
Intent-Based Cloud CDNs:
Rethinking the Communication
Mechanism Between Content
Providers and Cloud CDN
Operators via Intent-Based

Northbound Interface

Shiyam Alalmaei, BSc, MSc

School of Computing and Communications

Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

December, 2023

I dedicate this thesis to my parents, whose sacrifices and encouragement shaped
my path. To my family, whose unwavering support and love have been my anchor
throughout this challenging journey.

This work is also dedicated to my mentors and advisors, whose guidance and
expertise have been invaluable in shaping my intellectual growth. To my colleagues
and friends who shared in the highs and lows of this academic adventure, your
camaraderie added immeasurable richness to the experience.

May this work contribute, in however small a measure, to the vast body of human
understanding in this field. With heartfelt appreciation and deep gratitude, this thesis
is dedicated to those who made this academic odyssey a reality.

i

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in
whole or in part, for a degree at this, or any other university. This thesis does not
exceed the maximum permitted word length of 80,000 words including appendices
and footnotes, but excluding the bibliography. A rough estimate of the word count
is:

37067

Shiyam Alalmaei

ii

Intent-Based Cloud CDNs: Rethinking the Communication Mechanism
Between Content Providers and Cloud CDN Operators via Intent-Based

Northbound Interface
Shiyam Alalmaei, BSc, MSc.

School of Computing and Communications, Lancaster University
A thesis submitted for the degree of Doctor of Philosophy. December, 2023

Abstract

Content Delivery Networks (CDNs) are an important solution for easing Internet
network traffic congestion and improving response latency. There is a growing trend
to deploy Cloud CDNs (CCDNs) to provide more flexibility compared to traditional
CDNs. Today, regardless of the current technological advancements, most CCDNs
still make their resource and cache management decisions while being unaware of
what Content Providers (CPs) want to achieve. For instance, the APIs of prominent
CCDNs (such as Amazon CloudFront, Google Cloud CDN, and Microsoft Azure CDN)
do not allow CPs to express their high-level targets, e.g., requests/region. Instead,
CPs are mainly limited to specifying the desired geographical coverage and the origin
content server.

Fortunately, there has been an increasing interest in the Intent-Based Networking
(IBN) paradigm, which aims to allow users to express what they want to do (in
the form of an intent) instead of how to do it. By employing IBN, CCDNs could
move towards a communication scheme that is more adaptive, flexible, and portable,
that tries to automate meeting the CP’s intent target throughout the pre- and post-
deployment phases of a service.

In this thesis, we present a solution to enable such Intent-Based CCDN. We
illustrate how microservices modularity could be utilized in the intent translation
process, decomposing intents into behavioral abstract policies that in turn get
translated into technical realizations as microservices. This provides a more flexible,
cost-effective, interoperable solution, and enables stakeholders to compare and
alternate between microservice alternatives depending on the CP’s intent.

We propose and implement a Low-Cost Intent (LCI) that targets cost reduction
while provisioning a CCDN. We evaluate several realizations of this LCI, namely LCI1,
LCI2 and LCI3 via selecting different microservice alternatives (i.e., leading to differ-
ent overall CCDN deployments) for each. Additionally, we propose and implement
different LCI refinement algorithms for performance improvement in various traffic
scenarios. We conduct our evaluation experiments on Google Kubernetes Engine
(GKE), and test it using traces of real CDN traffic obtained from a major ISP.

Evaluating our refined LCI different realizations against a baseline of GKE

iii

demonstrated the differences between these varying options. The best was LCI1 which
reduced infrastructure cost by up to 10% in return for a 2% rise in dropped requests.
On the other hand, although LCI2 also led to cost reduction up to 10%, it caused an
increased request drops by almost 20%. Finally LCI3 led to the highest infrastructure
cost reduction by up to 20% but in return for the highest rise in dropped requests
by 40%. Interestingly, in a traffic bursts scenario, although the refined LCI resulted
no cost reduction, it actually outperformed the baseline by reducing the amount
of dropped requests by 30%. Accordingly, we discuss the factors that led to these
different variations between the different LCI flavors based on their corresponding
selected microservice alternatives.

iv

Publications

Only one publication, shown below, has been created directly from the thesis, from
which large portions of this published work are used within Chapter 2 and Chapter
3:

Shiyam Alalmaei et al. (Nov. 2020). “SDN heading north: Towards a declarative
intent-based northbound interface”. In: 16th International Conference on Network
and Service Management (CNSM). doi: 10.23919/CNSM50824.2020.9269118

The following publication has been generated while developing this thesis, and to an
extent has guided the thesis into what it has become:

Shiyam Alalmaei et al. (Dec. 2019). “OpenCache: Distributed SDN/NFV based in-
network caching as a service”. In: Advances in Data Science, Cyber Security and IT
Applications 1098, pp. 265–277. doi: 10.1007/978-3-030-36368-0_22

v

https://doi.org/10.23919/CNSM50824.2020.9269118
https://doi.org/10.1007/978-3-030-36368-0_22

Acknowledgements

I would like to express my heartfelt gratitude to the individuals and institutions
that have supported me throughout the completion of my doctoral journey. This
work would not have been possible without their unwavering support, encouragement,
guidance, and contributions. I am profoundly grateful to my primary advisor, Prof.
Nicholas Race, for his great support, tremendous patience, invaluable insights, and
relentless dedication to my success. His insightful feedback, constructive criticism,
and encouragement have been instrumental in shaping this work.

I am deeply thankful to my co-advisors, Dr. Yehia Elkhatib, Dr. Matthew
Broadbent, and Dr. Samia Chelloug, whose expertise, guidance, and diverse
perspectives have enriched this research and broadened my horizons which have been
an extraordinary source of inspiration. I am indebted to Dr. Yehia Elkhatib for
his exceptional mentorship and availability even during his busy schedules. His
mentorship, expertise, boundless patience, and belief in my abilities have been the
driving force behind this research. His dedication to my growth as a scholar has been
truly invaluable.

I am equally appreciative to the members of my thesis committee, Dr. Daphne
Tuncer, Dr. Charalampos Rotsos and Prof. Paul Smith, for their rigorous evaluation
of my work, valuable feedback, constructive criticism, and insightful suggestions,
which greatly enriched the quality of this thesis.

My deepest gratitude extends to my parents, Prof. Amira Faloda and Dr. Mo-
hammed Alalmaei for their unwavering love, encouragement, and support throughout
my academic journey and the completion of this PhD thesis. Their sacrifices and belief
in me have been the cornerstone of my success. My parents have been my constant
source of strength, offering a safe haven in times of uncertainty and a wellspring of
motivation in moments of doubt. I am truly fortunate to have parents who instilled
in me the values of hard work, resilience, and a love for learning. Their sacrifices
and dedication to my well-being and education have laid the foundation upon which
I have built my academic career.

I am also extremely grateful for my extended family, Auntie Dr. Ahlam, and
cousins Najlaa’ and Saleh for their unconditional love and support have been an
essential part of my journey. My family stood by me through the challenges and
triumphs of this long and demanding endeavor. Their patience, encouragement, and
sacrifices have made this achievement possible. I am profoundly thankful for the
countless ways in which they have enriched my life. This thesis is not just a reflection
of my own hard work, but also a testament to the enduring love and encouragement
of my parents and family. I am eternally grateful for their presence in my life.

I would like to thank my friends, fellow researchers and colleagues for their
camaraderie, stimulating discussions, and their understanding when I had to prioritize

vi

my work. Your friendship has made this journey more enjoyable. I am especially
thankful for my friends and colleagus, Dr. Ahlam Althobaiti, Dr. Dina Alhammadi,
Dr. Mehdi Bezahaf, Dr. Shrooq Alsenan and Dr. Lyndon Fawcett. They have
been a source of inspiration, and shared knowledge. Our intellectual discussions and
collaborative efforts have greatly enriched the quality of this work.

I am deeply also grateful for the financial support provided by Princess Nourah
Bint Abdulrahman University. This financial support has not only facilitated the
realization of my academic goals but has also contributed to my personal and
professional growth. I am immensely thankful for the opportunity they have provided,
which has enriched my academic journey in ways that extend far beyond the scope of
this thesis.

In conclusion, to all those mentioned and the many others who have helped me
along the way, thank you for being an integral part of this academic endeavor. This
thesis stands as a testament to our collective efforts, and I am truly grateful for your
support and encouragement.

vii

Contents

1 Introduction 1
1.1 Cloud Content Delivery Network (CCDN) 2
1.2 Policy Based Management Systems 3
1.3 The Shift Towards Autonomic Networks 4
1.4 The move towards Intent-Based Systems 5
1.5 Motivation . 7
1.6 Research Questions . 10
1.7 Thesis Aims and Contributions . 10
1.8 Thesis Structure . 12

2 Background and Related Work 14
2.1 Terminologies . 15
2.2 Network Softwarization . 16

2.2.1 Network Function Virtualization 17
2.2.2 Containerization . 18
2.2.3 Software Defined Networking 19

2.3 Autonomic Networks . 21
2.4 Microservices Architecture (MSA) . 22

2.4.1 Background of MSA . 22
2.4.2 Requirements Engineering in MSA 24
2.4.3 Multiple Criteria Decision Making (MCDM) 25

2.5 Intent-Based Northbound Interfaces 26
2.5.1 Intent Standardization Efforts 27
2.5.2 Intents and Policies . 28
2.5.3 Different Intent Types . 28
2.5.4 Meta-Analysis for Intent-Based Northbound Solutions 29
2.5.5 Intent-Based Northbound Solutions Limitations 32

2.6 Different CDN Flavors . 34
2.7 CCDN Operations . 35
2.8 CCDN Use Case Assumptions . 36

viii

2.9 CCDNs’ Related work and Used Technologies 37
2.10 Summary . 40

3 Design 42
3.1 Design Motivation and Aims . 43

3.1.1 Leveraging CDNs by different domains 43
3.1.2 Different CDN stakeholders’ collaboration 45
3.1.3 Bi-directional interaction between intent consumers and the CDN 46
3.1.4 Summary of Motivating Factors 47

3.2 Intent Expressions, Syntax, and Descriptors 48
3.2.1 Intent-to-Policy Mappings . 49

3.3 Architecture and Design . 51
3.3.1 Translation Layer . 54
3.3.2 Microservice Layer . 59
3.3.3 Database Layer . 60

3.4 Multiple Criteria Decision Making for CCDN Deployment 60
3.4.1 Analytical Hierarchy Process (AHP) 60
3.4.2 Analytical Hierarchy Process Computation 64
3.4.3 The AHP Graph for CP’s Targeted Workload Intent 66
3.4.4 The Corresponding CCDN Deployment to the CP’s Targeted

Workload Intent . 71
3.5 Different Intent Targets . 73
3.6 Intent Refinement . 74
3.7 Discussion . 76

4 Implementation 77
4.1 Communication Flow between Content Provider and the CCDN . . . 78
4.2 Implementing the Intent-Based CCDN 80
4.3 Intent Translation . 81

4.3.1 Multi-Criteria Decision-Making Module 81
4.3.2 CCDN Deployments Enumeration and Clustering Module . . . 83
4.3.3 Intent Technical Requirements Calculator Module 85

4.3.3.1 Usual traffic behavior with gradual traffic increase . . 87
4.3.3.2 Bursty Traffic behavior with sudden increase 87

4.4 CCDN Deployment via Google Kubernetes Engine (GKE) 91
4.4.1 Kubernetes Objects . 93

4.4.1.1 Kubernetes Deployment 93
4.4.1.2 Horizontal Pod Autoscaler 94

4.5 Summary . 95

ix

5 Evaluation 96
5.1 Experimental Methodology . 96

5.1.1 Intent Translation Evaluation 96
5.1.2 Intent Execution and Refinement Evaluation 97
5.1.3 CCDN Deployments Cost Calculation 102

5.2 Intent Translation (CCDN Pre-Deployment Phase) 102
5.2.1 Increasing Number of Criteria Results 104
5.2.2 Increasing Number of Microservices Results 104
5.2.3 Discussion . 105

5.3 CCDN Post-Deployment Phase . 106
5.3.1 Normal Traffic with Gradual Increase 106

5.3.1.1 Low-Cost Intents Performance Results 107
5.3.1.2 Discussion . 112
5.3.1.3 Low-Cost Intents Cost Results 114
5.3.1.4 Discussion . 120
5.3.1.5 Low-Cost Intents Performance-to-Cost Score Results 120
5.3.1.6 Discussion . 122

5.3.2 Traffic with Bursts . 122
5.3.2.1 Low-Cost Intents Performance Results 123
5.3.2.2 Discussion . 124
5.3.2.3 Low-Cost Intents Cost Results 126
5.3.2.4 Discussion . 126
5.3.2.5 Low-Cost Intents Performance-to-Cost Score Results 128
5.3.2.6 Discussion . 129

5.4 Summary . 129

6 Conclusions 134
6.1 Summary . 134
6.2 Contributions . 136
6.3 Future Work . 139

6.3.1 Exploring the standardized Intent Common Model 139
6.3.2 Extending current CCDN with different intent targets and their

translation . 140
6.3.3 Advancing intent APIs with Natural Language Processing . . 141
6.3.4 Resolving intent conflicts . 141

References 142

x

Appendix A Evaluation Extended Results 156
A.1 Detailed Experiment Tables for Normal Traffic Scenario 156
A.2 Detailed Experiment Tables for Traffic Bursts Scenario 172
A.3 Snapshots for CP and CCDN interaction 178

xi

List of Figures

1.1 Network Management Progression Towards Intents-Based Networking. 8

2.1 VMs vs. Containers (Adam Getz, 2021, Retrieved from https://bi-
insider.com/posts/virtual-machines-vs-containers/) 19

2.2 SDN Northbound Interfaces Categories 20
2.3 Intents, policies and operational commands. 29
2.4 Intent-Based Solutions Taxonomy . 32
2.5 CDN Variation Criteria . 34

3.1 CDN Operator and ISP Collaboration. 46
3.2 Bi-directional Interaction between users and the Intent-Based system

(Bezahaf et al., 2021) . 47
3.3 Abstract Policies Language Snapshot. 50
3.4 Intent-Based Framework. 55
3.5 CP’s Approval on Suggested CCDN Deployment. 56
3.6 CP’s Rejection of Suggested CCDN Deployment. 56
3.7 CP’s Update on Suggested CCDN Deployment. 57
3.8 CP’s Update on Suggested Performance Improvement. 59
3.9 Generic AHP Graph. 64
3.10 CP Workload Intent Target’s AHP Graph (weights on arrows are

omitted for figure clarity). 67
3.11 Different Possible CP Intent Targets. 73
3.12 MAPE-K Loop Mapping to Our Framework Components. 75

4.1 Communication Flow Between Content Provider and the CCDN. . . . 79
4.2 Clustered CCDN Deployments Based on Their Scores Towards the

Intent Goal. 84
4.3 Total CCDN Deployments Clusters Based on Their Scores Towards the

Intent Goal. 85

5.1 Normal Traffic with Gradual Increase. 98

xii

5.2 Bursty Traffic (the cluster re-sizing behavior was omitted due to its
stability throughout the test since the traffic bursts occurred frequently) 99

5.3 CCDN Experiment Setup on Google Cloud Platform. 100
5.4 Intent Translation Time (AHP Calculation and Clustering) for Varying

Number of Criteria. 103
5.5 Intent Translation Time (AHP Calculation and Clustering) for Varying

Number of Microservice Alternatives. 105
5.6 Average Number of Dropped Requests in a Week. 110
5.7 Dropped Requests Throughout a Week. 111
5.8 Total Dropped Requests in a Week. 112
5.9 Performance Ratio Comparisons Against Baselines (higher is better). 113
5.10 Cost($) Throughout a Week. 115
5.11 Cost($) in a Week. 118
5.12 Cost Ratio Comparisons Against Baselines (higher is better). 119
5.13 Performance-to-Cost Ratio Comparisons Against Baselines (higher is

better). 121
5.14 Dropped Requests During Traffic Bursts. 123
5.15 Performance Ratio Comparison Against Baselines During Traffic Bursts

(higher is better). 125
5.16 Cost Ratio Comparison Against Baselines During Traffic Bursts (higher

is better). 127
5.17 Performance-to-Cost Ratio Comparison Against Baselines During Traf-

fic Bursts (higher is better). 128

A.1 CP’s Approval on Suggested CCDN Deployment. 178
A.2 CP’s Rejection of Suggested CCDN Deployment. 178
A.3 CP’s Update on Suggested CCDN Deployment. 179
A.4 CP’s Update on Suggested Performance Improvement. 180

xiii

List of Tables

2.1 A comparison between policies and intents. 28
2.2 Summary of the results of our meta-analysis of intent-based solutions. 30
2.3 A comparison between current vCDN solutions. 38

3.1 Basic expression syntax. 50
3.2 Comparison Between AHP and NFR Frameworks. 61
3.3 The AHP Saaty’s Original Scale. 62
3.4 AHP Criteria . 69
3.5 AHP Scalability Sub-Criteria . 69
3.6 AHP Cost Sub-Criteria . 70
3.7 AHP Scalability of Microservices under Cache Size Category 70
3.8 AHP Scalability of Microservices under Cache Placement Startup Delay

Category . 70
3.9 AHP Scalability of Microservices under Refinement Category 70
3.10 AHP Cost of Microservices under Cache Size Cost Category 71
3.11 AHP Cost of Microservices under Cache Placement Cost Category . 71
3.12 AHP Cost of Microservices under Refinements Cost Category 71
3.13 Cache Size Microservice Alternatives Global Score 72
3.14 Cache Placement Microservice Alternatives Global Score 73
3.15 Refinement Microservices Alternatives Global Score 73

5.1 Compute Instances Costs in a Local Zone. 102
5.2 Compute Instances Costs in a Near-by Zone. 103
5.4 Performance Ratio to Baselines (higher is better) 109
5.6 Cost Ratio to Baselines (higher is better) 117
5.7 Performance-to-Cost Ratio to Baselines (higher is better) 117
5.8 Performance Ratio to Baselines in a Traffic Bursts Scenario 124
5.9 Cost Ratio to Baselines in a Traffic Bursts Scenario 126
5.10 Performance-to-Cost Ratio to Baselines in a Traffic Bursts Scenario

(higher is better) . 129

xiv

A.1 Baseline1 (GKE Autopilot) Dropped Requests During Scale-outs. . . 157
A.2 Baseline2 (Fully-Managed GKE) Dropped Requests During Scale-outs. 158
A.3 LCI1 Dropped Requests During Scale-outs. 159
A.4 Optimistically Refined LCI1 Dropped Requests During Scale-outs

(green rows represent the refinement occurrence). 160
A.5 Pessimistically Refined LCI1 Dropped Requests During Scale-outs

(green rows represent the refinement occurrence). 161
A.6 LCI2 Dropped Requests During Scale-outs (Part1: Sat - Tue). 162
A.7 LCI2 Dropped Requests During Scale-outs (Part2: Wed - Fri). 163
A.8 Optimistically Refined LCI2 Dropped Requests During Scale-outs

(Part1: Sat - Tue) (green rows represent the refinement occurrence). . 164
A.9 Optimistically Refined LCI2 Dropped Requests During Scale-outs

(Part2: Wed - Fri) (green rows represent the refinement occurrence). . 165
A.10 Pessimistically Refined LCI2 Dropped Requests During Scale-outs

(green rows represent the refinement occurrence). 166
A.11 LCI3 Dropped Requests During Scale-outs (Part1: Sat - Tue). 167
A.12 LCI3 Dropped Requests During Scale-outs (Part2: Wed - Fri). 168
A.13 Optimistically Refined LCI3 Dropped Requests During Scale-outs

(Part1: Sat - Wed) (green rows represent the refinement occurrence). 169
A.14 Optimistically Refined LCI3 Dropped Requests During Scale-outs

(Part2: Thurs - Fri) (green rows represent the refinement occurrence). 170
A.15 Pessimistically Refined LCI3 Dropped Requests During Scale-outs

(green rows represent the refinement occurrence). 171
A.16 Baseline1 (GKE Autopilot) Dropped Requests During Traffic Bursts. 173
A.17 Baseline2 (Fully-Managed GKE) Dropped Requests During Traffic

Bursts. 174
A.18 LCI2 Dropped Requests During Traffic Bursts. 175
A.19 Refined LCI2 (By Earlier Scaling) Dropped Requests During Traffic

Bursts. 176
A.20 Refined LCI2 (By Vertical Upgrade) Dropped Requests During Traffic

Bursts. 177

xv

Chapter 1

Introduction

Content providers face enormous pressure to satisfy increasingly stringent require-
ments. In one respect, low-latency content delivery is of utmost priority. Consider
the reports that the volume of Google search requests drop by 0.59% for every 400ms of
delay (Brutlag, 2009), and that Amazon profits are cut by 1% for every 100ms increase
in latency (Flach et al., 2013). In another respect, users today expect the best possible
quality in video experiences. Streaming formats evolve from high-definition (HD) to
Ultra HD, 3D, Object Based Media (OBM) (Lyko et al., 2022), and beyond. Overall,
the global video streaming market size is predicted to grow to $1902.68 Billion by
2030 (FortuneBusinessInsights, 2023b).

This imposes a significant burden on the underlying network infrastructure. This
has led to the emergence of Content Delivery Networks (CDN) for fast and reliable
content delivery. The core tenet behind a CDN is to place the actual responding
servers (also called surrogates) as close as possible to the users across different regions.
Specifically, they manage content delivery and infrastructure decisions such as caching,
load balancing, etc. The CDN can push and pull the content to surrogate servers
located close to the users; thus, they can obtain the desired content nearby. As
such, CDNs are an important solution for easing Internet network traffic congestion,
improving response latency, and optimizing user experience.

This huge demand has pressured the industry to implement and deploy numerous
CDNs at different scales worldwide. For example, Akamai CDN handles 20%–30%
of all web traffic (James, 2020). The CDN market is expected to witness steady
growth due to the increasing volumes of exchanged data on the Internet in line
with the continuous rollout of high-speed networks. It is predicted to expand at
a compound annual growth rate (CAGR) of 23.0% to a revenue of $95.37 Billion
in 2030 (GrandViewResearch, 2023). However, the application of CDN is not
confined to content delivery; they can also provide a spectrum of services such as
smart health (Min Chen et al., 2017), smart cities (Mingkai Chen et al., 2019), e-

1

Chapter 1. Introduction

learning (Palau et al., 2003), vehicle monitoring (Xiong et al., 2018), and drone and
Unmanned Aerial Vehicle (UAV) monitoring (Asheralieva et al., 2019).

With the continuous development of many emerging technologies, such as
Cloud Computing, Autonomic Networking, Network Function Virtualization (NFV),
Software-Defined Networking (SDN), Microservices Architecture, etc., CDNs face new
opportunities and challenges. These advancements could enable a new generation of
CDNs. For instance, the increasing growth of the SDN/NFV market is anticipated
with a CAGR of 16.75% by 2028 (TheExpressWire, 2023) and a CAGR of 21.6% for
the Cloud Microservices market by 2030 (FortuneBusinessInsights, 2023a). Adopting
these advancements could maintain and even accelerate the predicted growth of the
CDN market.

Therefore, although there is an increasing popularity of CDNs in several domains
targeting diverse service consumers, most CDNs still make their resource and cache
management decisions while being unaware of the high level targets that service
consumers want to achieve. Additionally, CDN operators are facing a challenge of
meeting a larger number and wider variety of customization requirements for CDNs
based on service consumers demands. However, owing to the high cost and complexity
of this traditional approach, it is important to investigate the incorporation of different
network management paradigms and autonomic solutions that aim to lift some of
the burden of this skill-demanding decision-making process from CDN operators,
and facilitate better communication between consumers and CDNs to improve their
interaction and achieve better performance of service deployment and content delivery.

1.1 Cloud Content Delivery Network (CCDN)

In this thesis, we focus on Cloud CDNs (CCDNs). Recent advances in Cloud
Computing allow leasing resources (i.e., compute, memory, storage, and bandwidth)
to build CDNs in the cloud (F. Chen et al., 2012). There is a growing trend to
deploy CCDNs. The global CCDN market is estimated at $6.7 Billion in 2022
and is projected to reach $30.5 Billion by 2030 (GlobeNewsWire, 2023a). They
alleviate major limitations of traditional CDNs that rely on fixed physical caches,
by leveraging virtualization technologies (such as NFV) to provide more flexibility
in dynamic infrastructure provisioning, offering a virtual CDN (vCDN) service as a
Software-as-a-Service (SaaS) model that can be deployed on demand. This embodies
the B2B2X (Business to Business to X) (TMForum, 2014) business model, where in
this context, the First B are the CCDN operators, and the Second B are the Content
Providers (CPs) who use the CCDN to provision their content to their end-users (X).
Accordingly, this delegates the content distribution and infrastructure management
to the CCDN operator since the CP is agnostic to the infrastructure and caching

2

Chapter 1. Introduction

management details.
CPs are the early adopters of cloud services to meet their end-user demands. In

the past few years, popular cloud vendors started to compete in the video market
and provide CDN services to cache and distribute content for CPs, like Amazon
CloudFront (Amazon, 2023), Google Cloud CDN (Google, 2023c), and Microsoft
Azure CDN (Microsoft, 2023b). Adopting CCDN solutions claims to offer a cost-
effective solution of CCDN on a pay-per-service basis. Moreover, hosting CDN services
over the cloud increases the availability of the services exponentially by leveraging the
increased number of points-of-presence (PoPs) (Jia et al., 2017) (Jayakumar et al.,
2018). For example, today Amazon Cloudfront maintains over 450 PoPs across 49
countries (Amazon, 2023), Google Cloud CDN operates caches in more than 200
countries across the world (Google, 2023f), and Microsoft Azure CDN has 192 PoPs
across 109 metro cities (Microsoft, 2023a).

In comparison to traditional CDNs, CCDNs have increased scalability (Cisco,
2017), flexibility (Cisco, 2017), elasticity (Cisco, 2017), reliability (Altomare, 2023),
and security (Altomare, 2023). They have also reduced the prices for content storage
and delivery by orders of magnitude (F. Chen et al., 2012) and reduced capital
expenditure (CAPEX) and operational expenditure (OPEX). This makes CCDNs an
affordable option for small and large-scale content providers, such as small businesses,
government, and educational organizations (Broberg et al., 2008).

As a result, cloud service providers and CCDN operators are expected to deliver
their cloud solutions and services to more and more service consumers (CPs in this
context) while meeting a larger number and wider variety of customization require-
ments for clouds based on CP demand. This situation calls for numerous highly skilled
CCDN operators to orchestrate cloud services in accordance with user requirements.
However, due to the high cost and complexity of this traditional approach, it is
important to investigate network management paradigms and autonomic solutions
that could improve and facilitate this decision-making process.

1.2 Policy Based Management Systems

As network and cloud management progressed, a management paradigm emerged
known as Policy-Based Management (PBM), which could lift up some of the burden
of the traditional decision-making process from CCDN operators that has been
discussed in the previous Section 1.1. It enables network operators, administrators, IT
personnel, etc. to define, consume, and translate policies that express precisely what
to do and under which circumstances (Du et al., 2017). This management paradigm
introduces high-level specifications that a network should meet.

A policy definition is a set of rules that govern the choices in the behavior of

3

Chapter 1. Introduction

a system (Clemm et al., 2022). In specific, a network policy abides by the tuple:
events/conditions/actions (ECA) that guide the network to be configured. Therefore,
a policy defines what to do and under which conditions.

However, such systems cannot guarantee the network’s sustainability since they
cannot include all possible situations that may occur (Leivadeas et al., 2022). To
this end, knowledge management systems have been proposed that could facilitate
the decision-making process (Agoulmine et al., 2008). For this reason, appropriate
information modeling representation can be used to allow structuring the knowledge
and giving semantic meaning to network management operations through the use of
ontologies (Serrano et al., 2007).

Undoubtedly, the right combination of policies with good knowledge management
systems could bring the networks closer to autonomic operations which are discussed
in the next section. This could be achieved by allowing learning and reasoning
techniques to generate new policies to appropriately reconfigure the network (Jennings
et al., 2007).

1.3 The Shift Towards Autonomic Networks

The emergence of Autonomic Networks was due to the need for a self-managed system
that reduces the cost of having a well-skilled team that manages complex systems
(Behringer et al., 2015). Therefore, networks and computing paradigms have started
to change radically from the early 2000’s and shift away from traditional manual
system configuration and management. The self-managed Autonomic Network vision,
besides the management cost reduction, is to adapt and react to environmental
changes with no or little intervention of humans (Kephart et al., 2003). It usually
operates based on high-level rules or policies formed by the system administrators,
which often follow IF-THEN or event-condition-action (ECA) form (Kephart et al.,
2004). This concept is inducted from the early efforts on bio-inspired approaches in the
human nervous system, which emulates the behavior of the autonomic nervous systems
found in the human body and biological systems (e.g. blood sugar, temperature,
heartbeats control) without deliberate intervention (Horn, 2001), (IBM, 2006).

The first clear vision of the autonomic computing systems was proposed by IBM
(IBM, 2006). IBM characterized the self-management of an autonomic system in four
self-* properties, namely: self-configuration, self-healing, self-optimization, and self-
protection (Kephart et al., 2003), (Sinreich, 2006), (Parashar et al., 2004), (Sterritt,
2005), (Huebscher et al., 2008).

4

Chapter 1. Introduction

1.4 The move towards Intent-Based Systems

Current and future network services, applications, and systems are expected to
improve our society and lifestyle. Especially the systems that are moving towards
being self-configuring, self-managing, and self-optimizing. However, these abundant
possibilities offered to end-users, network operators, and administrators have created
a cumbersome system configuration process to adjust to all different stakeholders
and services (Behringer et al., 2015). Therefore, even with the current advancements
in PBM and autonomic systems, there is still a need to simplify the management
and configuration of the network in an autonomic way. (Szilágyi, 2021) Intent-
Based Networking (IBN) is such a paradigm that realizes simplified, flexible, and
agile network management and configuration with minimal external intervention.

Intent can be defined as a declarative, abstract, and vendor-agnostic way of
describing the targeted system state. It abstracts the objects and capabilities of the
system from the perspective of requirements and can be translated into advanced
policy rules that are used to provide a full lifecycle (Design/Build/Deploy/Validate)
to a system and services it provides (Clemm et al., 2022). Thus, it can automatically
convert, verify, deploy, configure, and optimize by itself to achieve the targeted state
of the system, and can automatically handle abnormal events to ensure the system’s
reliability according to the expressed intent (Pang et al., 2020).

Although IBN is a brand-new term and technology that ultimately aims at forming
an autonomic network by making it simpler to manage and operate(Clemm et al.,
2022), It does not aim to create a new communication paradigm from scratch. Instead,
it will be largely based on existing network frameworks that have already helped in
automating its provisioning and configuration, in which a network needs to manifest
all the necessary “self” properties (i.e., self-configuration, healing, optimization, etc.)
(Behringer et al., 2015). Hence, some of the main network technologies related to
IBN, such as Software Defined Networking (SDN), Network Function Virtualization
(NFV), and Network Policies, will be discussed in Chapter 2, Section 2.2.

IBN can be a programmable and customizable system automation, which can
realize Intent Representation, Global System Status Awareness, and Closed-loop
Optimization. Details are given as follows.

• Intent Representation: Users can tell the network their intent, regardless of the
used intent expression, the system needs to understand the intent and translate it
into a specific expression.

– Intent Expression: The very first component of IBN is the part that enables
users to interact with the IBN system to express their intent. Intents could be
either Prescriptive or Declarative. Each facilitates the expression of the desired
system target but at different levels and with different specifications. Regardless

5

Chapter 1. Introduction

of the intent expression choice, it should be submitted in a human-friendly way
(e.g., through natural language expressions, drop-down menus, etc.). In some
cases, the system should also interact with the user to guide them through
expressing their intents meaningfully.

– Intent Translation: After the high-level intent has been expressed and
submitted, obviously, it cannot be used directly to configure the system. Hence,
it should be translated into a set of behavioral policies that will be rendered into
low-level system configurations that can be technology-specific to the underlying
system infrastructure.

• Global System Status Awareness: The IBN framework needs to control and
adjust the system configurations to meet the intent goals based on the system
state. Therefore, the perception of the system status is indispensable and could be
achieved by means of monitoring and telemetry to provide adequate measurements
to guarantee reactive network adaptations according to the current conditions.

Accordingly, identifying and defining the metrics, resources status and configura-
tion, events, etc., is an essential part that helps with getting the relevant system
awareness with respect to the intent target. So, the target has to be measurable
(e.g., requests throughput, cost, etc.) where the goal is determined based on the
intent target, and thus, the equivalent metrics are continuously monitored and
compared to the expected target and how far they are from meeting it. Additionally,
it is important to detect abnormal system behavior (e.g., sudden traffic bursts,
resource crashes, etc.) or even a natural change in the service request behavior, in
order to take corresponding actions, where these detections could be either based
on a comparison against some predefined thresholds (e.g., X% increase in traffic
rate), or previous service behavior patterns.

– Intent Conflict Resolution: Different users may submit their intents inde-
pendently at the same time. This can easily lead to contradictory or conflicting
system configurations that could affect new or already deployed intents. Hence,
an IBN should have an Intent Conflict Resolution module that will be able to
disambiguate conflicting intents by proposing ways to resolve conflicts, negotiate
them, and ideally alert the user and/or the system administrator if the resolution
is not feasible.

– Intent Activation: After the conflict resolution, the IBN should proceed
with the provisioning of the requested service. Since intents may also include
personalized desired targets of the users. Accordingly, the IBN needs to deploy
each intent in a customized way that will eventually configure the system as
intended by the user.

6

Chapter 1. Introduction

• Closed-loop Optimization: According to the feedback of the global system
status, the gap between the current system configuration and the intent’s desired
target system state is inferred. The closed-loop system adjustment (full-lifecycle
management) is continuously performed to enhance the learning mode to adjust
the system configuration and finally satisfy the user intent.

– Intent Assurance: The previous Intent Activation component will only ensure
that the intent will be satisfied at the moment of its deployment. However, in
reality, systems present a highly dynamic nature both in time and space. Thus,
another indispensable component to creating the anticipated autonomous system
behavior (i.e., from the intent consumer’s perspective) is Intent Assurance. This
specific component will have to make sure that the system complies with the
intent throughout its whole lifetime. To do so, it has to take both proactive and
reactive measures towards the self-configuration and self-healing of the system
and help the users to refine their intent when a gap is detected between their
desired target and the system behavior.

Although IBN is a brand new term, from our previous discussion, it is clear that
it has strong ties with the past work that has been done around autonomic networks
and computing, and policy-based network management (Szilágyi, 2021). Obviously,
the early autonomicity directions put significant foundations for the IBN, especially
for the network assurance part. Nonetheless, the main focus of these early works
was focused on how the network can be auto-configured and self-managed with less
interaction between the user and the network itself.

Therefore, IBN surfaced the need for reducing the gap between different types of
users, ranging from a simple novice user to a highly experienced network administra-
tor, and an ever-evolving network infrastructure with all of the technological evolution
that we are encountering. Figure 1.1 demonstrates the progression towards IBN and
how the current network management paradigms, namely, Policy-Based Networking
in Section 1.2 and Autonomic Networking in Section 1.3 are connected with respect
to IBN.

1.5 Motivation

Today, regardless of the current technological advancements, especially with the
current direction toward IBN, most CCDNs still make their resources and caching
management decisions oblivious to what the CPs want to achieve. For instance,
the most popular CCDNs (e.g., Amazon CloudFront, Google Cloud CDN, and
Microsoft Azure CDN) APIs do not allow CPs to express their high-level targets
(e.g., requests/region, latency, etc.) since they are mainly limited to selecting the

7

Chapter 1. Introduction

Figure 1.1: Network Management Progression Towards Intents-Based Networking.

desired geographical coverage and specifying the origin content server. Some of them
offer APIs to configure some low-level technical details like the backend service load
balancing, health checks, session affinity, connections per instance, etc. (Google,
2023b). However, generic CPs with no technical background and who are only
interested in expressing their high-level intent, would face some challenges with
the current APIs. Therefore, with all of the current technologies evolution, next
deployment phase of CCDNs could move towards an interactive interface between
CPs and CCDN operators that deploy CCDN, which enables CPs to declare their
high-level targets and get updated on the CCDN’s ability to achieve these targets
throughout the service lifetime. This could possibly lead to better and more efficient
resources and caching management decisions by providing more adaptive, flexible,
technology-agnostic and portable CCDN that tries to meet the CP high-level target
in an automated way throughout the pre- and post- deployment phases of the service.

Moreover, most CCDNs offer pre-defined caching and resource management
that could possibly fall behind the rapid technology development and dynamic
demand changes. Therefore, the Microservices Architecture, which is a widely
adopted paradigm in today’s systems should be investigated and adopted in this
context. The Microservice Architecture (discussed in Chapter 2, Section 2.4)
facilitates faster system management, independent service deployment, increased
scalability and agility, the realization of user objectives, and reduced OPEX due
to less human involvement. CCDN microservices (e.g. caches, load balancers,

8

Chapter 1. Introduction

DNS servers, etc.) could be easily upgraded or scaled without affecting the other
functionalities. Moreover, this facilitates the realization of the CCDN functionalities
in different ways depending on the underlying microservice implementation in light
of CPs intent targets, which also enables CCDN operators to compare and alternate
between different microservices that provide the same functionality but with different
costs, performance, etc. Therefore, this provides a more flexible, cost-effective, and
portable solution that simplifies the CDN operator’s task and takes them a step
closer to autonomicity, and enables upgrading the CCDN with different and updated
microservices depending on the CP’s target.

Accordingly, with the expected growth of the Intent-Based Networking market
with a CAGR of 23.9% to reach $8.8 Billion by 2030 (GlobeNewsWire, 2023b), next
deployment phase of CCDNs could provide an Intent-Based interface between CPs and
CCDN operators which considers different types of CPs and their high-level targets,
and allows bi-directional communication between them, unlike the current limited
and rigid interfaces capabilities in CCDNs. However, there are several problems that
need to be considered:

1. Declarative CP intent expression for high-level targets: Most existing
intent expressions are prescriptive rather than declarative, which are mostly used
to express network-level requirements (Alalmaei et al., 2020). However, in the
context of CCDNs, there are more complex requirements that are beyond network-
level such as caching intents with high-level targets, and as such, cannot be easily
expressed via the current prescriptive-level intent expressions. Therefore, CPs need
an easier and higher-level expression that is purely declarative, to allow them to
express expected targets without the need for stipulating any low-level policies. For
example, a CP could express a high-level declarative intent as I want caching for
content X to handle 1,000 requests/second. In this expression, the CP only states
the required target rather than some prescriptive operational policies, and without
the need for any lower-level configurations.

2. Separation between the CCDN behavioral policies and underlying
technology: CCDNs need to keep up with the technology advancements and
demand changes. However, this is hard to achieve when the CCDN functionalities
are tightly coupled to the underlying technologies and implementations. Therefore,
it is important to separate the CCDN behavior from its actual realization. This
enables CCDN operators to think at a higher level and articulate abstract behavioral
policies without worrying about the implementation complexities. Moreover, this
provides a more flexible, cost-effective, and inter-operable solution by allowing
the same policy to be applied across different underlying technologies without the
need to define multiple variants. Different policy agents can be plugged into the
different underlying systems to translate abstract policies into a technology-specific

9

Chapter 1. Introduction

representation. This also enables comparing and alternating between different
realizations for the same abstract policies, which facilitates the collaboration
between different stakeholders in the policy definitions.

3. Translating high-level intents to lower-level policies: Proposing high-
level declarative intents that express desired operational targets necessitates
decomposition and translation processes to reach a representation that could both
be understood and achieved by the system yet abstract enough to govern the
behavior of the system rather than its technical functionality. The decomposed
policies represent the expressive system conditions, capabilities, requirements, and
constraints defined by the CCDN operator. Afterward, policies get translated to
lower-level system operations. Therefore, a mechanism is needed to manage this
translation process with respect to the CP’s target, which could leverage utilizing
useful technologies like the Microservices Architecture.

1.6 Research Questions

In light of the discussed motivation, we form the following key research question (RQ):
How can a CCDN Intent-Based Interface facilitate the communication
mechanism between a CP and a CCDN Operator?

In order to answer this, we break it down into 3 sub-questions that are answered
in the course of the presented work:

• RQ1: What are the limitations of state-of-the-art technologies (chiefly SDN, NFV,
and microservice architectures) in realizing adaptive deployment and management
of CCDNs with respect to CP requirements?

• RQ2: How can CPs (primarily, non-technical users) and CCDN operators
(technical users) express their requirements to the CCDN?

• RQ3: What solution is required to support intent translation and refinement, as
well as autonomic service deployment in a CCDN use case?

1.7 Thesis Aims and Contributions

This thesis aims to investigate the adoption of an Intent-Based Interface in CCDNs
that facilitate communication between a CP and a CCDN Operator. This includes the
design, implementation, and evaluation of a working solution for expressing high-level
CP intents, and realizing them within the operational constraints of the CCDN. The
above research aim leads to five main contributions provided by this thesis, which are
summarized as follows:

10

Chapter 1. Introduction

1. A specification of Declarative High-level Intent Expression for Content
Providers and Behavioral Prescriptive Policy Expression for CCDN
Operators: The thesis examines the expression syntax of both Content Providers
(non-technical users) and CCDN operators (technical users). A declarative
intent expression will be considered for Content Providers, whereas a behavioral
prescriptive policy expression will be considered for CCDN Operators. This is
achieved through a meta-analysis of existing intent and policy expressions to
identify prospects and gaps.

2. Design for an Intent-Based CCDN Framework: The aim of designing an
Intent-Based CCDN is achieved by conducting a meta-analysis of existing CCDN
solutions, as well as the integration of a variety of emerging technologies and trends.
In particular, this thesis makes use of Microservices Architecture and Autonomic
Networks. The former helps achieve a scalable, agile, flexible, and portable
solution, while the latter leads to less human involvement, cost reduction, and
self-managed adaptability. We provide a comprehensive design that contextualizes
and encompasses these elements.

3. An implementation of the Intent-Based CCDN Framework: A proof-of-
concept implementation is developed to evaluate and examine the effectiveness of
the above design. This follows the specification of the aforementioned design and
forms the basis for evaluating the integration of intents in the CCDN scenario. This
implementation will also help demonstrate the benefits of leveraging microservices
advancements.

4. An evaluation of the intent translation overhead and feasibility: Using the
proof-of-concept implementation, the thesis contributes an assessment of overhead
(in terms of delay) of the translation of high-level intent targets to lower-level
commands that deploy the corresponding CCDN. Specifically, we evaluate the
feasibility of the translation process with increasing problem sizes and different
dimensions (e.g., number of microservices, number of evaluation criteria).

5. An implementation, and performance and cost tradeoffs evaluation of
different Low-Cost Intent realization alternatives and their refinements:
Based on the implementation of our Intent-Based CCDN design, we create and
implement several Low-Cost Intent realization alternatives that aim at provisioning
Content Providers with lower-cost CCDNs. We evaluate and compare their
performance (in terms of dropped requests) and cost tradeoffs. We also implement
and evaluate their refinements to improve their performance.

11

Chapter 1. Introduction

1.8 Thesis Structure

This thesis is organized into six chapters. Following this introduction, we go through
some of the background of related technologies in Chapter 2. Specifically, we discuss
the trend toward the softwarization and modularization of networks and their services
via Microservice Architectures. This chapter also discusses Intent-Based Northbound
Interfaces in detail, where we distinguish between intents and policies, and discuss
different intent types based on their users and problem domains. Then, we discuss
thoroughly their current limitations. Additionally, we provide a meta-analysis of
some of the current Intent-Based solutions to summarize their characteristics and
limitations. Moreover, this chapter includes a classification for different CCDN flavors
based on different criteria such as their infrastructure and management schemes.
Finally, this chapter examines the current limitations of CCDNs, highlighting their
used technologies, and concluding their current limitations.

The following chapter, Chapter 3, presents our proposed design of an Intent-
Based CCDN platform that seeks to utilize emerging technologies to improve the
communication and management process between CPs and CCDN operators. This
includes our detailed motivation and aims, which have been influenced by a multitude
of sources, and result in a multi-layered architecture capable of meeting the CP’s intent
target throughout the service lifetime with respect to certain evaluation criteria and
behavioral policies defined by the CCDN operators and different possible stakeholders.

Chapter 4 starts with presenting the whole communication flow between the CP
and the CCDN system. Then it provides details of a proof-of-concept implementation
of the aforementioned design. This includes the Intent Translation modules in that
Layer, where we demonstrate the creation of the corresponding CCDN deployment
selection graph via the Analytic Hierarchy Process (AHP) which is our chosen Multi-
Criteria Decision Making (MCDM) tool. Further, we discuss the prioritization,
enumeration, and clustering of all possible CCDN deployments with respect to
the CP’s intent. Finally, we present the algorithms and implement our proposed
alternatives of Low-Cost Intents along with their refinement algorithms that aim to
improve their performances in different traffic situations.

In Chapter 5, we present our evaluation of the proof-of-concept implementation
and Low-Cost intent realizations and refinements in different traffic behavior scenarios.
Each of these evaluations takes place on a Google Kubernetes Engine (GKE)
Platform which is one of the popular Google Cloud services that benefit from its
wide infrastructure coverage and underlying technologies. In the first instance, we
demonstrate the overhead (in terms of delay) of the intent translation processes
that include the AHP graph creation and calculation with respect to the CP’s
intent to eventually prioritize all possible included microservices that form up a
CCDN deployment. We then examine the enumeration and clustering of all CCDN

12

Chapter 1. Introduction

deployments into different scored-clusters depending on their capability on achieving
the intent target. The performance and cost tradeoffs for all proposed Low-Cost
intents and the level of improvement after their refinements are then evaluated
and compared. Eventually, we evaluate these intents in different traffic-intensity
situations.

Finally, in Chapter 6, we present the contributions, impacts of this work, in
addition to outlining future avenues of research created as a result.

13

Chapter 2

Background and Related Work

There is a growing trend to deploy CCDNs that leverage the cloud computing
advancements. In 2022, the global CCDN market was estimated at $6.7 Billion,
and is projected to reach $30.5 Billion by 2030 (GlobeNewsWire, 2023a). This leads
the cloud service providers and CCDN operators to deliver their cloud solutions
and services to a larger number and wider variety of service consumers while
meeting more complex and diverse customization requirements for clouds based on
the service consumer’s demand. The challenge calls for many highly skilled CCDN
operators to orchestrate cloud services in accordance with users’ requirements. Today
CCDN operators can leverage the current technical advancements in the field of
Softwarization that deliver different services and applications with greater flexibility,
adaptability, agility, cost effectiveness and total reconfiguration of a network on the fly
in a matter of minutes rather than days (Manzalini et al., 2016), (Sousa et al., 2018),
(Cerroni et al., 2020), (Barakabitze et al., 2022) and (Alwis et al., 2022). However,
regardless of this promising paradigm, there are some limitations that we address
here. Therefore, in this chapter, we start with listing some of the main terminologies
used throughout the thesis in Section 2.1. Then, we present the trend of Network
Softwarization, and how it has evolved to help CCDN operators meet the changing
needs of service consumers and systems behavior. In specific, we tackle Network
Function Virtualization (NFV), Containerization, and Software-Defined Networks
(SDN). This progression has led to a number of significant benefits and challenges, in
both present and future, which are outlined in Section 2.2.

Another network management paradigm shift has changed the traditional man-
agement approach, namely, the Autonomic Network paradigm which is discussed in
Section 2.3.

Today most CCDNs offer pre-defined caching and resource management that could
possibly fall behind the rapid technology development and dynamic demand changes.
Therefore, the Microservices Architecture, which is a widely adopted paradigm in

14

Chapter 2. Background and Related Work

today’s systems should be investigated and adopted in this context. In Section
2.4, we address this highly popular and useful system paradigm that could benefit
CCDN operators by changing the deployment and management of current systems via
modularity as opposed to traditional monolithic systems. We discuss its advantages
and challenges as well.

Although these technological advancements are very helpful in improving the
current CCDNs, there is still a gap between the CP’s requirements and the CCDN
requirements and goals. This is because most CCDNs still make their resources
and caching management decisions oblivious to what the CPs want to achieve.
Hence, there is a current interest in system management schemes that utilize user
intents which allow them to express their high-level requirements to the system to
consider, which are facilitated through their Intent-Based Northbound Interfaces
(NBIs). Therefore, we break down and compare the current existing NBIs, and
in particular, we provide a meta-analysis of the current Intent-Based solutions and
discuss their limitations in Section 2.5. A meta-analysis is a type of research that is
often used to determine general information from a systematic review procedure. It
combines the findings of other empirical studies into a summary study of available
data, findings, and results on the given topic.

