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This paper contributes GazeSwitch, an ML-based technique that optimises the real-time switching between eye
and head modes for fast and precise hands-free pointing. GazeSwitch reduces false positives from natural head
movements and efficiently detects head gestures for input, resulting in an effective hands-free and adaptive
technique for interaction. We conducted two user studies to evaluate its performance and user experience.
Comparative analyses with baseline switching techniques, Eye+Head Pinpointing (manual) and BimodalGaze
(threshold-based) revealed several trade-offs. We found that GazeSwitch provides a natural and effortless
experience but trades off control and stability compared to manual mode switching, and requires less head
movement compared to BimodalGaze. This work demonstrates the effectiveness of machine learning approach
to learn and adapt to patterns in head movement, allowing us to better leverage the synergistic relation
between eye and head input modalities for interaction in mixed and extended reality.

CCS Concepts: • Human-centered computing→Mixed / augmented reality; Virtual reality; Pointing;
Gestural input.

Additional Key Words and Phrases: Gaze interaction, Refinement, Eye Tracking, Eye-head Coordination,
Computational Interaction, Machine Learning

ACM Reference Format:
Baosheng James Hou, Joshua Newn, Ludwig Sidenmark, Anam Ahmad Khan, and Hans Gellersen. 2024.
GazeSwitch: Automatic Eye-Head Mode Switching for Optimised Hands-Free Pointing. Proc. ACM Hum.-
Comput. Interact. 8, ETRA, Article 227 (May 2024), 20 pages. https://doi.org/10.1145/3655601

1 INTRODUCTION
The synergistic relationship between eye and head input modalities offers a promising approach
for achieving hands-free pointing [22, 35, 37, 48]. The proposed BimodalGaze technique [37], for
instance, allows for greater pointer control by automatically switching between ‘Gaze Mode’ for
coarse positioning and ‘Head Mode’ for refinement. This seamless switch leverages eye-head
coordination insights that allow the separation of natural from gestural head movement [34].
Natural head movement occurs when the head moves to support our visual system during a gaze
shift so that we can see objects that are not right in front of us while keeping the eyes within a
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comfortable eye-in-head position. Gestural head movement occurs when the head is used in its
own right, and is independent of gaze.

While prior research has demonstrated the potential utility of this insight into eye-head coordina-
tion for distinguishing both movements, achieving optimal mode switching performance based on
these movements remains a challenge due to the similarities in relative movement patterns of the
eyes and head that occur during natural and gestural head movements. When we shift our gaze to a
target in ‘gaze mode’, the head will follow, at a slower pace, to maintain a comfortable eye-in-head
position, although our eyes have already reached the target. Simultaneously, our eyes perform
compensatory movements opposing to the head movement to stabilise vision (vestibulo-ocular
reflex [5]). In ‘head mode’, the eyes remain fixated on the target to maintain visual acuity, but as
the head moves, the eyes also move in the opposite direction to the head. Leveraging this insight,
the BimodalGaze technique explored a threshold-based approach to classify these movements for
automatic mode switching between gaze and head modes but found limitations in using fixed
threshold values. When the threshold for transitioning from gaze mode to head mode is set too
high, it will result in difficulty entering head mode. Conversely, if the threshold is set too low, it
triggers head mode prematurely, resulting in more head movement required for pointing. Similarly,
when determining the switch from head to gaze mode, a too-high threshold can result in difficulty
entering gaze mode while in head mode, whereas a too-low threshold causes it to exit head mode
too easily, leading to instability in the mode switching.

In this paper, we contribute GazeSwitch, an automatic ML-based approach for real-time switching
between eye and head mode for optimised hands-free cursor control in mixed and extended reality.
GazeSwitch leverages insights from HeadBoost [17], our previous work, which introduced a method
for separating gaze-driven and gestural head movements using a machine learning approach. In
evaluation, HeadBoost proved effective compared to BimodalGaze’s threshold-based approach
[37]. It achieved better overall classification accuracy and detected the onset of head mode earlier,
suggesting that an ML-based approach that learns the patterns of eye-head movements can not
only optimally identify the onset of each mode but also prevent unintended mode switches, thereby
contributing to a better user experience.

We evaluated GazeSwitch using an HTC Vive Pro Eye VR HMD with a 120 Hz integrated Tobii
eye tracker through two user studies. The first study compared mode switching and target selection
performance against Eye+Head Pinpointing [22], a manual technique where the user presses and
releases a controller button to mode switch, and BimodalGaze [37], an automatic technique where
users perform the head refinement movement when they intend, and the system automatically
detects the mode-switch using a threshold-based algorithm. The second study compared the user
experience of GazeSwitch against Eye+Head Pinpointing for hands-free cursor control on two tasks
(i.e., tracing and colouring). Our findings indicate that GazeSwitch is effective for both discrete target
selection and continuous interactions, affirming the overall validity of our proposed technique.
Further, GazeSwitch allows for a smooth transition between modes, eliminating the need for users
to perform manual clutching as required with Eye+Head Pinpointing, or execute exaggerated head
movements as in the case of BimodalGaze.
In sum, we contribute: (1) An eye-head pointing technique where cursor control switches

automatically between gaze mode for coarse positioning and head mode for precise positioning.
(2) A mode switching approach that is based on ML classification of head movement to ensure
that head mode is only activated when any head movements in support of a gaze shift have been
completed as they would otherwise cause unintended input. (3) Evaluation of the performance and
user experience of GazeSwitch against manual Eye-Head Pinpointing, showing our technique to be
as performant while automating the mode switch, which reduces effort but trades of control.
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2 RELATEDWORK
Gaze has been widely explored as a hands-free alternative to manual input, as it functions as a fast
and natural pointer for selection—people naturally look at objects before selecting them. However,
using the eyes for input has limitations [28]. First, even during fixation, the eye is never completely
still, which makes precise eye-based pointing challenging, especially for selecting small targets
[52]. Second, although eye tracking has come a long way, its accuracy and precision are influenced
by various factors, including calibration, lighting conditions, and the potential for drift over time.
To address these inherent limitations, researchers have proposed a multitude of techniques, such
as algorithms to smoothen eye tracking data [e.g. 12, 47], zooming techniques for accurate target
selection [e.g. 1, 13, 42], and selection and disambiguation techniques that do not rely on calibration
[e.g. 26, 32, 33, 45].
A promising approach involves harnessing the rapid pointing and hands-free capabilities of

