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Expanding the two-particle Green functions determines the selfenergy and the polarization as well
as the response function on the same footing. The correlation energy is calculated with the help of
the extended quasiparticle picture which accounts for off-shell effects. The corresponding response
function leads to the same correlation energy as the selfenergy in agreement with perturbation
theory provided one works in the extended quasiparticle picture. A one-dimensional quantum wire of
Fermions is considered and ground state properties are calculated in the high density regime within
the extended quasiparticle picture and Born approximation. While the on-shell selfenergies are
strictly zero due to Pauli-blocking of elastic scattering, the off-shell behaviour shows a rich structure
of a gap in the damping of excitation which is closed when the momentum approaches the Fermi
one. The consistent spectral function is presented completing the first two energy-weighted sum
rules. The excitation spectrum shows a splitting due to holons and antiholons as non-Fermi liquid
behaviour. A renormalization procedure is proposed by subtracting an energy constant to render the
Fock exchange energy finite. The effective mass derived from meanfield approximation shows a dip
analogously to the onset of Peierls instability. The reduced density matrix or momentum distribution
is calculated with the help of a Padé regularization repairing deficiencies of the perturbation theory.
A seemingly finite step at the Fermi energy indicating Fermi-liquid behaviour is repaired in this
way.

I. INTRODUCTION AND MOTIVATION

The one-dimensional correlated electron gas is espe-
cially interesting since the quasiparticle picture breaks
down and non-Fermi liquid behaviour appears. Such
non-Fermi liquid behaviour has been observed in vari-
ous physical systems ranging from large-scale structures
like crystalline ion beams [1, 2], quantum wires [3], car-
bon nanotubes [4–7], edge states in quantum hall liquid
[8–10], semiconducting nanowires [11, 12], cold atomic
gases [13–15] up to conducting molecules [16]. Mostly it
is claimed that perturbation theory breaks down due to
divergences in the expansion and the absence of quasi-
particles since single-particle excitations turn into collec-
tive ones [17–19]. Nevertheless such excitations can show
up eventually at the Luttinger surface where the Green
functions have a zero at zero energy [20]. Due to the ab-
sence of quasiparticles, expansions are necessary beyond
the quasiparticle pole approximation. This is achieved if
one expands with respect to small damping (scattering
rate) resulting into the extended quasiparticle approxi-
mation [21, 22] and used for transport in impurity sys-
tems [23, 24] or nonlocal kinetic theory [25–27].

The limit of small scattering rates was first introduced
by [28] for highly degenerated Fermi liquids, later used
in [29, 30] for equilibrium nonideal plasmas. The same
approximation, but under the name of the generalised
Beth-Uhlenbeck approach, has been used by [31, 32] in
nuclear matter studies of the correlated density or in the
kinetic equation for nonideal gases [33]. This extended
quasiparticle picture is plagued by the same divergence

at the Fermi energy for one-dimensional wires as it is
typical for non-Fermi liquids. Recently this deficiency of
quasiparticle picture has been cured by a Padé approxi-
mation [34] which shows that the extended quasiparticle
picture works and perturbation theory can be applied.
This renewed interest in perturbation theory is motivated
by the fact that in one-dimensional systems the strongly
correlated case coincides with the small-density limit due
to the special density dependencies of kinetic and corre-
lation energy [35]. Therefore it is worth to investigate
how far the extended quasiparticle picture which takes
into account first-order damping and off-shell behaviour
is able to capture the physics.
The aim of the article is twofold. First in a pedagogical

sense, different many-body schemes of Dyson equation
and selfenergy on one side and the variational technique
with response and correlation functions on the other side
are unified and it is shown how they are yielding to iden-
tical results. New results are presented that half of corre-
lation energy is stored in quasiparticle distribution com-
pared to the Wigner function, the equivalent results of
variational technique, charging formula and Dyson equa-
tion expansions of Green functions appear only within
the extended quasiparticle picture. The second aim is to
demonstrate the many-body scheme for a highly corre-
lated system of one-dimensional Fermi wire. Here as new
feature it is shown how a finite momentum distribution
can be achieved with a proper Padé regularization and
perturbation theory can be applied. The effective mass
signals a transition similar like Peierls transition.
There exists of course a fast literature on many-body

theories among them only Green function techniques are
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mentioned here [27, 36–40]. Specially for one-dimensional
systems exact solutions are known for Luttinger [41–
43], Tomonaga [44], and Gaudin-Yang models [45, 46]
by the Bethe ansatz [47, 48]. Frequently bosonization
techniques are used [49–52] due to the similar behaviour
of long-distance correlations of Fermi and Bose systems
[53, 54]. In [55] it was shown that the Random Phase
Approximation (RPA) becomes exact in the high-density
limit for one-dimensional systems. An overview about
one-dimensional models can be found in [37–39].

If one wants to consider more realistic systems like
the width dependence [56] of quantum wires one does
not have any exact solutions and perturbation meth-
ods have been used to investigate analytically and nu-
merically the ground-state properties [57–59]. Here the
quantum Monte-Carlo method [57, 60–62] allows to sim-
ulate strongly coupled systems [63] as e.g. implemented
in the casino code [64]. Slater-Jastrow-backflow trial
wave functions [65, 66] were used in these calculations.
The simulation details can be found in [62]. The varia-
tional Monte-Carlo method system [57] and more accu-
rate diffusion Monte Carlo can be treated as benchmark
for the theory since it provides an exact solution for a
well-defined model. In one dimension, diffusion Monte
Carlo method is an exact method since the nodal surface
is exactly known.

The paper consists of two main parts. First, in the sec-
ond chapter two approaches to correlations are presented,
i.e. the structure factor and the Dyson equation with self-
energy both rooted in the two-particle Green function. It
will be shown that the extended quasiparticle picture re-
produces the correlation results of structure factor and
correlation energy. It is explicitly demonstrated on the
Born approximation level. The coupling parameter inte-
gration as a special form of variational method is demon-
strated to yield the same correlation energy. Second, in
chapter III we present the model of finite-width Fermion
wires and discuss systematically the Hartree-Fock and
Born approximation. Within this paper we consider the
Hartree-Fock as meanfield. From the meanfield the effec-
tive mass is calculated in chapter III C. A dip occurs at
twice the Fermi momentum indicating a similarity to the
onset of Peierls instability. The selfenergy in Born ap-
proximation is then calculated in chapter IIID revealing
an energy gap. The resulting spectral function is pre-
sented which requires a re-adaption of the correct pole
when approaching selfconsistency. The extended quasi-
particle approximation describes this correct poles and
completes the first two energy-weighted sum rules. In
chapter III F we collect the results of structure factor and
pair correlation function together with the correlation en-
ergy. The reduced density matrix is explicitly calculated
in chapter III H which shows a divergence at the Fermi
energy due to perturbation theory. With the help of a
proper Padé regulator this divergence can be subtracted
and the momentum distribution takes a finite value at
the Fermi momentum. The contact potentials as well
as finite-size potentials show seemingly a finite jump at

the Fermi energy like a Fermi liquid which is corrected
by a proper Padé regulator. Chapter IV summarizes the
finding. In the appendices the corresponding integration
schemes are presented for the selfenergy and the momen-
tum distribution.