Moving forward to CCDNs, we classify them based on several dimensions. Then
we state our own assumptions for the CCDN use case that we focus and work on in
Section 2.6, 2.7. and Section 2.8.

Finally, in Section 2.9, we present our meta-analysis of the current CCDN solutions
along with their used technologies, and we discuss their overall limitations. According
to the current gap in this field, we break down some of its shortcomings in this section.

2.1 Terminologies

In this section, we list some of the main terminologies that will be referred to
throughout this thesis.

• Content Delivery Network (CDN): Is a geographically distributed group of
servers (also called surrogates) that caches content close to end users across different
regions. Specifically, they manage content delivery and infrastructure decisions such
as caching, load balancing, etc., for fast and reliable content delivery.

• Cloud Content Delivery Network (CCDN): Provides a specific form of
CDNs, which build CDNs in the cloud to alleviate major limitations of traditional
CDNs that rely on fixed physical caches, by leveraging virtualization technologies
to provide more flexibility in dynamic infrastructure provisioning, offering a virtual
CDN service as a Software-as-a-Service (SaaS) model that can be deployed on
demand.

15

Chapter 2. Background and Related Work

• Intent: A declarative, abstract, and vendor-agnostic way of describing the targeted
system state, operational goals, or expected outcomes that the system should
deliver. Therefore, ultimately, intents could be used in many domains and by
different users, even non-expert users who do not have a lot of system knowledge.

• Intent-Based Northbound Interface: An interface that facilitates the interac-
tions between consumer and provider systems via intents.

• Intent Handler: A logical component (or components) that receives intents
and handles them in the domain that is responsible for that intent’s fulfillment
(i.e., translation to lower-level presentations that are understood by the underlying
system).

• Intent Life Cycle: A full intent lifecycle starts from the initial request of intent un-
til it gets terminated or stopped. It passes through the(Design/Build/Deploy/Validate)
stages. Thus, it can automatically convert, verify, deploy, configure, and optimize
by itself to achieve the targeted state of the system, and can automatically handle
abnormal events to ensure the system’s reliability according to the expressed intent
target.

• Declarative Intent: A high-level intent expression where users can express ”what”
they want to achieve rather than ”how” to achieve it.

• Prescriptive Policy: A rule expression that regulates the system behavior under
different situations.

• Microservice Architecture: A modular architectural style that structures
an application or a system as a collection of microservices that are: organized
around business capabilities, independently deployable, loosely coupled, technology-
independent, and can communicate with each other via universal APIs.

• Microservice: The actual running instance of a modular microservice component
which provides a specific functionality.

2.2 Network Softwarization

Network softwarization is an approach that aims to design, architect, deploy and
manage network components, by separating the software implementing network
functions, protocols and services from the hardware running them. This approach
will improve how network and computing infrastructures are designed and operated to
deliver different services and applications with greater flexibility, adaptability, agility,
cost-effectiveness and total reconfiguration of a network on the fly in a matter of

16

Chapter 2. Background and Related Work

minutes rather than days (Manzalini et al., 2016), (Sousa et al., 2018), (Cerroni et al.,
2020), (Barakabitze et al., 2022) and (Alwis et al., 2022). NFV, Containerization, and
SDN are expressions of network softwarization. Hence, Softwarization is expected to
impact several aspects of network development and services such as CDNs (Frangoudis
et al., 2016) (Retal et al., 2017).

Although these rising softwarization paradigms are very promising, these abundant
possibilities have imposed additional challenges by creating a cumbersome system
configuration process to adjust to all different CDN stakeholders, users, and services
(Leivadeas et al., 2022). Therefore, despite today’s level of programmability of
softwarized networks, they need experienced programmers (i.e., network managers,
admins, operators, IT personnel, etc.) who can orchestrate the services in accordance
with different and conflicting customization requirements for the system and the
consumers (Leivadeas et al., 2022) (Alalmaei et al., 2020)(Tuncer et al., 2018). Hence,
network programmability is a key enabler to truly leverage the benefits of the current
softwarization approaches which could facilitate faster, more efficient, and autonomous
network management, service deployment, realization of user objectives, and reduced
OPEX due to less human involvement, which could lift up some burden from the IT
personnel in charge, and thus reduce the need for their continuous involvement which
could lead to cost reduction.

2.2.1 Network Function Virtualization

NFV (Mijumbi et al., 2015) is a paradigm that virtualizes network functions which
are normally deployed on dedicated hardware (e.g. routers, load balancers, firewalls,
etc.). The network functions are then decoupled from their dedicated hardware
to run as virtual appliances on commodity hardware instead. It is fundamentally
changing how network services are deployed and managed by providing flexibility,
agile service delivery, auto-scalability and optimal resource usage. These services are
provided over the same common infrastructure. The European Telecommunications
Standards Institute (ETSI) has defined a framework for NFV and Management and
Orchestration Architectures (MANO) (ETSI, 2013). These open-source architectures
are broadly defined to allow development, extension, and testing in proprietary ways.

Authors in (Sousa et al., 2018) compare several NFV MANO projects. However,
OSM (OSM, 2023), is an open-source NFV MANO platform that is considered as the
reference implementation for the NFV MANO since it is hosted by ETSI and aligned
with its information models to meet the requirements of production NFV.

17

Chapter 2. Background and Related Work

2.2.2 Containerization

Containerization has become a major trend in network softwarization as an alternative
or companion to virtualization. It is an increasingly popular method of designing
and deploying Microservice applications. Containers are lighter weight and a more
agile way of handling virtualization. In virtualization, a virtual machine (VM)
is an emulation of a physical computer that enables running multiple machines,
with multiple Operating Systems (OS), on the same physical computer. The VM
technology depends on a lightweight software layer called hypervisors, which separate
VMs from each other and allocate physical resources (e.g., processors, memory,
storage) among them.

On the other hand, rather than spinning up an entire VM, a container encapsulates
and packages together everything needed to run a small piece of software, including
all the code, its dependencies, configuration files, and even the OS itself (unlike the
traditional VM applications where the code is developed in a specific computing
environment). This container is abstracted away from the host OS, and hence,
it stands alone and becomes portable by allowing running applications uniformly
and consistently on almost any infrastructure (e.g., desktop computer, traditional
IT infrastructure, the cloud). Containerization technology uses a form of OS
virtualization as opposed to traditional virtualization, which virtualizes the underlying
hardware. Containerization leverages features of the OS to isolate processes and
control their access to physical resources (e.g., CPUs, memory, and desk space). So,
essentially, the main difference between containers and VMs is that each VM runs its
own OS under the Hypervisor whereas containers share the host OS and run under
the container engine layer.

Containerization brings several features like efficiency, portability, security, flexibil-
ity, etc. These factors help containers become a welcome alternative to the extensive
use of VMs in today’s systems. In fact, Research firm Gartner projects that by 2022,
more than 75% of global organizations will use containerization technology, up from
less than 30% in 2019 (Gartner, 2020). As for a recent survey published by the
Cloud Native Computing Foundation (CNCF) (CNCF, 2020), Containers are used
in production by 92% of the global cloud user community where containers usage in
production has increased by 300% since 2016.

Containerization facilitates the creation and operation of stable modules of small
artifacts which fit the description of a Microservice Architecture of decoupling
applications into smaller-size services. Therefore, Containers serve as a perfect vessel
for deploying such microservices on a large scale, and that is why Docker (Docker,
2023) and Kubernetes (Kubernetes, 2023d) are rising in popularity day by day. An
overall comparison between VMs and containers is depicted in Figure 2.1

18

Chapter 2. Background and Related Work

Figure 2.1: VMs vs. Containers (Adam Getz, 2021, Retrieved from https://bi-
insider.com/posts/virtual-machines-vs-containers/)

2.2.3 Software Defined Networking

The SDN paradigm emerged to overcome the limitations of traditional network
infrastructures (Kreutz et al., 2014). It enables new ways to design, build and
operate networks by decoupling the control from the data plane and providing logical
centralization of network control, management, and programmability in a fast and
automatic fashion. According to the Open Networking Foundation (ONF), the SDN
architecture consists of three planes: Data, Control, and Application.

However, the success of SDN relies on the ability of application developers to
leverage the underlying network infrastructure to design and build new services,
which relies on a Northbound Interface (NBI). This interface is the enabler for the
realization of the ultimate SDN promise. Recognizing the significance of the NBI, the
ONF created the Northbound Interface Working Group. Their aim for this group is
to enable application developers and SDN users to focus on their applications, rather
than concerning themselves with lower-level details and migrating between proprietary
APIs (ONF, 2015b). Without an intuitive and efficient NBI, SDN will continue
to struggle with gaining momentum with current network users and application
developers who lack sufficient networking backgrounds. Despite the large effort of
standardization and relevant progress in the study of the Southbound interface that
connects the control and data planes, there has been less progress in the development
of the NBI. Current efforts (depicted in Figure 2.2) are broadly summarized as:

19

Chapter 2. Background and Related Work

• SDN controller NBI: the network is programmed using the controller’s APIs
which are low-level, limited, inflexible, and require many lines of code.

• SDN programming languages (Trois et al., 2016): use the controller’s API to
provide domain-specific high-level abstractions and constructs that focus on certain
SDN aspects.

• Intent-Based NBI: applications express their high-level requirements as intents
but are limited in capability and maturity.

Figure 2.2: SDN Northbound Interfaces Categories

Current NBIs present challenges in the form of diverse capabilities, strengths,
weaknesses and intuitiveness (Cox et al., 2017). In specific, SDN controller NBIs and
SDN programming languages impose two main challenges. First, these are designed
for network domain experts and require deep knowledge of network functionality,
and programming constructs and abstractions. The second challenge is the tight
coupling with SDN controllers, which complicates application portability between
different SDN technologies, and requires mastering low-level details for each individual
controller. Therefore, these NBIs in their current state fail to offer the means to create
applications in a systematic and intuitive format that is also SDN controller-agnostic
(Trois et al., 2016)(Lopes et al., 2015).

In contrast, Intent-Based NBIs can be used by network application develop-
ers/users who might not be network experts. They provide a more appropriate
mechanism to express specific service demands (as intents) in an intuitive way. It

20

Chapter 2. Background and Related Work

is, therefore, unsurprising that Intent-Based NBIs are gaining a lot of attention both
in industry and academia.

However, most of the current Intent-Based NBIs are still limited in capability, some
are ad hoc, and in some cases vendor-specific. They are unable to support emerging
applications and services as most of them focus only on network-level operations, lack
functionalities such as service partitioning and composition, and do not provide means
to express high-level requirements.

2.3 Autonomic Networks

Owing to the need for a self-managed system that reduces the cost of having a
well-skilled team that manages complex systems (Behringer et al., 2015), Autonomic
Networks have emerged to shift away from traditional manual system configuration
and management. The first clear vision of the autonomic computing systems
was proposed by IBM (IBM, 2006). IBM characterized the self-management of
an autonomic system in four self-* properties, namely: self-configuration, self-
healing, self-optimization, and self-protection (Kephart et al., 2003), (Sinreich, 2006),
(Parashar et al., 2004), (Sterritt, 2005), (Huebscher et al., 2008). These could be
triggered by either a threat, an optimization purpose, or a change in high-level policies.
We now review these self-* properties:

• Self-configuration. The system’s ability to configure itself in response to its
environment changes based on high-level policies that define what the system should
do.

• Self-healing. The ability to detect problems, and (possibly) recover or correct
itself by adjusting its components.

• Self-optimization. The ability to maximize resource utilization and monitor
performance against an ideal case. The high-level policies that guide this may define
a utility function for the system to prioritize some tasks over others (Khemka et al.,
2014). Moreover, it may need to acquire/evacuate resources to achieve the optimal
state.

• Self-protection. The ability to detect internal or external threats and protect its
resources with appropriate defense actions to ensure its security and privacy.

Accordingly, IBM introduced the notion of the Monitor, Analyze, Plan, Execute,
and Knowledge (MAPE-K) loop to allow the system to show the aforementioned and
necessary self-* properties (Kephart et al., 2003). These functionalities are performed
and controlled by the “Autonomic Manager”, the main component of the autonomic
system. The detailed functional components of MAPE-K are as follows:

21

Chapter 2. Background and Related Work

• Monitor. It collects metrics and data from the managed resources or elements.
This data could be the managed element’s state, configuration, or the events
generated by this element.

• Analyze. It analyzes collected data by the Monitor Function. However, the data
size could be large, therefore, it may need to be filtered, normalized or processed,
and structured in a way to be ready for analysis. This function analyzes and
observes the system state. The analysis aims to detect if some policies were not met
by the system, or if the system’s performance was not as it should be. Accordingly,
it issues a change with all necessary details and sends them to the Plan Function.

• Plan. Based on the requirement of changes indicated by the Analyze Function, a
plan to change may be formed to the existing system’s state or configuration, which
defines the work to be done in a suitable form and sends it to the Execute Function.

• Execute. It performs a series of actions on the system according to the changes
required by the Plan Function. An action could be changing the system’s
configuration or adding/removing resources, etc.

• Knowledge. The knowledge source contains the history of the collected or
generated data by the above functions such as the system state, configurations,
plans, policies, and actions.

Finally, it is worth mentioning that there is a difference between autonomicity
and automaticity in network management. Automaticity means “automating routine
tasks that are handled by the networks, either on a network element level (i.e., router)
or at the administration level by using tools or scripts to automatically collect data
from those elements through certain protocols (i.e., SNMP)” (Case et al., 1989). In
contrast, autonomicity involves self-optimization of the network performance driven
by high-level policies or goals.

2.4 Microservices Architecture (MSA)

In this section, we discuss this popular system paradigm which changed current
systems management as opposed to traditional monolithic systems.

2.4.1 Background of MSA

There has been a significant current trend towards the MSA (Dragoni et al., 2017)
especially in the cloud (Saboor et al., 2021), (Linthicum, 2016), (Qassem et al., 2022),
(Villamizar et al., 2016), (Marie-Magdelaine et al., 2019), and (Singh et al., 2017),

22

Chapter 2. Background and Related Work

which is a modular design pattern where complex systems are decomposed into a
set of smaller microservices (which could be deployed as VMs or containers) that
are minimal, complete, independent, and able to communicate with each other via
universal APIs (i.e., REST API). These microservice components run each application
process as a service that has been built for business capabilities and performs a single
function well. Therefore, each service could be deployed, updated, and scaled to meet
the demand for specific functions of an application.

MSA model splits the actors into three independent but collaborative entities:
the microservice application developers, the service brokers, and the service providers
(Tsai, 2005). The responsibility of microservice developers is to develop software
services that are loosely coupled. The service brokers facilitate microservice publishing
and discovery. The service providers find the available microservices through service
brokers and use them to develop new applications. This process is done via discovery
and composition rather than traditional monolithic design and coding (Tsai, 2005).

Consequently, the MSA model provides the following benefits:
Scalability: Due to the independence of microservices, each can be scaled

independently to meet increased demand for the application feature it supports,
without affecting other services.

Agility: MSA approach fosters an organization of independent small teams that
own certain services. These development teams can work in parallel where small teams
can move faster than large teams due to small and well-understood context. Since
microservices are independent, it’s easier to improve and maintain their code in shorter
development cycles. It allows developers and engineers to focus on a single service
and maintain and update code continuously using continuous integration/continuous
delivery (CI/CD). This shortened development cycle times can significantly benefit
organizations with the aggregate throughput of the overall microservices.

Resilience: Microservice independence increases an application’s resistance to
failure. This advantage occurs contrary to a monolithic architecture, where the entire
application fails if a single component fails. On the other hand, with microservices,
applications could avoid total service failure by degrading functionality without
crashing the entire application.

Technology-independence: Developer teams are free to choose the best tool
to solve their specific problems. As a consequence, they can choose the best tool for
each job while building their microservices.

Reusability: The small, well-defined nature of microservice modules enables
developer teams to use these functions for multiple purposes. A microservice written
for a certain function can be used as a building block for another feature. This allows
developers to create new capabilities without writing code from scratch.

Modularity: The modular design of microservices helps manage system com-
plexity. It facilitates deploying, scaling, and updating individual microservices

23

Chapter 2. Background and Related Work

independently, and avoiding long development cycles.

Although microservices offer great benefits, they come with their own challenges
as well. They introduce a constantly evolving infrastructure of software components
that are ephemeral and may change location, and communicate with each other in
non-intuitive ways. In fact, the deployment of new microservice software releases
to production environments can occur very frequently, with reportedly thousands of
deployments per day (L. Chen, 2015), the challenge of managing and monitoring this
large number of independent microservices can quickly become complex and require
specialized tools and skills.

Accordingly, one of the popular approaches is the use of container runtimes
and orchestration platforms such as Kubernetes (Kubernetes, 2023d), the de facto
standard that provides a framework for managing containers, allowing developers to
deploy, manage, and scale microservices with ease. Moreover, it provides features
such as service discovery, load balancing, and rolling deployments that simplify
microservices management.

However, in the CDN research field, MSA integration has not been discussed
sufficiently. Adopting this approach in CCDNs, could lead to a faster and more
independent deployment as the CP’s demand varies (Chowdhury et al., 2019).
These microservices (e.g. caches, load balancers, DNS servers, etc.) could be
easily upgraded or scaled without affecting other functionalities. Moreover, unlike
traditional CDNs, this approach facilitates the realization of the CDN functionalities
in different ways depending on the underlying microservice implementation, which
enables CDN operators to alternate between different microservices that provide the
same functionality but with different costs, performance, etc., and compare them
based on the CP’s requested target. Therefore, articulating behavioral CDN abstract
policies that could be implemented differently by microservices provides a more
flexible, cost-effective, and portable solution that simplifies the CDN operator’s task,
and enables upgrading the CCDN with different and updated microservices, unlike
traditional CDNs that have specific and predefined functionalities (Chowdhury et al.,
2019).

2.4.2 Requirements Engineering in MSA

Requirements Engineering (RE) in a traditional cloud architecture is different from
MSA. Applications and services in traditional clouds are owned by the cloud providers,
so users can only execute what is offered, which could be very limited, stand-alone,
and cannot be enhanced by the composition of multiple up-to-date microservices.
Conversely, in MSA model, applications and systems could be constructed by selecting
and composing different reusable and loosely coupled microservices. This selection

24

Chapter 2. Background and Related Work

and composition could be made from within a large space of candidate microservices.
According to IEEE, a requirement in RE can be described as a condition or

capability to which a system must conform. It is derived either from user needs
directly, or stated in a contract, specifications, or standards (IEEEStandards, 1990).
There are two types of system requirements: functional requirements (FRs) and
nonfunctional requirements (NFRs). The former describes what the system is
expected to do and its functions, and the latter defines how it will do it by dictating
its general properties, which are also known as software qualities (e.g., scalability,
security, efficiency, etc.). System requirements are usually specified by stakeholders
and service providers based on empirical observation and/or technical expertise.
NFRs at a high level (the whole system’s level) lead to FRs at lower levels (i.e.,
microservices). For example, a scalability requirement, which is a conventional NFR
may lead to microservices that scale the system as a whole which aims at scaling out
the system under stressful loads. This scalability NFR could result in different FRs.
In this case, an essential FR example is (a reactive load balancer). In more detail, the
system shall balance the load reactively via a load balancing microservice (e.g., Least-
connections load balancer) when stressful incoming load hits, which helps with the
system’s overall scalability. Other FR alternatives (i.e., load balancer microservices
with other algorithms) could be deployed, compared, and alternated between with
correspondence to their level of contribution towards the scalability NFR.

2.4.3 Multiple Criteria Decision Making (MCDM)

The incorporation of NFRs in a system typically involves trade-offs of some sort due
to the often interaction between them. This is mainly in the sense that attempts
to achieve one NFR could either help or hinder the achievement of other NFRs.
Therefore, a decision support system is needed to help in a better trade-off among
alternative functionalities in the potential solution space for the NFRs. Previous
works have already identified some decision support systems and addressed some of
the challenges of ranking and selection based on multiple criteria (Triantaphyllou,
2000). It is defined as a multiple-criteria decision-making (MCDM) problem. For
example, selecting the most suitable microservice among a list of candidates based on
several quality metrics.

Existing trade-off decision support systems are categorized as model-based or
mathematical-based (Karlsson et al., 1998):

• Model based decision support systems rely on constructing a graphical model
for illustrating the relations between trade-off entities. These models facilitate the
system’s information gathering and structuring. It also enables the distribution
and communication of the gathered knowledge in the model between stakeholders
in a convenient way. The most popular model-based technique is NFRs framework

25

Chapter 2. Background and Related Work

(Chung et al., 2000) It identifies, handles, and illustrates the trade-off between soft
goals (NFRs) and their operationalizations (solutions) expressed by stakeholders.
In this framework, NFRs are represented as “softgoals” which have no clear-
cut definition. NFR framework uses the term “satisficed” softgoals rather than
“satisfied”. The term “satisfice” was introduced by Herbert Simon (Simon, 1996),
which is a decision-making strategy that attempts to meet criteria for adequacy
but without necessarily producing an optimal solution. However, some of this
technique’s drawbacks is that it mostly handles qualitative information, so these
models are not always suited to handle large amounts of data, as expressing and
viewing it in a model can be cumbersome. Furthermore, these models do not
provide quantitative results on a more detailed scale, typically absolute scale, ratio,
or interval. This is a limitation when a concrete trade-off value is required, as the
model-based trade-off techniques may not be able to reliably produce such a value.
It is considered as a structured decision support material.

• Mathematical based decision support systems; on the other hand, rely on
a mathematical formula for the trade-off construction and representation, thus
enabling feeding the mathematical construct with appropriate values and receiving
the best solution with regards to certain criteria (i.e., maximization, minimization,
or optimal) (Berander et al., 2005). A popular and widely used example of
these techniques is the Analytical Hierarchy Process (AHP) (Thomas L Saaty
et al., 2012), (Whitaker, 1987), (Thomas L Saaty, 1985), (Thomas L. Saaty,
1994b), (Thomas L Saaty et al., 1991), and (Thomas L Saaty, 1990). Opposed to
model-based techniques, mathematical-based trade-off techniques can handle large
amounts of data and variables. It can also come up with results that are generally
more accurate than common sense. Moreover, it enables structured analysis and
repeatability since the process could be replicated over several rounds of data
tweaking with respect to the system’s needs. This could give an organization better
consistency and overview (Berander et al., 2005).

2.5 Intent-Based Northbound Interfaces

Intent-Based NBI is a crucial mechanism that enables users to express what they want
rather than how to do it via intents. It facilitates faster network management, service
deployment, realization of user objectives and reduced OPEX due to less human
involvement. Intent-Based NBIs can be used by network application developers/users
who might not be network experts. They provide a more appropriate mechanism
to express specific service demands (as intents) in an intuitive way. It is, therefore,
unsurprising that Intent-Based NBIs are gaining a lot of attention both in industry and
academia. However, although there has been a lot of attention around Intent-Based

26

Chapter 2. Background and Related Work

NBIs that focus on solving and abstracting problems in the networking domain at a
higher level (e.g., providing connectivity between endpoints, creating network slices,
network service chaining, etc.), there has not been much progress in the development of
Intent-Based NBIs that serve domains beyond networking and allow users to express
high-level targets to capture their business objectives, nor linking them to lower-
level management policies and operations beyond the networking domain. Hence,
there is a need for different level of intent expressions and translations in the broader
domains since most of the current proposed intent solutions and expressions cannot
be utilized in this domain as they could be more prescriptive rather than declarative
from the point of view of a generic non-technical user (i.e., unlike typical users in the
networking domain who could have some technical expertise). Therefore, there is a
need to investigate the utilization of intents beyond the networking domain.

2.5.1 Intent Standardization Efforts

There have been some intent standardization activities that have been analyzed and
discussed in (Zeydan et al., 2020). Some of the considered scenarios are related to
intent-driven network provisioning, network optimization, coverage, capacity manage-
ment, and network automation. Recently, TeleManagement Forum (TMForum) has
standardized an intent common model (ICM) in 2022 (TMForum, 2022). This model
presents a basic intent description template, represented in a modeling framework
named Resource Description Framework (RDF). It consists of a set of expectations,
each of which is defined in terms of parameters, targets and associated restrictions
for the network. Moreover, intent language models have been proposed with pre-
defined vocabulary inspired by network or operational named entities (TMForum,
2021). However, these ongoing standardization activities propose intents as high-
level goals but without enough specifications on how to execute their corresponding
concrete actions (Zeydan et al., 2020). Today, regardless of the current efforts in IBN,
most CCDNs still make their resources and caching management decisions oblivious to
what the CPs want to achieve. For instance, the most popular CCDNs (e.g., Amazon
CloudFront, Google Cloud CDN, and Microsoft Azure CDN) APIs do not allow CPs
to express their high-level targets (e.g., requests/region) since they are mainly limited
to selecting the desired geographical coverage and specifying the origin content server.
Some of them offer APIs to configure some low-level technical details like the backend
service load balancing, health checks, session affinity, connections per instance, etc.
(Google, 2023b). However, generic CPs with no technical background and who are
only interested in expressing their high-level intent would face some challenges with
the current APIs. Therefore, Intent-Based CCDNs have to be further investigated.

27

Chapter 2. Background and Related Work

2.5.2 Intents and Policies

It is important to highlight the difference between intents and policies as they should
not be used interchangeably in this context as shown in Table 2.1. An Intent is
a declarative expression by the user of the operational goals or expected outcomes
that the system should deliver. Therefore, ultimately, intents could be used in many
domains and by different users, even non-expert users who do not have a lot of system
knowledge.

On the other hand, a Policy is a rule (or set of rules) that governs system
behavior (Katchabaw et al., 1996). Typically, a rule consists of a variety of events,
conditions, and actions (ECA), where events are rule triggers, conditions get assessed
and if they hold then some actions are executed. Accordingly, a management paradigm
emerged known as Policy-Based Management (PBM), which is prescriptive since
policies let users (e.g., network operators, controllers) specify precisely what to do
and under which circumstances (ONF, 2014).

Unlike intents, policies do not specify desired operational goals. However, both
notions provide an abstraction of a network or system that does not necessarily involve
technology-specifics. This is achieved by the separation of the rules that govern the
system behavior from the functionality of the system. We elaborate on the differences
between intents and policies with some examples that apply to the CCDN context in
Section 3.2.

2.5.3 Different Intent Types

There are different perspectives on what an intent is depending on whom it is
serving (i.e., technical or non-technical users), how it should be used (i.e., abstract or
technology-specific), and for which domain (i.e., data center, cloud, etc.). Hence,

Policies Intents

Prescriptive rules Declarative expressions
Specify a set of ECA rules and
determine precisely what to do under
different circumstances and triggers
(how to do?)

Express desired outcome (what to do?)

Used by system experts who can
articulate the set of rules

Can be used by different users including
service consumers and non-experts
without enumerating rules

System behavior is defined proactively Could be a learning reactive system

Table 2.1: A comparison between policies and intents.

28

Chapter 2. Background and Related Work

there are different intent use-cases with different expectations, requirements, and
priorities. Thereby, stakeholders consider an intent differently: ECA policy, business
policy, network service, consumer service, etc. For instance, a data center network
administrator (user with technical knowledge) can use an intent to set the maximum
load of a specific network link to be below 70%. In contrast, in a CDN
scenario, an intent user can be a content provider who wishes to start a caching
service for certain content with a target to serve 10,000 users/region. From
another perspective, intent user requirements can be classified as client-facing service-
layer requirements and operator-facing resource-layer requirements. Network clients
tend to express their high-level requirements in a service-layer expression that is
concerned with performance expectations in accordance to the offered services (e.g.,
throughput expectation, availability time, etc.), whereas network operators use a
resource-layer expression to express internal resource and operational requirements
(e.g., energy-savings, cost management, etc.). Due to the inherent nature of each,
service-layer requirements should be expressed in a declarative way that non-technical
users can leverage, whereas resource-layer requirements are expressed in a prescriptive
fashion (i.e., from non-technical users perspective) since the user has to describe
their resource-level requirements that could be too technical and detailed for generic
and non-technical users who are unaware of these levels, and mainly interested in
expressing their overall service expected targets beyond the underlying resource-layer.
Therefore, a mechanism is needed to decompose and translate high-level declarative
intents to abstract prescriptive policies that define service behavior, which in turn gets
translated to lower-level commands and resource configurations (as shown in Figure
2.3).

Figure 2.3: Intents, policies and operational commands.

2.5.4 Meta-Analysis for Intent-Based Northbound Solutions

We summarize the different Intent-Based solutions via a meta-analysis. The prefix
meta-, when added to the name of a subject or a discipline, forms the name of a
new subject that analyzes the first one at a more abstract or higher level. So, it
is a field of study that analyzes already existing analyses. We include Intent-Based
solutions that have been proposed by standard development organizations ((ONF,
2015a), (ONOS, 2015), (OpenDaylight, 2015), (OpenDaylight, 2016), (OpenStack,

29

Chapter 2. Background and Related Work

Intent-Based Solution Intent Expression Domain Level

(DOVE) by IBM (Cohen et al., 2013) Not specified Netw./NFV –
Boulder (ONF, 2015a) Subject, Predicate, Object: {Constraints,

Conditions}
Netw. Presc.

(NIC) by HP (OpenDaylight, 2015) Source Composite Endpoint, Destination
Composite Endpoint, Traffic operation and
constraints

Netw./NFV Presc.

ONOS Intent Framework (ONOS, 2015) Network Resource, Constraints, Criteria,
Instructions

Netw. Presc.

Group-based Policy (OpenStack, 2016) Endpoint group, contract {subject: {rules:
{classifier and action set}}}

Netw./NFV Presc.

(NEMO) by Huawei (OpenDaylight, 2016) Object + Operation or Netw. Presc.
Object + Result (under test and not used yet) Decl.

Intent-based virtualisation Platform (Han et
al., 2016)

Resources, Conditions, Priority, and Instruc-
tions

Netw./NFV Presc.

Service-oriented Intent-based NBI (Pham et
al., 2016)

application-specific language Netw. –

(INSpIRE) (Scheid et al., 2017) Traffic Type, Source, Destination, Context
level, Contexts list

Netw./NFV Presc.

Intent-based Negotiation (Marsico et al., 2017) Verbs, Nouns, Modifiers Netw./NFV Presc.
(MD-IDN) (Arezoumand et al., 2017) Action, Endpoint 1, Traffic type, Endpoint 2 Netw. Presc.
Janus system (Abhashkumar et al., 2017) Endpoint-Group1, Connection attributes:

{protocol, port, bandwidth, latency, middle-
box }, Endpoint-Group 2

Netw. Presc.

Adaptive Service Deployment (Elkhatib et al.,
2017; Elhabbash et al., 2018)

Verb, Object, Modifiers, Subject General, e.g.
storage, IDS

Presc.

(iNDIRA) (Kiran et al., 2018) Subject (Service or Condition), Relationship
(has Arguments), Objects (multiple parame-
ters)

Netw. Presc.

(SENSE) (Monga et al., 2018) Service type, Service alias, Connections:
{name,terminals, bandwidth: { qos class,
capacity, unit}}, schedule: {start, end,
duration}

Netw./NFV Presc.

Northbound Interface (Tuncer et al., 2018) Predicate, Commodity, Target (resources),
Constraint, Condition

Netw. Presc.

OSDF (Comer et al., 2018) Instructions, Network Resource, Criteria,
Constraints

Netw. Presc.

Customer-Oriented QoS (Beshley et al., 2020) QoE metric on a scale from 1 to 5 General Decl.
CompRess (X. Chen et al., 2020) SPARQL query: VNF Forwarding Graph,

endpoints Ingress, Egress, VNFs to be tra-
versed

NFV Decl.

VNF placement (Leivadeas et al., 2021) XML sytnax Service Name, Attributes QoS
Level, Security Level, Start Time, Duration

NFV Decl.

Intents for Network Slice (Gritli et al., 2021) Network Slice QoE Requirements Netw./NFV Decl.
Ontology-based Intent Refinement (Ouyang et
al., 2022)

Domain, Attribute, Object, Operation, Result Netw. Decl.

Intent-based closed-loop (Baktir et al., 2022) TM Forum RDF expression (TMForum, 2022) Netw. Decl.
Asset Administration Shell (Ustok et al., 2022) TM Forum RDF expression (TMForum, 2022) Netw. Decl.
Intent-Driven Network Slicing (Xie et al., 2022) TM Forum RDF expression (TMForum, 2022) Netw. Decl.
Intent-Driven Satellite Network (Li et al., 2023) Domain, Operation, Object, Outcome Netw. Decl.
From Automation to Autonomous (F5G)
(Zheng et al., 2023)

TM Forum RDF expression (TMForum, 2022) Netw. Decl.

Knowledge-based Intent Modeling (Mehmood
et al., 2023)

TM Forum RDF expression (TMForum, 2022) Netw. Decl.

Intent Management in 6G (Daroui et al., 2023) TM Forum RDF expression (TMForum, 2022) Netw. Decl.
Intent-based VNF Chains (Massa et al., 2023) TM Forum RDF expression (TMForum, 2022) Netw./NFV Decl.

Table 2.2: Summary of the results of our meta-analysis of intent-based solutions.

30

Chapter 2. Background and Related Work

2016), and (TMForum, 2022)) and academic researchers ((Cohen et al., 2013), (Han
et al., 2016), (Pham et al., 2016), (Scheid et al., 2017), (Marsico et al., 2017),
(Arezoumand et al., 2017), (Abhashkumar et al., 2017), (Elkhatib et al., 2017;
Elhabbash et al., 2018), (Kiran et al., 2018), (Monga et al., 2018), (Tuncer et al.,
2018), (Comer et al., 2018), (Beshley et al., 2020), (X. Chen et al., 2020), (Leivadeas
et al., 2021), (Gritli et al., 2021), (Ouyang et al., 2022), (Baktir et al., 2022), (Ustok
et al., 2022), (Xie et al., 2022), (Li et al., 2023), (Zheng et al., 2023), (Mehmood et al.,
2023), (Daroui et al., 2023), and (Massa et al., 2023)). These solutions are listed in
chronological order in Table 2.2 which shows an overview of our comparison based
on the following criteria: Intent Expression shows how intents are expressed, Domain
indicates the domain that is being addressed by the intent, namely, Networking (i.e.,
endpoints connectivity), NFV (i.e., virtualization operations, network slicing and
service chaining) and General (beyond network connectivity and NFV operations),
and Level classifies intent expressions as either prescriptive (Presc.) or declarative
(Decl.).

By looking at the taxonomy in Figure 2.4, which has been derived from Table 2.2,
we observe that most of the found intent-based solutions focused on the Networking
and NFV domains with different levels of intent expressions. Although these works
could provide important solutions to users (i.e., technical or non-technical), they
are still restricted to these domains and naturally cannot be generalized to other
problem domains due to the problem-specific intent expressions that aim at expressing
endpoints connectivity, or virtualization operations. Therefore, we mainly focus
on solutions that serve General domains beyond networking and NFV that could
potentially facilitate the intent expression in our context which is concerned with the
”Declarative” level of intent expression since we assume that CPs are generic users
with no technical background. However, by taking a closer look at Table 2.2, we can
see that there are very limited solutions that address this area (Beshley et al., 2020),
and their proposed intent expression does not facilitate capturing the CP’s intent goal
in a CCDN context.

In general, most of the current Intent-Based NBIs are still limited in capability,
some are ad-hoc, and to an extent vendor-specific. Even though they offer important
prescriptive policies for network services like end-to-end connectivity, chains of VNFs
or virtual network slices, the majority of them still do not provide the ability to
express declarative intents that handle other requirements beyond the network level.

We observe in Table 2.2 that the Intent-Based solutions from 2020 onward started
to introduce declarative intent expressions. Although several more recent research
in 2022 and 2023 have adopted the recent TMForum standardized ICM, they still
haven’t used it beyond the networking domain.

Moreover, most of the current NBIs offer a pre-defined set of intents and do
not provide the tools to create new intents and translate/map them to lower-level

31

Chapter 2. Background and Related Work

Figure 2.4: Intent-Based Solutions Taxonomy

policies (Alalmaei et al., 2020). The intent translation is still a challenging topic that
needs to be investigated especially with the trending adoption of current technological
advancements (i.e., microservices) that could adjust the control’s level of granularity
beyond the low-level networking commands. We discuss this further in Section 2.5.5.

2.5.5 Intent-Based Northbound Solutions Limitations

In this section, we present an overview of the current issues with Intent-Based NBIs
and discuss the main challenges faced by intent users and developers.

• Prescriptive Policy Expressions: Service consumers require declarative rather
than prescriptive policy expressions. However, most existing intent expressions
are prescriptive, which are mostly used to express network-level requirements
(OpenDaylight, 2015), (ONOS, 2015), (Scheid et al., 2017) and (Kiran et al., 2018).

32

Chapter 2. Background and Related Work

However, there are more complex consumer requirements that are beyond network-
level such as management intents (i.e. load balancing, placement, etc.) and, as
such, cannot be easily expressed via prescriptive policies (Leivadeas et al., 2022).
Therefore, consumers need an easier and higher-level expression that is purely
declarative. This allows them to express the expected intent target without the
need for stipulating any policies (Zeydan et al., 2020). For example, a consumer
that requires a load balancing service can express a high-level declarative intent
as I want to load balance my traffic to handle 1,000 requests/second.
In this expression, the consumer only states the required target rather than some
prescriptive operational policies.

• Translation from Service-oriented Intents to Policies: Proposing high-
level declarative intents that express desired operational targets necessitates
decomposition and translation processes to reach a representation that could both
be understood and achieved by the system, yet abstract enough to govern the
behavior of the system rather than its technical functionality (Ouyang et al.,
2022), (Ouyang et al., 2021). The decomposed policies represent the expressive
system capabilities, requirements, and constraints defined by system experts (i.e.,
network operator, service provider, controller, etc.). Afterward, policies get mapped
to lower-level system operations. The benefit of having this intermediate level
(abstract policies), sitting between high-level service-oriented intents and their
equivalent low-level operations, is to allow system experts, service providers, and
stakeholders (intent and policy developers) to think at a higher level independently
from the underlying technologies. This reduces maintenance costs, improves
operational scale, flexibility, adaptability, and reusability by allowing the same
policy to be applied across different underlying technologies without the need
to define multiple variants. Different policy agents can be plugged into the
different underlying systems to translate abstract policies into a technology-specific
representation(Zeydan et al., 2020).

• Platform dependence and domain-specific limitation: Intent-Based NBIs
should be implemented as discrete engines lying above different platforms without
being tightly coupled to them (Leivadeas et al., 2022) and (Pang et al., 2020). It
allows a platform-independent NBI and releases the intent developers/users from
the burden of using complicated NBIs that require a broader knowledge of the
underlying platform functionalities and programming constructs. Moreover, exten-
sibility is important to facilitate extending the current intents space by leveraging
the composition of multiple policies to jointly create a higher-level intent, and
leverage the current technology advancements (i.e., Microservices Architecture).
Composing policies allows their re-usability to create more complicated but abstract
intents. Therefore, suitable tools for policy composition (i.e., parallel or sequential)

33

Chapter 2. Background and Related Work

have to be provided (Trois et al., 2016).

2.6 Different CDN Flavors

There are different variations of CDNs as surveyed in (Jia et al., 2017), for instance,
different criteria can result in different CDN flavors (shown in Figure 2.5) as described
below.

Figure 2.5: CDN Variation Criteria

• CDN Service Type: Determines the caching service level (i.e., software, platform,
infrastructure). In the case of Software-as-a-Service (SaaS) level, the CP can
request the caching service in a higher-level without getting involved in the
cache management, caching mechanism, infrastructure management, etc. The CP
delegates the caching responsibility to the CDN. On the other hand, Platform-as-
a-Service (PaaS) CDN allows the CPs to deploy their caching service and provide
them with the platform and cache management tools to assist the caching process.
As for the Infrastructure-as-a-Service (IaaS) level, the caching service infrastructure
(i.e., physical or virtual) is provided to the CP, who would be responsible for the
whole caching and infrastructure management.

• Caching and Infrastructure Management: Decides the different possible
roles and collaborations in managing the caching and CDN infrastructure. The
CDN could be managed exclusively by the CDN operator where the CP delegates
the caching responsibility to the CDN operator without getting involved in the
decision-making and management process. Alternatively, another management

34

Chapter 2. Background and Related Work

model requires collaboration between the CDN operator and the CP for better
caching decisions depending on the additional information provided by the CP
(e.g., requests pattern, request history, users locations, etc.). Moreover, another
management collaboration model exists, which enables the CDN operator and the
ISP operator to collaborate for better and more efficient caching and infrastructure
management (Frank et al., 2013), by leveraging the ISP’s direct access and control
over the infrastructure, and the awareness of the users’ requests details.

In these collaboration models, the knowledge-sharing of one stakeholder could help
with the decision-making of the other. Given the different levels of visibility for
each, a stakeholder could leverage the better system/resources exposure of another
stakeholder to make better decisions.

• CDN Infrastructure: Provides either physical or virtual infrastructure resources.
Physical resources could be mostly static and require longer time scales to scale-up
(i.e., days or weeks). Conversely, virtual resources are dynamic and leverage the
virtualization capabilities, hence, they require much shorter time scales to scale
them out/in (i.e., hours or even minutes).

• Caching Scheme: Could be either pull-based or push-based. The most popular
caching scheme is pull-based, which pulls the contents to the caches from the origin
server reactively based on the end-users requests. Whereas the push-based scheme
preemptively stores contents to meet estimated demand.

2.7 CCDN Operations

CCDNs typically manage several operations to deliver their caching services (Fran-
goudis et al., 2017), these operations can be broadly listed as follows:

• Resource Allocation: To allocate the cache servers based on several factors
like the geographical coverage requested by the CP, available resources, requested
demand, etc. This operation can be deployed using different underlying technologies
(i.e., virtualization or containerization).

• End-Users Content Request Redirection: After fetching the contents from
the origin server to the local caches, end-user requests are redirected to the local
caches via different approaches like traditional DNS-based or SDN-based. The
former (i.e., Domain Name System) redirects traffic to its destination domain name
rather than its IP address, which simplifies reachability for users since they send
their requests to the destination name, and the DNS dedicated server translates
it to its corresponding IP address (Frank et al., 2013). Whereas opposed to the

35

Chapter 2. Background and Related Work

former traditional hardware-based approach, the SDN-based approach is a software-
based traffic redirection that relies on the decoupling between the data plane and
the control plane, and provides centralized control over all forwarding elements
that could run on commodity hardware rather than dedicated ones. The unified
logical view and centralized control over the data plane facilitate making better
request forwarding decisions to the caches based on different goals (i.e., revenue
maximization) (Duan et al., 2018), and (i.e., cache response time) (Tran et al.,
2019).

• Caching Service Scaling up/down: Based on the demand, user targets, current
system state, available resources, etc. This could be achieved by leveraging the
virtualization or containerization capability, and direct access and control of the
infrastructure and caching service. Consequently, the load distribution across the
available caches is maintained by the load balancer which works in conjunction with
service scaling and tries to avoid overloading individual caches and ensures that
users can access the application without experiencing downtime or performance
issues. These load balancers can be configured to use different algorithms, such
as round-robin, IP hash, and session affinity, to distribute traffic based on specific
criteria.

2.8 CCDN Use Case Assumptions

For demonstration purposes, we focus on the CCDN flavor with the features
surrounded by the dashed boxes in Figure 2.5.

Adopting CCDN solutions claims to offer cost-effective solutions on a pay-per-
service basis. Moreover, hosting CDN services over the cloud increases the availability
of the services exponentially (Jayakumar et al., 2018). Therefore, our CCDN use case
will be based on the following assumptions:

1. CCDN service type is SaaS, which provides the CP with a software-based caching
service that hides away all of the infrastructure and platform details. The CP
can express his expected targets which could be demand requirements or QoS
requirements.

2. CCDN provides an elastic virtual resources that could dynamically scale out/in
based on the demand, system status, etc.

3. The caching and infrastructure management in the CCDN is done by the CCDN
operator who has direct access and control over them, so the CP delegates the
caching decisions to the CCDN operator.

36

Chapter 2. Background and Related Work

4. The caching scheme is Pull-based (like most of the existing caching solutions),
which leads to a reactive content placement in the caches according to the end-
users demand.

In this use case, we will discuss how the CP and a CCDN operator can
communicate via our proposed intent expressions and framework in a CCDN scenario.
CPs tend to rely on the CCDN to manage content caching and end-user traffic
redirection. However, currently, CPs only set up and specify content servers (content
origin) and the geographical coverage that they are interested in. So far, current
popular CCDNs like Amazon CloudFront (Amazon, 2023), Google Cloud CDN
(Google, 2023c), and Microsoft Azure CDN (Microsoft, 2023b) do not consider
the high-level CP targets (e.g., requests/region, latency, etc.) in their caching
management. Therefore, in a next deployment phase of a CCDN, it is important
to consider them for better caching decisions and more involvement of the CPs in the
process.

2.9 CCDNs’ Related work and Used Technologies

Current CCDN related works leverage several technologies such as Cloud Computing,
NFV, SDN, Multi-access Edge Computing (MEC), Blockchain, Named Data Net-
working (NDN), and Containerization. These works are listed in chronological order
in Table 2.3.

37

Chapter 2. Background and Related Work

C
C
D

N
C
o
n
t
r
ib

u
t
io

n
C
lo

u
d

C
o
m

-
p
u
t
in

g

V
ir
t
u
a
l-

iz
a
t
io

n
S
D

N
E
d
g
e

C
o
m

-
p
u
t
in

g

N
a
m

e
d

D
a
t
a

N
e
t
w
.

