

Precision Electroweak Measurements at the Tevatron

- The W mass @ Tevatron
- Effective weak mixing angle
- The Top Mass @ Tevatron

Iain Bertram, Lancaster University for the D0 Collaboration DIS 2017 - 6 April 2017

$\alpha_{\rm em}, G_F, M_Z, M_W, \sin^2 \theta_W, m_{\rm top}, M_H$

and 95% CL contours

Consistency tests of electroweak symmetry breaking mechanism

sin²(θ^f_{aff}) LEP+SLC ± 1σ

7 experimental measurements.

Motivations

80.5

m world comb. ± 10

Tevatron @ Fermilab

• Multi-purpose, high acceptance, well understood detectors. $\int \mathscr{L} dt \sim 10 \text{ fb}^{-1}$

The W mass @ Tevatron

- Strategy:

 - Likelihood fits of M_w-parameterized simulation templates
 - − Lepton E/p scale and recoil calibration with $Z \rightarrow II$ data
- Results

• The forward-backward asymmetry A_{fb} arises from the interference of the vector and axial vector couplings.

Interference of the vector and axial vector couplings.

$$\int_{z} \int_{z} \int_{z} \frac{1}{\cos\theta_{W}} \bar{f} \gamma^{\mu} (g_{V}^{f} - g_{A}^{f} \gamma_{5}) f Z_{\mu} = \int_{z} \int_{z} \frac{g_{V}^{f}}{g_{A}^{f}} = I_{3}^{f} \int_{z} \frac{1}{\sin^{2}\theta_{W}} = 1 - \frac{M_{W}^{2}}{M_{Z}^{2}}$$
("on-shell")
• Convert sin^{2} \theta_{eff}^{\parallel} to sin^{2} θ_{W} using conversion factor calculated

using ZFitter (depends on well known M_Z): Re(κ) ~ 1.037

$$sin^{2}\theta_{\text{eff}}^{\text{Lept}} = \text{Re}[\kappa_{l}(M_{Z})] \cdot sin^{2}\theta_{W}$$
("effective", Zfitter)
$$sin^{2}\theta_{\text{eff}}^{u} \approx \sin^{2}\theta_{\text{eff}}^{l} - 0.0001,$$

$$\sin^{2}\theta_{\text{eff}}^{d} \approx \sin^{2}\theta_{\text{eff}}^{l} - 0.0002,$$

$$\sin^{2}\theta_{\text{eff}}^{b} - \sin^{2}\theta_{\text{eff}}^{b} \approx 0.0014,$$

(modified Resbos)

Can be directly measured via Parity-violating observables at Z-pole

Effective weak mixing angle University

- The best current measurements differ by 3.2σ
 - LEP b-quark A^{0,b}_{fb}
 - SLD beam LR-polarization Alr

Lancaster 🔀 🕅 🔰 🚺 🚺 🕹

- Measure background-subtracted $A_{\rm fb}$ as function of invariant mass in Collins-Soper frame

Previous Results

 χ^2 fits between data A_{FB} and MC templates for a series of different Pythia values of sin² θ_W

	$\sin^2\theta_{W} \pm \text{stat.} \pm \text{syst.} \pm \text{PDF}$	Total uncertainty
CDF Zµµ 9fb ⁻¹	$0.2315 \pm 0.0009 \pm 0.0002 \pm 0.0004$	±0.0010
DØ Zee 9.7fb ⁻¹	$0.23147 \pm 0.00043 \pm 0.00008 \pm 0.00017$	± 0.00047
CDF Zee 9fb ⁻¹	$0.23248 \pm 0.00049 \pm 0.00004 \pm 0.00019$	± 0.00053

Lancaster 🍱 **Previous Tevatron Combination University**

- Combination of CDF Zµµ+Zee and D0 Zee results
- Using ZFITTER and NNPDF3.0

 $\sin^2 \theta_{\rm off}^{\rm lept} = 0.23179 \pm 0.00030 \pm 0.00017$

$$\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23179 \pm 0.00035$$

- Translate into M_w Tevatron from $sin^2\theta_W$ $M_W = 80351 \pm 18 \,\mathrm{MeV/c^2}$
- Compare with Tevatron and LEP direct measurements

 $M_W = 80385 \pm 15 \,\mathrm{MeV/c}^2$

FERMILAB-CONF-16-295-E

New: D0 Ζμμ

10

- Last channel @ Tevatron :
 - 8.6 fb⁻¹ Zµµ events, p_T>15GeV/c, |η|<1.8; opposite charge, 74 < M_{µµ} < 110 GeV/c²
 - Modified Resbos + NNPDF3.0
 - The D0 Zµµ result is less precise than Zee due to the more central muon acceptance and the less precise muon momentum measurement.
- We reweight the MC to data separately as a function of eta for each muon charge and solenoid polarity so as to correct for residual mis-alignments

