Tissue-Specific Distribution and Bioaccumulation of Perfluoroalkyl Acids, Isomers, Alternatives and Precursors in Citrus Trees of Contaminated Fields: Implication for Risk Assessment

Zhaoyang Liu a,*, 1, Shun Liu b,1, Feng Xiao c, Andrew J. Sweetman d, Xiang Wan a, e, Mingxia Wang a, Chang Chen a, Hao Guo a, Ziyao Luo a, Linlin Zhong f, Jay Gan g, Wenfeng Tan a

a State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
b The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
c Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
d Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
e Hubei Geological Survey, Wuhan 430034, China
f National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
g Department of Environmental Sciences, University of California, Riverside, CA 92521, USA

*Corresponding author: Zhaoyang Liu, Tel: 86-27-87287508, Fax: +86-27-87288618,
E-mail: zhaoyangliu@mail.hzau.edu.cn

1 Zhaoyang Liu and Shun Liu are the co-first authors of this article.

Abstract: The ingestion of fruits tainted with perfluoroalkyl acids (PFAAs) presents potential health hazards. This study aimed to fill knowledge gaps about the distribution...
patterns and bioaccumulation behaviors of PFAAs, isomers, alternatives, and precursors (collectively as per- and polyfluoroalkyl substances, PFAS) within different tissues of citrus trees grown in contaminated fields and further highlighted the contribution of precursor degradation to exposure risks. Alarming concentrations of total target PFAS ($\sum_{\text{PFAS}_{\text{target}}}$, 92.5–7496 ng/g dw) and unknown precursors measured through oxidation (131–13979 ng/g dw) were found in citrus tree tissues. Short-chain PFAS constituted primary components in citrus trees, and total PFAS concentrations followed the order of leaves > fruits > branches, barks > woods, and peels > pulps > seeds. PFAS levels in barks and woods rose with diminishing branch diameters. The average contamination burden of peels ($\sum_{\text{PFAS}_{\text{target}}}$: 57.7%; unknown precursors: 71.2%) was highest in fruits. The translocation potential and bioaccumulation factor (BAF) of short-chain, branched, or carboxylic acid-based PFAS exceeded those of their relatively hydrophobic counterparts, and ether bond-based PFAS showed lower BAFs than similar PFAAs in citrus trees. In the risk assessment of consuming contaminated citruses by residents, precursor degradation approximately contributed 36% to total PFAS exposure, and should not be ignored.

Keywords: PFAS; total oxidizable precursor (TOP) assay; citrus tree; bioaccumulation behavior; health risk
Environmental Implications: The consumption of fruits tainted with PFAS may pose potential health threats. The purpose of this study is to provide systematic insights into distribution patterns, relative burdens, translocation potentials and bioaccumulation specificities of PFAS of varying chain-lengths, isomeric structures, ether bonds and functional groups in different tissues of citrus trees. A TOP assay is innovatively introduced in the bioaccumulation analysis and risk assessment for unknown precursors. These new findings aid safety evaluation and risk mitigation of fruit planting in potential PFAS-polluted regions.
1. Introduction

Perfluoroalkyl acids (PFAAs) represent a broad category of widely-used anthropogenic chemicals that have garnered global concern due to their ubiquitous presence in the environment (Barzen-Hanson et al., 2017; Trang et al., 2022; Wang et al., 2015). Legacy long-chain PFAAs, such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), have been of particular concern because of their detrimental effects on human health, including impacts on immunity, metabolism, endocrinology, reproduction, and fetal and postnatal growth (Chang et al., 2022; Greenhill, 2017; Zheng et al., 2021). As a result, these chemicals have been classified as emerging contaminants of significant concern in international restriction agreements, such as the Stockholm Convention (Evich et al., 2022; UN Environment Programme, 2020). In response to the expanding global market demands, efforts have been made to replace legacy long-chain PFAAs with shorter-chain homologs and a variety of perfluoroalkyl ether acids (PFEAs) (Lim, 2019; Wang et al., 2017; Xiao, 2017). However, growing evidence suggests that these substitutes may pose ecological and human health risks similar to those associated with legacy long-chain PFAAs (Gomis et al., 2018; Qin et al., 2022).

Due to their widespread use and environmental persistence, PFAAs have the potential to contaminate agricultural lands and, subsequently, the crops grown on these soils (Li et al., 2019; Liu et al., 2017). The consumption of contaminated fruits has been identified as an important pathway of exposure to PFAAs for humans (Pasecnaja et al., 2022; Sznajder-Katarzynska et al., 2018). Previous studies primarily focused on the
occurrence of PFAAs in fruit pulps (Klenow et al., 2013; Li et al., 2019), but less on the tissue-specific distribution, translocation potentials, and bioaccumulation behaviors of PFAAs in fruit trees, which are imperative for the safety evaluation of fruit planting in contaminated soils.

Despite growing awareness of the potential health risks associated with PFAA exposure, there remains limited information on the concentrations and accumulation of PFAA isomers in fruits. PFAA production in China is mainly based on the electrochemical fluorination (ECF) process, and generally yields a mixture of linear and branched isomers (Schulz et al., 2020). As branched PFAAs may exhibit different physicochemical properties from their linear isomers (Chen et al., 2015; Schulz et al., 2020), their accumulation potentials in fruit planting could vary significantly, leading to diverse exposure risks for humans. Studying isomer-specific bioaccumulation in fruit trees contributes to obtaining a comprehensive understanding of the behavior and fate of these chemicals in the environment.

PFEAs such as hexafluoropropylene oxide dimer acid (HFPO-DA, with the trade name of GenX) were developed as novel alternatives of PFAAs by inserting one or more ether bonds into the carbon chain, which may be more likely to accumulate in animals and human beings (Cui et al., 2018; Wang et al., 2020a). For example, the bioaccumulation capacity of GenX in the fish liver was about 3-fold higher than that of perfluorohexanoic acid (PFHxA) with the same number of carbon atoms (Pan et al., 2017). Hexafluoropropylene oxide trimer acid (HFPO-TA) is a new PFEA measured in environmental samples (Pan et al., 2018). Nevertheless, to date, there have been few
reports about the effects of introduced ether bonds on the bioaccumulation of these emerging PFAS in different organs of fruit trees.

