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Abstract. The timescales of capital investments, and therefore the turnover dynamics 

of capital stock, have limited representation in macroeconomic modelling. This hinders 

analysis of economic inertia, particularly in the context of a rapid net zero transition in 

which vast quantities of long-lived investments may need to be prematurely abandoned. 

We set out to determine the minimum model that is required to accurately represent 

heterogeneous capital. We develop a quantitative framework for estimating the 

residence time of capital assets in the US economy, deriving an instructive annual 

distribution of investments across timescales which can be effectively aggregated into 

three major timescale components. 

1 Introduction 

1.1 The survival dynamics of capital 

Inertia can be defined as the resistance of an object to changes in its course, and 

it applies as much to economies as it does any other physical object, even if the 

specifics of how we might represent the inertia of an entire economy may differ 

from that of, for example, a train. For the economy, inertia is determined not 

only by vested interests, mindsets, regulatory and political regimes (Seto et al., 

2016); it is also critically determined by the heterogenous portfolio of capital 

that comprises the economy, and therefore the investments and activities riding 

on this capital. 

Capital investments are invariably designed to provide returns over specific 

amounts of time. Typically these are years, often decades, into the future, and 

unless the investor is willing to walk away from the returns on their 

investments, the creation of a capital asset establishes a commitment to future 

activity and hence inertia. Indeed, the institutional inertia represented through 

vested interests, mindsets, regulatory and political regimes might be seen as 

subservient to, and in support of, the protection of future returns on investments 

(Foxon, 2002). Notwithstanding expensive retrofitting or premature scrapping, 

with consequential loss of planned returns on investment, infrastructure 

investments with lifetimes spanning several decades restrict transition to a rate 

which corresponds to their lifetime (Jaccard and Rivers, 2007). 

Given that fossil fuel use has grown near exponentially for well over a 

hundred years (Jarvis et al., 2012), the transition to net-zero emissions within 

the timescales called for by the Paris process will mark a radical change in 

direction for the global economy, and in addition to the decarbonisation of new 
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investments, this is likely to require the removal of large amounts of existing 

long-lived carbon-intensive infrastructure over the next three decades (Mercure 

et al., 2021). Davidsdottir and Ruth (2004) conclude that the rate of capital 

turnover is “the most important factor in permanently changing carbon 

emission profiles and energy efficiency”. Understanding the relationship 

between capital investments and inertia not only allows us to identify the 

components which most influence progress on climate change, it can also help 

us assess the risk of ‘stranded assets’ if the economy is forced to transition at 

rates faster than its infrastructural inertia would otherwise allow (Grubb, 1997; 

Jaccard and Rivers, 2007; Mercure et al., 2021). 

The value of a capital asset depends not only on its projected annual 

productivity, but also on how close it is to its planned retirement. New assets 

being born through investment and old assets maturing and dying leads to a 

distribution of asset ages at any time, much like the demographics of human 

populations. Although this form of survival analysis is how asset values are 

compiled and tracked within sectoral national accounts (OECD, 2009), the 

expected lifetimes and age structure of these assets are seldom reported within 

that process. This is partly attempted in vintage capital theory, which accounts 

for the age distribution of capital and, in its models of growth and technological 

change, considers the effects of vintage on productivity (Solow and others, 

1960; Boucekkine et al., 2011). However, the literature on vintage capital lacks 

analysis of, and theory on, the evolution of capital stocks and the timescales 

inherent in these processes. Specifically, why do we see the portfolio of asset 

service lives that we do in economies? 

Neither is it commonly appreciated in the economic literature, nor in much 

mainstream modelling of climate change, as discussed below, that the turnover 

of these pools of capital provide critical insights into the inertia of the economy, 

and hence its ability to change direction. Indeed, the effects of economic inertia 

are invariably hidden in economic analysis by the specification of optimal 

general equilibrium pathways, which in effect transfer all dynamics into an 

idealised investment scenario. 