gaze for initial coarse positioning, and employing a complementary modality that affords more
precise control for further positioning. A fundamental work that demonstrates this combination
is MAGIC pointing [11, 51], where the cursor is “warped” to the gaze location and adjusted with
manual mouse input, resulting in a substantial enhancement in pointing speed. In AR and VR,
this principle has also been applied to controller movements [19]. Gaze-Shifting by Pfeuffer et al.
[30] demonstrates the same principle with direct touch and pen input, where either input can be
directly or indirectly mapped to the gaze area. The integration of gaze input with other modalities
not only reduces physical movement and user fatigue but also enhances efficiency, fine control,
and precision while capitalising on the natural speed and convenience of gaze pointing [2].
Besides hand-based input, head input has shown to be a promising input for disambiguation

and refinement pointing for target selection, as the head affords hands-free fine control. In our
previous work, we found that users have fine-grained over their head movement (∼0.3 degrees) [17].
Eye-head combination capitalises on the strengths of both modalities, with the eyes providing fast
and precise input while head movements enable finer adjustments. Moreover, eye-head techniques
for pointing have been found to achieve faster speeds than head-only techniques [19, 21, 40].
Early works on desktop-based interaction combined head movement with gaze to refine gaze

movements with leaning [48] or rotating head movements [27]. However, a key assumption for
these works is that head movement is only used for interaction, not for controlling the viewport,
as in VR. As the head position can easily be tracked in 3D interfaces, several techniques have
been proposed that leverage head input—with many leveraging eye-head coordination insights for
selection and manipulation. For example, using the head with estimation of gaze depth for target
disambiguation [24], or for menu control [39].
In a study that compared variations of eyes for selection and other inputs for refinement, head

correction of gaze is preferable even if manual input is available, as it requires less physical effort
[22]. This eye+head variation, ‘Eye+Head Pinpointing’, is where the cursor is initially controlled
with gaze and switches over to refinement mode when the user holds down a controller button
to invoke head input. Head movements are then used to make precise adjustments to the cursor
position, effectively “pinpointing” the target. When the user releases the button, the target returns
to gaze pointing mode. In head-refinement mode, the CD-gain is adjusted to 0.5, allowing the
technique to select small targets, as small as 0.5 degrees. While a manual switching technique
affords users control over when to enter refinement mode, this switching process can be seamless,
as shown with BimodalGaze [37].

The BimodalGaze technique seamlessly integrates eye and head movements, enabling automatic
mode switching based on a threshold-based algorithm. The algorithm classifies and seamlessly
transitions between gaze mode (gaze-driven head movements) and head mode (gestural head
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movements) using a set of thresholds. BimodalGaze enters ‘head mode’ when a head movement is
detected (head velocity >15◦/𝑠) that started at least 150 ms after the previous gaze shift, and the
angular difference between the trajectory of the eyes and head at least 20 degrees while ‘gaze mode’
when either a gaze shift is detected (gaze velocity >160◦/𝑠) or when the distance between gaze and
cursor is more than 10 degrees. Hence, by classifying when the head supports gaze (natural) and
when the head is used for interaction (gestural), the technique allows the seamless transition where
the eyes are used for fast coarse pointing and head movements for refinement.

However, despite participants in their user study describing BimodalGaze’s ability to automatic
mode switch as smooth and effortless compared to Eye+Head Pinpointing, it displayed a greater
frequency of initial selection errors. This impacted both the total selection time and the overall
performance despite its shorter refinement time. BimodalGaze employed a high head velocity
threshold as a heuristic to minimise consistent mode switching. This threshold, however, intro-
duced challenges when only small movements were required, often leading to overshooting as
users resorted to exaggerated head motions to trigger the algorithm to enter head mode. These
issues primarily stemmed from the limitations inherent in a threshold-based approach, impacting
mode switching performance.

In our work, we build on the insights from BimodalGaze for automatic eye-head mode switching,
and the potential of head movement classification from our previous work, HeadBoost [17]. The
HeadBoost classifier addresses the challenge of correctly classifying between two fundamental
types of head movements: gaze-driven head movement (Head-Gaze) and gestural head movement
(Head Gesture). The classifier, built using XGBoost [3], takes as input position and direction 3D
vectors of both eye and head movements. It incorporates a comprehensive set of over 600 eye
and head-related features sourced from eye and head movement classification literature, along
with feature vectors from prior timestamps to capture and analyse user behaviour. These features
encompass shape, noise, spectral, temporal, and correlation characteristics of the eye and head
vectors, and in combination, facilitate the classification of head movements. This novel approach
yielded exceptional results, boasting an offline classification accuracy with an 𝐹1-Score of 0.89 for
effectively discriminating between the two types of head movement.
In comparison with BimodalGaze, the HeadBoost classifier demonstrated better classification

performance (𝐹1-Score: 0.89 vs 0.62), indicating a substantial improvement in overcoming the
limitations of a threshold-based approach. Moreover, HeadBoost results showed that it predicted
the onset of Head Gesture much earlier than BimodalGaze (119 ms earlier on average for all trials),
an area that required improvement. In further analysis, the Headboost classifier accurately classified
small head movements (<15◦/𝑠), compared to BimodalGaze. This performance enhancement can be
attributed to the capacity of using a machine learning approach to learn and adapt to patterns in
head movement, effectively overcoming classification challenges—a viable approach in light of the
natural eye-head coordination behavioural complexities discussed in Introduction.

3 GAZESWITCH
To develop GazeSwitch, we first obtained a labelled dataset of eye and head movement data of
participants as they performed cursor refinement tasks in a controlled study (detailed in Section 3.1).
We closely followed the pipeline steps used to develop HeadBoost [17], including preprocessing and
the initial steps for feature engineering (Section 3.2). With recursive feature selection, we obtained
a classification rate above 120 Hz with a high classification performance of 0.91 𝐹1-Score (Section
3.3). We then apply the ability to classify head movement types with a simple logic to robustly
define the mode switch between gaze pointing and head refinement (Section 3.4).
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Fig. 1. Left: Task sequence for data collection. (a-b) Participants fixates on a target, receiving green feedback.
50% of the time, a new target appears, prompting a new gaze shift, the sequence repeats. (c-d) 50% of the time,
the target centre turns red, and a black dot appears in the centre to prompt a refinement to place the cursor
as close to the target as possible using head mode (thumbpad press) before selecting the target (thumbpad
release). A new target appears, and the sequence repeats over. Right: Data collection setup.