II. MANY-BODY SCHEME

A. Correlation energy and pair correlation

We consider Hamiltonians of the form

Ĥ = Ĥ0 + V̂ =
∑

1

ǫ1Ψ̂
+
1 Ψ̂1 +

1

2

∑

12

V12Ψ̂
+
1 Ψ̂

+
2 Ψ̂2Ψ̂1 (1)

with creation operators Ψ+ and the free single-particle

band dispersion ǫ1 =
k2
1

2m , e.g. for free particles. Numbers
are cumulative variables, 1 ≡ x1, t1, .... The probability
to find a particle at 1 and another at 2 is expressed by
the one-time pair-correlation function

〈Ψ̂+
1 Ψ̂

+
2 Ψ̂2Ψ̂1〉t1=t2 = 〈n̂ (x1) n̂ (x2)〉 − n(x1)δ(x1 − x2)

= g(x1, x2)n (x1)n (x2) . (2)

This can be used to express the mean correlation energy
in space representation by [67]

Eint =
1

2

∫

dx1dx2V (x1, x2)〈Ψ̂+
x1
Ψ̂+

x2
Ψ̂x2

Ψ̂x1
〉

=
1

2

∫

dx1dx2V (x1, x2)n(x1)n(x2)g(x1, x2)

=
1

2

∫

dx1dx2V (x1, x2)n(x1)n(x2)[g(x1, x2)− 1]

+
1

2

∫

dx1dx2V (x1, x2)n(x1)n(x2) (3)

where the definition (2) is used in the second line and the
Hartree energy EH is split off in the third line. Changing
to difference and centre-of-mass coordinates r = x1 −x2,
R = (x1 + x2)/2 and introducing the liquid structure
function

n(R)S(r, R) = (g(r, R)−1)n
(

R+
r

2

)

n
(

R− r

2

)

+n(R)δ(r)

(4)

the interaction energy Eint without Hartree term EH

which is the correlation energy Ec with Fock (exchange)
term EF , becomes

Eint−EH = Ec+EF =
1

2

∫

drdRV (r)n(R)[S(r, R)−1]

=
N

2

∫

dq

(2π)d
V−q(Sq − 1) (5)

where the last line is valid if S(r, R) ≈ S(r). Integrating
(4) yields the density fluctuation correlator

∫

dre−irq

∫

dRn(R)S(r, R) = 〈n̂qn̂−q〉 − nqn−q

= 〈δnqδn−q〉 (6)
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where the left side can be integrated again for S(r, R) ≈
S(r) and finally

Sq =
1

N
〈δn̂qδn̂−q〉 (7)

with the total number of particles N . It means that the
structure function is the density fluctuation correlator.
Therefore it is advisable to investigate the density fluc-
tuations.

B. Two-particle Green’s function and selfenergy

For this aim we consider the causal Green’s function

G(1, 2) =
1

i
Θ(t1−t2)G>(1, 2)∓ 1

i
Θ(t2−t1)G<(1, 2) (8)

for Fermi/Bose systems which time-orders the two

double-time correlation functions G<(1, 2) = 〈ψ̂†
2ψ̂1〉 and

G>(1, 2) = 〈ψ̂1ψ̂
†
2〉 with averaging about the unknown

statistical operator. Applying the Heisenberg equation
of motion one obtains the Martin-Schwinger hierarchy
[68, 69] where the one-particle Green’s function couples
to the two-particle,

G2(1, 3; 2, 4) =
1

i2
〈T̂ ψ̂1ψ̂3ψ̂

†
4ψ̂

†
2〉, (9)

the two-particle to the three-particle and so on. A formal
closure is reached by introducing the selfenergy

∓i
∫

d3V (1, 3)G2(13, 23
+) =

∫

C

d3Σ(1, 3)G(3, 2), (10)

as illustrated in figure 1. About double occurring indices
we understand integration in the following. The integra-

= G2Σ
2231

3 3
+

−+
1

FIG. 1. Formal closure of the Martin-Schwinger hierarchy for
Fermi/Bose systems introducing the selfenergy (10). About
variable 3 one integrates and 3+ means infinitesimal time later
that at 3. We introduce diagrammatic rules that a broken line
means iV and an arrow line means a causal Green’s function
G.

tion path is determined by the demand that in the infi-
nite past the two-particles are uncorrelated which leads
to [27]

∫

C

d3Σ(1, 3)G(3, 2)

=

+∞
∫

t0

d3

{

Σ(1, 3)G(3, 2)∓ Σ<(1, 3)G>(3, 2)

}

.(11)

This allows to set up conveniently the Langreth-Wilkins
rules [70] to recover the correlation parts from causal
functions. If one has C(1, 2) =

∫

d3A(1, 3)B(3, 2) these
rules provide

C≷ = A≷BA + ARB≷ (12)

where the retarded/advanced functions are

CR(t, t′) = −iθ(t− t′)
[

C>(t, t′)± C<(t, t′)
]

,

CA(t, t′) = iθ(t′ − t)
[

C>(t, t′)± C<(t, t′)
]

. (13)

Now we can systematically expand the two-particle
Green’s function in terms of interaction as given in fig-
ure 2. Introducing this into (10), the first term gives the
Hartree, the second the Fock, and the third and fourth
term the first Born approximations of the selfenergy.

+=G +--+

FIG. 2. Expansion of the two-particle Green function up to
linear order in V.

The closure (10) leads to the Dyson equation for the
full propagator

G(1, 2) = G0(1, 2) +G0(1, 3)Σ̄(3, 4)G(4, 2) (14)

or graphically

−Σ+=
where the thin line is G0 and we absorb the Hartree self-
energy together with the external potential U into the
induced potential

Ū11′ = U11′ ∓ iV12G22+δ11′ , (15)

such that the free propagator reads

(

i
∂

∂t1
+

∇2
1

2m
− Ū(1)

)

G0(1, 2) = δ(1− 2). (16)

One Fourier transforms the difference coordinates into
frequency/momentum. Since we concentrate on equilib-
rium all quantities are only dependent on the difference
of coordinates. Nonequilibrium expressions can be found
in [27].

C. Correlation energy and extended quasiparticle
picture

From the Heisenberg equation of motion the Hamilto-
nian (1) leads to

(i∂t1−i∂t2)Ψ+
2 Ψ1 =(ǫ1+ǫ2)Ψ

+
2 Ψ1

+
∑

3

(V13 + V12)Ψ
+
2 Ψ

+
3 Ψ3Ψ1 (17)
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and therefore after averaging

1

2
(i∂t1 − i∂t2)G

<
12

∣

∣

∣

∣

1=2

= 〈K〉+ 2〈V 〉 (18)

with the kinetic energy 〈K〉 = Tr[ρ̂Ĥ0] and the poten-

tial energy 〈V 〉 = Tr[ρ̂V̂ ]. If one knows the correlation
function, the correlation energy density can be expressed
therefore as

Ec + EH + EF =
∑

k

∫

dω

2π

1

2

(

ω − k2

2m

)

G<(k, ω) (19)

where the total energy would be the plus sign instead
of minus sign in the bracket. Here we note the different
expansion scheme compared to (5) and the different role
of Fock energy.
Within in the extended quasiparticle picture we ex-

pand the correlation functions with respect to the order
of selfenergy

G<(k, ω) =
2πδ(ω−εk)
1− ∂Σ(ω)

∂ω

nk+Σ<(ω)
℘′

ω−εk
+ o(Σ2) (20)

where the real part of the spectral function is the Hilbert
transform

Σ = ReΣR =

∫

dω̄

2π

Γ(ω̄)

ω − ω̄
(21)

of the selfenergy spectral function

Γ = Σ> +Σ< = −2ImΣR. (22)

Both specifying the retarded selfenergy

ΣR(q, ω) = Σ(q, ω)− i

2
Γ(q, ω) =

∫

dω̄

2π

Γ(ω̄)

ω − ω̄ + iη
.(23)

We abbreviate

ε0k = ǫk +ΣHF, εk = ε0k +Σ(k, εk) (24)

according to the poles of (20).
If we integrate (20) over the energy ω we get the con-

nection between reduced density matrix ρ and the distri-
bution nk as

ρk = nk +

∫

dω

2π

Σ<(ω)(1 ∓ nk)− Σ>(ω̄)nk

(ω − ǫk)2
. (25)

The quasiparticle (Bose/Fermi) distribution nk is to be
take at the pole εk. The form (20) was derived with re-
spect to small scattering rate expansion and with quasi-
particle energies under the name of extended quasipar-
ticle approximation in nonequilibrium [21, 22] and the
history of this expansion was given in the introduction
above. Details can also be found in [27].