As highlighted by Mercure et al. (2021), but seldom employed in this way, 

the conservation equation for capital assets used in national accounting 

procedures defines their inertial dynamics. If 𝐾𝑖 is the value of the 𝑖’th stock 

(T$), the conservation of this capital follows 

�̇�𝑖 = 𝑢𝑖 − 𝐷𝑖 = 𝑢𝑖 − 𝑑𝑖𝐾𝑖   (1) 

where 𝑢𝑖 is the rate of investment into this stock (T$/yr), 𝐷𝑖 is the annual 

depreciation of this stock (T$/yr), and 𝑑𝑖 is the depreciation or decay rate (yr-

1). Although rarely portrayed in this way, 𝑑𝑖 is an inverse timescale, 𝑇𝑖 = 𝑑𝑖
−1

.  

As a measure of the amount of time a given capital stock is expected to 

survive in a cohort, 𝑇𝑖 is the turnover timescale and is an alternative measure of 

asset lifetime to the mean service life of an asset – the estimated “economically 

useful life of an asset” used by national statistics agencies in the perpetual 

inventory method that creates national accounts, based on manufacturer 

estimates, tax records, analysis of price depreciation, and other sources (BEA, 
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2003; OECD, 2009), but often outdated, inconsistent between countries, and 

only available for selected assets and industries (Bennett et al., 2020; Rincon-

Aznar et al., 2017). 𝑇𝑖 has conceptual parallels in the dynamics of physical 

systems: in an equilibrium scenario, where investments and net retirements are 

balanced, it is functionally equivalent to residence time in a well-mixed system 

i.e. the average time an element is expected to remain in its pool. However, this 

extends beyond well-mixed systems, given it also mirrors average queuing time 

in queuing theory as described in the widely applicable Little’s law, often 

invoked in microeconomics (Hendijani, 2021). 

Mercure et al. (2021) point out that equation (1) defines both the dynamics 

of capital stocks and the timescale for these dynamics, and as such provides the 

appropriate vehicle for investigating economic inertia. Here 𝑇𝑖 is the time 

constant or e-folding time for the temporal evolution of the first order system 

specified by equation (1), and therefore measures of the speed at which a stock 

of capital assets moves towards equilibrium for a given investment 𝑢𝑖. In this 

respect, 𝑇𝑖 can be used as a representation of the inertia of a given asset class 

or sector, and if the full distribution of asset classes and their turnover 

timescales is known for an economy, these can aggregate to define the inertia 

for entire economies.   

The turnover behaviour of entire sectors and economies is invariably 

approximated through the turnover of a single representative capital asset, with 

a fixed depreciation rate and hence turnover timescale. This is how the economy 

has been portrayed in most Integrated Assessment Models (IAMs) that have 

informed climate decision making. Capital depreciation rates in these models 

range between 2-10%, indicating turnover timescales for global capital of the 

order of 10-50 years (Table 1). Notably, these timescales are starting to fall 

outside those specified in the Paris Agreement for the full decarbonisation of 

the global economy, suggesting conflict between our common climate and 

economic objectives. 

The five-fold range in turnover timescales used in IAMs suggests significant 

uncertainty still remains over the inertia of the global economy. This is also 

underscored by the lack of literature on the turnover timescales of aggregate 

capital stocks, suggesting that the  turnover of the entire economies is poorly 

understood. Moreover, in an economy changing so rapidly – for example, to 

meet urgent climate objectives – that the lifetime of a substantial proportion of 

assets never reach their full lifetimes, a single representative timescale may not 

hold as an accurate description of the turnover dynamics of the stock; in this 

situation it may become necessary to represent a fuller range of capital stocks 

and turnover timescales. It is therefore important to have sight of the full 

distribution of inertia amongst assets throughout the economy to see if such 

systems can be faithfully reduced to a single representative stock, depreciation 

rate, and turnover timescale. 
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Table 1. Capital depreciation rates and turnover timescales in integrated assessment 

models. 

Model 
Depreciation 

rate (%/yr) 

Timescale 

(years) 
Source 

DICE 2.0% 50 
Nordhaus and Sztorc 

(2013) 

WORLDSCAN 2.8% 36 
Lejour and Planbureau 

(2006) 

MERGE 4.0% 25 
Manne and Richels 

(2005) 

GTAP/GTEM-C 4.0% 25 Cai et al. (2015) 

MIRAGE 4.0% 25 Bchir et al. (2003)  

MEDIAM 4.5% 22 Weber et al. (2005) 

SGM/Phoenix 5.0% 20 Wing et al. (2011)  

MARKAL 5.0% 20 Strachan et al. (2008) 

ENV-Linkages 5.0% 20 
Duval and 

Maisonneuve (2009) 

SAGE 5.0% 20 Marten et al. (2019) 

FALSTAFF 6.7% 15 
Jackson and Victor 

(2015) 

E3ME 10.0% 10 
Cambridge 

Econometrics (2019) 

WITCH 10.0% 10 
Emmerling et al. 