Furthermore, thousands of unknown precursors, which can be transformed into more persistent and potentially toxic PFAAs during chemical, biological and thermal processes (Xiao et al., 2012; Xiao et al., 2018; Xiao et al., 2021), present in multiple environmental matrices and living organisms (Jin et al., 2020; Munoz et al., 2020). However, limited information currently exists on the concentrations and accumulation of these precursors in plant tissues. A total oxidizable precursor (TOP) assay, which can oxidize precursors into quantifiable perfluoroalkyl carboxylic acids (PFCAs) (Houtz and Sedlak, 2012), can be used to indirectly study the distribution and bioaccumulation of unknown precursors in fruit trees. In addition, previous risk assessments were mainly based on target PFAAs in food, which ignored the potential degradation of precursors during digestion and other biochemical processes in human bodies and resulted in an underestimation of health risks (Diao et al., 2022; McDonough et al., 2022). Therefore, an improved approach to risk assessment considering precursor degradation is urgently called for a better protection for fruit consumers.

In general, the distribution patterns and bioaccumulation behaviors of PFAA-related chemicals in fruit trees are relatively under-studied. However, fruit dietary intakes may be particularly significant because most of them are consumed raw or with minimal processing. As a globally representative fruit, citrus is favored by a wide range of consumers. Taking citrus tree as an example, this study aimed to fill above-mentioned knowledge gaps and provide new insights into the translocation,
bioaccumulation and human exposure of PFAAs, isomers, alternatives and precursors (collectively designated as per- and polyfluoroalkyl substances, PFAS) in fruit trees of contaminated fields. Specific objectives include (i) determining the occurrence and distribution of PFAS in branches (barks and woods) with different diameters, leaves and fruits (peels, pulps and seeds) of citrus trees; (ii) identifying the influences of molecular structures (e.g., isomer, ether bond, carbon chain length and functional group) of individual PFAS, as well as the morphology and physiology of different tissues on translocation and bioaccumulation potentials of these chemicals in citrus trees; and (iii) estimating the potential contribution of unknown precursors to health risks of PFAS through citrus consumption and developing a risk assessment approach considering precursor degradation by TOP assay. This study represents the first instance in the literature of an investigation into the tissue-specific distribution and bioaccumulation of PFAS with varying chain lengths, isomeric structures, ether bonds, and functional groups, as well as unknown precursors in fruit trees. These findings have the potential to inform the development of effective risk management strategies aimed at maintaining food safety and preserving public health.
2. Materials and methods

2.1 Sampling design and collection

The study area was near a large fluorochemical facility (FCF) located in Hubei Province, central China. This facility has been producing C4-C8 PFAS through the ECF process since 2006 (seeing major products in SI 1.1). The study area comprises vast agricultural lands, with citrus being the primary local fruit crop. Two citrus orchards were selected for this study: “Orchard 1 (O1)” was situated adjacent to the FCF, covering an area of approximately 1800 m²; and “Orchard 2 (O2)” was located around 550 m southwest of the FCF, spanning an area of roughly 5300 m² (Fig. 1). Site information and ambient conditions are presented in Table S1.

In December 2020, a substantial number of branches bearing leaves and mature fruits were cut from the citrus canopy at different heights (top, middle, bottom) and in
eight directions using pre-cleaned scissors. The scissors were pre-rinsed three times with ultra-pure water and three times with methanol before each use. Five sub-sites, consisting of the center and four corners of the orchard, were sampled, and each sub-site contained five citrus trees. The collected branches bearing leaves and mature fruits were then separated into branches, leaves and fruits, and individual samples of the same category from 25 citrus trees within a single orchard were amalgamated into a single composite sample. The plant samples were wrapped in aluminum foil and stored in clean paper bags. Moreover, the corresponding topsoil samples (0−20 cm) beneath each citrus tree at the five sub-sites were gathered and uniformly mixed. The sampling procedures for plants and soils were similar to the approaches previously described by Dick et al. (1997), Ryan et al. (1982), Eun et al. (2020) and Yamazaki et al. (2023) respectively, which were commonly used in environmental monitoring. Detailed information on the heights, ground diameters, and coverage of citrus trees are provided in Table S2. The sample lists and corresponding explanations can be found in Table S3. Furthermore, the standardized procedures for sample collection and transport are detailed in the Supporting Information (SI 1.1).

2.2 Standards and reagents

This study identified a total of 26 PFAAs and alternatives in all samples, including eleven PFCAs with carbon lengths from C4 to C14, seven perfluoroalkane sulfonic acids (PFSAs) with carbon lengths from C4 to C10 and eight novel alternatives such as GenX, ammonium 4,8-dioxa-3H-perflurononanoate (ADONA) and HFPO-TA, which are the substitutes of PFCAs, as well as 6:2 chlorinated polyfluorinated ether
sulfonate (6:2 Cl-PFESA), 8:2 chlorinated polyfluorinated ether sulfonate (8:2 Cl-
PFESA), 4:2 fluorotelomer sulfonate (4:2 FTS), 6:2 fluorotelomer sulfonate (6:2 FTS)
and 8:2 fluorotelomer sulfonate (8:2 FTS), which can be used to replace PFSAs. In
addition, five target precursors including perfluorobutanesulfonamide (FBSA),
perfluorohexanesulfonamide (FHxSA), perfluorooctanesulfonamide (FOSA), N-ethyl
perfluoroctane sulfonamido acetic acid (N-EtFOSAA) and N-methyl perfluorooctane
sulfonamido acetic acid (N-MeFOSAA) were also quantified.

