200-780 GeV c3 320-880 GeV		$\begin{split} & (\tilde{\kappa}_{1}^{0}) < 100 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) + 150 \text{ GeV}, m(\tilde{\kappa}_{1}^{0}) = m(\tilde{\kappa}_{1}^{0}) + 100 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) = m(\tilde{\kappa}_{1}^{0}), m(\tilde{\kappa}_{1}^{0}) = 55 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) = 16 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) = 150 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) = 150 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) = 0 \text{ GeV} \\ & (\tilde{\kappa}_{1}^{0}) = 0 \text{ GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019	3rd ger
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \ell v(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \ell v(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \ell v \tilde{\ell} v \tilde{\ell} v \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow \ell v \tilde{\ell} v \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \ell_{R} \ell \\ GGM (wino NLSP) weak prod. \\ GGM (bino NLSP) weak prod. \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 - -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3		$\begin{split} & m(\tilde{x}_{1}^{0}) = 0 \ G \\ & m(\tilde{x}_{1}^{+}) = m(\\ & m(\tilde{x}_{1}^{+}) = m(\\ & m(\tilde{x}_{2}^{0}) = m(\\ & m(\tilde{x}_{2}^{0}) = m(\\ & G \\ $	$\begin{array}{l} (\xi_{1}^{0})=0 \mbox{ GeV } \\ \mbox{W}, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{k}_{1}^{+})+m(\tilde{k}_{1}^{0})) \\ (\tilde{k}_{1}^{0})=0 \mbox{GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{k}_{1}^{+})+m(\tilde{k}_{1}^{0})) \\ \mbox{$_{2}}, m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{k}_{1}^{+})+m(\tilde{k}_{1}^{0})) \\ (\tilde{k}_{1}^{+})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \mbox{ decoupled } \\ (\tilde{k}_{1}^{+})=m(\tilde{k}_{2}^{0}), m(\tilde{\ell}_{1}^{0})=0, \tilde{\ell} \mbox{ decoupled } \\ (\tilde{k}_{1}^{+})=m(\tilde{\ell}_{2}^{0}), m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0})) \\ << t \mbox{ mm} \\ << 1 \mbox{ mm} \\ \end{array}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493	EW direct
Long-lived particles	$\begin{array}{l} \label{eq:constraints} \begin{split} & \text{Direct}~\tilde{\chi}_1^+\tilde{\chi}_1^-\text{ prod., long-lived}~\tilde{\lambda} \\ & \text{Direct}~\tilde{\chi}_1^+\tilde{\chi}_1^-\text{ prod., long-lived}~\tilde{\lambda} \\ & \text{Stable, stopped}~\tilde{g}~\text{R-hadron} \\ & \text{Stable}~\tilde{g}~\text{R-hadron} \\ & \text{Metastable}~\tilde{g}~\text{R-hadron} \\ & \text{GMSB, stable}~\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau \\ & \text{GMSB}, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \text{ long-lived}~\tilde{\chi}_1^0 \\ & \tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow \gamma Q (ev)(\mu\nu) (\mu\nu) \\ & \text{GGM}~\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z \tilde{G} \end{split}$	$ \begin{array}{c} \stackrel{*}{\underset{1}{\overset{+}{_{1}}}} & \text{Disapp. trk} \\ & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ & \text{dE/dx trk} \\ & \text{dE/dx trk} \\ & 1-2\mu \\ & 2\gamma \\ & \text{displ. } ee/e\mu/\mu \\ & \text{displ. vtx + jet} \end{array} $	1 jet - 1-5 jets - - - φμ - ts -	Yes Yes - - - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	\vec{x}_1^+ 430 GeV \vec{x}_1^+ 495 GeV \vec{x} 850 GeV \vec{x} 537 GeV \vec{x}_1^0 537 GeV \vec{x}_1^0 1.0 TeV \vec{x}_1^0 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} & (\tilde{k}_1^+) - m(\tilde{k}_1^0) - 160 \ \text{MeV}, \tau(\tilde{k}_1^+) = 0.2 \ \text{ns} \\ & (\tilde{k}_1^+) - 160 \ \text{MeV}, \tau(\tilde{k}_1^+) - 15 \ \text{ns} \\ & (\tilde{k}_1^0) = 