3.1 Data Collection
We designed a target acquisition task and corresponding study procedure to collect eye and head
movement data typical of gaze pointing and head refinement. We developed the apparatus using
Unity 2020.3.32f1. Figure 1 illustrates the task sequence, uniquely designed to collect large variances
of labelled eye and head movements for training. To collect gaze shifts of various directions and
amplitudes, targets appeared at randomised positions of diverse patterns, some requiring only a
gaze shift towards them and others demanding cursor refinement. Trials involving head mode
selection occurred with a 50% probability, and the sequence of pointing modes was randomised.
In cases requiring refinement, participants employed a technique akin to Eye+Head Pinpointing
[22], toggling mode switching by pressing and releasing the thumbpad of a controller to place the
cursor as close as possible to the target centre. The period with the controller button held down is
labelled as ‘Head Gesture’, while the remaining samples are labelled as ‘Head-Gaze’.
We followed the target design used in HeadBoost [17], featuring a diameter of 5.72 degrees, a

transparent centre of 2.56 degrees (Figure 1a), and a black dot of 0.8 degrees in diameter (Figure 1c).
The small size of the black dot was chosen to challenge gaze pointing, thereby encouraging partici-
pants to invoke head mode for refinement. The transparent centre provided feedback, transitioning
from green when the user fixated on the target to red to indicate the need for closer placement to
the centre. The target size was to ensure that the target was visible in the VR scene, facilitating
participants in easily locating the subsequent target. For all trials, we collected the eye-in-world di-
rectional 3D vector, eye-in-head directional 3D vector, head position 3D vector, and head directional
3D vector.
We recruited 5 participants from our local university, aged 22-30 (M=26.8, SD=3.54, 1 female, 4

male). No prior VR or eye tracking experience was required, but participants needed to have normal
or corrected-to-good vision. Upon arrival, participants were comfortably seated, briefed on the study
procedure, and asked to sign a consent form before completing a demographic survey. They were
then instructed to wear the HTC Vive Pro Eye VR HMD with integrated 120 Hz Tobii eye tracker,
with assistance provided if needed, and underwent a five-point eye-tracking calibration. Following
this, participants were asked to complete one sequence (30 trials) to familiarise themselves with
the task before the data collection phase. Each participant completed 300 trials (10 sequences ×
30 trials). Breaks were permitted between the sequences, and participants recalibrated each time
they removed the HMD. Each session took approximately 40 minutes. The study procedure was
approved by Lancaster University’s research ethics committee.
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3.2 Dataset Preprocessing and Feature Engineering
The data collection session resulted in 246898 timestamps from 1500 trials (300 trials per participant),
with 65.3% of samples labelled as Head-Gaze, and 34.7% as Head Gesture. We preprocessed the
raw data following best practices [4, 6, 8], filtering out samples with an inter-sample velocity
exceeding 800◦/𝑠 . Following this, we applied cubic spline interpolation to standardise the sampling
rate to 120 Hz (sampling frequency of the eye tracker). Lastly, we converted the 3D directional
gaze and head vectors into 2D Fick angles using the Fick-gimbal method [15]1, mirroring the
approach in our HeadBoost paper for consistency in feature generation. Furthermore, we adopted
the hyperparameter choices used in HeadBoost, for both feature calculation and classifier training,
determined through cross-validation.

We extracted shape-, noise-, spectral-, correlation-, and timing-based features (see Appendix B),
computed over a window length of 512 ms. To address issues related to multicollinearity during
classification, we refined the features using correlation distance and hierarchical clustering [25],
resulting in a streamlined set of 80 representative features. We then included the features from
the last 1024 ms for each labelled timestamp at every 6.25 Hz to capture the temporal context of
users’ behaviour. This resulted in a set of 600 features for each labelled time stamp. To overcome
computational costs and the risk of overfitting [9], we applied Recursive Feature Addition (RFA).
RFA involved incrementally adding features and assessing model performance on testing folds,
retaining only features that improved performance. This process yielded a final set of 28 features for
each labelled timestamp for classification. Fifteen of the final features are based on eye movement,
13 are based on head movement (Appendix B.2).

3.3 Model Classification and Evaluation
We use the final set of 28-dimensional features to train an XGBoost model (20 trees, max. depth 6)
to classify between Head-Gaze and Head Gesture. As demonstrated in HeadBoost [17], XGBoost
was superior in performance across the testing folds compared to other models. We then evaluated
the classifier using leave-one-participant-out cross-validation, training the classifier five times,
each time training the classifier on the data of four participants and evaluating it on the trials of the
last participant. Model performance was evaluated using two metrics: the 𝐹1-Score and the Area
Under the Receiver Operating Characteristics Curve (AUC). 𝐹1-Score combines precision and recall
in a single metric, while AUC measures the classifier’s ability to differentiate between classes. Both
metrics range from 0 to 1, with 1 indicating perfect performance. The performance results of the
user-independent model indicate that the built classifier can optimally classify head movements,
achieving a high average 𝐹1-Score of 0.91 (SD=0.01) and a high AUC score of 0.93 (SD=0.01), as
well as high Precision and Recall scores, 0.92 (SD=0.01) and 0.90 (SD=0.02), respectively.

3.4 Mode Switching Logic
To switch into gaze mode, two conditions must be satisfied: (1) the trained ML classifier predicts
gaze mode, and (2) the dispersion of the eye-in-head angles from the last 50 ms is greater than 3.6◦.
The second condition overwrites the ML prediction if the user is still fixating to maintain a steady
head mode period. The 3.6◦ threshold chosen is twice the eye tracking precision of the HTC Vive
Pro Eye during static head phases (2 × 1.8◦ mean intersample RMS) [41], and the 50 ms duration is a
trade-off between window size and real-time classification responsiveness. The dispersion threshold
serves to counter eye tracking imprecision and prevent unintended gaze mode activation due to
minor jitters. Furthermore, requiring confirmation from both the ML model and the dispersion

1Functions for converting between gaze 3D vectors, Fick angles, and visual angles are authored by Per Bækgaard, available
at https://github.com/baekgaard/fickpy
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Fig. 2. Trial sequence. (a) The participant aligns their eyes and head to a centred neutral position following
visual feedback by placing a black dot into a blue square. (b) Target onset, the cursor is visible as a white
ring, indicating currently the user is currently in Gaze Mode. (c) In Gaze Mode, as the participant gaze shifts
towards the target, the cursor follows eye gaze towards the target. (d) The participant may switch to Head
Mode to refine the cursor position, if so, the cursor changes to a white cross to indicate Head Mode. The
target turns green when acquired by the cursor. Selection is made with a button-up event of the thumbpad.
The target is selectable in both Gaze and Head modes. The next trial begins after realigning eyes and head as
in the first step. The cursor fading and the arrows are for illustrations only.

threshold mitigates accidental mode-switching resulting from single-frame false predictions of the
ML model. This approach differs from BimodalGaze, which activates gaze mode by detecting larger
gaze shifts with a velocity threshold. Through a pilot study, we found that thresholds worked well
for the participants, giving confidence in our chosen parameters. The algorithm for GazeSwitch
mode switching logic can be found in Appendix A.