The isomers of PFOA, PFOS and perfluorohexane sulfonate (PFHxS) were also
analyzed. PFOA isomers contained linear PFOA (n-PFOA) and branched PFOA (br-
PFOA) including iso-PFOA, 5m-PFOA, 4m-PFOA, 3m-PFOA and tb-PFOA; PFOS
isomers contained linear PFOS (n-PFOS) and branched PFOS (br-PFOS) including iso-
PFOS, (3+5) m-PFOS, 4m-PFOS, 1m-PFOS and m2-PFOS; PFHxS isomers contained
linear PFHxS (n-PFHxS) and branched PFHxS (br-PFHxS). The isomer nomenclature
for PFOA, PFOS and PFHxS was determined following the system suggested by
Benskin et al. (2007). For monomethyl branched isomers, perfluoroisopropyl isomers
are abbreviated as iso- (e.g., perfluoroisopropyl-PFOA as iso-PFOA); m represents the
perfluoromethyl branch, and the number before it indicates the carbon number on which
the branch is situated (e.g., 4-perfluoromethyl-PFOA is named as 4m-PFOA). The tert-
perfluorobutyl branched PFOA isomers are abbreviated as tb-PFOA, and the
diperfluoromethyl branched PFOS isomers are abbreviated as m2-PFOS. Together with
above native standards (including PFAAs, isomers, alternatives and precursors), the
corresponding mass-labeled PFAS were purchased from Wellington Laboratories
(Guelph, Ontario, Canada) for accurate quantification. More detailed information on the standards, reagents and nomenclature of different isomers can be found in the SI.

1.2. Besides, the molecular structures and available physicochemical properties of individual PFAS are shown in Table S4 and S5. Based on carbon chain lengths, PFAAs are classified into short-chain (C4–C5), medium-chain (C6-C7) and long-chain (C8–C14) compounds, respectively (Wang et al., 2022b).

2.3 Sample pretreatment

Upon arrival at the laboratory, the collected samples underwent a thorough and systematic pretreatment process. Citrus tree organ samples were meticulously washed with distilled water followed by Milli-Q water. For branches, they were trimmed to approximately 5 cm lengths using pre-cleaned scissors, and then categorized based on their diameters (abbreviated as D) into three groups: less than 2 mm (D ≤ 2 mm, thin), between 2 mm and 5 mm (2 mm < D ≤ 5 mm, middle) and greater than 5 mm (D > 5 mm, thick). The barks and woods of branches were carefully separated. Furthermore, the peels, pulps and seeds of citrus fruits were also divided. Subsequently, these distinct tissues were freeze-dried in a lyophilizer (-50°C for 72h), then ground and homogenized in a knife mill. Soil samples were transferred to polypropylene (PP) boxes, air-dried, homogenized with a porcelain mortar and pestle, and sieved using a 2 mm mesh.

The pH was determined using a soil to 0.01 M CaCl₂ solution ratio of 1:5 (w/v) (Table S6), and soil organic matter (SOM) was measured utilizing the Walkley-Black procedure (Nelson and Sommers, 1983). Plant and soil samples were carefully extracted and purified primarily through solid phase extraction following methods previously
described by Felizeter et al. (2014) and Loi et al. (2011), respectively. Comprehensive information on sample pretreatment and extraction of citrus tree tissues and corresponding soils can be found in the SI 1.1 and 1.3.

2.4 Oxidation assay for precursors

The TOP assay was conducted to indirectly estimate the levels of unknown PFAA-precursors in a sample by oxidizing them into target PFCAs and measuring the incremental PFCAs ($\Delta[PFCAs]$) (Houtz and Sedlak, 2012; Zhou et al., 2022). In brief, the extraction processes for citrus tree tissues and corresponding soils were consistent with the above extraction of target PFAS. The final methanolic extract of soil or plant samples in a 15 mL tube was evaporated using nitrogen gas before adding 12.0 mL of potassium persulfate ($K_2S_2O_8$) solution (20 g/L) and 0.23 mL of sodium hydroxide (NaOH) solution (10 M), followed by filling with ultrapure water to eliminate headspace. This resulted in concentrations of 60 mM for $K_2S_2O_8$ and 150 mM for NaOH. The samples were then heated at 85 °C for 20 h. After oxidation by heating, the samples were cooled in an ice water bath to room temperature, and solution’s pH was neutralized with hydrochloric acid (HCl) to a range of 6.5–7.5 before further purification using solid phase extraction. Triplicates were performed for each sample. Detailed procedures of the TOP assay for plant and soil samples can be found in the SI 1.4.

2.5 Instrumental analysis

Quantitative analysis of target PFAS was conducted by high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (Thermo Scientific UltiMate 3000 HPLC system and TSQ Altis triple-quadrupole mass
spectrometer, Thermo Fisher Scientific, USA) in the negative electrospray ionization (ESI) mode. In brief, the separation of 31 target PFAS was accomplished on an ZORBAX Eclipse Plus C18 column (2.1 mm × 100 mm, 3.5 μm, Agilent Technology, USA) with the injection volume of 5 μL, and a gradient elution program was applied using 2 mM ammonium acetate in Milli-Q water (phase A) and acetonitrile (phase B); the isomers of PFOS, PFOA and PFHxS were separated on a FluoroSep-RP Octyl column (150 × 2.1 mm, 3 μm, ES Industries, USA) with the injection volume of 10 μL, and 7 mM formic acid in Milli-Q water with pH adjusted to 4.0 using ammonium hydroxide (phase A) and methanol (phase B) were used as the mobile phase. The detailed descriptions and parameters of instrumental analysis are available in the SI 1.5 and Table S7, and the data processing was mainly based on TraceFinder (Thermo Fisher Scientific Co.).