D. Born approximation

Since we want to consider the terms up to V 2 in the
selfenergy, the terms exceeding (20) would start with
fourth-order interaction. Using the expansion of figure
2 to calculate the selfenergy in figure 1 one sees that the
Hartree and Fock terms are time-diagonal and therefore
do not possess any frequency dependence which leads to
no second part of (20). The Born terms lead to the self-
energies

Σ<(k, ω) =
∑

qp

2πδ(ω+ǫp−ǫp−q−ǫk+q)np−qnk+q(1∓np)

×Vq [gsVq ∓ Vp−k−q ] (26)

where the spin degeneracy gs does only apply to the di-
rect and not to the exchange terms. The Σ> selfenergy
is obtained by interchanging n↔ 1∓n. Using this Born
approximation in (25) we get

〈ǫρ〉 =
∑

k

ǫkρk =
∑

k

ǫknk +
∑

kpq

Vq [gsVq ∓ Vp−k+q] ǫk

× nk+qnp−q(1∓nk)(1∓ np)−nknp(1∓nk+q)(1∓np−q)

(ǫk+q + ǫp−q − ǫp − ǫk)2

(27)

and

〈ρΣ〉 = 〈nΣ〉+ o(V 4). (28)

Using symmetry to replace ǫk → − 1
4 (ǫk+q+ǫp−q−ǫp−ǫk)

in (27) and subtracting (28) we obtain

〈ε0ρ〉 = 〈ε0n〉 − 1

4

∑

kpq

Vq [gsVq ∓ Vp−k+q ]

× nk+qnp−q(1∓ nk)(1∓ np)− nknp(1 ∓ nk+q)(1∓ np−q)

ǫk+q + ǫp−q − ǫp − ǫk
.

(29)

We identify the difference of kinetic energy calculated
with the reduced density matrix and the quasiparticle
distribution function

Kρ = Kn − 1
2Ec (30)

with the first non-vanishing correlation energy (19)

Ec =

∫

dkdpdq

(2π~)3
Vq[gsVq ∓ Vp−k−q ]

× (1∓ np−q)(1 ∓ nk+q)npnk

ǫp + ǫk − ǫk+q − ǫp−q

. (31)

The difference of reduced density matrix and quasiparti-
cle distribution function accounts for half of correlation
energy [71] and we can write alternatively for the total
energy

E = Kn +
1

2
Ec = Kρ + Ec. (32)
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We want to note here already that the on-shell self-
energy Σ≷(k, ǫk) will vanish for one-dimensional Fermi
wires since two particles can scatter only by exchanging
their momenta. In (20) the off-shell selfenergy is required
which has been presented in a different scheme and dis-
cussed in [72].
Integrating (20) over frequency we get the reduced den-

sity matrix or Wigner distribution ρk = nk + ρ>k − ρ<k in
terms of the Fermi-Dirac distribution nk. We can explic-
itly using (26) in (25) to obtain

ρ>k = (1 ∓ nk)

∫

dpdq

(2π~)2
Vq(gsVq ∓ Vp−k−q)

(ǫp + ǫk − ǫk+q − ǫp−q)2

×np−qnk+q(1∓ np) (33)

and ρ<k by replacing n↔ 1∓ n.

E. Density fluctuation and response function

Besides the selfenergy we can extract also the density
fluctuation δn̂(11′) = Ψ+(1′)Ψ(1) − 〈Ψ+(1′)Ψ(1)〉 from
the two-particle Green’s functions. One observes that
the fluctuation correlations are linked to the two-particle
Green’s function subtracted by the Hartree term

−iχ(121′2′) = G2(121
′2′)−G(11′)G(22′) (34)

and

〈δn̂(11)δn̂(22)〉 = 〈Ψ+
1 Ψ1Ψ

+
2 Ψ2〉 −G<(11)G<(22)

= i2Θ(t1 − t2)G121+2+ +G(11+)G(22+)

= χ>(12) = χ<(21) (35)

which is illustrated in figure 3.

−i =
2’

1 1’

2’2

1’1

2

−
1 1’

2 2’

G2
χ and

χ(1,2)=

1

2

χ

FIG. 3. The causal functions representing equation (35).

In other words, instead of closing (10) in an s-channel
way, the density fluctuations consider the two-particle
Green function in a t-channel, i.e. a different way to
reduce the four times to two times. We can use now the
causal two-time correlation function

χ(12) =
1

i
Θ(t1−t2)χ>(12)+

1

i
Θ(t2−t1)χ<(12) = χ121+2+

(36)

where we obey the Bose character of fluctuations by the
plus sign in accordance with (8).
On the other hand one can express the two-particle

Green’s function by a variation of the one-particle
Green’s functions iG12 = 〈TcΨ̂1Ψ̂

+
2 〉 with respect to the

external potential [69, 73]

G121′2′ = G11′G22′ ∓
δG11′

δU2′2
(37)

corresponding to Fermi/Bose systems. It shows that
the response function is just the density fluctuation (36)
when we consider the times t2 = t+1 = t1 + 0

χ<
12 =

δn1

δU2+2

=
δG<

11+

δU2+2

= ∓i δG11+

δU2+2

= i(G121+2+ −G11+G22+) = iχ12. (38)

Now we make the link to the structure function of
chapter II A. From the definitions (2) and (4) we see
the relation of the pair correlation function and struc-
ture function to the fluctuation function (35) are

iχ(x1t1, x2t1+) = χ<(12) = 〈Ψ+
2 Ψ2Ψ

+
1 Ψ1〉 − n(1)n(2)

= 〈Ψ+
1 Ψ

+
2 Ψ2Ψ1〉+ δ12n(1)− n(1)n(2)

= n(1)n(2)[g(12)− 1] + δ12n(1)

= n(1)S(x1, x2, t, t) (39)

which provides the static pair-correlation (2) and struc-
ture function (4) in terms of the time-diagonal of χ<.
Neglecting gradients in the density n(R ± r/2) ≈ n(R)
we obtain the known Fourier transform

Sq = 1 + n

∫

dre−iqr [g(r)− 1] =
1

n
χ>(q, t, t). (40)

We can extend this to the dynamical structure factor by

nS(q, ω) =

∫

d(t− t′)eiω(t−t′)χ>(q, t, t′)

= χ>(q, ω) = −2Imχ(q, ω)[1 + nB(ω)](41)

with the Bose distribution nB accounting for the Bose
character of the fluctuations. Since the imaginary part
of the response function is odd in frequency we can write

Sq =
1

n

∞
∫

−∞

dω

2π
[1 + nB(ω)][−2Imχ(q, ω)]

=
1

n

∞
∫

0

dω

2π
coth

(

βω

2

)

[−2Imχ(q, ω)]. (42)

If we consider the ground state at β = 1/kBT → ∞ the
coth approaches unity.

F. Coupling parameter integration

So far we have two possibilities to calculate the corre-
lation energy. We need the first-order expansion in the
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two-particle Green’s function, Fig. 2, in order to achieve
the second order in the selfenergy in figure 1 and the
correlation energy (19). The same approximation of the
two-particle Green’s function is used now to calculate
also the density response in figure 3 as t-channel clos-
ing which provides the density fluctuations, the struc-
ture factor (42) and the correlation energy (5). Due to
the same rooting of approximations to the two-particle
Green’s function the correlation energies (5) and (19) will
coincide.
The total ground-state energy can be obtained by

coupling-constant integration. Therefore we add a con-
stant λ in front of the potential. Since the ground-state
wave function is normalized independently of this param-
eter 〈Ψ0(λ)|Ψ0(λ)〉 = 1, the derivative of the ground-
state energy reads

dE(λ)

dλ
=
d

λ
〈Ψ0(λ)|Ĥ(λ)|Ψ0(λ)〉 = 〈Ψ0(λ)|

d

λ
Ĥ(λ)|Ψ0(λ)〉

=
Eint(λ)

λ
(43)

which provides the ground-state energy beyond the free
one E0 as

E = E0 +

1
∫

0

dλ

λ
Eint(λ) (44)

which we will call charging formula. Using (42) in (5) we
get the ground-state energy without Hartree term per
particle as

E − EH

N
= −1

2

∫

dq

(2π)d
Vq





1

n

1
∫

0

dλ

∞
∫

0

dω

π
Imχ(q, ω, λ)+1



 .