B
lo

c
k
-

c
h
a
in

C
o
n
t
a
in

-
e
r
iz

a
t
io

n

C
lo
u
d
-O

ri
e
n
te

d
C
D
N

(P
a
p
a
-

g
ia
n
n
i
e
t
a
l.
,
2
0
1
3
)

It
p
re

se
n
te

d
a
sc

a
la
b
le

h
ie
ra

rc
h
ic
a
l
fr
a
m
e
w
o
rk

o
v
e
r
a
m
u
lt
i-
p
ro

v
id

e
r

c
lo
u
d

b
y

d
e
c
o
m
p
o
si
n
g

th
e
p
ro

b
le
m

in
to

d
e
fi
n
e
d

g
ra

p
h

p
a
rt
it
io
n
in

g
a
n
d

re
p
li
c
a

p
la
c
e
m
e
n
t

V
ir
tu

a
li
z
e
d

P
ro

g
ra

m
m
a
b
le

C
D
N

(W
o
o

e
t
a
l.
,
2
0
1
4
)

a
C
C
D
N

th
a
t

is
d
e
p
lo
y
e
d

v
ia

S
D
N

a
n
d

N
D
N

to
a
c
h
ie
v
e

p
ro

g
ra

m
m
a
b
il
it
y

in
c
o
n
te

n
t
d
e
li
v
e
ry

S
e
rv

e
r

S
e
le
c
ti
o
n

(R
o
y

e
t

a
l.
,

2
0
1
5
)

a
S
e
rv

e
r
S
e
le
c
ti
o
n
a
lg
o
ri
th

m
a
n
d

si
m
u
la
ti
o
n
u
si
n
g
V
o
ro

n
o
i
D
ia
g
ra

m
A
n
d

F
u
z
z
y

B
a
se

d
D
y
n
a
m
ic

L
o
a
d

B
a
la
n
c
in

g

J
o
in
t
C
o
n
te

n
t
R
e
p
li
c
a
ti
o
n

(H
u

e
t
a
l.
,
2
0
1
6
)

a
so

c
ia
l
v
id

e
o

d
is
tr
ib

u
ti
o
n

o
v
e
r
a

C
C
D
N
,
th

a
t
m
in

im
iz
e
s
th

e
c
o
st
,

a
n
d

sa
ti
sf
y
s
th

e
a
v
e
ra

g
e
d

ti
m
e
d
e
la
y

O
p
ti
m
a
l

P
la
n
n
in

g
u
n
d
e
r

U
n
-

c
e
rt
a
in

T
ra

ffi
c

(M
a
n
g
il
i
e
t

a
l.
,

2
0
1
6
)

a
tw

o
-s
ta

g
e
st
o
c
h
a
st
ic

o
p
ti
m
a
l
p
la
n
n
in

g
m
o
d
e
l
fo
r
C
D
N

o
p
e
ra

to
rs

to
d
e
p
lo
y

p
h
y
si
c
a
l
a
n
d
/
o
r
v
ir
tu

a
l
C
D
N

n
o
d
e
s

S
to

ra
g
e

C
o
st

O
p
ti
m
iz
a
ti
o
n

(S
a
ji
th

a
b
a
n
u

e
t
a
l.
,
2
0
1
6
)

a
c
o
n
te

n
t

p
la
c
e
m
e
n
t

a
n
d

d
e
li
v
e
ry

in
C
C
D
N

b
a
se

d
o
n

a
G
e
n
e
ti
c

A
lg
o
ri
th

m
w
it
h

a
n

e
ffi

c
ie
n
t
st
o
ra

g
e
m
o
d
e
l

C
D
N

S
li
c
in

g
(R

e
ta

l
e
t

a
l.
,

2
0
1
7
)

fo
rm

u
la
te

d
th

e
V
M

s
p
la
c
e
m
e
n
t

p
ro

b
le
m

a
s

tw
o

L
in

e
a
r

In
te

g
e
r

p
ro

b
le
m

so
lu

ti
o
n
s,

to
m
in

im
iz
e
th

e
c
o
st

a
n
d

m
a
x
im

iz
e
th

e
Q
o
E

C
D
N
-a

s-
a
-S

e
rv

ic
e

(F
ra

n
g
o
u
d
is

e
t
a
l.
,
2
0
1
7
)

a
(C

D
N
a
a
S
)

a
rc
h
it
e
c
tu

re
th

a
t

a
ll
o
w
s

a
te

le
c
o
m

o
p
e
ra

to
r

to
o
ff
e
r

d
iff

e
re

n
t
C
D
N

fl
a
v
o
rs

to
C
P
s
o
n

d
e
m
a
n
d

2
-T

ie
re

d
C
lo
u
d

C
D
N

(G
u
p
ta

e
t

a
l.
,
2
0
1
7
)

a
2
-t
ie
r

st
ru

c
tu

re
,

w
h
ic
h

u
se

s
C
C
D
N

w
it
h

p
ri
o
ri
ty

b
a
se

d
ro

u
n
d

ro
b
in

sc
h
e
d
u
li
n
g
,
a
n
d

a
d
e
d
ic
a
te

d
P
e
e
r
to

P
e
e
r
n
e
tw

o
rk

fo
r
v
id

e
o

d
e
li
v
e
ry

O
p
ti
m
a
l

V
N
F
s

p
la
c
e
m
e
n
t

(B
e
n
k
a
c
e
m

e
t
a
l.
,
2
0
1
8
)

a
p
la
c
e
m
e
n
t
m
o
d
e
l
o
f
V
N
F
s
fo
r
C
D
N

sl
ic
e
s
to

m
e
e
t
p
e
rf
o
rm

a
n
c
e

re
q
u
ir
e
m
e
n
ts

w
it
h

m
in

im
u
m

c
o
st
,
a
c
ro

ss
m
u
lt
i-
d
o
m
a
in

c
lo
u
d

S
o
ft
w
a
re

-D
ri
v
e
n
C
D
N

(D
u
a
n
e
t

a
l.
,
2
0
1
8
)

a
n

S
D
N
-b

a
se

d
C
D
N

th
a
t
a
c
h
ie
v
e
s
a

w
in

-w
in

si
tu

a
ti
o
n

b
e
tw

e
e
n

IP
a
n
d

C
P
s
b
a
se

d
o
n

a
su

it
a
b
le

re
v
e
n
u
e
sh

a
ri
n
g

sc
h
e
m
e

V
id

e
o

T
ra

n
sc

o
d
in

g
(M

in
g
g
a
n
g

C
h
e
n

e
t
a
l.
,
2
0
1
8
)

a
d
a
ta

-d
ri
v
e
n

p
a
ra

ll
e
l
v
id

e
o

tr
a
n
sc

o
d
in

g
fo
r
C
D
N

C
o
n
te

n
t

R
a
ti
n
g

(D
e
e
p

e
t

a
l.
,

2
0
1
8
)

a
c
o
n
te

n
t

fi
lt
e
ri
n
g

te
c
h
n
iq
u
e

c
o
u
p
le
d

w
it
h

w
e
ig
h
te

d
sl
o
p
e

o
n
e

sc
h
e
m
e
to

im
p
ro

v
e
n
e
tw

o
rk

la
te

n
c
y

M
A
B
R
E
S
E

(T
ra

n
e
t
a
l.
,
2
0
1
9
)

a
se

rv
e
r

se
le
c
ti
o
n

a
lg
o
ri
th

m
w
it
h

a
n

a
v
e
ra

g
e

re
sp

o
n
se

ti
m
e

a
n
d

re
w
a
rd

sc
o
re

fo
r
a
n

S
D
N
-b

a
se

d
C
D
N

R
e
so

u
rc

e
R
e
se

rv
a
ti
o
n

(F
a
n

e
t

a
l.
,
2
0
1
9
)

a
m
u
lt
i-
o
b
je
c
ti
v
e
o
p
ti
m
iz
a
ti
o
n

p
ro

b
le
m

o
n

re
so

u
rc

e
re

se
rv

a
ti
o
n

fo
r

a
C
C
D
N
,
to

se
e
k

a
tr
a
d
e
-o

ff
b
e
tw

e
e
n

th
e

re
n
ta

l
c
o
st

a
n
d

th
e

u
se

r
e
x
p
e
ri
e
n
c
e

B
C
D
N

(A
k

e
t
a
l.
,
2
0
1
9
)

a
B
lo
c
k
c
h
a
in

-a
id

e
d

C
D
N

m
o
d
e
l

to
p
re

v
e
n
t

th
e

o
v
e
rl
o
a
d
in

g
o
n

th
e

su
rr
o
g
a
te

se
rv

e
rs

a
n
d

p
ro

v
id

e
d
y
n
a
m
ic
a
ll
y

c
h
a
n
g
in

g
v
ir
tu

a
l

in
st
a
n
c
e
s

C
D
N

S
li
c
in

g
(T

a
le
b

e
t

a
l.
,

2
0
2
0
)

a
d
e
si
g
n

a
n
d

m
e
c
h
a
n
is
m
s

o
f
d
y
n
a
m
ic

in
st
a
n
ti
a
ti
o
n

a
n
d

m
a
n
a
g
e
-

m
e
n
t
o
f
C
D
N

sl
ic
e
s
in

5
G

m
o
b
il
e
n
e
tw

o
rk

s
w
it
h

re
sp

e
c
t
to

Q
o
E

W
A
E

(A
k

e
t
a
l.
,
2
0
1
8
)

a
W

o
rk

lo
a
d

A
u
to

m
a
ti
o
n

E
n
g
in

e
w
h
ic
h

e
n
a
b
le
s

d
y
n
a
m
ic

re
so

u
rc

e
m
a
n
a
g
e
m
e
n
t
a
n
d

sc
a
li
n
g
,
w
it
h

th
e
le
a
st

c
o
st

E
d
g
e

v
C
D
N

(B
.

C
h
e
n

e
t

a
l.
,

2
0
2
3
)

a
rc
h
it
e
c
tu

re
a
n
d

a
d
y
n
a
m
ic

d
e
p
lo
y
m
e
n
t
m
e
th

o
d

fo
r
v
C
D
N
s
b
a
se

d
o
n

e
d
g
e

c
o
m
p
u
ti
n
g

to
a
d
d
re

ss
th

e
c
o
n
n
e
c
ti
v
it
y

is
su

e
s

c
a
u
se

d
b
y

re
a
l-
ti
m
e
h
o
t
c
o
n
te

n
t

T
ab

le
2.
3:

A
co
m
p
ar
is
on

b
et
w
ee
n
cu
rr
en
t
v
C
D
N

so
lu
ti
on

s.

38

Chapter 2. Background and Related Work

Cloud Computing allows leasing resources (i.e., compute, memory, storage, and
bandwidth) to build CDNs in the cloud to alleviate major limitations of traditional
CDNs that rely on fixed physical caches, by leveraging virtualization technologies
(Benkacem et al., 2018), (Taleb et al., 2020), (Papagianni et al., 2013), (Gupta
et al., 2017), (Roy et al., 2015), (Minggang Chen et al., 2018), (Deep et al., 2018),
(Sajithabanu et al., 2016), (Retal et al., 2017), (Frangoudis et al., 2017), (Woo
et al., 2014), (Fan et al., 2019), and (Hu et al., 2016). NFV technology allows
the decoupling of CDN functionalities from the underlying hardware, which offers
on-demand scaling and automatic reconfiguration (Benkacem et al., 2018), (Taleb
et al., 2020), (Papagianni et al., 2013), (Retal et al., 2017), (Frangoudis et al., 2017),
(Woo et al., 2014), (Mangili et al., 2016), (Hu et al., 2016), and (B. Chen et al.,
2023). The SDN paradigm provides logically centralized control, management, and
programmability over the network (Woo et al., 2014), (Duan et al., 2018), and (Tran
et al., 2019). MEC harnesses the power of cloud computing outside cloud data centers
by deploying application services at the edge of mobile networks (Taleb et al., 2020),
and (B. Chen et al., 2023). Blockchain methodology provides features of distributed
contracts and fully automated reliable flow generation to prevent overloading on the
surrogate servers (Ak et al., 2019). NDN is a network architecture that directly
uses application data names to communicate, treating networking, storage, and
computing resources in the same manner, by adopting a request-reply communication
model that directly uses application data names at the network layer (Woo et al.,
2014).Containerization provides lighter-weight virtualization (Ak et al., 2018).

Even though the aforementioned technologies have been leveraged to solve specific
CDN problems; server selection, placement, traffic routing, etc., they still have not
considered the communication gap between the CP and the CCDN, which allows the
CP to request high-level intent targets.

Therefore, adopting intents in the CCDN domain would lead to better interaction
and decision-making between the CP and the CCDN operator. Moreover, there are
no sufficient works that explore how microservices could be deployed in a CCDN, and
how can a CCDN operator design and integrate a set of microservices that collectively
comprise the whole CCDN along with their varying interactions and performance.
This could be leveraged and deployed as part of the translation and decomposition
process from high-level declarative intents to their corresponding lower-level policies
that would map eventually to different microservice alternatives.

It is through this process that we have identified some limitations in the area
(Alalmaei et al., 2020). These are as follows:

• The limited involvement of CPs in the CDN decision-making and rigid one-
directional communication between the CP and the CCDN. Current solutions focus
on the system more than the user.

39

Chapter 2. Background and Related Work

• CPs currently cannot express their high-level intents to the CCDN. Instead, current
CCDNs like Amazon CloudFront (Amazon, 2023), Google Cloud CDN (Google,
2023c), and Microsoft Azure CDN (Microsoft, 2023b) have very limited APIs that
allow them to identify the desired region and the cached content. Some offer more
technical APIs that include some level of caching and infrastructure configurations
(Google, 2023b). However, these are not meant to be used by non-technical CPs
who are not interested in this level of detail.

• To the best of our knowledge, there is no sufficient research in the literature that
investigated the adoption of microservices in the CCDN context. Since many
traditional CDNs may fall behind with their pre-defined caching and management
decisions, it is very important to explore how can a CCDN operator design and
integrate a set of microservices that collectively comprise the whole CCDN along
with their interactions and performance with respect to the CP’s intents.

• Intent translation has been mostly presented as a black box that has not been
discussed in a systematic way in the current literature, so, it is essential to discuss
how the translation and decomposition processes are held which convert high-
level declarative intents to their corresponding lower-level policies that would map
eventually to microservices.

2.10 Summary

This chapter has presented a landscape of how CCDN operators could leverage
some technologies, background material, related work, and their current limitations.
To begin with identifying a particular trend in the field of networking, which
moves towards Softwarization: moving away from fixed hardware-based functionality
towards more flexible and agile software alternatives. Importantly, this is achieved
with improved scalability, availability, cost-reduction, resource utilization and agility.
This softwarization movement has progressed over the past few years and become
widely adopted in industry and academia. We discussed NFV, Containerization, and
SDN, along with some of their advantages, challenges and limitations.

Another technology described in this chapter is the Microservices Architecture. In
particular, we compared its advantages against the traditional monolithic systems. We
presented a set of benefits offered by this technology that improved today’s systems.
However, it also induces some challenges that could be somewhat partially relieved
via the current microservices orchestrator de facto Kubernetes.

Later, based on the previous technologies, a recent trending paradigm has been
discussed in detail. The Intent-Based System. In specific, we broke down the current
Northbound Interfaces that are available for service consumers and compared them.

40

Chapter 2. Background and Related Work

Opposed to the Intent-Based Northbound Interfaces, the others are still low-level,
technology-specific, and ad-hoc which were not designed for novice users with no
technical background. Then we compared intents and policies, and we even described
different types of intents based on their users and problem domain. Therefore, we
focused on the current Intent-Based solutions that aim to allow users to express their
intent targets at a high level. However, these solutions are still lacking behind their
expected outcome. We provided a meta-analysis of the most important Intent-Based
solutions and summarized their shortcomings.

Moving forward to CCDNs, we introduced our classification of CDN types based
on several dimensions like their service type, infrastructure, caching scheme, etc.
Accordingly, based on our classification for CCDNs, we stated our own assumptions
for the CCDN use case that we focus on and work on.

Finally, we focused on the current related work in the CCDN research field. A
meta-analysis was done for the current CCDN solutions, their adopted technologies,
and the problem description. We discussed their overall limitations that motivated us
to take a step forward towards future CCDNs by leveraging the current technology
advancements, which have not been widely investigated in the current research in the
CCDN domain.

41

Chapter 3

Design

Today, most CCDNs make their resource and caching management decisions in a
way that is oblivious to what the CPs want to achieve. Their APIs do not allow
CPs to express their high-level targets (e.g., expected requests throughput, latency,
cost saving, etc.) since they are mainly limited to selecting the desired geographical
coverage and specifying the origin content server. In light of the expected growth of
the Intent-Based Networking market with a CAGR of 23.9% to reach $8.8 billion by
2030 (GlobeNewsWire, 2023b), it is important to investigate how the next deployment
phase of CCDNs could maintain or accelerate this growth rate by moving towards
an Intent-Based NBI interactive communication scheme between CPs and CCDN
operators, which enables CPs to declare their high-level targets and get updated on
the CCDN’s ability to achieve these targets throughout the service lifetime. This
could possibly lead to better and more efficient resource and caching management
decisions by providing more adaptive, flexible, and portable CCDN that tries to
meet the CP high-level target in an automated way throughout the pre-, post-, and
during the service deployment phases. Moreover, many CCDNs offer pre-defined
caching and resource management that could possibly fall behind the rapid technology
development and dynamic demand changes.

In this chapter, we discuss the motivation behind the need for Intent-Based
solutions central to both present and future CCDNs design in Section 3.1. Then,
in Section 3.2, we present our proposed multi-level intent expressions. Further to
this, we present our Intent-Based framework for achieving this, illustrated through a
comprehensive design in Section 3.3. Following that, in Section 3.4, we discuss the
MCDM process in detail, which assists with the CCDN deployment selection based
on the intent target, In Section 3.5 we introduce different intent targets that could be
interesting to CPs. Finally, we discuss the intent refinement process which aims at
improving the intent performance and map it to a MAPE-K autonomic approach in
Section 3.6.

42

Chapter 3. Design

3.1 Design Motivation and Aims

Given the background and related work described in Chapter 2, it is clear that there
is significant effort centered around CCDNs, and the technologies and infrastructures
that support them. Although the discussed technological advancements are very
helpful in improving the current CCDNs, there is still a gap between the CP’s
requirements and the CCDN requirements and goals. This is because most CCDNs
still make their resource and caching management decisions oblivious to what the CPs
want to achieve. Hence, there is a current interest in system management schemes
that utilize user’s high-level intents. In this section, we consider the motivation behind
an Intent-Based CCDN design and the aimed features for each.

3.1.1 Leveraging CDNs by different domains

CDN services are not limited to content delivery, in fact, a spectrum of other domains
can leverage CDNs as well such as e-learning (Palau et al., 2003), smart cities
(Mingkai Chen et al., 2019), smart health (Min Chen et al., 2017), drone and
Unmanned Aerial Vehicle (UAV) monitoring, and vehicle monitoring (Asheralieva
et al., 2019). However, advances in these domains are not sufficiently supported by
academic research in several aspects as discussed in this survey (Zolfaghari et al.,
2020).

From the perspective of a CDN operator, administrator, and IT personnel in
general, multiple technology advancements could be leveraged. For instance, SDN
(Kreutz et al., 2014) and NFV (Mijumbi et al., 2015) have recently redefined the vision
of designing, deploying, and managing networking systems and services. Combined
together, they provide network managers with complete, programmatic, and flexible
control of a dynamic view of the network which could greatly improve the performance
and management of the aforementioned domains. Therefore, Telecommunications
providers, CDN operators, and over-the-top (OTT) content providers have taken a
great interest in leveraging these technologies (Alalmaei et al., 2019).

Although these rising paradigms are very promising, these abundant possibilities
have imposed additional challenges by creating a cumbersome system configuration
process to adjust to all different stakeholders, users, and services. Therefore, lately,
there is a need to simplify the management and configuration of networks in an
autonomic way. Intent-Based Networking (IBN) is such a paradigm that realizes
simplified, flexible, and agile network management and configuration with minimal
external intervention (i.e., from the CP’s perspective) (Leivadeas et al., 2022).

Although today’s networks are programmable (Lopes et al., 2015). (Trois et al.,
2016), (Parashar et al., 2004), (Comer et al., 2018), and (Woo et al., 2014), they
need programmers. Current Network programming approaches allow the definition

43

Chapter 3. Design

of policies (conditional actions) to be executed in pre-defined scenarios. IT experts
need to define when and what the network functions should do in low-level details, at
multiple resource and technology layers, and on massive scales. However, the current
network entities do not have a full representation of the overall goals (Szilágyi, 2021).
Therefore, these raw network programmability approaches are not sufficient to achieve
a high level of automation, that is, where automation goals are beyond configuration
parameters that can be tuned and committed (Szilágyi, 2021).

Conversely, Intent-Based networks allow the definition of much higher level
and, sometimes abstract objectives, without requiring instructions on how to reach
them. Accordingly, the comprehension of the intent and its mapping to lower-level
technology-dependent actions that make sense at any moment is needed for bridging
the abstraction and automation gap between the intent and current systems (i.e.,
policy-based or workflow automation). This is a novel requirement compared to these
non-Intent-Based network solutions. However, existing Intent-Based proposals have
usually a narrow domain-specific and use-case-driven automation scope, which leaves
the gap between intent abstraction and automation open (Szilágyi, 2021).

However, generalizing an intent expression could miss capturing some domain-
specific requirements, especially with the different levels of possible intent users (i.e.,
technical and non-technical). Therefore, it is important to allow the customization of
this generic expression and extend it with some additional specific requirements with
respect to the problem domain and users.

Therefore, this surely requires additional capabilities within the IBN itself (i.e.,
a level of intelligence relevant to a certain context), knowing the potential actions
available to manipulate the scenario and help with reaching the goal, and being aware
of the expected and resulting outcome of each action in the given context (Szilágyi,
2021).

Since CDNs are being utilized in multiple other domains beside content delivery,
this imposes an additional burden on the CDN operators due to the wider variety
of use cases, service requirements, end-user requirements, etc. Hence, CDNs need to
consider solutions that are able to handle these variable cases and requirements of
these diverse domain problems that should reflect on the utilization and management
of the underlying technologies. Therefore, a communication scheme is needed to
enable multiple users from these different domains with different levels of technical
knowledge to interact with the CDN in a sufficient and dynamic manner with
correspondence to their domain-specific requirements.

Accordingly, a new CDN solution should be able to embrace current technologies
and adopt new ones as well. Therefore, technology independence is key. Seeking a
modular solution that separates the system services from the underlying technology
allows stakeholders to agree on behavioral policies and even compare and alternate
between technologies. For instance, CDN microservices (e.g. caches, load balancers,

44

Chapter 3. Design

DNS servers, etc.) could be easily upgraded or scaled without affecting the other
functionalities. Moreover, this facilitates the realization of the CCDN functionalities
in different ways depending on the underlying microservice implementation, which
enables stakeholders to compare and alternate between different microservices that
provide the same functionality but with different costs, performance, etc.

Hence, these CDNs could leverage some decision support systems which are defined
as a Multiple-Criteria Decision-Making (MCDM) to establish alternatives ranking and
selection based on multiple criteria. Realized via different approaches, this can help
to negotiate requirements among stakeholders and analyze architectural and services
trade-offs based on some evaluation criteria (Junior et al., 2018)

3.1.2 Different CDN stakeholders’ collaboration

The collaboration between multiple stakeholders in the field of CDNs has attracted a
lot of attention both in academia and industry. These stakeholders could be Internet
Service Providers (ISPs), Cloud providers, CDN operators, content providers, Peer-to-
peer (P2P), and several academic research and industrial groups. This survey (Jia et
al., 2017) discussed the current state of different collaborations in content delivery and
discussed thoroughly the current related works. This collaboration facilitates making
full use of the management, infrastructure, and effective information provided by these
stakeholders to improve the efficiency of content distribution and optimize the overall
performance of the network. This is due to the diverse levels of control, exposure, and
role with respect to CDN management and infrastructure. For instance, in order to
optimize the content distribution performance, CDN providers/operators who usually
have less underlying network information, can leverage the ISP’s control and exposure
of the underlying network topology, link load information, and user location as shown
in Figure 3.1. Therefore, exploring these new efficient content distribution schemes
could reduce the time delay for request and response, and improve user quality of
experience (QoE).

Furthermore, different CDN providers may have access to different content at
different costs, and dynamic demand. So, different business relationships can be built
between CDN providers. There has been an ongoing effort in the CDN Interconnection
domain (Bertrand et al., 2012) that tries to specify the communications and roles
between different CDNs and ISPs to reduce CDN traffic and decrease latency where
several use cases have been discussed. However, these different facets of collaborations
between these stakeholders, their corresponding underlying microservice mapping,
etc., are beyond the scope of this thesis.

Accordingly, a communication scheme is needed to enable these different stake-
holders to express their high-level requirements via intents (as intent consumers) that
should be handled by other stakeholders that have the required level of control (as

45

Chapter 3. Design

Figure 3.1: CDN Operator and ISP Collaboration.

intent developers). This communication also needs to keep the consumers involved
throughout the whole life cycle of the intent by sharing feedback and getting their
potential input. A stakeholder could play both roles; intent consumer and intent
developer. For example, a CDN provider/operator could be a consumer of an intent
developed by an ISP, and on the other hand, a CDN provider/operator could be the
intent developer that creates intents for the content provider’s consumption.

Therefore, an Intent-Based solution needs to provide multiple levels of intent
expressions; declarative and prescriptive. The former is targeted for non-technical
consumers to state their high-level target sufficiently, whereas the latter is meant to
be expressed by technical users with the additional required technical specifications
and details.

3.1.3 Bi-directional interaction between intent consumers
and the CDN

CDNs are not confined to static content delivery as they are used in dynamic
content delivery which requires mutual interaction with the user. Their application is
not limited to Business-to-Business (B2B) interactions between telecommunications
operators and CDN operators but also extends to Business-to-Consumer (B2C)
business models as CDN operators and content providers are more prevalently
adopting this technology (Zolfaghari et al., 2020).

Knowing these potential CDN actions leads to providing the necessary bi-
directional Intent-Based APIs that involve both parties in the process (each with their

46

Chapter 3. Design

corresponding level of involvement) for resource and domain management, Quality of
Service (QoS) resource provisioning and changing, slicing, and more. A full closed loop
of intent-based interaction is depicted in Figure 3.2. This loop starts from the intent
consumer who issues the intent request via different input methods (e.g., commands,
selected choices from a list, natural language text, voice commands, etc.), and then
this input has to be analyzed and processed (i.e., translated) for validation. If the
intent input is invalid, then the intent consumer has to re-input it until a valid form
is entered. Once the intent translation has been completed, it gets built and deployed
based on the underlying infrastructure technology. Finally, feedback is shared with
the intent consumer.

Accordingly, new Intent-Based APIs should allow incremental development by
reusing the existing APIs (e.g., policy-based) that are currently exposed to human
experts. However, in order to maintain the intent target, APIs need to derive insights
and actions through measurement/data collection, configuration settings, and bi-
directional communication with the intent consumers who can provide their insights,
additional information, attributes, and elaborated specifications of their intent goal.

Figure 3.2: Bi-directional Interaction between users and the Intent-Based system
(Bezahaf et al., 2021)

3.1.4 Summary of Motivating Factors

In this section, we have identified the motivation and a number of features to be
considered in the design and implementation of an Intent-Based CCDN. Below, we
collect and provide a summary of each of these motivating factors and their aimed
design attributes.

1. Leveraging CDNs by different domains

47

Chapter 3. Design

• Enable multiple CDN users from different domains, even beyond content delivery,
to interact more efficiently and easily with the CDN

• Extend the programmability approaches of the current networks via IBN

• Build a CDN that could embrace current technologies and adopt new ones as
well by considering modularity, extensibility and technology independence

• Allow stakeholders to plan behavioral policies at an abstract level, but also
compare and alternate between the underlying technology realizations at the
lower levels, via some MCDM approaches

2. Different CDN stakeholders’ collaboration

• Facilitate stakeholders’ collaboration via intents

• Introduce different levels of intents/policies for different stakeholders according
to their level of exposure, management, expertise, etc. Each with the suitable
corresponding expression (i.e., declarative or prescriptive)

• Foster the hierarchical relationships between stakeholders via different intent-
related roles (i.e., intent developer and intent consumer)

3. Bi-directional interaction between intent consumers and the CDN

• Provide a bi-directional interaction between different CDN players (e.g., stakeholder-
to-stakeholder, CDN-to-CP, etc.)

• Integrate the bi-directional interaction along with other factors (i.e., metrics/data
collection, service status, ML/AI, system configurations, etc.) to allow intent
users to provide their insights, additional information, specifications of their
intent goal updates, etc. for a potentially more efficient and interactive Intent-
Based communication scheme

3.2 Intent Expressions, Syntax, and Descriptors

Service-oriented intents are high-level descriptions, that are targeted towards service
consumers without assuming them to have deep knowledge or technical details about
it. We devise a well-defined declarative expression that can represent user targets in
light of the expression proposed in (Chao et al., 2018). The intent syntax is in the
form of:

<SERVICE><RESOURCES><CONJUNCTION><TARGET>

48

Chapter 3. Design

<SERVICE> identifies the required service (e.g. caching, placement, etc.). <RESOURCES>
identify the abstract resources the service would operate on (e.g. caches, switches,
etc.). <CONJUNCTION> expresses the conjunction between the service and the target
(e.g. ’with’, ’to’, ’that can handle’, etc) to make intents more readable. <TARGET>
expresses the objective of the required service that users want to achieve.

A service-oriented intent <TARGET> is decomposed into a set of prescriptive policies
that work jointly to achieve the target as:
<SERVICE><RESOURCES>

<POLICY1><OPERATOR><POLICY2><OPERATOR>...
{<POLICYk1><OPERATOR><POLICYk2><OPERATOR>...<POLICYkm>}
<OPERATOR>...<POLICYn>

Each <POLICY i> is expressed as:
<CONDITIONS><ACTIONS><CONSTRAINTS>[<PRIORITY>]

where <CONDITIONS> define the circumstances under which the service actions
will apply. <ACTIONS> represent the type of service actions to be executed.
<CONSTRAINTS> show the constraints on the actions to execute, while [<PRIORITY>]
is an optional indicator of policy priority. <OPERATOR> is the logical operator that
identifies how any two policies interact with each other, either in a sequential or
parallel manner. The curly brackets ({ }) express a block of grouped policies.

There are two levels of policies (i.e. abstract and technical). The abstract
policies are listed in the Intent and Policies Descriptors Component in Figure 3.4.
Meanwhile, the technical policies are instantiated policies with certain calculated
values in place of the abstract ones before the translation process. They both follow
the same syntax but the technical policies determine the microservice alternatives or
technologies used in <ACTIONS> and the corresponding technical requirements and
operational parameters in <CONSTRAINTS>. An example of these policies will be
discussed in the following Section.

3.2.1 Intent-to-Policy Mappings

CCDNs manage several operations to deliver their caching services (Frangoudis et al.,
2017), broadly categorized as:

1. Allocate resources to cache servers that can be deployed via underlying
virtualization or containerization technologies.

2. Redirect end-user content requests to local caches via SDN-based approaches
or traditional DNS routing.

3. Resize the caching service based on demand, user target, available resources,
etc.

49

Chapter 3. Design

Tag Basic Expression

<SERVICE> Caching
<RESOURCES> contents to be cached
<CONJUNCTION> that can handle, that can meet, etc.
<TARGET> <WORKLOAD>

<WORKLOAD> <NUMBER> <UNIT> or <ADJECTIVE> <UNIT> or
<ADJECTIVE> ”workload”

<NUMBER> numeric values that can represent the workload
<UNIT> GB/min, requests/sec, etc.

<ADJECTIVE> max, min, dynamic, high, medium, etc.

<CONDITIONS> new caching request, max threshold exceeded, ...
<ACTIONS> allocate cache servers(), scale out(), ...

<CONSTRAINTS> with max storage, with least latency, ...
<PRIORITY> optional indicator of policy priority
<OPERATOR> Policy will be executed in parallel / sequential way

Table 3.1: Basic expression syntax.

These operations could form up the intent’s policies as illustrated in Fig. 3.3.
Here, the intent user is the CP and the intent developer is the CCDN Operator.
When an intent developer wants to create a new intent, he has to decide how users
can express their high-level targets using the declarative intent expression. So, he has
to determine the possible targets that users would want that specific intent service to
achieve. Moreover, the resources that this service will use, have to be specified, and the
equivalent conjunction between the resources and the target. For example, a caching
intent would be important for CPs. Therefore, the intent developer can provide several
targets that can be achieved via the equivalent policies and implementation, based
on his knowledge of the CDN and the user requirements, which could be assisted

Figure 3.3: Abstract Policies Language Snapshot.

50

Chapter 3. Design

by some operational and technical requirements calculator modules. We discuss a
target that a CP would possibly want to achieve at different levels via the caching
intent which is <WORKLOAD>. The intent developer (i.e., CCDN Operator) has to
determine how this could be expressed. For example, the CP can express his required
workload that should be met by the caching service intent either numerically such
as ”I want caching for content X to handle 20 GB/minute” or describe it with
an adjective such as ”I want caching for content X with the minimum number of
requests/region”. Accordingly, the intent developer must determine the equivalent
mapping for each tag in the service-oriented intent expression as shown in Table 3.1.
The CCDN Operator determines how to decompose the declarative intent expressed
by the CP to a set of abstract policies that jointly achieve the requested operational
goal. This is based on two perspectives, The first is system-wise, which requires a good
understanding of the system: its microservice functionalities, resources availability,
etc. The second is service consumer-wise which is based on understanding his
requirements and what type of microservices and technical considerations are needed
to achieve them. For example, the CP’s declarative caching intent with a workload
target (i.e. service consumer’s requirement) can be decomposed into two policies, each
maps to a microservice (i.e. allocate cache servers and resize the cache service). This
is shown below:

If a new caching request is received:
then allocate cache servers with the selected cache server size.
<sequential >
{ If maximum threshold is exceeded in all current caches:

then add more caches with number of caches to add.
<parallel >
If caches are underutilized:

then remove some caches with number of caches to remove.
}

In abstract policies, conditions, actions, and constraints for each policy should be
expressed as in Table 3.1, as a set of possible terms or expressions that should be
evaluated (e.g. new caching service request). Then after translating them to their
corresponding microservice API calls, they get injected into the Service Orchestrator
for their execution. The abstract and technical policies can be expressed in JSON
format as in Listings 3.1–3.2.

3.3 Architecture and Design

In this section, we discuss how the aforementioned aims will be met with an overall
design. This design will also become the basis for our implementation, discussed later
in Chapter 4.

51

Chapter 3. Design

{ "Resources-Allocation":{
"Conditions": "NewCachingServiceRequest",
"Actions": "AllocateCacheServers",
"Constraints": "CacheServerSize"},

"Cache-Service-Resizing":{
"Scale-up":{

"Conditions": "MaxThresholdExceeded",
"Actions": "AddMoreCaches",
"Constraints": "NumberOfCachesToAdd"},

"Scale-down":{
"Conditions": "UnderutilizedThreshold",
"Actions": "RemoveSomeCaches",
"Constraints": "Time"}

}

}

Listing 3.1: Abstract Policies.

{ "Resources-Allocation": {
"Conditions": "NewCachingServiceRequest",
"Actions": "SpinUpCacheVMs",
"Constraints": "CacheSize=medium"},

"Cache-Service-Resizing":{
"Scale-up":{

"Conditions": "CPUUtilization>80%",
"Actions": "SpinUpCacheVMs",
"Constraints": "NumberOfVMs=1" },

"Scale-down":{
"Conditions": "CPUUtilization<20%",

"Actions": "SpinDownCacheVMs",
"Constraints": "02:42"}

}

}

Listing 3.2: Technical Policies.

52

Chapter 3. Design

The design of our proposed Intent-Based CCDN is based on the following
principles:

• Different Intent Representation Levels:

in a CCDN scenario, there are two players: CP (intent consumer) and CCDN
operator (intent developer). Intent representation differs for each player as follows:

– CP (Intent Consumer): Intents are represented in a declarative way that
expresses the CP target at a higher-level

– CCDN Operator (Intent Developer): The intents creation, development, and
management steps are maintained by the CCDN operator who regulates the
behavioral policies of the intents. Thus, a prescriptive expression is needed
to represent these policies. However, to allow collaboration between different
stakeholders (i.e., different CCDN operators) these prescriptive policy expressions
have to be abstract which would be translated differently according to the
underlying technology and infrastructure.

• Technology-Independence: It is hard to keep up with technology advancements
when the CCDN functionalities are tightly coupled to the underlying technologies
and implementations. Therefore, it is important to separate the CCDN behavioral
policies from their actual technical realization. This enables CCDN operators to
think at a higher level and articulate abstract behavioral policies without worrying
about the implementation complexities. Moreover, this provides a more flexible,
cost-effective, and portable solution by allowing the same policy to be applied
across different underlying technologies without the need to define multiple variants.
Different policy agents can be plugged into the different underlying systems to
translate abstract policies into a technology-specific representation. This also
enables comparing and alternating between different realizations for the same
abstract policies, which facilitates the collaboration between different stakeholders
in the policies definition.

• Global System and Intent Status Awareness: The Intent-Based framework
needs to control and adjust the CCDN configurations to meet the CP intent goals
based on the system and intent state. This could be achieved by means of telemetry
and machine learning, as well as intelligent decision-making. This awareness has to
include the pre-, and post- CCDN deployment phases and throughout the overall
lifecycle of the intent.

• Closed-loop Intent Refinement: According to the feedback of the global system
and intent status, the gap between the current CCDN configuration and the intent’s
desired target CCDN state is inferred. The closed-loop (full-lifecycle management)

53

Chapter 3. Design

CCDN adjustment and intent refinement are continuously performed to enhance
the learning mode and adjust the CCDN configuration and finally satisfy the user
intent.

• Extensibility: Is important to facilitate extending the current intents space by
enabling the creation of new intents, and the composition of existing policies
to create new more complex intents. This could be achieved by leveraging the
current technology advancements in Microservices Architecture’s modularity and
functionality isolation where the composition of multiple microservice alternatives
could jointly create different higher-level overall CCDN deployments that could
achieve the intent goal. For example, if an intent goal is to achieve high performance,
then this could be translated to the corresponding microservices that help with
increasing performance (i.e., cache servers with faster processing, load balancers,
CDN auto-scaler, etc.). This translation would be extended when new microservices
(or upgraded old ones) that help with achieving better performance can be included.
So, the modularity and continuously evolving nature of microservices could highly
facilitate the intent translation process and the overall intent space extension.
Therefore, it is important to evaluate the overhead of the intent translation time
while extending the intent problem space that consists of different microservice
alternatives and their evaluation criteria.

Our proposed Intent-Based CCDN framework is depicted in Figure 3.4, the
components of which consist of three layers as discussed below. The blue arrows with
green numbers denote the Pre-deployment phase (intent translation) and the purple
arrows with magenta letters denote the post-deployment phase (intent refinement).

3.3.1 Translation Layer

This layer is the enabler for the communication between CPs and CCDN operators
with the CCDN ecosystem, where the actual intent calculation and refinement
processes take place. It consists of the following components:

• Content Provider Intent API: An interface allowing CPs to express (i.e., add,
update, remove) declarative intents. A CP can express intents from available
provided intent expressions (e.g., Caching with Low-Cost) (Step 1) as shown in
Figures 3.5, 3.6 and 3.7. In these examples, a CP could make his decision regarding
the suggested intent translation based on several criteria (i.e., cache server size,
zone, and performance improvement level). The CP could accept, reject, or update
the suggested CCDN deployment that corresponds to his intent input.

• Multiple Criteria Decision Making Module for CCDN Deployment:

54

Chapter 3. Design

The high-level intent then needs to be translated, so the MCDM module calculates
the equivalent AHP graph (described in detail in Section 3.4.1) corresponding
to the intent input (Step 2). The AHP output would be a score ranking for
each microservice that could be used in a CCDN deployment, which is done with
correspondence to the evaluation criteria defined in the AHP graph, where their
degree of contribution to the CCDN solution depends on the CP intent (Step 3).
For instance, if there are 2 main evaluation criteria defined in the AHP graph:
scalability and cost. The cost in our context refers to what the CP has to pay for
the CCDN service, so when they are interested in cost reduction, then the lower the
cost value, the better it is, and vice versa. When the CP intent is to get the best
available performance, then this intent target requires assigning a much greater
weight of importance to the scalability criterion as opposed to the cost criterion
(e.g., scalability weight = 0.9 and cost weight = 0.1). Accordingly, the overall
score calculation and priority for each microservice would differ.

• CCDN Deployments Enumeration and Clustering Module:

After the AHP scores have been calculated for each microservice, the CCDN
deployments enumeration and clustering take place. This process enumerates all
possible CCDN deployments by selecting a microservice instance from each different

Figure 3.4: Intent-Based Framework.

55

Chapter 3. Design

type that could collectively constitute a CCDN deployment. For example, if we have
2 different types of microservices categorization: cache size and cache placement
zone. Let us assume that each category has 3 different instances (cache size: big,
medium and small) and (cache placement zone: local, nearby and further), then we
could enumerate 9 (3 × 3) different CCDN deployments out of these microservice
instances. Since each microservice in the enumerated CCDN deployments has a
score, the overall combined score of the deployment can be calculated by summing

Figure 3.5: CP’s Approval on Suggested CCDN Deployment.

Figure 3.6: CP’s Rejection of Suggested CCDN Deployment.

56

Chapter 3. Design

up the scores of all microservices included in that deployment.

Once the total overall ranking for each possible CCDN deployment is achieved,
the clustering process takes place which groups CCDN deployments with close or
similar scores into a cluster.

Eventually, the generated output (Step 4) contains 3 levels of clusters: high,
medium, and low. The CCDN deployments that belong to the high-scored cluster,
indicate that they have a high capability in achieving the intent goal, whereas the
medium ones have an intermediate capability, and the low-scored deployments have
possibly the lowest capability to meet the intent goal.

The CCDN deployment selection is based on its priority score and resource
availability, so the solution selected would be the highest-scoring available CCDN.

The benefit of having these CCDN clusters is to offer more flexibility and availability
where multiple CCDN alternatives could be selected from the same cluster (level
of capability). Whereas, when all resources in the high-scored CCDN deployments
are not available, then the medium and low clusters could be beneficial if the CP
would compromise his intent goal to some degree in return for running the service
rather than not starting it at all.

Figure 3.7: CP’s Update on Suggested CCDN Deployment.

57

Chapter 3. Design

• Intent Technical Requirements Calculator (Intent Handler):

Starting with the CCDN pre-deployment phase, once a suggested CCDN deploy-
ment has been selected from the high-scored cluster depending on the resource’s
availability. Then it has yet to be technically defined by this module which
calculates the corresponding operational parameters for its technical requirements
(e.g., Max and Min No. Caches, Cache container image, etc.). This is done
after obtaining the corresponding necessary information from the Intent and
Policies Descriptors (Step 5) located in the Database Layer that indicates
the abstract regulatory behavior of the CP intent, which include the conditions,
actions, constraints, attributes, etc. Then, the availability of this selected CCDN
has to be checked by the Operations Support System (OSS) module to report
back its availability to the Intent Technical Requirements Calculator (Step
6). Following that, it reports back the available suggested CCDN to the CP
for their input (Step 7), who responds to the initial suggested and available
CCDN that would help to achieve his/her intent (i.e., approve, decline). Once
approved, the corresponding microservice API calls are formulated and sent to the
Service Orchestrator (i.e., Kubernetes Controller) for service deployment (Step
8). Moreover, the intent’s details and status get stored in the Intent State in
the Database Layer (Step 9).

Moreover, in the post-deployment phase, the intent refinement takes place,
which aims at improving the CCDN and adapting it based on some captured and
analyzed service and demand behavior. This module determines and sends the
intent refinement metrics (e.g., peak hours, traffic bursts, etc.) to be monitored
by the OSS module, and gets alerted when any metric has been hit to start the
intent refinement process (Step A). Then the Intent Technical Requirements
Calculator identifies and calculates the suggested CCDN refinement and reports
this back to the CP and waits for their response to the suggested refinement
(i.e., approve/decline/update) in (Step B). If the suggested refined CCDN was
approved or updated (e.g., updated peak hours by the CP) as shown in Figure 3.8,
then this module formulates the corresponding microservice API calls and sends
them to the Service Orchestrator in (Step C). Finally, it updates the Intent

State in the Database Layer in (Step D).

• Intent Developer API: Allows intent developers (CCDN Operators) to create
intents and corresponding policies based on their expertise, or a Knowledge
Base could be used to derive new intents and policies from previous experience.
In specific, an intent developer has to define the MCDM approach (AHP in
our solution) along with its components (i.e., evaluation criteria, microservice
alternatives, and their comparative weights). We will elaborate on this in Section
3.4.1. The Intent and Policies Descriptors in the Database Layer, have to be

58

Chapter 3. Design

specified by the intent developer in order to state the translation behavior for the
Intent Technical Requirements Calculator module.

Figure 3.8: CP’s Update on Suggested Performance Improvement.

3.3.2 Microservice Layer

This layer denotes the Microservices Architecture, consisting of a set of microservices
along with the following components:

• Operations Support System (OSS) Module:

We assume that this module has direct access to the resource repository. Therefore,
in the CCDN pre-deployment phase, the OSS module is responsible for checking
the availability of the selected CCDN deployment and reporting that back to
the Intent Technical Requirements Calculator (Step 6). As for the post-
deployment phase, the OSS module receives the intent refinement metrics (e.g.,
peak hours, traffic bursts, etc.) to be monitored and continuously watches out
for the refinement metrics if any of them has hit the defined limit by the Intent
Technical Requirements Calculator, then alerts it (Step A).

59

Chapter 3. Design

• Service Orchestrator: Coordinates the service behavior (e.g., Kubernetes
Orchestrator) by regulating the interactions and configurations of the corresponding
microservices while considering microservices API calls that correspond to the
translated technical policies as guidelines (from Step 8 and Step C).

3.3.3 Database Layer

This layer consists of the internal Knowledge Base for the intent translation,
refinement, and status storage. It contains the following components:

• Intent and Policies Descriptors: Stores the intent and policies descriptors
that regulate the CCDN behavior, and breaks them down into their corresponding
conditions, actions, constraints, attributes, etc. This contains the basis of the intent
translation and refinement according to the regulated behavior. More details will
be discussed in the following Section.

• Intent State: A database that keeps track of the intent state and details
throughout the intent lifetime.

3.4 Multiple Criteria Decision Making for CCDN

Deployment

This decomposition process of an intent aims to find the best CCDN deployment
options for a requested CP intent target.

3.4.1 Analytical Hierarchy Process (AHP)

A similar Intent-Based work to ours (Scheid et al., 2017) used Softgoal Interdepen-
dency Graph (SIG) (Yrjönen et al., 2009) as their MCDM approach. However, we
choose AHP instead which is one of the most widely used techniques for solving
problems related to MCDM when the number of choices is known beforehand
(Thomas L Saaty, 1994a). This choice has been influenced by the comparison between
AHP and SIG (Kassab, 2013) which is summarized and shown in Table 3.2. AHP was
developed in the 1970s by Thomas L. Saaty (Thomas L Saaty et al., 1979) and has been
extensively studied and refined ever since (Thomas L Saaty et al., 2012), (Whitaker,
1987), (Thomas L Saaty, 1985),(Thomas L. Saaty, 1994b), (Thomas L Saaty et al.,
1991), and (Thomas L Saaty, 1990). AHP has been used and refined to a wide variety
of decision areas (e.g., resource allocation, product selection, transport planning, etc.).

60

Chapter 3. Design

AHP SIG (NFR Framework)
MCDM Cate-
gory

Mathematical based Model (graphical) based

Output Ranking all solutions with regards
to certain criteria (i.e., maximiza-
tion, minimization, or optimal)

Finding adequate solutions that
attempt to meet criteria but
without necessarily producing an
optimal solution

Handled
Comparison
Elements

Quantitative and qualitative Mostly qualitative

Comparison
Scales

More scales Limited scales

Problem Size Large amounts of data and vari-
ables

Not suited for large amounts of
data as expressing and viewing it
in a model can be cumbersome

Comparison
Accuracy

More accurate due to pair-wise
comparison

Could be error-prone due to the
direct score assignment with abso-
lute judgment

Purpose Structured decision making with
better analysis, repeatability, and
consistency

Structured decision support mate-
rial

Application Bigger problems with the need for
high accuracy and consistency

Small problems with the focus on
the graphical modeling for eas-
ier presentation and information
sharing

Table 3.2: Comparison Between AHP and NFR Frameworks.

It is a structured decision-making technique that can represent the human decision-
making process and help to achieve better judgments based on mathematics and
psychology. It provides several advantages as follows:

• Modeling complex problems in the form of a hierarchy: AHP facilitates
prioritizing alternatives when multiple conflicting criteria and sub-criteria must be
considered. This technique allows decision-makers and stakeholders to structure
and model complex problems in the form of a hierarchy, or a set of integrated
levels. It shows the relationships of the main goal, its satisfaction criteria and sub-
criteria, and the alternative solutions. It was evaluated to be the most promising
method for software requirements prioritization (Karlsson et al., 1998).

• Using pair-wise comparison for more accurate judgments: Psycholo-

61

Chapter 3. Design

gists argue that pair-wise comparison is easier and more accurate compared to
simultaneously doing this on all the alternatives. (Ishizaka et al., 2011). This
also helps different stakeholders and decision-makers to compare and check their
possibly different pair-wise comparisons. Therefore, these comparisons are adopted
in the AHP decision-making process. When the AHP consists of a large number of
elements, decision-makers should attempt to arrange these elements in clusters so
that they would not differ in extreme ways. The pair-wise comparison argument
given by Saaty (Thomas L Saaty et al., 2012) against directly assigning scores with
absolute judgment is that the latter is subjective, thus it could be error-prone.
Using pair-wise comparisons in AHP for decision-making is seen as a means to aid
these shortcomings. So instead of deciding “how good is solution A at fulfilling
criterion X?”, the decision becomes “how much better or worse is solution A at
fulfilling criterion X compared to solution B?”.

Intensity of
Importance

Definition Explanation

1 Same importance Two elements contribute equally
to the objective

2 Weak or slight
3 Moderate importance of one

over another
Experience and judgment slightly
favor one element over another

4 Moderate plus
5 Essential or high importance Experience and judgment highly

favor one over another
6 Strong plus
7 Very strong importance One element is very strongly fa-

vored over another, its dominance
is demonstrated in practice

8 Very, very strong
9 Extreme importance The evidence favoring one element

over another is of the highest
possible order of affirmation

Reciprocals Whenever element i compared
to j is assigned one of the
above numbers, the element j
compared to i is assigned its
reciprocal

A reasonable assumption

Table 3.3: The AHP Saaty’s Original Scale.