2.6 Quality assurance/quality control (QA/QC)

Cross-contamination and PFAS-related experimental materials were minimized as much as possible throughout the study (detailedly described in SI 1.6). To check for external contamination during sampling and extraction, field blanks, transport blanks and procedure blanks were conducted through regular analyses with each sample set. To examine carryover and background contamination during instrumental analysis, solvent blanks (LC-MS grade methanol) were run for each batch of 15 samples. The limit of quantification (LOQ) and limit of detection (LOD) were determined based on signal-to-noise (S/N) ratios of 10:1 and 3:1, respectively.
Quantification of the target PFAS was carried out using mass-labelled standard calibration curves containing 13 points ranging from 0.01 to 100 ng/mL and with regression coefficients greater than 0.99. To monitor the precision of extraction and analysis, replication experiments and instrumental drift assessments were performed for every sample set. The matrix spike recoveries (MSRs) and procedural spike recoveries (PSRs) of each target PFAS were evaluated by spiking a standard solution into different pollution-free matrices and anhydrous sodium sulfate, respectively. Detailed QA/QC information and quantification procedures can be found in SI 1.5 and 1.6 as well as in Table S8 and S9.

2.7 Data analysis

During the statistical analysis, concentrations less than the LOQ were assigned as one half of the LOQ, and those less than the LOD were given to values of LOD/\sqrt{2} (Hornung, 1990; Bao et al., 2011; Wang et al., 2014). To evaluate the contribution of specific fruit tissue (e.g., peel, pulp and seed) to the whole fruit bioaccumulation potential of target PFAS and unknown precursors (reflected by \Delta[PFCAs]), a relative fruit burden (RFB) was according to Eq. (1) (Shi et al., 2018).

\[
RFB_{\text{tissue}} = \frac{c_{\text{tissue}} \times f_{\text{tissue}}}{\sum_{n=1}^{n} c_{\text{tissue,n}} \times f_{\text{tissue,n}}} \times 100\% \tag{1}
\]

Where \(c_{\text{tissue}}\) is the concentration of target PFAS or \(\Delta[PFCAs]\) in a particular tissue (ng/g dry weight, dw) and the \(f_{\text{tissue}}\) represents the average mass fraction of specific fruit tissue (such as peel, pulp and seed) relative to the total fruit weight, which can be found in Table S10.
Bioaccumulation factor (BAF), which was expressed as the ratio of target PFAS concentration in citrus tree organ or tissue to that in corresponding soil on a dry weight basis, was calculated by Eq. (2) (Interstate Technology and Regulatory Council, 2020).

\[
BAF = \frac{C_{\text{organ or tissue}}}{C_{\text{soil}}}
\]

Where \(C_{\text{organ or tissue}}\) is the concentration of target PFAS in a particular organ or tissue (ng/g dw) and \(C_{\text{soil}}\) means the concentration of target PFAS in corresponding soil (ng/g dw).

Based on averaging intake dose by body weight, the estimated daily intake (EDI, ng/kg·bw/day) of target PFAS or unknown precursors (reflected by \(\Delta[PFCAs]\)) through citrus consumption can be calculated using Eq. (3) (Pan et al., 2021).

\[
EDI = \frac{DC \times C_{\text{citrus pulp}}}{BW}
\]

Where \(DC\) is the daily consumption of citrus pulp (g/d dw) for target group, \(C_{\text{citrus pulp}}\) means the concentration of target PFAS or \(\Delta[PFCAs]\) in citrus pulp (ng/g dw), and BW represents the body weight of target consumer (kg). Parameters used for calculation were according to survey data from the China Health and Nutrition Survey (CHNS) and the China Food Composition Tables (CFCT), illustrated in Table S11 (Chinese Center for Disease Control and University of North Carolina, 2019; Yang, 2018). The EDIs of PFAS via citrus consumption by different age groups of urban and rural residents were respectively estimated to assess potential health risks (SI 1.7 for details).

3 Results and discussion

3.1 Levels and profiles of PFAS in orchard soils
A total of 28 target PFAS were detected in orchard soils near the FCF. Higher levels of total target PFAS (\sumPFAS$_{target}$) in soils were found in Orchard 1 (73.1 ng/g dw) compared to Orchard 2 (31.5 ng/g dw), but the PFAS composition in both orchards was similar (Fig. 2A and Table S12). C6-C7 PFCAs, C8-C10 PFSAs and novel alternatives of PFCAs (such as GenX and HFPO-TA) were the primary target PFAS present in orchard soils, with average contributions of 35.9%, 23.0% and 14.9% respectively to \sumPFAS$_{target}$ (Fig. 2B). In addition to linear PFAS, branched isomers of PFOA (br-PFOA), PFOS (br-PFOS), and PFHxS (br-PFHxS) were also found in orchard soils, and both linear and branched isomers decreased as the distance from the FCF increased. In orchard soils, the average levels of br-PFOA were 1.32 g/g dw, accounting for about 35.1% of the \sumPFOA. Iso-PFOA, 5m-PFOA, tb-PFOA and 4m-PFOA were the major components of br-PFOA. The average concentrations of br-PFOS in soil samples were 3.01 ng/g dw, making up approximately 18.9% of the \sumPFOS; the main components of br-PFOS were iso-PFOS and (3+5)m-PFOS. Moreover, br-PFHxS were also detected in both orchard soils, accounting for about 19.5% of the \sumPFHxS (Table S13).
Fig. 2. Concentrations and compositions of target PFAS and unknown precursors in orchard soils and citrus tree tissues.

Note: the abbreviations are explained as follows. O1: Orchard 1; O2: Orchard 2; S: soils, marked in red; BTn: barks of thin branches (D ≤ 2 mm); BMd: barks of middle branches (2 mm < D ≤ 5 mm); BTk: barks of thick branches (D > 5 mm); WTn: woods of thin branches (D ≤ 2 mm); WMd: woods of middle branches (2 mm < D ≤ 5 mm); WTk: woods of thick branches (D > 5 mm); D: the branch diameters; Le: leaves; Pe: peels; Pu: pulps; Se: seeds.