(45)

Both forms (45) as well as (19) allow a systematic expan-
sion with the help of the two-particle Green’s function.
Some pitfalls of the coupling-constant integration are dis-
cussed in [74].

G. RPA-like integral equations

Sometimes it is useful to express the response function
(38) with respect to the external potential U in terms
of the polarization function which is the response with
respect to the induced potential (15)

Π12′1′2 = ∓δG11′

δŪ22′
. (46)

Using δG = −GδG−1G we can write the polarisation
function with the help of the Dyson equation (14)-(16)

Π12′1′2 = ∓G12G2′1′ ∓G13
δΣ̄34

δŪ22′
G41′ . (47)

Frequently one expresses the response function (38) or
(34) in terms of the fluctuation L with the help of (37)
as

L121′2′ = G121′2′ −G11′G22′

= ∓G12′G21′ ∓G13
δΣ34

δU2′2
G41′

= ∓G12′G21′ +G13
δΣ34

δG56
L5262′G41′ . (48)

Comparing (48) and (47) and using the chain rule to
express variations with respect to U by variations with
respect to Ū we find a relation between L and Π expressed
in figure 4.

Π

L

+=L Π

FIG. 4. The integral equation connecting the response χ = iL
with the polarization Π.

Closing the upper and lower edges in the t-channel
manner we obtain the RPA-like integral equation for the
causal functions

L(12) = −iχ(12) = Π(12) + Π(13)V (34)L(42) (49)

which in equilibrium is solved and reads for the retarded
functions

LR(q, ω) = χR(q, ω) =
ΠR(q, ω)

1− V (q)ΠR(q, ω)
. (50)

There is some care to be observed since the polarization
itself has a kernel to be determined selfconsistently with
the selfenergy. In fact closing (47) in the t-channel man-
ner we get for the polarization just Fig. 5 which shows
that any approximation beyond the lowest RPA are cal-
culated as variations of the selfenergy.
Let us illustrate the procedure with the first-order ex-

pansion of the selfenergy which is the Fock term

ΣF (34) = ∓V (3− 4)G(34) (51)

and the Hartree term is absorbed in (15). We obtain

δΣF (3, 4)

δŪ(2, 2′)
= ∓V (3, 4)

δG(3, 4)

δŪ(2, 2′)

= ±V (3, 4)G(3, 5)
δ[Ḡ−1

0 (5, 6) + Σ(5, 6)]

δŪ(2, 2′)
G(6, 4)

= ∓V (3, 4)G(3, 5)δ2,6δ5,2′G(6, 4) + o(V 2)

= ∓V (3, 4)G(3, 2′)G(2, 4) (52)
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1
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11

+−
2

FIG. 5. Polarization (47) in terms of the variation of the
selfenergy with respect to the induced potential (15).

2 ++−

+−

+−= +o(V )
2

= +Π

FIG. 6. The polarization diagrams (47) when introducing
(52), the second line is the expansion with the help of the
Dyson equation (14) up to first-order interaction ∓Π0∓Πse+
Πex.

and introduced in (47) one gets the expansion in figure
6. Besides the non-interacting polarization function

Π0(q, ω) = gs
∑

k

nk − nk+q

ω +Ωk,q

(53)

there appear the selfenergy and vertex correction given
by [75]

Πse(q, ω) = gs
∑

k,p

v(k − p)(nk − nk+q)(np − np+q)

(ω +Ωk,q)2
(54)

and

Πex(q, ω) = ∓gs
∑

k,p

v(k−p)(nk−nk+q)(np−np+q)

(ω +Ωk,q)(ω +Ωp,q)
,(55)

respectively. Here Ωk,q = ωk − ωk+q, Ωp,q = ωp − ωp+q

and nk represents the Fermi-Dirac or Bose distribution
function for Fermions or Bosons respectively.
This completes the many body scheme where we have

shown how the variational expressions resulting into pair
correlation or structure function as well as response func-
tions appear on the same footing as the single-particle self
energy from Dyson equation. Both lead to the same ex-
pression for the correlated energy and are rooted to the
two-particle Green function.

III. WIRE OF FERMIONS

A. Model

We apply now the many-body scheme to the model of
a one-dimensional wire of charged Fermions. Due to the

strong divergence of the Coulomb interaction we model
it by a soften Coulomb potential of a cylindrical wire

V (r) = e2/4πǫ0
√

r2 + b̄2 and consider the limit b → 0.
Its Fourier transform reads

V (q) =
e2

4πǫ0
v(q)

v(q) = 2K0(b̄q) = −2
[

ln
(q

2

)

+ γ
]

− 2 ln b̄ + o
(

b̄2
)

(56)

where b̄ is related to the transverse width parameter of
the wire, K0 is the modified Bessel function of 2nd kind,
and the Euler constant γ.
Within the jellium model of electron density ρ(x)

one considers an oppositely charged background density
ρb(x). The background potential Vb(x) = −

∫

dx′V (x −
x′)ρb(x

′) gives the interaction energy of electrons with
the background

Ee−b = −
∫

dxρ(x)Vb(x). (57)

This energy is compensated by the selfenergy of the back-
ground itself

1

2

∫

dxdx′ρb(x)ρb(x
′)V (x− x′) (58)

together with the Hartree selfenergy of the electrons

1

2

∫

dxdx′ρ(x)ρ(x′)V (x − x′) (59)

if charge neutrality ρb(x) = ρ(x) is assumed. Therefore
the Hartree term does not count and we can use directly
the formulas (19) and (45) starting from the Fock term.
We consider first spin-polarized densities n↑↓ = n(1 ±

p)/2 with arbitrary polarization p = (n↑−n↓)/n. There-
fore the Fermi momentum is k↑↓ = π~n/gs = kF /gs with
gs = 2/(1± p). For the paramagnetic case we have p = 0
and gs = 2 which means k↑ = k↓ = kF /2. Correspond-
ingly for the ferromagnetic case gs = 1 and k↑ = kF . The
rs parameter as the number of particles in the Wigner
size radius 2aB is rs = 1/2naB.

B. Fock term or exchange term

First we investigate the lowest order Fock term

ΣF (k) = ∓
∞
∫

−∞

dq

2π~
Vqnk−q (60)

with the upper sign for spin-polarized electrons, gs = 1.
The spectral function in the Fock-propagatorG<(k, ω) =

a(k, ω)nk becomes a(k, ω) = 2πδ(ω− k2

2m −ΣHF) and (19)
leads to the Fock correlation energy density

EF

Ω
=

1

2

∞
∫

−∞

dk

2π~
nkΣF (k). (61)
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It is instructive to see how this formula appears from the
charging formula (44) or (45). For any temperature we
have (41) and from (50) ImL = Imχ = ImΠ0 + o(V ).
With the help of nB(−ω) = −1− nB(ω) we write

EF

N
=

1

2

∫

dq

(2π)d
Vq





1

n

∞
∫

−∞

dω

π
nb(−ω)ImΠ0(q, ω)−1



 .