4 STUDY 1: PERFORMANCE EVALUATION
We evaluated the performance of GazeSwitch against two existing eye-head mode switching
techniques, Eye+Head Pinpointing (manual) and BimodalGaze (threshold-based). We used a 3 × 2 ×
3 within-subject design with the three techniques, two target widths (0.8◦, 1.5◦) and three amplitudes
(10◦, 25◦, 40◦). We recruited 12 participants, aged 21 to 50, (M=29, SD=7.07, 6 female) through the
university’s mailing lists for this study. No prior VR or eye tracking experience was required, but
participants needed to have normal or corrected-to-good vision. Eleven participants had either
occasional or no VR experience, while one reported daily VR headset use. Six participants had no
prior experience with eye tracking, whereas six reported occasional use. The study environment
and tasks were developed in Unity version 2020.3.32f1. We collected the eye-in-world directional
3D vector, eye-in-head directional 3D vector, head position 3D vector, and head directional 3D
vector using a HTC Vive Pro Eye VR HMD (90 Hz). The HMD has a field of view (FOV) of 100◦ in
the horizontal plane, 110◦ in the vertical plane and a built-in eye tracker (120 Hz).

4.1 Task
We adopted a pinpointing task for this study, similar to the task used in BimodalGaze [37], which
required participants to perform precise pointing for target selection using eye-headmode switching.
Hence, targets can be selected in either eye or head mode, while confirmation is triggered using
the controller. Given that the 0.8◦ target might be challenging to discern at larger amplitudes, we
enhanced its visibility by introducing a white crosshair with a 3◦ transparent space at its centre
and a thickness of 1◦ surrounding the target. Figure 2 illustrates the trial sequence.

At the onset of each trial, participants are guided visually to align their eyes and head, in which
we enforce that the eyes and head position are within 5 and 2 degrees, respectively, from a centred
neutral position, with the head velocity limited to less than 2◦/𝑠 . Once the alignment is completed,
a black circular target appears, signalling the participant to look towards it. The cursor is visible
throughout the trial and is initially attached to the filtered gaze point. We applied a 1€ filter with a
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minimum cutoff frequency of 1 Hz, slope beta value of 10, with the default 1 Hz cutoff frequency to
smooth the cursor for visualisation, but the raw data streams were used as input to GazeSwitch.

Participants were required to place the cursor as close as possible to the target centre, with the
option to switch to head mode to fine-tune the cursor position. In gaze mode, the cursor appears as
a white ring (Figure 2b), while in head mode, it changes to a white cross (Figure 2d). Upon entering
the target area, it turns green as hover feedback. The participant then completes the selection with
a button-up event of the thumbpad of the controller. If the cursor is off-target at selection, or if no
selection is made within 5 seconds, an error audio cue is played, and the trial is marked as failure.
The target position will then be re-queued at the end of the block for a maximum of two additional
attempts. If the target is selected within the 5-second window with the cursor inside the target area,
the trial is marked as a success and will not be re-queued. The next trial begins after realigning the
eyes and head back to the centre. The block concluded either upon selection of all targets or when
the maximum attempts were exceeded (3 per target position).

4.2 Procedure
Upon arrival, participants were seated comfortably and provided with a briefing on the study.
They were then given a consent form and a demographic questionnaire to be signed and filled out,
respectively. They were then instructed to put on the HMD, with assistance provided if required, and
to undergo the five-point eye tracking calibration. For each technique block, participants completed
six sequences (2 Target Sizes × 3 Repetitions) of 24 trials (8 Directions × 3 Amplitudes) each, with
the two target size levels randomly and evenly ordered. The techniques are counterbalanced with a
Latin Square. Participants were then offered the opportunity to practice the current technique at
the beginning of each block, involving one sequence of 24 trials with 0.8-degree targets.

At the end of each technique block, participants were asked to remove HMD, fill out a NASA TLX
questionnaire [14] and provide verbal feedback about the technique they just used. Participants
continued to the next block when ready.
In total, each participant performed 144 trials (3 Techniques × 2 Target sizes × 24 Trials). The

study took 60 minutes to complete, after which we progressed to a second subsequent study that
took a maximum of 30 minutes, which we report in Section 5. Participants were compensated
with a £10 Amazon gift card for their time. The study procedures were approved by Lancaster
University’s research ethics committee.

4.3 Results
We performed a three-way repeated-measures ANOVA with interaction technique, target size, and
target amplitude as independent variables, using a significance level of 𝛼 = 0.05. In cases where the
data was ordinal or conventional transformations did not address normality, we applied the Aligned
Rank Transform (ART) technique [49] and confirmed that the aligned responses approximately
summed to zero. When the assumption of sphericity was violated, as indicated by Mauchly’s test,
we employed Greenhouse-Geiser correction. Post hoc tests were carried out using pairwise t-tests
with Bonferroni corrections or the ART procedure for multifactor contrast tests [10]. We analysed
usability Likert-scale data using Friedman tests with Bonferroni-corrected Wilcoxon tests for post
hoc analysis. Table 1 shows the mean and standard deviation for each performance evaluation
metric.

4.3.1 Selection time. Selection time, measured from the onset of a trial to a successful selection,
serves as an indicator of the overall technique speed. We found a significant main effect for
Technique (𝐹1.98,21.74 = 11.27, 𝑝 < 0.001), Target Size (𝐹1,11 = 27.2, 𝑝 < 0.001), and Target Amplitude
(𝐹1.37,15.12 = 56.1, 𝑝 < 0.001). Post hoc examination demonstrated that Eye+Head Pinpointing
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Table 1. Performance metric for the techniques, with mean and standard deviation (in parenthesis).

Eye+Head Pinpointing BimodalGaze GazeSwitch

Selection time (s) 1.74 (0.25) 2.00 (0.25) 2.10 (0.27)
Error rate 0.04 (0.03) 0.08 (0.03) 0.06 (0.03)
Time to first head-mode (s) 1.00 (0.22) 0.87 (0.14) 1.13 (0.07)
Number of mode switches - 1.00 (1.00) 1.09 (0.05)
Total head movement (deg) 9.75 (3.98) 12.56 (4.02) 10.73 (4.48)
Total head movement in head-mode (deg) 2.15 (1.42) 3.64 (0.87) 1.74 (0.42)
Subjective performance rating (NASA-TLX) 2.00 (0.58) 3.00 (1.35) 2.50 (1.19)

(a) (b) (c)

(d) (e) (f)

Fig. 3. The performance metrics of all mode switching techniques evaluated from target selection task. *
p<0.05, ** p<0.01, *** p<0.001

exhibited a significantly shorter selection time compared to both BimodalGaze and GazeSwitch
(𝑝 < 0.001) (see Figure 3a). Selection times were significantly longer at the 40◦ amplitude compared
to all other amplitudes (𝑝 < 0.001) and at the smaller (0.8◦) target size (𝑝 < 0.001). No significant
interactions were observed.