100 \ \text{GeV}, \ 10 \ \mu\text{s} < \tau(\tilde{\varrho}) < 1000 \ \text{s} \\ & (\tilde{k}_1^0) = 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 1 \ \text{dn} \ \text{dn} \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 1 \ \text{dn} \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 1 \ \text{dn} \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 1 \ \text{dn} \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 1 \ \text{dn} \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 100 \ \text{GeV}, \ \tau > 10 \ \text{ns} \\ & > 100 \ \text{GeV}, \ \tau > 100 \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 100 \ \text{dn} \\ & > 100 \ \text{GeV}, \ \tau > 100 \ \text{dn} \\ & > 100 \ \text{dn} \\ & < \tau (\tilde{k}_1^0) < 480 \ \text{nm}, \ \text{m} \ \text{dn} \ \text{dn} = 1.1 \ \text{TeV} \\ & > 100 \ \text{dn} \ \text{dn} \ \text{dn} \\ & > 100 \ \text{dn} \ \text{dn} \ \text{dn} \\ & > 100 \ \text{dn} \ \text{dn} \ \text{dn} \ \text{dn} \\ & > 100 \ \text{dn} \ \text{dn} \ \text{dn} \ \text{dn} \\ & > 100 \ \text{dn} \ \ \text{dn} \ \text{dn} \ \text{dn} \ \ \text{dn} \ \text{dn} \$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162	long life
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu; \\ Bilinear \; FPV \; CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow eev, e\muv, \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^+, \tilde{X}_1^0 \rightarrow erv, erv, \\ \tilde{g}\tilde{x}_s \; \tilde{g} \rightarrow q \tilde{q}^0, \tilde{X}_1^0 \rightarrow q q q \\ \tilde{g}\tilde{x}_s \; \tilde{g} \rightarrow q \tilde{q}^0, \tilde{X}_1^0 \rightarrow q q q \\ \tilde{g}\tilde{x}_s \; \tilde{g} \rightarrow \tilde{q}\tilde{x}_1, \tilde{X}_1^+ \rightarrow q q q \\ \tilde{g}\tilde{x}_s \; \tilde{g} \rightarrow \tilde{q}\tilde{x}_1, \tilde{X}_1^+ \rightarrow b s \\ \tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow b s \\ \tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow b \end{array} $	$\begin{array}{cccc} r & e\mu, e\tau, \mu\tau \\ 2 & e, \mu & (SS) \\ \mu\mu\nu & 4 & e, \mu \\ r_{\tau} & 3 & e, \mu + \tau \\ & 0 & 4 \\ 1 & e, \mu & 8 \\ 1 & e, \mu & 8 \\ 0 & 2 & e, \mu \end{array}$	-5 large- <i>R</i> je -5 large- <i>R</i> je -5 large- <i>R</i> je 3-10 jets/0-4 3-10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	Yes Yes Yes ets - ets - 4 b - 4 b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 20.3	\$\vec{k}\$,\$ \$k	1.9 TeV 1.45 TeV TeV eV 1.55 TeV 1.55 TeV 1.65 TeV 1.65 TeV	$\begin{split} \lambda_{311}^{\prime} = 0.11, \ \lambda_{132/133/233} = 0.07 \\ (\tilde{q}) = m(\tilde{q}), \ c_{T,S,F} < 1 \ mm \\ (\tilde{\chi}_{1}^{\prime\prime}) > 400 \text{GeV}, \ \lambda_{122} \neq 0 \ (k = 1, 2) \\ (\tilde{\chi}_{1}^{\prime\prime}) > 0.2 \text{ wr}(\tilde{\chi}_{1}^{\prime\prime}), \ \lambda_{133} \neq 0 \\ R(r) = BR(r) = BR(c) = 0\% \\ (\tilde{\chi}_{1}^{\prime\prime}) = 0.00 \ \text{GeV} \\ (\tilde{\chi}_{1}^{\prime\prime}) = 0.00 \ \text{GeV} \\ (\tilde{\chi}_{1}^{\prime\prime}) = 0.00 \ \text{GeV} \\ (\tilde{\chi}_{1}^{\prime\prime}) = 1 \ \text{TeV}, \ \lambda_{122} \neq 0 \\ (\tilde{\eta}_{1}) = 1 \ \text{TeV}, \ \lambda_{233} \neq 0 \\ R(\tilde{\eta}_{1} \rightarrow bc/\mu) > 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF.2016-075 1405.5086 ATLAS-CONF.2016-057 ATLAS-CONF.2017-013 ATLAS-CONF.2017-013 ATLAS-CONF.2017-013 ATLAS-CONF.2016-023.4TLAS-CONF.2016-084 ATLAS-CONF.2015-015	RPV
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		(∛1)<200 GeV	1501.01325	_
*Only phen	a selection of the availabl omena is shown. Many o	e mass limits f the limits are	on new s e based c	states o on	^{or} 1	0 ⁻¹	1	Mass scale [TeV]	-	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