62

Chapter 3. Design

• The ability to use different judgment scales for more accuracy: Pair-
wise judgments could be quantified using many scales. Saaty proposes the scale
[1...9] (i.e., linear scale) to rate the relative importance of one criterion (or solution
alternative) over another, listed in Table 3.3, and construct a matrix of the pair-wise
comparison ratings. Even though several other numerical scales in AHP have been
proposed (Franek et al., 2014), the original linear scale proposed by Saaty has been
used by far the most often in different applications. However, the authors in (Franek
et al., 2014), have analyzed the impact of different judgment scales and found that
there is no profound impact on the criteria ranking even though they could have
a profound impact on the numerical criteria priority. The original 9-unit scale is
based on psychological theories and experiments that consider the use of 9-unit
scales as a reasonable set that allows humans to perform discrimination between
preferences for two items (Nydick et al., 1992), where 1 means both are equally
important, 3 means one is moderately more important than the other, and 9 means
that one requirement is extremely more important than another. Conversely, if a
component is less important than the other, then the inverse preference is rated in
a scale 1, 1/2, 1/3. . . 1/9. For example, if decision-makers believe that “Security”
is moderately less important than “Performance”, then this judgment is expressed
as 1/3. These pair-wise comparisons are required for all the criteria, sub-criteria,
and solution alternatives for each criterion to assess their fulfillment of it. These
judgments are usually provided by the stakeholders and decision-makers.

• The ability to evaluate quantitative and qualitative criteria and alterna-
tives on the same preference scale: For performing a pair-wise comparison,
AHP uses a ratio scale, which opposed to an interval scale, does not require units
in the comparison. In this case, the comparison judgment is a relative value or
a quotient x/y of two quantities x and y that both have the same units (cost,
performance, etc). Therefore, one of the most prominent advantages of the AHP
technique is its ability to evaluate quantitative as well as qualitative criteria and
alternatives on the same preference scale.

• Measuring decisions’ consistency degree: Another important advantage of
using the AHP decision-making technique is that it can measure the degree to which
decision-makers’ judgments are consistent. In the real world, some inconsistency
is acceptable and even natural. For example, in a marketing contest, if product A
is usually more popular than product B, and if product B is more popular than
product C, this does not imply that product A is usually more popular than product
C. A slight inconsistency may result because of the way the products are evaluated
overall. Hence, it is important to make sure that inconsistency remains within a
reasonable limit (i.e., < 10%), and if exceeded then some revision and modifications
of judgments may be required. AHP technique provides a method to compute

63

Chapter 3. Design

the consistency of the pair-wise comparisons as discussed in (Thomas L Saaty et
al., 2012), (Whitaker, 1987), (Thomas L Saaty, 1985),(Thomas L. Saaty, 1994b),
(Thomas L Saaty et al., 1991), and (Thomas L Saaty, 1990).

• Prioritizing all solution alternatives based on the degree of meeting
criteria: The AHP decision-making technique offers a methodology to rank
solution alternatives based on the importance of the criteria, and the extent to which
they are met by each alternative. Hence, AHP is a mathematical optimization
that outputs the highest-scoring solution along with all other solutions’ scores that
could be then ordered based on their priority score.

3.4.2 Analytical Hierarchy Process Computation

In order to decide and generate priorities in an organized way for the AHP graph as
shown in Figure 3.9, we need the following steps:

Figure 3.9: Generic AHP Graph.

64

Chapter 3. Design

1. The AHP Decision Hierarchy Construction: The first step in AHP is to
define the problem and construct the decision hierarchy by doing the following:

• state the problem objective (i.e., intent target)

• define the criteria and sub-criteria (i.e., evaluation criteria)

• choose the solution alternatives (i.e., microservice alternatives)

The top of the hierarchy is the problem objective, whereas the criteria and sub-
criteria are placed through the intermediate levels. Finally, the solution alternatives
are at the lowest level. In this decision hierarchy, the objective is to prioritize and
rank the alternative solutions aiming at satisfying the evaluation criteria while
considering their interdependencies. The analysis of the problem hierarchy is based
on the impact of a certain level on the elements in the level immediately below with
respect to it.

This process starts by determining how the criteria are relatively important in
meeting the problem objective. Next, it measures the extent to which the solution
alternatives achieve each of the criteria.

Finally, the results of these two analyses are synthesized (multiplied) to compute
the relative importance of the solution alternatives with regard to the problem
objective. This process is done when we have only three hierarchy levels, otherwise,
this process is done level by level. Most of the cases require dividing the criteria
into sub-criteria which adds more levels.

2. Make Pair-wise Judgments at each Level of The AHP Hierarchy of the
components on that certain level with respect to their impact on the overall goal.
Each component is compared to all others and assigned a number to show its relative
importance. These comparisons estimate the ratio of the relative importance of any
two criteria in terms of the overall problem goal and also in terms of the criteria.

The pair-wise comparison information for each component of the problem hierarchy
is represented by a positive reciprocal (n × n) comparison matrix. If there are n
elements to be compared for a given matrix, then a total of n(n-1)/2 judgments are
needed. This apparent saving in the number of judgments is due to two reasons:
first, any element is equally preferred to itself, so, 1’s are placed along the diagonal
of the matrix. Second, the corresponding positions below the diagonal are the
reciprocals of the judgment values already entered in the matrix (i.e., above the
diagonal).

3. Aggregate Pair-wise Scores: The final step is to aggregate these pair-wise
scores to arrive at an overall ranking of the solution alternatives. Multiplied by

65

Chapter 3. Design

the established weights of the criteria. Then the overall scoring of all alternatives
can then be determined and ranked based on their priority scores.

AHP calculation: We walk through the element’s priority calculations process
in more detail. In the pair-wise comparison matrix, Saaty (Thomas L Saaty et al.,
2012), (Whitaker, 1987), (Thomas L Saaty, 1985),(Thomas L. Saaty, 1994b), (Thomas
L Saaty et al., 1991), and (Thomas L Saaty, 1990) proposed using the principal
eigenvector method, where he justifies this approach for slightly inconsistent matrices
when inconsistency remains within a reasonable limit (i.e., < 10%). These priorities
could be obtained in either an approximate or exact form. The former is calculated
by adding each row of the matrix and dividing by their total, whereas the latter is an
iterative process that could be explained as follows:

1. raise the pairwise matrix to powers (i.e., power method (Ishizaka et al., 2006)). The
matrix is squared (i.e., multiply it by itself)

2. The row sums are then calculated and normalized by dividing each by the total sum
of all the rows. This is the first approximation of the eigenvector (priority vector)

3. Using the resulting matrix. Steps 1 and 2 are repeated

4. Step 3 is repeated until the difference between these sums in two consecutive priority
eigenvector calculations is smaller than the stop criterion

These priority calculations are done for the alternatives with respect to the criteria
or subcriteria in terms of which they need to be evaluated. Likewise, the criteria
priorities are calculated in terms of a higher goal.

3.4.3 The AHP Graph for CP’s Targeted Workload Intent

We propose a CP intent that aims to achieve a certain CCDN workload level
in different possible ways. This could possibly be achieved with different CCDN
deployment combinations based on the available microservice alternatives. Therefore,
a CCDN operator is responsible for building the AHP hierarchy, where he has to define
the AHP goal (intent goal) in the first level of the hierarchy, the main evaluation
criteria in the second level, the sub-criteria in the third (or more) level, and the
microservice alternatives in the last level of the hierarchy as discussed in Section 3.4.2.
In the context of a <WORKLOAD> CP’s intent target for the CCDN, the corresponding
AHP graph is shown in Figure 3.10. We choose 2 main evaluation criteria defined in
the AHP graph: scalability and cost. When the CP intent is to get the best available
performance, then this would require assigning a much greater weight of importance
to the scalability criterion as opposed to the cost criterion (e.g., scalability weight

66

Chapter 3. Design

= 0.9 and cost weight = 0.1). Conversely, when a CP’s intent is to get a Low-
Cost CCDN then the corresponding Scalability and Cost weights are opposite to the
best performance CCDN intent. Accordingly, the overall score calculation for each
microservice alternative would differ.

As for the subcriteria level, each criterion has been decomposed into 3 different
subcriteria. That is because we have focussed on 3 different microservice type

Figure 3.10: CP Workload Intent Target’s AHP Graph (weights on arrows are omitted
for figure clarity).

67

Chapter 3. Design

categories: Cache Size, Cache Placement, and Refinement Technique. We assume
having the following alternatives for each microservice category:

• Cache Size: 3 different cache sizes (small, medium, and big) where each size has
double the resources of the previous smaller size, and correspondingly, double the
cost. For example, a Medium Cache has twice the resources, capabilities, and cost
of a small cache. The same applies to Big and Medium comparisons. So in terms
of Scalability, the bigger the cache size the better, but the smaller the cache the
less costly it is.

• Cache Placement: Caches could be placed in different zones, we assume having 3
zones, namely, local, nearby (i.e., edge), and further (i.e., central), and accordingly,
caches in each zone differ in the startup delay due to the location’s impact on
latency (Charyyev et al., 2020) and cost (Google, 2023g). The caches placed in
closer zones have less startup delay which improves scalability, whereas the cache
cost per location could vary depending on several factors (e.g., CAPEX and OPEX
of data centers in each location), in our case, we assume that caches in closer
locations are more costly. Thus, closer cache zones improve scalability, but at a
higher cost.

• CCDN Refinement Technique: Aims at improving the CCDN service in
the post-deployment phase after running the service which depends on the CP
Intetn target and corresponding preferred service refinements. We assume having
3 levels of refinements (Pessimistic Primary, Optimistic Primary, and Secondary).
The Pessimistic Primary has the highest potential degree of refinement and service
improvement but at the highest expense due to relying on more inclusive refinement
triggers compared to the Optimistic Primary. The Secondary refinement has the
lowest ability to improve the service but at the lowest cost.

To demonstrate the AHP computation with respect to the Low-Cost CP intent,
we start with the evaluation criteria level where we compare Scalability and Cost
weights in a pair-wise comparison matrix as shown in Table 3.4. Each pair-wise
comparison between items a and b is shown in Equation 3.1, where a is the item in
the matrix row and b is the item in the column, and 1s are placed along the matrix
diagonal, it is easy to fill up the lower triangular part of the matrix by the inverse of
the related pair in the upper half of the matrix. So, the pair-wise comparison between
b and a follows Equation 3.2. The Global Priority represents the Priority vector
and is calculated as described in Section 3.4.2.

Score(a, b) =
weight(a)

weight(b)
(3.1)

68

Chapter 3. Design

Scalability Cost Global Priority
Scalability 1 1/9 0.1
Cost 9 1 0.9

Table 3.4: AHP Criteria

Cache Size Cache Placement Refinement
Local

Priority
Global
Priority

Cache Size 1 2 4 0.57 0.057
Cache Placement 1/2 1 2 0.29 0.029
Refinement 1/4 1/2 1 0.14 0.014

Table 3.5: AHP Scalability Sub-Criteria

Score(b, a) =
1

weight(a)
weight(b)

=
weight(b)

weight(a)
(3.2)

Due to having 3 microservice categories, each has its own contribution to the
overall Scalability. Therefore, we break it down into 3 subcriteria (Cache Size, Cache
Placement Startup Delay and Refinement) with respect to the different microservice
types. Their corresponding pair-wise comparison scores are calculated in the same
way explained with the criteria comparison, and it is also the same as the microservice
alternatives comparison in the last level of the AHP. The corresponding comparison
matrix is shown in Table 3.5 where all weights should be defined and tuned by the
CCDN operator. The local and global scores are calculated as discussed in Section
3.4.2.

The pair-wise comparison scores in the comparison matrices mentioned above
have been assigned based on some lightweight benchmarking to identify the degree
of impact for a criterion/alternative with respect to the upper-level criteria (e.g.,
how much important is Cache Size to Scalability compared to Cache Placement?).
However, these scores have to be carefully tuned based on the problem requirements
and the CCDN operator’s expertise.

Samewise, the Cost criterion is broken down into 3 subcriteria (Cache Size Cost,
Cache Placement Cost, and Refinement Cost). Their corresponding comparison
matrix is shown in Table 3.6.

At the last level of the AHP graph, we compute the pair-wise comparisons between
the microservice alternatives within each category with respect to its equivalent
Scalability evaluation subcriteria as shown in Tables 3.7, 3.8 and 3.9.

69

Chapter 3. Design

Cache Size
Cost

Cache Placement
Cost

Refinement
Cost

Local
Priority

Global
Priority

Cache Size
Cost

1 2 4 0.57 0.513

Cache Placement
Cost

1/2 1 2 0.29 0.261

Refinement
Cost

1/4 1/2 1 0.14 0.126

Table 3.6: AHP Cost Sub-Criteria

Big Cache Medium Cache Small Cache
Local

Priority
Global
Priority

Big Cache 1 6 9 0.64 0.036
Medium Cache 1/6 1 6 0.31 0.018
Small Cache 1/9 1/6 1 0.05 0.003

Table 3.7: AHP Scalability of Microservices under Cache Size Category

Local Nearby Further Local Priority Global Priority
Local 1 4 7 0.64 0.019
Nearby 1/4 1 4 0.28 0.008
Further 1/7 1/4 1 0.07 0.002

Table 3.8: AHP Scalability of Microservices under Cache Placement Startup Delay
Category

Primary
Pessimistic

Primary
Optimistic

Secondary
Local

Priority
Global
Priority

Primary
Pessimistic

1 4 7 0.64 0.009

Primary
Optimistic

1/4 1 4 0.28 0.004

Secondary 1/7 1/4 1 0.07 0.001

Table 3.9: AHP Scalability of Microservices under Refinement Category

70

Chapter 3. Design

Big Cache Medium Cache Small Cache
Local
Priority

Global
Priority

Big Cache 1 1/2 1/6 0.11 0.056
Medium Cache 2 1 1/3 0.22 0.113
Small Cache 6 3 1 0.67 0.344

Table 3.10: AHP Cost of Microservices under Cache Size Cost Category

Local Nearby Further
Local

Priority
Global
Priority

Local 1 1/2 1/6 0.11 0.029
Nearby 2 1 1/3 0.22 0.057
Further 6 3 1 0.67 0.175

Table 3.11: AHP Cost of Microservices under Cache Placement Cost Category

Similarly, the microservice alternative comparisons concerning the Cost subcriteria
are shown in Table 3.10, 3.11, and 3.12.

Finally, for each microservice alternative, both global scores corresponding to
Scalability and Cost are summed up to produce the final score ranking as shown
in Table 3.13, 3.14, and 3.15.

3.4.4 The Corresponding CCDN Deployment to the CP’s
Targeted Workload Intent

After all microservice alternatives got assigned with their total score indicating their
level of contribution towards the CP’s intent target, the following step is to enumerate

Primary
Pessimistic

Primary
Optimistic

Secondary
Local

Priority
Global
Priority

Primary
Pessimistic

1 1/2 1/6 0.11 0.014

Primary
Optimistic

2 1 1/3 0.22 0.028

Secondary 6 3 1 0.67 0.084

Table 3.12: AHP Cost of Microservices under Refinements Cost Category

71

Chapter 3. Design

Big Cache Medium Cache Small Cache
Scalability Global Score 0.036 0.018 0.003
Cost Global Score 0.056 0.113 0.344
Total Global Score 0.092 0.131 0.347

Table 3.13: Cache Size Microservice Alternatives Global Score

all possible CCDN deployments such that a deployment consists of a microservice
instance from every different microservice category. In this case, a CCDN deployment
is constituted of an instance from Cache Size, Cache Placement, and Refinement
Technique (e.g., Medium Cache, Nearby Zone, and Optimistic Refinement). Since
we have 3 alternatives from each microservice category, the total number of possible
CCDNs to enumerate is 27 (3×3×3), where each deployment’s score is the summation
of all of its constituent microservices. For example, to demonstrate the total score
calculation of a CCDN deployment, let us take a random CCDN deployment that has
been enumerated according to our defined AHP graph. The CCDN deployment is:
(Medium Cache, Nearby Zone, and Optimistic Refinement). By obtaining the total
score for each microservice instance within the CCDN deployment from Tables 3.13,
3.14, and 3.15, the overall deployment score would be (0.131 + 0.065 + 0.023) =
0.219.

Once all CCDN deployment scores get calculated, they get clustered into groups
of deployments with similar or close scores. These clusters have 3 levels of score
classification: High, Medium, and Low. More details about this process will be
discussed in Chapter 4. The CCDN deployments that belong to the high-scored
cluster, indicate that they have a high capability of achieving the intent goal,
whereas the medium-scored ones have an intermediate capability and the low-scored
deployments have possibly the lowest capability to meet the intent goal. The benefit of
having these CCDN clusters is to offer more flexibility and availability where multiple
CCDN alternatives could be selected from the same cluster (level of capability).
Whereas, when all resources in the high-scored CCDN deployments are not available,
then the medium and low clusters could be beneficial if the CP would compromise his
intent goal to some degree in return for running the service rather than not starting
it at all. These scores are dependent on the CP’s intent target which is translated as
its corresponding weights for the evaluation criteria. Therefore, the AHP calculation
is reactive to the intent’s target.

72

Chapter 3. Design

Local Nearby Further
Scalability Global Score 0.019 0.008 0.002
Cost Global Score 0.029 0.057 0.175
Total Global Score 0.048 0.065 0.177

Table 3.14: Cache Placement Microservice Alternatives Global Score

Optimistic Ref. Pessimistic Ref. Secondary Ref.
Scalability Global Score 0.009 0.004 0.001
Cost Global Score 0.014 0.028 0.084
Total Global Score 0.023 0.032 0.085

Table 3.15: Refinement Microservices Alternatives Global Score

3.5 Different Intent Targets

Based on the presented AHP graph in Figure 3.10 which is related to our CCDN
use case, several intent targets could possibly be achieved as shown in Figure 3.11
by adjusting the evaluation criteria weights accordingly, and correspondingly, the
whole AHP computation would rank and prioritize the microservices differently.
Thus, the whole CCDN scores would differ for each intent target. For instance,
when the CP intent is to get a ”High Performance” CCDN, then this translates to a

Figure 3.11: Different Possible CP Intent Targets.

73

Chapter 3. Design

considerably higher Scalability weight than the Cost weight. Whereas, if the intent
is to get a ”Normal Performance” CCDN, then both Criteria get the same weight.
Conversely, when the CP is interested in cost reduction, then the ”Low-Cost” CCDN
intent translates to a considerably higher Cost weight compared to the Scalability
weight. However, these weights are up to the CCDN to decide and tune based on the
service requirements, system requirements, tradeoffs, etc. In this Ph.D., we focus on
investigating several alternatives of Low-Cost intents due to the importance of offering
less-costly CCDNs to CPs who may not be as interested in performance optimization
as much as cost reduction. These Low-Cost intent alternatives are discussed along
with their refinements after running the service, in Chapter 4, Section 4.3.3.

3.6 Intent Refinement

The dynamic nature of the CCDN intent refinement that adopt microservice
ecosystems calls for adaptation support to be added into the architecture similar
to that provided by autonomic systems (Cheng et al., 2009). It is not always possible
or even desirable to have a fully autonomic approach, in fact, in most cases, manual
human interventions or directives (i.e., IT personnel) are complemented by autonomic
capabilities. Several mechanisms could lead towards autonomicity (Cheng et al.,
2009), (Garlan et al., 2004). Their fundamental ideas are generally underlain by
feedback loops (Brun et al., 2009), which include the activities of (MAPE-K):
Monitor (M), Analyze (A), Plan (P) and Execute (E). These actions acquire sufficient
knowledge to perform actions that are to be automated. The knowledge (K) that is
maintained in a Knowledge Base, is needed to recognize the need for adaptation, and
automatically decide and perform the required actions correspondingly. The approach
above is known as the MAPE-K loop (IBM, 2006).

Consider a CP intent that operates in a microservice-based CCDN ecosystem
which requires it to be scaled to meet the demand of a load increment. However, this
increment needs to be analyzed and planned to govern the scaling behavior (e.g., cache
size, cache placement, refinement technique, earlier scaling, etc). Therefore, in many
cases, a service orchestrator (i.e., Kubernetes) is needed to steer reconfigurations in
the correct direction. However, some additional problem-specific decision-making is
needed with correspondence to the CCDN intents to regulate and manage the intent
refinement with respect to the intent target.

Referring to our proposed Intent-Based CCDN, the MAPE-K Loop is mapped to
our Framework in Figure 3.12. Its steps are achieved as follows:

• Monitoring is performed by continuously collecting metrics from the deployed
microservice containers (i.e., cache containers). In specific, the refinement-related

74

Chapter 3. Design

triggering metrics and other alerts are being watched throughout the service
lifetime. This is realized via the OSS module in our Framework.

• Analysis is to extract statistics from the monitored data and metrics. This involves
filtering, data normalization, transformation, etc. For example, calculating demand
throughput, demand bursts, and demand peak hours. This maps to the Intent
Technical Requirements calculator module in our Framework.

• Planning is performed according to the initial customization provided by the
responsible IT personnel who plans for the required initial configurations and set
the policies of the system and infrastructure behavior that could be managed by
the infrastructure environment which is maintained in a Knowledge Base (Intent
and Policies Descriptors in our Framework). The plans are obtained by our
Intent Technical Requirements calculator module.

• Execution is performed by Kubernetes, for the planned actions. Based on
our Framework, the Service Orchestrator is responsible for this step after it
receives the corresponding microservice API calls from the Intent Technical

Figure 3.12: MAPE-K Loop Mapping to Our Framework Components.

75

Chapter 3. Design

Requirements calculator.

3.7 Discussion

The Intent-Based CCDN architecture described in this chapter is designed to meet the
aforementioned goals and aims. Opposed to the current CCDNs that do not enable
the CPs to express their high-level intents or include that in their decision-making, we
proposed an Intent-Based communication architecture and mechanism between the
CP and the CCDN that enables CPs to express their high-level intents and get involved
in the feedback loop with the CCDN, and even optionally participate in the decision-
making (i.e., intent refinement decisions). Even though the MSA is the current trend
in systems paradigms, we still need to investigate its adoption in the CCDN domain.
The MSA advantages discussed in this chapter introduce a promising dynamic and
continuously evolving ecosystem that could be leveraged in next deployment phase of
Intent-Based CCDNs and facilitate the realization of a wide variety of intent targets.
Since microservices could offer several alternatives for the same functionality, and
hence, many different CCDN deployments could be enumerated, it is important to
have an MCDM tool that helps with the reasoning in terms of microservices selection
which involves finding at runtime the best architectural microservice alternatives to
achieve the desired intent goals. We chose the popular widely-used AHP technique
and discussed the advantages that led us to choose it, and we described our AHP
example corresponding to a proposed Low-Cost Intent which aims at cost reduction
when deploying the CCDN. Furthermore, we clustered all possible enumerated CCDN
deployments into 3 clusters depending on their overall capability to achieve the
intent target. This expands the number of available CCDN solutions rather than
selecting only the deployment with the highest score, instead, all CCDN deployments
are prioritized and could be selected based on their availability. Additionally, we
discussed how our architecture components map to the MAPE-K Loop approach
for self-adaptation which leads to autonomicity to manage the intent dynamic and
reactive refinement automatically with respect to the intent target. Accordingly, we
tackled the intent creation on a broader scope from a CCDN operator point of view.
In Chapter 4, we will discuss our proposed Low-Cost intents and their refinements in
detail.

76

Chapter 4

Implementation

In the previous chapter, we described the components that make up our proposed
CCDN framework. We also discussed the utilization of microservices and their
selection based on AHP. Once these are taken into consideration, there is a number
of elements that must be implemented to facilitate CP intents. Firstly, the overall
communication flow between the CP and the CCDN is described in Section 4.1
which shows how the CP intent passes through the CCDN framework modules to
get translated eventually into its corresponding CCDN deployment. This shall be
refined later to improve the CCDN performance while keeping the CP in the feedback
loop throughout the intent lifetime.

Accordingly, we approach our framework implementation from a CCDN operator
perspective (as an intent developer/creator) who has to design, implement, and
manage the intent translation which aims at selecting the best available CCDN
deployment that meets the intent target. Moreover, the CCDN operator should
consider intent refinement which tries to improve the CCDN performance. Therefore,
we describe the implementation of our proposed solution in Section 4.2, then we
elaborate on the intent translation process in Section 4.3, which is broken down into
two CCDN deployment phases: pre- and post- deployment. The former corresponds
to the initial intent translation which results in a CCDN deployment selection, and
the latter corresponds to the intent and CCDN deployment refinement after running
the service.

In specific, we focus on proposing and implementing a Low-Cost intent for CPs that
considers cost reduction while provisioning a CCDN. This intent would be translated
into its corresponding less-costly CCDN deployment. However, to demonstrate the
flexibility, and scalability provided by adopting microservices, we implement several
Low-Cost intent realizations which are composed of different microservices alternatives
that collectively form up the whole CCDN. We also implement these Low-Cost intent
refinements which differ according to different traffic scenarios.

77

Chapter 4. Implementation

Finally, in Section 4.4, we present our implemented CCDN deployment via Google
Kubernetes Engine (GKE).

4.1 Communication Flow between Content Provider

and the CCDN

First, we start with the sequence diagram shown in Figure 4.1 to break down the
communication flow between the CP and the CCDN system with correspondence to
our proposed Intent-Based CCDN framework components. In this diagram, we discuss
how the CP high-level intent passes through the CCDN framework modules to get
translated eventually into its corresponding CCDN deployment. Each deployment
is composed of microservice alternatives that collectively form the highest-scoring
CCDN deployment that could achieve the intent target. This initial translation is
the first step that takes place during the pre-deployment phase. Later, this CCDN
deployment would be refined to improve the CCDN performance, while keeping the
CP in the feedback loop throughout the intent lifetime. The communication flow is
broken down as follows:

• Pre-Deployment Phase (black arrows in the diagram)

1. The flow starts with the intent request from the CP, who can express intents
from available provided intent expressions (e.g., Caching with Low-Cost)

2. The high-level intent then needs to be translated, so the MCDM module
calculates the equivalent AHP graph corresponding to the intent input. The
output would be a score ranking for each microservice that could be used in the
CCDN deployment. This score calculation and ranking for each microservice is
done with correspondence to the evaluation criteria defined in the AHP graph,
where their degree of contribution to the CCDN solution depends on the CP
intent goal. We elaborate on this in Section 4.3.

3. After the AHP scores have been calculated for each microservice, the CCDN
Deployments Enumeration and Clustering processes take place. This
module enumerates all possible CCDN deployments by selecting a microservice
instance from each different type that collectively could constitute a CCDN
deployment. We further elaborate on this in Section 4.3.2.

4. Once a suggested CCDN deployment has been selected from the high-scored
cluster depending on the resource’s availability, then it has yet to be technically
defined by the Intent Technical Requirements Calculator module which
calculates the corresponding operational parameters for its technical requirements
(e.g., Max and Min No. Caches, Cache container image, etc.)

78

Chapter 4. Implementation

5. The availability of this selected CCDN requirements has to be checked by the
Monitoring module which reports back its availability to the Intent Technical
Requirements Calculator

6. The availability of the suggested CCDN would be then reported back to the CP
for their input even if the initial CP’s intent target could not be met (e.g., due
to unavailable resources) where some downgraded service alternative could be
suggested and the CP could then decide (i.e., approve, decline)

7. The CP responds to the initial suggested and available CCDN that would help
achieving his/her intent (i.e., approve, decline)

8. If the suggested CCDN was approved by the CP, the Intent Technical
Requirements Calculator formulates the corresponding microservice API calls
and sends them to the Service Orchestrator (i.e., Kubernetes Controller) for
service deployment

9. The Intent Technical Requirements Calculator identifies and sends the
intent refinement metrics (e.g., peak hours, traffic bursts, etc.) to be monitored
to the Monitoring module, to enable reactive intent refinement during runtime

Figure 4.1: Communication Flow Between Content Provider and the CCDN.

79

Chapter 4. Implementation

• Post-Deployment Phase (green arrows in the diagram)

1. The Monitor module continuously watches out for the refinement metrics, if
any of them has hit the set limit by the Intent Technical Requirements
Calculator, then it alerts it

2. The Intent Technical Requirements Calculator identifies and calculates the
suggested CCDN refinement and repots this back to the CP

3. The CP responds to the suggested refinement (i.e., approve/decline/update)

4. If the suggested refined CCDN was approved or updated (e.g., updated peak
hours by the CP), then the Intent Technical Requirements Calculator
formulates the corresponding microservice API calls and sends them to the
Service Orchestrator

4.2 Implementing the Intent-Based CCDN

This section details the implementation of the Intent-Based CCDN based on the
design shown in Section 3.3 and in Figure 4.1. All modules have been implemented
in Python as follows:

• Multi-Criteria Decision-Making Module: has been implemented with the help
of the AHPy Python library (Griffith, 2023) which has been used to easily allow
defining AHP elements and pairwise comparative score ratios in the form of Python
dictionary elements, and perform the computations of the AHP decision-making
process to help assign the total scores for each microservice instance with respect
to the overall intent target

• CCDN Deployments Enumeration and Clustering Module: this component
has been implemented to enumerate all possible CCDN deployments and then
leverage the assistance of the KMeans clustering algorithm, which is a very
popular clustering method (Jin et al., 2017). The sklearn Python library has been
used, which provides the KMeans method computation (Pedregosa et al., 2011) to
facilitate the CCDN deployments clustering process

• Intent Technical Requirements Calculator Module (Intent Handler): is
considered as the hub. It has been implemented to serve as the main intent manager
and communicator between the CP and the CCDN system

• Monitoring Module: this component has been implemented while leveraging the
direct accessibility to the Service Orchestrator’s (i.e., Kubernetes Controller) overall
service and resources status

80

Chapter 4. Implementation

4.3 Intent Translation

In this section, we elaborate on the CP intent translation process from a CCDN
operator (i.e., intent developer and provider) point of view, who is responsible for
defining the AHP graph and has to determine its components and scores based on his
knowledge, user requirements, resource availability, etc. Moreover, an intent developer
needs to address several main steps to develop an intent translation from a high-level
declarative syntax all the way down to low-level technical commands (microservice
API calls), that would be carried out by the underlying technology.

4.3.1 Multi-Criteria Decision-Making Module

AHP is our chosen MCDM method for the reasons discussed in Chapter 3 Section
3.4.1. A CCDN operator is responsible for building the AHP hierarchy, where he
has to define the AHP goal (intent goal) in the first level of the hierarchy, the main
evaluation criteria in the second level, the sub-criteria in the third (or more) level,
and the microservice alternatives in the last level of the hierarchy. In the context of
CCDN, our JSON expression for the AHP graph is shown in Listing 4.1. We choose
JSON because of its simplicity, clarity, and popularity. For instance, if there have been
2 main evaluation criteria defined in the AHP graph: scalability and cost. When the
CP intent is to get the best available performance, then this would require assigning
a much greater weight of importance to the scalability criterion as opposed to the
cost criterion (e.g., scalability weight = 0.9 and cost weight = 0.1). Accordingly, the
overall score calculation for each microservice alternative would differ. An output
example of the AHP calculation is shown in Listing 4.2 which ranks all microservices
based on their total score of contribution towards the evaluation criteria related to
the intent goal.

To carry on with the AHP whole calculations, AHPy Python library has
been used (Griffith, 2023). This easily allows defining AHP elements and pairwise
comparative score ratios in the form of Python dictionary elements. Each dictionary
key is a comparison pair (i.e., (a, b)), and its value is their weight ratio (i.e.,
weight(a)/weight(b)), then AHPy manages all the corresponding computations in
order to rank all microservices based on their global scores that denote their level of
contribution to the AHP problem goal. The main AHPy API elements provided:
compare, add children(), report().

• Compare Class: This class computes the weights and consistency ratio of a
positive reciprocal matrix that represents the pairwise comparison. An object of
this class is created using an input of a Python dictionary which holds the pairwise
comparison values. The Compare objects could also be linked together to form a

81

Chapter 4. Implementation

self.AHP = {
"name": "CDN Deployment",
"criteria": [

{"Scalability": self.scaclability_weight},
{"Cost": self.cost_weight}

],

"subCriteria": {
"Scalability": [

{"Cache Size": self.cache_size_weight},
{"Cache Placement Startup Delay": self.startup_weight},
{"Refinement": self.refinement_weight}

],

"Cost": [
{"Cache Size Cost": self.cache_cost_weight},
{"Cache Placement Cost": self.placement_cost_weight},
{"Refinement Cost": self.refinement_cost}

]

},

"alternatives":{
"Cache Sizes": ["Big Cache", "Medium Cache", "Small Cache"],
"Cache Placement": ["Local", "Nearby", "Further"],
"Refinements": ["Primary Pessimistic", "Primary Optimistic", "Secondary"]

},

"alternatives weights": {
"Cache Size": [

{"Big Cache": self.big_cache_size_weight},
{"Medium Cache": self.medium_cache_size_weight},
{"Small Cache": self.small_cache_size_weight}

],

"Cache Size Cost":[
{"Big Cache": self.big_cache_cost},
{"Medium Cache": self.medium_cache_cost},
{"Small Cache": self.small_cache_cost}

],

"Cache Placement Startup Delay": [
{"Local": self.zone20_startup_weight},
{"Nearby": self.zone40_startup_weight},
{"Further": self.zone60_startup_weight}

],

"Cache Placement Cost": [
{"Local": self.zone20_startup_cost},
{"Nearby": self.zone40_startup_cost},
{"Further": self.zone60_startup_cost}

],

"Refinement": [
{"Primary Pessimistic": self.primary_pess_ref_scal},
{"Primary Optimistic": self.primary_opt_ref_scal},
{"Secondary": self.secondary_ref_scal}
],

"Refinement Cost": [
{"Primary Pessimistic": self.primary_pess_ref_cost},
{"Primary Optimistic": self.primary_opt_ref_cost},
{"Secondary": self.secondary_ref_cost}
]

}

}

Listing 4.1: The JSON Representation of the AHP Graph Used in CP Intents
Translation.

82

Chapter 4. Implementation

"Microservice Scores:"

{"Small Cache": 0.3511, "Further": 0.1746, "Medium Cache": 0.1283, "Big Cache": 0.0921,
"Secondary": 0.0874, "Nearby": 0.0635, "Local": 0.0476, "Primary Optimistic": 0.0318,
"Primary Pessimistic": 0.0238}

Listing 4.2: AHP Output for Ranked Microservices Scores.

hierarchy representing the AHP decision problem. The target weights (i.e., scores)
of the AHP elements are then derived by synthesizing all levels of the hierarchy.
The Compare object syntax and parameters are as follows:

Compare(name, comparisons, precision=4, random index=’dd’,

iterations=100, tolerance=0.0001, cr=True)

The most important parameters are:

name: str (required), the Compare object’s name which is used to link a child
object to its parent and must be unique.

comparisons: dict (required), pairwise comparison dictionary

random index: ’dd’ or ’saaty’, denotes the set of random index estimates used to
compute the consistency ratio for the Compare object. The default random index
is ’dd’

’dd’ (Donegan et al., 1991) supports the calculation of the consistency ratios for
matrices less than or equal to 100 × 100 in size

’saaty’ (Thomas L Saaty et al., 2012) supports the calculation of the consistency
ratios for matrices less than or equal to 15 × 15 in size

• Compare.add children(): The Compare objects can be linked together to form
the AHP hierarchy that represents the decision problem. This method is called
on the Compare object that forms the upper level (the parent) and includes an
argument as a list or tuple of one or more Compare objects that are intended to
form its lower level (the children).

• Compare.report(): By calling this method on the Compare object, it returns a
dictionary that contains a standard report on the details of a Compare object.

4.3.2 CCDNDeployments Enumeration and Clustering Mod-
ule

In this module, all possible CCDN deployments are enumerated, which consist
of a microservice instance of every different type. Since each microservice in

83

Chapter 4. Implementation

Figure 4.2: Clustered CCDN Deployments Based on Their Scores Towards the Intent
Goal.

the enumerated CCDN deployments has a score, the overall combined score of
the deployment can be calculated by summing up the scores of all microservices
included in that deployment. Once the total overall ranking for each possible CCDN
deployment is achieved, the clustering process takes place which groups CCDN
deployments with close or similar scores into a cluster as shown in Figure 4.2. An
output example is shown in Figure 4.3

We use the KMeans clustering algorithm, which is a very popular clustering
method (Jin et al., 2017). We use sklearn Python library that provides the
KMeans method computation (Pedregosa et al., 2011). Since each CCDN deployment
is constituted of microservices from different types, we use a multi-dimensional
KMeans clustering of the deployments where each microservice type is a dimension.
For instance, if a CCDN deployment consists of cache size, cache placement, and
refinement, then we perform a 3-dimensional clustering based on the scores of each
microservice instance in the deployments. We choose 3 clusters: high, medium, and
low, which group similar-scored deployments based on their level of capability to
contribute to the intent (AHP goal). Although this clustering was unsupervised, we
still need to rank these clusters as high, medium, and low. So, we label each cluster

84

Chapter 4. Implementation

Figure 4.3: Total CCDN Deployments Clusters Based on Their Scores Towards the
Intent Goal.

based on the comparison of the maximum value for each. Accordingly, the cluster with
the highest maximum value was labeled as ”high”, then the cluster with the second
highest value was labeled as ”medium” and the cluster with the lowest maximum
value was labeled as ”low”.

4.3.3 Intent Technical Requirements Calculator Module

This module is responsible for calculating the operational parameters and technical re-
quirements needed for deploying, running, and refining the CCDN. These parameters
are dependent on both the regulatory policies stated by the CCDN operator and the
underlying technology. They are calculated during runtime according to the requested
intent target. Some examples of these parameters: max/min number of caches, cache
container image, cache CPU/RAM resources, and load balancing scaling threshold
(i.e., CPU utilization, requests rate, etc.).

This module is also responsible for triggering and managing the intent refinement
process according to the continuous tracking of the related parameters by the

85

Chapter 4. Implementation

Monitoring module. The refinement metrics and functionality have to be defined
in the regulatory policies as part of the intent translation breakdown, and calculated
and implemented reactively once certain thresholds have been exceeded.

In specific, we propose 3 Low-Cost Intent realizations (LCIs) that aim to
provide the CP with a lower-cost CCDN, compared to the default non-Intent-Based
CCDNs. We assume that the CCDN has different cache microservices with different
sizes (i.e., small, medium, big) and costs that depend on their location within the
CCDN region (i.e., local zone, nearby zone, further zone cache cost). Our proposed
LCIs corresponding CCDNs are:

• Low-Cost Intent 1 (LCI 1): Medium cheaper caches that are placed in a
nearby zone rather than the local and more costly ones. This intent trades cost
reduction for increased startup delay since the cheaper caches are not located locally

• Low-Cost Intent 2 (LCI 2): Small caches locally placed in the same end-users
zone. The small cache’s cost is less than (i.e., half) the medium (default) cache’s
cost. This intent trades cost reduction for a smaller cache size

• Low-Cost Intent 3 (LCI 3): Small cheaper caches placed in a nearby zone.
This intent trades cost reduction for both more startup delay and smaller cache
size

In LCI 1, The tradeoff of deploying cheaper caches that are placed in a nearby
zone is the increased startup delay that could affect the performance negatively by
increasing the possibility of request drops.

When small caches in LCI 2 are deployed in this CCDN (as opposed to medium
default caches), this leads to more frequent scale-outs due to having smaller cache
size (cheaper than bigger ones) that results in more drops and eventually performs
significantly worse than the default CCDN.

As in LCI 3, combining both cost reduction factors in the previous intents, small
cheaper caches are deployed in a nearby zone. Naturally, this CCDN would suffer
from the highest droppings compared to the former ones in return for the highest cost
reduction.

We propose two intent refinements: optimistic and pessimistic. The former,
performs the refinement within a smaller time window, whereas the latter aims at
improving the performance more than the former. Thus, it has a bigger time window
for the refinement process (e.g., local cache placement, vertical upgrade, or both).

We consider two types of traffic patterns: gradual increase and traffic bursts.
The former resembles a normal traffic pattern whereas the latter resembles the
abnormal sudden traffic surges that need a faster resolution compared to the former.
Due to the different nature of each scenario, we shall handle their refinement differently
as follows:

86

Chapter 4. Implementation

4.3.3.1 Usual traffic behavior with gradual traffic increase

In normal cases, traffic would follow a similar pattern which starts at a very low
request rate during non-active hours (i.e., late at night or too early in the morning)
and then increases gradually throughout the active hours of the day until it reaches its
peak during the peak hours, then drops gradually until it reaches the lowest requests
rate again, and so on. Usually, the peak hours require the highest number of cache
scaleouts to accommodate the traffic of the intense request, which could lead to a
higher number of dropped requests during the scaling process until the new caches
are up and running. Hence, that is specifically when we are interested in the LCIs
refinement that takes place to alleviate the compromised performance of the original
intents. Each intent correspondent CCDN would be refined differently as follows
during peak hours:

• LCI 1 CCDN deploys local caches during peak hours where the traffic load is the
most intense and needs faster processing, rather than the original nearby ones. This
is depicted in Algorithm 1.

• LCI 2 CCDN vertically upgrades small caches to medium ones during peak hours
to reduce the need to scale out. Hence, reduce the droppings during the scaling
process. This is shown in Algorithm 2

• LCI 3 CCDN vertically upgrades small nearby caches to local medium ones to
reduce scale-outs and startup delay. The detailed process is shown in Algorithm 3

Accordingly, one important refinement metric is the “peak hours”, this could be
calculated in different ways as the CCDN operator sees fit, and based on the traffic
behavior and history observation. However, we suggest either setting a proactive value
by defining specific start and end times or defining a reactive value that corresponds
to the traffic rate (e.g., when the traffic rate is 30% greater than the average traffic
rate). Both can be determined based on the analysis of the traffic pattern history and
the service nature.

4.3.3.2 Bursty Traffic behavior with sudden increase

In some cases, there could be some bursts of traffic due to the popularity of the
content, seasonal popularity, etc. In our definition, traffic bursts are sudden surges
in incoming requests traffic that significantly exceeds the average handled traffic rate
at that time and last for some certain period. However, to differentiate between
traffic bursts and random traffic spikes, we have set a time window (e.g., 3 continuous
minutes) in which the traffic surge exceeds, then it is considered to be a traffic burst
rather than just a random spike, and thus, it has to be handled differently during the

87

Chapter 4. Implementation

Algorithm 1 LCI 1 CCDN Refinement During Peak Hours

S ← CurrentActiveCacheSize
MinC ←MinNo.CurrentCaches
MaxC ←MaxNo.CurrentCaches
ZoneC ← CurrentCachesNearbyZone
ZoneR ← RefinedCachesLocalZone
AD ← Dep(S,MinC,MaxC, ZoneC) ▷ Current Active CCDN Deployment
CCDNrefined← FALSE
while CCDN.Service.Running is TRUE do

if PeakHours is true then
update(AD)← Dep(S,MinC,MaxC, ZoneR)
CCDNrefined← TRUE

else ▷ when peak hours are over, re-locate caches in the previous non-refined
nearby cache zone

if CCDNrefined is true then
update(AD)← Dep(S,MinC,MaxC, ZoneC)
CCDNrefined← FALSE

end if
end if

end while

88

Chapter 4. Implementation

Algorithm 2 LCI 2 CCDN Refinement During Peak Hours

S ← CurrentActiveCacheSize
MinC ←MinNo.CurrentCaches
MaxC ←MaxNo.CurrentCaches
MaxR ←MaxNo.RefinedUpgradedCaches
AD ← Dep(S,MinC,MaxC) ▷ Current Active CCDN Deployment
CCDNrefined← FALSE
while CCDN.Service.Running is TRUE do

if PeakHours is true then
update(AD) ← Dep(S × 2,⌈MinC

2
⌉, Max R) CCDNrefined ← TRUE

else
▷ when peak hours are over, downgrade CCDN to the previous non-refined

deployment, with the suitable number of caches
if CCDNrefined is true then

update(AD)← Dep(⌈S
2
⌉, Min C ×2,MaxC)

CCDNrefined← FALSE
end if

end if
end while

89

Chapter 4. Implementation

Algorithm 3 LCI 3 CCDN Refinement During Peak Hours

S ← CurrentActiveCacheSize
MinC ←MinNo.CurrentCaches
MaxC ←MaxNo.CurrentCaches
MaxR ←MaxNo.RefinedUpgradedCaches
ZoneC ← CurrentCachesNearbyZone
ZoneR ← RefinedCachesLocalZone
AD ← Dep(S,MinC,MaxC, ZoneC) ▷ Current Active CCDN Deployment
CCDNrefined← FALSE
while CCDN.Service.Running is TRUE do

if PeakHours is true then
update(AD) ← Dep(S × 2,⌈MinC

2
⌉, Max R, Zone R) CCDNrefined ←

TRUE
else

▷ when peak hours are over, downgrade CCDN to the previous
non-refined deployment, with the suitable number of caches and re-locate them in
the previous nearby zone

if CCDNrefined is true then
update(AD)← Dep(⌈S

2
⌉ , Min C ×2,MaxC, ZoneC)

CCDNrefined← FALSE
end if

end if
end while

90

Chapter 4. Implementation

low-cost intent refinement due to its sudden occurrence that has to be handled in a
timely manner.

We focus on LCI 2 refinement in this case since it depends on the more impactful
factor (i.e., smaller cache size) on the performance degradation in the normal traffic
behavior, and thus we want to investigate the scale of this degradation in a bursty
traffic situation. We argue that the previous LCI 2 refinement proposed in the normal
traffic scenario would not be that effective with traffic bursts. Therefore, we propose a
different LCI 2 refinement in bursty traffic cases. Opposed to the previously proposed
LCI 2 refinement which vertically upgrades small caches to medium in the normal
traffic scenario, it is important to opt for a faster refinement solution that could
accommodate the sudden traffic burst quickly, since the vertical upgrade delay might
lead to increased droppings during the burst. In this case, the refined LCI 2 aims
at speeding up the scaling process of the existing small caches without the need to
vertically upgrade them. Hence, once a traffic burst is detected, then the horizontal
auto-scaling threshold is lowered to allow a faster scale-out process. For example,
the default horizontal scaling threshold is 80% of the average CPU utilization of
all existing caches. When this threshold gets exceeded then a new cache container is
added. But in order to speed up the scaling process during traffic bursts, we lower this
threshold to 65% of average CPU utilization. This refinement is shown in Algorithm4.

Accordingly, one important refinement trigger is the “traffic burst” metric. A
CCDN operator has to define a traffic burst (i.e., at least N continuous minutes of
traffic rate above average with a certain percentage X%). After some stabilization
time window, the horizontal scaling threshold goes back to the default value.

4.4 CCDN Deployment via Google Kubernetes

Engine (GKE)

We create CCDN deployments using Google Kubernetes Engine (GKE). This widely
used powerful platform runs on Google Cloud Infrastructure spreading across 37
regions and 112 zones that are available in over 200 countries around the world
(Google, 2023e), it provides a managed environment to deploy, manage, and scale
containerized applications using Google infrastructure. The GKE environment usually
consists of multiple worker machines (called nodes) grouped together to form a
GKE cluster powered by Kubernetes; an open-source cluster management system
(Kubernetes, 2023c). These nodes run containerized applications such that they
host the Pods that are the components of the application workload. A Pod is the
smallest deployable unit to create and manage in Kubernetes. It is a group of one or
more containers, with shared resources, and contains specifications for how to run the
containers.

91

Chapter 4. Implementation

Algorithm 4 LCI 2 CCDN Refinement During Traffic Bursts

S ← CurrentActiveCacheSize
MinC ←MinNo.CurrentCaches
MaxC ←MaxNo.CurrentCaches
MinR ←MinNo.RefinedCaches
MaxR ←MaxNo.RefinedCaches
ScaleThreshC ← CurrentHigherScalingThreshold
ScaleThreshR ← RefinedLowerScalingThreshold
W ← StabilizationWindowTime
AD ← Dep(S,MinC,MaxC, ScaleThreshC) ▷ Current Active CCDN Deployment
CCDNrefined← FALSE
while CCDN.Service.Running is TRUE do

if TrafficBurst is true then
update(AD)← Dep(S,MinR,MaxR, ScaleThreshR)
CCDNrefined← TRUE

else ▷ when traffic burst is over, restore scaling threshold to the previous
non-refined scaling

if CCDNrefined is true & W is exceeded then
update(AD)← Dep(S,MinC,MaxC, ScaleThreshC)
CCDNrefined← FALSE

end if
end if

end while

92

Chapter 4. Implementation

4.4.1 Kubernetes Objects

Kubernetes can be managed via specifying data in a YAML file, typically to define
a Kubernetes object. The YAML configuration file is called a “manifest”, and when
it is applied to a Kubernetes cluster, the corresponding Kubernetes object is created
based on the configuration.