(62)

Using

ImΠ0(q, ω) = gsπ

∫

dk

(2π)d
[n(ǫk)−n(ǫk−q)]δ(ǫk−ǫk−q−ω)

(63)

one calculates with the help of n(a)[±1 − n(b)] =
n(a)n(−b) = ±nB(a− b)[n(b)− n(a)]

∞
∫

−∞

dω

π
nb(−ω)ImΠ0(q, ω)

= gs

∫

dk

(2π)d
[n(ǫk)− n(ǫk−q)]nb(ǫk−q − ǫk)

= ±gs
∫

dk

(2π)d
n(ǫk−q)n(−ǫk)

= gs

∫

dk

(2π)d
n(ǫk−q)[1∓ n(ǫk)]

= n∓ gs

∫

dk

(2π)d
n(ǫk−q)n(ǫk) (64)

and introducing into (62) one gets exactly the Fock en-
ergy (61) with (60)

EF

N
= ∓ gs

2n

∫

dkdq

(2π)2d
Vqn(ǫk−q)n(ǫk). (65)

0.0 0.2 0.4 0.6 0.8 1.0
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�
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]

FIG. 7. The Fock correlation energy for a width of b = 1aB/~
versus polarization

We can give this exchange energy analytically at zero
temperature with nk = Θ(k2↑↓ − k2). In the following we

scale the momenta in units of k↑↓ = kf (1 ± p)/2 with
spin-polarization p = (n↑ − n↓)/(n↑ + n↓). The Fock

Ferro

Para

0.0 0.5 1.0 1.5 2.0
-2.5

-2.0

-1.5

-1.0

-0.5

rs↑

E
F

N
↑

[R
y
d
]

FIG. 8. The ferro- and paramagnetic Fock correlation energy
for a width of b = 0.1aB/~

correlation energy per particle and in units of Ryd can
be integrated with the potential (56) by interchanging
integration orders

EF

N↑Ryd
=

−1

16rs↑

1
∫

−1

dk

k+1
∫

k−1

dqK0(bq) =
−1

8rs↑

2
∫

0

dq(2−q)K0(bq)

= − 1

8rs↑

[

2b(πbLLL0(2b)+1)K1(2b)−1

b2
+2πLLL−1(2b)K0(2b)

]

(66)

with Ryd = e2/4πǫ0aB and b = b̄k↑↓ = b̄kF (1± p)/2 and
the StruveL function Ln(x). One sees that in this scaling
the meanfield appears in orders 1/rs or rs↑ = rs/(1 + p)
respectively. If one wants to present the energies in terms
of Fermi energy one has the relation

Ryd =
e2

4πǫ0aB
= ǫF

8

π2
r2s (67)

and the mean field would start with rs.

In figure 7 the scaled Fock selfenergy per particle is
plotted as a function of polarization. We see that it is
increasing with increasing polarization.

Now we can investigate whether there is a symmetry-
broken ground state by comparing the para- (p=0) with
the ferromagnetic (p=1) ground state as illustrated in
figure 8 and 9. We see that for any specific width the
ferromagnetic ground state is higher than the paramag-
netic one. This is in agreement with the Lieb-Schultz-
Mattis theorem [76] up to spin-up Bruckner parameter of
rs↑ ∼ 0.7 which shows the limit of meanfield approach.
If we scale the b parameter we see that this is true for
any width b as illustrated in figure 9. We conclude that
in one-dimensional systems there is no symmetry-broken
Hartree-Fock state as found in 2D and 3D systems. For
an overview see [58].
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FIG. 9. The difference of ferro- and paramagnetic Fock cor-
relation energy for any width.

C. Renormalization of potential and effective mass

The analytical result for the Fock selfenergy is

ΣF

nRyd
=− 1± p

4nrs

k+1
∫

k−1

dqK0(bq)

=− π

4rsgs

[

(1− k)LLL−1(b(1− k))K0(b |1− k|)

+ |1− k|LLL0(b(1− k))K1(b |1− k|)
+ (k + 1)LLL−1(b(k + 1))K0(b(k + 1))

+ (k + 1)LLL0(b(k + 1))K1(b(k + 1))

]

(68)

which is plotted in figure 10.

k^2 k^2+SFHb=1�kFL

k^2+SFHb=0.6�kFL k^2+SFHb=0.1�kFL

k^2+SFHb=0.01�kFL

0.0 0.5 1.0 1.5

-3

-2

-1

0

1

2

3

k@kFD

Ε@
Ε F
D

FIG. 10. The un-renormalized Fock selfenergy (68).

When we are approaching the Coulomb limit for van-
ishing width b→ 0 the Fock term diverges to −∞. This
is cured by a summation of higher-order diagrams which
are the RPA ones to produce an appropriate screened
potential. Here we suggest the following procedure. In
principal we can fix the energy scale as we want. There-
fore adding a constant does not alter the physics. Within
the jellium model we simply assume a background bias.

Therefore we are allowed to subtract from any potential
a constant, v(q) → v(q) + v0. Conveniently we chose
v0 = 2 ln b which renders the Fock selfenergy finite. We
will see in the next chapter that this constant v0 drops
out exactly in second-order selfenergy. In figure 11 we
plot the renormalized Fock selfenergy as it appears in the
quasiparticle dispersion which shows how it converges to
a finite value for b→ 0, the result being

ΣF

nRyd
=

π

rsgs

[

γ−ln
e2

2
+
k+1

2
ln(k+1)+

1−k
2

ln |1−k|
]

.

(69)

k^2

k^2+SFHb=1�kFL

k^2+SFHb=0.6�kFL

k^2+SFHb=0.1�kFL

k^2+SFHb=0.01�kFL
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FIG. 11. The quasiparticle dispersion with the renormalized
Fock selfenergy (68).

The effective mass

k

meff
=
∂ε0

k
=

k

m
+
∂ΣF

∂k
(70)

is independent of such added constant and diverges log-
arithmically at k = 1

m

meff
= 1−(p+1)

rs
π2

[

ln

(

b

2
|k−1|

)

+K0(2b) + γ

]

+o(|k − 1|) (71)

In figure 12 we see that the Coulomb limit b → 0 is
reached with a finite value

m

meff
= 1 + rs

2(1± p)

xπ2
ln

1 + x

|1− x| (72)

with x = k/k↑↓. At the (polarized) Fermi momentum we
see that the effective mass is zero indicating the break
down of the Fermi liquid picture.
This Coulomb effective mass we plot in figure 13 for

different rs parameter. We see that with increasing den-
sity the effective mass is more suppressed. The dip in the
effective mass is dependent on the polarization as seen in
figure 14. In fact for the paramagnetic case we see that
the dip occurs at twice the Fermi momentum and in-
dicates an analogous onset of Peierls instability [77, 78]
though we do not have any lattice in the Hamiltonian.
The formation of Wigner lattice due to correlation in
experiments [1, 2] allows to suggest here a similar tran-
sition.
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FIG. 12. The effective mass for different width in the ferro-
magnetic case and rs = 1. The position of the logarithmical
divergence are indicated by the dashed line.
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FIG. 13. The Coulomb effective mass (b = 0.01) for different
rs in the ferromagnetic case.

D. Selfenergy in first Born approximation

Now we calculate the selfenergy in Born approxima-
tion (26) which represents the next order in rS beyond
the meanfield. The δ-function we use to perform the q-
integration which gives two poles q = (p− k ± η)/2 with

η =
√

p2 − k2 − 2kp+ 2ω with the residue 1/2η. This
restricts the integration to render the root real. The sum
of this two poles yields finally in dimensionless units

Σ<

Ryd
=
gs
π

∫

dp

η

[

v

(

p− k + η

2

)

− v

(

p− k − η

2

)]2

Θ[4− (k + p+ η)2]Θ[4− (k + p− η)2]Θ[p2 − 1]. (73)

The expression for Σ> is given by inter-changing the sign
in the Θ functions. It is remarkable that any constant
shift of the potential v(q) + v0 drops out. Therefore we
can work with the renormalized potential as introduced
in the meanfield section. The last integration can be done
numerically. The integration range for p is in fact quite
involved and given in appendix (A). In [72] an alternative
analytical way is presented to express the selfenergy in
terms of one integral about any used potential.

p=0

p=���

p=0.6

p=�

0.0 0.5 ��� ��	 2�� 2�	 ���
0.86

0.88
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��
2
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����

k[kF ]

m
e
ff
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FIG. 14. The Coulomb effective mass for rs = 0.1 and various
polarizations ranging from paramagnetic (p=0) to the ferro-
magnetic (p=1) case. The vertical dashed lines indicate the
divergence at x = k/k↑↓ = 2/(1 + p)
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FIG. 15. The spectral function of selfenergy (22) for b = 1
and various momenta. The left curves are Σ< and the right
ones Σ>.

