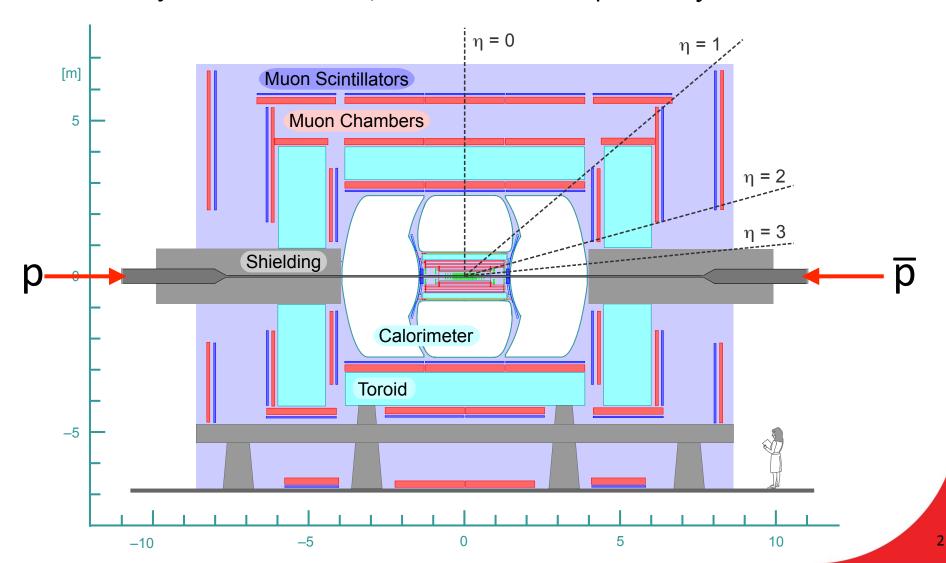


Double Parton Scattering in pp Interactions

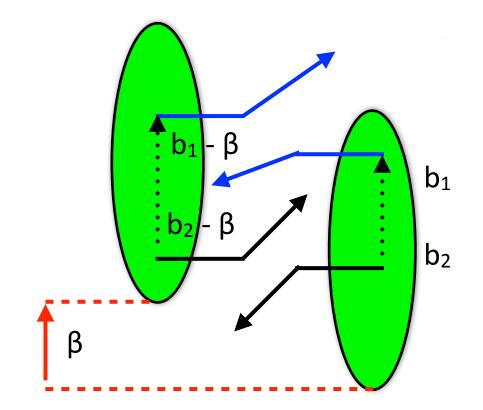
Simultaneous J/ ψ and Y production Diphoton + Dijet events


lain Bertram, Lancaster University for the D0 Collaboration DIS 2016 - 14 April 2016



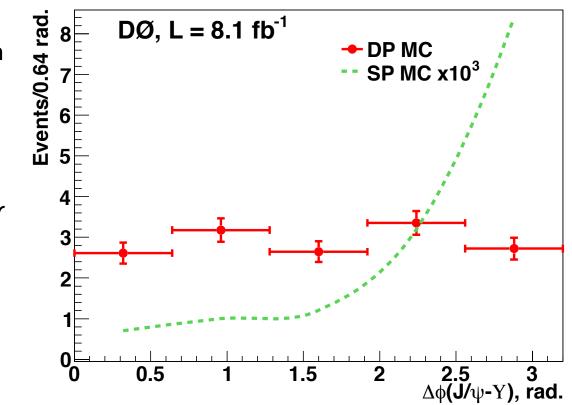
The D0 Detector

Multi-purpose, high acceptance, well understood detector. Excellent jet reconstruction, muon id and acceptance. $\int \mathscr{L} dt \sim 10 \text{ fb}^{-1}$


Double Parton Scattering

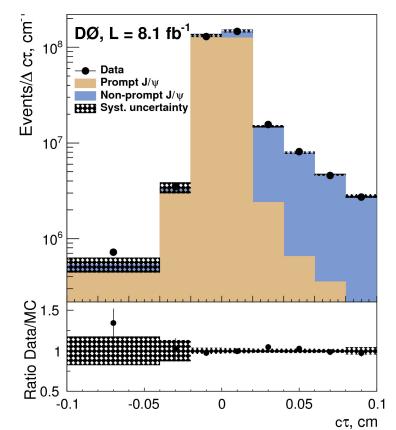
dominated by $q\bar{q} + gg$
 $\gamma + 2jets$ dominated by qg + gg
 $\gamma + 3jets$ dominated by qg + gg
 $4jets, J/\psi J/\psi, J/\psi^{\gamma}$