Despite the low levels of target precursors (FBSA, FHxSA, FOSA, N-MeFOSAA and N-EtFOSAA) detected in orchard soils (total, 0.21–0.92 ng/g dw), a large number of unknown precursors were found based on incremental PFCAs (named as Δ[PFCAs], degradation products of PFAA-precursors) after the TOP assay (Fig. 2C and Table S14). The measured \sumΔ[PFCAs] concentrations in soils were 36.2 ng/g dw in Orchard 1 and 15.9 ng/g dw in Orchard 2, respectively. C8-C14 PFCAs were the
dominant oxidation products of precursor compounds in orchard soils with an average incremental level of 13.3 ng/g dw, accounting for 53.2% of \(\sum \Delta [\text{PFCAs}] \) (Fig. 2D).

3.2 Occurrence and tissue-specific distribution of PFAS in citrus trees

3.2.1 Concentrations and compositions of PFAS in citrus tree tissues

For PFAS detected in citrus tree tissues, the concentrations of \(\sum \text{PFAS}_{\text{target}} \) in Orchard 1 and Orchard 2 were 1172–7496 ng/g dw and 92.5–2275 ng/g dw, respectively. Short-chain C4-C5 PFCAs (70.0–5343 ng/g dw) dominated in citrus tree tissues with an average relative abundance of 83.3% of the \(\sum \text{PFAS}_{\text{target}} \) (Fig. 2A, 2B and Table S12), implying a bioaccumulation preference for these short-chain PFAS. Regarding isomer composition, the average proportions of br-PFOA, br-PFOS and br-PFHxS in citrus tree tissues were up to 37.2% of the \(\sum \text{PFOA} \), 23.8% of the \(\sum \text{PFOS} \) and 32.3% of the \(\sum \text{PFHxS} \), respectively. The high concentrations of unknown precursors (Orchard 1, 326–13979 ng/g dw; Orchard 2, 131–1623 ng/g dw) were also found in citrus tree tissues (Fig. 2C, Table S15). C4-C5 PFCAs became the predominant degradation products in citrus tree tissues, with an average incremental concentration of 953 ng/g dw, making up about 78.2% of the \(\sum \Delta [\text{PFCAs}] \) (Fig. 2D). The ratios between incremental \(\sum \text{PFCAs} \) after the TOP assay to those before oxidation (\(\sum \Delta [\text{PFCAs}] / \sum [\text{PFCAs}]_{\text{before oxidation}} \)) in citrus tree tissues ranged from 0.57 to 2.72 with an average value of 1.63 (Table S15), indicating unknown precursors degradation may be an important source of target PFAS (McDonough et al., 2022; Zhou et al., 2021).

3.2.2 Distribution pattern of PFAS in leaves, branches and fruits
The concentrations of $\Sigma_{PFAS_{target}}$ generally followed the order of leaves > fruits > branches, which mainly reflected in the dominant component PFBA (Fig. 3A). For PFBA, the average level was up to 3579 ng/g dw in leaves, followed by 611 ng/g dw in fruits and 135 ng/g dw in branches. Extremely high concentrations in leaves may be because that large amounts of PFBA were transported along with transpiration steam in citrus trees and then accumulated in leaves, the major transpiration organs (Blaine et al., 2013; Wang et al., 2020b). Waxy cuticles and stomata in leaves may also trap target PFAS and unknown precursors in air and deposition, which were supported by the evidence from high levels of total target PFAS (330 ng/L) and total unknown precursors (2392 ng/L) in local precipitation (Liu et al., 2023). The precursors of short-chain PFAS exhibited a higher biotransformation potential (Jiao et al., 2020), contributing to the elevated levels of PFBA in leaves.

Compared with branches, fruits showed relatively higher concentrations of PFBA. Fruits are the nutrient reservoir in citrus trees and PFBA could be transferred to fruits along with nutrient delivery, but branches mainly acted as transient PFBA transport channels along with nutrients and water (Huang et al., 2018; Paško et al., 2021). Thanks to the smaller molecule and higher hydrophilicity, PFBA exhibited a higher translocation potential to leaves and fruits via branches (Felizeter et al., 2012; Jiao et al., 2020). For medium- or long-chain PFCAs or more hydrophobic PFSAs, such as PFHxA, PFOA, PFBS and PFHxS, the concentrations declined in the order: leaves > branches > fruits (Fig. 3A), which might be due to the retention of these chemicals by branch tissues (Blaine et al., 2014; Felizeter et al., 2014).
Unknown precursors exhibited higher levels in citrus trees than target PFAS, and PFBA (C4), PFHxA (C6) and PFOA (C8) were dominant degradation products (Fig. 3A and 3B). This observation may be associated with the potential air emission of semi-volatile precursor products, including perfluorobutane sulfonyl fluoride (PBSF), perfluorohexane sulfonyl fluoride (PHxSF), perfluoroctane sulfonyl fluoride (POSF), and perfluorotributylamine (PFTBA), from the FCF during production (seeing major products in SI 1.1). Leaves displayed much higher levels of different precursors than branches and fruits, which can be mainly attributed to the capture of airborne precursors by large areas of waxy cuticles and numerous stomata in leaves (Chen et al., 2018; Tian et al., 2018). Compared with fruits, branches exhibited higher levels for the precursors of PFHxA (ΔPFHxA) and PFOA (ΔPFOA), but lower levels for the precursors of PFBA (ΔPFBA) (Fig. 3B). This finding may be because the more mobile precursors of PFBA tend to accumulate in water-rich fruits, while those of PFHxA and...
PFOA, being larger molecules, are more susceptible to being retained in branches during transport.

3.2.3 Distribution pattern of PFAS in branch woods and barks

The concentrations of target PFAS in barks were greater than those in the corresponding woods (Fig. 4A), which may result from different transport mechanisms of PFAS in barks and woods. The transport of PFAS in wood primarily depends on less obstructive vessels, whereas that mainly relies on more retentive sieve tubes in barks (Cao et al., 2020; Comtet et al., 2017). Meanwhile, high protein contents in barks also facilitate the affinity to PFAS (Azizpor et al., 2022).