4.4.1.1 Kubernetes Deployment

The Deployment object creates the pods, ensures their correct number is always
running in the cluster, handles scalability, and takes care of the pod updates
continuously (Kubernetes, 2023a). All these activities can be configured through
their corresponding fields in the Deployment YAML manifest.

When a Pod is specified, you can optionally specify how much of each resource
a container needs. The most common resources to specify are CPU and memory
(RAM). In this context, we focused on these two resources and excluded the disk
resources due to the nature of our request processing (compute- and memory- bound
nature). You can set request, and limit for these resources.

CPU resource represents compute processing specified in units of Kubernetes
CPUs, where 1 CPU unit is equivalent to 1 physical CPU core, or 1 virtual core,
depending on whether the node is a physical or virtual machine. Whereas, Memory
is specified in units of bytes.

Resource request specifies the amount of requested resources for containers in a
Pod. The kube-scheduler uses this information to decide which node to place the Pod
on. Resource limit specifies the maximum limit of resources for a container, which
is not allowed to use more of that resource than the specified limit.

A probe is a periodic check that monitors the health of an application. One of
these control probes is initialDelaySeconds which determines the waiting time
after the container starts and before beginning the probe.

In our implementation of the CCDN cache containers, we use the popular Nginx
server as our cache container image (NGINX, 2023). Since we have different cache
sizes (i.e., small and medium), we set different resources (request and limit)
such that the medium caches have twice CPU and RAM resources as the small
caches. Each cache size is specified in its own deployment YAML manifest since
each differs in specifications. As for the cache placement in different zones that
could impose different startup delays based on their proximity to the end-users, we
set the initialDelaySeconds metric to emulate the different cache startup times
which represent starting and running caches in different zones. A cache in a Local
zone translates to a lower initialDelaySeconds than in nearby or further zones.
A snippet of the corresponding parts of the deployment manifest file is shown in
Listing 4.3. Having different deployment manifests for different cache sizes and their

93

Chapter 4. Implementation

specifications gives us the advantage of running them separately and in parallel when
needed, without requiring to update the currently active deployment which would
temporarily take it down until the updated one is deployed. In specific, this feature
is helpful in the LCI refinements with vertical upgrades during peak hours. As the
default small caches run throughout the day, only during the peak hours do we upgrade
to medium caches, but to reduce the possible droppings in the process, we deploy
medium caches in parallel with the small ones just right before the peak hours to
ensure that the refined medium caches are up and running and then can be used, so
no downtime occurs.

spec:
containers:
-name: nginx
image: nginx

resources:

limits:
cpu: 200m
memory: 4000Mi

requests:
cpu: 100m
memory: 2000Mi

readinessProbe:
initialDelaySeconds: 40

ports:
-containerPort: 80

Listing 4.3: Container Resources and Image Specification Segment.

4.4.1.2 Horizontal Pod Autoscaler

A Horizontal Pod Autoscaler (HPA) automatically deploys more pods with the aim
of automatically scaling the workload to match the increasing demand (Kubernetes,
2023b). It also scales pods back down automatically when the load decreases. HPA
refers to a scaling threshold, if it got exceeded then the scaling takes place. The most
popular threshold is targetAverageUtilization which is computed by taking the
average of CPU utilization across all Pods.

The minReplicas and maxReplicas number of replicas could be determined,
which sets the range of replicas that could be scaled by the HPA.

In our implementation, we define different HPAs for each deployment as the they
differ in their specifications (i.e., cache size). The maxReplicas and minReplicas

94

Chapter 4. Implementation

differ according to the deployment. For example, with small caches, we need twice
the number of medium caches since the former has half the resources of the latter.

In our proposed LCI 2 refinement during traffic bursts, we can update the scaling
threshold targetCPUUtilizationPercentage, by lowering it (e.g., from 80% to
65%), and then restore it again after the bursts are over. Luckily, updating the
HPA wouldn’t take the CCDN cluster down as opposed to updating the deployment
manifests. A snippet of the corresponding parts of the HPA manifest file is shown in
Listing 4.4.

spec:
maxReplicas: 20
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: nginx-deployment-small_caches

targetCPUUtilizationPercentage: 80

Listing 4.4: Horizontal Pod Auto Scaling Segment.

4.5 Summary

In this chapter, we presented the implementation of our proposed Intent-Based CCDN.
In particular, we explored how the core components of the prior design are realized
in working code. Together, these components facilitate the intent translation and
refinement to meet its aims. We also described some of the main Kubernetes manifest
segments corresponding to our proposed intents, which denote the final level of
translation that creates and applies the microservices API calls via the Kubernetes
orchestrator. In the following section, we take this implementation and evaluate it
in a number of scenarios along with different LCI alternatives and their refinements,
each of which exercises a particular functionality or design requirement.

95

Chapter 5

Evaluation

In this chapter, we aim to evaluate our implemented intent translation overhead
alongside comparing the performance, cost, and performance-to-cost score for several
implemented Low-Cost intent alternatives that lead to cost reduction. We also
evaluate these intents’ refinements which aim at improving their performance. The
overall experimental methodology is devised in Section 5.1 At first, we evaluate the
overhead of the intent translation process in terms of the time needed to translate the
high-level intent into its corresponding CCDN deployment, which would be converted
later to microservice API calls. This is presented in Section 5.2. Further to this,
we examine the performance (in terms of dropped requests), cost, and a combined
performance-to-cost score for our proposed Low-Cost intents that focus on CCDN
cost reduction and the level of performance improvement after refining these intents
in Section 5.3. Thereupon, these evaluations of the intent alternatives and their
refinements have been done during different traffic pattern scenarios. These results
reflect the direct benefits to the CPs.

5.1 Experimental Methodology

We split our tests into 2 phases: the Intent Translation phase (CCDN Pre-deployment
phase), and the Intent Execution and Refinement phase (CCDN Post-deployment
phase).

5.1.1 Intent Translation Evaluation

We explain the tests we made in our CCDN pre-deployment phase to evaluate the
intents translation overhead.

• Dimensions: Intents are translated via calculating the corresponding AHP graph
which is constituted of evaluation criteria and microservice alternatives. These

96

Chapter 5. Evaluation

form the dimensions for our tests to investigate the impact of each on the overall
intent translation overhead.

• Scale: We vary each dimension (AHP criteria and microservices) while fixing the
other’s value to examine its overhead impact on the overall translation time.

– First, we increase the number of simulated criteria in the AHP graph: 10, 20,
30, up to 100, with 2 microservice types, each has 10 alternatives to be evaluated
correspondingly.

– Then, we examine simulating the microservice alternatives scaling: 10, 20, 30,
up to 100, for each microservice type (i.e., 2 microservice types) which would be
evaluated against 10 criteria.

The simulations were designed to stress this intent translation process via the
AHP graph calculation in order to discover its overhead. Accordingly, this is
followed by the score calculation and clustering for varying numbers of possible
CCDN deployments that range from hundreds of possible deployments to bigger
scenarios with a 10K possible CCDN deployments that could be composed of the
microservice alternatives. We obtain 3 clusters (high, medium, and low) of CCDN
deployments based on their overall scores that represent their level of contribution
towards achieving the intent target. This AHP graph setup in this simulation was
pretty straightforward due to the use of the AHPy Python library (Griffith, 2023)
which was responsible of the heavy lifting of the required AHP computations while
offering an easy-to-use API.

• Metrics: We measure the Execution Time for the translation process to be com-
pleted which includes the AHP calculation and CCDN deployments enumeration
and clustering based on their scores with respect to the intent goal.

• Hardware: The tests were performed in a MacBook Pro with a Quad-Core Intel
Core i7 CPU at 2.7 GHz, Turbo Boost up to 3.6 GHz, with 8 MB shared L3 cache
and 16 GB of RAM. The simulations were implemented in Python utilizing the
AHPy Python library (Griffith, 2023) for the AHP calculations, and we use sklearn
Python library (Pedregosa et al., 2011) for KMeans clustering.

5.1.2 Intent Execution and Refinement Evaluation

We explain the setup we used in our CCDN post-deployment phase to evaluate our
proposed Low-Cost intents and their refinements.

• Dataset: We utilize real data from a major ISP that represents the measurement
of the bitrate of data transferred between the CDN caches (in the ISP’s facilities)

97

Chapter 5. Evaluation

and the end-users. Each measure is average bits/second over the granularity of 1
minute. We transform the captured bitrate in the dataset into request rate under
the assumption that the user request size is 500 KB which is equivalent to a video
chunk size as in this work (Frangoudis et al., 2017). Accordingly, we get the (time
stamp, request rate) pair/minute in order to facilitate generating a similar traffic
behavior pattern. We test our solution as opposed to the baselines according to the
dataset traffic from 13–19 Oct 2018.

• Traffic Cases: We test 2 traffic cases based on the used dataset as follows:

Normal Traffic with Gradual Increase In normal cases, traffic would follow a
similar pattern which starts at a very low requests rate during non-active hours (i.e.,
late at night or too early in the morning) and then increases gradually throughout
the active hours of the day until it reaches its peak during the peak hours, then
drops gradually until it reaches the lowest requests rate again, and so on. A sample
from the dataset is shown in Figure 5.1 where the number of caches that handle
the requests increase/decrease accordingly.

Traffic Bursts In some cases, there could be some bursts of traffic due to the
popularity of the content, seasonal popularity, etc. In our definition, traffic bursts
are sudden surges in incoming requests traffic that significantly exceed the average
handled traffic rate at that period and last for some certain time.

In this tested scenario, we inject 3 synthetic traffic bursts into the tested traffic
segments which did not contain bursts originally in the dataset as it resembled
normal traffic pattern. We test them over a period of 1 hour as shown in Figure
5.2.

Figure 5.1: Normal Traffic with Gradual Increase.

98

Chapter 5. Evaluation

• Google Cloud Platform Setup: Tests on several CCDN deployments have been
done using Google Kubernetes Engine (GKE). The setup is shown in Figure 5.3.
The Kubernetes cluster consisted of 2 Compute Engines (Nodes). The first node is
mainly dedicated to the Ingress controller which manages the external HTTP traffic
routing and load balancing to the Kubernetes cluster. The second node is dedicated
to hosting all cache pod replicas that handle incoming requests. We dedicated a
separate external Compute Engine (VM) located in the same zone to generate the
end-users traffic. Each Compute Engine has 2 vCPU and 8 GB RAM.

• Baselines: A GKE cluster consists of a control plane and worker machines
(nodes). Both make up the Kubernetes cluster orchestration system. GKE offers
two operation modes depending on the required control level, these modes are
Autopilot and Standard (Google, 2023d) (Google, 2023a). Autopilot mode
provides a hands-off Kubernetes experience by providing optimized pre-configured
clusters that are ready for production workloads. It manages the control plane,
nodes, scaling, placement, and all system components. Therefore, users can only
focus on their workloads without additional cluster management knowledge. With
an Autopilot GKE cluster, only the region (not the zone) could be selected. On
the other hand, the Standard mode provides more flexibility and full control over
managing and configuring the cluster depending on the required workload, this

Figure 5.2: Bursty Traffic (the cluster re-sizing behavior was omitted due to its
stability throughout the test since the traffic bursts occurred frequently)

99

Chapter 5. Evaluation

mode manages the control plane and system components, while the user manages
the nodes, their scaling, placement, etc. In the Standard mode, both the region and
zone can be selected. Both GKE operation modes have been tested as baselines
against our proposed Intent-Based CCDN solution.

Our tests of CCDN deployments have been carried out by creating a GKE cluster
in Europe West region for both baselines.

– Baseline 1 is an Autopilot GKE regional cluster in Europe West region

– Baseline 2 is a StandardGKE zonal cluster in London zone within Europe West
region

In both baselines, the cache size considered is medium.

• Traffic Generation: The nature of the CDN requests rate is highly variable
depending on several factors like the popularity of the content or seasonal
popularity, network congestion, resources availability, etc. Therefore, we test the

Figure 5.3: CCDN Experiment Setup on Google Cloud Platform.

100

Chapter 5. Evaluation

traffic for one week in order to measure its performance (in terms of dropped
requests) and cost. However, since generating and serving the whole traffic 24/7
via the GKE CCDN would be very costly, we look at the traffic in the dataset
between 13:00 and 23:00 where the demand intensity was ranging from moderate
to extreme. We focus on the transitional traffic segments which require scaling out
the CCDN caches from N to N+1 caches. This scale-out process leads to some
possible dropped requests that would not be served due to the overhead on the
current caches until the new cache is up and running. Hence, we run these specific
segments of traffic with their corresponding number of caches that could meet the
demand before the need to scale out, each test result is the average of 10 different
runs of the same traffic. Additionally, we integrate Automatic Horizontal Scaling
(called the Kubernetes Horizontal Pod Autoscaling (HPA)), which automatically
scales out the caches by adding more of them when needed. So, we have been able
to capture the dropped requests during that process. However, in our tests, we have
not measured the possible increased delay due to cache overload since we mainly
focused on capturing the dropped requests.

To generate end users’ traffic requests, we create a VM that resides in the same
region and zone to emulate the real traffic generated by actual CDN end users that
are located in the same zone. For traffic generation, Wrk2 (Tene, 2019), a popular
HTTP requests generation tool has been used. Wrk2 allows sending HTTP requests
to a specific URL at a certain request rate. This feature allows us to generate the
same traffic pattern captured in the dataset used in these tests. We assumed that
the user request size is 500 KB which is equivalent to a video chunk size as in this
work (Frangoudis et al., 2017).

• Metrics: The main evaluation metrics that have been chosen are:

Performance Ratio: measured in terms of a ratio (fraction) inverse for the
number of dropped requests in a CCDN deployment over the baseline’s drops as the
fraction’s denominator. Since the number of dropped requests affects performance
negatively, we calculate the inverse of the ratio where the higher value, the better
it is (meaning fewer drops).

Cost Ratio: represents the ratio inverse for a CCDN’s cost per test period over
the baseline’s cost. Since the cost increase is not favorable, we calculate the ratio
inverse for the cost where the higher the value (i.e., less cost) the better.

Performance-to-Cost Ratio: combines both previous metrics in a single
ratio (i.e., Performance Ratio/Cost Ratio) which summarizes the overall gained
performance for the money. The higher the value, the better it is.

101

Chapter 5. Evaluation

5.1.3 CCDN Deployments Cost Calculation

To compare and calculate the corresponding cost per each CCDN deployment, we
refer to the E2 standard machine cost in the Europe-West region provisioned by
Google Cloud (Google, 2023g). The costs are listed in Table 5.1 and Table 5.2.
Since the level of granularity for our tests was per minute, the cost/minute has been
calculated to get the overall cost/day, which depends on the number and size of
caches at each time instance. Both baselines provide medium-sized caches, which
is equivalent to e2-standard-4 machine instance cost. Nonetheless, Baseline 1 is
in Autopilot mode, and Baseline 2 and other LCIs are in Standard mode, where
both Baselines are placed in (Europe-West) region and Baseline 2 is specifically
placed in the local zone (London Europe-West2) and LCI 1 is placed at a nearby
zone (Belgium Europe-West1). Contrarily, LCI 2 and LCI 3 CCDNs and their
refinements provision small caches that are equivalent to the cost of e2-standard-2
machine, with LCI 2 being placed locally in (London Europe-West2), whereas LCI
3 is in (Belgium Europe-West1).

Cost ($) / hour
E2 Standard Machine
in local zone
(London Europe-West2)

Autopilot mode Standard mode

e2-standard-2
2 vCPU 8 GB RAM
(Small cache)

0.12838 0.08633

e2-standard-4
4 vCPU 16 GB RAM
(Medium cache)

0.25676 0.17267

Table 5.1: Compute Instances Costs in a Local Zone.

5.2 Intent Translation (CCDN Pre-Deployment

Phase)

The main goal of this evaluation is to investigate the overhead of the intent translation
process with respect to different numbers of microservice alternatives and evaluation
criteria in the corresponding AHP graph. In specific, we measure the time needed to
complete the intent translation, which includes the AHP calculation to prioritize all
microservice alternatives, and the clustering process, which clusters all possible CCDN
deployments that are enumerated by composing microservices of different types which

102

Chapter 5. Evaluation

Cost ($) / hour
E2 Standard Machine
in nearby zone
(Belgium Europe-West1)

Autopilot mode Standard mode

e2-standard-2
2 vCPU 8 GB RAM
(Small cache)

0.12838 0.07371

e2-standard-4
4 vCPU 16 GB RAM
(Medium cache)

0.25676 0.14743

Table 5.2: Compute Instances Costs in a Near-by Zone.

constitute the overall CCDN. Each CCDN deployment is composed of an instance of
the following microservice types: cache size, cache zone, and refinement as based on
our previous analysis in Section 3.4.3.

Figure 5.4: Intent Translation Time (AHP Calculation and Clustering) for Varying
Number of Criteria.

103

Chapter 5. Evaluation

5.2.1 Increasing Number of Criteria Results

First, we measure the time needed to complete the AHP calculation while increasing
the number of evaluation criteria in the AHP graph that are used to evaluate
microservices. We fix the number of microservice types to 2, each type has 10
alternatives. Therefore, we have a total of 100 (10 × 10) enumerated CCDN
deployments to evaluate. We start with 10 evaluation criteria for each microservice
type and increase that linearly all the way up to 100. Even though having these higher
numbers of evaluation criteria is unlikely usual in practice, nonetheless we want to
evaluate the translation process feasibility and scalability. In Figure 5.4, we notice
2 observations. The first is that even with 100 evaluation criteria, the time needed
to complete the AHP calculation was approximately 175 milliseconds, which is very
reasonable and the increase in the AHP calculation time is linear to the number of
criteria increase. The second observation is that in all tests, the clustering time was
the same which was under 20 milliseconds. The clustering process comes after the
AHP calculation which assigns a score to each microservice based on the evaluation
criteria. Therefore, the clustering operates based on these scores and enumerates all
possible CCDN deployments, where each contains an instance of every different type
of microservice that builds up the CCDN.

By combining the times of AHP calculation and clustering, at maximum, when
we have 100 evaluation criteria and 10 different microservice alternatives per type to
evaluate, the time needed is less than 190 milliseconds, which is notably better than
the intent translation time achieved in a similar work (Scheid et al., 2017), where
their MCDM process (i.e., SIG calculation) needed slightly more than 1 second to
complete in the worst case, and around 3.5 seconds to complete the clustering process
for a problem size similar to our biggest problem size.

5.2.2 Increasing Number of Microservices Results

On the other hand, we want to evaluate the translation time when increasing the
number of alternatives for each microservice type to be evaluated and clustered. We
set 10 evaluation criteria and vary the number of microservice alternatives to be
evaluated from 10 to 100 linearly. Correspondingly, since we have 2 microservice
types, the number of enumerated CCDN deployments to be evaluated ranged from
100 (102) all the way up to 10000 (1002).

Opposed to varying criteria, microservices increase led to an exponential increase
in the AHP calculation time. With 100 instances/microservice type to evaluate,
AHP calculation needed approximately 260 milliseconds as shown in Figure 5.5.
On the other hand, the clustering time showed a sublinear increase with the
microservices number increase. With a smaller number of microservice alternatives,
the clustering time is slightly more dominant as opposed to bigger numbers of

104

Chapter 5. Evaluation

microservice alternatives (i.e., 40 and above) where the AHP calculation time becomes
the dominant in time consumption. Therefore, for the biggest scenario with 100
alternatives/microservice type, 10 criteria, and 10K CCDN deployments to evaluate
and cluster, the overall translation time was around 330 milliseconds to complete
the AHP calculation and then cluster all CCDN deployments based on their overall
microservice scores with respect to the intent target.

5.2.3 Discussion

First, by looking closely at the effect of increasing the number of AHP criteria with a
fixed number of microservices to evaluate, in Figure 5.4, we justify the linear increase
in AHP calculation time due to the N×N pair-wise comparison matrix computation,
where N is the number of criteria. Each criterion would be compared against all
other criteria in a matrix. (e.g., 100 criteria require 100 × 100 matrix for pair-wise
comparison computation). On the other hand, the clustering time was the same
which was under 20 milliseconds. This is due to the fixed number of microservice
alternatives (i.e., 10 in our test) that would be used to enumerate all possible CCDN

Figure 5.5: Intent Translation Time (AHP Calculation and Clustering) for Varying
Number of Microservice Alternatives.

105

Chapter 5. Evaluation

deployments from them. The total number of enumerated deployments that have
been composed of 2 types of microservices, where each has 10 alternatives, was 100
deployments (10× 10).

Secondly, moving to the effect of increasing the number of microservice alternatives
with a fixed number of criteria to be evaluated, in Figure 5.5, we find that an
exponential time increase is needed to compute AHP for the increasing number of
microservices. This is due to the pair-wise comparison of all microservices against
each other with respect to each evaluation criterion. Since the microservices are
located at the last level of the AHP graph, their global score depends on all previous
levels of criteria and sub-criteria score calculations in the graph. Unlike the pair-wise
comparison of the criteria which are located in the middle of the AHP graph and their
comparisons do not depend on the last level (i.e., microservices).

In conclusion, increasing the number of microservices affects the translation
time more remarkably than increasing the number of criteria. However, in real-life
scenarios, it is unfamiliar to have a large number of microservice alternatives of the
same type. Nonetheless, in both previous evaluations, the overall translation time
was significantly better than the closest work to ours (Scheid et al., 2017).

5.3 CCDN Post-Deployment Phase

In this section, we examine the performance, cost, and performance-to-cost ratios for
our proposed Low-Cost Intents (LCIs) after executing them and refining them as well
under different traffic cases.

5.3.1 Normal Traffic with Gradual Increase

As illustrated in Figure 5.1, the normal traffic pattern gradually increases until it
reaches the maximum intensity during the peak hours. This was the dominant pattern
in the used dataset that captured real CDN incoming requests. Usually, the peak
hours require the highest number of cache scaleouts to accommodate the traffic of the
intense requests, which could lead to a higher number of dropped requests during the
scaling process due to the over-utilized current caches until the new caches are up and
running. Hence, that is specifically when we are interested in the LCIs refinement
that takes place to alleviate the potentially bad performance of the original LCIs
which cared about cost reduction rather than performance. As discussed in Section
5.1.2, we capture the dropped requests during the scale-out process after running the
generated traffic based on the real ISP CDN dataset, these traffic segments have been
chosen based on the transitional periods that require scaling the caches. Therefore,
within each day of the week, we run several traffic segments of which each requires
a different scaling. We run these tests 10 times and record the number of dropped

106

Chapter 5. Evaluation

requests, and calculate the average and standard deviation. Since we have several
traffic segment tests throughout the day, we calculate the average standard deviation
per day as shown in Equation 5.1 which is used to find the average standard deviation
among k groups and each group has the same sample size (i.e., 10 repetitions) where
Sk: Standard deviation for kth group and k: Total number of groups.

AverageS.D. =

√
S2
1 + S2

2 + ...+ S2
k

k
(5.1)

5.3.1.1 Low-Cost Intents Performance Results

We proposed and discussed several LCIs and their refinements for the scenario of
normal traffic in Chapter 4, Section 4.3.3. These refinements aim to improve the
performance (in terms of reducing dropped requests) of the LCI. In other words, since
the LCI would compromise the performance for cost reduction, hence, its refinement
aims to reduce the number of dropped requests depending on the CCDN deployment.
If the caches have not been placed locally within the requested zone, then it gets
refined by spinning up local caches during the peak hours to reduce the effect of
the increased start-up delay of the non-local caches. However, if the deployed cache
size could be increased, then it is refined by vertically upgrading the cache size (e.g.,
from small to medium) during the peak hours to decrease the need for scaling out
and hence, reduce the number of dropped requests in the process. Two types of
intent refinements have been demonstrated, namely, optimistic and pessimistic.
The latter aims at decreasing the drops even more than the former by performing the
local cache placement and/or vertical upgrade earlier and for a longer period. For
example, the optimistic refinement operates during the time window (18:00 – 22:00),
whereas the pessimistic refinement time window (17:00 – 23:00).

PerformanceRatio =
dropsbaseline
dropsdep

(5.2)

In Figure 5.6, an overview of the dropped requests throughout a week is shown
per day. The intent refinement results have been omitted from this figure for better
result readability but they have been demonstrated fully in Figures 5.7 and 5.8.
It is notable that the drops are significantly higher in the Autopilot GKE CCDN
(Baseline1) compared to the Standard fully managed GKE CCDN (Baseline2), Even
though both baselines contain the same cache size (medium) and number. We notice

107

Chapter 5. Evaluation

that in Autopilot GKE, the new cache containers that get created during the scale-
out process could crash or get a delayed scheduling more frequently as opposed to the
Standard GKE, where we control the scale-out process within the same zone.

In LCI 1, The tradeoff for deploying less costly caches that are placed in a nearby
zone (instead of the local zone) is the increased startup delay that could affect the
performance negatively by increasing the possibility of request drops. When small and
less costly caches in LCI 2 are deployed in this CCDN (as opposed to medium caches
in both baselines), this leads to more frequent scale-outs due to having smaller cache
sizes (less costly than medium ones) that result in more drops and would eventually
perform significantly worse than the baselines. As in LCI 3, combining both cost
reduction factors in the previous intents, where small cheaper caches are deployed in
a nearby zone. Naturally, this CCDN would suffer from the most droppings compared
to the former ones in return for the highest cost reduction.

Therefore, the LCIs refinement takes place to alleviate the bad performance of the
original intents. Each intent correspondent CCDN would be refined differently.

Figure 5.7 and Figure 5.8 compare the total dropped requests in a week for
the CCDN that correspond to the LCIs, and their refinements that improve the
performance by reducing the drops in contrast to the drops in both baseline CCDNs.
Moreover, we also list the performance ratio score which denotes the performance
ratio for each CCDN deployment compared to the baselines in Table 5.4. The
performance ratio refers to the ratio of the dropped requests in our case, the fewer
drops, the better. Therefore, we calculate the inverse of the ratio as follows:

Starting with the comparison against the Autopilot GKE CCDN deployment
(Baseline 1), we can see that the performance has been improved 3.6 times with
LCI 1 CCDN. Even though LCI 1 was expected to reduce the cost in return for the
performance downgrade. However, in comparison to Baseline 1, it outperformed it
considerably. Both LCI 1 optimistic and pessimistic refinements have improved
the performance even further by 4.8 and 4.9 times respectively. This improvement
has been achieved by reducing the cache startup delay during the peak hours, which
is done by local cache placement within the local zone, as opposed to the nearby less
costly caches that have been used throughout the day except for the peak hours. This
refinement comes with an additional cost that will be discussed later in Section 5.3.1.3.
The pessimistic refinement was slightly better than the optimistic as expected
because it performs the local placement for a longer period compared to the latter,
which helps reduce the droppings for more time.

By looking at LCI 2, in contrary to LCI 1, we can see that the performance
has been reduced by 30% compared to Baseline 1. This performance downgrade
is attributed to the use of small caches instead of medium ones, which leads to
more frequent scale-outs, and accordingly losing more requests during this scaling
process until the newly added caches are up and running. However, this performance

108

Chapter 5. Evaluation

S
ta
rt
u
p
D
el
ay

C
ac
h
e
S
iz
e

S
ta
rt
u
p
D
el
ay

&
C
ac
h
e
S
iz
e

P
er
fo
rm

an
ce

R
a
ti
o

to
L
C
I
1

O
p
ti
m
is
ti
c

R
efi

n
ed

L
C
I
1

P
es
si
m
is
ti
c

R
efi

n
ed

L
C
I
1

L
C
I
2

O
p
ti
m
is
ti
c

R
efi

n
ed

L
C
I
2

P
es
si
m
is
ti
c

R
efi

n
ed

L
C
I
2

L
C
I
3

O
p
ti
m
is
ti
c

R
efi

n
ed

L
C
I
3

P
es
si
m
is
ti
c

R
efi

n
ed

L
C
I
3

A
u
to
p
il
ot

G
K
E

C
C
D
N

(B
a
se
li
n
e
1
)

3
.6

4.
8

4.
9

0.
7

3.
3

3.
8

0.
6

2.
4

2.
8

F
u
ll
y
M
an

a
ge
d

G
K
E

C
C
D
N

(B
a
se
li
n
e
2
)

0
.7

0.
98

0.
98

0.
1

0.
7

0.
8

0.
1

0.
5

0.
6

T
ab

le
5.
4:

P
er
fo
rm

an
ce

R
at
io

to
B
as
el
in
es

(h
ig
h
er

is
b
et
te
r)

109

Chapter 5. Evaluation

decline has been reversed after the intent refinement which vertically upgrades the
cache size from small to medium during the peak hours. The optimistic refinement
outperformed Baseline 1 by 3.3 times, whereas the pessimistic refinement that
performs the vertical upgrade earlier and for a longer period performed even better
with 3.8 times fewer drops.

In order to combine the cost reduction intent techniques used in LCI 1 and LCI
2, we test LCI 3, which uses small and cheaper caches that are placed in a nearby
zone. As expected, it has the lowest performance compared to the other LCIs. It
reduced the performance of Baseline 1 by 40%. Fortunately, this has been overcome
with the intent refinements that use local and medium caches during the peak hours,
with 2.4 and 2.8 times less droppings for optimistic and pessimistic refinements
respectively.

Moving to the comparison against the Standard fully-managed GKE CCDN
deployment (Baseline 2), It is observed in Figure 5.8 that the total request drops are
considerably less than in Baseline 1, as it resulted in a total of 4K drops compared
to 22K drops in Baseline 1. In fact, Baseline 2 outperformed Baseline 1 by 4.9
times more as shown in Figure 5.9.

The LCI 1 trades off the performance with the cost reduction of cheaper caches
that run in a nearby zone as opposed to the local caches in Baseline 2. As shown in
Table 5.4, it performed worse compared toBaseline 2 than toBaseline 1. The drops

Figure 5.6: Average Number of Dropped Requests in a Week.

110

Chapter 5. Evaluation

Figure 5.7: Dropped Requests Throughout a Week.

increased by 30% compared to Baseline 2. However, this performance degradation
has been positively mitigated with intent refinement, to rise up to 98% of Baseline
2’s performance with both the optimistic and the pessimistic refinements.

Contrarily, LCI 2 achieved only 10% of Baseline 2’s performance due to the
significant increase in droppings that occurred during the frequent scale-outs of small
caches. Advantageously, the intent refinements improved the performance up to 70%
and 80% of Baseline 2’s performance, by vertically upgrading the small caches to
medium during the peak hours.

On the other hand, LCI 3, had a similar performance to LCI 2, which reduces the
performance of Baseline 2 by 90%. However, the gained performance improvement
by the intent refinement scored a lower performance ratio compared to LCI 2. It
improved the performance to reach 50% and 60% of Baseline 2’s performance. The
performance of LCI 3 and its refinements resulted in the lowest performance ratio

111

Chapter 5. Evaluation

Figure 5.8: Total Dropped Requests in a Week.

scores compared to its counterparts LCI 1 and LCI 2.

5.3.1.2 Discussion

By dissecting the dropped requests for each day in a selected week as shown in Figure
5.6, 5.7 and 5.8 we can observe that all CCDNS had almost consistent behavior
regardless of the traffic intensity, which helped with evaluating the effectiveness of
our proposed LCIs and their refinements.

We think that the reason behind the considerable difference in performance
between Baseline 1 and Baseline 2, is that Baseline 1 runs in the GKE Autopilot
mode that operates on a regional level. The region of the Kubernetes cluster has to
be determined by the CCDN operator. This regional cluster runs multiple replicas
of the control plane in multiple zones within a given region. By default, each node
pool is replicated across three zones of the control plane’s region. Hence, it is suited
for high availability. Nonetheless, this comes with certain trade-offs. First, cluster
configurations take longer because they must propagate across all control planes in a
regional cluster. Second, users might not be able to create or upgrade regional clusters
as often as zonal clusters. The nodes and containers can be placed within multiple
zones inside that region. Thus, by default, the CCDN operator has no control over
the exact placement of the cluster components since this is automatically managed

112

Chapter 5. Evaluation

by Google (Google, 2023d). Hence, more cache container crashes and startup delays
have been noticed during our test with Baseline 1.

On the other hand, Baseline 2, runs in the GKE Standard mode, which in our
case, has been a zonal cluster. A CCDN operator has full control over all Kubernetes
components and management within a specific zone (i.e., local to end users). Hence,
the nodes and container placements are controlled on the level of zones rather than
regions.

LCI 1 performed the best due to using medium caches compared to small caches
in LCI 2 and LCI 3. Therefore, we can infer that the cache size factor is more
impactful on performance than the startup delay. This is due to the frequent need
to perform more scaling with smaller caches which leads to more dropping in the
process until the new caches are up and running. Therefore, LCI 2, comes in second
place in terms of performance which uses small local caches. Finally, LCI 3 is the
least performant due to combining both factors of cost reduction: smaller cache

Figure 5.9: Performance Ratio Comparisons Against Baselines (higher is better).

113

Chapter 5. Evaluation

size, and cheaper caches with more startup delay since they are located in a nearby
zone rather than the local zone.

After intent refinements during peak hours, refined LCI 1 with local cache
placement (i.e., for startup delay reduction) was the best performing amongst the
other refined intents. This is expected due to primarily using the more impactful factor
that affects performance which is a bigger cache size compared to the others. Even
though the refined LCI 2 came in second place, interestingly, the vertical upgrade
from small to medium caches caused a dramatic increase in the performance ratio
compared to the original LCI 2. Again, this demonstrates the impact of bigger
caches with less frequent scaling on decreasing the droppings. Finally, LCI 3 came in
last place. Although it utilized vertical upgrade for small caches, it still was affected
by the additional startup delay that was the tradeoff for cheaper caches in a nearby
zone. Therefore, the difference between refined LCI 3 and LCI 2 is less (which
denotes the startup delay effect) compared to the difference between LCI 2 and LCI
1 (which denotes the cache size effect).

In comparison between optimistic and pessimistic refinements, the latter is
expected to be better in performance due to the longer refinement period with a bigger
time window that starts before and ends after the former. However, sometimes, this
might not be the case. This mainly depends on the number of actions taken within
the refinement time window in both refinements. In other words, if the refinement
actions (i.e., caches scale out) needed to be taken only during the smaller time window
for the optimistic refinement, then it would be no different from the pessimistic
one since no additional actions were needed in that extra period.

In summary, amongst the proposed original LCIs, the one that used bigger-
sized caches performed the best. And eventually, refined intents outperformed the
original ones, and even dramatically increased the performance when the refinement
depended on the vertical upgrade for the cache size. Moreover, the difference in the
performance ratio score between optimistic and pessimistic refinements would be
further improved by increasing the time window difference but with an additional
cost. In general, these results emphasized the fact that the Cache Size factor has
more impact on the performance in terms of reducing dropped requests compared to
Start up Delay which is affected by the cache placement. Therefore, when designing
solutions that aim at providing better performance in other problem domains, it would
be useful to have this finding in consideration.

5.3.1.3 Low-Cost Intents Cost Results

Following our previous discussion of the CCDN deployments cost calculation in
Section 5.1.3, in LCI 1, refinements calculation changes during the peak hours
since local medium caches are deployed (e2-standard-4 in London Europe-West2).

114

Chapter 5. Evaluation

Figure 5.10: Cost($) Throughout a Week.

Whereas, in LCI 2 refinement, local small caches are vertically upgraded to medium
caches in the same local zone (e2-standard-4 in London Europe-West2). Finally,
in the refinement of LCI 3, vertical cache upgrade and local placement are considered
in the cost calculation (e2-standard-4 in London Europe-West2) during the peak
hours. All intents and their refinements, and Baseline 2 costs have been calculated
based on the Standard GKE mode.

After calculating the total cost for a week of running the traffic extracted from the
dataset, we can easily observe from Figure 5.10, Figure 5.11 and Table 5.6 that the
LCI 1, LCI 2, and LCI 3 costs are significantly reduced compared to Baseline 1,
which is the main goal of these intents. In other words, we express this as a cost ratio
that compares each CCDN deployment’s cost against the baseline’s cost. Surely, the
less the cost is, the better. Therefore, we calculate the inverse of the ratio as follows:

115

Chapter 5. Evaluation

CostRatio =
costbaseline
costdep

(5.3)

Accordingly, LCI 1 has reduced the cost by 70% compared to Baseline 1. On the
other hand, both its refinements (optimistic and pessimistic) required a small cost
increase compared to the LCI 1 original intent, which is considered to be very good
compared to the considerable performance improvement (4.8 and 4.9 times better
performance, respectively) discussed in the previous section. Both refinements cut
the cost of Baseline 1 to slightly more than half. LCI 2 and its refinements all
achieved 70% more cost reduction compared to Baseline 1. Whereas LCI 3 was 2
times less costly than Baseline 1, and both its refinement reduced the cost 1.9 and
1.8 times respectively.

Since Baseline 2 required noticeably less cost compared to Baseline 1, where
it costs almost 50% less as expressed in the cost ratio Figure 5.12, it is expected
to have less reduction degree between the LCIs and Baseline 2 because all of the
corresponding CCDN deployments have been fully managed (in contrast to Baseline
1 Autopilot GKE CCDN). As listed in Table 5.6, LCI 1, provided 20% cost reduction,
which is the result of selecting cheaper medium caches in a nearby zone. This has
been decreased slightly to 10% with both intent refinements that shift to local more
costly caches during the peak hours.

LCI 2, on the other side, cost slightly more than LCI 1 by using small local
caches, it reduced cost by 10% compared to Baseline 2. Both its refinements have
not increased the cost and still remained 10% cost reduction.

Finally, LCI 3 provided the highest cost reduction compared to Baseline 2 with
30%. This is a result of combining the cost reduction solutions of the previous intents
by selecting small caches in a nearby less costly zone. Its optimistic refinement
provided almost the same cost reduction, as for the pessimistic refinement, slightly
less cost reduction has been achieved due to the bigger time window of refinement,
where local medium caches have been used.

116

Chapter 5. Evaluation

S
ta
rt
u
p
D
el
ay

C
ac
h
e
S
iz
e

S
ta
rt
u
p
D
el
ay

&
C
ac
h
e
S
iz
e

C
o
st

R
at
io

to
L
C
I
1

O
p
ti
m
is
ti
c

R
efi

n
ed

L
C
I
1

P
es
si
m
is
ti
c

R
efi

n
ed

L
C
I
1

L
C
I
2

O
p
ti
m
is
ti
c

R
efi

n
ed

L
C
I
2

P
es
si
m
is
ti
c

R
efi

n
ed

L
C
I
2

L
C
I
3

O
p
ti
m
is
ti
c

R
efi

n
ed

L
C
I
3

P
es
si
m
is
ti
c

R
efi

n
ed

L
C
I
3

A
u
to
p
il
ot

G
K
E

C
C
D
N

(B
a
se
li
n
e
1
)

1.
7

1
.6

1.
6

1.
7

1.
7

1.
7

2.
0

1.
9

1.
8

F
u
ll
y
M
an

a
ge
d

G
K
E

C
C
D
N

(B
a
se
li
n
e
2
)

1.
2

1
.1

1.
1

1.
1

1.
1

1.
1

1.
3

1.
3

1.
2

T
ab

le
5.
6:

C
os
t
R
at
io

to
B
as
el
in
es

(h
ig
h
er

is
b
et
te
r)

G
K
E

A
u
to

p
il
o
t

(C
C
D
N

B
a
se

li
n
e
1
)

F
u
ll
y

M
a
n
a
g
e
d

G
K
E

(C
C
D
N

B
a
se

li
n
e
2
)

L
o
w

C
o
st

In
te

n
t
1

(L
C
I
1
)

L
o
w

C
o
st

In
te

n
t
2

(L
C
I
2
)

L
o
w

C
o
st

In
te

n
t
3

(L
C
I
3
)

O
p
ti
m
is
ti
c

R
e
fi
n
e
d

L
C
I
1

(1
8
:0
0

-
2
2
:0
0
)

P
e
ss
im

is
ti
c

R
e
fi
n
e
d

L
C
I
1

(1
7
:0
0

-
2
3
:0
0
)

O
p
ti
m
is
ti
c

R
e
fi
n
e
d

L
C
I
2

(1
8
:0
0

-
2
2
:0
0
)

P
e
ss
im

is
ti
c

R
e
fi
n
e
d

L
C
I
2

(1
7
:0
0

-
2
3
:0
0
)

O
p
ti
m
is
ti
c

R
e
fi
n
e
d

L
C
I
3

(1
8
:0
0

-
2
2
:0
0
)

P
e
ss
im

is
ti
c

R
e
fi
n
e
d

L
C
I
3

(1
7
:0
0

-
2
3
:0
0
)

R
a
ti
o

to
B
a
se

li
n
e
1

1
3
.3

2
.0

0
.4

0
.3

2
.9

3
.0

2
.0

2
.2

1
.3

1
.6

R
a
ti
o

to
B
a
se

li
n
e
2

0
.3

1
0
.6

0
.1

0
.1

0
.8

0
.9

0
.6

0
.7

0
.4

0
.5

T
ab

le
5.
7:

P
er
fo
rm

an
ce
-t
o-
C
os
t
R
at
io

to
B
as
el
in
es

(h
ig
h
er

is
b
et
te
r)

117

Chapter 5. Evaluation

Figure 5.11: Cost($) in a Week.

118

Chapter 5. Evaluation

Figure 5.12: Cost Ratio Comparisons Against Baselines (higher is better).

119

Chapter 5. Evaluation

5.3.1.4 Discussion

Baseline 1 was the costliest CCDN deployment according to Table 5.6 and Figure
5.11. Therefore, the cost reduction achieved by LCIs and their refinements was
significant compared to Baseline 1. Ranging from 60% all the way up to 100% cost
reductions. This is due to the Standard GKE cluster deployment in all of these cases
which follows the standard compute instance pricing, as opposed to the Autopilot
GKE cluster which follows the pricing based on the used resources like CPU, RAM,
etc. The same exact resources have been used in all tested CCDN deployments.
Therefore, the cost calculations have been made accordingly.

By narrowing down our focus on the cost comparison between Baseline 2, the
LCIs, and their refinements, we can see that the costs are very close to each other with
slight differences. They all followed the same pricing scheme based on the standard
compute instance prices as listed in Table 5.1 and Table 5.2.

The reason behind the cost closeness or similarities between the LCI deployments
and Baseline 2 depends on the size and number of caches. For example, by referring
to Table 5.1 and Table 5.2, medium caches (4 vCPU 16 GB RAM) have twice the
capabilities and resources of small caches (2 vCPU 8 GB RAM). Hence at any point
in time, to handle the traffic load, the required number of small caches is double
the number of medium caches. Whereas the medium cache cost is double the small
cache cost. Therefore, eventually, this leads to a very close overall cost. For instance,
by comparing optimistic and pessimistic refinements, the bigger period of vertical
upgrade (from small to medium caches) that the latter required, compared to the
former, is met by almost twice the number of small caches which eventually summed
up to a close cost value. Nonetheless, the proposed LCIs have reduced the cost by 10%
to 30% depending on their type as discussed in the results. However, the dominant
factor for cost variation is the cache placement since the caches in the nearby zone as
shown in Table 5.2 are cheaper than the caches in the local zone as depicted in Table
5.1. In summary, these results emphasized the fact that the pricing scheme based on
Cache Placement factor has more impact on the cost compared to smaller and less
costly Cache Size where we need more of them which eventually compensates for
the reduced cost. Therefore, when designing solutions that aim at providing less cost
in other problem domains, it would be useful to have this finding in consideration.

5.3.1.5 Low-Cost Intents Performance-to-Cost Score Results

We discussed performance and cost results separately for all CCDN deployments.
However, it is important to express an overall comparison that represents both as
well. Therefore, we use the Performance-to-Cost ratio, which summarizes the
overall gained performance for the money where the higher score is better. It is
calculated based on Equation 5.2 and Equation 5.3 as follows:

120

Chapter 5. Evaluation

PerformanceToCostRatio =
PerformanceRatio

CostRatio
(5.4)

Starting with Baseline 1, as shown in Table 5.7 we can outline that LCI 1 and
its refinements scored the highest ratio compared to the other intents. It achieved
double the score of Baseline 1 and even got increased by 2.9 and 3 times more with
optimistic and pessimistic refinements respectively. LCI 2 was the second scoring
intent along with its refinements. However, LCI 2 is drastically worse than LCI
1 because it achieved only 40% of Baseline 1’s ratio score. Fortunately, this was
notably improved by refinement to rise up to 2.0 and 2.2 times better score compared
to Baseline 1. Finally, LCI 3 and its refinements resulted in the worst overall scores.

Figure 5.13: Performance-to-Cost Ratio Comparisons Against Baselines (higher is
better).

121

Chapter 5. Evaluation

LCI 3 only scored 30% compared to Baseline 1, which got improved after refinement
to reach 30% and 60% better score than Baseline 1’s score.

Moving to Baseline 2, we can notice a similar reference pattern as shown in Table
5.7 and in Figure 5.13. LCI 1 was the highest scoring intent that was able to reach
60% of Baseline 2’s score. However, this was further improved after refinement to
reach 80% and 90% with optimistic and pessimistic refinements. LCI 2 scored
poorly, which was 90% less than Baseline 2. Fortunately, it got markedly improved
to 60% and 70% after optimistic and pessimistic refinements. At last, LCI 3
also scored poorly with a score of 90% less than Baseline 2. It was improved after
refinement but to a smaller degree compared to LCI 2. After refining LCI 3, the
corresponding scores are 40% and 50% compared to Baseline 2. The overall ratio
score comparisons between all CCDN deployments are shown in Figure 5.13.

5.3.1.6 Discussion

The performance-to-cost ratio scores compared to Baseline 1 are considerably higher
than compared to Baseline 2. This is an expected result based on the performance
and cost results individually and for the reasons discussed previously. However,
the resulting general comparison behavior between the intents and their refinements
against Baseline 1, is similar to the one against Baseline 2. LCI 1’s score even
without refinement, is superior in comparison to LCI 2 and LCI 3, and even pretty
close to the refined LCI 2’s score. Moreover, after refining LCI 1, we got the best
scores amongst all other CCDN deployments. This is due to the cache size factor
that positively impacted the performance, where bigger caches have been used while
on the other hand, requiring close or similar costs to other deployments with smaller
caches. The original intents LCI 2 and LCI 3 scored really low, which necessitated
the need for their refinements. Therefore, the refined LCI 2 scores got improved to
acceptable levels compared to LCI 1. Nonetheless, the refined LCI 3 scores were the
lowest, and are not preferred in high-intensity traffic scenarios.

5.3.2 Traffic with Bursts

In this tested scenario, we generate some traffic bursts and test them over a period of
1 hour, where we demonstrate the outcome of LCI 2 compared to the baselines. We
focus on LCI 2 refinement in this scenario since it depends on the more impactful factor
(i.e., smaller cache size) on the performance degradation in the normal traffic behavior,
and thus we wanted to investigate the scale of this degradation in a bursty traffic
situation. Due to the sudden and fast nature of traffic bursts, the intent refinement
should take this into consideration while performing the refinement. Therefore, we
propose a different LCI 2 refinement. Opposed to the previously proposed and
tested LCI 2 refinement which vertically upgrades small caches to medium in the

122

Chapter 5. Evaluation

normal traffic scenario, it is important to opt for a faster refinement solution that
could accommodate the sudden traffic burst quickly. So, we also compare this burst-
related LCI 2 refinement to the previous LCI 2 refinement that we proposed
and implemented in a normal traffic situation.

5.3.2.1 Low-Cost Intents Performance Results

Similar to the Performance calculation in the normal traffic case, it refers to
the number of droppings and to calculate the performance ratio compared to the
baselines, we use the same Equation 5.2. As depicted in Figure 5.14, we test
LCI 2 which aims at lowering the cost by using small local caches compared to
the medium ones in both baselines. Both baselines are the same as previously
discussed. Accordingly, Baseline 1 is remarkably worse than Baseline 2 as listed
in Table 5.8. However, the previous LCI 2 intent refinement which vertically
upgrades the cache size from small to medium during the peak hours, would fall
behind in the traffic bursts scenario as the vertical upgrade would not be able to keep
up with the fast and rapid traffic increase during the burst. Therefore, we propose
another LCI 2 refinement during traffic bursts which aims at speeding up the
scaling process of the existing small caches without the need to vertically upgrade
them (which could possibly take a longer time and cause more drops). Hence, once
a traffic burst is detected, then the Horizontal Pod Auto-scaling (HPA) threshold is
lowered to allow a faster scale-out process. For example, the default HPA threshold
is 80% average CPU utilization. When it gets exceeded then a new cache container
is added. But in order to speed up the scaling process during traffic bursts, we lower
this threshold to 65% CPU utilization.