The first observation is that both selfenergies vanish
on-shell Σ≷(k, ω = k2/2m) = 0. This is a specific feature
of 1D systems. One can understand this as suppression
of any elastic scattering event by Pauli-blocking allowing
only exchange of momenta.
We discuss the spectral function (22) of the selfenergy

in figure 15. One sees that below the Fermi momentum a
gap in the dissipation spectrum appears which is closed
when the Fermi momentum is approached. For momenta
above the Fermi momentum, the dispersion splits which
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FIG. 16. The spectral function of selfenergy (22) for k = 0.6
(above) and k = 1.6 (below) and various b.

can be interpreted as holons and antiholons [47], i.e. the
excitation out of Fermi see above kf and −kf respec-
tively. This results into the two excitations above and
below ω = k2f . The Σ

< as selfenergy due to hole damping
represents the left curves and develop a sharp peak when
approaching the Fermi momentum. It never overcomes
the on-shell value. Exceeding the Fermi momentum Σ<

shrinks and form a large background. The opposite be-
haviour one sees for the particle contribution Σ> which
are the curves on the right side respectively. The sharp
peak developed above the Fermi momentum is moving to
higher values and broadens for higher momenta. Please
note that at the on-shell value Σ> is also exactly zero.
If we approach the Coulomb limit for b → 0 we see in
figure 16 that the selfenergy is increasing and converging
visibly at b = 0.05.

E. One-particle spectral function

1. Selfconsistent spectral function

Next we calculate the real part of the selfenergy (21)
which allows to discuss the spectral function of the elec-
trons from the Dyson equation

a(k, ω) = −2Im

[

ω − k2

2m
− ΣF (k)− ΣR(k, ω)

]−1

. (74)
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FIG. 17. The (unrenormalized) non-selfconsistent electron
spectral function (74) for various momenta.

In figure 17 we present this spectral function (74) for var-
ious momenta. We see that the pole increases according
to the expected dispersion k2/2m + ΣF + Σ until the
Fermi energy. Above, the spectral function shows quite
a fragmented behaviour indicating that we have missed
the correct pole.
Moreover, there are two sum rules known for the spec-

tral function, for derivation see [27]. The first one, the
norm conservation, is

∫

dω

2π
a(k, ω) = 1 (75)

and the second one, the energy-weighted sum rule, reads
∫

dω

2π
ωa(k, ω) =

k2

2m
+ΣF (k). (76)

Checking, one finds that below the Fermi momentum
both sum rules are completed only within 5 − 10% but
with higher than Fermi momentum both are badly off.
The reason by deeper inspection is that the energy argu-
ment of the selfenergy is not the energy ω. In principle
one has to meet the energy at the pole of the spectral
function there. This creates a selfconsistency loop which
has to be performed by iteration. As consequence this
leads away from the ω argument of the perturbative Σ(ω)
to a position ω + ∆k. A very good short-cut is to con-
sider this shift at the Fermi momentum but corrected by
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FIG. 18. The selfconsistent electron spectral function (74)
with Σ(k, ω +∆k) for various momenta of figure 17.

∆k ≈ −ΣF (kF )−Σ(kF , ǫF ). In fact this corrected form of
spectral function towards selfconsistency completes both
sum rules better that 0.01% and are given in figure 18.
The difference to figure 17 is visible.
We see that below the Fermi momentum a sharp side

peak develops which is vanishing at the Fermi momen-
tum. Above this sharp side peak is suppressed again.
Below zero a bound state pole is visible which vanishes
for momenta around 2kf indicating that nesting is de-
stroying the appearance of bound states.

2. Extended quasiparticle spectral function

According to the extended quasiparticle picture for the
correlation function (20) we can also write the spectral
function as

aEQP(k, ω) = G> +G< =
2πδ(ω − ǫk)

1− ∂Σ(ω)
∂ω

+
Γ(k, ω)

(ω − ǫk)2
(77)

with the dispersion ǫk = k2/2m−ΣF (k)−Σ(k, ǫk). This
spectral function is the consistent expansion in second
order potential according to (20). The residue renormal-
izes the weight of the pole and the sum rules (75) and
(76) are completed [27].
In figure 19 we compare the selfconsistent spectral

function with the extended quasiparticle one. One sees
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=0th order
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FIG. 19. The selfconsistent electron spectral function (74)
with the non-selfconsistent as well as the extended quasipar-
ticle one (77 for momenta k = 0.7kF above and k = 1.6kF
below. The arrow indicates the pole of the δ-function.

how the selfconsistent one approximates the correct pole
which is indicated by an arrow and approaches the side
band for higher momenta.

3. Quasiparticle energy and density of states

The spectral function describes the one-particle exci-
tations of the electrons. The quasiparticle excitation of
the electrons are given by the main pole of the spectral
function and according to the above discussion can be
approximated by

ǫk =
k2

2m
+ΣF (k) + Σ(k,

k2

2m
+∆k). (78)

In figure 20 we plot various contributions to the disper-
sion. If we compare the case of b = 1 with the Coulomb
limit b = 0.1 we see that the first-order selfenergy be-
comes remarkable and compensates partially the strong
meanfield contribution. Of course this is dependent on rs.
For illustrative purpose we plot also the case of rs = 2
seeing how the influence of the meanfield is further re-
duced.

From the spectral function we can also calculate the
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FIG. 20. The quasiparticle energy dispersion (78) together
with mean field and selfenergy contribution for b = 1, rs = 1
(above), b = 0.1, rs = 1 (middle) and b = 1, rs = 2 (below).

density of states

DOS(ω) =

∫

dk

2π~
a(k, ω) (79)

which is plotted in figure 21. One sees how the meanfield
density of states is approached at higher frequencies. At
lower frequencies we get a reduction from the meanfield
value showing no divergence. The shift of the bottom
is nearly identical to the mean field value. The dip is
the reminiscence of the gap in the excitation seen in the
spectral functions in figures 17 and 18.

F. Structure factor and pair correlation function

Now we are going to evaluate the response function
(50) structure function (42) and the pair correlation (40).
Since we consider the first-order high-density expansion
equivalent to the second-order expansion in the potential,
we can expand Eq. (50) as

χ(q, ω) = Π0(q, ω) + λ V (q)Π2
0(q, ω)

+λ Πse(q, ω) + λ Πex(q, ω) (80)

interacting

mean field

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5
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2.5
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Ω@ΕcD

D
O

S
@m

a B
�Ñ

2 D

FIG. 21. The density of states (79) with the spectral functions
(74) of figures 17 and 18 (thick line) together with the mean

field one
√

m/2(w − ΣF (kF )) (thin line) for b = 1, rs = 1.
The meanfield value of frequency is indicated by a vertical
grid line.

where we indicate the order of interaction by λ. The first-
order static structure factor (42) can be written according
to (80)

S1(x) = SVΠ2
0
(x) + Sse(x) + Sex(x) (81)

where we will use x = q/2kF in the following. The ana-
lytical evaluation of SV Π2

0
and Sex for an infinitely-thin

cylindrical wire can be found in [79]. The contribution
of the selfenergy to the structure factor Sse(q, ω) turns
out to be zero due to the ω integration. The sum of both
corrections SV Π2

0
and Sex is given by [80]

S1(x)

=
g2srs
π2x

{

ζ(x) , x < 1
ζ(x) − 2x lnx ln e2x , x > 1

(82)

with

ζ(x) = (x+ 1) ln(x+ 1) ln

(

x2e2

x+ 1

)

+|x− 1| ln |x− 1| ln
(

x2e2

|x− 1|

)

. (83)

G. Correlation energy

Next we discuss the expression for the correlation en-
ergy per particle in second-order perturbation theory
[81], i.e. second Born approximation with exchange (31).
For contact potentials we have to subtract an infinite
value ∼ np1

np2
in order to reach convergence which is

a renormalization of contact potential. For finite-range
potentials we have an intrinsic cut-off due to the range
of interaction and such problem does not occur as we see
a posteriori.
We scale all momenta again by the Fermi momentum

k↑↓ = π~n/gs as p1 = k/k↑↓, p2 = p/k↑↓, and x = q/2kf .
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The occupation factors restrict the integration range that
from 1 > p21, 1 > p22, (p1 + 2x)2 > 1 and (p2 + 2x)2 > 1
follows the two cases 0 < x < 1 with 1 − 2x < p1 <
1,−1 < p2 < 2x − 1 and 1 < x with −1, p1, p2 < 1.
Presenting the energy in terms of Ryd = e2/4πǫ0aB as
ǫc = Ec/n/Ryd we obtain