Interestingly, the levels of individual target PFAS in barks and woods gradually rose as the branch diameter decreased (Fig. 4A). This observation may be due to large quantities of PFAS accumulated in leaves being translocated to other organs mainly via bark sieve tubes from thin branches to thick ones. The transferred PFAS could be preferentially retained by the barks of smaller diameter branches (Comtet et al., 2017).

Driven by transpiration steam, massive PFAS in wood vessels with fewer biological barriers tend to transport from thick front branches to thin terminal ones (Lan et al., 2018; Yu et al., 2021), likely resulting in higher concentrations of PFAS in woods of smaller diameter branches. In addition, the higher accumulation potentials in the woods of thin branches may also be partly contributed by the contamination transfer from contacted barks with high levels of PFAS (Lu, 2003). Furthermore, higher levels of unknown precursors of different chain-length PFAS (such as PFBA, PFHxA, and PFOA) were also found in barks compared to woods, and those in both barks and woods
increased with diminishing branch diameters (Fig. 4B). Potential uptake of target PFAS and unknown precursors from air and deposition by exposed barks also contribute to higher contamination levels than those in corresponding woods (Jin et al., 2018; Liu et al., 2019).

3.2.4 Distribution pattern of PFAS in citrus peels, pulps and seeds

As the major target PFAS component in citrus fruits, PFBA exhibited the highest concentrations in peels, followed by pulps and then seeds, which was consistent with the concentrations of ∑PFAS target. However, regarding the concentrations of medium- or long-chain PFCAs (e.g., PFHxA and PFOA) or more hydrophobic PFSAs (e.g., PFBS and PFHxS), the sequence displayed as peels > seeds > pulps (Fig. 5A). PFAS can be transported to fruits along with nutrients and water through branches.
Citrus peel is the tissue that connects the branch to the edible pulp, which may result in PFAS first entering the peel and then successively moving to the pulp and seed. As the first tissue in fruit being exposed to PFAS, peels also contain rich proteins (9.73%), facilitating the retention and bioaccumulation of PFAS (Romelle et al., 2016; Zhou et al., 2020). Due to the high-water content of pulps (87.8%) compared to seeds (5.3%) (Aranha and JoRGe, 2013; Chavan et al., 2018), pulps tended to accumulate PFBA that is more hydrophilic than its long-chain homologs. As the reproductive organs, citrus seeds contain much more proteins than pulps (seed, 12.8%; pulp, 1.2%) (Aranha and JoRGe, 2013; Yang, 2018), making seeds more prone to amass hydrophobic PFAS with medium or long carbon chains (e.g., PFHxA and PFOA) or sulfonate groups (e.g., PFBS and PFHxS).

It is worth noting that the concentrations of \sumPFAS target in citrus pulps on a wet weight (ww) basis (Orchard 1: 94.5 ng/g ww; Orchard 2: 29.8 ng/g ww) in this study.
were much higher than those in fruits purchased from markets, such as apple (1.21 ng/g ww), pear (1.10 ng/g ww), strawberry (0.80 ng/g ww), lemon (0.78 ng/g ww), orange (0.72 ng/g ww), cherry (0.62 ng/g ww), grapefruit (0.09 ng/g ww), peach (0.09 ng/g ww), and grape (0.09 ng/g ww) (D’Hollander et al., 2015; Sznajder-Katarzynska et al., 2018). Therefore, potential health risks posed by consuming contaminated citruses in the study could need attention. Furthermore, large amounts of unknown precursors (131‒1865 ng/g dw) in fruit tissues were also found based on the TOP assay. The concentrations of the precursors of PFBA (ΔPFBA: 69.1–1622 ng/g dw) in fruit tissues were peels > pulps > seeds. In contrast, for the precursors of PFHxA (ΔPFHxA: 8.70–68.7 ng/g dw) and PFOA (ΔPFOA: 9.84–112 ng/g dw), the corresponding levels were peels > seeds > pulps (Fig. 5B). This finding may be due to the precursors of more hydrophilic PFBA tending to accumulate in water-rich pulps, while those of more hydrophobic PFHxA and PFOA are susceptible to being amassed in seeds containing more proteins. Additionally, high levels of target PFAS and unknown precursors in citrus peels may be partly attributed to direct uptake from air and deposition (Liu et al., 2023; Wang et al., 2022a).

Upon evaluating the RFBs, it is clear that peels have a more significant impact on the overall fruit bioaccumulation potential of PFAS than the combined effects of pulps and seeds, even though pulps constitute the majority of the whole fruit weight (Table S10). For \(\Sigma_{\text{PFAS}} \) target, peels, pulps, and seeds contributed approximately 53.2%, 43.9%, and 2.9% to the total contamination burden of whole citrus fruits in Orchard 1; in Orchard 2, their respective contributions were 62.2%, 35.1%, and 2.7% (Fig. 6A).
For individual PFAS, pulps played a relatively more crucial role in the bioaccumulation of shorter-chain PFAS, and the relative burdens of pulps decreased with increasing carbon chain lengths of PFAS. This observation was supported by the evidence from relative burdens of pulps to PFBA (Orchard 1, 44.9%; Orchard 2, 36.4%), PFHxA (Orchard 1, 32.6%; Orchard 2, 19.1%), and PFHpA (Orchard 1, 12.7%; Orchard 2, 9.3%) (Fig. 6B, 6C and 6D). Regarding PFAS with the same carbon chain length, higher pulp burdens of PFBA with a carboxylic group (Orchard 1, 44.9%; Orchard 2, 36.4%) were observed compared to those of PFBS with a sulfonate group (Orchard 1, 31.5%; Orchard 2, 18.1%) (Fig. 6B and 6E).