Figure 5.14: Dropped Requests During Traffic Bursts.

123

Chapter 5. Evaluation

CCDN Deployment Baseline LCI 2
Refined LCI 2

(Vertical
Upgrade)

Refined LCI 2
(Earlier
Scaling)

Dropped Requests in an Hour 35634 19234 15814 6077Autopilot GKE CCDN
(Baseline 1) Performance Ratio to Baseline1 1.0 1.9 2.3 5.9

Dropped Requests in an Hour 7835 19234 15814 6077Fully Managed GKE CCDN
(Baseline 2) Performance Ratio to Baseline2 1.0 0.4 0.5 1.3

Table 5.8: Performance Ratio to Baselines in a Traffic Bursts Scenario

Starting with Baseline 1, more than 35K of dropped requests occur during 1
hour with 3 traffic bursts within. As listed in Table 5.8. This was the highest
number of droppings compared to all other CCDN deployments. On the other hand,
the LCI 2 caused more than 19K droppings which was the result of using small
local caches. We can visibly see that the cache placement factor and potentially the
synchronization between all replicas within the region in Baseline 1 have a much
bigger effect on the performance compared to the cache smaller size in LCI 2. In
fact, LCI 2 performed 1.9 times better than Baseline 1. By refining this intent as
before with vertical upgrade once a burst is detected, we got an improvement with
2.3 times better performance. However, after testing our proposed new refinement for
LCI 2 in traffic bursts, it even outperformed the previous refinement with 5.9 times
fewer drops compared to Baseline 1.

Moving to Baseline 2 where medium caches have been deployed locally, as
expected, the performance of LCI 2 was significantly less by 60%. Interestingly,
the previous refinement that vertically upgrades small caches to medium only
improved the performance slightly by reaching 50% of the performance of Baseline
2. Therefore, our new proposed intent refinement in bursty traffic cases outperformed
all other CCDN deployments. Since it scales out the small caches earlier than the
other deployments, it was able to reach the lowest number of dropped requests. It
even surpassed the performance of Baseline 2 by 30%. The overall performance ratio
comparisons between all CCDN deployments that handled the same bursty traffic are
shown in Figure 5.15

5.3.2.2 Discussion

In a traffic burst situation, the number of dropped requests could increase dramatically
compared to normal traffic. This is a natural result of the sudden surge of incoming
requests that have not been handled in a timely manner since the CCDN deployment
was not scaled enough to handle this amount of traffic yet. The huge difference
between Baseline 1 and Baseline 2 is most likely due to the regional and zonal
level of cache placement and other replication overhead reasons mentioned previously,
but the difference is even augmented in the bursty traffic situation due to the rapid

124

Chapter 5. Evaluation

need for scaling.
We have demonstrated the LCI 2 performance in this case compared to the

baselines. The reason for choosing this intent is to investigate how would the
previously proposed LCI 2 refinement perform in a bursty traffic situation. This
refinement vertically upgrades the caches upon the burst detection.

We find that LCI 2 was the worst performing which was expected due to the
frequent scale-outs of small caches and especially with the traffic surge where a lot
of requests have been dropped. Therefore, its refinement is very important. First,
we find that the previously used refinement (with normal traffic) of vertical upgrade

Figure 5.15: Performance Ratio Comparison Against Baselines During Traffic Bursts
(higher is better).

125

Chapter 5. Evaluation

CCDN Deployment Baseline LCI 2
Refined LCI 2

(Vertical
Upgrade)

Refined LCI 2
(Earlier
Scaling)

Cost per Hour ($) 1.0 0.5 0.6 0.7Autopilot GKE
(Baseline 1) Cost Ratio to Baseline1 1.0 1.9 1.5 1.4

Cost per Hour ($) 0.7 0.5 0.6 0.7Fully Managed GKE
(Baseline 2) Cost Ratio to Baseline2 1.0 1.3 1.1 1.0

Table 5.9: Cost Ratio to Baselines in a Traffic Bursts Scenario

performed poorly, which was slightly better than LCI 2 (the worst performance). This
is due to the additional delay of spinning up the upgraded medium caches that could
take longer in a critical time period of traffic bursts. Therefore, another refinement
method was needed to deal with traffic bursts in a timely manner. So, we propose
a different LCI 2 refinement for this case, where it scales out the small caches
earlier than the other deployments, this has been achieved by lowering the scaling
threshold while keeping the current cache size. This approach reduces the droppings
since it spins up new caches even before the current ones get overwhelmed by requests.
Interestingly, this refinement even outperformed the baselines by reducing the drops
to the minimum.

5.3.2.3 Low-Cost Intents Cost Results

We followed the same cost calculation and Equation 5.3 discussed previously in Section
5.3.1.3 by referring to Table 5.1 and Table 5.2. During our 1 hour test that contained
traffic bursts, Baseline 1 had the highest cost ($1) as listed in Table 5.9. This was
reduced by LCI 2, by using small local caches, which resulted in 1.9 times more cost
reduction. However, since LCI 2 needed to be refined to improve its performance, the
previous refinement with a vertical upgrade from small caches to medium costed more
than LCI 2 but was still 1.5 times better than Baseline 1. As we mentioned for the
bursty traffic situation, we propose another LCI 2 refinement with faster scaling for
small caches. This performed better than the previous refinement and in return, it
cost a bit more. However, it was 1.4 times better than Baseline 1. By comparing
CCDN deployments to Baseline 2, LCI 2 was 30% less costly. After refining it
through the vertical upgrade, the cost reduction became 10%. However, with our
proposed intent refinement for traffic bursts, this cost reduction became less in return
for improved performance. It costs equal to Baseline 2’s cost.

5.3.2.4 Discussion

For the same reasons discussed previously in Section 5.3.1.3, Baseline 1 was the
costliest CCDN deployment according to Table 5.9. Therefore, the cost reduction

126

Chapter 5. Evaluation

Figure 5.16: Cost Ratio Comparison Against Baselines During Traffic Bursts (higher
is better).

achieved by LCI 2 and its refinements was significant. The cost behavior of Baseline
2 compared to other deployments is similar to Baseline 1 but to a lower degree.
LCI 2’s cost was the minimum as expected. On the other hand, the vertical
upgrade refinement increased the cost due to the refinement process to improve the
performance. However, it cost less than the newly proposed refinement with earlier
scaling. This is because the latter spins up more caches due to the lowered scaling
threshold before actually needing them as a preventive approach. However, it is
important to note that these calculated costs were for 1 hour which included bursts of
traffic. The cost of the rest of the day that does not include bursts would follow the

127

Chapter 5. Evaluation

same results that we discussed before in normal traffic cases. Finally, the overview
comparative cost ratio scores are demonstrated in Figure 5.16

5.3.2.5 Low-Cost Intents Performance-to-Cost Score Results

To compare CCDN deployments based on both performance and cost, we refer to the
same Performance-to-Cost ratio Equation 5.4. This summarizes the overall score for
each CCDN deployment. Compared to Baseline 1, LCI 2 achieves 90% of its total
score as listed in Table 5.10. Even though LCI 2 aims to lower the cost as a tradeoff
for reduced performance, yet, its overall score is almost very close to Baseline 1

Figure 5.17: Performance-to-Cost Ratio Comparison Against Baselines During Traffic
Bursts (higher is better).

128

Chapter 5. Evaluation

CCDN Deployment LCI 2
Refined LCI 2

(Vertical
Upgrade)

Refined LCI 2
(Earlier
Scaling)

Performance to Cost Ratio to
Baseline 1

0.9 1.4 4.1

Performance to Cost Ratio to
Baseline 2

0.3 0.5 1.3

Table 5.10: Performance-to-Cost Ratio to Baselines in a Traffic Bursts Scenario
(higher is better)

since the latter’s performance and cost were the worst compared to the others due to
the lack of control over the placement of the caches. When LCI 2 got refined by a
vertical upgrade, the score rose up to 1.4 times better than Baseline 1. Finally, our
proposed refinement for traffic bursts resulted in the highest score which is more than
4 times better than Baseline 1. On the other hand, LCI 2 and its refinements follow
a similar trend when compared to Baseline 2. LCI 2 had the lowest score due to
the considerably high drops which achieved 30% of Baseline 2’s score. After refining
it with a vertical upgrade, the score slightly got improved to reach 50%. Fortunately,
with our proposed intent refinement in bursty traffic cases, the overall score was the
highest compared to Baseline 2, which even got exceeded by 30% less drops.

5.3.2.6 Discussion

In the case of traffic bursts, refining LCI 2 with vertical cache upgrade does not
perform well nor is cost-effective. Therefore, a quicker refinement is needed to keep up
with the requests surge more efficiently. For that reason, we refined LCI 2 differently,
by lowering the horizontal scaling threshold to allow earlier scaling, where new caches
are added before the existing ones even get overworked to reduce droppings. This
threshold update is triggered by the traffic burst event depending on the CCDN
definition of a burst (i.e., N continuous minutes of traffic rate above average with
some percentage X%). After some stabilization time window, the horizontal scaling
threshold goes back to the default value. An overview of ratio scores comparison is
shown in Figure 5.17.

5.4 Summary

In this chapter, we evaluated our proposed CCDN Intent-Based solution in different
CCDN deployment phases: Pre- and Post- deployment, and in different scenarios.
These evaluations of specific aspects are essential to our design goals. For our proposed

129

Chapter 5. Evaluation

CCDN to be a potential step towards next deployment phase of CCDNs, it should
be able to allow CPs to express their intents, and try to achieve them throughout
the lifetime of the service. Therefore, the adoption of microservices is key to this
solution since it provides several benefits as mentioned in Chapter 2 Section 2.4.
Accordingly, this paradigm’s flexibility, scalability, agility, etc., offer a new approach
to deploying and managing CCDNs with respect to CP intents. Since several available
microservices could be used as alternatives for the same functionality, it is important
to evaluate all possible microservice instances that belong to the same category
(i.e., perform the same overall functionality) based on some evaluation criteria, that
eventually meet the CP intent goal. So, thinking from a CCDN operator’s perspective,
they should be able to design, deploy and manage different CCDN alternatives with
respect to the CP’s intent, resources availability, CCDN operator’s requirements, etc.
Hence, a MCDM process is needed (i.e., AHP) to facilitate the decision-making during
the CCDN Pre-deployment phase.

We examined the time needed to complete the intent translation with respect to
the CP intent, and the defined AHP. We looked at 2 factors: the number of evaluation
criteria, and the number of microservice alternatives. Even with higher numbers of
each, the AHP computation time remarkably outperformed (Scheid et al., 2017),
and same-wise with the CCDN deployments clustering into different possible ranked
solutions. Having all CCDN deployments ranked offers more scalability, flexibility, and
availability. This as well was completed in a considerably better time than (Scheid
et al., 2017).

Once the CCDN gets deployed with respect to the selected deployment (i.e.,
intent translation output), another set of evaluations were needed in the CCDN Post-
deployment phase. We proposed several Low-Cost intents that could be realized
in different ways based on several factors (cache size, cache start-up delay, and
both). These intents aim to reduce the cost. We evaluated the performance,cost, and
performance-to-cost of each, in 2 scenarios: normal traffic (obtained from a major ISP
dataset of captured CDN traffic), and bursty traffic, to demonstrate the difference in
the intent behavior in each case.

As a general finding our results demonstrated the more impactful factors in terms
of performance and cost. The former is mainly affected by theCache Size more than
the Start up Delay factor which is influenced by the cache placement. Whereas the
cost is mainly affected by the pricing scheme corresponding to Cache Placement
more than the different Cache Size pricing factor. Therefore, when designing
solutions that aim at providing better performance or less cost in other problem
domains, it would be useful to consider these findings.

In both traffic scenarios, we found that LCI 1 which deployed medium caches
but in a nearby zone, performed considerably better than LCI 2 and LCI 3, where
LCI 2 deployed small caches in a local zone, and LCI 3 deployed small caches in a

130

Chapter 5. Evaluation

nearby zone. In fact, these intents that deployed small caches performed poorly and
their refinement was very important to increase the performance to a good level in
return for some compromised cost reduction. Therefore, we discussed different intent
refinements for each of them. In a normal traffic case, the refinement takes place
during the peak hours which handled the highest traffic intensity throughout the day.
This period causes the highest droppings in requests; hence, refinement takes place
during this period. We tested 2 levels of refinement: optimistic and pessimistic.
The former used a smaller time window for the refinement, to potentially reduce the
cost less than the latter. Since LCI 1 already provided the highest performance
without refinement, which was acceptable, the improvement after its refinement got
even better to the point where it became almost as good as the Baseline that does
not consider cost reduction which would negatively affect performance. However,
the interesting parts of the refinement was the ones related to LCI 2 and LCI 3.
Their refinement caused a dramatic, and considerable performance improvement for
each respectively. This is due to including the more dominant factor in performance,
which is the cache size. It upgraded the small caches to become medium-sized during
the peak hours. However, LCI 3 was the worst since it ran all caches in a nearby
zone (more startup delay) rather than the local zone as in LCI 2. Additionally, we
calculated the cost for each CCDN deployment, LCI 3 had the least cost compared
to the others due to deploying small and cheaper caches that were located in a nearby
zone. However, all three LCIs and their refinement cost reductions varied in the
range between 60% - 100% less cost compared to Baseline 1 and 10% - 30% less cost
compared to Baseline 2.

On the other hand, since the traffic burst scenario has a different behavior
compared to normal traffic, we also investigated LCI 2 in that situation. Since
it was expected to perform poorly as with the normal traffic case, we wanted to
evaluate the level of its improvement after refinement. However, this scenario required
handling a sudden surge of incoming requests with a considerably higher intensity
than the previous traffic. Thus, we needed a different type of LCI 2 refinement.
So, we evaluated our newly proposed LCI 2 refinement in a bursty traffic scenario
which performs an earlier scaling of small caches rather than the vertical upgrade to
medium ones in the previous refinement (in the normal traffic case). We compared
both refinements to measure the effectiveness of both in this case. As expected, the
previous refinement with vertical upgrade performed poorly and close to the worst
performing CCDN deployment (LCI 2), this was due to the additional startup delay
of cache size upgrade that took place during a critical time of traffic burst. Contrarily,
our newly refined LCI 2 which operates in a bursty traffic scenario, performed
significantly better than all other deployments. In fact, it even surpassed the baseline’s
performance. This improvement was a result of the earlier cache scale-outs, which only
occur during the traffic burst period and then go back to the default scaling after some

131

Chapter 5. Evaluation

traffic stabilization time window.
As for the cost comparison during the bursty traffic situation, since it was

throughout 1 hour that included 3 different traffic bursts, the calculated costs
corresponded to that period. However, for the rest of the day which did not include
bursts, we can refer to the cost calculation in the normal traffic case. Naturally,
the non-refined LCI 2 had the lowest cost which reduced Baseline 2’s cost by
90% and Baseline 2’s cost by 30%. But with our refinement which improved the
poor performance of the original LCI 2, the cost reduction dropped to 40% and 0%
correspondingly, which is a tradeoff to the performance considerable increase that
even exceeded the baselines (which had the best performance previously before LCI
2 refinement).

In both traffic scenarios, we compared the performance-to-cost ratio, which
combines both metrics and provides an overall score for comparing all CCDN
deployments. In terms of the original LCIs without refinement, LCI 1 scored first,
as LCI 2 and LCI 3 scored poorly. So, this led to the conclusion that LCI 1
could be deployed without the urgency to refine it, unlike the 2 others that must be
refined to improve their poor performances. On the other hand, all the refined intents
scored high to highest scores, except for LCI 3 refinement which was intermediate.
However, LCI 3 could possibly perform better in less stressful traffic demand cases.
The technical translation and implementation of the intents and their refinements
map to some conventional Kubernetes configurations. However, the specification of
the corresponding operational parameters, thresholds, etc., have to be carefully well-
defined and tuned based on the intent target and the problem domain requirements.

Although the results are based on the tested traffic scenarios and our technical
interpretation of the abstract policies. However, our proposed abstract refinement
policies (i.e., vertical upgrade and earlier horizontal scaling) could be utilized in other
traffic cases but with careful consideration of the policy components’ definitions. For
example, in our corresponding refinement policies, the triggering policy conditions
were either peak-hours or traffic bursts, but these could vary depending on the problem
domain and the traffic patterns. The current actions taken when the conditions
hold, are either, scale-up, scale-out, and/or re-locate caches. These actions are very
commonly needed and could be easily utilized in other problems and use-cases but
with more customized constraints that are problem-specific. Therefore, although
our tested intent realization results are limited to the traffic patterns in the dataset
and our tuned parameters, the abstract policies and the refinement algorithms could
be handy in other cloud-based problem domains but with special consideration and
tuning for the technical translation of the policy components that have to be problem-
specific.

Together, these evaluations demonstrate the feasibility of moving towards an
Intent-Based CCDN solution that leverages microservices. Moreover, evaluated LCIs

132

Chapter 5. Evaluation

and their dynamic refinements showed different alternatives to CCDN deployments
that could realize the CP’s intent in different traffic behavior scenarios and reactively
adapt to increased traffic demand. This is an important step towards understanding
the future of CCDNs and their possible intent adoption.

133

Chapter 6

Conclusions

In this chapter, we summarize and discuss the outcomes of this work. We reflect
on the research questions and highlight our contributions. Finally, we discuss future
research.

6.1 Summary

Over the last couple of decades, CDNs have steadily grown to play roles of very
high importance in the Internet ecosystem. This is due to their pervasiveness in
several domains, their rising popularity owing to the evident increase in traffic that
passes through them, and the added value they provide for both CPs and end-users.
As usage patterns and end-user service expectations have changed over time, CDNs
have become the predominant method used to deliver video and other content to a
worldwide user base. To meet this demand, the ways in which content is delivered
have also evolved, particularly for virtual and Cloud CDNs (CCDNs).

Today CCDN operators can leverage the current technical advancements in
the field of Softwarization that changed system design by separating the software
implementing network functions, protocols, and services from the hardware running
them. Despite this promising paradigm, there are certain limitations that forestall
the next generation of CCDNs, such as those addressed in this thesis. The current
level of softwarized networks programmability still requires experienced programmers
(i.e., network managers, admins, operators, IT personnel, etc.) who can orchestrate
the services in accordance with different and conflicting customization requirements
for the system and consumers (Tuncer et al., 2018; Alalmaei et al., 2020; Leivadeas
et al., 2022). This imposed additional challenges by creating a cumbersome system
configuration process to adjust to all different CDN stakeholders, users, and services
(Leivadeas et al., 2022).

The thesis examined how the latest wave of technologies (particularly Intent-

134

Chapter 6. Conclusions

Based Networking, Autonomic Network Management, Policy-Based-Management,
and Microservices Architecture) may influence the future of CCDNs and their
programmability. These technological advances can be found in other systems and
problem domains, where new paradigms and services allow unprecedented control over
the components of these systems. However, they have not been thoroughly discussed
in the CCDN research field. This thesis investigated the adoption of an Intent-Based
paradigm, not just as a replacement for conventional CCDN management, but also
as a tool to create behavior and user interaction dynamics that are not often realized
within traditional CCDNs.

Containerization technology is a form of softwarization that has enabled the
creation of a new generation of flexible software functions (as microservices) and
modular system architectures. These replace existing traditional monolithic systems
and offer a realistic alternative to the hardware variants that already exist in today’s
systems since they promote portability, easier maintenance and updates, flexibility in
terms of technology selection, cost-effectiveness, and separation of concerns owing to
their modularity, and fault tolerance due to their distributed and decoupled design,
which leads to higher availability.

Accordingly, several technological advances in CCDNs have improved overall
CCDN management and even resulted in better end-user experience. However, to
the best of our knowledge, there is insufficient research work in the CCDN domain
that explores the adoption of some specific and recent technology trends, such as
Intent-Based Networking and microservices. Investigating these technologies in a
CCDN use case could possibly lead to taking a step forward towards CP and CCDN
communication and interaction mechanisms that allow a generic CP to express a
high-level intent target that could be achieved in several different ways through
the evaluation and selection of different microservice alternatives that could lead to
different intent outcomes.

This thesis testifies that by using a multi-state Intent-Based solution that utilizes
the advantages and current advancements of the microservices architecture, a flexible,
scalable, inter-operable, and more effective CCDN and CP communication mechanism
could be built to open new markets by realizing new use cases for different service
consumers in different domains that leverage the interaction and collaboration of
several stakeholders. Such a solution includes utilizing the separation between the
system behavior and the underlying realization via different microservice alternatives,
the employment of an MCDM approach that helps with the decision making of the
microservices selection with respect to the users intent, and an efficient design that
is capable of proportionally refining intents according to the dynamic service and
infrastructure status, with correspondence to the intent target throughout its entire
life cycle.

135

Chapter 6. Conclusions

6.2 Contributions

In Chapter 1, we discussed a specific motivation of technological importance and,
accordingly, laid down a specific set of research questions to be answered. This guided
our design and implementation of an Intent-Based CCDN. These are based on an
understanding of existing CCDN design limitations (i.e., limited single-directional
communication between CPs and CCDNs without considering CP’s high-level targets
in decision-making), as well as a forward-facing look towards the potential benefits
that the utilization of new technologies and emerging architectures can bring to this
area (i.e., intents and microservices).

Taking these considerations forward, we provide an Intent-Based design and
implementation of such a CCDN framework. This is segmented into a number of
layers, each of which is responsible for achieving a specific set of functions or behaviors.
Importantly, it proposes an Intent-Based communication mechanism between CPs and
CCDN operators, which translates the high-level CP intents into its corresponding
CCDN deployment that could achieve the intent’s target in an autonomic way and
dynamically adapt to changes through its refinement during the life cycle of the intent.
We tackle this process from the CCDN operator (intent developer and creator) point of
view as opposed to other related works which present the intent translation as a black
box with no systematic breakdown of the intent creation and translation processes.

To summarize, this thesis provides the following primary research contributions.

1. A specification of Declarative High-level Intent Expression for CPs and
Behavioral Prescriptive Policy Expression for CCDN Operators: We
considered the expressions syntax of both CPs (non-technical users) and CCDN
operators (technical users). A declarative intent expression for CPs has been
proposed to allow them to express their high-level target without the need for low-
level or technical specifications, whereas a behavioral prescriptive policy expression
has been proposed for CCDN Operators to allow them to regulate the CCDN
behavior at an abstract level that could be realized in different ways according to
the underlying technology (i.e., microservice alternative). These expressions have
been influenced by the understanding of the limitations of existing intent/policy
expressions that have been broken down in our corresponding meta-analysis in
Chapter 2.

2. Design for an Intent-Based CCDN Framework: We designed an Intent-
Based CCDN which has been achieved through our analysis of the limitations of
the existing CCDN solutions in the literature, as well as integration of a variety
of emerging technologies and trends. In particular, we utilized Microservices
Architecture and Autonomic Networks. The former helps to achieve scalable, agile,
flexible, and portable solutions, and the latter leads to less human involvement, cost

136

Chapter 6. Conclusions

reduction, and self-managed adaptability. We addressed the design from a CCDN
operator (intent creator/developer) perspective who is responsible of creating,
planning and managing the intent translation from a high-level declarative syntax
into some abstract behavioral policies (which could be stipulated by stakeholders),
that get eventually technically realized via the underlying technology. In our
context, the final intent translation outcome is a CCDN deployment which is
composed of different microservice alternatives that collectively form the highest-
scoring CCDN deployment that could handle the intent target. We provided a
comprehensive design, which aimed to contextualize and encompass these features
and elements in Chapter 3.

3. A proof-of-concept implementation for the Intent-Based CCDN Frame-
work design: We built a a proof-of-concept implementation to evaluate and
examine the effectiveness of our design. This followed the specification of the
aforementioned design and formed the basis to evaluate the integration of intents in
the CCDN scenario. This implementation also helped demonstrate the benefits of
leveraging microservices advancements which could provide different microservice
alternatives for the same CCDN functionality. This allows CCDN operators
and stakeholders in general to evaluate and alternate between them according
to the intent target, resources availability, system status, etc. We built our
CCDN using Google Kubernetes Engine (GKE) platform to create and manage
the CCDN cluster on the Google Cloud and manage it via Kubernetes as discussed
in Chapter 4. Excluding the Kubernetes setup and configuration learning time. The
implementation was completed within around three months, including the repetitive
traffic generation at different times to get their overall average.

4. An evaluation of the intent translation overhead and feasibility: Through
the use of the aforementioned proof-of-concept implementation, we measured the
overhead (in terms of delay) of the translation of high-level intent targets to lower-
level commands that deploy the corresponding CCDN. Since microservices allow
a myriad of different realizations for the CP intent, it is important to follow a
structured MCDM approach. We chose the popular AHP that leads to the best
available CCDN deployment selection during run-time based on the CP’s intent,
evaluation criteria defined by the CCDN operator, and resource availability. Next,
after the AHP calculation prioritizes all microservices with respect to the intent
target, we then enumerated all possible CCDN deployments formed from these
ranked microservices and clustered them into 3 different levels that denote their
capability of achieving the intent target. We think that having these levels (i.e.,
high, medium, and low) is sufficient in our context, but this could be easily adjusted
in the clustering process if more levels are needed in other cases. In specific, we
evaluated the feasibility of the translation process with increasing problem sizes with

137

Chapter 6. Conclusions

different dimensions (i.e., number of microservices, number of evaluation criteria).
We scaled the number of evaluation criteria and the microservice alternatives up
to 100 for each. In both cases, the translation time was very acceptable which
was below 330 Milliseconds for the worst-case scenario with the biggest number of
microservice alternatives and 10K CCDN deployments to enumerate and evaluate
as discussed in Chapter 5.

5. An implementation, and performance and cost tradeoffs evaluation of
different Low-Cost Intent realization alternatives and their refinements:
Based on the proof-of-concept implementation for our Intent-Based CCDN design,
we created and implemented several Low-Cost Intent realization alternatives that
aim at provisioning CPs with lower-cost CCDNs by leveraging different microservice
alternatives. We evaluated and compared their performance (in terms of dropped
requests) and cost tradeoffs. However, as expected, the Low-Cost intent favors cost
reduction over performance. Therefore, we proposed, implemented, and evaluated
different Low-Cost intent refinements that aimed to mitigate the performance
degradation (i.e., reducing dropped requests) that accompanied the original Low-
Cost intents. Since this could vary according to different traffic situations, we
tested these processes in different traffic patterns and suggested, implemented, and
discussed different refinements accordingly. Our implemented CCDN deployment
via the GKE demonstrated how the Kubernetes orchestrator could help with the
autonomic Low-Cost intent refinements in different traffic cases, where we discussed
the mapping of the components of our proposed framework to the IBM’s MAPE-K
loop of an autonomic system in Chapter 3. In our evaluations in Chapter 5, we
compared all of the Low-Cost intent alternatives and their refinements against 2
GKE baseline clusters, namely, Autopilot GKE (Baseline 1) and Standard Fully-
managed GKE (Baseline 2). Both baselines do not support intents and thus could
resemble normal CCDNs that do not aim to reduce the cost.

The contributions listed above are a vital step towards exploring Intent-Based
CCDNs. Our evaluations exercise a number of features and explore some interesting
CP intent targets that could be furtherly extended with different other alternatives
that could achieve the target.

At this point, we contributed towards answering RQ1 in Chapter 2, by discussing
several limitations of the current technologies that CCDN operators could leverage
today. Moreover, we provided a meta-analysis for some significant current Intent-
Based solutions and discussed their limitations as well. However, more limitations
and challenges could be investigated and discussed as mentioned in Section 6.3. These
could eventually help with exploring additional improvements on the Intent-Based
framework and take them a step forward towards more mature solutions.

ConcerningRQ2, we proposed 2 levels of expressions for CPs and CCDN operators

138

Chapter 6. Conclusions

respectively, as discussed in (Contribution 1). Although different expressions could
be suggested based on different factors and requirements, we argue that regardless
of the syntax, we still need to have multiple levels of intent/policy expressions;
declarative and prescriptive, that could be used by different users that interact with
the CCDN based on their level of control, exposure, role, etc.

Our proposed and implemented Intent-Based CCDN framework contributed
partially towards answering RQ3 in (Contributions 2, 3, 4 and 5) where
we discussed our design decisions that help with utilizing the advantages of the
Microservices Architecture which reflect directly on achieving some of the main
features of an Intent-Based solution with conjunction with containers that serve as a
perfect vessel for deploying microservices on a large scale with the help of container
runtimes and orchestration platforms such as Kubernetes. However, more room for
future work is needed to amplify our contribution towards RQ3 as discussed in the
Sections 6.3.

6.3 Future Work

In this thesis, we provided contributions towards an Intent-Based CCDN design. This
includes a framework in which extensible and more diverse CCDN deployments can
be built. We showed through evaluation the benefits of some of these design decisions.
There is a clear advantage to utilizing next-generation technologies, like autonomic
intents and diverse microservices, and ensuring that they are integrated into the
CCDN design. This will be key to achieving increased flexibility, scalability, agility,
and programmability.

The following highlights the primary avenues of research for future work that are
related to the main CCDN design and development contributions in this thesis:

6.3.1 Exploring the standardized Intent Common Model

The recent intent TM Forum model standardization (TMForum, 2022) has to be
explored in the CCDN domain with the corresponding microservices, and the ability
to map the currently proposed intent/policy expressions to the ICM expressions.
The current ICM consists of two parts: a common intent model and domain-
specific extensions. The former provides the constructs for intent and intent report
expressions. The latter adds vocabulary and semantics as extensions of the common
model, which can be independently developed and adapted to the CCDN domain.

139

Chapter 6. Conclusions

6.3.2 Extending current CCDN with different intent targets
and their translation

Intent developers/creators (i.e., CCDN operators) are responsible for determining,
defining, designing, and implementing the intent targets provided to the intent
consumers (i.e., CPs) along with their corresponding translation process into some
low-level representation that is understood by the underlying technology. Given the
current diverse domains and users that leverage CCDNs, there is a need to consider
new intent definitions and their implementations to keep up with the changing and
advancing requirements, and interactions with the intent consumers.

Therefore, having an abstract intermediate level of intent translation allows the
collaboration of different stakeholders to stipulate the behavioral policies and overall
guidelines that could help achieve the intent at a high-level without getting caught
up with the burden of lower level details and complexities.

Furthermore, the collaboration between stakeholders to better understand and
implement the intent translation based on current technology advancements could be
assisted by some MCDM frameworks that help with the decision-making when there
are multiple evaluation criteria to be considered and different technical solutions to be
selected. Therefore, building the corresponding MCDM framework (e.g., AHP graph)
is an important field to be explored which could help with achieving better intent
translation decisions. This includes exploring and defining the suitable evaluation
criteria and their level of significance according to the intent target, and also the
exploration of the current technical solution alternatives (e.g., microservices) that
could realize the intent goals in various ways.

Additionally, the current Microservices Architecture advancements could be
furtherly explored where different microservice types e.g., databases, load balancers)
and the different alternatives for each type could be investigated, considered and
evaluated in the intent translation which forms a CDN deployment that is composed
of these microservice alternatives.

Moreover, interactive interaction between these different intent users in these
diverse CCDN domains would be essential to increase the potential gains of intents.
Thus, it is important to specify the level of involvement and contribution of the users
within the intent translation and the overall system status and how far it is from
achieving the intent goal.

Finally, these new intent targets might need to be refined and improved throughout
the intent lifetime. Thus, it would be beneficial to explore the refinement possibilities
related to these targets within their corresponding problem domain. This also
requires defining the level of system awareness needed to manage the refinement
efficiently which includes specifying key metrics, attributes, thresholds and events
to continuously monitor them and make refinements accordingly.

140

Chapter 6. Conclusions

6.3.3 Advancing intent APIs with Natural Language Pro-
cessing

More user-friendly and advanced intent APIs need to be investigated and implemented
where an additional layer of Natural Language Processing is added to further help
users express their intents easily and more efficiently. These explorations would
include integrating some intent suggestions that could assist users with their sufficient
intent expression. Moreover, other API representations could be offered additionally
(like a list of pre-defined intent targets that could be tuned by the users) to provide
a wider variety of options to different categories of intent users.

6.3.4 Resolving intent conflicts

Since different users would express their intents simultaneously, it is important to
investigate the possible conflicts between different users’ intent targets, and even
the conflicts between the users intents and the system’s requirements as well. A
good understanding of the possible conflicts that could occur at different phases (i.e.,
intent translation and intent refinement) could lead to better resolution during the
intent translation process and throughout the whole intent lifetime. These conflict
resolutions may also integrate negotiations with the intent users that may include the
temporary or permanent downgrade/upgrade of the intent target that eventually gets
considered in the intent translation.

141

References

Abhashkumar, Anubhavnidhi et al. (Nov. 2017). “Supporting diverse dynamic intent-
based policies using janus”. In: Proceedings of the 13th International Conference on
Emerging Networking EXperiments and Technologies (CoNEXT). doi: 10.1145/
3143361.3143380.

Agoulmine, Nazim et al. (July 2008). “Challenges for autonomic network manage-
ment”. In: 1st IEEE International Workshop on Modelling Autonomic Commu-
nications Environments (MACE). url: https://api.semanticscholar.org/
CorpusID:2501690.

Ak, Elif et al. (June 2018). “WAE: Workload automation engine for CDN-specialized
container orchestration”. In: 2018 IEEE Second International Balkan Confer-
ence on Communications and Networking (BalkanCom). url: https://api.
semanticscholar.org/CorpusID:227119103.

Ak, Elif et al. (June 2019). “BCDN: A proof of concept model for blockchain-aided
CDN orchestration and routing”. In: Computer Networks 161, pp. 162–171. doi:
https://doi.org/10.1016/j.comnet.2019.06.018.

Alalmaei, Shiyam et al. (Dec. 2019). “OpenCache: Distributed SDN/NFV based in-
network caching as a service”. In: Advances in Data Science, Cyber Security and
IT Applications 1098, pp. 265–277. doi: 10.1007/978-3-030-36368-0_22.

Alalmaei, Shiyam et al. (Nov. 2020). “SDN heading north: Towards a declarative
intent-based northbound interface”. In: 16th International Conference on Network
and Service Management (CNSM). doi: 10.23919/CNSM50824.2020.9269118.

Altomare, Francesco (2023). What is a content delivery network? CDN explained —
globaldots.com. https://www.globaldots.com/resources/blog/content-
delivery-network-explained/. [Accessed 13-Jul-2023].

Alwis, Chamitha de et al. (Sept. 2022). “Intelligent network softwarization”. In: 6G
Frontiers: Towards Future Wireless Systems. John Wiley & Sons, Ltd. Chap. 8,
pp. 93–98. doi: https://doi.org/10.1002/9781119862321.ch8.

Amazon (2023). Key features of a content delivery network – performance, security –
amazon cloudfront — aws.amazon.com. https://aws.amazon.com/cloudfront/
features/. [Accessed 13-Jul-2023].

142

https://doi.org/10.1145/3143361.3143380
https://doi.org/10.1145/3143361.3143380
https://api.semanticscholar.org/CorpusID:2501690
https://api.semanticscholar.org/CorpusID:2501690
https://api.semanticscholar.org/CorpusID:227119103
https://api.semanticscholar.org/CorpusID:227119103
https://doi.org/https://doi.org/10.1016/j.comnet.2019.06.018
https://doi.org/10.1007/978-3-030-36368-0_22
https://doi.org/10.23919/CNSM50824.2020.9269118
https://www.globaldots.com/resources/blog/content-delivery-network-explained/
https://www.globaldots.com/resources/blog/content-delivery-network-explained/
https://doi.org/https://doi.org/10.1002/9781119862321.ch8
https://aws.amazon.com/cloudfront/features/
https://aws.amazon.com/cloudfront/features/

References

Arezoumand, Saeed et al. (Nov. 2017). “MD-IDN: Multi-domain intent-driven
networking in software-defined infrastructures”. In: 13th International Conference
on Network and Service Management (CNSM). doi: 10.23919/CNSM.2017.
8256016.

Asheralieva, Alia et al. (Aug. 2019). “Game theory and lyapunov optimization for
cloud-based content delivery networks with device-to-device and UAV-enabled
caching”. In: IEEE Transactions on Vehicular Technology 68, pp. 10094–10110.
doi: 10.1109/TVT.2019.2934027.

Baktir, Ahmet Cihat et al. (June 2022). “Intent-based cognitive closed-loop manage-
ment with built-in conflict handling”. In: 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft). doi: 10 . 1109 / NetSoft54395 . 2022 .
9844074.

Barakabitze, Alcardo et al. (Dec. 2022). “Network softwarization and virtualization in
future networks: The promise of SDN, NFV, MEC, and fog/cloud computing”. In:
Multimedia Streaming in SDN/NFV and 5G Networks. John Wiley & Sons, Ltd.
Chap. 6, pp. 99–118. doi: https://doi.org/10.1002/9781119800828.ch6.

Behringer, Michael et al. (June 2015). “Autonomic networking: Definitions and design
goals”. In: RFC Editor 7575, pp. 1–16. doi: 10.17487/RFC7575.

Benkacem, Ilias et al. (Mar. 2018). “Optimal VNFs placement in CDN slicing over
multi-cloud environment”. In: IEEE Journal on Selected Areas in Communications
36, pp. 616–627. doi: 10.1109/JSAC.2018.2815441.

Berander, Patrik et al. (Jan. 2005). “Software quality attributes and trade-offs”. In:
Blekinge Institute of Technology 97, p. 19.

Bertrand, G. et al. (2012). RFC 6770: Use Cases for Content Delivery Network
Interconnection. USA.

Beshley, Mykola et al. (Nov. 2020). “Customer-oriented quality of service management
method for the future intent-based networking”. In: Applied Sciences 10, p. 8223.
doi: 10.3390/app10228223.

Bezahaf, Mehdi et al. (June 2021). “To All Intents and Purposes: Towards Flexible
Intent Expression”. In: 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft). doi: 10.1109/NetSoft51509.2021.9492554.

Broberg, James et al. (Jan. 2008). “MetaCDN: Harnessing ‘storage clouds’ for high
performance content delivery”. In: Journal of Network and Computer Applications
32, pp. 1012–1022. doi: 10.1016/j.jnca.2009.03.004.

Brun, Yuriy et al. (Jan. 2009). “Engineering self-adaptive systems through feedback
loops”. In: Software Engineering for Self-Adaptive Systems. Lecture Notes in
Computer Science 5525, pp. 48–70. doi: 10.1007/978-3-642-02161-9_3.

Brutlag, Jake (June 2009). Speed matters for google web search —research.googleblog.com.
url: https://research.googleblog.com/2009/06/speed-matters.html.

143

https://doi.org/10.23919/CNSM.2017.8256016
https://doi.org/10.23919/CNSM.2017.8256016
https://doi.org/10.1109/TVT.2019.2934027
https://doi.org/10.1109/NetSoft54395.2022.9844074
https://doi.org/10.1109/NetSoft54395.2022.9844074
https://doi.org/https://doi.org/10.1002/9781119800828.ch6
https://doi.org/10.17487/RFC7575
https://doi.org/10.1109/JSAC.2018.2815441
https://doi.org/10.3390/app10228223
https://doi.org/10.1109/NetSoft51509.2021.9492554
https://doi.org/10.1016/j.jnca.2009.03.004
https://doi.org/10.1007/978-3-642-02161-9_3
https://research.googleblog.com/2009/06/speed-matters.html

References

Case, Jeffrey D. et al. (Apr. 1989). RFC1098: Simple network management protocol
(SNMP).

Cerroni, Walter et al. (Oct. 2020). “Network softwarization and management”. In:
IEEE Communications Magazine 58, pp. 14–15. doi: 10 . 1109 / MCOM . 2020 .
9247516.

Chao, Wu et al. (Feb. 2018). “Intent-based cloud service management”. In: 2018
21st Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN). doi: 10.1109/ICIN.2018.8401600.

Charyyev, Batyr et al. (Dec. 2020). “Latency Comparison of Cloud Datacenters and
Edge Servers”. In: GLOBECOM 2020 - IEEE Global Communications Conference.
doi: 10.1109/GLOBECOM42002.2020.9322406.

Chen, Buhua et al. (Feb. 2023). “Architectural design and dynamic deployment
scheme of edge computing based vCDN”. In: 9th International Conference on
Mechatronics and Robotics Engineering (ICMRE). doi: 10.1109/ICMRE56789.
2023.10106523.

Chen, Fangfei et al. (Mar. 2012). “Intra-cloud lightning: Building CDNs in the
cloud.” In: 2012 IEEE International Conference on Computer Communications
(INFOCOM). doi: 10.1109/INFCOM.2012.6195782.

Chen, Lianping (Mar. 2015). “Continuous delivery: Huge benefits, but challenges
Too”. In: IEEE Software 32, pp. 50–54. doi: 10.1109/MS.2015.27.

Chen, Min et al. (Mar. 2017). “A 5G cognitive system for healthcare”. In: Big Data
and Cognitive Computing 1, p. 2. doi: 10.3390/bdcc1010002.

Chen, Minggang et al. (June 2018). “Data-driven parallel video transcoding for
content delivery network in the cloud”. In: 5th IEEE International Conference
on Cyber Security and Cloud Computing (CSCloud) / 4th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom). doi: 10.1109/
CSCloud/EdgeCom.2018.00042.

Chen, Mingkai et al. (Mar. 2019). “A computing and content delivery network in the
Smart city: Scenario, framework, and analysis”. In: IEEE Network 33, pp. 89–95.
doi: 10.1109/MNET.2019.1800253.

Chen, Xi et al. (Jan. 2020). “CompRess: Composing overlay service resources for end-
to-end network slices using semantic user intents”. In: Transactions on Emerging
Telecommunications Technologies 31, e3728. doi: https://doi.org/10.1002/
ett.3728.

Cheng, Betty H. C. et al. (Jan. 2009). “Software engineering for self-adaptive systems:
A research roadmap”. In: Software Engineering for Self-Adaptive Systems 5525.
Ed. by Betty H. C. Cheng et al., pp. 1–26. doi: 10.1007/978-3-642-02161-9_1.

Chowdhury, Shihabur Rahman et al. (Jan. 2019). “Re-architecting NFV ecosystem
with microservices: state of the art and research challenges”. In: IEEE Network
33, pp. 168–176. doi: 10.1109/MNET.2019.1800082.

144

https://doi.org/10.1109/MCOM.2020.9247516
https://doi.org/10.1109/MCOM.2020.9247516
https://doi.org/10.1109/ICIN.2018.8401600
https://doi.org/10.1109/GLOBECOM42002.2020.9322406
https://doi.org/10.1109/ICMRE56789.2023.10106523
https://doi.org/10.1109/ICMRE56789.2023.10106523
https://doi.org/10.1109/INFCOM.2012.6195782
https://doi.org/10.1109/MS.2015.27
https://doi.org/10.3390/bdcc1010002
https://doi.org/10.1109/CSCloud/EdgeCom.2018.00042
https://doi.org/10.1109/CSCloud/EdgeCom.2018.00042
https://doi.org/10.1109/MNET.2019.1800253
https://doi.org/https://doi.org/10.1002/ett.3728
https://doi.org/https://doi.org/10.1002/ett.3728
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/MNET.2019.1800082

References

Chung, Lawrence et al. (Jan. 2000). “Non-functional requirements in software
engineering”. In: International Series in Software Engineering 5, pp. 391–441.
doi: 10.1007/978-1-4615-5269-7.

Cisco (Mar. 2017). Cisco open media distribution data sheet. https://www.cisco.
com/c/en/us/products/collateral/video/open-media-distribution/

datasheet-c78-736235.html.
Clemm, Alexander et al. (Oct. 2022). Intent-based networking - concepts and

definitions. RFC 9315. url: https://www.rfc-editor.org/info/rfc9315.
CNCF (Dec. 2020). Cloud native survey 2020 — cloud native computing foundation

— cncf.io. https://www.cncf.io/reports/cloud-native-survey-2020/.
[Accessed 06-Jul-2023].

Cohen, Rami et al. (Jan. 2013). “An intent-based approach for network vir-
tualization”. In: IFIP/IEEE International Symposium on Integrated Network
Management (IM). url: https://ieeexplore.ieee.org/document/6572968/.

Comer, Douglas et al. (Oct. 2018). “OSDF: An intent-based software defined network
programming framework”. In: IEEE 43rd Conference on Local Computer Networks
(LCN). doi: 10.1109/LCN.2018.8638149.

Cox, Jacob et al. (Oct. 2017). “Advancing software-defined networks: A survey”. In:
IEEE Access 5, pp. 25487–25526. doi: 10.1109/ACCESS.2017.2762291.

Daroui, Danesh et al. (June 2023). “State Management of Knowledge Base in
Intent Management Functions in 6G Networks”. In: 2023 International Balkan
Conference on Communications and Networking (BalkanCom). doi: 10.1109/
BalkanCom58402.2023.10167994.

Deep, Bhavya et al. (July 2018). “Content rating technique for cloud-oriented content
delivery network using weighted slope one scheme”. In: IEEE 11th International
Conference on Cloud Computing (CLOUD). doi: 10.1109/CLOUD.2018.00118.

Docker (2023). Home — docker.com. https://www.docker.com/. [Accessed 06-Jul-
2023].

Donegan, HA et al. (Oct. 1991). “A note on saaty’s random indexes”. In:Mathematical
and Computer Modelling 15, pp. 135–137. doi: https://doi.org/10.1016/
0895-7177(91)90098-R.

Dragoni, Nicola et al. (Nov. 2017). “Microservices: Yesterday, today, and tomorrow”.
In: Present and Ulterior Software Engineering. Ed. by Manuel Mazzara et al.
Springer, pp. 195–216. doi: 10.1007/978-3-319-67425-4_12.

Du, Zongpeng et al. (Feb. 2017). ANIMA intent policy and format. Tech. rep. draft-
du-anima-an-intent-05. Work in Progress. url: https://datatracker.ietf.
org/doc/draft-du-anima-an-intent/05/.

Duan, Jie et al. (Apr. 2018). “SCDN: A novel software-driven CDN for better content
pricing and caching”. In: IEEE Communications Letters 22.4, pp. 704–707. doi:
10.1109/LCOMM.2018.2803808.

145

https://doi.org/10.1007/978-1-4615-5269-7
https://www.cisco.com/c/en/us/products/collateral/video/open-media-distribution/datasheet-c78-736235.html
https://www.cisco.com/c/en/us/products/collateral/video/open-media-distribution/datasheet-c78-736235.html
https://www.cisco.com/c/en/us/products/collateral/video/open-media-distribution/datasheet-c78-736235.html
https://www.rfc-editor.org/info/rfc9315
https://www.cncf.io/reports/cloud-native-survey-2020/
https://ieeexplore.ieee.org/document/6572968/
https://doi.org/10.1109/LCN.2018.8638149
https://doi.org/10.1109/ACCESS.2017.2762291
https://doi.org/10.1109/BalkanCom58402.2023.10167994
https://doi.org/10.1109/BalkanCom58402.2023.10167994
https://doi.org/10.1109/CLOUD.2018.00118
https://www.docker.com/
https://doi.org/https://doi.org/10.1016/0895-7177(91)90098-R
https://doi.org/https://doi.org/10.1016/0895-7177(91)90098-R
https://doi.org/10.1007/978-3-319-67425-4_12
https://datatracker.ietf.org/doc/draft-du-anima-an-intent/05/
https://datatracker.ietf.org/doc/draft-du-anima-an-intent/05/
https://doi.org/10.1109/LCOMM.2018.2803808

References

Elhabbash, Abdessalam et al. (Nov. 2018). “Adaptive Service Deployment using
In-Network Mediation”. In: International Conference on Network and Service
Management (CNSM), pp. 170–176.

Elkhatib, Yehia et al. (Nov. 2017). “Charting an intent driven network”. In: 13th
International Conference on Network and Service Management (CNSM). doi: 10.
23919/CNSM.2017.8255981.