4.3.2 Error rate. We define an error as missing the target due to trial timing out or having an
inaccurate cursor position at the time of selection, measured as error rate (percentage of unsuccessful
initial attempts). We found significant main effects for Technique (𝐹2,22 = 12.88, 𝑝 < 0.001) and
Target Amplitude (𝐹2,22 = 6.88, 𝑝 < 0.01). Post hoc analysis showed that the error rate of Eye+Head
Pinpointing is significantly lower than BimodalGaze (𝑝 < 0.001) and GazeSwitch (𝑝 < 0.05) (see
Figure 3b). Further, the error rate of all techniques was significantly lower at 10◦ amplitude than at
40◦ amplitude (𝑝 < 0.05). No significant interactions were observed.
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4.3.3 Time to first Head Mode. This metric measures the time from the onset of the trial to when
the participant first entered the head mode, reflecting how quickly each technique facilitates an
intended switch to head mode. We observed that some participants never entered head mode
under certain conditions, causing the data to deviate from normal distribution even after standard
transformations were applied. Thus, for this metric, we only considered Technique and Target
Amplitude as factors for the ANOVA analysis. We found significant main effects for Technique
(𝐹2,22 = 32.03, 𝑝 < 0.001) and Target Amplitude (𝐹2,23 = 28.14, 𝑝 < 0.001). Moreover, we observed a
significant interaction effect (𝐹4,44 = 2.80, 𝑝 < 0.05) for time to first head mode. Post hoc analysis
showed that BimodalGaze has a significantly shorter time to enter the first head mode than both
Eye+Head Pinpointing (𝑝 < 0.05) and GazeSwitch (𝑝 < 0.001). Further, BimodalGaze showed a
significantly earlier transition to head mode compared to GazeSwitch at 25◦ and 40◦ amplitudes
(𝑝 < 0.001) (see Figure 3c). Lastly, we found that GazeSwitch transitioned to head mode significantly
earlier at 10◦ compared to 25◦ and 40◦ (𝑝 < 0.001). Conversely, we observed that BimodalGaze and
Eye+Head Pinpointing switched to head mode significantly earlier at 10◦ compared to only 40◦.

4.3.4 Number of mode switches. This metric quantifies how many times head mode is entered,
providing insights into the overall stability of the mode switching for each technique. A count
of 0 or 1 signifies complete stability in the technique, under the assumption that participants do
not intentionally execute more than one mode switch. Our analysis revealed significant main
effects for Technique (𝐹1,11 = 19.70, 𝑝 < 0.001), Target Size (𝐹1,11 = 18.17, 𝑝 < 0.01), and Target
Amplitude (𝐹1,11 = 15.8, 𝑝 < 0.001). Furthermore, we observed significant two-way interaction
effects (𝑝 < 0.05). Post hoc examination revealed that for every identical amplitude and target size,
BimodalGaze exhibited a significantly lower number of mode switches compared to GazeSwitch
(𝑝 < 0.01) (see Figure 3d).

4.3.5 Total head movement. This metric is derived from the sum of the inter-sample Euclidean
distance of head movement throughout the entire trial. It provides an assessment of the overall
head movement performed by the participant and is useful for determining if the differences in
head movement during head mode are meaningful when considering the demands of the entire
task. Our analysis revealed significant main effects for Technique (𝐹2,22 = 4.91, 𝑝 < 0.05), Target
Size (𝐹1,11 = 9.13, 𝑝 < 0.05), and Target Amplitude (𝐹2,22 = 183.03, 𝑝 < 0.001), along with interaction
effects between Technique × Target Size (𝐹2,22 = 3.58, 𝑝 < 0.05) and Target Size × Target Amplitude
(𝐹2,22 = 0.027, 𝑝 < 0.05). For the larger target (1.5◦), BimodalGaze required significantly greater
overall head movement compared to only Eye+Head Pinpointing (𝑝 < 0.05) (refer to Figure 3e).
However, for smaller targets (0.8◦), we observed that BimodalGaze exhibited significantly more
head movement than both Eye+Head Pinpointing and GazeSwitch (𝑝 < 0.05).
We further calculated total head movement in head mode only, which measures the overall

effort of the selection technique, as more head movement during refinement may suggest more
action from the users. We found a significant main effect for Technique (𝐹2,22 = 12.93𝑝 < 0.001),
Target Amplitude (𝐹2,22 = 26.62, 𝑝 < 0.001), and the interaction between Target Size and Target
Amplitude (𝐹2,22 = 26.62, 𝑝 < 0.05). Subsequent post hoc examination revealed that BimodalGaze
necessitated significantly more head movement during refinement in comparison to the other
techniques (𝑝 < 0.001) (see Figure 3f). However, we observed no significant difference in head
movement between Eye+Head Pinpointing and GazeSwitch. As expected, the analysis indicated
that targets with a 40◦ amplitude required significantly more head movement during refinement
compared to all the smaller amplitudes (𝑝 < 0.05).

4.3.6 Subjective feedback. We observed a statistically significant difference in the NASA-TLX work-
load for performance, with participants rating BimodalGaze significantly lower than Eye+Head
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Pinpointing (𝑝 < 0.05). No other significant differences were found. We further analysed partici-
pants’ verbal feedback and found that all three techniques were generally well-received. However,
it was evident that each technique had its own set of limitations.

For Eye+Head Pinpointing, participants reported feeling “more in control” (P2) due to the ability
to manually mode switch, resulting in the selection task being perceived as “convenient” (P4) and
“fast” (P1, P3, P4). However, some participants (e.g., P3, P12) found it challenging when timing
button presses and remembering to release the button, leading to more head movement required if
the button was pressed too early.

For BimodalGaze, several participants found target selection to require “effort” (P2, P5, P9, P10),
mainly because they perceived it as “less like an automatic switch” (P9), requiring more head
movement and being “inconsistent” (P12, P10, P11) for mode switching. P7 noted, “It is more
inconsistent, sometimes the cross appears when I didn’t need it, other times it didn’t appear when
I wanted. I have to learn the head movement to turn on the cross.”. However, some participants
acknowledged that when mode switching was accurate, BimodalGaze could make the task feel
“easier” (P4, P11, P12) and “smooth” (P3, P5).