Compared with pulps, peels displayed a higher relative burden for PFAS with longer carbon chain or sulfonate group (Fig. 6B, 6C, 6D, and 6E), primarily due to the
higher protein content in peels than in pulps (peels, 9.73%; pulps, 1.2%). Based on the TOP assay, burden patterns of unknown precursors (reflected in Δ[PFCAs]) in different fruit tissues were similar to those of \sumPFAS$_\text{target}$, but with a notable distinction of higher relative burdens of \sumΔ[PFCAs] in peels (Fig. 6F), which could be associated with the large amounts of precursors in air and deposition (Liu et al., 2023; Tian et al., 2018).

3.3 Bioaccumulation specificities of individual PFAS

In general, citrus trees tended to accumulate shorter-chain PFAAs, and a linear decrease in the logarithm of BAFs (\log_{10}BAFs) with increasing carbon chain lengths of C4–C8 PFCAs and PFSAs was observed in various tissues, including leaves, branches (barks and woods), and fruits (peels, pulps, and seeds) (Fig. 7A). Furthermore, bioaccumulation potentials in citrus tree tissues varied for PFAAs with different functional groups (Ghisi et al., 2019; Jiao et al., 2020). For PFAAs with the same carbon chain length, PFCAs with a carboxylic group generally exhibited higher BAFs than PFSAs with a sulfonate group (Fig. 7A). These findings may be attributed to the lower K_{ow} values of PFAAs with shorter carbon chains or carboxylic groups, which display stronger hydrophilicity and are more easily taken up by roots and transported to different tissues of citrus trees (Blaine et al., 2013; Felizeter et al., 2014). It was discovered that the \log_{10}BAF of individual linear PFAAs was linearly negatively correlated with the corresponding logarithm of K_{ow} ($\log_{10} K_{ow}$) (Fig. S1).
Fig. 7. Bioaccumulation factors (BAFs) of PFAS with different molecular structures in citrus tree tissues.

Note: the abbreviations are explained as follows. Tn: thin branches (D ≤ 2 mm); Md: middle branches (2 mm < D ≤ 5 mm); Tk: thick branches (D > 5 mm); D: the branch diameters.

Notably, compared to linear counterparts, higher BAFs of branched-chain isomers of PFOS, PFOA, and PFHxS demonstrated the isomer-specific
bioaccumulation capacities in citrus tree tissues (Fig. 7B). The greater hydrophilicity
of branched-chain isomers facilitates their root uptake from soils and more effective
transfer to citrus tree tissues (Chen et al., 2015; Schulz et al., 2020). PFEAs, such as
HFPO-TA and GenX, as novel alternatives to PFOA, exhibited lower bioaccumulation
capacities in various tissues of citrus trees compared with PFOA (Fig. 7C). This
phenomenon may be ascribed to the unique ether bond in carbon chains of these novel
chemicals, which could improve the sorption with soil minerals and result in reduced
mobility and bioavailability (Qi et al., 2022; Zhi et al., 2022). However, it was
suggested that the BAFs of PFOA were generally lower than those of GenX in rice
grains in a previous study (Liu et al., 2022). Such an opposite phenomenon may be
because that rice is cultivated in a water-soaked environment by most, and the more
soluble GenX appears to be more biologically effective under flooded conditions
(Wang et al., 2019; Yamazaki et al., 2023).

Compared to those in leaves of local vegetables (e.g., carrot, 67.1; asparagus
lettuce, 19.9; Chinese cabbage, 61.3) (Liu et al., 2023), much higher BAFs of
\(\sum_{\text{PFAS}_{\text{target}}} \) (up to 104) were found in citrus tree leaves in this study, possibly resulting
from their longer growth period. However, compared to different edible parts of
vegetables grown in this area (such as edible roots, stems, and leaves), citrus pulps
exhibited lower bioaccumulation potentials of PFAS of varying carbon chain lengths
and functional groups, which was supported by the evidence from the BAFs of PFBA,
PFHxA, PFOA, PFBS, PFHxS and GenX in citrus pulps, radish roots, asparagus lettuce
stems, and Chinese cabbage leaves (Fig. S2). This finding may be ascribed to greater
retention due to longer distances and more biological barriers during PFAS transport to fruit pulps. Therefore, compared to vegetables, citrus tree planting could be an effective strategy to reduce crop bioaccumulation and potential environmental risks of PFAS in contaminated agricultural lands.

3.4 Human exposure estimation and health risks of PFAS for local urban and rural residents via contaminated citrus fruits

Since significant amounts of unknown precursors may be transformed into target PFAS during digestion and other biochemical processes in the human body (Berhanu et al., 2023; Wen et al., 2018), the human exposure risks may be underestimated based on the detected target PFAS alone (Diao et al., 2022; McDonough et al., 2022). In order to evaluate the underestimation of PFAS through citrus consumption for local residents, the comparison was conducted for human exposure risks between ignoring and considering degradation potentials. Human exposure estimation was based on the total and individual PFAS concentrations in citrus at upper limits and dietary habits of local urban and rural residents. If we only considered detected target PFAS and neglected degradation potentials of precursors in citrus pulps, as is traditionally done in human exposure and risk assessment, the EDIs of PFOA, PFHxA, and PFBA would be underestimated by factors of about 70, 1.6, and 0.5, respectively (Fig. 8A and 8B, Table S16). Based on the TOP assay, the overall contribution of potential precursor degradation to human exposure to PFAS via citrus consumption was estimated to be approximately 36%, with individual exposure contributions of 32.5% to PFBA, 61.1% to PFHxA, and 98.6% to PFOA (Fig. 8C).
These new findings demonstrate that taking into account precursor degradation potentials in human exposure and risk assessment is critical for better protection of fruit consumers.