(2016) 

G-CUBED variable  
McKibbin and 

Wilcoxen (1999) 

GEMMA variable  Jackson et al. (2014) 

GEM-E3 variable  Capros et al. (2013) 

 

The full distribution of turnover timescales and their relative contributions to 

the inertia of an economy is provided by the relationship between 𝑇 and 𝐾 for 

all elements of an economy. We refer to this as the capital-timescale 

relationship, which we aim to uniquely derive for the United States in this 

paper. Like a retirement function describes the turnover dynamics of a single 

asset or cohort of assets, the capital-timescale relationship describes the 

turnover dynamics, and therefore the inertia, of whole economies. We contend 

that this relationship is a fundamental property of the economy, most crucially 

because it identifies the timeframes on which returns are expected on 

investments, and therefore how financial risk is spread through time. The 

specification of the capital-timescale relationship also fundamentally alters our 
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view of capital, from classes of fixed ‘artifacts’ to their corresponding dynamic 

classes. 

1.2 Literature on heterogeneous capital dynamics 

Capital is most commonly disaggregated by sector or by geography, reflecting 

the way it is reported in national accounts, but some attempts have been made 

to understand the relationship between capital stocks and turnover timescales. 

Studies attempting to characterise the inertial risks of a rapid climate transition 

have typically focused on specific assets comprising the economy, most 

commonly the energy sector (Davis et al., 2010; Fisch-Romito et al., 2021). 

Davis and Socolow (2014), for example, estimated that the existing stock of 

power plants will emit between 98-578 GtCO2 depending on their average 

lifetime which they estimate falls in the range of 20–60 years. Other 

technology-rich models attempt some inertial analysis by focusing on 

technology lifecycles (Mercure et al., 2018). However, each of these tends to 

consider particular types of capital independent of the remaining economy; this 

is to neglect the interconnectivity of assets, aggregate investments and supply 

chains, and the inertia produced by capital throughout the whole economy 

(Guivarch and Hallegatte, 2011; Grubb et al., 2021).  

More complex IAMs have often modelled some form of capital 

heterogeneity typically through incorporating a sectoral breakdown of the 

economy, modelling growth and depreciation rates for individual sectors in 

individual countries, such as in G-CUBED (McKibbin and Wilcoxen, 1999). 

While this provides some depth to the treatment of capital, it rarely provides 

much inertial heterogeneity as there is only limited variation in the 

representative depreciation rates – and therefore turnover timescales – between 

sectors (Mercure et al., 2021). There is much greater timescale variation 

between types of capital, for example between equipment and buildings. This 

is reflected in GEMMA, which “distinguishes between two types of capital 

stock: 1) buildings and infrastructure; 2) machinery and equipment, each of 

which is expected to have different characteristics in terms of depreciation rate” 

(Jackson et al., 2014, p. 18). GEM-E3 similarly introduces an inertial 

distinction between durable and non-durable goods, in addition to a sectoral 

and regional disaggregation (Capros et al., 2013). 

A World Bank report by Shalizi and Lecocq (2009), based on earlier work 

by Jaccard et al. (1997), highlighted the heterogeneity of capital stock and 

classified it into groups for the benefit of such modelling. In their classification 

Group 1 capital (lifetime 5-15 years) largely consists of consumer durables, 

Group 2 (15-40 years) is mostly buildings, such as factories and power plants, 

Group 3 (40-75+ years) is infrastructure including road, rail and power 

distribution networks, and Group 4 covers land use and urban form which 

persist for “a century or more”. In their subsequent analysis they estimate that 

capital with lifetimes longer than 15 years – Groups 2, 3 and 4 – directly 

influenced 41% of global GHG emissions in 2000. 

