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Up – Sell: Many predictors?

Example image
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Up - Sell

Example image

Model 
failed 

to 
converge?
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Up – Sell: Multi-collinearity?

Example image
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Up - Sell

Example image
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Model 

almost 

singular?



Up-sell: Function of the outcome?

Image taken from realpython.com



Up-sell

Transformations 
= loss of information?

Image taken from realpython.com



Consider...

Random Forest approach:
• powerful

• allows 
multicollinearity

• linear and
non-linear effects within
the same analysis1

Image taken from AsiaOne.com 1: Strobl, Malley & Tutz, 2009



Additional benefits:

• Works with a small sample size

• Insensitive to order effects
l Sampling process mitigates experimenter bias

• Can assist with variable reduction – if required2

l More stable than stepwise regression3

l Works with observed variables rather than latent variables4

2: Tagliamonte & Baayen, 2012 3: Strobl, Malley & Tutz, 2009 4: Breiman, 2001



Health warnings:

• Black Box – a lot of stuff under the hood that you don’t mess 
with unless you really know what you’re doing!

• Not a replacement – more of a complimentary tool

• Data driven method – your data sample may not align with your 
theoretical expectations

• Variable selection takes a lot of time



How does it work? A simple example



Random splits across the data set
by one variable



Recursive partitioning occurs until...



Impurity reduction



Binary split...

Branch 1 Branch 2



And repeat...by another variable

Branch 1 Branch 2



And repeat...

Branch 1 Branch 2

Branch 1.2
Branch 2.2



A slightly different example…. N = 100
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55



Split 1:  < 6 - > 6
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55



Split 2: = 2.31 & > 2.31; = 6.48 & > 6.48
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55



Split 3: = 2.375 & = 2.379; = 6.48 & =6.55 
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48
2.31 2.31 2.31 2.31 2.31 2.31 6.48 6.48 6.48 6.48

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.31 2.31 2.31 2.31 2.31 2.31 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55

2.375 2.375 2.375 2.375 2.379 2.379 6.54 6.55 6.55 6.55



Random Forest

• One such tree is constructed many times with random sampling
• Random sampling without replacement

l Across predictors
l Different predictors as initial split
l Across observations



Results

• Aggregation over all the trees: response variable with the most 
vote wins

• Variable importance needed though
l Sampling means not all predictors are considered across all 

trees
l Assessed by assigning new levels to variables and testing for 

an effect  - a kind of sensitivity analysis but within and across 
variables

l By product = cross validation:  training and testing across full 
sample each time



Variable Importance Graphic

l Points to the right = 
significant variables

l Advice for variable selection 
is to exclude variables that are 
within the same range as 
negative variables

l Re-write formula with 
identified variables

significanc
e

Figure taken from Tagliamonte & Baayen 2012



Example plot: Main Effects & Interactions

Figure taken from Strobl, Malley & Tutz 2009



Conclusions

Random Forest offers
• Easy to implement method – formula just like regression

• Very flexible – small, non-linear sample – no problem

• Sampling method that validates itself in the process

• Variable selection routines if required

• Plots are quite intuitive to interpret



Starting resources

• ‘party’ package in R – vignettes and examples work well

• Tagliamonte & Baayen (2012) – comparison of regression, linear 
mixed effects and random forest with supplementary code

• Breiman (2001) – foundational concepts (pick and choose bits)

• Strobl, Malley & Tutz (2009) – update of Breiman for selection 
bias and other things (easier to read in its entirety than 
Breiman)



Example plot

Figure taken from Tagliamonte & Baayen 2012