$$\sigma_{\rm eff}^{-1} = \int d^2 \beta [F(\beta)]^2$$

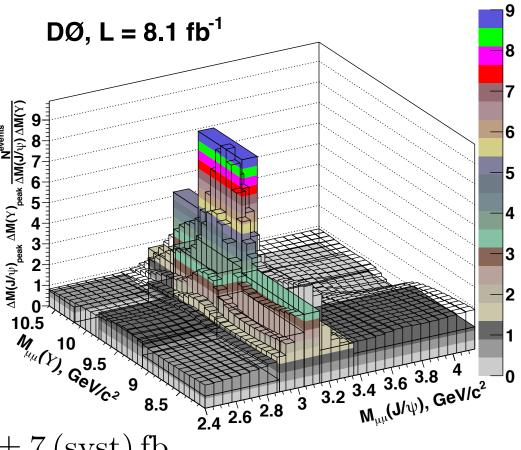

 $F(\beta) = \int f(b)f(b-\beta)d^2b,$ β is the impact parameter for the two colliding hadrons, f(b) is a function describing the spatial distribution of the parton matter inside a hadron.

$$\sigma_{\mathrm{DP}}^{(1,2)} = rac{m}{2} rac{\sigma^{(1)} \sigma^{(2)}}{\sigma_{\mathrm{eff}}}$$

- Double parton scattering is expected to dominate at the Tevatron.
 - J/ψ and Y should be produced in gluon-gluon interactions.
- Measure
 - Single J/ ψ cross section
 - Double parton J/ψ and Υ cross section
- Estimate
 - Single Υ cross section
- Calculate

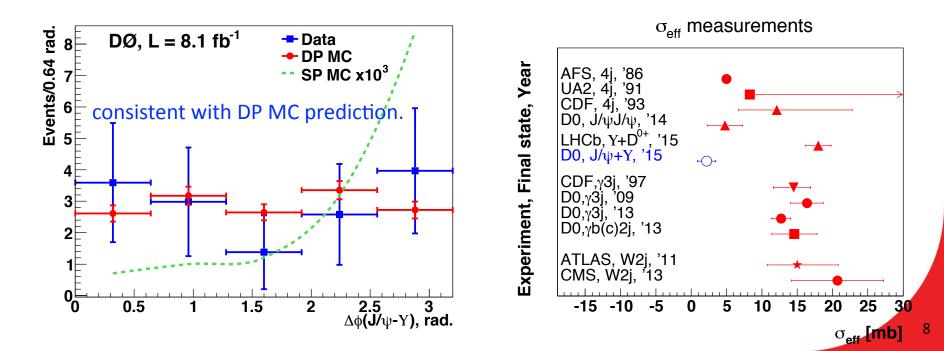

$$\sigma_{\rm eff} = \frac{\sigma(J/\psi)\sigma(\Upsilon)}{\sigma_{\rm DP}(J/\psi+\Upsilon)}.$$

Simultaneous J/ ψ and Y production University

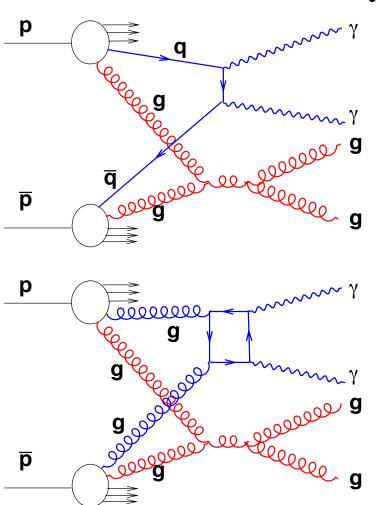

- Data Selection: $J/\psi(\Upsilon) \rightarrow \mu^+\mu^-$
 - $p_T^{\mu} > 2 \text{ GeV}, |\eta^{\mu}| < 2.0$
 - For J/ ψ select candidates with 2.88 < $M_{\mu\mu}$ < 3.36 GeV
 - For Υ select candidates with 9.1 < $M_{\mu\mu}$ < 10.2 GeV
- Prompt J/ψ Cross section
 - Maximum likelihood fit of cτ $c\tau = L_{xy} M_{J/\psi} / p_T^{J/\psi}$
 - Single J/ ψ prompt fraction is 0.83 ± 0.03 (syst.)