Similar analysis by Jaccard and Rivers (2007) incorporates groups of capital 

disaggregated by timescale, using them to disprove suggestions that economic 
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benefit could be gained from a delay to emissions reductions, highlighting the 

need to instead decarbonise long-lived capital investment in the short term as a 

means of avoiding the impact of capital inertia. These authors note that “there 

is little in the way of firm empirical analysis establishing the natural turnover 

rate of either individual categories of capital stock or the weighted average of 

all of society’s capital stock,” and that “much of the recent research that has 

suggested benefits to delay appears to have focused on the lower part of the 

capital stock hierarchy: buildings and especially equipment.” They therefore 

represent longer-lived capital using a three-tier structure: machinery and 

equipment, with an estimated lifetime of 20-30 years based on available service 

life information (effectively a merger of Shalizi and Lecocq (2009)’s Groups 1 

and 2); housing, with a lifetime of 71.5 years; and urban form, with a lifetime 

of 117 years. 

This attention to the heterogeneity of capital stock has not become common 

practice in IAMs or other climate-economy analysis, and the categorisations 

adopted by Jaccard and Rivers (2007) and Shalizi and Lecocq (2009) have not 

appeared in much further work. Grubb et al., (2021, p. 12) state that with the 

exception of some dedicated models, “treatment of dynamic realism in standard 

stylized IAMs is patchy at best”. Like Jaccard and Rivers (2007), we suggest 

that this is heavily influenced by the lack of data on, and a framework for 

applying, the timescale dynamics of capital. Contrary to some of the approaches 

taken in the transition risks literature, we are also conscious that the capital 

stock of macroeconomies is heavily interlinked and that both emissions and 

inertia are produced by capital in a broad range of sectors, with a broad range 

of timescales, therefore necessitating an understanding of capital inertia at the 

complete macroeconomic level, not just for individual sectors or types of fixed 

capital. 

The economic risk from a rapid economic transition discussed in section 1.1 

cannot be estimated, and the necessary planning cannot be conducted to 

mitigate the risk to economies and to populations, without an accurate inclusion 

of capital inertia in IAMs and other climate-economy models. We propose in 

this paper a method for empirically deriving turnover timescales for capital 

assets that is not reliant on estimated service lives, and for aggregating these 

into a capital-timescale relationship, which will not only be critical to 

understanding how inertia is distributed in the economy, and provide a highly 

instructive description of capital investment patterns, their and structural 

change of the US economy over time, but will also reveal whether a single 

representative timescale can provide an appropriate approximation of 

macroeconomic capital dynamics. If a single timescale is not appropriate, we 

aim to derive the simplest representative model that can represent capital inertia 

in IAMs, short of modelling the full capital-timescale relationship. 

In section 2 we will outline our method for deriving turnover times using 

equation (1), using data from the US as an example. In section 3 we will 

aggregate these to a capital-timescale relationship for the US economy, and 

investigate the minimum model necessary to represent this relationship in IAMs 

and other models that simulate capital dynamics, with evidence provided in 

section 4 for the effectiveness of this model. 
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2 Deriving turnover times for US capital assets 

The US Bureau of Economic Analysis (BEA) publish detailed estimates of the 

total capital value of 96 private non-residential fixed asset classes in 63 

industries (giving a total of 2972 sector-specific assets with a non-zero capital 

value), as well as 51 types of residential fixed assets, and 28 consumer durable 

goods asset classes. This provides nearly 3000 unique asset classes comprising 

components of the US economy – a far larger number than those for which 

service lives are typically provided for. For each class the BEA identify not 

only the current value, but unlike most other published national accounts, they 

also report levels of investment and depreciation in any given year from 1947. 

Given the way depreciation, 𝐷, is handled in the perpetual inventory method, 

the depreciation rate 𝑑 is an effective cohort-level property reflecting two 

features of the perpetual inventory approach. Firstly, it describes the turnover 

of assets within the cohort as determined by the assumed representative 'service 

life' for the cohort and any assumed survival function around this. Secondly, 

depreciation also relates to the rate of production of capital services from a 

cohort because this is modelled as the outflow of capital into the allied 

production processes (OECD, 2009; Katz, 2015). This outflow serves two 

purposes. On the one hand it forms part of the forward valuation of the stock, 

because it is the future flow of all capital services that determine future 

productive returns, corrected to net present value assuming a particular discount 

rate (OECD, 2009; Katz, 2015). However, this capital services outflow, just 

like the effects of physical depreciation, also describes the loss of capital at a 

rate proportional to the magnitude of the capital stock. As a result, it behaves 

like physical depreciation, and the net effect of these two different capital loss 

functions is an expectation that equation (1) holds for every asset class in the 

BEA database. 