For our proposed GazeSwitch technique, participants recognised that automatic mode switch-
ing facilitated “fast” (P1, P6) and “easy” (P3, P6) selection. Participants further commented that
GazeSwitch was “responsive” (P8) and “precise” (P9), making the overall experience seamless. P1
noted, “I felt it’s the best... It’s like the computer is helping you rather than complicating things. It’s
the most assisted, least rushed, and is consistent.”. However, some participants also noted that the
accuracy of mode switching heavily relied on eye tracking quality, as GazeSwitch could become
more “unstable” (P3, P12, P11) and “shaky towards the corners” (P3, P4) or during “accidental
[unintentional] head movements” (P8, P13).

5 STUDY 2: USER EXPERIENCE EVALUATION
We developed two applications in Unity 2020.3.32f1 to compare the user experience of automatic
and manual mode switching: (1) tracing the outline of an object with precise marker placement
and (2) colouring objects in the scene. In the tracing task, participants have the flexibility to switch
between gaze and headmode, affording them to utilise both long sweeping lines and short successive
selections. The colouring task was designed to highlight the affordance of gaze mode to quickly
move across the sides of the screen, while using head mode to select small targets precisely.

In this second study, we exclusively compared GazeSwitch and Eye+Head Pinpointing techniques,
as BimodalGaze operates on the same automatic mode switching principle but received lower
perceived performance in our prior evaluation (see Section 4.3.6). This study followed immediately
after the performance evaluation study (Section 4); hence, the same participants and procedures
when taking breaks were used. At the start of this study, we briefed participants on both tasks and
the operation of both techniques. We then asked the participants to wear the HMD and perform a
five-point eye-tracking calibration. Participants first performed the tracing application using both
techniques, but the order of the techniques was counterbalanced. After each task, participants were
invited to comment on their overall experience of using each technique. Participants were also free
to report their preferred technique for performing the task.

5.1 Tasks
5.1.1 Tracing. This task is inspired by Gaze-Shifting [30] and demonstrates that users can precisely
control the cursor to follow the contours of a car using mode switching. Hence, participants are
tasked to trace the outline of the car by placing markers on it. Figure 4-Left shows the application
scene, where a car is positioned at the centre, spanning 80◦ horizontally and 51◦ vertically. This is
achieved by utilising the gaze mode to cover longer distances and the head mode to trace around
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Fig. 4. Applications. The cursor highlighting serves as a visual distinction for the mode and is for illustration
purposes only. Yellow indicates gaze mode, while red indicates head mode. Both examples shown used the
GazeSwitch to complete the respective task. Left: The user can leverage the eyes’ saccadic movement to
cover a large distance before switching to head mode to place a marker (b). The user can activate and stay in
head mode to place multiple markers in close proximity to trace out details, e.g., the curvature of the wheel
(c). Right: The user selects the desired colour, typically in head mode (b). The user can leverage gaze mode to
saccade quickly to a target (c). If it is a big target, e.g., a wide leaf, they can select without refinement. If the
target is small, for e.g., the thin tree trunk, the user can activate head mode to refine the cursor position (d).

smaller features. The tracing line is produced by extending it from a previous marker to the current
cursor position. An outline marker is placed by releasing the thumbpad on the controller.

5.1.2 Colouring. This task evaluates participants’ experience of using the techniques, where gaze
mode can be used to select and interact with larger targets and only use head refinement when
needed to interact with small targets. As shown in Figure 4-Right, the application scene displays
three palm trees positioned at increasing distances from the user. Participants are assigned the task
of applying colour to various parts of the palm trees, with different sections available for colouring.
The process involves selecting a colour from a palette situated 25◦ to the left of the beach scene
and then choosing the specific part of the palm tree to be coloured. Hover feedback is provided as
the cursor lands on colourable parts of the tree. The tree closest to the user will appear larger in
visual angle compared to the farthest tree.

5.2 Results
Following the general inductive approach [44], two researchers independently coded interview
transcripts focusing on participant experienceswith the techniques. Initially, the first coder proposed
six themes, which the second coder refined by removing two. A final consistency check, where both
coders independently re-applied the themes, yielded 90% agreement and disagreements resolved
through discussion. Both GazeSwitch and Eye+Head Pinpointing were generally well-received,
with four out of the twelve participants preferring GazeSwitch for tracing and eight for colouring.
Thematic analysis revealed key findings centred around the effectiveness and consistency of mode
switching:

5.2.1 Effort. Seven participants stated that GazeSwitch requires less effort than Eye+Head Pin-
pointing mainly because it offers automatic mode switching. Participants further commented that
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GazeSwitch makes the experience more “fluent” (P5) than Eye+Head Pinpointing as it allows them
to focus on the task without the need to press a button to mode switch: “GazeSwitch saves clicking...
I can zone out on how to do it and just focus on what you are doing.” (P1).

5.2.2 Speed. Six participants mentioned that Eye+Head Pinpointing was faster than GazeSwitch,
primarily because they found pressing a button to switch into head mode an easy action: “Eye+Head
Pinpointing is quicker as it is straightforward and intuitive.” (P3). Participants further noted that
GazeSwitch could sometimes be time-consuming, particularly when the cursor got stuck in head
mode due to their unfamiliarity with the technique. In contrast, five participants reported that
GazeSwitch enabled them to complete tasks quicker than Eye+Head Pinpointing. This was attributed
to the “accurate” (P1, P4) automatic mode switching offered by GazeSwitch: “Automatic is quicker,
more efficient, especially when you get the hang of it.” (P6).

5.2.3 Control over Mode Switching. Nine participants noted that Eye+Head Pinpointing offers
greater control over mode switching compared to GazeSwitch. This enhanced control makes the
mode switching more “stable” (P1, P3) and allows the participants to explore the visual scene with
their eyes and head freely: “Eye+Head Pinpointing allows more manual control as I can move the
head around without thinking about switching to head mode. I like the extra power... I can manually
and precisely enter head mode when I want.” (P8).

5.2.4 Stability of Mode Switching. Eight participants agreed that GazeSwitch is less stable than
Eye+Head Pinpointing, resulting in a cursor that is “shaky” (P4, P10) and “jittery” (P3, P11). Partici-
pants noticed the instability is worse at the edges of the field of view (FOV), possibly due to eye
tracking loss or when the “eyes move away at the last minute before selection, presumably already
moving on to the next outline point, causing the cursor to jump, which led to mistakes.” (P2).