MC—Data Comparison

- Check agreement in multiple kinematic distributions
 - Muon p_T/η , and di-muon $p_T/\eta/M/\cos\theta^*$ distribution
 - Good agreement

• We fit the data to templates for varying values of the Born level $sin^2 \theta_W^B$ in Pythia in a mass region of 74<M_{µµ}<110 GeV

 $\sin^2 \theta_W^B = 0.22994 \pm 0.00059 \,(\text{stat}) \pm 0.00011 \,(\text{syst}) \pm 0.00027 \,(\text{pdf})$ $= 0.22994 \pm 0.00066$

Systematics

• Dominated by uncertainty due to the PDF and modelling the background.

$\sin^2 heta^B_W$	0.22994
Statistical uncertainty	0.00059
Systematic uncertainties	
Momentum calibration	0.00002
Momentum resolution	0.00004
Background	0.00010
Efficiencies	0.00001
Total systematic	0.00011
PDF	0.00027
Total	0.00066

• D0's Zµµ and Zee results agree to 1.4σ (when referred to the same PDF set).

Direct Top Mass from D0

- Full D0 combination of Run1 0.1 fb⁻¹ and Run2 9.7 fb⁻¹ results
- Systematic uncertainties and correlations among channels have been taken into account

	D0 combined values (GeV)
top quark mass	174.95
In situ light-jet calibration	0.41
Response to $b, q, and g$ jets	0.16
Model for b jets	0.09
Light-jet response	0.21
Out-of-cone correction	< 0.01
Offset	< 0.01
Jet modeling	0.07
Multiple interaction model	0.06
b tag modeling	0.10
Lepton modeling	0.01
Signal modeling	0.35
Background from theory	0.06
Background based on data	0.09
Calibration method	0.07
Systematic uncertainty	0.64
Statistical uncertainty	0.40
Total uncertainty	0.75

arXiv:1703.06994 [hep-ex] Submitted to PRD

Top pole mass from differential cross sections

- Top quark momentum, Tt invariant mass distributions, etc. are sensitive to the top quark mass
 - Expect improvement vs extraction from total cross-section
 eg. <u>Phys. Rev. D 94, 092004 (2016)</u>
 - Use the D0 lepton+jets measurement:
 <u>Phys. Rev. D 90, 092006 (2014)</u>
 - Compare differential distributions to NNLO QCD calculation of TOP++ using the pole mass:

Czakon, Fiedler, Heymes and Mitov, <u>JHEP</u> <u>1605, 034 (2016)</u>

See <u>D Heymes</u> talk on Tuesday

Lancaster University

Top pole mass from differential cross sections

Lancaster 🍱

University

Top pole mass from differential cross sections

D0CONF 6473

- Use χ^2 fit to measure the mass
- Include full 2-D correlation matrix in m(tt), p_T^{top}

m ^{pole} extractions (b) D0 Prelimina	ary, 9.7fb ⁻¹
NLO vs. d o/dX	-	167.3 ± 2.6
NNLO vs. <i>d σ/dX</i> ⊢ [This article]	•	169.1 ± 2.5
D0 (NNLO+NNLL σ _{tol}) [arXiv:1605.06168]	H	172.8 ± 3.3
ATLAS (<i>tī+1j</i>) [JHEP 10 (2015)]	H •••1	$\textbf{173.7} \pm \textbf{2.2}$
CMS (NNLO+NNLL σ_{te} [PLB 728 (2014)]	«) ⊢ ∙−1	176.7 ± 2.9
Direct techniques		
Tevatron average [arxiv:1608.01881]	Iei	$\textbf{174.30} \pm \textbf{0.65}$
ATLAS average [arxiv:1606.02179]	H	$\textbf{172.84} \pm \textbf{0.70}$
CMS combination [PRD 93 (2016)]	M	172.44 ± 0.49
165	170 175	

Top quark mass [GeV]

Precision: 1.5% ~ 25% improvement over using inclusive XS

Summary

- W Mass
 - Current Tevatron combination is 80387 ± 16 MeV
 - Analysis of full data sample is ongoing.
- Weak Mixing Angle
 - Preliminary Tevatron combination of 0.23179 \pm 0.00035 using CDF Z(ee/µµ) and D0 Z(ee)
 - NEW preliminary result of 0.23002±0.00066 with D0 Z(μμ) measurement
 - Once the D0 Z($\mu\mu$) result is finalised the full Tevatron combination will be completed.
 - Will make a significant contribution to improving the world average.
- Top Mass
 - New D0 combination of all direct measurements from Run I and Run II.
 - New D0 preliminary measurement of top quark pole mass using $d\sigma/dp_T$ and $d\sigma/M_{tt}$.