$$\sigma(J/\psi) = 28 \pm 7(\text{syst.}) \text{ nb}$$

- Cross section for single Υ production extrapolated from previous D0 measurements to the fiducial region of this analysis $\sigma[\Upsilon(1S; 2S; 3S)] = 2.1 \pm 0.3 (\text{syst.}) \text{ nb}$
- Extract prompt number
 J/ψ and Υ events
 - fit of 2D distribution
 - Number of $J/\psi+\Upsilon$ events is 12.0 ± 3.8 (stat) ± 2.8 (syst).
 - First evidence of simultaneous production (3.2 σ)
 - Extract Cross section


 $\sigma[J/\psi + \Upsilon] = 27 \pm 9 \,(\text{stat}) \pm 7 \,(\text{syst}) \,\text{fb}$

Extract σ_{eff}


 $\sigma_{\rm eff} = 2.2 \pm 0.7 (\text{stat.}) \pm 0.9 (\text{syst.}) \text{ mb}$

- Measurement consistent with D0's J/ ψ J/ ψ value of σ_{eff} .
- σ_{eff} much smaller than previously measured qq and qg dominated processes.
- possible indication that spatial region occupied by gluons smaller than that occupied by quarks

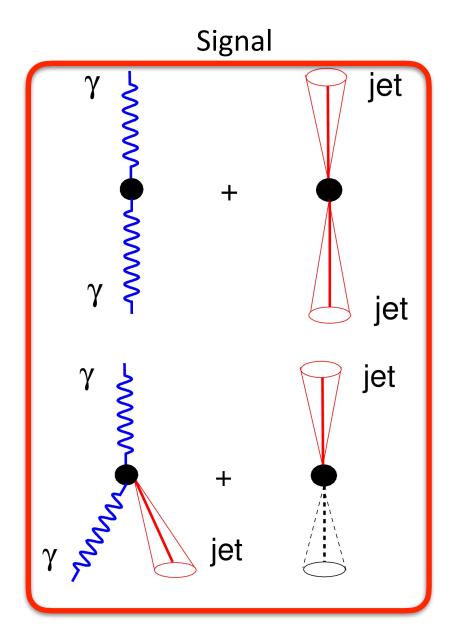
- First measurement of double parton scattering in diphoton plus dijet events
 - Need to measure the number of dijets and diphotons produced in different pp interactions in same crossing (DI).
 - Events with 2 vertices
 - Also measure double parton (DP) fraction from data using ΔS (see later).
 - Events with 1 vertex

Extract σ_{eff} using

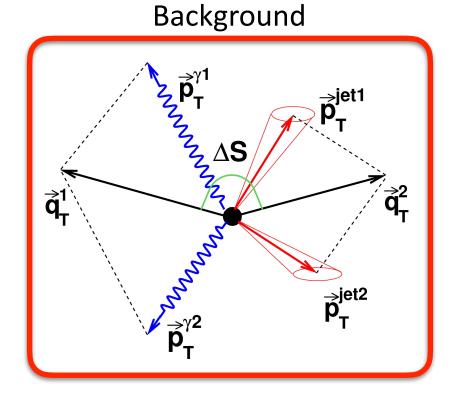
$$\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \,\sigma_{\rm hard},$$

where $Rc = N_c(1)/2N_c(2)$

N_c(n) is the number of beam crossings with n hard collisions

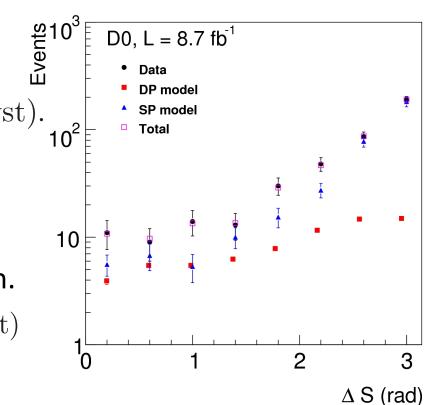

- where
$$N_{\rm DI} = f_{\rm DI} P_{\rm DI}^{\gamma\gamma} N_{\rm 2vtx}$$

 $N_{\rm DP} = f_{\rm DP} P_{\rm DP}^{\gamma\gamma} N_{\rm 1vtx}$


and $f_{DI(DP)}$ is the fraction of DP(DI) events in the sample, P^{YY} is the diphoton purity and N_{nvtx} is the number of events with exactly 1 or 2 reconstructed primary vertices,

- Note the $\gamma\gamma$ and jj cross sections cancel in this ratio.
 - the ratios reduce systematic uncertainties.