ǫc =− 1

4π2





1
∫

0

dx

x
Λ<
x +

∞
∫

1

dx

x
Λ>
x



 (84)

with b = b̄2kf . The p1 and p2 integrations can be carried
out analytically and yield for x > 1

Λ>
x =

1
∫

−1

dp1

1
∫

−1

dp2
v(2kfx)[v(2kfx)−v(kfp1−kfp2+2kfx)]

2x(p1−p2+2x)

=
K0(2bx)

b

{

G3,1
2,4

(

bx− b,
1

2
| 1, 32
1
2 ,

1
2 ,

1
2 , 0

)

−2G3,1
2,4

(

bx,
1

2
| 1, 32
1
2 ,

1
2 ,

1
2 , 0

)

+G3,1
2,4

(

bx+b,
1

2
| 1, 32
1
2 ,

1
2 ,

1
2 , 0

)

+ 4bK0(2bx)

[

2x ln

(

x2−1

x2

)

+ln

(

x+1

x−1

)2
]

}

(85)

and for 0 < x < 1

λ<x =

1
∫

1−2x

dp1

2x−1
∫

−1

dp2
v(2kfx)[v(2kfx)−v(kfp1−kfp2+2kfx)]

2x(p1−p2+2x)

=
K0(2bx)

b

{

G3,1
2,4

(

b+bx),
1

2
| 1, 32
1
2 ,

1
2 ,

1
2 , 0

)

+G3,1
2,4

(

b−bx), 1
2
| 1, 32
1
2 ,

1
2 ,

1
2 , 0

)

− 2G3,1
2,4

(

2x,
1

2
| 1, 32
1
2 ,

1
2 ,

1
2 , 0

)

+ 4bK0(2bx)

(

2 ln
(

1− x2
)

+ 2x ln

(

x+ 1

1− x

))}

(86)

with the the Meijer G function. The last x-integral can
be done numerically and the result is seen in figure 22.
It shows that the ground state correlation energy is de-
creasing continuously with increasing width. This means
that the one-dimensional systems is unstable compared
to the two-dimensional system which is the large-b limit
presented as well in figure 22. We see how the exact
expression (84) interpolates between both limits.

1. Small-b expansion

We have two ways to calculate the correlation energy
via the charging formula (5) and via the selfenergy (19).
The Fock or exchange term has been given already by
(66) and was shown to yield equivalent results with the
calculation by the selfenergy (64). Lets check this with
the small-b expansion.
First we give the result via the charging formula. The

correlation energy per particle in Eq. (45) in the small-b

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

bpf /ℏ

-
ϵ
c
[R
y
d
]

Large-b

1. order b

Exact

FIG. 22. The correlation energy per particle (84) together
with the first-order analytical expansion (87) as well as the
large-b expansion.

limit for a cylindrical wire is given by [80]

ǫc =
1

4rs

{

Λ(x<1) + Λ(x>1)

}

(87)

where we use the small b expansion of v(x). The result
for x < 1 is

Λ(x<1) =

∫ 1

0

v(x)[S1(x)]x<1 dx

=
rsg

2
s

12π2

{

42ζ(3) ln

(

bkF
8

)

+ 48(ln(2)− 2) ln(2) ln(bkF )

+ 48

(

−2Li4

(

1

2

)

+ ln2(2) + γ
(

ln2(2)− ln(4)
)

+ ln(4)

)

+ 42(γ − 1)ζ(3) + π4 − 4 log3(2)(12 + ln(2)) + 4π2 ln2(2)

}

,

(88)

and for x > 1 it is

Λ(x>1) =

∫ ∞

1

v(x)[SCy.
1 (x)]x>1 dx

= −2rsg
2
s

π2

{

7

4
ζ(3)

(

ln

(

bkF
8

)

+ γ − 1

)

− 4Li4

(

1

2

)

+
17π4

360
+ (ln(2)− 2) ln(4) ln(bkF )−

ln4(2)

6
− 2 ln3(2)

+
1

6
π2 ln2(2) + 2γ ln2(2) + 2 ln2(2) + ln(16)− 4γ ln(2)

}

,

(89)

where ζ(s) is the Riemann zeta function and Lin(z) is the
polylogarithm function [82]. Adding Eq.(88) and (89),
major cancellations occur and one obtains the known cor-
relation energy as

ǫc(rs) = − π2

360
(90)
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which is the result of the conventional perturbation
theory[58, 59] and in excellent agreement with variational
quantum Monte Carlo simulation [62].
As comparison we now calculate the small-b expansion

via the second Born approximation (84). We use first the
lowest-order of (56)

v(2kfx)[v(2kfx) − v(kfp1 − kfp2 + 2kfx)]

= 4(γ + ln b/2 + ln 2x)[ln 2x− ln(p1 − p2 + 2x)] + o(b2).
(91)

The p1 and p2 integrals read

Λ>
x = 4(γ + ln b/2 + ln 2x)

[

ξ(x)− 2x lnx ln e2x
]

. (92)

For 0 < x < 1 one gets

Λ<
x = 4(γ + ln b/2 + ln(2x))ξ(x). (93)

Comparing with (82) we see exactly the same expressions
ξ(x). This means that in the static perturbation theory
the structure factor is silently contained but not possible
to identify directly here.
Integrating further we obtain

∞
∫

1

dx

x
Λ>
x = (γ + ln b/2)[8 ln2(2)− 16 ln 2 + 7ζ(3)]

−16Li4

(

1

2

)

− 7ζ(3)[1 + ln 2] +
17π4

90
+

2

3
π2 ln2 2

+16 ln2− 2

3
(ln 2− 6)2 ln2 2 (94)

and

1
∫

0

dx

x
Λ<
x = −(γ + ln b/2)[8 ln2(2) + 16 ln 2 + 7ζ(3)]

16Li4

(

1

2

)

+ 7ζ(3)(1 + ln 2)− π4

6
− 2π2

3
ln2 2

−16 ln 2+2

3
(ln 2−6)2 ln2 2

]

. (95)

Adding (94) and (95) we get

ǫc = − π2

360
(96)

which is exactly (90). So both ways, the charging energy
formula and the selfenergy gives the same results.
With the same means we can calculate the next term

of (56). We obtain the next order in b

∞
∫

1

dx

x
Λ>
x = (γ + ln b/2)2

16

3
(1− ln 2)

+(γ + ln b/2)
2

9
[3π2 − 68− 4 ln 2(9 ln 2− 29)]

+
1

54
[452 + (36π2 − 1448) ln2− 48 ln2 2(3 ln 2− 19)

−30π2 + 315ζ(3)] (97)
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FIG. 23. The reduced density matrix (25) for various width
parameter b together with the Fermi function and artificially
4r2s/π

4 = 1.

and

1
∫

0

dx

x
Λ<
x = −(γ + ln b/2)2

16

3
(1 − ln 2)

+(γ + ln b/2)
2

9
[−π2 + 74 + 4 ln 2(9 ln 2− 29)]

− 1

54
[656 + (12π2 − 1510) ln 2− 48 ln2 2(3 ln 2− 19)

+10π2 + 27ζ(3)] (98)

which results into

ǫc = − π2

360

−b
2
(

6
(

3+π2
)

ln(b)+72ζ(3)+6γ
(

3+π2
)

−5π2−51
)

108π2
.