Given the array of definitions and deployments of depreciation in national 

accounts like that of the BEA it is perhaps more appropriate to define the 

turnover dynamics of an asset class directly using the perpetual inventory 

equation (1). If all losses of capital from an asset class are proportional to the 

value size of that class, then from equation (1) 𝑇𝑖 can be estimated directly for 

every asset class as: 

 

𝑇𝑖 =
𝐾𝑖

𝐷𝑖
     (2). 

 

This provides direct estimates of the turnover timescale associated with each 

asset class including not only the physical effects of depreciation of cohorts, 

but also the perceived consumption of capital in value production. Figure 1 

shows the relationship between depreciation and capital value for all 3015 BEA 

asset classes we consider, covering the period 1947-2018. From this we can see 

that, despite the complexities and heterogeneity of practice associated with 

specifying depreciation and value production in the BEA perpetual inventory, 

in practically every class 𝐾𝑖 is near linear in 𝐷𝑖 across time reflecting the fact 

that 𝑑𝑖 and hence 𝑇𝑖 are near constant within each class.  
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Figure 1. The relationship between annual depreciation and capital value for all 3015 

asset classes comprising the US economy presented in the BEA database, 1947-2018 

(N = 217,080). Both capital value and depreciation are normalised by the within class 

maximum. The 1:1 line (--) shows compliance with the linear model (2). 

In line with equation (2) and the evidence for linearity between 𝐾𝑖 and 𝐷𝑖 

seen in Figure 1, we estimate 𝑇𝑖 using simple least squares applied to each of 

the 3015 asset categories assuming 𝑇𝑖 doesn’t change across the 72 year sample. 

The corresponding relationship between 𝑇𝑖 and 𝐾𝑖 for each asset class is shown 

in Figure 2.  
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Figure 2. The relationship between turnover timescale and capital value. Bars represent 

the 3015 BEA asset categories. Black envelope is the 95 % confidence interval of the 

corresponding survival function. The three coloured regions are a statistical partitioning 

of the survival function into constituent gamma distributions (see Table 2 for details). 

Further, we validate the accuracy of our turnover timescale estimates by 

comparing them to the mean service lives used in national accounts to complete 

the perpetual inventory method. These are taken from BEA (2003) where a 

good match is possible; where this is not possible, mean values from other 

global sources quoted in Rincon-Aznar et al. (2017) are used; where no agency 

has a reliable estimate, the asset class is not plotted. From Figure 3 we can see 

there is broad agreement between our turnover timescales based on equation 

(2) and the mean service lives used in various ways to define depreciations, 

reflecting the dominance of natural retirement at the end of service life in the 

turnover dynamics of many asset classes in the BEA perpetual inventory. 

However, there are also significant differences between the two, particularly in 

asset classes with mean service lives greater than 20 years. This is likely to 

reflect the effects of nonlinearity in the assumed survival function for certain 

classes (Katz, 2015), and the complex effects of capital flows on the loss of 

capital through their productive use.  
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Figure 3. The relationship between the quoted mean service lives of asset classes, 

where they are available in the literature (BEA, 2003; Rincon-Aznar et al., 2017), and 

the corresponding turnover timescale estimated from equation (2) using linear least 

squares. 

We hold that it is the turnover timescale 𝑇𝑖 that more accurately reflects the 

inertial dynamics in each asset class, due to the quality issues with service lives 

raised in section 1.1, and because it is the aggregate effects of all effective forms 

of capital loss including natural retirement, physical deterioration, obsolescence 

and accidental damage. Allied to this, capital is defined by the conservation 

equation (1) and hence it is logical for its turnover dynamics to be derived from 

this first order process. 