 $\Delta S \equiv \Delta \phi \left(\vec{q}_{\mathrm{T}}^{\ 1}, \ \vec{q}_{\mathrm{T}}^{\ 2} \right),$


Use ΔS to model fraction of SP and DP events

- DP fraction is found
 - As a function of ΔS
- $f_{\rm DP}^{\rm avg} = 0.213 \pm 0.061 (\text{stat}) \pm 0.028 (\text{syst}).$
 - as a cross check for SP and DP model to data: f_{DP} = 0.18 ± 0.11
- DI fraction calculated using charged particle fraction and photon direction. $f_{\rm DI} = 0.193 \pm 0.021 \ ({\rm stat}) \pm 0.030 \ ({\rm syst})$
- Photon purities
 - Max likelihood fit using MC templates for jets (Pythia) and photons (pythia and sherpa)

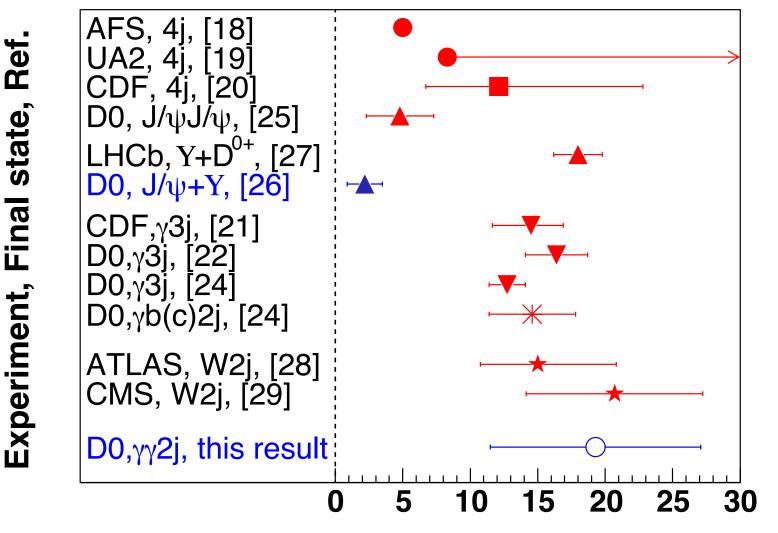
$$P_{\rm DI}^{\gamma\gamma}/P_{\rm DP}^{\gamma\gamma} = 1.002 \pm 0.039$$

$$\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \,\sigma_{\rm hard},$$

- We determine that $R_c \sigma_{hard} = 18.92 \pm 0.49 \text{ mb.}$
- giving

 $\sigma_{\rm eff} = 19.3 \pm 1.4 ({\rm stat}) \pm 7.8 ({\rm syst}) {\rm mb.}$

• and the percentage uncertainties are


$f_{\rm DP}$ $f_{\rm D2}$	EffRatio	Purity	JES	$R_{ m c}\sigma_{ m hard}$	SystTotal	StatTotal	Total
31.0 18.	7 7.1	7.2	13.2	2.6	40.2	6.9	40.8

Summary of Results

 $\sigma_{\!\text{eff}}$ measurements

 σ_{eff} [mb]

Conclusions

- First evidence of simultaneous production of J/ ψ and Y mesons and measurement if the effective cross section.
 - Phys. Rev. Lett. 116, 082002

$$\sigma_{\rm eff} = 2.2 \pm 0.7 ({\rm stat.}) \pm 0.9 ({\rm syst.}) {\rm ~mb}$$

- First measurement of double parton scattering in diphoton plus dijet events.
 - <u>Phys. Rev. D 93, 052008</u>

$$\sigma_{\rm eff} = 19.3 \pm 1.4 (\rm stat) \pm 7.8 (\rm syst) mb.$$

 $\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \,\sigma_{\rm hard},$

	DP	DI	Ratio	
A _{DP} /A _{DI}	0.429 ± 0.008	0.826 ± 0.019	0.521 ± 0.015	
ε _{DP} /ε _{DI} (sherpa)	0.477 ± 0.035	0.333 ± 0.021	1.372 ± 0.039	
ϵ_1/ϵ_2 (vertex)	0.944 ± 0.003	0.922 ± 0.003	1.021 ± 0.005	
Ρ ^{γγ} _{DI} / Ρ ^{γγ} _{DP}			1.002 ± 0.039	

 $R_c \sigma_{\text{hard}} = 18.92 \pm 0.49 \text{ mb.}$

• and the percentage uncertainties are

$f_{\rm DP}$	$f_{\rm DI}$	EffRatio	Purity	JES	$R_{ m c}\sigma_{ m hard}$	SystTotal	StatTotal	Total
31.0	18.7	7.1	7.2	13.2	2.6	40.2	6.9	40.8

giving

 $\sigma_{\rm eff} = 19.3 \pm 1.4 ({\rm stat}) \pm 7.8 ({\rm syst}) {\rm mb.}$