ETSI (Oct. 2013). Network functions virtualization (NFV); architectural framework
v1.1.1. Tech. rep. ETSI GS NFV 002. url: http://www.etsi.org/deliver/
etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf.

Fan, Qilin et al. (Apr. 2019). “Resource reservation and request routing for a cloud-
based content delivery network”. In: IEEE International Conference on Service-
Oriented System Engineering (SOSE). doi: 10.1109/SOSE.2019.00048.

Flach, Tobias et al. (Sept. 2013). “Reducing web latency: The virtue of gentle aggres-
sion”. In: Proceedings of the ACM Special Interest Group on Data Communication
Conference (SIGCOMM). doi: 10.1145/2486001.2486014.

FortuneBusinessInsights (July 2023a). The global cloud microservices market size fore-
cast, 2023-2030 — fortunebusinessinsights.com. https://www.fortunebusinessinsights.
com/video-streaming-market-103057. [Accessed 05-Sep-2023].

FortuneBusinessInsights (May 2023b). Video streaming market size forecast, 2023-
2030 — fortunebusinessinsights.com. https://www.fortunebusinessinsights.
com/video-streaming-market-103057. [Accessed 01-Sep-2023].

Franek, Jiri et al. (Dec. 2014). “Judgment scales and consistency measure in AHP”.
In: Procedia Economics and Finance 12, pp. 164–173. doi: 10.1016/S2212-
5671(14)00332-3.

Frangoudis, Pantelis et al. (May 2016). “An architecture for on-demand service deploy-
ment over a telco CDN”. In: IEEE International Conference on Communications
(ICC). doi: 10.1109/ICC.2016.7510921.

Frangoudis, Pantelis et al. (June 2017). “CDN-as-a-service provision over a telecom
operator’s cloud”. In: IEEE Transactions on Network and Service Management
14, pp. 702–716. doi: 10.1109/TNSM.2017.2710300.

Frank, Benjamin et al. (July 2013). “Pushing CDN-ISP collaboration to the limit”.
In: ACM SIGCOMM Computer Communication Review 43, pp. 34–44. doi: 10.
1145/2500098.2500103.

Garlan, David et al. (Nov. 2004). “Rainbow: Architecture-based self-adaptation with
reusable infrastructure”. In: Computer 37, pp. 46–54. doi: 10.1109/MC.2004.175.

Gartner (2020). Gartner forecasts strong revenue growth for global container manage-
ment software and services through 2024. https : / / www . gartner . com / en /
newsroom / press - releases / 2020 - 06 - 25 - gartner - forecasts - strong -

revenue-growth-for-global-co. [Accessed 06-Jul-2023].

146

https://doi.org/10.23919/CNSM.2017.8255981
https://doi.org/10.23919/CNSM.2017.8255981
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://doi.org/10.1109/SOSE.2019.00048
https://doi.org/10.1145/2486001.2486014
https://www.fortunebusinessinsights.com/video-streaming-market-103057
https://www.fortunebusinessinsights.com/video-streaming-market-103057
 https://www.fortunebusinessinsights.com/video-streaming-market-103057
 https://www.fortunebusinessinsights.com/video-streaming-market-103057
https://doi.org/10.1016/S2212-5671(14)00332-3
https://doi.org/10.1016/S2212-5671(14)00332-3
https://doi.org/10.1109/ICC.2016.7510921
https://doi.org/10.1109/TNSM.2017.2710300
https://doi.org/10.1145/2500098.2500103
https://doi.org/10.1145/2500098.2500103
https://doi.org/10.1109/MC.2004.175
 https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
 https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
 https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co

References

GlobeNewsWire (July 2023a). Global cloud content delivery network (CDN) mar-
ket forecast, 2023-2030 — globenewswire.com. https : / / https : / / www .
globenewswire.com/news-release/2023/07/07/2701217/0/en/Global-

Cloud-Content-Delivery-Network-CDN-Market-to-Reach-30-5-Billion-

by-2030.html. [Accessed 07-Sep-2023].
GlobeNewsWire (Aug. 2023b). Intent-based networking market forecast, 2023-2030 —

globenewswire.com. https://www.globenewswire.com/news-release/2023/
08/28/2732753/0/en/Intent-based-Networking-Market-to-be-Worth-

8-8-Billion-by-2030-Exclusive-Report-by-Meticulous-Research.html.
[Accessed 05-Sep-2023].

Google (2023a). About cluster configuration choices — google kubernetes engine
(GKE) — google cloud. https://cloud.google.com/kubernetes-engine/
docs/concepts/types-of-clusters#regional_clusters. [Accessed 24-Jun-
2023].

Google (2023b). API and gcloud references — cloud CDN — Google cloud —
cloud.google.com. https : / / cloud . google . com / cdn / docs / apis. [Accessed
05-Jul-2023].

Google (2023c). Cloud CDN overview — cloud.google.com. https://cloud.google.
com/cdn/docs/overview. [Accessed 24-Jun-2023].

Google (2023d). Compare GKE autopilot and standard — google kubernetes engine
(GKE) — google cloud — cloud.google.com. https : / / cloud . google . com /
kubernetes - engine / docs / resources / autopilot - standard - feature -

comparison. [Accessed 24-Jun-2023].
Google (2023e). Global locations - regions & zones — google cloud — cloud.google.com.
https://cloud.google.com/about/locations. [Accessed 16-Jul-2023].

Google (2023f). Google edge network — peering.google.com. https : / / peering .
google.com/#/infrastructure. [Accessed 16-Jul-2023].

Google (2023g). Pricing — compute engine: virtual nachines (VMs) — google cloud
— cloud.google.com. https://cloud.google.com/compute/all- pricing.
[Accessed 24-Jun-2023].

GrandViewResearch (2023). Content delivery network market Size Report, 2022-2030
— grandviewresearch.com. https://www.grandviewresearch.com/industry-
analysis/content-delivery-networks-cnd-market. [Accessed 01-Sep-2023].

Griffith, Philip (2023). ahpy — pypi.org. https : / / pypi . org / project / ahpy/.
[Accessed 26-Jun-2023].

Gritli, Nour et al. (Oct. 2021). “Decomposition and propagation of intents for network
slice design”. In: 4th IEEE 5G World Forum (5GWF). doi: 10.1109/5GWF52925.
2021.00036.

Gupta, Rohit Kumar et al. (July 2017). “2-Tiered cloud based content delivery
network architecture: An efficient load balancing approach for video streaming”.

147

 https://https://www.globenewswire.com/news-release/2023/07/07/2701217/0/en/Global-Cloud-Content-Delivery-Network-CDN-Market-to-Reach-30-5-Billion-by-2030.html
 https://https://www.globenewswire.com/news-release/2023/07/07/2701217/0/en/Global-Cloud-Content-Delivery-Network-CDN-Market-to-Reach-30-5-Billion-by-2030.html
 https://https://www.globenewswire.com/news-release/2023/07/07/2701217/0/en/Global-Cloud-Content-Delivery-Network-CDN-Market-to-Reach-30-5-Billion-by-2030.html
 https://https://www.globenewswire.com/news-release/2023/07/07/2701217/0/en/Global-Cloud-Content-Delivery-Network-CDN-Market-to-Reach-30-5-Billion-by-2030.html
https://www.globenewswire.com/news-release/2023/08/28/2732753/0/en/Intent-based-Networking-Market-to-be-Worth-8-8-Billion-by-2030-Exclusive-Report-by-Meticulous-Research.html
https://www.globenewswire.com/news-release/2023/08/28/2732753/0/en/Intent-based-Networking-Market-to-be-Worth-8-8-Billion-by-2030-Exclusive-Report-by-Meticulous-Research.html
https://www.globenewswire.com/news-release/2023/08/28/2732753/0/en/Intent-based-Networking-Market-to-be-Worth-8-8-Billion-by-2030-Exclusive-Report-by-Meticulous-Research.html
https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters#regional_clusters
https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters#regional_clusters
https://cloud.google.com/cdn/docs/apis
https://cloud.google.com/cdn/docs/overview
https://cloud.google.com/cdn/docs/overview
https://cloud.google.com/kubernetes-engine/docs/resources/autopilot-standard-feature-comparison
https://cloud.google.com/kubernetes-engine/docs/resources/autopilot-standard-feature-comparison
https://cloud.google.com/kubernetes-engine/docs/resources/autopilot-standard-feature-comparison
https://cloud.google.com/about/locations
https://peering.google.com/#/infrastructure
https://peering.google.com/#/infrastructure
https://cloud.google.com/compute/all-pricing
 https:// www.grandviewresearch.com/industry-analysis/content-delivery-networks-cnd-market
 https:// www.grandviewresearch.com/industry-analysis/content-delivery-networks-cnd-market
https://pypi.org/project/ahpy/
https://doi.org/10.1109/5GWF52925.2021.00036
https://doi.org/10.1109/5GWF52925.2021.00036

References

In: International Conference on Signal Processing and Communication (ICSPC).
doi: 10.1109/CSPC.2017.8305885.

Han, Yoonseon et al. (Oct. 2016). “An intent-based network virtualization platform
for SDN”. In: 12th International Conference on Network and Service Management
(CNSM). doi: 10.1109/CNSM.2016.7818446.

Horn, Petr Jan (Oct. 2001). “Autonomic computing: IBM’s perspective on the state
of information technology”. In: Computing Systems.

Hu, Han et al. (Jan. 2016). “Joint content replication and request routing for social
video distribution over cloud CDN: A community clustering method”. In: IEEE
Transactions on Circuits and Systems for Video Technology 26, pp. 1320–1333.
doi: 10.1109/TCSVT.2015.2455712.

Huebscher, Markus et al. (Aug. 2008). “A survey of autonomic computing - degrees,
models, and applications”. In: ACM Computing Surveys (CSUR) 40, pp. 1–28.
doi: 10.1145/1380584.1380585.

IBM (2006). “An architectural blueprint for autonomic computing”. In: IBM White
Paper 31.2006, pp. 1–6.

IEEEStandards (1990). “IEEE Standard Glossary of Software Engineering Terminol-
ogy”. In: IEEE Std 610, pp. 1–84. doi: 10.1109/IEEESTD.1990.101064.

Ishizaka, Alessio et al. (Dec. 2006). “How to derive priorities in AHP: a comparative
study”. In: Central European Journal of Operations Research 14, pp. 387–400. doi:
10.1007/s10100-006-0012-9.

Ishizaka, Alessio et al. (May 2011). “Review of the main developments in the analytic
hierarchy process”. In: Expert systems with applications 38, pp. 14336–14345. doi:
10.1016/j.eswa.2011.04.143.

James, Hayden (Sept. 2020). 25 Best CDN providers 2020. https://haydenjames.
io/best-cdn-providers/.

Jayakumar, Suman et al. (Jan. 2018). “An investigational study and analysis of
cloud-based content delivery network: Perspectives”. In: International Journal of
Advanced Computer Science and Applications 9, pp. 307–314. doi: 10.14569/
IJACSA.2018.091037.

Jennings, Brendan et al. (Nov. 2007). “Towards autonomic management of commu-
nications networks”. In: IEEE Communications Magazine 45, pp. 112–121. doi:
10.1109/MCOM.2007.4342833.

Jia, Qingmin et al. (June 2017). “The collaboration for content delivery and network
infrastructures: A survey”. In: IEEE Access 5, pp. 18088–18106. doi: 10.1109/
ACCESS.2017.2715824.

Jin, Xin et al. (Apr. 2017). “K-means clustering”. In: Encyclopedia of Machine
Learning and Data Mining. Springer US, pp. 695–697. doi: 10.1007/978-1-
4899-7687-1_431.

148

https://doi.org/10.1109/CSPC.2017.8305885
https://doi.org/10.1109/CNSM.2016.7818446
https://doi.org/10.1109/TCSVT.2015.2455712
https://doi.org/10.1145/1380584.1380585
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1007/s10100-006-0012-9
https://doi.org/10.1016/j.eswa.2011.04.143
https://haydenjames.io/best-cdn-providers/
https://haydenjames.io/best-cdn-providers/
https://doi.org/10.14569/IJACSA.2018.091037
https://doi.org/10.14569/IJACSA.2018.091037
https://doi.org/10.1109/MCOM.2007.4342833
https://doi.org/10.1109/ACCESS.2017.2715824
https://doi.org/10.1109/ACCESS.2017.2715824
https://doi.org/10.1007/978-1-4899-7687-1_431
https://doi.org/10.1007/978-1-4899-7687-1_431

References

Junior, Ronaldo et al. (Oct. 2018). “Cloud application architecture appraiser (CA3):
A multicriteria approach and tool for assessing cloud deployment options based on
nonfunctional requirements”. In: Software Practice and Experience 48, pp. 1–24.
doi: 10.1002/spe.2644.

Karlsson, Joachim et al. (1998). “An evaluation of methods for prioritizing software
requirements”. In: Information and software technology 39, pp. 939–947. doi: 10.
1016/S0950-5849(97)00053-0.

Kassab, Mohamad (May 2013). “An integrated approach of AHP and NFRs frame-
work”. In: IEEE 7th International Conference on Research Challenges in Infor-
mation Science (RCIS). doi: 10.1109/RCIS.2013.6577705.

Katchabaw, M.J. et al. (Jan. 1996). “Policy-driven fault management in distributed
systems”. In: Proceedings of 7th International Symposium on Software Reliability
Engineering (ISSRE). doi: 10.1109/ISSRE.1996.558833.

Kephart, Jeffrey et al. (Feb. 2003). “The vision of autonomic computing”. In:
Computer 36.1, pp. 41–50. doi: 10.1109/MC.2003.1160055.

Kephart, Jeffrey et al. (June 2004). “An artificial intelligence perspective on au-
tonomic computing policies.” In: Proceedings of the Fifth IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY). doi:
10.1109/POLICY.2004.1309145.

Khemka, Bhavesh et al. (Dec. 2014). “Utility functions and resource management in
an oversubscribed heterogeneous computing Environment”. In: IEEE Transactions
on Computers 64, pp. 2394–2407. doi: 10.1109/TC.2014.2360513.

Kiran, Mariam et al. (2018). “Enabling intent to configure scientific networks for high
performance demands”. In: Future Generation Computer Systems 79, pp. 205–214.

Kreutz, Diego et al. (June 2014). “Software-defined networking: A comprehensive
survey”. In: ArXiv e-prints 103, pp. 14–76. doi: 10.1109/JPROC.2014.2371999.

Kubernetes (2023a). Deployments — kubernetes.io. https://kubernetes.io/docs/
concepts/workloads/controllers/deployment/. [Accessed 26-Jun-2023].

Kubernetes (2023b). Horizontal pod autoscaling — kubernetes.io. https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-autoscale/. [Accessed
26-Jun-2023].

Kubernetes (2023c). Kubernetes components — kubernetes.io. https://kubernetes.
io/docs/concepts/overview/components/. [Accessed 26-Jun-2023].

Kubernetes (2023d). Production-grade container orchestration — kubernetes.io. https:
//kubernetes.io/. [Accessed 06-Jul-2023].

Leivadeas, Aris et al. (Mar. 2021). “VNF placement problem: A multi-tenant intent-
based networking approach”. In: 24th Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN). doi: 10.1109/ICIN51074.2021.
9385553.

149

https://doi.org/10.1002/spe.2644
https://doi.org/10.1016/S0950-5849(97)00053-0
https://doi.org/10.1016/S0950-5849(97)00053-0
https://doi.org/10.1109/RCIS.2013.6577705
https://doi.org/10.1109/ISSRE.1996.558833
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/POLICY.2004.1309145
https://doi.org/10.1109/TC.2014.2360513
https://doi.org/10.1109/JPROC.2014.2371999
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/
https://kubernetes.io/
https://doi.org/10.1109/ICIN51074.2021.9385553
https://doi.org/10.1109/ICIN51074.2021.9385553

References

Leivadeas, Aris et al. (Jan. 2022). “A survey on intent-based networking”. In: Com-
mun. Surveys Tuts.IEEE Communications Surveys & Tutorials 25, pp. 625–655.
doi: 10.1109/COMST.2022.3215919.

Li, Tangyi et al. (June 2023). “Autonomous intent detection for intent-driven satellite
network”. In: International Wireless Communications and Mobile Computing
(IWCMC). doi: 10.1109/IWCMC58020.2023.10183156.

Linthicum, David S. (Sept. 2016). “Practical use of microservices in moving workloads
to the cloud”. In: IEEE Cloud Computing 3, pp. 6–9. doi: 10.1109/MCC.2016.
114.

Lopes, Felipe et al. (Nov. 2015). “A Software engineering perspective on SDN pro-
grammability”. In: IEEE Communications Surveys & Tutorials 18, pp. 1255–1272.
doi: 10.1109/COMST.2015.2501026.

Lyko, Tomasz et al. (Sept. 2022). “QoE Assessment for Multi-Video Object Based Me-
dia”. In: International Conference on Quality of Multimedia Experience (QoMEX).
IEEE. doi: 10.1109/QoMEX55416.2022.9900905.

Mangili, Michele et al. (June 2016). “Optimal planning of virtual content delivery
networks under uncertain traffic demands”. In: Computer Networks 106, pp. 186–
195. doi: 10.1016/j.comnet.2016.06.035.

Manzalini, Antonio et al. (July 2016). Towards 5G software-defined ecosystems. Tech.
rep. IEEE SDN White Paper. https://sdn.ieee.org/publications/towards-
5g-software-defined-ecosystems.

Marie-Magdelaine, Nicolas et al. (Apr. 2019). “Demonstration of an observability
framework for cloud Native microservices”. In: IFIP/IEEE International Sym-
posium on Integrated Network Management (IM). url: https://ieeexplore.
ieee.org/document/8717923.

Marsico, Antonio et al. (July 2017). “An interactive intent-based negotiation scheme
for application-centric networks”. In: IEEE Conference on Network Softwarization
(NetSoft). doi: 10.1109/NETSOFT.2017.8004251.

Massa, Jacopo et al. (2023). “Declarative Provisioning of Virtual Network Function
Chains in Intent-based Networks”. In: 2023 IEEE 9th International Conference on
Network Softwarization (NetSoft). doi: 10.1109/NetSoft57336.2023.10175449.

Mehmood, Kashif et al. (July 2023). “Knowledge-based Intent Modeling for Next
Generation Cellular Networks”. In: 2023 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom). doi: 10.48550/
arXiv.2302.08544.

Microsoft (2023a). Azure CDN POP locations by region — learn.microsoft.com.
https://learn.microsoft.com/en-us/azure/cdn/cdn-pop-locations.
[Accessed 16-Jul-2023].

150

https://doi.org/10.1109/COMST.2022.3215919
https://doi.org/10.1109/IWCMC58020.2023.10183156
https://doi.org/10.1109/MCC.2016.114
https://doi.org/10.1109/MCC.2016.114
https://doi.org/10.1109/COMST.2015.2501026
https://doi.org/10.1109/QoMEX55416.2022.9900905
https://doi.org/10.1016/j.comnet.2016.06.035
https://sdn.ieee.org/publications/towards-5g-software-defined-ecosystems
https://sdn.ieee.org/publications/towards-5g-software-defined-ecosystems
https://ieeexplore.ieee.org/document/8717923
https://ieeexplore.ieee.org/document/8717923
https://doi.org/10.1109/NETSOFT.2017.8004251
https://doi.org/10.1109/NetSoft57336.2023.10175449
https://doi.org/10.48550/arXiv.2302.08544
https://doi.org/10.48550/arXiv.2302.08544
https://learn.microsoft.com/en-us/azure/cdn/cdn-pop-locations

References

Microsoft (2023b). Azure Content Delivery Network — azure.microsoft.com. https:
//https://azure.microsoft.com/en-us/products/cdn. [Accessed 16-Jul-
2023].

Mijumbi, Rashid et al. (Sept. 2015). “Network function virtualization: state-of-the-
art and research challenges”. In: IEEE Communications Surveys & Tutorials 18,
pp. 236–262. doi: 10.1109/COMST.2015.2477041.

Monga, Inder et al. (Nov. 2018). “SDN for end-to-end networked science at the
exascale (SENSE)”. In: IEEE/ACM Innovating the Network for Data-Intensive
Science (INDIS). doi: 10.1109/INDIS.2018.00007.

NGINX (2023). Welcome to NGINX wiki! — NGINX — nginx.com. https://www.
nginx.com/resources/wiki/. [Accessed 27-Jun-2023].

Nydick, Robert L et al. (Mar. 1992). “Using the analytic hierarchy process to structure
the supplier selection procedure”. In: International Journal of Purchasing and
Materials Management 28, pp. 31–36. doi: 10 . 1111 / j . 1745 - 493X . 1992 .
tb00561.x.

ONF (2014). Intent NBI definition and principles. https://opennetworking.org/
wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.

pdf.
ONF (2015a). Github - Opennetworkingfoundation/BOULDER-intent-NBI: Intent-

based NBI development — github.com. https://github.com/OpenNetworkingFoundation/
BOULDER-Intent-NBI. [Accessed 16-Jul-2023].

ONF (2015b). Northbound interfaces working group archives. https://opennetworking.
org/tag/northbound-interfaces-working-group/.

ONOS (2015). https : / / wiki . onosproject . org / display / ONOS / Intent +
Framework.

OpenDaylight (2015). Network intent composition (NIC) user guide - OpenDaylight
Documentation Fluorine documentation. https://docs.opendaylight.org/en/
stable-fluorine/user-guide/network-intent-composition-(nic)-user-

guide.html.
OpenDaylight (2016). NEtwork MOdeling (NEMO) - OpenDaylight Documentation

Fluorine documentation. https : / / docs . opendaylight . org / en / stable -
fluorine/release-notes/projects/nemo.html.

OpenStack (2016). GroupBasedPolicy. https : / / wiki . openstack . org / wiki /
GroupBasedPolicy.

OSM (2023). OSM. https://osm.etsi.org/.
Ouyang, Ying et al. (2021). “A Brief Survey and Implementation on Refinement for

Intent-Driven Networking”. In: IEEE Network 35.6, pp. 75–83. doi: 10.1109/
MNET.001.2100194.

151

https://https://azure.microsoft.com/en-us/products/cdn
https://https://azure.microsoft.com/en-us/products/cdn
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/INDIS.2018.00007
https://www.nginx.com/resources/wiki/
https://www.nginx.com/resources/wiki/
https://doi.org/10.1111/j.1745-493X.1992.tb00561.x
https://doi.org/10.1111/j.1745-493X.1992.tb00561.x
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://github.com/OpenNetworkingFoundation/BOULDER-Intent-NBI
https://github.com/OpenNetworkingFoundation/BOULDER-Intent-NBI
https://opennetworking.org/tag/northbound-interfaces-working-group/
https://opennetworking.org/tag/northbound-interfaces-working-group/
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://docs.opendaylight.org/en/stable-fluorine/user-guide/network-intent-composition-(nic)-user-guide.html
https://docs.opendaylight.org/en/stable-fluorine/user-guide/network-intent-composition-(nic)-user-guide.html
https://docs.opendaylight.org/en/stable-fluorine/user-guide/network-intent-composition-(nic)-user-guide.html
https://docs.opendaylight.org/en/stable-fluorine/release-notes/projects/nemo.html
https://docs.opendaylight.org/en/stable-fluorine/release-notes/projects/nemo.html
https://wiki.openstack.org/wiki/GroupBasedPolicy
https://wiki.openstack.org/wiki/GroupBasedPolicy
https://osm.etsi.org/
https://doi.org/10.1109/MNET.001.2100194
https://doi.org/10.1109/MNET.001.2100194

References

Ouyang, Ying et al. (Nov. 2022). “Ontology-based network intent refinement frame-
work”. In: 22nd IEEE International Conference on Communication Technology
(ICCT). doi: 10.1109/ICCT56141.2022.10072810.

Palau, Carlos et al. (Jan. 2003). “CCDN: campus content delivery network learning
facility”. In: Proceedings 3rd IEEE International Conference on Advanced Tech-
nologies (ICALT). doi: 10.1109/ICALT.2003.1215188.

Pang, Lei et al. (Jan. 2020). “A survey on intent-driven networks”. In: IEEE Access
8, pp. 22862–22873. doi: 10.1109/ACCESS.2020.2969208.

Papagianni, Chrysa et al. (Sept. 2013). “A cloud-oriented content delivery network
paradigm: Modeling and assessment”. In: IEEE Transactions on Dependable and
Secure Computing 10, pp. 287–300. doi: 10.1109/TDSC.2013.12.

Parashar, Manish et al. (Jan. 2004). “Autonomic Computing: An Overview”. In:
Unconventional Programming Paradigms, International Workshop (UPP). doi:
10.1007/11527800_20.

Pedregosa, F. et al. (Nov. 2011). “Scikit-learn: Machine learning in python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830. doi: 10.48550/arXiv.
1201.0490.

Pham, Minh et al. (June 2016). “SDN applications - The intent-based northbound
interface realisation for extended applications”. In: IEEE NetSoft Conference and
Workshops (NetSoft). doi: 10.1109/NETSOFT.2016.7502469.

Qassem, Lamees M. Al et al. (Nov. 2022). “Optimal resource allocation for container-
ized cloud microservices”. In: International Conference on Electrical and Com-
puting Technologies and Applications (ICECTA). doi: 10.1109/ICECTA57148.
2022.9990377.

Retal, Sara et al. (May 2017). “Content delivery network slicing: QoE and cost
awareness”. In: IEEE International Conference on Communications (ICC). doi:
10.1109/ICC.2017.7996499.

Roy, Sandip et al. (June 2015). “Fuzzy based dynamic load balancing scheme
for efficient edge server selection in cloud-oriented content delivery network
using voronoi diagram”. In: IEEE International Advance Computing Conference
(IACC). doi: 10.13140/RG.2.1.1996.5287.

Saaty, Thomas L (1985). “Decision making for leaders: The analytical hierarchy
process for decisions in a complex world”. In: IEEE transactions on systems, man,
and cybernetics, pp. 450–452.

Saaty, Thomas L (Sept. 1990). “How to make a decision: the analytic hierarchy
process”. In: European journal of operational research 48, pp. 9–26.

Saaty, Thomas L (Jan. 1994a). Fundamentals of decision making and priority theory
with the analytic hierarchy process. Vol. VI. RWS publications.

Saaty, Thomas L et al. (1979). “A new approach to performance measurement the
analytic hierarchy process”. In: Design Methods and Theories 13, pp. 62–68.

152

https://doi.org/10.1109/ICCT56141.2022.10072810
https://doi.org/10.1109/ICALT.2003.1215188
https://doi.org/10.1109/ACCESS.2020.2969208
https://doi.org/10.1109/TDSC.2013.12
https://doi.org/10.1007/11527800_20
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1109/NETSOFT.2016.7502469
https://doi.org/10.1109/ICECTA57148.2022.9990377
https://doi.org/10.1109/ICECTA57148.2022.9990377
https://doi.org/10.1109/ICC.2017.7996499
https://doi.org/10.13140/RG.2.1.1996.5287

References

Saaty, Thomas L et al. (1991). “Analytical planning, the organization of systems; the
analytic hierarchy process series”. In: RWS Publications 4.

Saaty, Thomas L et al. (2012). “Models, methods, concepts & applications of the
analytic hierarchy process”. In: Springer Science & Business Media 175.

Saaty, Thomas L. (1994b). “How to make a decision: The analytic hierarchy process”.
In: Interfaces 24, pp. 19–43. url: http://www.jstor.org/stable/25061950.

Saboor, Abdul et al. (July 2021). “Design pattern based distribution of microservices
in cloud computing Eenvironment”. In: International Conference on Computer &
Information Sciences (ICCOINS). doi: 10.1109/ICCOINS49721.2021.9497188.

Sajithabanu, S. et al. (Nov. 2016). “Cloud based content delivery network using ge-
netic optimization algorithm for storage cost”. In: IEEE International Conference
on Advanced Networks and Telecommunications Systems (ANTS). doi: 10.1109/
ANTS.2016.7947822.

Scheid, Eder J. et al. (May 2017). “INSpIRE: Integrated NFV-based intent refinement
environment”. In: IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). doi: 10.23919/INM.2017.7987279.

Serrano, Jaime Mart́ın et al. (June 2007). “Ontology-based reasoning for supporting
context-aware services on autonomic networks”. In: IEEE International Confer-
ence on Communications (ICC). doi: 10.1109/ICC.2007.347.

Simon, Herbert A. (1996). The sciences of the artificial. 3rd ed. MIT Press.
Singh, Vindeep et al. (May 2017). “Container-based microservice architecture for

cloud applications”. In: International Conference on Computing, Communication
and Automation (ICCCA). doi: 10.1109/CCAA.2017.8229914.

Sinreich, David (2006). “An architectural blueprint for autonomic computing”. In:
Autonomic Computing White Paper. url: https://api.semanticscholar.
org/CorpusID:16909837.

Sousa, Nathan et al. (Mar. 2018). “network service orchestration: A survey”. In:
Computer Communications 142-143, pp. 69–94. doi: 10.1016/j.comcom.2019.
04.008.

Sterritt, Roy (Apr. 2005). “Autonomic computing”. In: Innovations in Systems and
Software Engineering 1, pp. 535–539. doi: 10.1007/s11334-005-0001-5.

Szilágyi, Péter (June 2021). “I2BN: Intelligent intent based networks”. In: Journal of
ICT Standardization 9, pp. 159–200. doi: 10.13052/jicts2245-800X.926.

Taleb, Tarik et al. (Sept. 2020). “CDN slicing over a multi-domain edge cloud”. In:
IEEE Transactions on Mobile Computing 19, pp. 2010–2027. doi: 10.1109/TMC.
2019.2921712.

Tene, Gil (2019). Github - giltene/wrk2: A constant throughput, correct latency
recording variant of wrk — github.com. https://github.com/giltene/wrk2.
[Accessed 24-Jun-2023].

153

http://www.jstor.org/stable/25061950
https://doi.org/10.1109/ICCOINS49721.2021.9497188
https://doi.org/10.1109/ANTS.2016.7947822
https://doi.org/10.1109/ANTS.2016.7947822
https://doi.org/10.23919/INM.2017.7987279
https://doi.org/10.1109/ICC.2007.347
https://doi.org/10.1109/CCAA.2017.8229914
https://api.semanticscholar.org/CorpusID:16909837
https://api.semanticscholar.org/CorpusID:16909837
https://doi.org/10.1016/j.comcom.2019.04.008
https://doi.org/10.1016/j.comcom.2019.04.008
https://doi.org/10.1007/s11334-005-0001-5
https://doi.org/10.13052/jicts2245-800X.926
https://doi.org/10.1109/TMC.2019.2921712
https://doi.org/10.1109/TMC.2019.2921712
https://github.com/giltene/wrk2

References

TheExpressWire (Aug. 2023). SDN and NFV market share report 2023-2030 —
benzinga.com. https://www.benzinga.com/pressreleases/23/08/33771870/
sdn - and - nfv - market - share - report - 2023 - 2030 - 107 - pages - report.
[Accessed 05-Sep-2023].

TMForum (2014). TR218 B2B2X partnering guidebook step by step guide, version
0.6.4 — tmforum.org. https://www.tmforum.org/resources/technical-
report-best-practice/tr218-b2b2x-partnering-guidebook-_-step-by-

step-guide/. [Accessed 05-Jul-2023].
TMForum (May 2021). IG1253A Intent Modeling v1.0.0. Tech. rep. https://www.
tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-

0/.
TMForum (2022). Intent common model v2.1.0. Tech. rep. TR292. https://www.
tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-

0/.
Tran, Hai-Anh et al. (Mar. 2019). “MABRESE: A new server selection method

for Smart SDN-based CDN architecture”. In: IEEE Communications Letters 23,
pp. 1012–1015. doi: 10.1109/LCOMM.2019.2907948.

Triantaphyllou, Evangelos (Jan. 2000). Multi-criteria decision making methods.
Vol. 44. Springer US, pp. 5–21. doi: 10.1007/978-1-4757-3157-6.

Trois, Celio et al. (2016). “A survey on SDN programming languages: Toward a
taxonomy”. In: IEEE Communications Surveys & Tutorials 18, pp. 2687–2712.
doi: 10.1109/COMST.2016.2553778.

Tsai, Wei-Tek (Nov. 2005). “Service-oriented system engineering: A new paradigm”.
In: IEEE International Workshop on Service-Oriented System Engineering (SOSE).
doi: 10.1109/SOSE.2005.34.

Tuncer, Daphne et al. (Dec. 2018). “A northbound interface for software-based
networks”. In: 14th International Conference on Network and Service Management
(CNSM). url: https://ieeexplore.ieee.org/document/8584931.

Ustok, Refik Fatih et al. (2022). “Asset Administration Shell as an Enabler of Intent-
Based Networks for Industry 4.0 Automation”. In: 2022 IEEE 27th International
Conference on Emerging Technologies and Factory Automation (ETFA). doi: 10.
1109/ETFA52439.2022.9921446.

Villamizar, Mario et al. (May 2016). “Infrastructure cost comparison of running web
applications in the cloud using AWS lambda and monolithic and microservice
architectures”. In: 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. doi: 10.1109/CCGrid.2016.37.

Whitaker Rozann, Saaty (Dec. 1987). “The analytic hierarchy process—what it is
and how it is used”. In: Mathematical Modelling 9, pp. 161–176. doi: https:
//doi.org/10.1016/0270-0255(87)90473-8.

154

 https://www.benzinga.com/pressreleases/23/08/33771870/sdn-and-nfv-market-share-report-2023-2030-107-pages-report
 https://www.benzinga.com/pressreleases/23/08/33771870/sdn-and-nfv-market-share-report-2023-2030-107-pages-report
https://www.tmforum.org/resources/technical-report-best-practice/tr218-b2b2x-partnering-guidebook-_-step-by-step-guide/
https://www.tmforum.org/resources/technical-report-best-practice/tr218-b2b2x-partnering-guidebook-_-step-by-step-guide/
https://www.tmforum.org/resources/technical-report-best-practice/tr218-b2b2x-partnering-guidebook-_-step-by-step-guide/
https://www.tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-0/
https://www.tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-0/
https://www.tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-0/
https://www.tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-0/
https://www.tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-0/
https://www.tmforum.org/resources/how-to-guide/ig1253a-intent-modeling-v1-0-0/
https://doi.org/10.1109/LCOMM.2019.2907948
https://doi.org/10.1007/978-1-4757-3157-6
https://doi.org/10.1109/COMST.2016.2553778
https://doi.org/10.1109/SOSE.2005.34
https://ieeexplore.ieee.org/document/8584931
https://doi.org/10.1109/ETFA52439.2022.9921446
https://doi.org/10.1109/ETFA52439.2022.9921446
https://doi.org/10.1109/CCGrid.2016.37
https://doi.org/https://doi.org/10.1016/0270-0255(87)90473-8
https://doi.org/https://doi.org/10.1016/0270-0255(87)90473-8

References

Woo, Honguk et al. (Apr. 2014). “A virtualized, programmable content delivery net-
work”. In: IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud). doi: 10.1109/MobileCloud.2014.32.

Xie, Min et al. (Dec. 2022). “Intent-Driven Management for Multi-Vertical End-to-
End Network Slicing Services”. In: 2022 IEEE Globecom Workshops (GC Wkshps).
doi: 10.1109/GCWkshps56602.2022.10008673.

Xiong, Wenjie et al. (Oct. 2018). “Real-time processing and storage of multimedia data
with content delivery network in vehicle monitoring system”. In: 6th International
Conference on Wireless Networks and Mobile Communications (WINCOM). doi:
10.1109/WINCOM.2018.8629708.

Yrjönen, Anton et al. (Jan. 2009). “Extending the NFR framework with mea-
surable nonFunctional requirements”. In: The 2nd International Workshop on
Non-functional System Properties in Domain Specific Modeling Languages (NF-
PinDSML). url: https://ceur-ws.org/Vol-553/paper2.pdf.

Zeydan, Engin et al. (May 2020). “Recent Advances in Intent-Based Networking: A
Survey”. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring).
doi: 10.1109/VTC2020-Spring48590.2020.9128422.

Zheng, Haomian et al. (June 2023). “From Automation to Autonomous: Driving the
Optical Network Management to Fixed Fifth-generation (F5G) Advanced”. In:
2023 IEEE 9th International Conference on Network Softwarization (NetSoft).
doi: 10.1109/NetSoft57336.2023.10175446.

Zolfaghari, Behrouz et al. (Apr. 2020). “Content delivery networks: State of the art,
trends, and future roadmap”. In: ACM Computing Surveys 53, pp. 1–34. doi:
10.1145/3380613.

155

https://doi.org/10.1109/MobileCloud.2014.32
https://doi.org/10.1109/GCWkshps56602.2022.10008673
https://doi.org/10.1109/WINCOM.2018.8629708
https://ceur-ws.org/Vol-553/paper2.pdf
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128422
https://doi.org/10.1109/NetSoft57336.2023.10175446
https://doi.org/10.1145/3380613

Appendix A

Evaluation Extended Results

A.1 Detailed Experiment Tables for Normal Traf-

fic Scenario

The following tables list the detailed experiment results for all 10 repetitions. These
tables show tested time and traffic segments from the ISP’s CDN dataset and the
number of dropped requests. Tables A.1 and A.2 list the number of dropped requests
in Baseline 1 and Baseline 2 respectively. LCI 1 and its optimistic and pessimistic
refinement results are listed in Tables A.3, A.4 and A.5. LCI 2 results are listed
in Tables A.6, A.7 and both its refinements are listed in Tables A.8, A.9 and A.10.
Finally, LCI 3 results are listed in Tables A.11, A.12, its optimistic refinement results
are in Tables A.13 and A.14, and its pessimistic refinement results are in Table A.15.

156

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

17
:0
1

50
43

74
62
4

26
83

29
74

12
9

83
40

74
12
3.
6

S
at

13
/1
0

19
:4
4

79
72

19
3

20
4

20
0

29
5

23
3

39
3

28
8

37
9

24
1

28
6

27
1.
2

39
4.
8

13
:2
1

51
72

54
2

91
5

25
2

10
74

83
2

68
3

13
84

44
4

61
7

10
32

77
7.
5

16
:5
1

75
78

58
9

14
4

83
3

30
8

39
0

56
8

75
5

34
7

80
4

20
9

49
4.
7

S
u
n

14
/1
0

19
:3
5

11
12
9

38
70

23
12

24
45

17
45

11
84

21
82

20
20

23
17

28
45

22
27

23
14
.7

35
86
.9

13
:3
7

26
01

82
7

91
5

86
2

89
2

86
3

11
82

10
96

10
83

10
79

55
7

93
5.
6

17
:1
7

50
62

43
2

51
9

48
1

75
4

30
5

66
3

44
3

11
09

83
4

21
9

57
5.
9

18
:3
3

84
16

47
0

14
66

17
47

18
28

84
8

15
89

13
75

14
56

13
73

89
2

13
04
.4

M
on

15
/1
0

19
:1
9

10
35
3

18
37

15
60

15
21

16
00

22
72

10
64

15
63

15
59

17
80

11
85

15
94
.1

44
10

14
:5
4

26
74

81
2

12
41

99
7

12
09

86
5

10
16

10
66

81
6

62
6

96
1

96
0.
9

17
:5
9

50
72

12
35

55
7

14
72

57
3

11
90

98
3

56
4

59
0

91
5

16
43

97
2.
2

T
u
e

16
/1
0

18
:3
9

74
74

96
5

91
1

12
65

97
3

10
67

13
01

14
50

51
9

12
31

67
0

10
35
.2

29
68
.3

14
:5
5

29
55

86
6

88
7

10
82

12
14

12
83

10
31

10
04

79
2

83
8

99
0

99
8.
7

17
:5
4

50
19

52
0

88
9

43
1

71
8

38
4

31
7

40
3

99
3

13
90

90
8

69
5.
3

19
:0
4

78
74

88
9

15
12

10
05

18
99

68
1

14
67

94
6

12
94

14
15

65
4

11
76
.2

W
ed

17
/1
0

19
:2
7

10
13
7

20
55

57
0

17
88

73
0

11
74

86
0

11
60

18
45

14
92

10
33

12
70
.7

41
40
.9

15
:1
2

27
93

10
71

88
2

10
75

67
0

92
5

10
91

66
9

12
87

14
18

95
5

10
04
.3

17
:5
2

51
31

11
17

84
0

84
6

48
3

81
5

57
0

10
18

78
0

30
0

63
8

74
0.
7

18
:4
0

77
37

10
82

14
50

49
1

12
66

67
8

94
0

12
94

48
9

76
0

86
0

93
1

T
h
u
r

18
/1
0

19
:0
5

98
96

10
72

12
45

10
41

79
0

94
5

10
60

14
66

10
61

15
56

70
8

10
94
.4

37
70
.4

14
:5
5

26
14

11
58

71
5

11
33

10
13

10
38

12
22

10
18

13
40

79
4

99
2

10
42
.3

18
:0
7

51
80

15
35

10
80

50
8

47
0

10
82

84
4

10
61

54
2

68
6

89
3

87
0.
1

F
ri

19
/1
0

19
:1
2

79
81

24
15

18
36

17
47

16
12

12
86

95
8

73
4

77
5

11
72

71
8

13
25
.3

32
37
.7

T
ab

le
A
.1
:
B
as
el
in
e1

(G
K
E
A
u
to
p
il
ot
)
D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts
.

157

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in
u
te

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

17
:0
1

50
43

21
21

10
4

10
3

10
3

22
65

10
3

21
21

58
.4

S
at

13
/1
0

19
:4
4

79
72

10
5

27
4

20
4

20
7

35
34

36
8

61
9

10
5

10
5

20
5.
6

26
4

13
:2
1

51
72

84
18
3

85
85

85
22

22
10
9

62
69

80
.6

16
:5
1

75
78

39
18
9

12
4

10
4

10
4

32
11
7

21
6

13
0

13
0

11
8.
5

S
u
n

14
/1
0

19
:3
5

11
12
9

94
6

97
2

16
5

89
1

12
07

81
0

15
8

68
7

15
0

82
8

68
1.
4

88
0.
5

13
:3
7

26
01

13
13

43
43

42
11

33
11

34
34

27
.7

17
:1
7

50
62

74
27

26
13
2

27
11
1

67
59

21
21

56
.5

18
:3
3

84
16

11
7

21
1

94
3

73
3

91
3

13
28

60
0

13
63

35
12
57

75
0

M
on

15
/1
0

19
:1
9

10
35
3

72
4

33
8

72
3

38
7

18
2

78
9

13
36

15
37

91
1

69
3

76
2

15
96
.2

14
:5
4

26
74

13
13

43
69

13
31

50
30

11
34

30
.7

17
:5
9

50
72

84
13
9

86
28

28
22

68
22

22
69

56
.8

T
u
e

16
/1
0

18
:3
9

74
74

12
5

11
1

11
1

12
4

12
4

88
32

88
24
2

98
11
4.
3

20
1.
8

14
:5
5

29
55

31
56

31
40

10
11

30
37

62
37

34
.5

17
:5
4

50
19

22
67

14
8

67
67

10
8

63
22

29
22

61
.5

19
:0
4

78
74

16
7

16
7

35
35

16
7

10
5

35
2

33
8

10
5

12
1

15
9.
2

W
ed

17
/1
0

19
:2
7

10
13
7

85
2

92
0

74
0

48
16
4

27
3

32
9

88
2

24
4

85
6

53
0.
8

78
6

15
:1
2

27
93

30
10

10
30

10
36

11
10

10
31

18
.8

17
:5
2

51
31

64
22

64
11
1

64
68

68
69

22
22

57
.4

18
:4
0

77
37

33
33

10
2

16
0

51
33

16
0

91
33

10
3

79
.9

T
h
u
r

18
/1
0

19
:0
5

98
96

53
6

33
3

49
3

51
1

35
4

10
9

13
8

51
9

82
8

36
7

41
8.
8

57
4.
9

14
:5
5

26
14

55
10

31
10

10
31

55
31

33
11

27
.7

18
:0
7

51
80

22
69

22
69

22
22

11
0

69
22

22
44
.9

F
ri

19
/1
0

19
:1
2

79
81

99
33

92
93

34
17
9

10
4

11
5

15
4

64
0

15
4.
3

22
6.
9

T
ab

le
A
.2
:
B
as
el
in
e2

(F
u
ll
y
-M

an
ag
ed

G
K
E
)
D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts
.

158

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

17
:0
1

50
43

60
21

66
21

21
10
9

66
66

67
10
4

60
.1

S
at

13
/1
0

19
:4
4

79
72

35
94

30
3

16
6

35
6

53
7

49
4

10
6

43
3

35
25
5.
9

31
6

13
:2
1

51
72

27
18
5

78
77

13
4

62
62

63
10
9

62
85
.9

16
:5
1

75
78

42
18
8

25
0

46
10
4

24
4

20
3

22
8

21
9

17
9

17
0.
3

S
u
n

14
/1
0

19
:3
5

11
12
9

12
53

12
98

88
8

13
07

99
6

51
16
70

17
20

17
50

17
90

12
72
.3

15
28
.5

13
:3
7

26
01

13
71

72
14

42
11

34
58

11
35

36
.1

17
:1
7

50
62

84
13
1

13
2

29
26

25
72

21
22

26
56
.8

18
:3
3

84
16

11
21

84
6

21
1

10
66

93
2

97
13
03

12
10

12
80

12
60

93
2.
6

M
on

15
/1
0

19
:1
9

10
35
3

58
7

96
3

79
7

39
6

59
6

86
8

10
78

13
75

13
23

13
22

93
0.
5

19
56

14
:5
4

26
74

39
43

43
68

35
57

55
11

31
11

39
.3

17
:5
9

50
72

13
9

28
29

85
85

11
4

66
23

35
22

62
.6

T
u
e

16
/1
0

18
:3
9

74
74

12
4

40
19
5

12
4

12
5

15
6

99
36
6

32
99

13
6

23
7.
9

14
:5
5

29
55

32
11

57
30

38
30

35
64

31
67

39
.5

17
:5
4

50
19

67
10
3

67
67

10
9

81
72

22
68

23
67
.9

19
:0
4

78
74

98
45
2

24
7

16
8

14
7

17
5

70
6

99
70
4

70
5

35
0.
1

W
ed

17
/1
0

19
:2
7

10
13
7

44
12
0

13
4

70
7

29
5

10
16

90
9

10
35

99
4

74
7

60
0.
1

10
57
.6

15
:1
2

27
93

10
11

11
56

32
55

57
37

57
11

33
.7

17
:5
2

51
31

23
23

68
65

70
11
9

96
11
5

70
65

71
.4

18
:4
0

77
37

14
1

22
6

35
56

16
1

50
4

46
7

28
2

10
3

60
4

25
7.
9

T
h
u
r

18
/1
0

19
:0
5

98
96

69
2

56
9

62
2

20
1

43
6

25
5

45
5

25
9

37
1

44
2

43
0.
2

75
9.
5

14
:5
5

26
14

10
31

32
10

34
11

56
11

11
53

25
.9

18
:0
7

51
80

23
11
2

37
22

63
96

64
71

11
1

11
1

71
F
ri

19
/1
0

19
:1
2

79
81

10
0

33
99

93
15
9

97
9

11
27

22
2

34
1

15
8

33
1.
1

42
8

T
ab

le
A
.3
:
L
C
I1

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts
.