6 DISCUSSION
In this paper, we extended the insights from prior research to overcome limitations in existing
eye-head mode switching techniques. Our contribution, GazeSwitch, leverages machine learning
to optimise real-time switching between eye and head modes, enabling fast and precise hands-free
pointing. Our findings demonstrate that adopting an ML-based classification approach reduces the
occurrence of false positives resulting from natural head movements while efficiently detecting
head gestures for input. The results from our two user studies not only validate the effectiveness of
GazeSwitch in discrete target selection but also highlight its capability for continuous interaction,
as demonstrated in our tracing task. This capability is significant for hands-free gaze and head
interaction as it is traditionally only available for manual clutch-based techniques (e.g. Eye+Head
Pinpointing) or other gaze-combined manual techniques (e.g. Gaze-Shifting).
GazeSwitch facilitates a smooth transition between pointing and refinement modes without

requiring manual actions like Eye+Head Pinpointing or exaggerated head movements due to
threshold limitations, as in BimodalGaze. The fast and adaptive mode switching facilitated by our
classifier does not impose specific behaviours on users but instead allows them to act more freely.
This has an impact on other parts of GazeSwitch. In both Eye+Head Pinpointing and BimodalGaze,
feedback is of utmost importance in showing the current mode. As in the original implementations,
Eye+Head Pinpointing forced users to go into head mode for selection, as gaze mode does not
display any feedback. In BimodalGaze the cursor switches colour to signify a mode switch, which
is necessary to ensure that users perform an exaggerated enough movement. In our work, we
also implemented mode switch feedback by changing the circle into a crosshair. However, as our
findings show that users could easily and seamlessly switch between modes, it minimises the need
for explicit broadcasting of modes, potentially making the technique feel more fluid and synergistic.
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However, the results of our studies also revealed trade-offs between GazeSwitch and the baseline
switching techniques. Compared to Eye+Head Pinpointing, we found that GazeSwitch exhibited
a higher error rate and longer selection time, but no significant differences were found in terms
of overall head movement or the head movement required to enter head mode. There was also
no significant difference in the onset of head mode or other performance metrics. These findings
suggest that GazeSwitch allowed users to naturally utilise their heads, as participants commented
on its effortless operation compared to manually activating head mode. However, the manual mode
switch in Eye+Head Pinpointing offered greater control and stability, resulting in quicker and more
accurate selections.

In comparison to BimodalGaze, GazeSwitch was perceived as less stable, possibly due to switching
to gaze mode right before selection. Further analysis showed that participants attempted head
refinement in 82.22% (SD=23.77) of failed selections were eventually made in gaze mode, and 97%
(SD=5.49) of these could have succeeded if participants had selected in head mode. In these failed
trials, participants maintained a final stable head mode for 0.81 seconds (SD=0.28). However, gaze
velocity rises around 0.14 seconds before selection, unlike successful trials, where gaze velocity
only increases after selection. This distinct pattern (shown in Figure 5 in Appendix C) suggests
participants might have looked away before selection, triggering gaze mode an unnoticeable 0.14
seconds (SD=0.12) before selection, thus undoing head-mode refinement. This aligns with research
showing fixation probability peaks before interaction [18, 36], potentially leading to “Late-Trigger
errors” [20].

Moreover, participants entered head mode later with GazeSwitch compared to BimodalGaze, but
also required less head movement. We also found no differences in the selection time or error rate
between the two techniques, highlighting the difference between threshold-based and ML-based
techniques. When using BimodalGaze, participants commented that they needed exaggerated head
movements to activate head mode, which resulted in increased effort, and the early activation
of head mode did not translate into shorter selection times. While the threshold-based approach
demonstrated stability, it also contributed to a decrease in perceived performance, as participants
may require time to familiarise themselves with the necessary head movement for activating head
mode in BimodalGaze.
Our work and study findings highlight the effectiveness of the machine learning classification

approach for classifying head movements into head-gaze and head gestures for hands-free and
adaptive interaction, which we initially proposed as part of our HeadBoost paper [17]. In contrast
with this prior work, where we evaluated the HeadBoost classifier in an offline context, this paper
demonstrates its feasibility for real-time classification and eye-head pointing. This breakthrough
opens up exciting opportunities for enabling various expressive and robust head movements for
interaction, including head-based gestures, inferring user intentions based on head movements,
and further exploration of other application areas.

6.1 Limitations and Future Work
When GazeSwitch performed smoothly, participants enjoyed its efficiency and seamless interaction.
However, when it failed to perform optimally, participants noticed unexpected switched modes
that interrupted task completion. Participants’ feedback indicated mode switching instability as
the main limitation of GazeSwitch, particularly noticeable around the edges of the field of view
(FOV). Some found it helpful to adjust their head positioning slightly to centralise the target before
attempting refinement. Further, participants favoured GazeSwitch over Eye+Head Pinpointing in
the colouring application, which had a narrower scene compared to the tracing application. These
observations suggest that GazeSwitch’s performance may be affected by large visual angles. Given
that GazeSwitch heavily relies on eye tracking for mode prediction, a decrease in eye tracking
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precision at extreme visual angles could contribute to instability and premature gaze shifts ("Late-
Trigger errors"). In contrast, Eye+Head Pinpointing allows users to switch to head mode even if
eye tracking fails, providing a fallback option to continue the task. Exploring alternatives such as
defaulting to head mode when eye tracking fails, as proposed in error-aware gaze-based interaction
techniques [38], or algorithms capable of identifying intended targets [e.g. 18], could mitigate these
challenges.

We recognised two key limitations concerning machine learning. Firstly, our user studies demon-
strated that GazeSwitch can effectively operate in diverse tasks and contexts, suggesting a suffi-
ciently diverse dataset. However, while we collected 1500 trials in the training data, this was derived
from only five participants. Future investigations could explore more representative data collection
methods and alternative ML models to potentially enhance head-based classification performance
and improve overall user experience. Secondly, like any ML-based classifier, the performance of
GazeSwitch heavily relies on the quality and diversity of the collected data. Although we gathered
data from a selection task with various target sequences, expanding data collection to encompass a
broader range of eye tracking quality levels and different tasks and environments may result in a
more robust classification system.

In this work, we evaluated our proposed technique within a virtual reality (VR), utilising a robust
VR HMD equipped with accurate motion tracking using base stations. GazeSwitch, like Eye+Head
Pinpointing and BimodalGaze techniques, is intended to function across various environments.
As long as gaze and head tracking capabilities are available, any of these techniques, including
GazeSwitch, can be applied in any environment. Hence, this concept could theoretically be extended
to desktop-based environments by employing a remote eye tracker and a standard webcam for eye
and head tracking, offering potential direction for further exploration in future research.