Fig. 8. Estimated daily intakes (EDIs) of PFAS via the consumption of contaminated citrus (ng/kg·bw/day) for local urban and rural residents with considering or ignoring TOP.
As such, the TOP assay was taken into account along with detected target PFAS in citrus pulps, aiming to provide a more comprehensive health risk assessment. In general, the EDIs of \sumPFAS were highest for toddlers (241 ng/kg·bw/day in urban; 92.7 ng/kg·bw/day in rural) mainly owing to their higher consumption per body weight, and showed a declining trend with increasing age groups (Fig. 8D and 8E). Much higher EDIs of PFAS for different age groups in urban rather than rural areas were likely due to citrus consumption preferences in local urban diets (Fig. 8D, 8E, 8F and 8G). Notably, the EDIs of PFAS through consuming contaminated citruses highlight the necessity for human health risk assessment. Although there is a lack of guidelines for dietary intake of PFAS in China, tolerable daily intake (TDI) values for some PFAS have been set in other parts of the world. For legacy long-chain PFAAs, PFOA (0.23–8.14 ng/kg·bw/day) showed much higher EDIs than PFOS (0.002–0.08 ng/kg·bw/day), with the maximum EDI of PFOA (8.14 ng/kg·bw/day) being higher than its TDI value (3 ng/kg·bw/day) proposed by U.S. Agency for Toxic Substances & Disease Registry (ATSDR) and close to the magnitude order of its TDI value (20 ng/kg·bw/day) recommended by U.S. Environmental Protection Agency (USEPA) (ATSDR, 2018; USEPA, 2016), suggesting potential health risks. According to the Minnesota Department of Health, the TDI values for PFBA, PFHxA, and PFBS were evaluated as 2900, 150, and 84 ng/kg·bw/day, respectively (Minnesota Department of Health, 2018, 2021, 2022). Despite that the EDIs of PFBA (6.05–214 ng/kg·bw/day), PFHxA (0.29–10.2 ng/kg·bw/day), and PFBS (0.01–0.43 ng/kg·bw/day) via consumption of contaminated citruses were much lower than their corresponding TDI values (Table
S17), the human exposure of these short-chain PFAS may exacerbate cumulative health risks, mainly due to their similar toxic effects to PFOA and higher placental transfer efficiency (Gao et al., 2019).

4. Conclusions and perspectives

The results of this study indicate that planting citrus in contaminated fields nearby the FCF may result in concerning levels of target PFAS and unknown precursors in multiple citrus tree tissues. Short-chain, branched or carboxylic acid-based PFAS generally showed higher bioaccumulation capacities than their relatively hydrophobic counterparts in citrus tree tissues; while alternative PFEAs (e.g., HFPO-TA and GenX) exhibited lower BAFs than structurally similar PFAAs. On the whole, more hydrophilic PFAS and precursors demonstrated higher translocation potentials and tended to accumulate in water-rich tissues (for example citrus pulps); while more hydrophobic ones were susceptible to be retained by biological barriers and amassed in protein-rich tissues (such as barks, peels and seeds). Among all citrus tree tissues, the highest concentrations of target PFAS and unknown precursors were found in leaves.

Given that the much lower bioaccumulation potentials of PFAS in citrus pulps compared with edible parts of different vegetables, planting citrus trees may be an alternative strategy to reduce the pollution of plant-derived foods from contaminated fields, but it should be a concern of potential environmental hazards posed by heavily-contaminated fallen leaves and peels. When assessing the human health risk from contaminated citrus, precursor degradation, often not being taken into account, was found to contribute considerably to total PFAS exposure, and this finding facilitated to
advance a more comprehensive risk assessment of PFAS from citrus ingestion or other exposure pathways to safeguard public health. Moreover, more toxicological studies on the cumulative hazards of PFAAs, alternatives and precursors are urgently needed to precisely evaluate their health threats.
CRediT author statement

Shun Liu: Investigation, Resources, Formal analysis, Data curation, Writing - Original Draft, Visualization. Zhaoyang Liu: Conceptualization, Methodology, Validation, Writing - Review & Editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by the National Natural Science Foundation of China [grant number 41807137], Natural Science Foundation of Hubei Province [grant number 2022CFB284 and grant number 2020CFA013], Project 2662021ZHQL001 supported by the Fundamental Research Funds for the Central Universities, National Key Research and Development Program of China [grant number 2020YFC1807001]. We would like to thank the editors and reviewers for their valuable comments and suggestions.
References

Agency for Toxic Substances and Disease Registry. 2018. Toxicological Profile for Perfluoroalkyls
(Draft for Public Comment). US Department of Health and Human Services, Public Health
Service Atlanta, GA.

Aranha, C.P.M. and Jorge, N. 2013. Physico-chemical characterization of seed oils extracted from
oranges (Citrus sinensis). Food Science and Technology Research 19(3), 409-415.

Azizpor, P., Sullivan, L., Lim, A. and Groover, A. 2022. Facile labeling of sieve element phloem-
protein bodies using the reciprocal oligosaccharide probe OGA (488). Frontiers in Plant Science
13, 809923.

compounds in the environment and the blood of residents living near fluorochemical plants in

Barzen-Hanson, K.A., Roberts, S.C., Choyke, S., Oetjen, K., McAlees, A., Riddell, N., McCrindle, R.,
Ferguson, P.L., Higgins, C.P. and Field, J.A. 2017. Discovery of 40 classes of per-and
polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-
impacted groundwater. Environmental Science & Technology 51(4), 2047-2057.

carboxylate, sulfonate, and sulfonamide isomers by liquid chromatography-tandem mass
spectrometry. Analytical Chemistry 79(17), 6455-6464.

degradation of per-and polyfluoroalkyl substances (PFAS): Biotransformation routes and

Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse

Blaine, A.C., Rich, C.D., Sedlacko, E.M., Hundal, L.S., Kumar, K., Lau, C., Mills, M.A., Harris, K.M.
and Higgins, C.P. 2014. Perfluoroalkyl acid distribution in various plant compartments of
edible crops grown in biosolids-amended soils. Environmental Science & Technology 48(14),
7858-7865.

Cao, Y., Ma, C., Chen, H., Zhang, J., White, J.C., Chen, G. and Xing, B. 2020. Xylem-based long-
distance transport and phloem remobilization of copper in Salix integra Thunb. Journal of
Hazardous Materials 392, 122428.