3 The capital-timescale relationship of the US economy 

The method described in Section 2 provides a representative turnover timescale 

for each of the 3015 capital asset classes in the BEA account of the US 

economy, but like service lives, these invariably reflect only the first moment 

of a range of expected lifetimes within that class; the asset class ‘Aircraft’, as 

an example, will contain a diversity of aircraft types and models each with 

different expected lifetimes, and aircraft built to the same model will have a 

probabilistic chance of retirement according to a particular survival function. If 

we want to capture the fact that each asset class is comprised of large cohorts 

of elements, and that this should be accounted for in the inertial dynamics, we 

need to populate each asset class accordingly. The BEA assume symmetrical 

(bell-shaped) Winfrey mortality functions, where discards are spread over the 

period ±55% of the average service life, except for residential buildings which 

are spread over ±95% of the average service life (OECD, 1993). We replicate 
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this, using a normal distribution with the same spread to redistribute the capital 

value in any given asset class across all timescales of interest. 

Having estimated the full cohort of timescales for each unique asset class, 

we can now group capital with respect to these timescales. This is significant 

in reassigning capital from its familiar artefact-orientated ‘asset’ classification 

into the corresponding ‘timescale’, and hence inertial, class. From this, we can 

then assess the extent of investments made that contribute to the overall inertia 

of the US economy.  

The result is shown in Figure 2. The first thing to note is how remarkably 

stationary this capital-timescale relationship is. Many of the 3015 sectors come 

and go in their relative importance over the 72 years. Computer hardware and 

software have surged in prominence, for example, while equipment for heavy 

industry has shrunk. However, in the timescale space this ebb and flow is lost, 

as if the more important feature of investment is not what things are called, but 

rather how long they reside in the economy providing returns. Allied to this, it 

appears to be the spectrum of timescales of these returns that is preserved, 

which may suggest that capital heterogeneity is important as a means of 

spreading risk and opportunities.     

We find from the capital-timescale relationship that the US economy can be 

described as the sum of three timescale-distinct sets of timescales which we 

refer to as fast, medium and slow capital (Fig. 2). Of these, medium capital 

makes up a majority of capital (57%) and has a first moment of 51 years (Table 

2). This maps relatively well to Group 2 and much of Group 3 identified by 

Shalizi and Lecocq, (2009). The fast capital component has a first moment of 7 

years and contributes some 30 percent of all capital, paralleling Shalizi and 

Lecocq's (2009) Group 1. 

Table 2.  Partitioning of the capital-timescales distribution shown in Figure 3. Each 

distribution is a gamma function simultaneously fitted to the overall distribution. The 

table reports the first moment 𝑇 and percent contribution to total capital 𝑓. Numbers in 

brackets are the recession time constants from Figure 5. 

Parameter Value Units 

𝑻𝒇𝒂𝒔𝒕 7.16 (5.34) yrs 

𝒇𝒇𝒂𝒔𝒕 30.0 % 

𝑻𝒎𝒆𝒅𝒊𝒖𝒎 50.64 (32.14) yrs 

𝒇𝒎𝒆𝒅𝒊𝒖𝒎 56.8 % 

𝑻𝒔𝒍𝒐𝒘 104.25  (91.05) yrs 

𝒇𝒔𝒍𝒐𝒘 13.2 % 
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The slow group, meanwhile, dominates the distribution beyond 75 years, 

making up just 13 % of total capital. These have a large spread of timescales 

stretching beyond 200 years. It is dominated by real estate, but also includes 

some other long-lived asset classes that fit the description of ‘urban form’ used 

for the uppermost capital group in both Shalizi and Lecocq (2009) and Jaccard 

and Rivers (2007), such as sewer systems (Table 2). This group therefore maps 

to Group 4 and the ‘urban form’ group in these papers respectively, with the 

addition of some longer-lived real estate, which they situate as part of Group 

3/‘Buildings’. 

4 What is representative? 

The first moment for the full capital-timescale distribution for the US economy 

shown in Figure 2 is 44.7 years, suggesting a representative depreciation rate 

on an aggregate capital stock of 2.24 %/yr, very much at the lower end of values 

currently used in IAM frameworks attempting to capture the inertia of produced 

capital (Table 1). However, if we divide total capital by total depreciations in 

the BEA database following equation (2) we get a representative timescale of 

only 16.1 years and hence a depreciation rate of 6.22 %/yr, closer to the upper 

end of the IAM spectrum. This difference possibly explains the lack of 

consensus in macroeconomics over aggregate depreciation rate values, with on 

the one hand observed capital portfolio turnovers suggesting low depreciation 

rates and long timescales, while on the other growth models suggesting much 

shorter effective turnover and hence higher depreciation. These effective 

estimates give lower turnover timescales because of growth differentially 

amplifying the effects of shorter timescales. 