159

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

17
:0
1

50
43

60
21

66
21

21
10
9

66
66

67
10
4

60
.1

S
at

13
/1
0

19
:4
4

79
72

10
5

27
4

20
4

20
7

35
34

36
8

61
9

10
5

10
5

20
5.
6

26
5.
7

13
:2
1

51
72

27
18
5

78
77

13
4

62
62

63
10
9

62
85
.9

16
:5
1

75
78

42
18
8

25
0

46
10
4

24
4

20
3

22
8

21
9

17
9

17
0.
3

S
u
n

14
/1
0

19
:3
5

11
12
9

94
6

97
2

16
5

89
1

12
07

81
0

15
8

68
7

15
0

82
8

68
1.
4

93
7.
6

13
:3
7

26
01

13
71

72
14

42
11

34
58

11
35

36
.1

17
:1
7

50
62

84
13
1

13
2

29
26

25
72

21
22

26
56
.8

18
:3
3

84
16

11
7

21
1

94
3

73
3

91
3

13
28

60
0

13
63

35
12
57

75
0

M
on

15
/1
0

19
:1
9

10
35
3

72
4

33
8

72
3

38
7

18
2

78
9

13
36

15
37

91
1

69
3

76
2

16
04
.9

14
:5
4

26
74

39
43

43
68

35
57

55
11

31
11

39
.3

17
:5
9

50
72

13
9

28
29

85
85

11
4

66
23

35
22

62
.6

T
u
e

16
/1
0

18
:3
9

74
74

12
5

11
1

11
1

12
4

12
4

88
32

88
24
2

98
11
4.
3

21
6.
2

14
:5
5

29
55

32
11

57
30

38
30

35
64

31
67

39
.5

17
:5
4

50
19

67
10
3

67
67

10
9

81
72

22
68

23
67
.9

19
:0
4

78
74

16
7

16
7

35
35

16
7

10
5

35
2

33
8

10
5

12
1

15
9.
2

W
ed

17
/1
0

19
:2
7

10
13
7

85
2

92
0

74
0

48
16
4

27
3

32
9

88
2

24
4

85
6

53
0.
8

79
7.
4

15
:1
2

27
93

10
11

11
56

32
55

57
37

57
11

33
.7

17
:5
2

51
31

23
23

68
65

70
11
9

96
11
5

70
65

71
.4

18
:4
0

77
37

33
33

10
2

16
0

51
33

16
0

91
33

10
3

79
.9

T
h
u
r

18
/1
0

19
:0
5

98
96

53
6

33
3

49
3

51
1

35
4

10
9

13
8

51
9

82
8

36
7

41
8.
8

57
0.
1

14
:5
5

26
14

10
31

32
10

34
11

56
11

11
53

25
.9

18
:0
7

51
80

22
69

22
69

22
22

11
0

69
22

22
44
.9

F
ri

19
/1
0

19
:1
2

79
81

99
33

92
93

34
17
9

10
4

11
5

15
4

64
0

15
4.
3

22
5.
1

T
ab

le
A
.4
:
O
p
ti
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I1

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(g
re
en

ro
w
s
re
p
re
se
n
t
th
e
re
fi
n
em

en
t

o
cc
u
rr
en
ce
).

160

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

17
:0
1

50
43

21
21

10
4

10
3

10
3

22
65

10
3

21
21

58
.4

S
at

13
/1
0

19
:4
4

79
72

10
5

27
4

20
4

20
7

35
34

36
8

61
9

10
5

10
5

20
5.
6

26
4

13
:2
1

51
72

27
18
5

78
77

13
4

62
62

63
10
9

62
85
.9

16
:5
1

75
78

42
18
8

25
0

46
10
4

24
4

20
3

22
8

21
9

17
9

17
0.
3

S
u
n

14
/1
0

19
:3
5

11
12
9

94
6

97
2

16
5

89
1

12
07

81
0

15
8

68
7

15
0

82
8

68
1.
4

93
7.
6

13
:3
7

26
01

13
71

72
14

42
11

34
58

11
35

36
.1

17
:1
7

50
62

74
27

26
13
2

27
11
1

67
59

21
21

56
.5

18
:3
3

84
16

11
7

21
1

94
3

73
3

91
3

13
28

60
0

13
63

35
12
57

75
0

M
on

15
/1
0

19
:1
9

10
35
3

72
4

33
8

72
3

38
7

18
2

78
9

13
36

15
37

91
1

69
3

76
2

16
04
.6

14
:5
4

26
74

39
43

43
68

35
57

55
11

31
11

39
.3

17
:5
9

50
72

84
13
9

86
28

28
22

68
22

22
69

56
.8

T
u
e

16
/1
0

18
:3
9

74
74

12
5

11
1

11
1

12
4

12
4

88
32

88
24
2

98
11
4.
3

21
0.
4

14
:5
5

29
55

32
11

57
30

38
30

35
64

31
67

39
.5

17
:5
4

50
19

22
67

14
8

67
67

10
8

63
22

29
22

61
.5

19
:0
4

78
74

16
7

16
7

35
35

16
7

10
5

35
2

33
8

10
5

12
1

15
9.
2

W
ed

17
/1
0

19
:2
7

10
13
7

85
2

92
0

74
0

48
16
4

27
3

32
9

88
2

24
4

85
6

53
0.
8

79
1

15
:1
2

27
93

10
11

11
56

32
55

57
37

57
11

33
.7

17
:5
2

51
31

64
22

64
11
1

64
68

68
69

22
22

57
.4

18
:4
0

77
37

33
33

10
2

16
0

51
33

16
0

91
33

10
3

79
.9

T
h
u
r

18
/1
0

19
:0
5

98
96

53
6

33
3

49
3

51
1

35
4

10
9

13
8

51
9

82
8

36
7

41
8.
8

55
6.
1

14
:5
5

26
14

10
31

32
10

34
11

56
11

11
53

25
.9

18
:0
7

51
80

22
69

22
69

22
22

11
0

69
22

22
44
.9

F
ri

19
/1
0

19
:1
2

79
81

99
33

92
93

34
17
9

10
4

11
5

15
4

64
0

15
4.
3

22
5.
1

T
ab

le
A
.5
:
P
es
si
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I1

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(g
re
en

ro
w
s
re
p
re
se
n
t
th
e
re
fi
n
em

en
t

o
cc
u
rr
en
ce
).

161

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

13
:2
5

37
99

50
52

59
49

45
10
5

16
83

45
44

54
.8

17
:0
1

50
43

66
17
0

10
3

60
60

10
3

17
0

59
65

66
92
.2

19
:3
4

58
22

15
6

29
34
3

19
3

43
4

24
5

65
7

20
1

55
4

20
4

30
1.
6

S
at

13
/1
0

19
:4
1

74
84

94
10
5

94
35

35
25
2

47
0

34
19
7

79
7

21
1.
3

65
9.
9

14
:1
5

57
29

15
4

28
15
1

26
3

43
6

55
3

27
3

65
4

23
2

41
3

31
5.
7

15
:4
3

60
67

25
5

19
6

29
1

12
7

86
25

57
1

26
16
4

27
6

20
1.
7

16
:5
0

69
88

23
9

65
6

72
3

74
4

68
4

99
72
4

98
1

79
7

89
8

65
4.
5

17
:5
9

80
99

64
3

98
3

51
6

66
8

78
4

76
8

58
9

90
9

62
3

10
21

75
0.
4

19
:3
5

12
41
4

34
85

33
06

31
76

33
67

36
02

29
12

21
56

25
46

34
91

26
11

30
65
.2

S
u
n

14
/1
0

19
:4
0

11
12
9

23
64

22
77

20
57

21
56

24
24

22
95

26
61

26
68

25
33

30
74

24
50
.9

74
38
.4

13
:5
0

29
53

21
11
9

10
3

18
8

17
39

12
0

16
50

51
16

24
2.
3

15
:4
8

38
83

26
26
3

17
7

30
1

28
7

10
4

27
7

19
1

67
59

17
5.
2

17
:1
7

50
62

24
49

21
58

23
30

22
47

23
75

13
9

70
4

67
3

45
2

29
0

13
81
.7

18
:0
7

66
38

29
4

47
8

10
18

60
2

69
3

15
8

55
9

44
9

24
2

19
9

46
9.
2

18
:4
4

77
75

10
06

16
27

11
47

12
21

93
8

14
52

12
08

10
74

64
8

19
0

10
51
.1

19
:0
1

91
89

12
75

13
11

11
80

10
58

11
70

68
8

20
18

92
8

12
70

11
96

12
09
.4

M
on

15
/1
0

19
:1
7

97
48

12
63

12
22

10
84

16
82

15
34

93
3

10
73

14
27

77
2

54
7

11
53
.7

56
82
.6

15
:1
6

30
61

42
32

33
42

31
36

38
41

30
31

35
.6

16
:3
5

38
94

93
32

70
66

10
1

94
16
1

38
17
2

16
3

99

17
:5
3

48
08

47
3

38
5

56
2

48
3

39
8

48
6

43
1

38
6

39
7

40
1

44
0.
2

18
:2
6

63
52

60
2

61
0

77
8

54
3

46
0

69
7

57
4

56
8

45
1

60
1

58
8.
4

18
:4
7

76
36

93
0

10
41

12
04

11
98

10
07

10
22

11
18

90
1

10
52

90
6

10
37
.9

T
u
e

16
/1
0

19
:4
8

89
90

10
21

99
3

13
05

15
08

15
10

16
41

99
6

10
09

12
03

11
02

12
28
.8

34
29
.9

T
ab

le
A
.6
:
L
C
I2

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t1
:
S
at

-
T
u
e)
.

162

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

15
:0
3

29
30

53
53

53
33

11
10

11
19

53
23

31
.9

16
:5
5

40
27

47
53

72
87

47
72

18
38

14
72

52

17
:4
7

48
84

10
2

85
20

57
57

64
85

21
20

56
56
.7

18
:1
9

59
81

37
8

30
31

40
6

49
6

68
8

59
1

68
3

84
67
4

40
6.
1

18
:3
9

67
88

23
22

28
68

24
74

22
65

18
26

18
09

21
87

15
51

23
19

20
02

21
62
.3

19
:1
3

86
84

17
88

13
35

11
69

13
19

15
15

13
97

17
85

10
83

21
72

23
11

15
87
.4

W
ed

17
/1
0

19
:5
1

10
03
3

15
89

19
01

16
51

16
29

16
42

85
2

14
78

15
65

15
37

15
73

15
41
.7

58
38
.1

15
:0
4

32
11

11
54

54
55

34
11

32
11

30
.5

32

32
9

81
49
0

35
1

43
52
7

39
1

34
0

50
7

43
9

34
9.
8

32
9

81

13
3

17
8

32
9

59
21

13
4

53
0

33
2

51
2

30
8

25
3.
6

13
3

17
8

13
7

90
53
1

55
42
6

13
4

81
48
7

18
6

16
9

22
9.
6

13
7

90

16
34

13
05

65
0

15
08

12
25

13
91

11
54

16
12

10
50

17
66

13
29
.5

16
34

13
05

10
37

10
29

95
3

15
14

85
8

16
80

64
3

48
9

12
17

11
9

95
3.
9

10
37

10
29

13
46

16
66

11
88

12
85

15
45

13
20

12
06

14
74

16
64

15
66

14
26

13
46

16
66

T
h
u
r

18
/1
0

25
08

15
52

86
8

87
7

98
4

49
0

57
1

76
8

82
6

99
5

10
43
.9

25
08

15
52

59
33

14
:5
5

10
13

55
31

32
11

32
11

68
11

27
.4

10

16
:3
6

78
16

51
45

51
80

30
51

45
16

46
.3

78

17
:4
1

22
22

25
7

67
22

11
0

67
22

31
3

63
96
.5

22

18
:4
8

63
0

51
3

73
29

64
1

67
5

57
7

92
50
7

49
0

42
2.
7

63
0

19
:1
2

84
4

10
65

10
45

91
2

45
0

15
09

10
61

12
29

20
50

14
56

11
62
.1

84
4

F
ri

19
/1
0

19
:3
6

18
4

34
9

51
4

52
2

39
8

76
6

78
1

91
3

54
7

79
2

57
6.
6

18
4

23
46

T
ab

le
A
.7
:
L
C
I2

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t2
:
W
ed

-
F
ri
).

163

Appendix A. Evaluation Extended Results

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

13
:2
5

37
99

50
52

59
49

45
10
5

16
83

45
44

54
.8

17
:0
1

50
43

66
17
0

10
3

60
60

10
3

17
0

59
65

66
92
.2

S
at

13
/1
0

19
:4
4

79
72

10
5

27
4

20
4

20
7

35
34

36
8

61
9

10
5

10
5

20
5.
6

35
2.
6

14
:1
5

57
29

15
4

28
15
1

26
3

43
6

55
3

27
3

65
4

23
2

41
3

31
5.
7

15
:4
3

60
67

25
5

19
6

29
1

12
7

86
25

57
1

26
16
4

27
6

20
1.
7

16
:5
0

69
88

23
9

65
6

72
3

74
4

68
4

99
72
4

98
1

79
7

89
8

65
4.
5

S
u
n

14
/1
0

18
:0
7

87
41

94
6

97
2

16
5

89
1

12
07

81
0

15
8

68
7

15
0

82
8

68
1.
4

18
53
.3

13
:5
0

29
53

21
11
9

10
3

18
8

17
39

12
0

16
50

51
16

24
2.
3

17
:1
7

50
62

26
26
3

17
7

30
1

28
7

10
4

27
7

19
1

67
59

17
5.
2

18
:0
7

66
38

11
7

21
1

94
3

73
3

91
3

13
28

60
0

13
63

35
12
57

75
0

M
on

15
/1
0

18
:3
6

74
13

72
4

33
8

72
3

38
7

18
2

78
9

13
36

15
37

91
1

69
3

76
2

19
29
.5

15
:1
6

30
61

39
32

39
32

32
40

39
30

11
31

32
.5

16
:3
5

38
94

15
9

19
55

84
10
7

15
4

60
88

27
10
6

85
.9

17
:5
3

48
08

61
0

31
37
3

39
0

41
7

38
0

25
2

40
5

32
9

80
32
6.
7

T
u
e

16
/1
0

18
:3
5

68
16

12
5

11
1

11
1

12
4

12
4

88
32

88
24
2

98
11
4.
3

55
9.
4

T
ab

le
A
.8
:
O
p
ti
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I2

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t1
:
S
at

-
T
u
e)

(g
re
en

ro
w
s

re
p
re
se
n
t
th
e
re
fi
n
em

en
t
o
cc
u
rr
en
ce
).

164

Appendix A. Evaluation Extended Results

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

15
:0
3

29
30

12
48

29
49

33
33

30
29

10
52

32
.5

16
:5
5

40
27

47
53

72
87

47
72

18
38

14
72

52

17
:4
7

48
84

10
2

85
20

57
57

64
85

21
20

56
56
.7

18
:2
2

56
00

16
7

16
7

35
35

16
7

10
5

35
2

33
8

10
5

12
1

15
9.
2

W
ed

17
/1
0

19
:0
3

69
84

85
2

92
0

74
0

48
16
4

27
3

32
9

88
2

24
4

85
6

53
0.
8

83
1.
2

15
:0
4

25
26

32
11

11
54

54
55

34
11

32
11

30
.5

17
:0
0

42
25

32
9

81
49
0

35
1

43
52
7

39
1

34
0

50
7

43
9

34
9.
8

18
:1
6

61
88

64
22

64
11
1

64
68

68
69

22
22

57
.4

18
:3
5

68
20

33
33

10
2

16
0

51
33

16
0

91
33

10
3

79
.9

T
h
u
r

18
/1
0

19
:0
4

70
90

53
6

33
3

49
3

51
1

35
4

10
9

13
8

51
9

82
8

36
7

41
8.
8

93
6.
4

14
:5
5

26
14
.

10
33

33
33

33
10

55
11

31
11

26

16
:3
6

39
45

78
16

51
45

51
80

30
51

45
16

46
.3

18
:0
6

51
80

22
69

22
69

22
22

11
0

69
22

22
44
.9

F
ri

19
/1
0

19
:1
1

73
98

99
33

92
93

34
17
9

10
4

11
5

15
4

64
0

15
4.
3

27
1.
5

T
ab

le
A
.9
:
O
p
ti
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I2

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t2
:
W
ed

-
F
ri
)
(g
re
en

ro
w
s

re
p
re
se
n
t
th
e
re
fi
n
em

en
t
o
cc
u
rr
en
ce
).

165

Appendix A. Evaluation Extended Results

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

13
:2
5

37
99

50
52

59
49

45
10
5

16
83

45
44

54
.8

17
:0
1

50
43

66
17
0

10
3

60
60

10
3

17
0

59
65

66
92
.2

S
at

13
/1
0

19
:4
4

79
72

10
5

27
4

20
4

20
7

35
34

36
8

61
9

10
5

10
5

20
5.
6

35
2.
6

14
:1
5

57
29

15
4

28
15
1

26
3

43
6

55
3

27
3

65
4

23
2

41
3

31
5.
7

15
:4
3

60
67

25
5

19
6

29
1

12
7

86
25

57
1

26
16
4

27
6

20
1.
7

16
:5
0

69
88

23
9

65
6

72
3

74
4

68
4

99
72
4

98
1

79
7

89
8

65
4.
5

S
u
n

14
/1
0

18
:0
7

87
41

94
6

97
2

16
5

89
1

12
07

81
0

15
8

68
7

15
0

82
8

68
1.
4

18
53
.3

13
:5
0

29
53

21
11
9

10
3

18
8

17
39

12
0

16
50

51
16

24
2.
3

17
:1
6

42
55

74
27

26
13
2

27
11
1

67
59

21
21

56
.5

18
:0
7

66
38

11
7

21
1

94
3

73
3

91
3

13
28

60
0

13
63

35
12
57

75
0

M
on

15
/1
0

18
:3
6

74
13

72
4

33
8

72
3

38
7

18
2

78
9

13
36

15
37

91
1

69
3

76
2

18
10
.8

15
:1
6

30
61

39
32

39
32

32
40

39
30

11
31

32
.5

16
:3
5

38
94

15
9

19
55

84
10
7

15
4

60
88

27
10
6

85
.9

17
:5
8

48
48

84
13
9

86
28

28
22

68
22

22
69

56
.8

T
u
e

16
/1
0

18
:3
5

68
16

12
5

11
1

11
1

12
4

12
4

88
32

88
24
2

98
11
4.
3

28
9.
5

15
:0
3

29
30

12
48

29
49

33
33

30
29

10
52

32
.5

16
:5
5

40
27

47
53

72
87

47
72

18
38

14
72

52

17
:5
3

45
70

22
67

14
8

67
67

10
8

63
22

29
22

61
.5

18
:2
2

56
00

16
7

16
7

35
35

16
7

10
5

35
2

33
8

10
5

12
1

15
9.
2

W
ed

17
/1
0

19
:0
3

69
84

85
2

92
0

74
0

48
16
4

27
3

32
9

88
2

24
4

85
6

53
0.
8

83
6

15
:0
4

25
26

32
11

11
54

54
55

34
11

32
11

30
.5

17
:5
1

47
45

64
22

64
11
1

64
68

68
69

22
22

57
.4

18
:3
5

68
20

33
33

10
2

16
0

51
33

16
0

91
33

10
3

79
.9

T
h
u
r

18
/1
0

19
:0
4

70
90

53
6

33
3

49
3

51
1

35
4

10
9

13
8

51
9

82
8

36
7

41
8.
8

58
6.
6

14
:5
5

26
14
.

10
33

33
33

33
10

55
11

31
11

26

16
:3
6

39
45

78
16

51
45

51
80

30
51

45
16

46
.3

18
:0
6

51
80

22
69

22
69

22
22

11
0

69
22

22
44
.9

F
ri

19
/1
0

19
:1
1

73
98

99
33

92
93

34
17
9

10
4

11
5

15
4

64
0

15
4.
3

27
1.
5

T
ab

le
A
.1
0:

P
es
si
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I2

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(g
re
en

ro
w
s
re
p
re
se
n
t
th
e
re
fi
n
em

en
t

o
cc
u
rr
en
ce
).

166

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

13
:2
5

37
99

51
16

88
63

76
16

92
80

46
16

54
.4

17
:0
1

50
43

15
4

20
1

60
23
9

22
27
9

21
0

36
1

25
9

20
7

19
9.
2

19
:3
4

58
22

29
7

47
6

62
7

38
9

62
3

31
3

41
3

50
1

23
6

65
2

45
2.
7

S
at

13
/1
0

19
:4
1

74
84

54
7

65
2

70
2

17
90

14
67

11
11

11
55

11
46

72
9

11
24

10
42
.3

17
48
.6

14
:1
5

57
29

10
6

18
9

72
17
1

28
53
8

59
5

48
5

38
6

42
5

29
9.
5

15
:4
3

60
67

20
7

22
5

16
1

27
2

17
8

27
6

34
0

50
3

67
0

61
1

34
4.
3

16
:5
0

69
88

85
7

81
8

77
8

45
9

78
2

11
01

83
3

84
2

76
4

92
2

81
5.
6

17
:5
9

80
99

97
6

79
9

57
4

66
1

62
2

11
28

10
88

11
10

10
66

93
5

89
5.
9

19
:3
5

12
41
4

35
98

34
30

35
89

34
27

35
13

30
79

30
80

29
78

33
09

33
20

33
32
.3

S
u
n

14
/1
0

19
:4
0

11
12
9

24
88

23
45

24
32

26
19

27
50

28
92

28
51

29
48

27
45

30
03

27
07
.3

83
94
.9

13
:5
0

29
53

16
9

64
26
1

14
7

32
0

63
49

17
48

82
12
2

15
:4
8

38
83

27
6

28
4

27
3

19
3

20
7

62
95

23
0

26
5

28
7

21
7.
2

17
:1
7

50
62

24
39

25
50

22
33

21
59

23
73

68
0

19
7

82
7

54
9

92
3

14
93

18
:0
7

66
38

48
0

39
6

44
1

38
9

68
7

30
8

34
6

26
0

34
38
6

37
2.
7

18
:4
4

77
75

11
60

10
59

12
08

11
92

11
43

99
3

99
3

86
7

10
97

12
06

10
91
.8

19
:0
1

91
89

13
32

11
47

13
32

11
89

13
14

10
65

13
12

13
10

85
7

13
60

12
21
.8

M
on

15
/1
0

19
:1
7

97
48

12
75

13
11

11
80

10
58

11
70

68
8

20
18

92
8

12
70

11
96

12
09
.4

57
27
.9

15
:1
6

30
61

39
38

39
42

32
40

60
39

11
32

37
.2

16
:3
5

38
94

18
6

33
68

84
10
7

15
9

93
18
1

37
17
4

11
2.
2

17
:5
3

48
08

61
0

37
1

57
3

49
0

41
7

48
0

45
2

40
5

42
9

43
9

46
6.
6

18
:2
6

63
52

61
3

77
8

60
6

54
3

47
2

73
0

55
5

53
4

46
9

53
4

11
07
.8

18
:4
7

76
36

91
7

10
60

11
90

12
46

10
04

10
13

11
17

90
7

10
84

90
3

10
44
.1

T
u
e

16
/1
0

19
:4
8

89
90

96
3

10
29

13
52

16
07

14
63

17
51

10
55

11
19

12
44

11
90

12
77
.3

40
45
.2

T
ab

le
A
.1
1:

L
C
I3

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t1
:
S
at

-
T
u
e)
.

167

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

15
:0
3

29
30

12
48

29
49

33
33

30
29

10
52

32
.5

16
:5
5

40
27

40
44

22
22

16
38

13
5

11
0

20
9

14
5

78
.1

17
:4
7

48
84

12
4

16
6

65
21
7

24
3

14
7

34
3

21
8

36
0

36
4

22
4.
7

18
:1
9

59
81

48
9

97
60
9

60
6

46
3

82
3

32
7

68
5

30
0

48
0

48
7.
9

18
:3
9

67
88

28
76

22
41

33
37

28
77

26
44

19
17

21
34

20
18

18
26

18
88

23
75
.8

19
:1
3

86
84

15
06

13
50

12
83

14
44

16
70

23
43

23
50

26
24

24
81

23
22

19
37
.3

W
ed

17
/1
0

19
:5
1

10
03
3

16
17

15
26

21
26

14
96

15
08

18
77

22
53

18
05

19
29

20
33

18
17

69
53
.3

15
:0
4

25
26

33
11

34
11

34
36

11
11

32
11

22
.4

17
:0
0

42
25

53
8

46
1

45
6

46
8

52
1

35
0

36
1

56
9

30
2

33
9

43
6.
5

17
:4
4

52
40

13
0

50
6

30
8

22
5

41
6

50
9

43
7

36
2

60
44
9

34
0.
2

18
:1
3

59
10

43
4

66
8

23
8

14
7

45
1

13
6

33
7

29
3

22
0

10
10

39
3.
4

18
:3
5

68
20

16
20

14
85

17
21

17
53

17
16

15
60

13
38

16
01

13
46

17
03

15
84
.3

19
:0
2

90
39

13
57

14
11

16
55

13
15

10
02

11
29

13
35

11
86

84
6

92
1

12
15
.7

19
:1
1

10
47
0

16
77

16
24

19
43

17
29

16
24

15
35

16
54

13
14

14
38

11
94

15
73
.2

T
h
u
r

18
/1
0

19
:2
2

11
12
4

12
20

12
99

13
27

11
07

10
94

10
98

13
44

92
4

10
39

10
51

11
50
.3

67
16

14
:5
5

26
14

10
33

33
33

33
10

55
11

31
11

26

16
:3
6

39
45

46
16

14
0

22
6

16
14
8

34
7

25
0

73
31
8

15
8

17
:4
1

51
80

32
4

69
70

25
7

11
0

30
1

10
3

20
2

63
18
3

16
8.
2

18
:4
8

66
77

61
5

97
0

91
7

86
2

68
5

80
6

96
1

77
2

67
5

74
0

80
0.
3

19
:1
2

79
81

11
65

12
10

85
9

13
95

14
87

17
70

13
97

16
70

12
23

11
80

13
35
.6

F
ri

19
/1
0

19
:3
6

10
09
3

79
4

90
4

61
0

92
5

35
8

11
43

11
30

67
0

82
7

96
5

83
2.
6

33
21

T
ab

le
A
.1
2:

L
C
I3

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t2
:
W
ed

-
F
ri
).

168

Appendix A. Evaluation Extended Results

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

13
:2
5

37
99

51
16

88
63

76
16

92
80

46
16

54
.4

17
:0
1

50
43

15
4

20
1

60
23
9

22
27
9

21
0

36
1

25
9

20
7

19
9.
2

S
at

13
/1
0

19
:4
4

79
72

35
94

30
3

16
6

35
6

53
7

49
4

10
6

43
3

35
25
5.
9

50
9.
5

14
:1
5

57
29

10
6

18
9

72
17
1

28
53
8

59
5

48
5

38
6

42
5

29
9.
5

15
:4
3

60
67

20
7

22
5

16
1

27
2

17
8

27
6

34
0

50
3

67
0

61
1

34
4.
3

16
:5
0

69
88

85
7

81
8

77
8

45
9

78
2

11
01

83
3

84
2

76
4

92
2

81
5.
6

S
u
n

14
/1
0

18
:0
7

87
41

12
53

12
98

88
8

13
07

99
6

51
16
70

17
20

17
50

17
90

12
72
.3

27
31
.7

13
:5
0

29
53

16
9

64
26
1

14
7

32
0

63
49

17
48

82
12
2

17
:1
7

50
62

27
6

28
4

27
3

19
3

20
7

62
95

23
0

26
5

28
7

21
7.
2

18
:0
7

66
38

24
49

21
58

23
30

22
47

23
75

13
9

70
4

67
3

45
2

29
0

93
2.
6

M
on

15
/1
0

18
:3
6

74
13

58
7

96
3

79
7

39
6

59
6

86
8

10
78

13
75

13
23

13
22

93
0.
5

22
02
.3

15
:1
6

30
61

39
32

39
32

32
40

60
39

11
32

35
.6

16
:3
5

38
94

15
9

19
55

84
10
7

15
4

83
14
1

27
16
4

99
.3

17
:5
3

48
08

61
0

31
37
3

39
0

41
7

48
0

45
2

40
5

42
9

43
9

40
2.
6

T
u
e

16
/1
0

18
:3
5

68
16

12
4

40
19
5

12
4

12
5

15
6

99
36
6

32
99

13
6

67
3.
5

15
:0
3

29
30

53
53

53
33

11
10

11
19

53
30

32
.6

16
:5
5

40
27

40
44

22
22

16
38

13
5

11
0

20
9

14
5

78
.1

17
:4
7

48
84

12
4

16
6

65
21
7

24
3

14
7

34
3

21
8

36
0

36
4

22
4.
7

18
:2
2

56
00

98
45
2

24
7

16
8

14
7

17
5

70
6

99
70
4

70
5

35
0.
1

W
ed

17
/1
0

19
:0
3

69
84

44
12
0

13
4

70
7

29
5

10
16

90
9

10
35

99
4

74
7

60
0.
1

12
85
.6

T
ab

le
A
.1
3:

O
p
ti
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I3

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t1
:
S
at

-
W
ed
)
(g
re
en

ro
w
s

re
p
re
se
n
t
th
e
re
fi
n
em

en
t
o
cc
u
rr
en
ce
).

169

Appendix A. Evaluation Extended Results

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

15
:0
4

25
26

33
11

34
11

34
36

11
11

32
11

22
.4

17
:0
0

42
25

53
8

46
1

45
6

46
8

52
1

35
0

36
1

56
9

30
2

33
9

43
6.
5

18
:1
6

61
88

13
0

50
6

30
8

22
5

41
6

50
9

43
7

36
2

60
44
9

34
0.
2

18
:3
5

68
20

14
1

22
6

35
56

16
1

50
4

46
7

28
2

10
3

60
4

25
7.
9

T
h
u
r

18
/1
0

19
:0
4

70
90

69
2

56
9

62
2

20
1

43
6

25
5

45
5

25
9

37
1

44
2

43
0.
2

14
87
.2

14
:5
5

26
14

10
33

33
33

33
10

55
11

31
11

26

16
:3
6

39
45

46
16

14
0

22
6

16
14
8

34
7

25
0

73
31
8

15
8

18
:0
6

51
80

23
11
2

37
22

63
96

64
71

11
1

11
1

71
F
ri

19
/1
0

19
:1
1

73
98

10
0

33
99

93
15
9

97
9

11
27

22
2

34
1

15
8

33
1.
1

58
6.
1

T
ab

le
A
.1
4:

O
p
ti
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I3

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(P
ar
t2
:
T
h
u
rs

-
F
ri
)
(g
re
en

ro
w
s

re
p
re
se
n
t
th
e
re
fi
n
em

en
t
o
cc
u
rr
en
ce
).

170

Appendix A. Evaluation Extended Results

D
at
e

20
18

T
im

e
In
p
u
t
R
eq

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

13
:2
5

37
99

51
16

88
63

76
16

92
80

46
16

54
.4

17
:0
1

50
43

60
21

66
21

21
10
9

66
66

67
10
4

60
.1

S
at

13
/1
0

19
:4
4

79
72

35
94

30
3

16
6

35
6

53
7

49
4

10
6

43
3

35
25
5.
9

37
0.
4

14
:1
5

57
29

10
6

18
9

72
17
1

28
53
8

59
5

48
5

38
6

42
5

29
9.
5

15
:4
3

60
67

20
7

22
5

16
1

27
2

17
8

27
6

34
0

50
3

67
0

61
1

34
4.
3

16
:5
0

69
88

85
7

81
8

77
8

45
9

78
2

11
01

83
3

84
2

76
4

92
2

81
5.
6

S
u
n

14
/1
0

18
:0
7

87
41

12
53

12
98

88
8

13
07

99
6

51
16
70

17
20

17
50

17
90

12
72
.3

27
31
.7

13
:5
0

29
53

16
9

64
26
1

14
7

32
0

63
49

17
48

82
12
2

17
:1
6

42
55

84
13
1

13
2

29
26

25
72

21
22

26
56
.8

18
:0
7

66
38

11
21

84
6

21
1

10
66

93
2

97
13
03

12
10

12
80

12
60

93
2.
6

M
on

15
/1
0

18
:3
6

74
13

58
7

96
3

79
7

39
6

59
6

86
8

10
78

13
75

13
23

13
22

93
0.
5

20
41
.9

15
:1
6

30
61

39
32

39
32

32
40

60
39

11
32

35
.6

16
:3
5

38
94

15
9

19
55

84
10
7

15
4

83
14
1

27
16
4

99
.3

17
:5
8

48
48

13
9

28
29

85
85

11
4

66
23

35
22

62
.6

T
u
e

16
/1
0

18
:3
5

68
16

12
4

40
19
5

12
4

12
5

15
6

99
36
6

32
99

13
6

33
3.
5

15
:0
3

29
30

53
53

53
33

11
10

11
19

53
30

32
.6

16
:5
5

40
27

40
44

22
22

16
38

13
5

11
0

20
9

14
5

78
.1

17
:5
3

45
70

67
10
3

67
67

10
9

81
72

22
68

23
67
.9

18
:2
2

56
00

98
45
2

24
7

16
8

14
7

17
5

70
6

99
70
4

70
5

35
0.
1

W
ed

17
/1
0

19
:0
3

69
84

44
12
0

13
4

70
7

29
5

10
16

90
9

10
35

99
4

74
7

60
0.
1

11
28
.8

15
:0
4

25
26

33
11

34
11

34
36

11
11

32
11

22
.4

17
:5
1

47
45

23
23

68
65

70
11
9

96
11
5

70
65

71
.4

18
:3
5

68
20

14
1

22
6

35
56

16
1

50
4

46
7

28
2

10
3

60
4

25
7.
9

T
h
u
r

18
/1
0

19
:0
4

70
90

69
2

56
9

62
2

20
1

43
6

25
5

45
5

25
9

37
1

44
2

43
0.
2

78
1.
9

14
:5
5

26
14

10
33

33
33

33
10

55
11

31
11

26

16
:3
6

39
45

46
16

14
0

22
6

16
14
8

34
7

25
0

73
31
8

15
8

18
:0
6

51
80

23
11
2

37
22

63
96

64
71

11
1

11
1

71
F
ri

19
/1
0

19
:1
1

73
98

10
0

33
99

93
15
9

97
9

11
27

22
2

34
1

15
8

33
1.
1

58
6.
1

T
ab

le
A
.1
5:

P
es
si
m
is
ti
ca
ll
y
R
efi
n
ed

L
C
I3

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
S
ca
le
-o
u
ts

(g
re
en

ro
w
s
re
p
re
se
n
t
th
e
re
fi
n
em

en
t

o
cc
u
rr
en
ce
).

171

Appendix A. Evaluation Extended Results

A.2 Detailed Experiment Tables for Traffic Bursts

Scenario

The following tables list the detailed experiment results for all 10 repetitions. These
tables show tested time and traffic bursts injected into the ISP’s CDN dataset and
the number of dropped requests. Tables A.16 and A.17 list the number of dropped
requests in Baseline 1 and Baseline 2 respectively. LCI 2, its earlier scaling refinement
and vertical upgrade refinement results are listed in Tables A.18, A.19 and A.20.

172

Appendix A. Evaluation Extended Results

In
co
m
in
g

R
eq
u
es
t

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

D
ro
p
s

32
35

13
25

11
88

44
45

8
10
55

87
1

10
17

17
10
16

65
9.
1

71
32

49
53

49
64

12
57

30
06

90
2

49
55

48
47

49
95

44
0

47
23

35
04
.7

80
99

58
88

58
85

17
01

45
03

22
17

58
93

58
27

20
37

49
6

28
07

37
25
.9

94
09

72
06

71
90

29
78

53
79

29
89

81
12

71
28

19
3

22
80

91
9

44
37
.8

68
81

46
83

46
61

29
53

31
08

31
02

52
17

45
76

30
4

19
4

41
28
84
.4

T
ra
ffi
c

B
u
rs
t
1

41
29

12
45

18
83

41
1

40
4

53
0

19
14

18
83

56
8

44
2

11
7

94
0.
2

47
94

39
9

91
89

25
61

29
3

25
27

89
25
37

40
0

18
90
0.
6

67
28

23
83

26
12
7

44
84

21
79

44
71

12
6

44
51

14
23

16
44

21
31
.8

77
60

32
08

95
14
6

55
01

24
71

55
37

14
5

54
77

87
3

14
62

24
92
.1

80
15

19
06

15
8

31
57
54

17
42

57
95

33
57
51

54
9

13
34

23
05
.8

T
ra
ffi
c

B
u
rs
t
2

54
42

21
10
1

21
31
82

10
1

19
15

21
21

10
1

10
1

55
8.
8

75
78

12
84

12
92

12
64

37
10
34

12
72

11
48

14
3

26
32

12
94

11
40
.4

85
01

22
15

23
76

27
85

27
0

91
5

21
33

20
29

16
2

52
20

22
86

20
39
.6

10
37
6

32
92

40
19

60
49

18
24

17
56

38
78

29
59

10
9

72
25

62
31

37
34
.7

91
95

70
3

30
54

53
76

47
29
9

27
39

59
4

17
3

61
75

55
76

24
73
.9

T
ra
ffi
c

B
u
rs
t
3

80
76

32
18
18

41
08

53
15
2

17
19

43
36

47
75

43
03

17
04
.5

35
63
4.
3

T
ab

le
A
.1
6:

B
as
el
in
e1

(G
K
E
A
u
to
p
il
ot
)
D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
T
ra
ffi
c
B
u
rs
ts
.

173

Appendix A. Evaluation Extended Results

In
co
m
in
g

R
eq
u
es
t

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

D
ro
p
s

32
35

44
45

8
45

8
8

45
45

8
8

27
.1

71
32

14
60

15
08

16
03

17
34

15
53

18
28

19
42

20
61

20
04

20
19

17
71
.8

80
99

16
40

24
38

21
04

26
32

24
96

28
62

28
84

23
90

30
24

20
24

24
49
.9

94
09

14
06

20
03

17
40

16
25

30
82

21
75

21
75

23
37

24
39

22
39

21
22

68
81

20
97

97
20

20
97

20
97

97
20

59

T
ra
ffi
c

B
u
rs
t
1

41
29

58
11

11
11

11
59

58
11

11
58

30
.5

47
94

13
67

67
13

67
13

13
13

14
67

35
.3

67
28

19
95

19
19

94
19

20
19

21
95

42
.6

77
60

69
25
2

16
1

22
22

49
5

22
54
9

23
44
6

20
6.
7

80
15

11
3

23
11
3

11
3

11
3

11
3

23
11
3

23
23

77
.6

T
ra
ffi
c

B
u
rs
t
2

54
42

77
77

77
15

15
15

15
15

76
77

46

75
78

22
22

22
22

22
10
8

10
7

22
10
7

22
48
.1

85
01

12
0

25
25

12
0

25
12
0

25
25

25
12
0

63

10
37
6

96
6

94
1

83
9

62
9

98
9

38
9

28
0

11
79

91
9

30
71
6

91
95

13
0

27
27

27
12
9

27
27

12
9

12
9

27
68
.5

T
ra
ffi
c

B
u
rs
t
3

80
76

24
23

23
11
4

24
11
4

24
11
5

11
4

11
4

69
.4

78
35
.2

T
ab

le
A
.1
7:

B
as
el
in
e2

(F
u
ll
y
-M

an
ag
ed

G
K
E
)
D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
T
ra
ffi
c
B
u
rs
ts
.

174

Appendix A. Evaluation Extended Results

In
co
m
in
g

R
eq
u
es
t

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

D
ro
p
s

32
35

45
45

8
8

8
8

8
8.

45
8

19

71
32

21
33

20
48

21
06

21
50

21
59

26
96

25
30

24
36

26
21

24
48

23
33

80
99

31
16

31
59

30
63

28
07

29
31

31
61

30
32

34
24

33
78

34
16

31
49

94
09

41
30

34
89

33
31

33
78

33
58

39
13

37
43

31
98

38
94

37
74

36
21

68
81

82
9

79
4

96
8

97
1

87
2

14
28

12
81

37
0

12
65

11
90

99
7

T
ra
ffi
c

B
u
rs
t
1

41
29

11
58

58
58

11
11

58
58

58
11

39
.6

47
94

13
47
80

67
13

13
13

67
13

13
12
0

51
1.
8

67
28

90
7

59
50

82
1

84
5

80
6

72
3

69
2

10
80

99
8

11
29

13
95
.5

77
60

13
41

64
57

15
09

12
83

19
21

16
88

16
85

18
88

14
31

13
22

20
52
.9

80
15

10
60

70
03

11
10

17
8

68
6

91
1

25
13
91

12
71

12
87

14
92
.5

T
ra
ffi
c

B
u
rs
t
2

54
42

77
53
64

15
15

15
77

15
77

77
77

58
1.
5

75
78

86
10
7

22
22

22
22

22
22

22
10
9

46

85
01

83
2

73
4

74
8

69
0

67
9

69
9

56
5

96
7

95
4

10
34

79
0.
5

10
37
6

16
19

25
98

25
47

22
15

21
05

18
93

22
56

19
54

11
30

21
94

20
51

91
95

27
13
0

27
27

12
9

35
4

27
13
0

27
27

90
.9

T
ra
ffi
c

B
u
rs
t
3

80
76

11
5

11
5

23
23

11
4

23
23

11
4

23
23

60
.3

19
23
3.
7

T
ab

le
A
.1
8:

L
C
I2

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
T
ra
ffi
c
B
u
rs
ts
.

175

Appendix A. Evaluation Extended Results

In
co
m
in
g

R
eq
u
es
t

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

D
ro
p
s

32
35

45
8

45
8

45
8

45
44

45
8

30
.7

71
32

10
49

13
04

10
89

10
91

15
84

16
85

18
96

16
84

14
39

15
59

14
38
.5

80
99

14
40

14
83

11
06

13
67

20
21

27
15

24
55

16
63

13
50

18
87

17
49
.1

94
09

13
88

45
3

72
0

35
4

17
63

15
20

18
05

19
72

18
03

12
50

13
03
.2

68
81

96
20

98
20

97
97

97
20

97
20

66
.7

T
ra
ffi
c

B
u
rs
t
1

41
29

11
58

58
11

11
11

57
11

58
58

34
.9

47
94

67
67

67
13

13
13

13
13

13
13

29

67
28

24
19

12
4

20
19

11
7

15
0

41
21
3

60
8

13
3

77
60

26
22

10
9

68
8

32
31
0

53
5

22
7

22
16
62

36
3.
9

80
15

11
5

23
11
3

11
4

11
3

23
24

23
23

11
3

68
.9

T
ra
ffi
c

B
u
rs
t
2

54
42

16
77

15
77

77
15

13
6

15
15

15
46
.4

75
78

10
7

10
7

22
22

10
7

22
22

22
10
6

22
56
.4

85
01

25
12
0

25
26

12
0

25
12
0

11
9

13
3

12
0

83
.8

10
37
6

20
2

97
8

44
6

36
7

18
30

32
34

13
46

32
31

53
0.
2

91
95

27
12
9

27
13
0

28
13
8

27
27

39
13
0

70
.7

T
ra
ffi
c

B
u
rs
t
3

80
76

11
4

11
3

24
24

24
24

11
5

23
11
5

11
3

69
.3

60
76
.9

T
ab

le
A
.1
9:

R
efi
n
ed

L
C
I2

(B
y
E
ar
li
er

S
ca
li
n
g)

D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
T
ra
ffi
c
B
u
rs
ts
.

176

Appendix A. Evaluation Extended Results

In
co
m
in
g

R
eq
u
es
t

R
at
e/
M
in

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

A
V
G

T
ot
al

D
ro
p
s

32
35

45
45

8
19

8
8

19
19

34
8

22

71
32

19
31

18
86

19
55

20
25

19
77

24
35

23
53

23
24

24
36

23
19

21
64
.7

80
99

26
73

29
42

27
75

27
54

28
01

30
71

29
87

31
14

32
72

29
98

29
39
.3

94
09

33
12

30
43

28
53

28
52

32
75

33
92

32
73

29
39

34
57

33
14

31
71
.6

68
81

58
6

58
5

70
7

68
6

61
6

10
29

90
2

28
8

91
5

83
9

71
5.
7

T
ra
ffi
c

B
u
rs
t
1

41
29

25
44

44
44

11
25

58
44

44
25

36
.8

47
94

13
33
66

67
13

29
13

51
13

13
10
4

36
8

67
28

64
0

41
94

58
1

59
7

59
2

51
2

49
0

76
2

70
5

81
9

98
9.
6

77
60

96
0

45
96

11
05

90
5

13
51

13
30

11
86

14
87

10
08

10
59

14
99
.1

80
15

77
6

49
09

81
1

15
8

51
4

67
1

24
10
08

89
6

90
8

10
68

T
ra
ffi
c

B
u
rs
t
2

54
42

77
37
78

34
15

15
58

15
58

76
77

42
0.
9

75
78

66
81

22
22

22
48

47
22

47
83

46
.6

85
01

61
8

52
1

53
1

51
9

48
2

52
5

40
3

68
4

67
5

76
0

57
2.
3

10
37
6

14
23

21
01

20
34

17
39

17
70

14
42

16
63

17
22

10
67

15
45

16
51
.1

91
95

58
99

27
27

12
9

25
6

27
13
0

58
27

84
.2

T
ra
ffi
c

B
u
rs
t
3

80
76

87
87

23
51

87
50

24
11
4

51
51

63
.1

15
81
4.
2

T
ab

le
A
.2
0:

R
efi
n
ed

L
C
I2

(B
y
V
er
ti
ca
l
U
p
gr
ad

e)
D
ro
p
p
ed

R
eq
u
es
ts

D
u
ri
n
g
T
ra
ffi
c
B
u
rs
ts
.

177

Appendix A. Evaluation Extended Results

A.3 Snapshots for CP and CCDN interaction

Figure A.1: CP’s Approval on Suggested CCDN Deployment.

Figure A.2: CP’s Rejection of Suggested CCDN Deployment.

178

Appendix A. Evaluation Extended Results

Figure A.3: CP’s Update on Suggested CCDN Deployment.

179

Appendix A. Evaluation Extended Results

Figure A.4: CP’s Update on Suggested Performance Improvement.

180

	Introduction
	Cloud Content Delivery Network (CCDN)
	Policy Based Management Systems
	The Shift Towards Autonomic Networks
	The move towards Intent-Based Systems
	Motivation
	Research Questions
	Thesis Aims and Contributions
	Thesis Structure

	Background and Related Work
	Terminologies
	Network Softwarization
	Network Function Virtualization
	Containerization
	Software Defined Networking

	Autonomic Networks
	Microservices Architecture (MSA)
	Background of MSA
	Requirements Engineering in MSA
	Multiple Criteria Decision Making (MCDM)

	Intent-Based Northbound Interfaces
	Intent Standardization Efforts
	Intents and Policies
	Different Intent Types
	Meta-Analysis for Intent-Based Northbound Solutions
	Intent-Based Northbound Solutions Limitations

	Different CDN Flavors
	CCDN Operations
	CCDN Use Case Assumptions
	CCDNs' Related work and Used Technologies
	Summary

	Design
	Design Motivation and Aims
	Leveraging CDNs by different domains
	Different CDN stakeholders’ collaboration
	Bi-directional interaction between intent consumers and the CDN
	Summary of Motivating Factors

	Intent Expressions, Syntax, and Descriptors
	Intent-to-Policy Mappings

	Architecture and Design
	Translation Layer
	Microservice Layer
	Database Layer

	Multiple Criteria Decision Making for CCDN Deployment
	Analytical Hierarchy Process (AHP)
	Analytical Hierarchy Process Computation
	The AHP Graph for CP's Targeted Workload Intent
	The Corresponding CCDN Deployment to the CP's Targeted Workload Intent

	Different Intent Targets
	Intent Refinement
	Discussion

	Implementation
	Communication Flow between Content Provider and the CCDN
	Implementing the Intent-Based CCDN
	Intent Translation
	Multi-Criteria Decision-Making Module
	CCDN Deployments Enumeration and Clustering Module
	Intent Technical Requirements Calculator Module
	Usual traffic behavior with gradual traffic increase
	Bursty Traffic behavior with sudden increase

	CCDN Deployment via Google Kubernetes Engine (GKE)
	Kubernetes Objects
	Kubernetes Deployment
	Horizontal Pod Autoscaler

	Summary

	Evaluation
	Experimental Methodology
	Intent Translation Evaluation
	Intent Execution and Refinement Evaluation
	CCDN Deployments Cost Calculation

	Intent Translation (CCDN Pre-Deployment Phase)
	Increasing Number of Criteria Results
	Increasing Number of Microservices Results
	Discussion

	CCDN Post-Deployment Phase
	Normal Traffic with Gradual Increase
	Low-Cost Intents Performance Results
	Discussion
	Low-Cost Intents Cost Results
	Discussion
	Low-Cost Intents Performance-to-Cost Score Results
	Discussion

	Traffic with Bursts
	Low-Cost Intents Performance Results
	Discussion
	Low-Cost Intents Cost Results
	Discussion
	Low-Cost Intents Performance-to-Cost Score Results
	Discussion

	Summary

	Conclusions
	Summary
	Contributions
	Future Work
	Exploring the standardized Intent Common Model
	Extending current CCDN with different intent targets and their translation
	Advancing intent APIs with Natural Language Processing
	Resolving intent conflicts

	References
	Appendix Evaluation Extended Results
	Detailed Experiment Tables for Normal Traffic Scenario
	Detailed Experiment Tables for Traffic Bursts Scenario
	Snapshots for CP and CCDN interaction

