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Background and Motivation
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• Floating offshore wind turbines (FOWTs) enable tapping into stronger 
and more predictable wind.

• Appealing option for countries with limited shallow waters.

Study’s aims: investigate FOWT yawed aerodynamics 
and demonstrate potential of harmonic balance CFD for 
generating data for low-fidelity model improvements.

• FOWT development typically uses low-fidelity tools.

• Computational Fluid Dynamics (CFD) contributes to 
understanding FOWT aerodynamics [1,2].
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• AERODYN Blade Element Momentum Theory (BEMT) libraries used 
in NREL OpenFAST wind turbine code.  Dynamic inflow used.

• ANSYS FLUENT incompressible code.
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Engineering, E. Ferrer and A. Montlaur editors, Springer International Publishing, 2019.
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Numerical methods

• Lancaster University massively parallel incompressible time- and 
nonlinear harmonic balance (frequency-domain) ARCTIC code [3], 
twin of COSA compressible code [4,5].



Harmonic balance ARCTIC/COSA solvers

• For given Nh and ω, express sought periodic solution as

FEATURES

• Reduces analysis of time-periodic flows by 30 to 50 times over 
conventional time-domain method due to:
– Treating unsteady problem as steady: no physical transient.

– Enabling use of multi-frequency periodicity BCs

• Captures flow nonlinearity quite well.

• RAM memory increases by factor (2Nh+1), but explicit CFD is not 
RAM-demanding



• Efficient parallel handling of all large I/O files6.

• Supports CGNS and TECPLOT, enabling interfacing with 
common grid generation and post-processing software

• High parallel efficiency of 
computing section, enabling large 
simulations to be run in a few 
hours.

• Strong scalability test:

• HB4 plunging wing analysis.

• 67,108,864-cell 16,384-blocks.

Parallelization

6. A. Jackson, M.S. Campobasso, J. Drofelnik, Load balance and parallel I/O: optimising COSA for large simulation, 
Computers and Fluids, Vol. 173, 2018, pp. 206-215.



Kinematics of FOWT rotor grids

Grid displacements:

where:

Grid velocities:

where:



Results: NREL 5 MW turbine

• V∞=11 m/s
• Ωr: -12 RPM (0.2 Hz) 
• Rotor tilt: 5o

• ϕtp=0o , β=0o and β=20o 

• ϴtp=1o; Ωtp=0.1 Hz and Ωtp=0.04 Hz 
• yPC=-90 m, zPC=5 m

• Time-domain and harmonic balance ARCTIC
• FLUENT
• NREL OpenFAST

Analysis codes

• FLUENT: about 10 M cells.
• ARCTIC: about 12 M cells.

CFD grid



Results: rotor power and thrust at Ωtp=0.1 Hz

β=0o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement

• At β=0o BEMT overpredicts 
peak CFD (HB4) T by 4.6%.

• At β=20o BEMT underpredicts 
peak CFD P by 3.4%.

• 4 harmonics are sufficient to 
capture flow nonlinearity



Results: blade power and thrust at Ωtp=0.1 Hz

β=0o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement

• At β=0o BEMT overpredicts 
peak CFD (HB4) T by 3.5%.

• At β=20o peak difference of 
BEMT and CFD P is 31.4%.

• 4 harmonics are sufficient to 
capture flow nonlinearity



Results: blade out-of-plane bending moment at Ωtp=0.1 Hz

β=0o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement

• At β=0o BEMT overpredicts 
peak CFD BM by 6.5%.

• At β=20o BEMT overpredicts 
peak CFD BM by up to 6.8%.

• 4 harmonics are sufficient to 
capture flow nonlinearity



Results: rotor power and thrust at Ωtp=0.04 Hz

β=0o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement

• At β=0o BEMT overpredicts 
peak CFD (HB4) T by 4.9%.

• At β=20o BEMT underpredicts 
peak CFD P by 3.4%. 

• 8 harmonics are sufficient to 
capture flow nonlinearity



Results: blade power and thrust at Ωtp=0.04 Hz

β=0o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement

• At β=0o BEMT overpredicts 
peak CFD (HB4) T by 5.4%.

• At β=20o peak difference of 
BEMT and CFD P is 25.4%.

• 10 harmonics are sufficient 
to capture flow nonlinearity

• BEMT blade P less oscillatory 
than CFD at β=0o; BEMT P & 
T more oscillatory at β=20o



Results: blade out-of-plane bending moment at Ωtp=0.04 Hz

β=0o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement

• At β=0o BEMT overpredicts 
peak CFD BM by 7.8%.

• At β=20o BEMT overpredicts 
peak CFD BM by up to 9.6%.

• To capture BM nonlinearity at 
β=20o , 10 harmonics are 
needed; FLUENT needs 6+ 
pitching cycles (30+ revs.).



• Quantitative BEMT/CFD agreement at high Ωtp is fair, with BEMT 
overpredicting rotor T by 4.6%, underpredicting rotor power by 3.4% and 
overpredicting peak BM by  up to 7%.

• Navier-Stokes CFD and BEMT predictions of pitching FOWT rotor aerodynamics 
performed at low and high Ωtp with/without yaw error.

• Largest qualitative differences are observed for misaligned wind, and 
agreement BEMT/CFD is worse at low Ωtp.

• Harmonic balance CFD reduces by 2x to 4x cost of high-fidelity analysis, 
with benefit increasing as pitching frequency decreases.

Summary

• Quantitative BEMT/CFD agreement at low Ωtp is TBC, with BEMT 
overpredicting T by 4.9%, underpredicting power by 3.4% and 
overpredicting peak BM by  up to 9.6%.



Thank you for your attention!
m.s.campobasso@lancaster.ac.uk

Any questions?

COSA will be made opensource by end of 2023.

mailto:m.s.campobasso@lancaster.ac.uk


Results: blade power and thrust of all blades at Ωtp=0.04 Hz

β=20o, ϴtp=1o

β=20o, ϴtp=1o

• All 3 CFD codes are in good 
reciprocal agreement
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