To illustrate the minimum representative model of inertia, we simulate the 

decay dynamics of the aggregate capital of the US economy as if new 

investment were suddenly withdrawn, with existing capital depreciating 

according to equation (1). This parallels an idealised structural shift where 

investment is diverted from ‘brown’ to ‘green’ assets (Mercure et al., 2021). 

The decay profile of total capital is shown in Figure 4, and we find that the 

recession dynamics have three characteristic timescales of 91, 32 and 5 years 

(Table 2). Although not perfectly aligning with the first moments of the capital-

timescale distribution shown in Figure 2, this demonstrates that the single 

timescales used in IAMs are probably inadequate when describing any 

transition involving declining high carbon capital stocks.   
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Figure 4. The decay response of capital given the capital-timescale relationship shown 

in Figure 3 (black solid). The error when fitting a first (red), second (blue) and third 

(green) order response to the decay are also shown, and the third order time constants 

are presented in Table 2. Lastly, the effective turnover timescale given by the ratio of 

capital to depreciation is also shown (dashed).  

5 Discussion and conclusions 

The capital-timescales structure of the US economy has remained remarkably 

consistent over time, with little change in the shape, the contributions of the 

three groups, or their representative timescales between 1947 and 2018 (Fig. 

2). It holds throughout this period despite almost a dozen recessions including 

the Great Recession and the 1970 energy crises, technological innovation, wars, 

and a greater than 60-fold increase in the total capital value. During this time, 

many asset types have come and gone, and the relative importance of sectors 

has ebbed and flowed significantly, yet the timescales at which investments are 

being made and returns expected are not. This suggests to us that, despite our 

attachment to the names of the things we create, how long they live and hence 

the returns they produce is far more important. We also conclude that the spread 

of investment to create the distinct capital-timescale pattern we observe, with 

three distinct modes, is significant, and suggest that it possibly reflects a form 

of emergent strategy in which the frequency spectrum of returns is important.  

Practically, our results support a similar timescale grouping to Shalizi and 

Lecocq (2009), highlighting that in anything other than business-as-usual 

growth scenarios, single timescale/depreciation rate IAMs will not adequately 

capture the inertial dynamics of the economy, and a minimum of three 

representative stocks – one fast, one intermediate, one slow turnover – is 
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required. This is an urgent consideration as these scenarios, and the stationarity 

described above, are under threat as the climate crisis looms. Investment 

decisions over the past century have largely been made on the assumed 

stationarity of the climate, relying on investments playing out their lifetimes 

and delivering returns in a climate that is as predictable as it was in the past, but 

climate change will affect the attrition rate on capital structures requiring 

infrastructure planning and investment strategies to be revised (Giordano, 

2012).  

Even where the survival of capital is not directly under threat from the 

impacts of climate change, the lifetime and therefore the return on investments 

may be cut short by a rapid climate transition which requires the removal of 

active carbon-emitting infrastructure. For instance, the 2050 deadline to fully 

decarbonise the economy, identified by the IPCC as necessary to avoid 

dangerous climate change and established in law as a target for the US, is likely 

to necessitate capital with remaining lifetimes beyond that timescale – our 

medium and slow groups – to be adapted to produce net zero carbon emissions, 

or to be decommissioned before that date (Jaccard and Rivers, 2007). The 

potential for economic impact as a result of this adaptation or loss of future 

returns produces a form of infrastructural inertia in the economy, with past 

investment decisions binding future pathways for society; this path dependence 

offers a powerful argument for a precautionary approach to current such 

decisions (Seto et al., 2016; Hoepner and Rogelj, 2021) and for urgent action 

on those sectors with the greatest inertia (Vogt-Schilb et al., 2018). Although 

the turnover timescale method and the capital-timescale relationship we have 

developed here are important for understanding these risks and how to 

prioritorise any such retirements (Mercure et al., 2021; Semieniuk et al., 2021), 

the effects of climate change and any climate transition will reshape the survival 

functions of capital, taking us into uncharted territory. 
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