(99)

H. Reduced density matrix

Finally we calculate the reduced density matrix (25) or
explicitly (33). The integration ranges due to the occu-
pation factors are worked out in appendix B. For small b
parameter this can be evaluated analytically. One finds
that at k = 1kF the reduced density matrix has a singu-
larity in that it diverges of both sides with opposite sign.
The result for the numerical integration over the selfen-
ergies (25) are given in figure 23 for various b parameter.
One sees that in the Coulomb limit the divergence is seen
as a small wiggle around 0.5.
This divergence has been discussed in [34] and a Padé

regularization was suggested. It consists of the extended
quasiparticle approximation used so far and an additional
expansion around the Fermi energy both interpolated by
a function rapidly vanishing outside the Fermi energy.
We can therefore assume such regularization and it would
subtract the divergence on both sides which has here the
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form c1 ln(k−1)+c2 ln(k−1)2+c3 ln(1−k)3. One obtains
the interesting limiting law for the harmonic potential
(56)

lim
k→1±0

ρk =

{

1
12 [3 + ln(2)3] ≈ 0.277752
1 + 1

12 [−3 + ln(2)3] ≈ 1− 0.222248
(100)

which exactly approaches the jump

∆ρ =
1

2
(101)

at the Fermi momentum. Since we know that the mo-
mentum distribution is finite at the Fermi momentum,
the interpolation between expansion at the Fermi energy
and the extended quasiparticle approximation easily ac-
counts for this finite jump subtracting not only the di-
vergent terms on both sides but also the jump [34]. The
corresponding analytical expression for the momentum
distribution is somewhat lengthy but trivially obtained
by the formulas in appendix B.
It is instructive to consider the limit of contact poten-

tials v(q) = 1. Then one obtains analytically

ρk = 1 +
r2s(gs − 1)

π4

×



























ln(1+k)
(1−k)2 + ln(1−k)

(1+k)2 −2(1+2 ln2) 1+k2

(k2−1)2 0 < k < 1

1+2 ln 2−2 ln(k−1)
(1+k)2 1 < k < 3

4
k2−1)2 k > 3

(102)

and one sees that near the Fermi momentum k = 1 ± η
we have from both sides

ρk ≈
{

1 + 1−2 ln 2
4 + 1

2 ln η k = 1− η
1+2 ln 2

4 − 1
2 ln η k = 1 + η

+ o(η). (103)

Again due to Padé expansion we subtract a regularizing
term ρk = 1 + (ρ>k − ρrk)− (ρ<k − ρrk) to get rid of diver-
gences and see that the jump at the Fermi momentum
approaches a smaller value than (101) of

∆ρ = 1− ln 2 ≈ 0.3068. (104)

Again this can be included additionally into the Padé
term rendering the value of the momentum distribution
unique at the Fermi energy.

IV. SUMMARY

We have presented two approaches to the correlation
energy, one by the structure factor with the pair corre-
lation function and one by the Dyson equation with the
selfenergy. Both are rooted in approximating the two-
particle Green function appropriately. Different resulting
forms are compared and it is shown how they coincide if

the same level of approximations is used. The equivalence
is obtained within the extended quasiparticle picture for
the single-particle propagators and self energies.

For a one-dimensional quantum wire of Fermions the
approximations are illustrated and the self energies are
explicitly discussed. A gap appears which results into
a splitting of excitation lines in the spectral function of
holons and antiholons. Also bound states are visible de-
stroyed by higher momentum around nesting. The mean-
field leads to an effective mass which shows the onset of
Peierls-like transition at twice the Fermi energy. The
density of states in Born approximation and meanfield
are compared and the correlation effects are identified.
The width dependence of the correlation energy is calcu-
lated and compared with the analytical results of small
and large width expansions. The momentum distribu-
tion shows a divergence in approaching the left and right
side of the Fermi energy. The occurring divergences and
jumps at the Fermi energy are subtracted due to a regu-
larization scheme of Padé which interpolates between the
extended quasiparticle approximation and an expansion
at the Fermi energy.
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Appendix A: Integration range for the selfenergy
(73)

Performing the restrictions of the Θ functions the fol-
lowing integration range for Σ< appears. It is only non-
zero for W = k2 − ω > 0 and for 0 ≤ k < 1

p>1,W <2(k−1)2 : Max(1, k+
√
2W )<p<1+

W

2(1−k)

p<−1,W <2(1+k)2 :−1− W

2(1+k)
<p<Min(−1, k−

√
2W )

(A1)
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and for k>1

p<−1, 2k2<W <2(1+k)2 :

−1− W

2(1+k)
<p<Min(−1, k−

√
2W )

p<−k<−1 :−1− W

2(1+k)
<p<−1

−k<p<−1, 2(k−1)2<W <2(k2−1), k>
5

3
:

Max(−k, 1− W

2(k−1)
<p<Min(−1, k−

√
2W )

k ≤ 5

3
: Max(−k, 1− W

2(k−1)
)<p<−1

2(k2−1)<W<2k2 :−k<p<Min(−1, k−
√
2W ). (A2)

The integration range for Σ> is somewhat simpler. for
0 ≤ k < 1

Max(−1, 1+
W

2(1−k))<p<Min(1,−1− W

2(1+k)
) (A3)

and for k>1 and W > 0

k ≥ 3 or (k < 3 and2(k − 1)2 > W ) :

Max(−1, 1+
W

2(1−k))<p<Min(1, k−
√
2W )

1 < k < 3 : −1 <p<Min(1,−1− W

2(1−k)). (A4)

Appendix B: Integration range for the reduced
density matrix

We scale all momenta by the Fermi momentum to ob-
tain

ρk = nk +
4r2s
π4

∫∫

dpdq
Vq(gsVq − Vp−k−q)

[2q(k − p+ q)]2

×
{

[k > 1][p2 > 1][1 > (k + q)2][1 > (p− q)2]

−[1 > k][1 > p2][(k + q)2 > 1][(p− q)2 > 1]
}

(B1)

where we can restrict to positive k since ρ−k = ρk which
one sees by interchanging sign of p, q. The first part
appears for momenta larger than Fermi momentum, k >
1 and the second part for 0 < k < 1. Discussing the
integration range for 0 < k < 1 we have −1 < p < 1 and
q < p− 1 or q > p+1 as well as q < −1− k or q > 1− k.

This provides two cases

(a) : −1<−k<p<1 : −∞<q < −1−k or p+1<q<∞
(b) : −k > p > −1 : −∞ < q < p− 1 or 1− k < q <∞.

(B2)

Together this provides the integration range

−k
∫

−1

dp





p−1
∫

−∞

dq +

∞
∫

1−k

dq



+

1
∫

−k

dp





−k−1
∫

−∞

dq +

∞
∫

p+1

dq





=

∞
∫

2

dq

1
∫

−1

dp+

2
∫

1−k

dq

q−1
∫

−1

dp+ (k ↔ −k). (B3)

For k > 1 we have p > 1 or p < −1 and two conditions
for q

p− 1 < q < p+ 1, −1− k < q < 1− k. (B4)

For p > 1 we have 1 − k < 0 < p − 1 and there is
no common overlap for the range of q. Since both ranges
(B4) have the length of 2 we have to cases of finite overlap

(1) : p− 1 < q < 1− k

if − 1− k < p− 1 < 1− k < p+ 1 < 0

(2) : −k − 1 < q < p+ 1

if p− 1 < −k − 1 < p+ 1 < 1− k < 0. (B5)

Case (1) translates into −k < p < Min(−1, 2− k) which
divides into two cases

(a) : 1<k<3, −k<p<−1; (b) : k>3, −k<p<2−k.
(B6)

Case (2) yields −2 − k < p < −k. Combining case (1)
and (2) we find for 1 ≤ k < 3

−k
∫

−2−k

dp

p+1
∫

−1−k

dq +

−1
∫

−k

dp

1−k
∫

p−1

dq =

−2
∫

k−1

dq

q+1
∫

q−1

dp+

1−k
∫

−1−k

dq

−1
∫

q−1

dp

(B7)

and for k > 3

−k
∫

−2−k

dp

p+1
∫

−1−k

dq +

2−k
∫

−k

dp

1−k
∫

p−1

dq =

1−k
∫

−1−k

dq

q+1
∫

q−1

dp. (B8)
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