March 2017 36

Many Searches: Exotics

Limit

ATLAS Exotics Searches* - 95% CL Exclusion

 ℓ, γ Jets $\dagger E_{\tau}^{\text{miss}}$ ($\mathcal{L} dt [fb^{-1}]$)

Status: August 2016

Model

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$ Reference

ATLAS Preliminary

Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD QBH} \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \to \ell\ell \\ \text{RS1 } G_{KK} \to \gamma\gamma \\ \text{Bulk RS } G_{KK} \to \gammaW \to qq\ell\nu \\ \text{Bulk RS } g_{KK} \to tH \to bbbb \\ \text{Bulk RS } g_{KK} \to tt \\ 2\text{UED} / \text{RPP} \end{array}$	$\begin{array}{c} - \\ 2 e, \mu \\ 1 e, \mu \\ - \\ \geq 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 1 e, \mu \end{array}$	$ \geq 1 j - 1 j 2 j \geq 2 j \geq 3 j - 1 J 4 b \geq 1 b, \geq 1 J/2j \geq 2 b, \geq 4 j $	Yes Yes Yes Yes	3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	$\begin{tabular}{ c c c c c c c } \hline M_D & 6.58 \mbox{ TeV} & n = 2 \\ \hline M_S & 4.7 \mbox{ TeV} & n = 3 \mbox{ HLZ} & n = 6 \\ \hline M_{th} & 5.2 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 8.7 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 8.2 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 8.2 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 9.55 \mbox{ TeV} & n = 6 \\ \hline M_{th} & 0.1 & N \\ \hline M_{th} & 0.1 & $	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to fr \\ \operatorname{HVT} W' \to WZ \to qqrrr \mbox{model} \\ \operatorname{HVT} W' \to WZ \to qqq \mbox{model} \\ \operatorname{HVT} V' \to WH/ZH \mbox{model} B \\ \operatorname{LRSM} W_R \to tb \\ \operatorname{LRSM} W_R \to tb \\ \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ A 0 \ e, \mu \\ B - \\ multi-channe \\ 1 \ e, \mu \\ 0 \ e, \mu \end{array}$	- 2 b - 2 J 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV W' mass 2.4 TeV W' mass 2.3 TeV W' mass 2.31 TeV W' mass 1.92 TeV W' mass 1.92 TeV W' mass 1.76 TeV	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-082 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
C	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e, μ 2(SS)/≥3 e,μ	2 j u ≥1 b, ≥1 j	– – Yes	15.7 3.2 20.3	∧ 19.9 TeV η _{LL} = −1 ∧ 25.2 TeV η _{LL} = −1 ∧ 4.9 TeV C _{RR} = 1	ATLAS-CONF-2016-069 1607.03669 1504.04605
MD	Axial-vector mediator (Dirac DM Axial-vector mediator (Dirac DM $ZZ_{\chi\chi}$ EFT (Dirac DM)) 0 e, μ) 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} \geq 1 j \\ 1 j \\ 1 J, \leq 1 j \end{array}$	Yes Yes Yes	3.2 3.2 3.2	$\begin{tabular}{ c c c c c c } \hline $m_{\rm A}$ & $1.0 {\rm TeV}$ \\ \hline $m_{\rm A}$ & $710 {\rm GeV}$ \\ \hline $m_{\rm A}$ & $710 {\rm GeV}$ \\ \hline $m_{\rm A}$ & $550 {\rm GeV}$ \\ \hline \end{tabular}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV $\beta = 1$ LQ mass 1.05 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	1 <i>e</i> , μ 1 <i>e</i> , μ 2/≥3 <i>e</i> , μ 1 <i>e</i> , μ 2(SS)/≥3 <i>e</i> ,μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 4 \text{ j}$ $\iota \geq 1 \text{ b}, \geq 1 \text{ j}$	Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 GeV T in (T,B) doublet Y mass 770 GeV Y in (B, Y) doublet B mass 735 GeV isospin singlet B mass 755 GeV B in (B, Y) doublet Tsrass 690 GeV Find the term of the term of te	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1 γ - - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass 4.4 TeV only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.6 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 2.3 TeV $f_g = f_L = f_R = 1$ t* mass 3.0 TeV $\Lambda = 3.0 \text{TeV}$ v* mass 1.6 TeV $\Lambda = 1.6 \text{TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $s = 8 \text{ TeV}$	2j 1b 	Yes Yes TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	ar mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 570 GeV H ^{±±} mass 570 GeV H ^{±±} mass 400 GeV J DY production, BR($H_L^{±+} \rightarrow e_P$)=1 DY production, BR($H_L^{\pm+} \rightarrow t_P$)=1 anon-res 0.2 multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 10	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059
						Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large-radius) jets are denoted by the letter j (J).

- ATLAS has searched for Beyond the Standard Model Phenomena using many different signatures
 - No sign of new physics.
- The LHC goals for 2017 is to reach an integrated luminosity of 45 fb⁻¹ [reached 40 fb⁻¹ last year] and preferably go beyond.
 - based on past performance could go as high as 60 fb⁻¹ with luck.
- Stay Tuned for new and interesting results over the coming year.

ATLAS Physics Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Full Title	Journal	Links	Status	Groups
Search for new phenomena in a lepton plus high jet multiplicity final state with the ATLAS experiment using \sqrt{s} = 13 TeV proton- proton collision data	JHEP	Inspire _I , arXiv _I , Figures _I	Submitted: 2017/04/27	SUSY
Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC run 2	EPJC	Inspire _ଔ , arXiv _ଔ , Figures _ଔ	Submitted: 2017/04/26	IDTR
Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector	PRD	Inspire _ଔ , arXiv _ଔ , Figures _ଔ	Submitted: 2017/04/12	STDM
Search for dark matter at $\sqrt{s} = 13$ TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector	EPJC	Inspire _ଔ , arXiv _ଔ , Figures _ଔ	Submitted: 2017/04/12	EXOT
Measurement of the k_t splitting scales in $Z \rightarrow \ell \ell$ events in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector	JHEP	Inspire፼, arXiv፼, Figures፼	Submitted: 2017/04/05	STDM