7 CONCLUSION
In this paper, we contribute GazeSwitch, anML-based technique designed to enhance real-timemode
switching for fast and accurate hands-free pointing. This approach allows users to leverage fast gaze
pointing for covering long distances and efficiently switch to refine head pointing in various contexts,
enabling the selection of discrete small targets and facilitating continuous interaction. Through
our evaluation of GazeSwitch with two baseline switching techniques (Eye+Head Pinpointing and
BimodalGaze), we observed that our proposed technique demands less effort for mode switching
and enables users to interact seamlessly without the need for exaggerated head movements to
trigger mode switching. However, our findings also highlight the performance limitations of
GazeSwitch, which accounts for occasional instability in mode switching. In conclusion, GazeSwitch
demonstrates the substantial potential for future developments in expressive head-based interactions
and other application areas, broadening the possibilities for hands-free interaction.
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A GAZESWITCH MODE SWITCHING LOGIC

Algorithm 1: GazeSwitch logic for switching between Gaze mode and Head mode
𝑀𝑜𝑑𝑒 ← 𝐺𝑎𝑧𝑒 𝑀𝑜𝑑𝑒;
if 𝑀𝐿_𝑙𝑎𝑏𝑒𝑙 is 𝐻𝑒𝑎𝑑 𝑀𝑜𝑑𝑒 then

𝑀𝑜𝑑𝑒 ← 𝐻𝑒𝑎𝑑 𝑀𝑜𝑑𝑒 ;
else if 𝑀𝐿_𝑙𝑎𝑏𝑒𝑙 is Gaze Mode then

if 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑀𝑜𝑑𝑒 is Head Mode AND 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 ≤ 3.6 then
𝑀𝑜𝑑𝑒 ← 𝐻𝑒𝑎𝑑 𝑀𝑜𝑑𝑒 ;

else
𝑀𝑜𝑑𝑒 ← 𝐺𝑎𝑧𝑒 𝑀𝑜𝑑𝑒;

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. ETRA, Article 227. Publication date: May 2024.

https://doi.org/10.1145/3411764.3445697
https://doi.org/10.1145/3411764.3445697
https://doi.org/10.1109/TVCG.2023.3320235
https://doi.org/10.1145/1743666.1743702
https://doi.org/10.1364/JOSA.55.001158
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1145/3064937
https://doi.org/10.1145/2168556.2168586
https://doi.org/10.1145/2168556.2168616
https://doi.org/10.1145/2578153.2578157
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.1145/302979.303053
https://doi.org/10.1145/1357054.1357139


GazeSwitch: Automatic Eye-Head Mode Switching for Optimised Hands-Free Pointing 227:19

B GAZESWITCH FEATURES
B.1 Full List of Features

Table 2. Full feature list, as proposed by HeadBoost [17]

Category Features

Shape-based Slope, Range, Mean Velocity, Peak Velocity, Mean Acceleration, Peak Acceleration, Integral,
Energy, Wavelength [46],

Spatial features in the positional signal (𝑃𝐷 , 𝑃𝐶𝐷 , 𝑃𝑃𝐷 , 𝑃𝑅) defined by Larsson et al. [23]

Noise-based Dispersion [31],
Standard Deviation, RMS, BCEA [16, 43, 50],

RMS-diff, BCEA-diff, Mean-diff, Median-diff[29, 50],
Rayleightest [23, 50]

Spectral Rolloff, Centroid, Entropy [7], Flatness

Correlation-based Correlation

Timing-based Time since last saccade (200 ◦/𝑠)

B.2 Final RFA selected 28 features
The final selected features in the GazeSwitch ML model is listed below, 15 of the final features are
based on eye movement, 13 are based on head movement, and spanned all 1024ms of the sampled
past feature vectors, suggesting a combination of eye-head dynamics contributed to the model
performance.
• at current timestamp: time since last saccade, eye-in-head energy, eye-in-world energy, eye-
in-world wavelength in the polar direction, head energy, head slope, head wavelengths in the
combined (Az and Pol) direction and the polar direction, head integral in the polar direction,
RMS difference between first and second half of the window for eye-in-world and head angles,
median difference in eye-in-world between the first and second half of the window, the PCA
PCD measure for the eye-in-world angle.
• at -0.16s, RMS difference between first and second half of the window for head angles.
• at -0.32s, eye-in-world energy, eye-in-world wavelength in the polar direction, RMS difference
between first and second half of the window for head angles.
• at -0.48s, eye-in-world energy.
• at -0.64s, eye-in-world wavelength in the azimuth direction, head positional wavelength in
the Z axis, head spectral centroid.
• at -0.8s, eye-in-world wavelength in the polar direction, head spectral centroid in the polar
direction, the PCA dispersion of the head.
• at -1s, RMS difference between the first and second half of the window for the eye-in-world
angle.
• at -1.024s, head wavelength in the polar direction, time since last saccade, eye-in-world
integral in the polar direction.
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C “LATE-TRIGGER ERROR” VISUALISATION
Figure 5 visualises the “Later-Trigger error” observed during interaction using the GazeSwitch
technique, error is characterised by a last-minute saccade away from the target just before selection,
undoing head refinement, causing selection error. Failed selections in gaze mode displayed a notable
increase in gaze velocity approximately 140 ms before selection. In contrast, successful trials showed
an increase in gaze velocity only after the selection, indicating a distinct temporal pattern associated
with selection success. In trials where selection occurred in gaze mode but failed, participants
maintained a final stable head mode for 0.81 seconds (SD=0.28), only breaking into gaze mode
0.14 seconds (SD=0.12) before selection. During this head refinement period, 97.47% (SD=5.49) of
attempts were able to align the cursor on the target, with a minimal average cursor-target offset of
0.22◦/𝑠 (SD=0.08). However, at the last moment before selection, the refinement was undone by
breaking into gaze mode, most likely due to the increased gaze velocity indicative of a ‘saccade
away’ from the target, causing selection error. These results suggest the “Late-Trigger error” may
be a top contributor to errors and perceived instability when using GazeSwitch.

Fig. 5. Eye-in-head velocity from 500 ms before, to 500 ms after selection by selection mode and outcome.
Mean over all trials is shown as the solid black line, standard deviation in blue shade.

Received November 2023; revised January 2024; accepted March 2024

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. ETRA, Article 227. Publication date: May 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 GazeSwitch
	3.1 Data Collection
	3.2 Dataset Preprocessing and Feature Engineering
	3.3 Model Classification and Evaluation
	3.4 Mode Switching Logic

	4 Study 1: Performance Evaluation
	4.1 Task
	4.2 Procedure
	4.3 Results

	5 Study 2: User Experience Evaluation
	5.1 Tasks
	5.2 Results

	6 Discussion
	6.1 Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References
	A GazeSwitch Mode Switching Logic
	B GazeSwitch Features
	B.1 Full List of Features
	B.2 Final RFA selected 28 features

	C ``Late-Trigger error'' visualisation

